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Motivation: topological asymptotics

Figure: Topology optimization based on the topological derivative with an algorithm from S.
Amstutz. Movie from C. Dapogny



Motivation: topological asymptotics

Topological derivative: the key ingredient is an asymptotic of the perturbation of a PDE
problem with respect to the nucleation of a hole.

x0

ωε = x0 + εω

Ω


−∆uε = f in Ω,

uε = 0 on ∂ωε,

uε = 0 on ∂Ω,



Reconciling compound asymptotic expansions and layer potentials

Two main ways for obtaining asymptotics in the literature:

I Compound asymptotic expansions: write a formal two-scale ansatz, e.g.

uε,N(x) = u(x) +
N∑

p=0

εpvp
(x − x0

ε

)
+

N∑
p=1

εpwp(x)

then variational estimates on uε,N − uε;

I Layer potential methods: write an integral representation

uε(x) =

∫
∂ωε

Gε(x , y)φε(y)dσ(y)

for an unknown potential φε and perform asymptotic expansions with respect to ε.



Reconciling compound asymptotic expansions and layer potentials

Two main ways for obtaining asymptotics of solutions to PDEs in the literature:

I Compound asymptotic expansions: write a formal two-scale ansatz, e.g. Kozlov,
Maz’ya, and Movchan (1999), Maz’ya, Nazarov, and Plamenevskij (2000), Samet,
Amstutz, and Masmoudi (2003), Guillaume and Idris (2002), Pommier and Samet
(2004), Faria and Novotny (2009), Samet, Amstutz, and Masmoudi (2003), Auroux,
Jaafar-Belaid, and Rjaibi (2010), Hintermüller, Laurain, and Novotny (2012), Hassine
and Khelifi (2016), Novotny and Soko lowski (2013)

I Layer potential methods: Ammari et al. (2002), Ammari et al. (2012), Ammari et al.
(2002), Capdeboscq and Vogelius (2003), Cristoforis (2008), Maz’ya, Movchan,
Nieves, et al. (2013).



Reconciling compound asymptotic expansions and layer potentials

Strengths and weaknesses:
I Compound asymptotic expansions:

I Clear physical interpretation of the ansatz and its terms defined in terms of exterior
problems

I Variational estimates with H1 norm.
I The ansatz has to be proposed a priori. Sometimes hard to find.

I Layer potential methods:
I Explicit dependence w.r.t. the small parameter ε fully ellucidated. Analiticity becomes

clear.
I The asymptotic of φε involve Neumann series, hard to interpret physically and tedious

to manipulate.



Reconciling compound asymptotic expansions and layer potentials

The goal of this presentation: introduce a mixed systematic procedure for computing full
asymptotic expansions of the solution w.r.t the nucleation of a hole:

1. find an explicit integral representation of the solution with layer potentials

2. with a change of variable, write a first asymptotic expansion to identify the correct
form of the ansatz

3. use the method of compound asymptotic expansions to identify the terms of the
ansatz and prove variational error estimates.



The perforated Dirichlet problem

Works for the Dirichlet perforated problem:

x0

ωε = x0 + εω

Ω ⊂ Rd


−∆uε = f in Ω,

uε = 0 on ∂ωε,

uε = 0 on ∂Ω,

uε → u where

{
−∆u = f in Ω,

uε = 0 on ∂Ω,
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Proposition 1

Assume d > 3. There exist functions (vp)p>0 and (wp)p>d−2 such that the following ansatz
holds for the solution uε:

uε(x) = u(x) +
+∞∑
p=0

εpvp
(x − x0

ε

)
+

+∞∑
p=d−2

εpwp(x), x ∈ Ω\ωε. (1)
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The perforated Dirichlet problem

Works for the Dirichlet perforated problem:

x0

ωε = x0 + εω

Ω ⊂ Rd


−∆uε = f in Ω,

uε = 0 on ∂ωε,

uε = 0 on ∂Ω,

uε → u where

{
−∆u = f in Ω,

uε = 0 on ∂Ω,

Proposition 1

Assume d = 2. There exist functions (vp,q)p>0,0≤q≤p and (wp,q)p>1,0≤q≤p, RΩ, Φ and
constants Φ∞, (v∞p,q)p>0,0≤q≤p) such that the following ansatz holds for the solution uε:

uε(x) = u(x) +

(
1

aε

+∞∑
p=0

p∑
q=0

εp

aqε
v∞p,q

)(
Φ
(x − x0

ε

)
+ RΩ(x , x0)− RΩ(x0, x0)

)

+
+∞∑
p=0

p∑
q=0

εp

aqε
vp,q

(x − x0

ε

)
+

+∞∑
p=1

p∑
q=0

εp

aqε
wp,q(x).

where aε =
1

2π
log ε− Φ∞ + RΩ(x0, x0).



The perforated Dirichlet problem

Idea of the proof: use the single layer potential representation

uε(x) = u(x)− SΩ,ωε [S−1
Ω,ωε

[u|∂ωε ]](x), x ∈ Ωε

where

∀φ ∈ H−
1
2 (∂ωε), ∀x ∈ Ω, SΩ,ωε [φ](x) :=

∫
∂ωε

GΩ(x , y)φ(y)dσ(y),

for GΩ the Dirichlet Green function on Ω.
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A singular problem with periodicity conditions

P =

(
−1

2
,

1

2

)2

∂P

ηT


−∆Xη = 1 in P\(ηT ),

Xη = 0 on ∂(ηT ),

Xη is P − periodic,

I Xη has no limit as η → 0!

I Leading order asymptotic identified by Allaire (1991) and then quantitative estimate
by Jing (2020):

Xη = Φ(·/η) + O(1) where


−∆Φ = 0 in R2\ω,

Φ = 0 on ∂ω,

Φ(x) ∼ 1

2π
log |x | as |x | → +∞,

I What would be the correct ansatz for high order topological asymptotic expansions?
Logarithmic terms or not ?
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The periodic Green function

Definition 1

There exists a unique function G#, defined up to an additive constant, such that{
∆G# = δ0 − 1 in P,

G# is P–periodic.

We have e.g.

G#(x) = −
∑

ξ∈Zd\{0}

e2iπξ·x

4π2|ξ|2 , x ∈ P\{0}.
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The periodic Green function

Proposition 2

The periodic Green kernel G# is given by

G#(x) = Γ(x) + R#(x), x ∈ P,

where Γ(x) is the fundamental solution to the Laplace problem:

Γ(x) =
1

2π
log |x |,

and where R# ∈ H1(P) is the unique solution, up to a constant, to the difference problem
−∆R# = 1 in P,

R# + Γ is P–periodic,

∂R#

∂n
n +

∂Γ

∂n
n is P–periodic.

For our application, we choose the constant to be set such that

R#(0) = 0.
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The periodic Green function

(a) R# (b) G#

Figure: Periodic Green function G# = Γ + R# in P = (−
1

2
,

1

2
)2.



Periodic single layer potential

Definition 2

For a given real κ ∈ R, we define Sκ#,ηT to be the single layer potential defined by

Sκ#,ηT [φ](x) :=

∫
∂(ηT )

G#(x − y)φ(y)dσ(y) + η2−d

(
− log η

2π
+ κ

)∫
∂(ηT )

φdσ, (1)

for any φ ∈ H−
1
2 (∂(ηT )) and x ∈ P.

Proposition 3

Sκ#,ηT satisfies ∆Sκ#,ηT = 0 in P\(ηT ) and in ηT , and the jump relations

q
Sκ#,ηT [φ]

y
= 0,

s
∂Sκ#,ηT [φ]

∂n

{
= φ.
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Characterization of Xη

Lemma 3

The kernel of Sκ#,η is either trivial or is the space :

Ker(Sκ#,ηT ) ⊂ span

(
∂Xη
∂n

)
.

Moreover, Xη has the following single layer potential representation when this kernel is not
trivial:

Xη(x) =
1

−1 + ηd |T |S
κ
#,ηT

[
∂Xη
∂n

]
(x), x ∈ P\(ηT ).



Characterization of Xη

We characterize κ and
∂Xη
∂n

by the implicit function theorem!

We solve

Sκ#,ηT [φ] = 0 on ∂(ηT ).
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Characterization of Xη

Let τη be the rescaling function

τη(t) := ηt for any t ∈ ∂T ,

and Pη the rescaling operator

Pη[φ] := φ ◦ τη for any φ ∈ Hs(∂(ηT )), for any s ∈ R.

Proposition 4

The following factorization holds:

Sκ#,ηT = ηP−1
η SκT (η)Pη,

where SκT (η) : H−
1
2 (∂T )→ H

1
2 (∂T ) is given by

SκT (η)[φ](t) = ST [φ](t) + κ

∫
∂T

φdσ +

∫
∂T

R#(η(t − t′))φ(t′)dσ(t′), t ∈ ∂T .

No log η anymore after the rescaling!
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Characterization of Xη

We have

SκT (η)[φ](t) = ST [φ](t) + κ

∫
∂T

φdσ + O(η),

where

ST [φ](t) =

∫
∂T

Γ(t − t′)φ(t′)dσ(t′).



The capacity in dimension 2

Proposition 5

1. There exists a unique solution Φ to the problem
−∆Φ = 0 in R2\T ,

Φ = 0 on ∂T ,

Φ(x) ∼
1

2π
log |x | as |x | → +∞,

(2)

satisfying Φ− Γ ∈ D1,2(R2\T ).

2. There exists a constant Φ∞ such that:

Φ(x) = ST

[
∂Φ

∂n

∣∣∣∣
+

]
(x) + Φ∞, x ∈ R2\T . (3)

Consequently, we have the asymptotic expansion

Φ(x) =
1

2π
log |x |+ Φ∞ + O(|x |−1). (4)

3. Independently of T , the normal flux of Φ is equal to one:∫
∂T

∂Φ

∂n

∣∣∣∣
+

dσ = 1. (5)
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Analiticity of ∂Xη/∂n

We have

SκT (η)[φ](t) = ST [φ](t) + κ

∫
∂T

φdσ + O(η),

where

ST [φ](t) =

∫
∂T

Γ(t − t′)φ(t′)dσ(t′).

Set φ =
∂Φ

∂n
and κ = Φ∞.

Then SκT (η)[φ] = O(η).
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Analiticity of ∂Xη/∂n

Proposition 6

There exists a real analytic function η 7→ κη such that the operator Sκη

#,ηT has a non-trivial
kernel, given by

Ker(Sκη#,ηT ) = span

(
∂Xη
∂n

)
.

Moreover, κη and
∂Xη
∂n

admit the following series representations:

κη = Φ∞ +
∑
p>2

ηpcp and
∂Xη
∂n

= (1− η2|T |)

−η−1φ∗ ◦ τ−1
η +

∑
p>1

ηpφp ◦ τ−1
η

 ,

for some constants (cp)p>2 and functions (φp)p>1 of L2(∂T ) satisfying∫
∂T

φpdσ = 0 for all p > 1.



Full asymptotic expansion for Xη

Coming back to the representation

Xη(x) =
1

−1 + ηd |T |S
κ
#,ηT

[
∂Xη
∂n

]
(x), x ∈ P\(ηT ),

we obtain a surprising result:

Proposition 7

There exist functions (vp)p>2 and (wp)p>0 such that the following ansatz holds:

Xη(x) = Φ (x/η) +
+∞∑
p=2

ηpvp(x/η) +
+∞∑
p=0

ηpwp(x),

where:

1. the series converge for any fixed x ∈ P\{0};
2. vp ∈ D1,2(R2\T ) is the solution to an exterior Dirichlet problem in Rd\T̄ satisfying

vp(x) = O(|x |−1) as |x | → +∞, for p > 2 (namely, satisfying additionally v∞p = 0);

3. wp ∈ H1(P) is a function of the interior domain, with in addition w0(0) = w0(1) = 0.

This is 2D but no logarithms !
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Full asymptotic expansion for Xη

Proposition 8

There exist functions (vp)p>2 and (wp)p>0 such that the following ansatz holds:

Xη(x) = Φ (x/η) +
+∞∑
p=2

ηpvp(x/η) +
+∞∑
p=0

ηpwp(x),

Proof.

Recall Sκη

η,ηT = ηP−1
η S

κη
T Pη.

Xη(x) =
1

−1 + ηd |T |S
κη

#,ηT

[
∂Xη
∂n

]
(x) =

1

−1 + ηd |T |S
κη

T (η)

[
∂Xη
∂n
◦ τη

]
(x/η)

=
1

−1 + ηd |T |

(
ST [φη](x/η) + κη

∫
∂T

φηdσ +

∫
∂T

R#(x − ηt′)φη(t′)dσ(t′)

)

with φη :=
∂Xη
∂n
◦ τη.



Full asymptotic expansion for Xη

Proposition 9

The functions (vp)p>2 and (wp)p>0 are uniquely characterized as the solutions to the following
recursive systems of exterior and interior problems:

−∆wp =

{
1 if p = 0,

0 if p > 1,
in P,


wp + Φ(k) is P–periodic,

∂wp

∂n
n +

∂Φ(k)

∂n
n is P–periodic,

for 0 ≤ p ≤ 2,


wp + Φ(k) +

p−2∑
k=1

v
(k)
p−k is P–periodic,

∂wp

∂n
n +

∂Φ(k)

∂n
n +

p−2∑
k=1

∂v
(k)
p−k

∂n
n is P–periodic,

for p > 2,

and 

−∆vp = 0 in Rd\T ,

vp(t) = −wp(0)−
p∑

k=1

1

k!
∇kwp−k (0) · tk for t ∈ ∂T , p > 2,

vp(x) = O(|x |−1) as |x | → +∞.
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Full asymptotic expansion for Xη

I Here, w0(0) = 0, w1(0) = 0, and wp(0) is determined by the condition
vp(x) = O(|x |−1) as |x | → +∞ for p > 2

I v (k)
p and Φ(k) are the functions which arise in the far field expansions of vp and Φ:

vp(x/η) = v∞p +
+∞∑
k=1

ηkv (k)
p (x) x ∈ ∂P

Φ(x/η) =
1

2π
log |x | − 1

2π
log η + Φ∞ +

+∞∑
k=1

ηkΦ(k)(x), x ∈ ∂P

I We have more explicitly:

v (k)
p (x) :=

(−1)k−d+2

(k − d + 2)!
∇k−d+2Γ(x) ·

∫
∂T

s
∂vp
∂n

{
tk−d+2dσ(t), k > d − 1, (6)

and

Φ(k)(x) :=
(−1)k−d+2

(k − d + 2)!
∇k−d+2Γ(x) ·

∫
∂T

∂Φ

∂n

∣∣∣∣
+

tk−d+2dσ(t), k > d − 2. (7)

for k > 1.
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Variational estimates

Proposition 10

For any N ∈ N, let XN
η be the truncated ansatz at rank N:

XN
η (x) := Φ(x/η) +

N∑
p=2

ηpvp(x/η) +
N∑

p=0

ηpwp,

We have the following variational estimates:

||Xη −X 0
η ||L2(P\(ηT )) + ||∇Xη −∇X 0

η ||L2(P\(ηT )) ≤ CNη,

and

| log η|−
1
2 ||Xη−XN

η ||L2(P\(ηT )) + ||∇Xη−∇XN
η ||L2(P\(ηT )) ≤ CNη

N+1 for any N > 1.
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