Analysis of a Monte-Carlo Nystrom method and well-posedness of the Foldy-Lax approximation

Florian Feppon - Habib Ammari

Conference on Mathematics of Wave Phenomena Online, February 17th 2022

Seminar for Applied Mathematics
ETHzürich

Motivation: the Foldy-Lax approximation

Acoustic scattering of an incident field f through N obstacles $\left(B_{i}\right)_{1 \leq i \leq N}$ located at $\left(y_{i}\right)_{1 \leq i \leq N}$:

Motivation: the Foldy-Lax approximation

Acoustic scattering of an incident field f through N obstacles $\left(B_{i}\right)_{1 \leq i \leq N}$ located at $\left(y_{i}\right)_{1 \leq i \leq N}$:

Motivation: the Foldy-Lax approximation

Acoustic scattering of an incident field f through N obstacles $\left(B_{i}\right)_{1 \leq i \leq N}$ located at $\left(y_{i}\right)_{1 \leq i \leq N}$:

Motivation: the Foldy-Lax approximation

The Foldy-Lax approximation:

Motivation: the Foldy-Lax approximation

The Foldy-Lax approximation:

1. The scattered field can be approximated by the contribution of N point-sources located at the centers $\left(y_{i}\right)_{1 \leq i \leq N}$:

$$
u_{s}(y) \simeq-\frac{1}{N} \sum_{i=1}^{N} z_{i, N} \Gamma^{k}\left(y-y_{i}\right)
$$

Motivation: the Foldy-Lax approximation

$\Gamma^{k}(y)$ is e.g. the (outgoing) fundamental solution to the Helmholtz equation:

$$
\begin{gathered}
\left(\Delta+k^{2}\right) \Gamma^{k}=\delta_{0} \text { in } \mathbb{R}^{d}, \\
\Gamma^{k}(y)=\left\{\begin{array}{r}
-\frac{i}{4} H_{0}^{(1)}(k|y|) \text { if } d=2, \\
-\frac{e^{i k|y|}}{4 \pi|y|} \text { if } d=3
\end{array}\right.
\end{gathered}
$$

Motivation: the Foldy-Lax approximation

$\Gamma^{k}(y)$ is e.g. the (outgoing) fundamental solution to the Helmholtz equation:

$$
\begin{gathered}
\left(\Delta+k^{2}\right) \Gamma^{k}=\delta_{0} \text { in } \mathbb{R}^{d}, \\
\Gamma^{k}(y)=\left\{\begin{array}{r}
-\frac{i}{4} H_{0}^{(1)}(k|y|) \text { if } d=2, \\
-\frac{e^{i k|y|}}{4 \pi|y|} \text { if } d=3
\end{array}\right.
\end{gathered}
$$

$\Gamma^{k}(\cdot-y)$ is the wave pattern generated by a point source located at y.

Motivation: the Foldy-Lax approximation

The Foldy-Lax approximation:

1. The scattered field can be approximated by the contribution of N point-sources located at the centers $\left(y_{i}\right)_{1 \leq i \leq N}$:

$$
u_{s}(y) \simeq-\frac{1}{N} \sum_{i=1}^{N} z_{i, N} \Gamma^{k}\left(y-y_{i}\right)
$$

Motivation: the Foldy-Lax approximation

The Foldy-Lax approximation:

1. The scattered field can be approximated by the contribution of N point-sources located at the centers $\left(y_{i}\right)_{1 \leq i \leq N}$:

$$
u_{s}(y) \simeq-\frac{1}{N} \sum_{i=1}^{N} z_{i, N} \Gamma^{k}\left(y-y_{i}\right)
$$

2. The intensity $z_{i, N}$ of the wave field scattered by the source y_{i} is the contribution of the field scattered by the other sources $\left(y_{j}\right)_{1 \leq j \neq i \leq N}$ and of the incident field $f\left(y_{i}\right)$:

$$
z_{i, N}=f\left(y_{i}\right)-\frac{1}{N} \sum_{j \neq i} z_{j, N} \Gamma^{k}\left(y_{j}-y_{i}\right)
$$

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Assume $N \rightarrow+\infty$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is picked at random locations according to a density $\rho(y) \mathrm{d} y$ over a bounded domain Ω.

Motivation: the Foldy-Lax approximation

Acoustic scattering of an incident field f through N obstacles $\left(B_{i}\right)_{1 \leq i \leq N}$ located at $\left(y_{i}\right)_{1 \leq i \leq N}$:

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Assume $N \rightarrow+\infty$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is picked at random locations according to a density $\rho(y) \mathrm{d} y$ over a bounded domain Ω.

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Assume $N \rightarrow+\infty$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is picked at random locations according to a density $\rho(y) \mathrm{d} y$ over a bounded domain Ω.

1. Is the linear system (1) well-posed, well-conditioned?

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Assume $N \rightarrow+\infty$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is picked at random locations according to a density $\rho(y) \mathrm{d} y$ over a bounded domain Ω.

1. Is the linear system (1) well-posed, well-conditioned ?
2. Can we approximate (1) by the integral equation

$$
\begin{equation*}
z(y)+\int_{\Omega} z\left(y^{\prime}\right) \Gamma^{k}\left(y-y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{equation*}
$$

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Assume $N \rightarrow+\infty$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is picked at random locations according to a density $\rho(y) \mathrm{d} y$ over a bounded domain Ω.

1. Is the linear system (1) well-posed, well-conditioned ?
2. Can we approximate (1) by the integral equation

$$
\begin{equation*}
z(y)+\int_{\Omega} z\left(y^{\prime}\right) \Gamma^{k}\left(y-y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{equation*}
$$

3. i.e. can we prove a convergence result $z_{i, N} \rightarrow z\left(y_{i}\right)$ as $N \rightarrow+\infty$?

Motivation: the Foldy-Lax approximation

We obtain the following linear system for the wave field intensity $\left(z_{i, N}\right)_{1 \leq i \leq N}$:

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} \Gamma^{k}\left(y_{i}-y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

Assume $N \rightarrow+\infty$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is picked at random locations according to a density $\rho(y) \mathrm{d} y$ over a bounded domain Ω.

1. Is the linear system (1) well-posed, well-conditioned ?
2. Can we approximate (1) by the integral equation

$$
\begin{equation*}
z(y)+\int_{\Omega} z\left(y^{\prime}\right) \Gamma^{k}\left(y-y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{equation*}
$$

3. i.e. can we prove a convergence result $z_{i, N} \rightarrow z\left(y_{i}\right)$ as $N \rightarrow+\infty$? In that case (2) is an equation characterizing the effective medium associated to the random point cloud $\left(y_{i}\right)_{1 \leq i \leq N}$.

A Monte-Carlo Nystrom method

Replace Γ^{k} with a general kernel $k\left(y, y^{\prime}\right)$:

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

A Monte-Carlo Nystrom method

Replace Γ^{k} with a general kernel $k\left(y, y^{\prime}\right)$:

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

If $z_{i, N} \rightarrow z\left(y_{i}\right)$ as $N \rightarrow+\infty$, then (1) can also be viewed as a Monte-Carlo method for solving (2).

Outline

1. Well-posedness and convergence results
2. Numerical illustration in 1D and 2D

Outline

1. Well-posedness and convergence results
2. Numerical illustration in 1D and 2D

Outline

1. Well-posedness and convergence results
2. Numerical illustration in 1D and 2D

Assumptions

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

We consider the following "natural" assumptions:

Assumptions

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

We consider the following "natural" assumptions:
(i) $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and

$$
\sup _{y^{\prime} \in \Omega} \int_{\Omega}\left|k\left(y, y^{\prime}\right)\right|^{2} \mathrm{~d} y<+\infty, \int_{\Omega}|f(y)|^{2} \mathrm{~d} y<+\infty
$$

Assumptions

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

We consider the following "natural" assumptions:
(i) $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and

$$
\sup _{y^{\prime} \in \Omega} \int_{\Omega}\left|k\left(y, y^{\prime}\right)\right|^{2} \mathrm{~d} y<+\infty, \int_{\Omega}|f(y)|^{2} \mathrm{~d} y<+\infty
$$

Ok with $k\left(y, y^{\prime}\right)=\Gamma^{k}\left(y-y^{\prime}\right)$.

Assumptions

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

We consider the following "natural" assumptions:
(i) $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and

$$
\sup _{y^{\prime} \in \Omega} \int_{\Omega}\left|k\left(y, y^{\prime}\right)\right|^{2} \mathrm{~d} y<+\infty, \int_{\Omega}|f(y)|^{2} \mathrm{~d} y<+\infty
$$

Ok with $k\left(y, y^{\prime}\right)=\Gamma^{k}\left(y-y^{\prime}\right)$.
(ii) $\left(y_{i}\right)_{1 \leq i \leq N}$ are independent samples of a probability distribution $\rho(y) \mathrm{d} y$ with density $\rho \in L^{\infty}\left(\Omega, \mathbb{R}^{+}\right)$(satisfying $\int_{\Omega} \rho(y) \mathrm{d} y=1$).

Assumptions

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) d y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

We consider the following "natural" assumptions:
(i) $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and

$$
\sup _{y^{\prime} \in \Omega} \int_{\Omega}\left|k\left(y, y^{\prime}\right)\right|^{2} \mathrm{~d} y<+\infty, \int_{\Omega}|f(y)|^{2} \mathrm{~d} y<+\infty
$$

Ok with $k\left(y, y^{\prime}\right)=\Gamma^{k}\left(y-y^{\prime}\right)$.
(ii) $\left(y_{i}\right)_{1 \leq i \leq N}$ are independent samples of a probability distribution $\rho(y) \mathrm{d} y$ with density $\rho \in L^{\infty}\left(\Omega, \mathbb{R}^{+}\right)$(satisfying $\int_{\Omega} \rho(y) \mathrm{d} y=1$).
(iii) The integral equation (2) is well-posed.

Result 1: well-conditioning

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \quad \Longleftrightarrow\left(\mathrm{I}+A_{N}\right) z_{N}=F \tag{1}
\end{equation*}
$$

with $z_{N}=\left(z_{i, N}\right)_{1 \leq i \leq N}$ and $F=\left(f\left(y_{i}\right)\right)_{1 \leq i \leq N}$ and where $\left(A_{N}\right)_{1 \leq i, j \leq N}$ is the random matrix defined by

$$
A_{N, i j}=\left\{\begin{array}{r}
\frac{1}{N} k\left(y_{i}, y_{j}\right) \text { if } i \neq j, \\
0 \text { if } i=j .
\end{array}\right.
$$

Result 1: well-conditioning

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \quad \Longleftrightarrow\left(\mathrm{I}+A_{N}\right) z_{N}=F \tag{1}
\end{equation*}
$$

with $z_{N}=\left(z_{i, N}\right)_{1 \leq i \leq N}$ and $F=\left(f\left(y_{i}\right)\right)_{1 \leq i \leq N}$ and where $\left(A_{N}\right)_{1 \leq i, j \leq N}$ is the random matrix defined by

$$
A_{N, i j}=\left\{\begin{array}{r}
\frac{1}{N} k\left(y_{i}, y_{j}\right) \text { if } i \neq j, \\
0 \text { if } i=j
\end{array}\right.
$$

Proposition

Assume (i), (ii) and (iii). Then with probability one, there exists $N_{0} \in \mathbb{N}$ such that the matrix I $+A_{N}$ is invertible for any $N \geqslant N_{0}$, and there exists a constant $C>0$ independent of N such that

$$
\forall N \geqslant N_{0},\| \|\left(\mathrm{I}+A_{N}\right)^{-1}\| \|_{2} \leq C
$$

where $\|\|\cdot \mid\|\|_{2}$ is the operator norm $\left(\|A \mid\|_{2}:=\sup _{\|x\|_{2}=1}\|A x\|_{2}\right)$.

Result 1: well-conditioning

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \quad \Longleftrightarrow\left(\mathrm{I}+A_{N}\right) z_{N}=F \tag{1}
\end{equation*}
$$

with $z_{N}=\left(z_{i, N}\right)_{1 \leq i \leq N}$ and $F=\left(f\left(y_{i}\right)\right)_{1 \leq i \leq N}$ and where $\left(A_{N}\right)_{1 \leq i, j \leq N}$ is the random matrix defined by

$$
A_{N, i j}=\left\{\begin{array}{r}
\frac{1}{N} k\left(y_{i}, y_{j}\right) \text { if } i \neq j, \\
0 \text { if } i=j
\end{array}\right.
$$

Proposition

Assume (i), (ii) and (iii). Then with probability one, there exists $N_{0} \in \mathbb{N}$ such that the matrix $\mathrm{I}+A_{N}$ is invertible for any $N \geqslant N_{0}$, and there exists a constant $C>0$ independent of N such that

$$
\forall N \geqslant N_{0},\| \|\left(\mathrm{I}+A_{N}\right)^{-1}\| \|_{2} \leq C
$$

where $\|\|\cdot\|\|_{2}$ is the operator norm $\left(\|\mid\|_{\|_{2}}:=\sup _{\|x\|_{2}=1}\|A x\|_{2}\right)$.
So (1) is well-posed if the continuous problem is well-posed.

Result 2: convergence of the Nystrom interpolant

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N, \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) d y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Let $z_{N}(y)$ be the Nystrom interpolant

$$
z_{N}(y):=f(y)-\frac{1}{N} \sum_{i=1}^{N} k\left(\cdot, y_{i}\right) z_{N, i}, \quad y \in \Omega
$$

Result 2: convergence of the Nystrom interpolant

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N, \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Let $z_{N}(y)$ be the Nystrom interpolant

$$
z_{N}(y):=f(y)-\frac{1}{N} \sum_{i=1}^{N} k\left(\cdot, y_{i}\right) z_{N, i}, \quad y \in \Omega
$$

If $k\left(y, y^{\prime}\right)=\Gamma^{k}\left(y-y^{\prime}\right)$, then

$$
z_{N}(y)=f(y)-\frac{1}{N} \sum_{i=1}^{N} \Gamma^{k}\left(y-y_{i}\right) z_{N, i}=f(y)+u_{s}(y), \quad y \in \Omega .
$$

is the total wave field, and $z_{N}-f$ is the scattered field.

Result 2: convergence of the Nystrom interpolant

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Let $z_{N}(y)$ be the Nystrom interpolant

$$
z_{N}(y):=f(y)-\frac{1}{N} \sum_{i=1}^{N} k\left(\cdot, y_{i}\right) z_{N, i}, \quad y \in \Omega
$$

Proposition

There exists an event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$ such that

Result 2: convergence of the Nystrom interpolant

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Let $z_{N}(y)$ be the Nystrom interpolant

$$
z_{N}(y):=f(y)-\frac{1}{N} \sum_{i=1}^{N} k\left(\cdot, y_{i}\right) z_{N, i}, \quad y \in \Omega
$$

Proposition

There exists an event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$ such that 1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized

Result 2: convergence of the Nystrom interpolant

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Let $z_{N}(y)$ be the Nystrom interpolant

$$
z_{N}(y):=f(y)-\frac{1}{N} \sum_{i=1}^{N} k\left(\cdot, y_{i}\right) z_{N, i}, \quad y \in \Omega .
$$

Proposition

There exists an event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$ such that 1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized
2. z_{N} converges to z at rate $O\left(N^{-\frac{1}{2}}\right)$ in a mean-square sense:

$$
\mathbb{E}\left[\left\|z_{N}-z\right\|_{L^{2}(\Omega)}^{2} \mid \mathcal{H}_{N_{0}}\right]^{\frac{1}{2}} \leq C N^{-\frac{1}{2}}
$$

Result 3: point-wise convergence

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) d y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Proposition

For the same event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$:

1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized

Result 3: point-wise convergence

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N, \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega . \tag{2}
\end{align*}
$$

Proposition

For the same event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$:

1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized
2. the vector $\left(z_{N, i}\right)_{1 \leq i \leq N}$ converges to the point-wise values $\left(z\left(y_{i}\right)\right)_{1 \leq i \leq N}$ at rate $O\left(N^{-\frac{1}{2}}\right)$ in a mean-square sense:

$$
\mathbb{E}\left[\left.\frac{1}{N} \sum_{i=1}^{N}\left|z_{N, i}-z\left(y_{i}\right)\right|^{2} \right\rvert\, \mathcal{H}_{N_{0}}\right]^{\frac{1}{2}} \leq C N^{-\frac{1}{2}}
$$

Result 3: point-wise convergence

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N, \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega . \tag{2}
\end{align*}
$$

Proposition

For the same event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$:

1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized
2. the vector $\left(z_{N, i}\right)_{1 \leq i \leq N}$ converges to the point-wise values $\left(z\left(y_{i}\right)\right)_{1 \leq i \leq N}$ at rate $O\left(N^{-\frac{1}{2}}\right)$ in a mean-square sense:

$$
\mathbb{E}\left[\left.\frac{1}{N} \sum_{i=1}^{N}\left|z_{N, i}-z\left(y_{i}\right)\right|^{2} \right\rvert\, \mathcal{H}_{N_{0}}\right]^{\frac{1}{2}} \leq C N^{-\frac{1}{2}}
$$

Outline

1. Well-posedness and convergence results
2. Numerical illustration in 1D and 2D

Numerical 1D example

- We consider $k\left(y, y^{\prime}\right):=\left|y-y^{\prime}\right|^{-\alpha}$ with $\alpha=0.4<1 / 2$ on the interval $\Omega=(0,1)$ and the integral equation

$$
\begin{equation*}
z(y)+\int_{0}^{1} k\left(y, y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in(0,1) \tag{2}
\end{equation*}
$$

Numerical 1D example

- We consider $k\left(y, y^{\prime}\right):=\left|y-y^{\prime}\right|^{-\alpha}$ with $\alpha=0.4<1 / 2$ on the interval $\Omega=(0,1)$ and the integral equation

$$
\begin{equation*}
z(y)+\int_{0}^{1} k\left(y, y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in(0,1) \tag{2}
\end{equation*}
$$

- We draw M times a sample of N random points $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ independently from the uniform distribution in $(0,1)$ for $1 \leq p \leq M$.

Numerical 1D example

- We consider $k\left(y, y^{\prime}\right):=\left|y-y^{\prime}\right|^{-\alpha}$ with $\alpha=0.4<1 / 2$ on the interval $\Omega=(0,1)$ and the integral equation

$$
\begin{equation*}
z(y)+\int_{0}^{1} k\left(y, y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in(0,1) \tag{2}
\end{equation*}
$$

- We draw M times a sample of N random points $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ independently from the uniform distribution in $(0,1)$ for $1 \leq p \leq M$.
- We solve the M linear systems for $1 \leq p \leq M$:

$$
z_{N, i}^{p}+\frac{1}{N} \sum_{j \neq i} k\left(y_{i}^{p}, y_{j}^{p}\right) z_{N, j}^{p}=f\left(y_{i}^{p}\right), \quad 1 \leq i \leq N
$$

Numerical 1D example

- We consider $k\left(y, y^{\prime}\right):=\left|y-y^{\prime}\right|^{-\alpha}$ with $\alpha=0.4<1 / 2$ on the interval $\Omega=(0,1)$ and the integral equation

$$
\begin{equation*}
z(y)+\int_{0}^{1} k\left(y, y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in(0,1) \tag{2}
\end{equation*}
$$

- We draw M times a sample of N random points $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ independently from the uniform distribution in $(0,1)$ for $1 \leq p \leq M$.
- We solve the M linear systems for $1 \leq p \leq M$:

$$
z_{N, i}^{p}+\frac{1}{N} \sum_{j \neq i} k\left(y_{i}^{p}, y_{j}^{p}\right) z_{N, j}^{p}=f\left(y_{i}^{p}\right), \quad 1 \leq i \leq N
$$

- We solve (2) accurately with a Nystrom method on a regular grid and we estimate the mean-square error:

$$
\operatorname{MSE}:=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N}\left|z_{N, i}-z\left(y_{i}\right)\right|^{2}\right]^{\frac{1}{2}} \simeq \sqrt{\frac{1}{M N} \sum_{p=1}^{M} \sum_{i=1}^{N}\left|z_{N, i}^{p}-z\left(y_{i}^{p}\right)\right|^{2}}
$$

Numerical 1D example

Case 1: $f(y)=1$

(b) $N=500$

(c) $N=2,000$

Numerical 1D example

Case 1: $f(y)=1$

Figure: Empirical average of the Nystrom interpolant $\mathbb{E}\left[z_{N}\right]$.

Numerical 1D example

Case 1: $f(y)=1$

Figure: Mean-square error MSE.

Numerical 1D example

Case 2: $f(y)=\sin (6 \pi y)$

(a) $N=100$

(b) $N=500$

(c) $N=2,000$

Numerical 1D example

Case 2: $f(y)=\sin (6 \pi y)$

(a) $N=100$

(b) $N=500$

(c) $N=2,000$

Figure: Empirical average of the Nystrom interpolant $\mathbb{E}\left[z_{N}\right]$.

Numerical 1D example

Case 2: $f(y)=\sin (6 \pi y)$

Figure: Mean-square error MSE.

Numerical 2D example

We solve with our Monte-Carlo method the following Lippmann-Schwinger equation:

$$
\left\{\begin{align*}
\left(\Delta+k^{2} n_{\Omega}\right) z & =0 \text { in } \mathbb{R}^{2} \tag{3}\\
\left(\partial_{r}-i k\right)\left(z-u_{i n}\right) & =O\left(|x|^{-2}\right) \text { as } r \rightarrow+\infty
\end{align*}\right.
$$

whose solution z is the scattered field produced by an incident wave $u_{\text {in }}$ propagating through a material with refractive index $n_{\Omega}(x)$ given by

$$
n_{\Omega}(x)=\left\{\begin{array}{l}
m \text { if } x \in \Omega \\
1 \text { if } x \in \mathbb{R}^{2} \backslash \Omega,
\end{array}\right.
$$

Numerical 2D example

We solve with our Monte-Carlo method the following Lippmann-Schwinger equation:

$$
\left\{\begin{align*}
\left(\Delta+k^{2} n_{\Omega}\right) z & =0 \text { in } \mathbb{R}^{2} \tag{3}\\
\left(\partial_{r}-i k\right)\left(z-u_{i n}\right) & =O\left(|x|^{-2}\right) \text { as } r \rightarrow+\infty
\end{align*}\right.
$$

whose solution z is the scattered field produced by an incident wave $u_{i n}$ propagating through a material with refractive index $n_{\Omega}(x)$ given by

$$
n_{\Omega}(x)=\left\{\begin{array}{l}
m \text { if } x \in \Omega \\
1 \text { if } x \in \mathbb{R}^{2} \backslash \Omega,
\end{array}\right.
$$

The integral formulation of (3) is

$$
\begin{equation*}
z(y)+(m-1) k^{2} \int_{\Omega} \Gamma^{k}\left(y-y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=u_{i n}(y), \quad y \in \Omega \tag{2}
\end{equation*}
$$

Numerical 2D example

$$
\begin{equation*}
z(y)+(m-1) k^{2} \int_{\Omega} \Gamma^{k}\left(y-y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=u_{i n}(y), \quad y \in \Omega, \tag{2}
\end{equation*}
$$

- We draw M times N samples $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ for $1 \leq p \leq M$ uniformly and independently in $\Omega=B(0,1)$.
${ }^{1}$ Aussal and Alouges, Gypsilab (2018)
${ }^{2}$ Averseng, Fast discrete convolution in \mathbb{R}^{2} with radial kernels using non-uniform fast Fourier transform with nonequispaced frequencies (2020)

Numerical 2D example

$$
\begin{equation*}
z(y)+(m-1) k^{2} \int_{\Omega} \Gamma^{k}\left(y-y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=u_{i n}(y), \quad y \in \Omega \tag{2}
\end{equation*}
$$

- We draw M times N samples $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ for $1 \leq p \leq M$ uniformly and independently in $\Omega=B(0,1)$.
- We compute M Monte-Carlo approximations $\left(z_{N, i}^{p}\right)_{1 \leq i \leq N}$ of (2), $1 \leq p \leq M$, by solving

$$
\begin{equation*}
z_{N, i}^{p}+\frac{1}{N}|\Omega|(m-1) k^{2} \sum_{j \neq i} \Gamma^{k}\left(y_{i}^{p}-y_{j}^{p}\right) z_{N, j}^{p}=u_{i n}\left(y_{i}^{p}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

${ }^{1}$ Aussal and Alouges, Gypsilab (2018)
${ }^{2}$ Averseng, Fast discrete convolution in \mathbb{R}^{2} with radial kernels using non-uniform fast Fourier transform with nonequispaced frequencies (2020)

Numerical 2D example

$$
\begin{equation*}
z(y)+(m-1) k^{2} \int_{\Omega} \Gamma^{k}\left(y-y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=u_{i n}(y), \quad y \in \Omega \tag{2}
\end{equation*}
$$

- We draw M times N samples $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ for $1 \leq p \leq M$ uniformly and independently in $\Omega=B(0,1)$.
- We compute M Monte-Carlo approximations $\left(z_{N, i}^{p}\right)_{1 \leq i \leq N}$ of (2), $1 \leq p \leq M$, by solving

$$
\begin{equation*}
z_{N, i}^{p}+\frac{1}{N}|\Omega|(m-1) k^{2} \sum_{j \neq i} \Gamma^{k}\left(y_{i}^{p}-y_{j}^{p}\right) z_{N, j}^{p}=u_{i n}\left(y_{i}^{p}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

- We solve (2) with the finite-element method ${ }^{1}$.
${ }^{1}$ Aussal and Alouges, Gypsilab (2018)
${ }^{2}$ Averseng, Fast discrete convolution in \mathbb{R}^{2} with radial kernels using non-uniform fast Fourier transform with nonequispaced frequencies (2020)

Numerical 2D example

$$
\begin{equation*}
z(y)+(m-1) k^{2} \int_{\Omega} \Gamma^{k}\left(y-y^{\prime}\right) z\left(y^{\prime}\right) \mathrm{d} y^{\prime}=u_{i n}(y), \quad y \in \Omega, \tag{2}
\end{equation*}
$$

- We draw M times N samples $\left(y_{i}^{p}\right)_{1 \leq i \leq N}$ for $1 \leq p \leq M$ uniformly and independently in $\Omega=B(0,1)$.
- We compute M Monte-Carlo approximations $\left(z_{N, i}^{p}\right)_{1 \leq i \leq N}$ of (2), $1 \leq p \leq M$, by solving

$$
\begin{equation*}
z_{N, i}^{p}+\frac{1}{N}|\Omega|(m-1) k^{2} \sum_{j \neq i} \Gamma^{k}\left(y_{i}^{p}-y_{j}^{p}\right) z_{N, j}^{p}=u_{i n}\left(y_{i}^{p}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

- We solve (2) with the finite-element method ${ }^{1}$.
- We solve (1) for $500 \leq N \leq 40,000$ using the Efficient Bessel Decomposition method ${ }^{2}$.
${ }^{1}$ Aussal and Alouges, Gypsilab (2018)
${ }^{2}$ Averseng, Fast discrete convolution in \mathbb{R}^{2} with radial kernels using non-uniform fast Fourier transform with nonequispaced frequencies (2020)

Numerical 2D example

(a) The discretization mesh \mathcal{T} considered for the acoustic obstacle Ω (the unit disk).

(b) The surrounding disk Ω^{\prime} (the disk centered at $(1,0)$ of radius 4 , in green) containing the accoustic obstacle Ω (in yellow).

Numerical 2D example

(a) Plot of the solution z in the interior domain Ω.

(b) Plot of the solution z in the exterior domain Ω^{\prime}.

Thanks Martin Averseng and Ignacio Labarca.

Numerical 2D example

Figure: Samples of N random points drawn randomly and independently from the uniform distribution in the unit disk.

Numerical 2D example

(d) $N=10,000$

(b) $N=1,000$

(e) $N=20,000$

(c) $N=5,000$

(f) $N=40,000$

Figure: Monte-Carlo solutions $\left(z_{i}^{p}\right)_{1 \leq i \leq N}$

Numerical 2D example

Figure: Averaged field $\mathbb{E}\left[\left(\hat{z}_{i}^{p}\right)\right]$ at the vertices of the mesh \mathcal{T}.

Numerical 2D example

Figure: Mean-square error MSE.

Preprint

The full details are available in the publication
Feppon F. and Ammari H., Analysis of a Monte-Carlo Nystrom Method. To appear in SIAM Journal of Numerical Analysis. (2021).

Preprint

The full details are available in the publication
Feppon F. and Ammari H., Analysis of a Monte-Carlo Nystrom Method. To appear in SIAM Journal of Numerical Analysis. (2021).

Thank you for your attention.

Sketch of the proof

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

- (1) is equivalent to finding a function $z_{N} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
z_{N}(y)+\frac{1}{N} \sum_{j=1}^{N} k\left(y, y_{j}\right) z_{N}\left(y_{j}\right)=f(y), \quad \forall y \in \Omega \tag{a}
\end{equation*}
$$

Sketch of the proof

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

- (1) is equivalent to finding a function $z_{N} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
z_{N}(y)+\frac{1}{N} \sum_{j=1}^{N} k\left(y, y_{j}\right) z_{N}\left(y_{j}\right)=f(y), \quad \forall y \in \Omega \tag{a}
\end{equation*}
$$

Then one verifies that $z_{N}\left(y_{i}\right)=z_{N, i}$.

Sketch of the proof

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

- (1) is equivalent to finding a function $z_{N} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
z_{N}(y)+\frac{1}{N} \sum_{j=1}^{N} k\left(y, y_{j}\right) z_{N}\left(y_{j}\right)=f(y), \quad \forall y \in \Omega \tag{a}
\end{equation*}
$$

Then one verifies that $z_{N}\left(y_{i}\right)=z_{N, i}$.

- (a) rewrites

$$
\left.\left(\mathrm{I}+\frac{1}{N} \sum_{i=1}^{N} A_{i}\right) z_{N}=f \text { with } \begin{array}{cc}
A_{i}: \quad L^{2}(\Omega, \mathbb{C}) & \rightarrow L^{2}(\Omega, \mathbb{C}) \\
& z \quad
\end{array}\right)
$$

Sketch of the proof

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}
\end{equation*}
$$

- (1) is equivalent to finding a function $z_{N} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
z_{N}(y)+\frac{1}{N} \sum_{j=1}^{N} k\left(y, y_{j}\right) z_{N}\left(y_{j}\right)=f(y), \quad \forall y \in \Omega \tag{a}
\end{equation*}
$$

Then one verifies that $z_{N}\left(y_{i}\right)=z_{N, i}$.

- (a) rewrites

$$
\left(\mathrm{I}+\frac{1}{N} \sum_{i=1}^{N} A_{i}\right) z_{N}=f \text { with } \begin{array}{cc}
A_{i}: \quad L^{2}(\Omega, \mathbb{C}) & \rightarrow \quad L^{2}(\Omega, \mathbb{C}) \\
z & \mapsto k\left(\cdot, y_{i}\right) z\left(y_{i}\right) .
\end{array}
$$

- A_{i} are independent realizations of the random operator

$$
\begin{align*}
A: \Omega \times L^{2}(\Omega, \mathbb{C}) & \rightarrow L^{2}(\Omega, \mathbb{C}) \tag{0.1}\\
(y, z) & \mapsto k(\cdot, y) z(y) .
\end{align*}
$$

Sketch of the proof

(a) rewrites

$$
\left(\mathrm{I}+\frac{1}{N} \sum_{i=1}^{N} A_{i}\right) z_{N}=f
$$

Proposition

Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a family of independent realizations of a given bounded random operator $A: L^{2}(\Omega, \mathbb{C}) \rightarrow L^{2}(\Omega, \mathbb{C})$. Then as $N \rightarrow+\infty$,

$$
\frac{1}{N} \sum_{i=1}^{N} A_{i} \longrightarrow \mathbb{E}[A]
$$

where the convergence holds at the rate $O\left(N^{-\frac{1}{2}}\right)$ in the following mean-square sense:

$$
\mathbb{E}\left[\left\|\left\|\frac{1}{N} \sum_{i=1}^{N} A_{i}-\mathbb{E}[A]\right\|\right\|^{2}\right]^{\frac{1}{2}} \leq \frac{\mathbb{E}\left[\|A-\mathbb{E}[A]\| \|^{2}\right]^{\frac{1}{2}}}{\sqrt{N}} \text { for any } N \in \mathbb{N} \text {. }
$$

Sketch of the proof

For the random operator

$$
\begin{aligned}
A: \Omega \times L^{2}(\Omega, \mathbb{C}) & \rightarrow L^{2}(\Omega, \mathbb{C}) \\
(y, z) & \mapsto k(\cdot, y) z(y),
\end{aligned}
$$

the expectation $\mathbb{E}[A]$ is given by

$$
\mathbb{E}[A]: z \mapsto \int_{\Omega} k(\cdot, y) z(y) \rho(y) \mathrm{d} y
$$

Sketch of the proof

Proposition

Let A be a bounded random operator and $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of independent realizations of A. Then for any $\epsilon>0$ sufficiently small, with probability one, any
$\lambda \in B(-1, \epsilon)$ belongs to the resolvent set of $\frac{1}{N} \sum_{i=1}^{N} A_{i}$ for N large enough:

$$
\left(\lambda I-\frac{1}{N} \sum_{i=1}^{N} A_{i}\right)^{-1} \rightarrow(\lambda I-\mathbb{E}[A])^{-1}
$$

Sketch of the proof

Proposition

Let A be a bounded random operator and $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of independent realizations of A. Then for any $\epsilon>0$ sufficiently small, with probability one, any
$\lambda \in B(-1, \epsilon)$ belongs to the resolvent set of $\frac{1}{N} \sum_{i=1}^{N} A_{i}$ for N large enough:

$$
\left(\lambda I-\frac{1}{N} \sum_{i=1}^{N} A_{i}\right)^{-1} \rightarrow(\lambda I-\mathbb{E}[A])^{-1}
$$

Sketch of the proof

Proposition

Let A be a bounded random operator and $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of independent realizations of A. Then for any $\epsilon>0$ sufficiently small, with probability one, any $\lambda \in B(-1, \epsilon)$ belongs to the resolvent set of $\frac{1}{N} \sum_{i=1}^{N} A_{i}$ for N large enough:

$$
\left(\lambda I-\frac{1}{N} \sum_{i=1}^{N} A_{i}\right)^{-1} \rightarrow(\lambda I-\mathbb{E}[A])^{-1}
$$

- In particular $(\lambda=-1), \mathrm{I}+\frac{1}{N} \sum_{i=1}^{N} A_{i}$ is invertible for N large enough.

Sketch of the proof

Proposition

Let A be a bounded random operator and $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of independent realizations of A. Then for any $\epsilon>0$ sufficiently small, with probability one, any $\lambda \in B(-1, \epsilon)$ belongs to the resolvent set of $\frac{1}{N} \sum_{i=1}^{N} A_{i}$ for N large enough:

$$
\left(\lambda \mathrm{I}-\frac{1}{N} \sum_{i=1}^{N} A_{i}\right)^{-1} \rightarrow(\lambda \mathrm{I}-\mathbb{E}[A])^{-1}
$$

- In particular $(\lambda=-1), \mathrm{I}+\frac{1}{N} \sum_{i=1}^{N} A_{i}$ is invertible for N large enough.
- The convergence holds at rate $O\left(N^{-1 / 2}\right)$ in the operator norm ||| $\cdot \|| |$ of $L^{2}(\Omega)$; it yields

$$
\mathbb{E}\left[\left\|z_{N}-z\right\|_{L^{2}(\Omega)}^{2} \mid \mathcal{H}_{N_{0}}\right]^{\frac{1}{2}} \leq C N^{-\frac{1}{2}}
$$

Result 2: convergence of the Nystrom interpolant

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Let $z_{N}(y)$ be the Nystrom interpolant

$$
z_{N}(y):=f(y)-\frac{1}{N} \sum_{i=1}^{N} k\left(\cdot, y_{i}\right) z_{N, i}, \quad y \in \Omega
$$

Proposition

There exists an event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$ such that 1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized
2. z_{N} converges to z at rate $O\left(N^{-\frac{1}{2}}\right)$ in a mean-square sense:

$$
\mathbb{E}\left[\left|\left|z_{N}-z \|_{L^{2}(\Omega)}^{2}\right| \mathcal{H}_{N_{0}}\right]^{\frac{1}{2}} \leq C N^{-\frac{1}{2}} .\right.
$$

From operators to matrices

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

It remains to obtain

- The well-conditionning of the linear system (1)

From operators to matrices

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

It remains to obtain

- The well-conditionning of the linear system (1)
- The point-wise convergence $z_{i, N} \rightarrow z\left(y_{i}\right)$.

Result 3: point-wise convergence

$$
\begin{align*}
& z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \tag{1}\\
& z(y)+\int_{\Omega} z\left(y^{\prime}\right) k\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}=f(y), \quad y \in \Omega \tag{2}
\end{align*}
$$

Proposition

For the same event $\mathcal{H}_{N_{0}}$ satisfying $\mathbb{P}\left(\mathcal{H}_{N_{0}}\right) \rightarrow 1$ as $N_{0} \rightarrow+\infty$:

1. (1) is invertible for $N \geqslant N_{0}$ when $\mathcal{H}_{N_{0}}$ is realized
2. the vector $\left(z_{N, i}\right)_{1 \leq i \leq N}$ converges to the point-wise values $\left(z\left(y_{i}\right)\right)_{1 \leq i \leq N}$ at rate $O\left(N^{-\frac{1}{2}}\right)$ in a mean-square sense:

$$
\mathbb{E}\left[\left.\frac{1}{N} \sum_{i=1}^{N}\left|z_{N, i}-z\left(y_{i}\right)\right|^{2} \right\rvert\, \mathcal{H}_{N_{0}}\right]^{\frac{1}{2}} \leq C N^{-\frac{1}{2}}
$$

Result 1: well-conditioning

$$
\begin{equation*}
z_{i, N}+\frac{1}{N} \sum_{j=1}^{N} z_{j, N} k\left(y_{i}, y_{j}\right)=f\left(y_{i}\right), \quad 1 \leq i \leq N \quad \Longleftrightarrow\left(\mathrm{I}+A_{N}\right) z_{N}=F \tag{1}
\end{equation*}
$$

with $z_{N}=\left(z_{i, N}\right)_{1 \leq i \leq N}$ and $F=\left(f\left(y_{i}\right)\right)_{1 \leq i \leq N}$ and where $\left(A_{N}\right)_{1 \leq i, j \leq N}$ is the random matrix defined by

$$
A_{N, i j}=\left\{\begin{array}{r}
\frac{1}{N} k\left(y_{i}, y_{j}\right) \text { if } i \neq j, \\
0 \text { if } i=j
\end{array}\right.
$$

Proposition

Assume (i), (ii) and (iii). Then with probability one, there exists $N_{0} \in \mathbb{N}$ such that the matrix I $+A_{N}$ is invertible for any $N \geqslant N_{0}$, and there exists a constant $C>0$ independent of N such that

$$
\forall N \geqslant N_{0},\| \|\left(\mathrm{I}+A_{N}\right)^{-1}\| \|_{2} \leq C
$$

where $\|\|\cdot\|\|_{2}$ is the operator norm $\left(\|A\|\left\|_{2}:=\sup _{\|x\|_{2}=1}\right\| A x \|_{2}\right)$.
So (1) is well-posed if the continuous problem is well-posed.

Result 1: well-conditioning

- We know that $B(-1, \epsilon)$ belongs to the resolvent set of $\left(\mathrm{I}+A_{N}\right)$.

[^0]
Result 1: well-conditioning

- We know that $B(-1, \epsilon)$ belongs to the resolvent set of $\left(\mathrm{I}+A_{N}\right)$.
- We use the following resolent estimate from ${ }^{3}$:

$$
\left\|\left\|\left(\mathrm{I}+A_{N}\right)^{-1}\right\|\right\|_{2} \leq \frac{1}{d\left(-1, \sigma\left(A_{N}\right)\right)} \exp \left(\frac{1}{2} \frac{\operatorname{Tr}\left(\overline{A_{N}^{\top}} A_{N}\right)}{d\left(-1, \sigma\left(A_{N}\right)\right)}+\frac{1}{2}\right)
$$

[^1]
Result 1: well-conditioning

- We know that $B(-1, \epsilon)$ belongs to the resolvent set of $\left(\mathrm{I}+A_{N}\right)$.
- We use the following resolent estimate from ${ }^{3}$:

$$
\left\|\left\|\left(\mathrm{I}+A_{N}\right)^{-1}\right\|\right\|_{2} \leq \frac{1}{d\left(-1, \sigma\left(A_{N}\right)\right)} \exp \left(\frac{1}{2} \frac{\operatorname{Tr}\left(\overline{A_{N}^{\top}} A_{N}\right)}{d\left(-1, \sigma\left(A_{N}\right)\right)}+\frac{1}{2}\right)
$$

We obtain the well conditioning of the matrix $\mathrm{I}+A_{N}$.

[^2]
Result 1: well-conditioning

- We know that $B(-1, \epsilon)$ belongs to the resolvent set of $\left(\mathrm{I}+A_{N}\right)$.
- We use the following resolent estimate from ${ }^{3}$:

$$
\left\|\left\|\left(\mathrm{I}+A_{N}\right)^{-1}\right\|\right\|_{2} \leq \frac{1}{d\left(-1, \sigma\left(A_{N}\right)\right)} \exp \left(\frac{1}{2} \frac{\operatorname{Tr}\left(\overline{A_{N}^{T}} A_{N}\right)}{d\left(-1, \sigma\left(A_{N}\right)\right)}+\frac{1}{2}\right)
$$

We obtain the well conditioning of the matrix $\mathrm{I}+A_{N}$.

- Since the vector $v_{N}:=\left(v_{N, i}\right)_{1 \leq i \leq N}$ defined by $v_{N, i}:=z_{N, i}-z\left(y_{i}\right)$ satisfies

$$
\left(\mathrm{I}+A_{N}\right) v_{N}=-r_{N}
$$

with $\mathbb{E}\left[\left|r_{N}\right|_{2}^{2}\right]=O\left(N^{-1 / 2}\right)$, we obtain the point-wise bound.

[^3]
[^0]: ${ }^{3}$ Bandtlow, Estimates for norms of resolvents and an application to the perturbation of spectra (2004)

[^1]: ${ }^{3}$ Bandtlow, Estimates for norms of resolvents and an application to the perturbation of spectra (2004)

[^2]: ${ }^{3}$ Bandtlow, Estimates for norms of resolvents and an application to the perturbation of spectra (2004)

[^3]: ${ }^{3}$ Bandtlow, Estimates for norms of resolvents and an application to the perturbation of spectra (2004)

