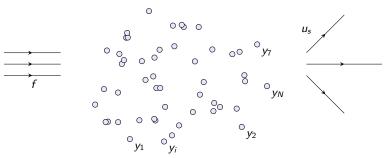
Layer potential approach to homogenization of sound-absorbing and resonant acoustic metamaterials

Florian Feppon - Habib Ammari

Analysis and Applications Seminar Tsinghua University (Online), November 12th 2021

Seminar for Applied Mathematics

Acoustic scattering of an incident field f through N packets of obstacles $(y_i + sD_i)_{1 \le i \le N}$ located at $(y_i)_{1 \le i \le N}$:



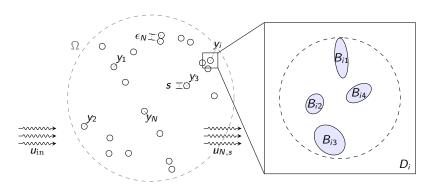


Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω .

$$D_{N,s} = \bigcup_{i=1}^{N} (y_i + sD_i)$$

Sound-absorbing obstacles:

$$\begin{cases} \Delta u_{N,s} + k^2 u_{N,s} = 0 \text{ in } \mathbb{R}^3 \backslash D_{N,s}, \\ u_{N,s} = 0 \text{ on } \partial D_{N,s}, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k\right) \left(u_{N,s}(x) - u_{\mathrm{in}}(x)\right) = O(|x|^{-2}) \text{ as } |x| \to +\infty, \end{cases}$$

High-contrast obstacles:

$$\delta := \frac{\rho_b}{\rho} \to 0$$

High-contrast obstacles:

$$\mathbb{R}^{3} \underset{\kappa, \rho}{} \qquad \qquad \delta := \frac{\rho_{b}}{\rho} \to 0$$

$$\begin{cases} \operatorname{div}\left(\frac{1}{\rho_{b}} \nabla u_{N,s}\right) + \frac{\omega^{2}}{\kappa_{b}} u_{N,s} = 0 \text{ in } D_{N,s}, \\ \operatorname{div}\left(\frac{1}{\rho} \nabla u_{N,s}\right) + \frac{\omega^{2}}{\kappa} u_{N,s} = 0 \text{ in } \mathbb{R}^{3} \setminus D_{N,s}, \\ u_{N,s}|_{+} - u_{N,s}|_{-} = 0 \text{ on } \partial D_{N,s}, \\ \frac{1}{\rho_{b}} \frac{\partial u_{N,s}}{\partial n} \Big|_{-} = \frac{1}{\rho} \frac{\partial u_{N,s}}{\partial n} \Big|_{+} \text{ on } \partial D_{N,s}, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right) (u_{N,s} - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty, \end{cases}$$

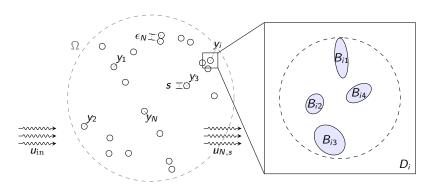


Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω .

$$D_{N,s} = \bigcup_{i=1}^{N} (y_i + sD_i)$$

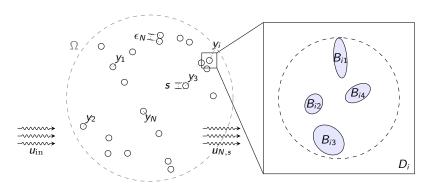


Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω .

$$D_{N,s} = \cup_{i=1}^{N} (y_i + sD_i)$$

The asymptotic analysis is performed with $s \to 0$, $N \to +\infty$, $\delta \to 0$.

- 1. Exposition of the results for sound-absorbing materials
- 2. Exposition of the results for high-contrast metamaterials
- 3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system

- 1. Exposition of the results for sound-absorbing materials
- 2. Exposition of the results for high-contrast metamaterials
- 3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system

- 1. Exposition of the results for sound-absorbing materials
- 2. Exposition of the results for high-contrast metamaterials
- 3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system.

- 1. Exposition of the results for sound-absorbing materials
- 2. Exposition of the results for high-contrast metamaterials
- 3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system

- sound-absorbing metamaterials: critical quantity, sN.
 - Rauch and Taylor, Potential and scattering theory on wildly perturbed domains (1975) (regularly spaced obstacles, case $sN \to +\infty$ and $sN \to 0$)

- sound-absorbing metamaterials: critical quantity, sN.
 - ▶ Rauch and Taylor, Potential and scattering theory on wildly perturbed domains (1975) (regularly spaced obstacles, case $sN \to +\infty$ and $sN \to 0$)
 - ▶ Chiado Piat and Codegone, Scattering problems in a domain with small holes. (2003) (regularly spaced obstacles, case $sN \rightarrow \Lambda$ with $\Lambda > 0$)

- sound-absorbing metamaterials: critical quantity, sN.
 - ▶ Rauch and Taylor, Potential and scattering theory on wildly perturbed domains (1975) (regularly spaced obstacles, case $sN \to +\infty$ and $sN \to 0$)
 - ▶ Chiado Piat and Codegone, Scattering problems in a domain with small holes. (2003) (regularly spaced obstacles, case $sN \to \Lambda$ with $\Lambda > 0$)
 - Challa, Mantile, and Sini, Characterization of the acoustic fields scattered by a cluster of small holes (2020) (arbitrarily spaced obstacles distributed according to a counting function, quantitative error bounds for the far field).

- sound-absorbing metamaterials: critical quantity, sN.
 - ▶ Rauch and Taylor, Potential and scattering theory on wildly perturbed domains (1975) (regularly spaced obstacles, case $sN \to +\infty$ and $sN \to 0$)
 - ► Chiado Piat and Codegone, Scattering problems in a domain with small holes. (2003) (regularly spaced obstacles, case $sN \to \Lambda$ with $\Lambda > 0$)
 - Challa, Mantile, and Sini, Characterization of the acoustic fields scattered by a cluster of small holes (2020) (arbitrarily spaced obstacles distributed according to a counting function, quantitative error bounds for the far field).

Some references:

- ▶ sound-absorbing metamaterials: critical quantity, sN.
 - Rauch and Taylor, Potential and scattering theory on wildly perturbed domains (1975) (regularly spaced obstacles, case $sN \to +\infty$ and $sN \to 0$)
 - ► Chiado Piat and Codegone, Scattering problems in a domain with small holes. (2003) (regularly spaced obstacles, case $sN \to \Lambda$ with $\Lambda > 0$)
 - ► Challa, Mantile, and Sini, Characterization of the acoustic fields scattered by a cluster of small holes (2020) (arbitrarily spaced obstacles distributed according to a counting function, quantitative error bounds for the far field).

Our contribution: randomly distributed centers, quantitative error bounds in $L^2(B(0,R))$ for any R>0 even close to the obstacles.

Assumption 1

 $(y_i)_{1\leq i\leq N}$ are distributed randomly and independently according to $\rho \mathrm{d}x$ with $\rho \in L^\infty(\Omega)$ supported in $\Omega \subset \mathbb{R}^3$. In particular, $\rho \geqslant 0$ and $\int_\Omega \rho \mathrm{d}x = 1$, and ...

 $\sum_{i=1}^{N} \delta_{y_i} \to \rho \mathrm{d}x \text{ as } N \to +\infty, \text{ in the sense of distributions.}$

Assumption 1

$$(y_i)_{1\leq i\leq N}$$
 are distributed randomly and independently according to $ho \mathrm{d} x$ with $ho \in L^\infty(\Omega)$ supported in $\Omega \subset \mathbb{R}^3$. In particular, $ho \geqslant 0$ and $\int_\Omega \rho \mathrm{d} x = 1$, and

 $\sum_{i=1}^{N} \delta_{y_i} \to \rho \mathrm{d}x \text{ as } \mathsf{N} \to +\infty, \text{ in the sense of distributions.}$

Assumption 2

The packets of resonators are identical and constituted of K single components $(B_l)_{1 \le l \le K}$:

$$D_i = D := \bigcup_{l=1}^K B_l, \quad \forall 1 \leq i \leq N.$$

For sound-absorbing metamaterials, we assume further the subcritical regime ${\it sN}={\it O}(1)$:

Assumption 3

There exists a constant c > 0 such that the parameters s and N satisfy

$$sN \leq c$$
.

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases}
\Delta u + (k^2 - sN \operatorname{cap}(D)\rho 1_{\Omega})u = 0 & \text{in } \mathbb{R}^3, \\
\left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right)(u - u_{\text{in}}) = O(|x|^{-2}) & \text{as } |x| \to +\infty.
\end{cases} \tag{1}$$

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases} \Delta u + (k^2 - sN \operatorname{cap}(D)\rho 1_{\Omega})u = 0 & in \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - ik\right)(u - u_{\operatorname{in}}) = O(|x|^{-2}) & as |x| \to +\infty. \end{cases}$$
 (1)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) containing the obstacles, $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s} - u||_{L^{2}(B(0,r))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}});$$
 (2)

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases} \Delta u + (k^2 - sN \operatorname{cap}(D)\rho 1_{\Omega})u = 0 \ \text{in } \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right)(u - u_{\operatorname{in}}) = O(|x|^{-2}) \ \text{as } |x| \to +\infty. \end{cases} \tag{1}$$

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) containing the obstacles, $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s} - u||_{L^{2}(B(0,r))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}});$$
 (2)

2. on any bounded open subset $A \subset \mathbb{R}^3 \backslash \Omega$ away from the obstacles and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}).$$
(3)

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases} \Delta u + (k^2 - sN \mathrm{cap}(D)\rho 1_{\Omega})u = 0 \ in \ \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right)(u - u_\mathrm{in}) = O(|x|^{-2}) \ as \ |x| \to +\infty. \end{cases}$$

$$There \ \text{exists an event} \ \mathcal{H}_{N_0} \ \text{which holds with large probability} \ \mathbb{P}(\mathcal{H}_{N_0}) \to 1 \ as \ N_0 \to +\infty$$

such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

1. on any ball
$$B(0,r)$$
 containing the obstacles, $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s} - u||_{L^{2}(B(0,r))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}); \tag{2}$$

2. on any bounded open subset $A \subset \mathbb{R}^3 \setminus \Omega$ away from the obstacles and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}^{2}|\mathcal{H}_{N_{0}}|^{\frac{1}{2}} \leq csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}). \tag{3}$$

The relative error is of order $O(\max((sN)^2N^{-\frac{1}{3}}, N^{-\frac{1}{2}}))$ because the scattered fields $u_{N,s} - u_{in}$ and $u - u_{in}$ are of order O(sN).

1. For sN \to 0, the effective medium is transparent, i.e. $u_{N,s} \to u_{\rm in}$ where $\Delta u_{\rm in} + k^2 u_{\rm in} = 0$

- 1. For $sN \to 0$, the effective medium is transparent, i.e. $u_{N,s} \to u_{\rm in}$ where $\Delta u_{\rm in} + k^2 u_{\rm in} = 0$
- 2. For $sN \to \Lambda$ with $\Lambda > 0$, the effective medium is dissipative, $u_{N,s} \to u$, the solution to the Helmholtz equation with "strange term"

$$\label{eq:delta-u} \left\{ \begin{split} \Delta u + (k^2 - \Lambda \mathrm{cap}\,(D) \rho \mathbf{1}_\Omega) u &= 0 \text{ in } \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k \right) (u - u_\mathrm{in}) &= \textit{O}(|x|^{-2}) \text{ as } |x| \to +\infty. \end{split} \right.$$

- 1. For $sN \to 0$, the effective medium is transparent, i.e. $u_{N,s} \to u_{\rm in}$ where $\Delta u_{\rm in} + k^2 u_{\rm in} = 0$
- 2. For $sN \to \Lambda$ with $\Lambda > 0$, the effective medium is dissipative, $u_{N,s} \to u$, the solution to the Helmholtz equation with "strange term"

$$\begin{cases} \Delta u + (k^2 - \Lambda \mathrm{cap}(D) \rho 1_{\Omega}) u = 0 \text{ in } \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k \right) (u - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$

3. For $sN \to +\infty$, we expect that the obstacles "solidify" in a single sound-hard obstacle Ω , and that $u_{N,s} \to u$ where u is the solution to the problem

$$\begin{cases} \Delta u + k^2 u = 0 \text{ in } \mathbb{R}^3, \\ u = 0 \text{ on } \Omega, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k\right) (u - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$

However this would require a significantly different analysis.

- 1. Exposition of the results for sound-absorbing materials
- 2. Exposition of the results for high-contrast metamaterials
- 3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system

High-contrast metamaterials feature resonances. Denote by $(a_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the generalized eigenvalue problem

$$Ca_j = \lambda_j Va_j \text{ with } C := \left(-\int_{\partial B_i} \mathcal{S}_D^{-1}[1_{\partial B_j}] d\sigma\right)_{1 \le i \le K} \text{ and } V := \operatorname{diag}(|B_i|)_{1 \le i \le K}, \quad (4)$$

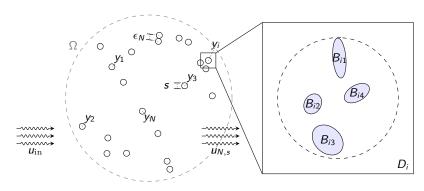


Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω .

$$D_{N,s} = \bigcup_{i=1}^{N} (y_i + sD_i)$$

High-contrast metamaterials feature resonances. Denote by $(a_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the generalized eigenvalue problem

$$Ca_j = \lambda_j Va_j \text{ with } C := \left(-\int_{\partial B_i} \mathcal{S}_D^{-1}[1_{\partial B_j}] d\sigma\right)_{1 \le i \le K} \text{ and } V := \operatorname{diag}(|B_i|)_{1 \le i \le K}, \quad (4)$$

High-contrast metamaterials feature resonances. Denote by $(\mathbf{a}_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the generalized eigenvalue problem

$$Ca_j = \lambda_j Va_j \text{ with } C := \left(-\int_{\partial B_i} \mathcal{S}_D^{-1}[1_{\partial B_j}] d\sigma\right)_{1 \leq i,j \leq K} \text{ and } V := \operatorname{diag}(|B_i|)_{1 \leq i \leq K},$$
 (4)

▶ The metamaterial constituted of N identical packets of K connected resonators $sD = \bigcup_{i=1}^{K} sB_i$ admits K resonant frequencies

$$\omega_i(\delta, s) = \frac{\delta^{\frac{1}{2}}}{s} \lambda_i^{\frac{1}{2}} v_b \text{ with } v_b := \sqrt{\frac{\rho_b}{\kappa_b}},$$

High-contrast metamaterials feature resonances. Denote by $(a_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the generalized eigenvalue problem

$$Ca_{j} = \lambda_{j} Va_{j} \text{ with } C := \left(-\int_{\partial B_{i}} \mathcal{S}_{D}^{-1}[1_{\partial B_{j}}] d\sigma\right)_{1 \leq i, j \leq K} \text{ and } V := \operatorname{diag}(|B_{i}|)_{1 \leq i \leq K}, \quad (4)$$

► The metamaterial constituted of N identical packets of K connected resonators $sD = \bigcup_{i=1}^{K} sB_i$ admits K resonant frequencies

$$\omega_i(\delta, s) = \frac{\delta^{\frac{1}{2}}}{s} \lambda_i^{\frac{1}{2}} v_b \text{ with } v_b := \sqrt{\frac{\rho_b}{\kappa_b}},$$

Since in our analysis ω is fixed but s is variable, it is equivalent to say that there is K resonant sizes

$$s_i(\delta) := \frac{\delta^{\frac{1}{2}}}{\langle i \rangle} \lambda_i^{\frac{1}{2}} v_b, \qquad 1 \leq i \leq K.$$

High-contrast metamaterials feature resonances. Denote by $(a_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the generalized eigenvalue problem

$$C\mathbf{a}_{j} = \lambda_{j}V\mathbf{a}_{j} \text{ with } C := \left(-\int_{\partial B_{i}} \mathcal{S}_{D}^{-1}[1_{\partial B_{j}}]d\sigma\right)_{1 \leq i,j \leq K} \text{ and } V := \operatorname{diag}(|B_{i}|)_{1 \leq i \leq K}, \quad (4)$$

▶ The metamaterial constituted of N identical packets of K connected resonators $sD = \bigcup_{i=1}^K sB_i$ admits K resonant frequencies

$$\omega_i(\delta,s) = rac{\delta^{rac{1}{2}}}{s} \lambda_i^{rac{1}{2}} \mathsf{v}_b \; \mathsf{with} \; \mathsf{v}_b := \sqrt{rac{
ho_b}{\kappa_b}},$$

Since in our analysis ω is fixed but s is variable, it is equivalent to say that there is K resonant sizes

$$s_i(\delta) := rac{\delta^{rac{1}{2}}}{\omega} \lambda_i^{rac{1}{2}} \mathsf{v}_b, \qquad 1 \leq i \leq \mathsf{K}.$$

 $lackbox{ As } s
ightarrow s_i(\delta)$, the relevant "critical quantity" is

$$extit{sNQ}(extit{s},\delta) ext{ with } Q(extit{s},\delta) := \sum_{i=1}^K rac{\lambda_i}{rac{s^2}{s_i(\delta)^2}-1} (extit{a}_i^T V 1)^2,$$

where $1 = (1)_{1 \le i \le K}$ is the vector of ones.

Related previous works:

Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for two identical resonators K=2 per packet.

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for two identical resonators K=2 per packet.
- Ammari et al., The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces (2020). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ distributed according to a counting function, estimates in the far field. Cases $sNQ(s,\delta)\to \Lambda$, $sNQ(s,\delta)\to 0$ and $sNQ(s,\delta)\to +\infty$. The case $sNQ(s,\delta)\to -\infty$ remains opened.

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for two identical resonators K=2 per packet.
- Ammari et al., The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces (2020). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ distributed according to a counting function, estimates in the far field. Cases $sNQ(s,\delta)\to \Lambda$, $sNQ(s,\delta)\to 0$ and $sNQ(s,\delta)\to +\infty$. The case $sNQ(s,\delta)\to -\infty$ remains opened.

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for two identical resonators K=2 per packet.
- Ammari et al., The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces (2020). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ distributed according to a counting function, estimates in the far field. Cases $sNQ(s,\delta)\to \Lambda$, $sNQ(s,\delta)\to 0$ and $sNQ(s,\delta)\to +\infty$. The case $sNQ(s,\delta)\to -\infty$ remains opened.

Our contributions:

• identical packets of multiple resonators (K arbitrary) and identification of the role of $Q(s,\delta)$

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., *Double-negative acoustic metamaterials* (2019). Formal analysis for two identical resonators K=2 per packet.
- Ammari et al., The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces (2020). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ distributed according to a counting function, estimates in the far field. Cases $sNQ(s,\delta)\to \Lambda$, $sNQ(s,\delta)\to 0$ and $sNQ(s,\delta)\to +\infty$. The case $sNQ(s,\delta)\to -\infty$ remains opened.

Our contributions:

- identical packets of multiple resonators (K arbitrary) and identification of the role of $Q(s,\delta)$
- ▶ $s \to s_i(\delta)$ for a resonance of monopole type $(Q(s,\delta) \to +\infty$ as $s \to s_i(\delta) \Leftrightarrow \mathbf{a}_i^T V 1 \neq 0)$, in the "subcritical regime" $sNQ(s,\delta) = O(1)$

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for two identical resonators K=2 per packet.
- ▶ Ammari et al., The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces (2020). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ distributed according to a counting function, estimates in the far field. Cases $sNQ(s,\delta)\to \Lambda$, $sNQ(s,\delta)\to 0$ and $sNQ(s,\delta)\to +\infty$. The case $sNQ(s,\delta)\to -\infty$ remains opened.

Our contributions:

- identical packets of multiple resonators (K arbitrary) and identification of the role of $Q(s,\delta)$
- ▶ $s \to s_i(\delta)$ for a resonance of monopole type $(Q(s,\delta) \to +\infty$ as $s \to s_i(\delta) \Leftrightarrow \mathbf{a}_i^T V 1 \neq 0)$, in the "subcritical regime" $sNQ(s,\delta) = O(1)$
- quantitative estimates in any ball B(0, R) with R > 0.

High-contrast metamaterials feature resonances. Denote by $(\boldsymbol{a}_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the generalized eigenvalue problem

$$C\mathbf{a}_{j} = \lambda_{j}V\mathbf{a}_{j} \text{ with } C := \left(-\int_{\partial B_{i}} \mathcal{S}_{D}^{-1}[1_{\partial B_{j}}]d\sigma\right)_{1 \leq i,j \leq K} \text{ and } V := \operatorname{diag}(|B_{i}|)_{1 \leq i \leq K}, \quad (4)$$

▶ The metamaterial constituted of N identical packets of K connected resonators $sD = \bigcup_{i=1}^{K} sB_i$ admits K resonant frequencies

$$\omega_i(\delta,s) = rac{\delta^{rac{1}{2}}}{s} \lambda_i^{rac{1}{2}} extit{v_b with $v_b:=\sqrt{rac{
ho_b}{\kappa_b}}$,}$$

Since in our analysis ω is fixed but s is variable, it is equivalent to say that there is K resonant sizes

$$s_i(\delta) := \frac{\delta^{\frac{1}{2}}}{\omega} \lambda_i^{\frac{1}{2}} v_b, \qquad 1 \leq i \leq K.$$

• As $s o s_i(\delta)$, the relevant "critical quantity" is

$$extit{sNQ}(extit{s},\delta) ext{ with } Q(extit{s},\delta) := \sum_{i=1}^K rac{\lambda_i}{rac{s^2}{ extit{s}/(\delta)^2}-1} (extit{a}_i^ au V 1)^2,$$

where $1 = (1)_{1 \le i \le K}$ is the vector of ones.

Related previous works:

- Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency (2017). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ satisfying technical assumptions, case $sNQ(s,\delta)\to \Lambda$ for $\Lambda\in\mathbb{R}$, estimates in a small region away from the obstacles.
- Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for two identical resonators K=2 per packet.
- ▶ Ammari et al., The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces (2020). Single resonator K=1, centers $(y_i)_{1\leq i\leq N}$ distributed according to a counting function, estimates in the far field. Cases $sNQ(s,\delta)\to \Lambda$, $sNQ(s,\delta)\to 0$ and $sNQ(s,\delta)\to +\infty$. The case $sNQ(s,\delta)\to -\infty$ remains opened.

Our contributions:

- identical packets of multiple resonators (K arbitrary) and identification of the role of $Q(s,\delta)$
- ▶ $s \to s_i(\delta)$ for a resonance of monopole type $(Q(s,\delta) \to +\infty$ as $s \to s_i(\delta) \Leftrightarrow \mathbf{a}_i^T V 1 \neq 0)$, in the "subcritical regime" $sNQ(s,\delta) = O(1)$
- quantitative estimates in any ball B(0, R) with R > 0.

For high-contrast metamaterials, we assume the following subcritical regime

Assumption 4

 $\exists 1 \leq i \leq K$, $s \sim s_i(\delta)$ with $\mathbf{a}_i^T V 1 \neq 0$, and there exists c > 0 independent of s, δ and N such that

$$sN|Q(s,\delta)| \le c.$$
 (5)

Note that $|Q(s,\delta)| \to +\infty$ and $sN \to 0$ as $s \sim s_i(\delta)$. This assumption is equivalent to

For high-contrast metamaterials, we assume the following subcritical regime

Assumption 4

 $\exists 1 \leq i \leq K$, $s \sim s_i(\delta)$ with $\mathbf{a}_i^T V 1 \neq 0$, and there exists c > 0 independent of s, δ and N such that

$$sN|Q(s,\delta)| \le c.$$
 (5)

Note that $|Q(s,\delta)| \to +\infty$ and $sN \to 0$ as $s \sim s_i(\delta)$. This assumption is equivalent to

Assumption 4

The contrast parameter is strictly smaller than N^{-2} :

$$\delta = o(N^{-2}) \Leftrightarrow \delta^{\frac{1}{2}}N \to 0,$$

and there exists $1 \leq i \leq K$ such that $s \sim s_i(\delta)$ with $a_i^T V 1 \neq 0$ at a rate slower than $\delta^{\frac{1}{2}} N$:

$$\exists 1 \leq i \leq K, \ c\delta^{\frac{1}{2}} N \leq \left| \frac{s}{s_i(\delta)} - 1 \right| \longrightarrow 0 \ \textit{as} \ \delta \to 0.$$

For high-contrast metamaterials, we assume the following subcritical regime

Assumption 4

 $\exists 1 \leq i \leq K$, $s \sim s_i(\delta)$ with $\mathbf{a}_i^T V \mathbf{1} \neq 0$, and there exists c > 0 independent of s, δ and N such that

$$sN|Q(s,\delta)| \le c.$$
 (5)

Note that $|Q(s,\delta)| \to +\infty$ and $sN \to 0$ as $s \sim s_i(\delta)$. This assumption is equivalent to

Assumption 4

The contrast parameter is strictly smaller than N^{-2} :

$$\delta = o(N^{-2}) \Leftrightarrow \delta^{\frac{1}{2}} N \to 0,$$

and there exists $1 \le i \le K$ such that $s \sim s_i(\delta)$ with $\mathbf{a}_i^T V 1 \ne 0$ at a rate slower than $\delta^{\frac{1}{2}} N$:

$$\exists 1 \leq i \leq \mathcal{K}, \ c\delta^{\frac{1}{2}} \mathcal{N} \leq \left| \frac{s}{s_i(\delta)} - 1 \right| \longrightarrow 0 \ \textit{as} \ \delta \to 0.$$

Our assumption states that s is close to $s_i(\delta)$ but is not in the interval

$$(s_i(\delta)-c\delta^{\frac{1}{2}}N,s_i(\delta)+c\delta^{\frac{1}{2}}N)$$

For high-contrast metamaterials, we assume the following subcritical regime

Assumption 4

 $\exists 1 \leq i \leq K$, $s \sim s_i(\delta)$ with $\mathbf{a}_i^T V \mathbf{1} \neq 0$, and there exists c > 0 independent of s, δ and N such that

$$sN|Q(s,\delta)| \le c.$$
 (5)

Note that $|Q(s,\delta)| \to +\infty$ and $sN \to 0$ as $s \sim s_i(\delta)$. This assumption is equivalent to

Assumption 4

The contrast parameter is strictly smaller than N^{-2} :

$$\delta = o(N^{-2}) \Leftrightarrow \delta^{\frac{1}{2}} N \to 0,$$

and there exists $1 \le i \le K$ such that $s \sim s_i(\delta)$ with $\mathbf{a}_i^T V 1 \ne 0$ at a rate slower than $\delta^{\frac{1}{2}} N$:

$$\exists 1 \leq i \leq \mathcal{K}, \ c\delta^{\frac{1}{2}} \mathcal{N} \leq \left| \frac{s}{s_i(\delta)} - 1 \right| \longrightarrow 0 \ \textit{as} \ \delta \to 0.$$

Our assumption states that s is close to $s_i(\delta)$ but is not in the interval

$$(s_i(\delta)-c\delta^{\frac{1}{2}}N,s_i(\delta)+c\delta^{\frac{1}{2}}N)$$

Proposition 2

Assume assumptions 1,2 and 4 and denote by u the solution to the following Lippmann-Schwinger equation:

$$\begin{cases}
\left(\Delta + k^2 - sNQ(s, \delta)\rho 1_{\Omega}\right) u = 0, \\
\left(\frac{\partial}{\partial |x|} - ik\right) (u - u_{\rm in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty.
\end{cases}$$
(6)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, u is an approximation of the solution field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) such that $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s}-u||_{L^{2}(B(0,R))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \leq csNQ(s,\delta)\max(\delta^{\frac{1}{2}}N,N^{-\frac{1}{2}});$$

Proposition 2

Assume assumptions 1,2 and 4 and denote by u the solution to the following Lippmann-Schwinger equation:

$$\begin{cases}
\left(\Delta + k^2 - sNQ(s, \delta)\rho \mathbf{1}_{\Omega}\right) u = 0, \\
\left(\frac{\partial}{\partial |x|} - ik\right) (u - u_{in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty.
\end{cases}$$
(6)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, u is an approximation of the solution field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) such that $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s}-u||_{L^{2}(B(0,R))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \leq csNQ(s,\delta)\max(\delta^{\frac{1}{2}}N,N^{-\frac{1}{2}});$$

2. on any bounded open subset $A \subset \mathbb{R}^3 \backslash \Omega$ away from the resonators, and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}|\mathcal{H}^{2}_{N_{0}}]^{\frac{1}{2}} \leq csNQ(s,\delta) \max(\delta^{\frac{1}{2}}N, N^{-\frac{1}{2}}).$$

Proposition 2

Assume assumptions 1,2 and 4 and denote by u the solution to the following Lippmann-Schwinger equation:

$$\begin{cases}
\left(\Delta + k^2 - sNQ(s, \delta)\rho \mathbf{1}_{\Omega}\right) u = 0, \\
\left(\frac{\partial}{\partial |x|} - ik\right) (u - u_{in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty.
\end{cases}$$
(6)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, u is an approximation of the solution field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) such that $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s}-u||_{L^{2}(B(0,R))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \leq csNQ(s,\delta)\max(\delta^{\frac{1}{2}}N,N^{-\frac{1}{2}});$$

2. on any bounded open subset $A \subset \mathbb{R}^3 \backslash \Omega$ away from the resonators, and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}|\mathcal{H}^{2}_{N_{0}}]^{\frac{1}{2}} \leq csNQ(s,\delta) \max(\delta^{\frac{1}{2}}N, N^{-\frac{1}{2}}).$$

Proposition 2

Assume assumptions 1,2 and 4 and denote by u the solution to the following Lippmann-Schwinger equation:

$$\begin{cases} \left(\Delta + k^2 - sNQ(s, \delta)\rho 1_{\Omega}\right) u = 0, \\ \left(\frac{\partial}{\partial |x|} - ik\right) (u - u_{\rm in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$
(6)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, u is an approximation of the solution field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) such that $\Omega \subset B(0,r)$ and for any $N \ge N_0$:

$$\mathbb{E}[||u_{N,s}-u||_{L^{2}(B(0,R))}^{2}||\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \leq csNQ(s,\delta)\max(\delta^{\frac{1}{2}}N,N^{-\frac{1}{2}});$$

2. on any bounded open subset $A \subset \mathbb{R}^3 \backslash \Omega$ away from the resonators, and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}|\mathcal{H}_{N_{0}}^{2}|^{\frac{1}{2}} \leq csNQ(s,\delta) \max(\delta^{\frac{1}{2}}N, N^{-\frac{1}{2}}).$$

where the relative error is of order $O(\delta^{\frac{1}{2}}N, N^{-\frac{1}{2}})$).

▶ If $sNQ(s,\delta) \rightarrow 0$ (s is too far from the resonant size $s_i(\delta)$), then the effective medium is transparent.

- ▶ If $sNQ(s, \delta) \rightarrow 0$ (s is too far from the resonant size $s_i(\delta)$), then the effective medium is transparent.
- ▶ If $sNQ(s,\delta) \to \Lambda$ with $\Lambda \in \mathbb{R}$, then $u_{N,s}$ converges to the solution to

$$\begin{cases} \left(\Delta + k^2 - \Lambda \rho 1_{\Omega}\right) u = 0, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k\right) (u - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$

- ▶ If $sNQ(s, \delta) \rightarrow 0$ (s is too far from the resonant size $s_i(\delta)$), then the effective medium is transparent.
- ▶ If $sNQ(s, \delta) \to \Lambda$ with $\Lambda \in \mathbb{R}$, then $u_{N,s}$ converges to the solution to

$$\begin{cases} \left(\Delta + k^2 - \Lambda \rho 1_{\Omega}\right) u = 0, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k\right) (u - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$

▶ If $\Lambda > 0$ (s is slightly greater than the resonant size $s_i(\delta)$, but not too close), then the effective medium is dissipative .

- ▶ If $sNQ(s, \delta) \rightarrow 0$ (s is too far from the resonant size $s_i(\delta)$), then the effective medium is transparent.
- ▶ If $sNQ(s, \delta) \rightarrow \Lambda$ with $\Lambda \in \mathbb{R}$, then $u_{N,s}$ converges to the solution to

$$\begin{cases} \left(\Delta + k^2 - \Lambda \rho 1_{\Omega}\right) u = 0, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k\right) (u - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$

- ▶ If $\Lambda > 0$ (s is slightly greater than the resonant size $s_i(\delta)$, but not too close), then the effective medium is dissipative .
- ▶ If Λ < 0 (s is slightly smaller than the resonant size $s_i(\delta)$, but not too close), then the effective medium is dispersive .

- ▶ If $sNQ(s,\delta) \rightarrow 0$ (s is too far from the resonant size $s_i(\delta)$), then the effective medium is transparent.
- ▶ If $sNQ(s, \delta) \rightarrow \Lambda$ with $\Lambda \in \mathbb{R}$, then $u_{N,s}$ converges to the solution to

$$\begin{cases} \left(\Delta + k^2 - \Lambda \rho 1_{\Omega}\right) u = 0, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i} k\right) (u - u_{\mathrm{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty. \end{cases}$$

- ▶ If $\Lambda > 0$ (s is slightly greater than the resonant size $s_i(\delta)$, but not too close), then the effective medium is dissipative .
- ▶ If $\Lambda < 0$ (s is slightly smaller than the resonant size $s_i(\delta)$, but not too close), then the effective medium is dispersive .
- If $sNQ(s,\delta)\to +\infty$, we expect that the medium solidifies as for sound-absorbing obstacles. If $sNQ(s,\delta)\to -\infty$, then the medium becomes highly dispersive. This case remains opened.

Outline

- 1. Exposition of the results for sound-absorbing materials
- 2. Exposition of the results for high-contrast metamaterials
- 3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system.

We outline the proof for sound-absorbing metamaterials.

We outline the proof for sound-absorbing metamaterials.

We rely on the following single layer potential representation of the total field:

$$u_{N,s}=u_{\mathrm{in}}-\mathcal{S}_{D_{N,s}}^{k}[(\mathcal{S}_{D_{N,s}}^{k})^{-1}[u_{\mathrm{in}}]]$$

We outline the proof for sound-absorbing metamaterials.

We rely on the following single layer potential representation of the total field:

$$u_{N,s} = u_{\text{in}} - S_{D_{N,s}}^{k}[(S_{D_{N,s}}^{k})^{-1}[u_{\text{in}}]]$$

where $D_{N,s} = \bigcup_{i=1}^{N} (y_i + sD_i)$ and

$$\mathcal{S}_{D_{N,s}}^{k}[\phi](x) := \int_{\partial D_{N,s}} \Gamma^{k}(x-y)\phi(y)\mathrm{d}y \text{ for } \phi \in L^{2}(D_{N,s}), \quad \Gamma^{k}(x-y) = -\frac{e^{\mathrm{i}k\pi|x-y|}}{4\pi|x-y|}.$$

We outline the proof for sound-absorbing metamaterials.

We rely on the following single layer potential representation of the total field:

$$u_{N,s} = u_{\text{in}} - \mathcal{S}_{D_{N,s}}^{k}[(\mathcal{S}_{D_{N,s}}^{k})^{-1}[u_{\text{in}}]]$$

where $D_{N,s} = \bigcup_{i=1}^{N} (y_i + sD_i)$ and

$$\mathcal{S}_{D_{N,s}}^{k}[\phi](x) := \int_{\partial D_{N,s}} \Gamma^{k}(x-y)\phi(y)\mathrm{d}y \text{ for } \phi \in L^{2}(D_{N,s}), \quad \Gamma^{k}(x-y) = -\frac{e^{\mathrm{i}k\pi|x-y|}}{4\pi|x-y|}.$$

- ▶ We perform asymptotic expansions of $S_{D_{N,s}}^k$ with respect to $s \to 0$, with estimates uniform in s and N.
- ▶ There is some analiticity with respect to s:

$$\mathcal{S}^k_{D_{N,s}} = \mathcal{P}_{N,s} \mathcal{S}^k_{\mathcal{D}}(s) \mathcal{P}^{-1}_{N,s} \text{ where } \mathcal{P}_{N,s}[\phi] = (\phi \circ \tau_{y_i,s}^{-1})_{1 \leq i \leq N} \text{ with } \tau_{y_i,s}(t) = y_i + st$$

for some holomorphic operator $\mathcal{S}^k_{\mathcal{D}}(s)$ on $L^2(D_1) \times \cdots \times L^2(D_N)$.

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})} \leq c \times \begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p \geq 2. \end{cases}$$

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})} \leq c \times \begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p \geq 2. \end{cases}$$

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},\rho}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})} \leq c \times \begin{cases} 1 \text{ if } p=0, \\ s\ell_{N}^{-1} \text{ if } p=1, \\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p \geq 2. \end{cases}$$

The variable ℓ_N is the quantity homogeneous to a distance defined by

$$\ell_N := \left(\sum_{1 \le i \ne i \le N} \frac{1}{|y_i - y_j|^2}\right)^{-\frac{1}{2}}.$$

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})}\leq c\times\begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p\geqslant2.\end{cases}$$

The variable ℓ_N is the quantity homogeneous to a distance defined by

$$\ell_N := \left(\sum_{1 \leq i \neq j \leq N} \frac{1}{|y_i - y_j|^2}\right)^{-\frac{1}{2}}.$$

For independently randomly distributed (y_i) , we can show that with high probability, $\ell_N = O(N^{-1})$, whence the role played by $s\ell_N^{-1} = O(sN)$.

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^{k}$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})}\leq c\times\begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p\geqslant 2.\end{cases}$$

The variable η_N is the ratio between the size s and the minimum distance ϵ_N between the centers (we can assume $\eta_N < 1$):

$$\eta_N := \frac{s}{\epsilon_N} \text{ with } \epsilon_N := \min_{1 \le i \le N} |y_i - y_j|.$$

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})}\leq c\times\begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p\geqslant 2.\end{cases}$$

The variable η_N is the ratio between the size s and the minimum distance ϵ_N between the centers (we can assume $\eta_N < 1$):

$$\eta_N := rac{s}{\epsilon_N} ext{ with } \epsilon_N := \min_{1 \leq i \leq N} |y_i - y_j|.$$

For independently randomly distributed (y_i) , we can show that with high probability, $\epsilon_N = O(N^{-\frac{2}{3}})$ (this is smaller than $O(N^{-\frac{1}{3}})$ corresponding to regularly spaced obstacles).

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})}\leq c\times\begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p\geqslant2.\end{cases}$$

The variable η_N is the ratio between the size s and the minimum distance ϵ_N between the centers (we can assume $\eta_N < 1$):

$$\eta_N := \frac{s}{\epsilon_N} \text{ with } \epsilon_N := \min_{1 \le i \le N} |y_i - y_j|.$$

For independently randomly distributed (y_i) , we can show that with high probability, $\epsilon_N = O(N^{-\frac{2}{3}})$ (this is smaller than $O(N^{-\frac{1}{3}})$ corresponding to regularly spaced obstacles). We have $s\ell_N^{-1}\eta_N = O(sNsN^{\frac{2}{3}}) = O((sN)^2N^{-\frac{1}{3}})$ which is at the origin of the claimed rate of convergence.

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases} \Delta u + (k^2 - sN \mathrm{cap}(D)\rho 1_{\Omega})u = 0 \ in \ \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right)(u - u_\mathrm{in}) = O(|x|^{-2}) \ as \ |x| \to +\infty. \end{cases}$$

$$There \ \text{exists an event} \ \mathcal{H}_{N_0} \ \text{which holds with large probability} \ \mathbb{P}(\mathcal{H}_{N_0}) \to 1 \ as \ N_0 \to +\infty$$

such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

1. on any ball
$$B(0,r)$$
 containing the obstacles, $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s} - u||_{L^{2}(B(0,r))}^{2}|\mathcal{H}_{N_{0}}|^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}); \tag{2}$$

2. on any bounded open subset $A \subset \mathbb{R}^3 \backslash \Omega$ away from the obstacles and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \leq csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}).$$
 (3)

The relative error is of order $O(\max((sN)^2N^{-\frac{1}{3}},N^{-\frac{1}{2}}))$ because the scattered fields $u_{N,s}-u_{\rm in}$ and $u-u_{\rm in}$ are of order O(sN).

The operator $\mathcal{S}^k_{\mathcal{D}}(s)$ is given by

$$\mathcal{S}^k_{\mathcal{D}}(s) := s\mathcal{S}_{\mathcal{D},0} + s^2\mathcal{S}^k_{\mathcal{D},1} + \sum_{p=2}^{+\infty} s^{p+1}\mathcal{S}^k_{\mathcal{D},p},$$

for some operators $\mathcal{S}_{\mathcal{D},p}^k$ which decay geometrically in the operator norm:

$$|||s^{p}\mathcal{S}_{\mathcal{D},p}^{k}|||_{L^{2}(\partial\mathcal{D})\to H^{1}(\partial\mathcal{D})}\leq c\times\begin{cases} 1 \text{ if } p=0,\\ s\ell_{N}^{-1} \text{ if } p=1,\\ s\ell_{N}^{-1}\eta_{N}^{p-1} \text{ if } p\geqslant 2.\end{cases}$$

The variable η_N is the ratio between the size s and the minimum distance ϵ_N between the centers (we can assume $\eta_N < 1$):

$$\eta_N := \frac{s}{\epsilon_N} \text{ with } \epsilon_N := \min_{1 \le i \le N} |y_i - y_j|.$$

For independently randomly distributed (y_i) , we can show that with high probability, $\epsilon_N = O(N^{-\frac{2}{3}})$ (this is smaller than $O(N^{-\frac{1}{3}})$ corresponding to regularly spaced obstacles). We have $s\ell_N^{-1}\eta_N = O(sNsN^{\frac{2}{3}}) = O((sN)^2N^{-\frac{1}{3}})$ which is at the origin of the claimed rate of convergence.

▶ Computing the inverse of $S_D^k(s)$, we obtain

$$(S_{D_{N,s}}^k)^{-1}[u_{\mathrm{in}}] \simeq -\frac{s^{-1}}{\mathrm{cap}(D)} \sum_{i=1}^N z_i^N S_D^{-1}[1_{\partial D}] \circ \boldsymbol{\tau}_{y_i,s}^{-1},$$

where $(z_i^N)_{1 \le i \le N}$ is the solution to the algebraic system

$$z_i^N - \operatorname{cap}(D)s \sum_{1 \leq i, j \leq N} \Gamma^k(y_i - y_j) z_j^N = -\operatorname{cap}(D) u_{\operatorname{in}}(y_i), \qquad 1 \leq i \leq N.$$

▶ Computing the inverse of $S_D^k(s)$, we obtain

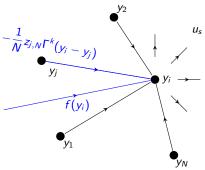
$$(S_{D_{N,s}}^k)^{-1}[u_{\mathrm{in}}] \simeq -\frac{s^{-1}}{\mathrm{cap}(D)} \sum_{i=1}^N z_i^N S_D^{-1}[1_{\partial D}] \circ \boldsymbol{\tau}_{y_i,s}^{-1},$$

where $(z_i^N)_{1 \le i \le N}$ is the solution to the algebraic system

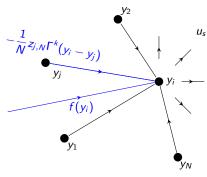
$$z_i^N - \operatorname{cap}(D)s \sum_{1 \leq i, j \leq N} \Gamma^k(y_i - y_j) z_j^N = -\operatorname{cap}(D) u_{\operatorname{in}}(y_i), \qquad 1 \leq i \leq N.$$

► This system is called the "Foldy-Lax approximation" of the scattering problem. Indeed, the scattered field has the following point-wise behavior away from the obstacles:

$$u_{N,s}(x) - u_{in}(x) = -\sum_{i=1}^{N} s z_i^N \Gamma^k(x - y_i) + O(s(sN)),$$



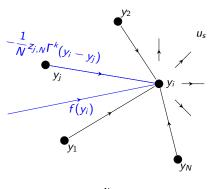
The Foldy-Lax approximation:



The Foldy-Lax approximation:

1. The scattered field can be approximated by the contribution of N point-sources located at the centers $(y_i)_{1 \le i \le N}$:

$$u_{N,s}(x) - u_{\mathrm{in}}(x) \simeq -\sum_{i=1}^{N} s z_i^N \Gamma^k(y-y_i)$$



The Foldy-Lax approximation:

1. The scattered field can be approximated by the contribution of N point-sources located at the centers $(y_i)_{1 \le i \le N}$:

$$u_{N,s}(x) - u_{\mathrm{in}}(x) \simeq -\sum_{i=1}^{N} sz_i^N \Gamma^k(y-y_i)$$

2. The intensity z_i^N of the wave field scattered by the source y_i is the contribution of the field scattered by the other sources $(y_j)_{1 \le j \ne i \le N}$ and of the incident field $u_{\text{in}}(y_i)$:

$$z_i^N = -\mathrm{cap}(D)u_{\mathrm{in}}(y_i) + \mathrm{cap}(D)s\sum_{i\neq i}z_{j,N}\Gamma^k(y_j - y_i).$$

▶ Computing the inverse of $S_D^k(s)$, we obtain

$$(S_{DN,s}^k)^{-1}[u_{\mathrm{in}}] \simeq -\frac{s^{-1}}{\mathrm{cap}(D)} \sum_{i=1}^N z_i^N S_D^{-1}[1_{\partial D}] \circ \boldsymbol{\tau}_{y_i,s}^{-1},$$

where $(z_i^N)_{1 \le i \le N}$ is the solution to the algebraic system

$$z_i^N - \operatorname{cap}(D)s \sum_{i,j,j,l} \Gamma^k(y_i - y_j)z_j^N = -\operatorname{cap}(D)u_{in}(y_i), \qquad 1 \leq i \leq N.$$

► This system is called the "Foldy-Lax approximation" of the scattering problem. Indeed, the scattered field has the following point-wise behavior away from the obstacles:

$$u_{N,s}(x) - u_{in}(x) = -\sum_{i=1}^{N} s z_i^N \Gamma^k(x - y_i) + O(s(sN)),$$

$$z_i^N - \operatorname{cap}(D) s \sum_{1 \le i \ne i \le N} \Gamma^k(y_i - y_j) z_j^N = -\operatorname{cap}(D) u_{\operatorname{in}}(y_i), \qquad 1 \le i \le N.$$

For randomly and independently distributed $(y_i)_{1 \le i \le N}$, we use our recent theory to obtain that as $N \to +\infty$, $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{\operatorname{in}}(y), \qquad y \in \Omega,$$

¹Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2021)

$$z_i^N - \operatorname{cap}(D) s \sum_{1 \le i \ne i \le N} \Gamma^k(y_i - y_j) z_j^N = -\operatorname{cap}(D) u_{\operatorname{in}}(y_i), \qquad 1 \le i \le N.$$

For randomly and independently distributed $(y_i)_{1 \le i \le N}$, we use our recent theory to obtain that as $N \to +\infty$, $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{\operatorname{in}}(y), \qquad y \in \Omega,$$

In fact, we have the error estimate

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}|z_{i}^{N}-z(y_{i})|^{2}|\mathcal{H}_{N_{0}}\right]\leq csNN^{-\frac{1}{2}}\text{ for all }N\geqslant N_{0}$$

for some highly probable event \mathcal{H}_{N_0} .

¹Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2021)

$$z_i^N - \operatorname{cap}(D) s \sum_{1 \le i \ne i \le N} \Gamma^k(y_i - y_j) z_j^N = -\operatorname{cap}(D) u_{\operatorname{in}}(y_i), \qquad 1 \le i \le N.$$

For randomly and independently distributed $(y_i)_{1 \le i \le N}$, we use our recent theory to obtain that as $N \to +\infty$, $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{\operatorname{in}}(y), \qquad y \in \Omega,$$

In fact, we have the error estimate

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}|z_{i}^{N}-z(y_{i})|^{2}|\mathcal{H}_{N_{0}}\right]\leq csNN^{-\frac{1}{2}}\text{ for all }N\geqslant N_{0}$$

for some highly probable event \mathcal{H}_{N_0} .

This is the origin of the error rate $O(N^{-\frac{1}{2}})$ in the convergence result.

¹Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2021)

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases} \Delta u + (k^2 - sN\operatorname{cap}(D)\rho 1_{\Omega})u = 0 & in \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right)(u - u_{\mathrm{in}}) = O(|x|^{-2}) & as |x| \to +\infty. \end{cases}$$
 (1)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) containing the obstacles, $\Omega \subset B(0,r)$ and for any $N \geqslant N_0$:

$$\mathbb{E}[||u_{N,s}-u||_{L^{2}(B(0,r))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \leq csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}});$$
 (2)

2. on any bounded open subset $A \subset \mathbb{R}^3 \backslash \Omega$ away from the obstacles and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}^{2}|\mathcal{H}_{N_{0}}|^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}). \tag{3}$$

The relative error is of order $O(\max((sN)^2N^{-\frac{1}{3}}, N^{-\frac{1}{2}}))$ because the scattered fields $u_{N,s} - u_{in}$ and $u - u_{in}$ are of order O(sN).

$$z_i^N - \operatorname{cap}(D) s \sum_{1 \le i \ne i \le N} \Gamma^k(y_i - y_j) z_j^N = -\operatorname{cap}(D) u_{\operatorname{in}}(y_i), \qquad 1 \le i \le N.$$

For randomly and independently distributed $(y_i)_{1 \le i \le N}$, we use our recent theory to obtain that as $N \to +\infty$, $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{\operatorname{in}}(y), \qquad y \in \Omega,$$

In fact, we have the error estimate

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}|z_{i}^{N}-z(y_{i})|^{2}|\mathcal{H}_{N_{0}}\right]\leq csNN^{-\frac{1}{2}}\text{ for all }N\geqslant N_{0}$$

for some highly probable event \mathcal{H}_{N_0} .

This is the origin of the error rate $O(N^{-\frac{1}{2}})$ in the convergence result.

¹Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2021)

 $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{\operatorname{in}}(y), \qquad y \in \Omega,$$

 $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{\operatorname{in}}(y), \qquad y \in \Omega,$$

Finally, a few additional computation yield

$$u_{N,s}(x) - u_{\mathrm{in}}(x) \simeq -\sum_{i=1}^{N} sz(y_i) \Gamma^k(x - y_i) \simeq -sN \int_{\Omega} \Gamma^k(x - y) z(y) \rho(y) \mathrm{d}y$$

$$\simeq -\frac{z(x)}{\mathrm{cap}(D)} - u_{\mathrm{in}}(x),$$

so that $u_{N,s}(x) \simeq -z(x)/\mathrm{cap}(D)$.

 $z_i^N \simeq z(y_i)$ where z is the solution to the integral equation

$$z(y) - \operatorname{cap}(D) s N \int_{\Omega} \Gamma^{k}(y - y') z(y') \rho(y') dy' = -\operatorname{cap}(D) u_{in}(y), \qquad y \in \Omega,$$

Finally, a few additional computation yield

$$u_{N,s}(x) - u_{\mathrm{in}}(x) \simeq -\sum_{i=1}^{N} sz(y_i) \Gamma^k(x - y_i) \simeq -sN \int_{\Omega} \Gamma^k(x - y) z(y) \rho(y) \mathrm{d}y$$

$$\simeq -\frac{z(x)}{\mathrm{cap}(D)} - u_{\mathrm{in}}(x),$$

so that $u_{N,s}(x) \simeq -z(x)/\mathrm{cap}(D)$.

The theorem is proved because $u:=-z/\mathrm{cap}\left(D\right)$ solves the effective Lippmann-Schwinger equation.

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger equation

$$\begin{cases} \Delta u + (k^2 - sN \mathrm{cap}(D)\rho 1_{\Omega})u = 0 \ in \ \mathbb{R}^3, \\ \left(\frac{\partial}{\partial |x|} - \mathrm{i}k\right)(u - u_\mathrm{in}) = O(|x|^{-2}) \ as \ |x| \to +\infty. \end{cases}$$

$$There \ \text{exists an event} \ \mathcal{H}_{N_0} \ \text{which holds with large probability} \ \mathbb{P}(\mathcal{H}_{N_0}) \to 1 \ as \ N_0 \to +\infty$$

such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the total wave field $u_{N,s}$ with the following error estimates:

1. on any ball B(0,r) containing the obstacles, $\Omega \subset B(0,r)$ and for any $N \ge N_0$:

$$\mathbb{E}[||u_{N,s} - u||_{L^{2}(B(0,r))}^{2}|\mathcal{H}_{N_{0}}]^{\frac{1}{2}} \le csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}); \tag{2}$$

2. on any bounded open subset $A \subset \mathbb{R}^3 \setminus \Omega$ away from the obstacles and for any $N \geqslant N_0$:

$$\mathbb{E}[||\nabla u_{N,s} - \nabla u||_{L^{2}(A)}^{2}|\mathcal{H}_{N_{0}}|^{\frac{1}{2}} \leq csN \max((sN)^{2}N^{-\frac{1}{3}}, N^{-\frac{1}{2}}). \tag{3}$$

The relative error is of order $O(\max((sN)^2N^{-\frac{1}{3}}, N^{-\frac{1}{2}}))$ because the scattered fields $u_{N,s} - u_{in}$ and $u - u_{in}$ are of order O(sN).

Preprint

The full details are available in the preprint

Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic metamaterials in subcritical regimes (2021).

Preprint

The full details are available in the preprint

Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic metamaterials in subcritical regimes (2021).

Related works:

Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2021)

Feppon and Ammari, Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies (2021)

Preprint

The full details are available in the preprint

Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic metamaterials in subcritical regimes (2021).

Related works:

Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2021)

Feppon and Ammari, Modal decompositions and point scatterer approximations near the Minnaert resonance frequencies (2021)

Thank you for your attention.