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Motivation: acoustic metamaterials

Acoustic scattering of an incident field f through N packets of obstacles (yi + sDi )1≤i≤N

located at (yi )1≤i≤N :
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Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω.

DN,s = ∪N
i=1(yi + sDi )

The asymptotic analysis is performed with s → 0, N → +∞, δ → 0.



Motivation: acoustic metamaterials

Sound-absorbing obstacles:
∆uN,s + k2uN,s = 0 in R3\DN,s ,

uN,s = 0 on ∂DN,s ,(
∂

∂|x | − ik

)
(uN,s(x)− uin(x)) = O(|x |−2) as |x | → +∞,
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Outline

1. Exposition of the results for sound-absorbing materials

2. Exposition of the results for high-contrast metamaterials

3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system.
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Sound-absorbing metamaterials

Some references:
I sound-absorbing metamaterials: critical quantity, sN.

I Rauch and Taylor, Potential and scattering theory on wildly perturbed domains (1975)
(regularly spaced obstacles, case sN → +∞ and sN → 0)

I Chiado Piat and Codegone, Scattering problems in a domain with small holes. (2003)
(regularly spaced obstacles, case sN → Λ with Λ > 0)

I Challa, Mantile, and Sini, Characterization of the acoustic fields scattered by a cluster of
small holes (2020) (arbitrarily spaced obstacles distributed according to a counting
function, quantitative error bounds for the far field) .

Our contribution: randomly distributed centers, quantitative error bounds in L2(B(0,R))
for any R > 0 even close to the obstacles.
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Sound-absorbing metamaterials

Assumption 1

(yi )1≤i≤N are distributed randomly and independently according to ρdx with ρ ∈ L∞(Ω)

supported in Ω ⊂ R3. In particular, ρ > 0 and

∫
Ω

ρdx = 1, and

N∑
i=1

δyi → ρdx as N → +∞, in the sense of distributions.

Assumption 2

The packets of resonators are identical and constituted of K single components (Bl)1≤l≤K :

Di = D :=
K⋃
l=1

Bl , ∀1 ≤ i ≤ N.
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Sound-absorbing metamaterials

For sound-absorbing metamaterials, we assume further the subcritical regime sN = O(1):

Assumption 3

There exists a constant c > 0 such that the parameters s and N satisfy

sN ≤ c.



Sound-absorbing metamaterials

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger
equation 

∆u + (k2 − sNcap (D)ρ1Ω)u = 0 in R3,(
∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

(1)

There exists an event HN0 which holds with large probability P(HN0 )→ 1 as N0 → +∞
such that when HN0 is realized, the function u is an approximation of the total wave field
uN,s with the following error estimates:

1. on any ball B(0, r) containing the obstacles, Ω ⊂ B(0, r) and for any N > N0:

E[||uN,s − u||2L2(B(0,r))|HN0 ]
1
2 ≤ csN max((sN)2N−

1
3 ,N−

1
2 ); (2)

2. on any bounded open subset A ⊂ R3\Ω away from the obstacles and for any N > N0:

E[||∇uN,s −∇u||2L2(A)|HN0 ]
1
2 ≤ csN max((sN)2N−

1
3 ,N−

1
2 ). (3)

The relative error is of order O(max((sN)2N−
1
3 ,N−

1
2 )) because the scattered fields

uN,s − uin and u − uin are of order O(sN).
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Sound-absorbing metamaterials

1. For sN → 0, the effective medium is transparent, i.e. uN,s → uin where
∆uin + k2uin = 0

2. For sN → Λ with Λ > 0, the effective medium is dissipative, uN,s → u, the solution to
the Helmholtz equation with “strange term”

∆u + (k2 − Λcap (D)ρ1Ω)u = 0 in R3,(
∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

3. For sN → +∞, we expect that the obstacles “solidify” in a single sound-hard obstacle
Ω, and that uN,s → u where u is the solution to the problem

∆u + k2u = 0 in R3,

u = 0 on Ω,(
∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

However this would require a significantly different analysis.
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High-contrast metamaterials

High-contrast metamaterials feature resonances. Denote by (ak)1≤k≤K and
0 < λ1 ≤ λ2 ≤ . . . ≤ λK the eigenvectors and eigenvalues of the generalized eigenvalue
problem

Caj = λjV aj with C :=

(
−
∫
∂Bi

S−1
D [1∂Bj ]dσ

)
1≤i,j≤K

and V := diag(|Bi |)1≤i≤K , (4)

I The metamaterial constituted of N identical packets of K connected resonators
sD = ∪K

i=1sBi admits K resonant frequencies

ωi (δ, s) =
δ

1
2

s
λ

1
2
i vb with vb :=

√
ρb
κb
,

I Since in our analysis ω is fixed but s is variable, it is equivalent to say that there is K
resonant sizes

si (δ) :=
δ

1
2

ω
λ

1
2
i vb, 1 ≤ i ≤ K .

I As s → si (δ), the relevant “critical quantity” is

sNQ(s, δ) with Q(s, δ) :=
K∑
i=1

λi

s2

si (δ)2 − 1
(aT

i V 1)2,

where 1 = (1)1≤i≤K is the vector of ones.
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High-contrast metamaterials

Related previous works:

I Ammari and Zhang, Effective medium theory for acoustic waves in bubbly fluids near
minnaert resonant frequency (2017). Single resonator K = 1, centers (yi )1≤i≤N

satisfying technical assumptions, case sNQ(s, δ)→ Λ for Λ ∈ R, estimates in a small
region away from the obstacles.

I Ammari et al., Double-negative acoustic metamaterials (2019). Formal analysis for
two identical resonators K = 2 per packet.

I Ammari et al., The equivalent media generated by bubbles of high contrasts:
Volumetric metamaterials and metasurfaces (2020). Single resonator K = 1, centers
(yi )1≤i≤N distributed according to a counting function, estimates in the far field.
Cases sNQ(s, δ)→ Λ, sNQ(s, δ)→ 0 and sNQ(s, δ)→ +∞. The case
sNQ(s, δ)→ −∞ remains opened.

Our contributions:

I identical packets of multiple resonators (K arbitrary) and identification of the role of
Q(s, δ)

I s → si (δ) for a resonance of monopole type
(Q(s, δ)→ +∞ as s → si (δ)⇔ aT

i V 1 6= 0), in the “subcritical regime”
sNQ(s, δ) = O(1)

I quantitative estimates in any ball B(0,R) with R > 0.
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High-contrast metamaterials

High-contrast metamaterials feature resonances. Denote by (ak)1≤k≤K and
0 < λ1 ≤ λ2 ≤ . . . ≤ λK the eigenvectors and eigenvalues of the generalized eigenvalue
problem

Caj = λjV aj with C :=

(
−
∫
∂Bi

S−1
D [1∂Bj ]dσ

)
1≤i,j≤K

and V := diag(|Bi |)1≤i≤K , (4)

I The metamaterial constituted of N identical packets of K connected resonators
sD = ∪K

i=1sBi admits K resonant frequencies

ωi (δ, s) =
δ

1
2

s
λ

1
2
i vb with vb :=

√
ρb
κb
,

I Since in our analysis ω is fixed but s is variable, it is equivalent to say that there is K
resonant sizes

si (δ) :=
δ

1
2

ω
λ

1
2
i vb, 1 ≤ i ≤ K .

I As s → si (δ), the relevant “critical quantity” is

sNQ(s, δ) with Q(s, δ) :=
K∑
i=1

λi

s2

si (δ)2 − 1
(aT

i V 1)2,

where 1 = (1)1≤i≤K is the vector of ones.
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High-contrast metamaterials

For high-contrast metamaterials, we assume the following subcritical regime

Assumption 4

∃1 ≤ i ≤ K , s ∼ si (δ) with aT
i V 1 6= 0, and there exists c > 0 independent of s, δ and N

such that
sN|Q(s, δ)| ≤ c. (5)

Note that |Q(s, δ)| → +∞ and sN → 0 as s ∼ si (δ). This assumption is equivalent to

Assumption 4

The contrast parameter is strictly smaller than N−2:

δ = o(N−2)⇔ δ
1
2 N → 0,

and there exists 1 ≤ i ≤ K such that s ∼ si (δ) with aT
i V 1 6= 0 at a rate slower than δ

1
2 N:

∃1 ≤ i ≤ K , cδ
1
2 N ≤

∣∣∣∣ s

si (δ)
− 1

∣∣∣∣ −→ 0 as δ → 0.

Our assumption states that s is close to si (δ) but is not in the interval

(si (δ)− cδ
1
2 N, si (δ) + cδ

1
2 N)
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High-contrast metamaterials

Proposition 2

Assume assumptions 1,2 and 4 and denote by u the solution to the following
Lippmann-Schwinger equation:

(
∆ + k2 − sNQ(s, δ)ρ1Ω

)
u = 0,(

∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

(6)

There exists an event HN0 which holds with large probability P(HN0 )→ 1 as N0 → +∞
such that when HN0 is realized, u is an approximation of the solution field uN,s with the
following error estimates:

1. on any ball B(0, r) such that Ω ⊂ B(0, r) and for any N > N0:

E[||uN,s − u||2L2(B(0,R))|HN0 ]
1
2 ≤ csNQ(s, δ) max(δ

1
2 N,N−

1
2 );

2. on any bounded open subset A ⊂ R3\Ω away from the resonators, and for any
N > N0:

E[||∇us,N −∇u||L2(A)|H
2
N0

]
1
2 ≤ csNQ(s, δ) max(δ

1
2 N,N−

1
2 ).

where the relative error is of order O(δ
1
2 N,N−

1
2 )).
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High-contrast metamaterials

I If sNQ(s, δ)→ 0 (s is too far from the resonant size si (δ)), then the effective medium
is transparent.

I If sNQ(s, δ)→ Λ with Λ ∈ R, then us,N converges to the solution to
(

∆ + k2 − Λρ1Ω

)
u = 0,(

∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

I If Λ > 0 (s is slightly greater than the resonant size si (δ), but not too close), then the
effective medium is dissipative .

I If Λ < 0 (s is slightly smaller than the resonant size si (δ), but not too close), then the
effective medium is dispersive .

I If sNQ(s, δ)→ +∞, we expect that the medium solidifies as for sound-absorbing
obstacles. If sNQ(s, δ)→ −∞, then the medium becomes highly dispersive. This case
remains opened.
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Outline

1. Exposition of the results for sound-absorbing materials

2. Exposition of the results for high-contrast metamaterials

3. Main ingredients of the proof: layer potentials and convergence of a Foldy-Lax system.



Sketch of the derivation

We outline the proof for sound-absorbing metamaterials.
The main steps of the derivation are:

1. the scattered field of a single resonator sD centered at 0 can be written

us(x) ' −scap (D)uin(0)(1 + O(ω) + O(|x |−1))Γk(x)

2. the Foldy-Lax approximation assumes that the scattered field at a point yi is obtained
by summing the contributions of the total wave field experienced by the other
resonators:

us,N(yi )− uin(yi ) ' −scap (D)
∑

1≤j 6=i≤N

us,N(yj)Γk(yi − yj)

3. Assuming that (yi )i∈N is randomly and independently distributed according to ρdx , we
expect the convergence of (us,N(yi )1≤i≤N) to the values (u(yi ))1≤i≤N where u is the
solution to the integral equation:

u(y)− uin(y) = −sNcap (D)

∫
Ω

Γk(y − y ′)u(y ′)ρ(y ′)dy ′.

4. This equation an integral formulation of the claimed Lippmann-Schwinger equation.
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1. The scattered field can be approximated by the contribution of N point-sources
located at the centers (yi )1≤i≤N :
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We rely on the following single layer potential representation of the total field:

uN,s = uin − Sk
DN,s

[(Sk
DN,s

)−1[uin]]

where DN,s = ∪N
i=1(yi + sDi ) and

Sk
DN,s

[φ](x) :=

∫
∂DN,s

Γk(x − y)φ(y)dy for φ ∈ L2(DN,s), Γk(x − y) = − eikπ|x−y|

4π|x − y | .

I We perform asymptotic expansions of Sk
DN,s

with respect to s → 0, with estimates
uniform in s and N.

I There is some analiticity with respect to s:

Sk
DN,s

= PN,sSk
D(s)P−1

N,s where PN,s [φ] = (φ ◦ τ−1
yi ,s)1≤i≤N with τyi ,s(t) = yi + st

for some holomorphic operator Sk
D(s) on L2(D1)× · · · × L2(DN).
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Sketch of the derivation
Justification of the Foldy-Lax approximation

The operator Sk
D(s) is given by

Sk
D(s) := sSD,0 + s2Sk

D,1 +
+∞∑
p=2

sp+1Sk
D,p,

for some operators Sk
D,p which decay geometrically in the operator norm:

|||spSk
D,p|||L2(∂D)→H1(∂D) ≤ c ×


1 if p = 0,

s`−1
N if p = 1,

s`−1
N ηp−1

N if p > 2.
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I Computing the inverse of Sk
D(s), we obtain

(Sk
DN,s

)−1[uin] ' − s−1

cap (D)

N∑
i=1

zNi S−1
D [1∂D ] ◦ τ−1

yi ,s ,

where (zNi )1≤i≤N is the solution to the algebraic system

zNi − cap (D)s
∑

1≤j 6=i≤N

Γk(yi − yj)z
N
j = −cap (D)uin(yi ), 1 ≤ i ≤ N.

I This system is called the “Foldy-Lax approximation” of the scattering problem. Indeed,
the scattered field has the following point-wise behavior away from the obstacles:

uN,s(x)− uin(x) = −
N∑
i=1

szNi Γk(x − yi ) + O(s(sN)),
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zNi − cap (D)s
∑

1≤j 6=i≤N

Γk(yi − yj)z
N
j = −cap (D)uin(yi ), 1 ≤ i ≤ N.

For randomly and independently distributed (yi )1≤i≤N , we use our recent theory1 to obtain
that as N → +∞, zNi ' z(yi ) where z is the solution to the integral equation

z(y)− cap (D)sN

∫
Ω

Γk(y − y ′)z(y ′)ρ(y ′)dy ′ = −cap (D)uin(y), y ∈ Ω,

In fact, we have the error estimate

E

[
1

N

N∑
i=1

|zNi − z(yi )|2|HN0

]
≤ csNN−

1
2 for all N > N0

for some highly probable event HN0 .

This is the origin of the error rate O(N−
1
2 ) in the convergence result.

1Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2022)
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1Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2022)



Sketch of the derivation

Proposition 1

Assume assumptions 1, 2 and 3 and denote by u the solution to the Lippmann-Schwinger
equation 

∆u + (k2 − sNcap (D)ρ1Ω)u = 0 in R3,(
∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

(1)

There exists an event HN0 which holds with large probability P(HN0 )→ 1 as N0 → +∞
such that when HN0 is realized, the function u is an approximation of the total wave field
uN,s with the following error estimates:

1. on any ball B(0, r) containing the obstacles, Ω ⊂ B(0, r) and for any N > N0:

E[||uN,s − u||2L2(B(0,r))|HN0 ]
1
2 ≤ csN max((sN)2N−

1
3 ,N−

1
2 ); (2)

2. on any bounded open subset A ⊂ R3\Ω away from the obstacles and for any N > N0:

E[||∇uN,s −∇u||2L2(A)|HN0 ]
1
2 ≤ csN max((sN)2N−

1
3 ,N−

1
2 ). (3)

The relative error is of order O(max((sN)2N−
1
3 ,N−

1
2 )) because the scattered fields

uN,s − uin and u − uin are of order O(sN).
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