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The Foldy-Lax approximation:

1. The scattered field can be
approximated by the contribution of
N point-sources located at the
centers (yi )1≤i≤N :

us(y) ' − 1

N

N∑
i=1

zi,NΓk(y − yi )

2. The intensity zi,N of the wave field
scattered by the source yi is the
contribution of the field scattered
by the other sources (yj)1≤j 6=i≤N
and of the incident field f (yi ):

zi,N = f (yi )−
1

N

∑
j 6=i

zj,NΓk(yj − yi ).
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Motivation: the Foldy-Lax approximation

Γk(y) is e.g. the (outgoing) fundamental solution to the Helmholtz equation:

(∆ + k2)Γk = δ0 in Rd ,

Γk(y) =


− i

4
H

(1)
0 (k |y |) if d = 2,

− e ik|y |

4π|y |
if d = 3

Γk(· − y) is the wave pattern generated by a point source located at y .



Motivation: the Foldy-Lax approximation

Γk(y) is e.g. the (outgoing) fundamental solution to the Helmholtz equation:

(∆ + k2)Γk = δ0 in Rd ,

Γk(y) =


− i

4
H

(1)
0 (k |y |) if d = 2,

− e ik|y |

4π|y |
if d = 3

Γk(· − y) is the wave pattern generated by a point source located at y .



Motivation: the Foldy-Lax approximation

y1

y2

yj yi

yN

us− 1

N
zj,NΓk(yi − yj )

f (yi )

The Foldy-Lax approximation:

1. The scattered field can be
approximated by the contribution of
N point-sources located at the
centers (yi )1≤i≤N :

us(y) ' − 1

N

N∑
i=1

zi,NΓk(y − yi )

2. The intensity zi,N of the wave field
scattered by the source yi is the
contribution of the field scattered
by the other sources (yj)1≤j 6=i≤N
and of the incident field f (yi ):

zi,N = f (yi )−
1

N

∑
j 6=i

zj,NΓk(yj − yi ).



Motivation: the Foldy-Lax approximation

y1

y2

yj yi

yN

us− 1

N
zj,NΓk(yi − yj )

f (yi )

The Foldy-Lax approximation:

1. The scattered field can be
approximated by the contribution of
N point-sources located at the
centers (yi )1≤i≤N :

us(y) ' − 1

N

N∑
i=1

zi,NΓk(y − yi )

2. The intensity zi,N of the wave field
scattered by the source yi is the
contribution of the field scattered
by the other sources (yj)1≤j 6=i≤N
and of the incident field f (yi ):

zi,N = f (yi )−
1

N

∑
j 6=i

zj,NΓk(yj − yi ).



Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity (zi ,N)1≤i≤N :

zi ,N +
1

N

N∑
j=1

zj ,NΓk(yi − yj) = f (yi ), 1 ≤ i ≤ N. (1)

Assume N → +∞ and (yi )1≤i≤N is picked at random locations according to
a density ρ(y)dy over a bounded domain Ω.

1. Is the linear system (1) well-posed, well-conditioned ?

2. Can we approximate (1) by the integral equation

z(y) +

∫
Ω
z(y ′)Γk(y − y ′)ρ(y ′)dy ′ = f (y), y ∈ Ω. (2)

3. i.e. can we prove a convergence result zi ,N → z(yi ) as N → +∞ ?
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3. i.e. can we prove a convergence result zi ,N → z(yi ) as N → +∞ ?
In that case (2) is an equation characterizing the effective medium
associated to the random point cloud (yi )1≤i≤N .



A Monte-Carlo Nystrom method

Replace Γk with a general kernel k(y , y ′):
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1
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zj ,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

z(y) +

∫
Ω
z(y ′)k(y , y ′)ρ(y ′)dy ′ = f (y), y ∈ Ω. (2)

If zi ,N → z(yi ) as N → +∞, then (1) can also be viewed as a Monte-Carlo
method for solving (2).
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Assumptions

zi,N +
1

N

N∑
j=1

zj,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

z(y) +

∫
Ω

z(y ′)k(y , y ′)ρ(y ′)dy ′ = f (y), y ∈ Ω. (2)

We consider the following “natural” assumptions:

(i) Ω ⊂ Rd is a bounded Lipschitz domain and

sup
y ′∈Ω

∫
Ω

|k(y , y ′)|2dy < +∞,
∫

Ω

|f (y)|2dy < +∞.

(ii) (yi )1≤i≤N are independent samples of a probability distribution ρ(y)dy with

density ρ ∈ L∞(Ω,R+) (satisfying

∫
Ω

ρ(y)dy = 1).

(iii) The integral equation (2) is well-posed.
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Result 1: well-conditioning

zi,N +
1

N

N∑
j=1

zj,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N ⇐⇒ (I + AN)zN = F (1)

with zN = (zi,N)1≤i≤N and F = (f (yi ))1≤i≤N and where (AN)1≤i,j≤N is the random
matrix defined by

AN,ij =


1

N
k(yi , yj) if i 6= j ,

0 if i = j .

Proposition

Assume (i), (ii) and (iii). Then with probability one, there exists N0 ∈ N such that
the matrix I + AN is invertible for any N > N0, and there exists a constant C > 0
independent of N such that

∀N > N0, |||(I + AN)−1|||2 ≤ C

where ||| · |||2 is the operator norm (|||A|||2 := sup
||x||2=1

||Ax ||2).

So (1) is well-posed if the continuous problem is well-posed.
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Result 2: convergence of the Nystrom interpolant
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Ω
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Let zN(y) be the Nystrom interpolant

zN(y) := f (y)− 1

N

N∑
i=1

k(·, yi )zN,i , y ∈ Ω.
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is the total wave field, and zN − f is the scattered field.
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E[||zN − z ||2L2(Ω)|HN0 ]
1
2 ≤ CN−

1
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For the same event HN0 satisfying P(HN0 )→ 1 as N0 → +∞:

1. (1) is invertible for N > N0 when HN0 is realized

2. the vector (zN,i )1≤i≤N converges to the point-wise values (z(yi ))1≤i≤N at rate

O(N−
1
2 ) in a mean-square sense:

E

[
1

N

N∑
i=1

|zN,i − z(yi )|2
∣∣∣HN0

] 1
2

≤ CN−
1
2 .
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Numerical 1D example

I We consider k(y , y ′) := |y − y ′|−α with α = 0.4 < 1/2 on the interval
Ω = (0, 1) and the integral equation

z(y) +

∫ 1

0
k(y , y ′)z(y ′)dy ′ = f (y), y ∈ (0, 1). (2)

I We draw M times a sample of N random points (ypi )1≤i≤N
independently from the uniform distribution in (0, 1) for 1 ≤ p ≤ M.

I We solve the M linear systems for 1 ≤ p ≤ M:

zpN,i +
1

N

∑
j 6=i

k(ypi , y
p
j )zpN,j = f (ypi ), 1 ≤ i ≤ N.

I We solve (2) accurately with a Nystrom method on a regular grid and
we estimate the mean-square error:

MSE := E

[
1

N

N∑
i=1

|zN,i − z(yi )|2
] 1

2

'

√√√√ 1

MN

M∑
p=1

N∑
i=1

|zpN,i − z(ypi )|2.
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Numerical 1D example

Case 1: f (y) = 1
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Figure: Empirical average of the Nystrom interpolant E[zN ].



Numerical 1D example

Case 1: f (y) = 1
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Figure: Mean-square error MSE.



Numerical 1D example

Case 2: f (y) = sin(6πy)
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Case 2: f (y) = sin(6πy)
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Numerical 2D example

We solve with our Monte-Carlo method the following Lippmann-Schwinger
equation: {

(∆ + k2nΩ)z = 0 in R2,

(∂r − ik)(z − uin) = O(|x |−2) as r → +∞,
(3)

whose solution z is the scattered field produced by an incident wave uin
propagating through a material with refractive index nΩ(x) given by

nΩ(x) =

{
m if x ∈ Ω,

1 if x ∈ R2 \ Ω,

The integral formulation of (3) is

z(y) + (m − 1)k2

∫
Ω

Γk(y − y ′)z(y ′)dy ′ = uin(y), y ∈ Ω, (2)
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Numerical 2D example

z(y) + (m − 1)k2

∫
Ω

Γk(y − y ′)z(y ′)dy ′ = uin(y), y ∈ Ω, (2)

I We draw M times N samples (ypi )1≤i≤N for 1 ≤ p ≤ M uniformly and
independently in Ω = B(0, 1).

I We compute M Monte-Carlo approximations (zpN,i )1≤i≤N of (2),
1 ≤ p ≤ M, by solving

zpN,i+
1

N
|Ω|(m−1)k2

∑
j 6=i

Γk(ypi −y
p
j )zpN,j = uin(ypi ), 1 ≤ i ≤ N. (1)

I We solve (2) with the finite-element method1.

I We solve (1) for 500 ≤ N ≤ 40, 000 using the Efficient Bessel
Decomposition method2.

1Aussal and Alouges, Gypsilab (2018)
2Averseng, Fast discrete convolution in R2 with radial kernels using non-uniform fast

Fourier transform with nonequispaced frequencies (2020)
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Numerical 2D example

(a) The discretization mesh T
considered for the acoustic obstacle Ω
(the unit disk).

(b) The surrounding disk Ω′ (the disk
centered at (1, 0) of radius 4, in green)
containing the accoustic obstacle Ω (in
yellow).



Numerical 2D example

(a) Plot of the solution z in the interior
domain Ω.

(b) Plot of the solution z in the exterior
domain Ω′.

Thanks Martin Averseng and Ignacio Labarca.



Numerical 2D example

(a) N = 500 (b) N = 1, 000 (c) N = 5, 000

Figure: Samples of N random points drawn randomly and independently from the
uniform distribution in the unit disk.



Numerical 2D example

(a) N = 500 (b) N = 1, 000 (c) N = 5, 000

(d) N = 10, 000 (e) N = 20, 000 (f) N = 40, 000

Figure: Monte-Carlo solutions (zpi )1≤i≤N



Numerical 2D example

(a) N = 500 (b) N = 1, 000 (c) N = 5, 000

(d) N = 10, 000 (e) N = 20, 000 (f) N = 40, 000

Figure: Averaged field E[(ẑpi )] at the vertices of the mesh T .
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Sketch of the proof

zi,N +
1

N

N∑
j=1

zj,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

I (1) is equivalent to finding a function zN ∈ L2(Ω) such that

zN(y) +
1

N

N∑
j=1

k(y , yj)zN(yj) = f (y), ∀y ∈ Ω. (a)

Then one verifies that zN(yi ) = zN,i .

I (a) rewrites(
I +

1

N

N∑
i=1

Ai

)
zN = f with

Ai : L2(Ω,C) → L2(Ω,C)

z 7→ k(·, yi )z(yi ).

I Ai are independent realizations of the random operator

A : Ω× L2(Ω,C) → L2(Ω,C)

(y , z) 7→ k(·, y)z(y).
(0.1)
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Sketch of the proof

(a) rewrites (
I +

1

N

N∑
i=1

Ai

)
zN = f

Proposition

Let (Ai )i∈N be a family of independent realizations of a given bounded random
operator A : L2(Ω,C)→ L2(Ω,C). Then as N → +∞,

1

N

N∑
i=1

Ai −→ E[A],

where the convergence holds at the rate O(N−
1
2 ) in the following mean-square

sense:

E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Ai − E[A]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
 1

2

≤ E[|||A− E[A]|||2]
1
2

√
N

for any N ∈ N.



Sketch of the proof

For the random operator

A : Ω× L2(Ω,C) → L2(Ω,C)

(y , z) 7→ k(·, y)z(y),

the expectation E[A] is given by

E[A] : z 7→
∫

Ω
k(·, y)z(y)ρ(y)dy .



Sketch of the proof

Proposition

Let A be a bounded random operator and (Ai )i∈N be a sequence of independent
realizations of A. Then for any ε > 0 sufficiently small, with probability one, any

λ ∈ B(−1, ε) belongs to the resolvent set of
1

N

N∑
i=1

Ai for N large enough:

(
λI− 1

N

N∑
i=1

Ai

)−1

→ (λI− E[A])−1

I In particular (λ = −1), I +
1

N

N∑
i=1

Ai is invertible for N large enough.

I The convergence holds at rate O(N−1/2) in the operator norm ||| · ||| of L2(Ω);
it yields

E[||zN − z ||2L2(Ω)|HN0 ]
1
2 ≤ CN−

1
2 .
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Result 2: convergence of the Nystrom interpolant

zi,N +
1

N

N∑
j=1

zj,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

z(y) +

∫
Ω

z(y ′)k(y , y ′)ρ(y ′)dy ′ = f (y), y ∈ Ω. (2)

Let zN(y) be the Nystrom interpolant

zN(y) := f (y)− 1

N

N∑
i=1

k(·, yi )zN,i , y ∈ Ω.

Proposition

There exists an event HN0 satisfying P(HN0 )→ 1 as N0 → +∞ such that

1. (1) is invertible for N > N0 when HN0 is realized

2. zN converges to z at rate O(N−
1
2 ) in a mean-square sense:

E[||zN − z ||2L2(Ω)|HN0 ]
1
2 ≤ CN−

1
2 .



From operators to matrices

zi ,N +
1

N

N∑
j=1

zj ,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

z(y) +

∫
Ω
z(y ′)k(y , y ′)ρ(y ′)dy ′ = f (y), y ∈ Ω. (2)

It remains to obtain

I The well-conditionning of the linear system (1)

I The point-wise convergence zi ,N → z(yi ).



From operators to matrices

zi ,N +
1

N

N∑
j=1

zj ,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

z(y) +

∫
Ω
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Result 3: point-wise convergence

zi,N +
1

N

N∑
j=1

zj,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N, (1)

z(y) +

∫
Ω

z(y ′)k(y , y ′)ρ(y ′)dy ′ = f (y), y ∈ Ω. (2)

Proposition

For the same event HN0 satisfying P(HN0 )→ 1 as N0 → +∞:

1. (1) is invertible for N > N0 when HN0 is realized

2. the vector (zN,i )1≤i≤N converges to the point-wise values (z(yi ))1≤i≤N at rate

O(N−
1
2 ) in a mean-square sense:

E

[
1

N

N∑
i=1

|zN,i − z(yi )|2
∣∣∣HN0

] 1
2

≤ CN−
1
2 .



Result 1: well-conditioning

zi,N +
1

N

N∑
j=1

zj,Nk(yi , yj) = f (yi ), 1 ≤ i ≤ N ⇐⇒ (I + AN)zN = F (1)

with zN = (zi,N)1≤i≤N and F = (f (yi ))1≤i≤N and where (AN)1≤i,j≤N is the random
matrix defined by

AN,ij =


1

N
k(yi , yj) if i 6= j ,

0 if i = j .

Proposition

Assume (i), (ii) and (iii). Then with probability one, there exists N0 ∈ N such that
the matrix I + AN is invertible for any N > N0, and there exists a constant C > 0
independent of N such that

∀N > N0, |||(I + AN)−1|||2 ≤ C

where ||| · |||2 is the operator norm (|||A|||2 := sup
||x||2=1

||Ax ||2).

So (1) is well-posed if the continuous problem is well-posed.



Result 1: well-conditioning

I We know that B(−1, ε) belongs to the resolvent set of (I + AN).

I We use the following resolent estimate from 3:

|||(I + AN)−1|||2 ≤
1

d(−1, σ(AN))
exp

(
1

2

Tr(AT
NAN)

d(−1, σ(AN))
+

1

2

)
.

We obtain the well conditioning of the matrix I + AN .

I Since the vector vN := (vN,i )1≤i≤N defined by vN,i := zN,i − z(yi )
satisfies

(I + AN)vN = −rN
with E[|rN |22] = O(N−1/2), we obtain the point-wise bound.

3Bandtlow, Estimates for norms of resolvents and an application to the perturbation of
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Preprint

The full details have been submitted in the preprint

Feppon F. and Ammari H., Analysis of a Monte-Carlo Nystrom Method.
Submitted. (2021).

Thank you for your attention.


