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Motivation: acoustic metamaterials

Acoustic scattering of an incident field f through N obstacles (yi + sDi )1≤i≤N located at
(yi )1≤i≤N :
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Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω.

DN,s = ∪N
i=1(yi + sDi )

Asymptotic analysis performed with s → 0, N → +∞, δ → 0.



Motivation: acoustic metamaterials

Assumption 1

(yi )1≤i≤N are distributed randomly and independently according to ρdx with ρ ∈ L∞(Ω)

supported in Ω ⊂ R3. In particular, ρ > 0 and

∫
Ω

ρdx = 1, and

N∑
i=1

δyi → ρdx as N → +∞, in the sense of distributions.

Assumption 2

The packets of resonators are identical.

Di = D ∀1 ≤ i ≤ N.
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Motivation: acoustic metamaterials

Sound-absorbing obstacles:
∆uN,s + k2uN,s = 0 in R3\DN,s ,

uN,s = 0 on ∂DN,s ,(
∂

∂|x | − ik

)
(uN,s(x)− uin(x)) = O(|x |−2) as |x | → +∞,



Motivation: acoustic metamaterials

High-contrast obstacles:

D

ρr

ρ0

R3\D̄

uin(t, x) u(t, x) δ :=
ρr
ρ0
→ 0



div

(
1

ρr
∇uN,s

)
+
ω2

κr
uN,s = 0 in DN,s ,

div

(
1

ρ
∇uN,s

)
+
ω2

κ
uN,s = 0 in R3\DN,s ,

uN,s |+ − uN,s |− = 0 on ∂DN,s ,

1

ρr

∂uN,s
∂n

∣∣∣∣
−

=
1

ρ

∂uN,s
∂n

∣∣∣∣
+

on ∂DN,s ,(
∂

∂|x | − ik

)
(uN,s − uin) = O(|x |−2) as |x | → +∞,
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Motivation: acoustic metamaterials

Time-modulated obstacles:

D

ρ(t)ρr

ρ0

R3\D̄

uin(t, x) δ :=
ρr
ρ0
→ 0u(t, x)



1

κ0

∂2u

∂t2
− 1

ρ0
∆u = 0 in R× R3\D̄,

1

κr

∂2u

∂t2
− 1

ρ(t)ρr
∆u = 0 in R× D,

1

ρ0

∂u

∂n

∣∣∣∣
+

=
1

ρrρ(t)

∂u

∂n

∣∣∣∣
−

on R× ∂D, 1 ≤ i ≤ N,

u|+ = u|− on R× ∂D,
u − uin is outgoing,

ρ(t): T–periodic modulation with fixed frequency Ω.
Subwavelength and fast-modulation regimes: Ω is fixed while ω → 0.
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Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω.

DN,s = ∪N
i=1(yi + sDi )

Asymptotic analysis performed with s → 0, N → +∞, δ → 0.
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Sound-absorbing metamaterials

Proposition 1

Denote by u the solution to the Lippmann-Schwinger equation
∆u + (k2 − sNcap (D)ρ1Ω)u = 0 in R3,(

∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

Assume sN = O(1). There exists an event HN0 which holds with large probability
P(HN0 )→ 1 as N0 → +∞ such that when HN0 is realized, the function u is an
approximation of the total wave field uN,s with the following error estimates:

1. on any ball B(0, r) containing the obstacles, Ω ⊂ B(0, r) and for any N > N0:

E[||uN,s − u||2L2(B(0,r))|HN0 ]
1
2 ≤ csN max((sN)2N−

1
3 ,N−

1
2 );

2. on any bounded open subset A ⊂ R3\Ω away from the obstacles and for any N > N0:

E[||∇uN,s −∇u||2L2(A)|HN0 ]
1
2 ≤ csN max((sN)2N−

1
3 ,N−

1
2 ).



Sound-absorbing metamaterials

1. For sN → 0, the effective medium is transparent, i.e. uN,s → uin where
∆uin + k2uin = 0

2. For sN → Λ with Λ > 0, the effective medium is dissipative, uN,s → u, the solution to
the Helmholtz equation with “strange term”

∆u + (k2 − Λcap (D)ρ1Ω)u = 0 in R3,(
∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

3. For sN → +∞, we expect that the obstacles “solidify” in a single sound-hard obstacle
Ω, and that uN,s → u where u is the solution to the problem

∆u + k2u = 0 in R3,

u = 0 on Ω,(
∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

However this would require a significantly different analysis.
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High-contrast metamaterials
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Figure: Setting of the homogenization problem.

We assume there are N packets of obstacles of size s filling a bounded domain Ω.

DN,s = ∪N
i=1(yi + sDi )



High-contrast metamaterials

High-contrast metamaterials feature resonances. Denote by (ak)1≤k≤K and
0 < λ1 ≤ λ2 ≤ . . . ≤ λK the eigenvectors and eigenvalues of the generalized eigenvalue
problem

Caj = λjV aj with C :=

(
−
∫
∂Bi

S−1
D [1∂Bj ]dσ

)
1≤i,j≤K

and V := diag(|Bi |)1≤i≤K , (1)

I The metamaterial constituted of N identical packets of K connected resonators
sD = ∪K

i=1sBi admits K resonant frequencies

ωi (δ, s) =
δ

1
2

s
λ

1
2
i vr with vr :=

√
ρr
κr
,

I Since in our analysis ω is fixed but s is variable, it is equivalent to say that there is K
resonant sizes

si (δ) :=
δ

1
2

ω
λ

1
2
i vr , 1 ≤ i ≤ K .

I As s → si (δ), the relevant “critical quantity” is

sNQ(s, δ) with Q(s, δ) :=
K∑
i=1

λi

s2

si (δ)2 − 1
(aT

i V 1)2,

where 1 = (1)1≤i≤K is the vector of ones.
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High-contrast metamaterials

Proposition 2

Assume sNQ(s, δ) = O(1) and denote by u the solution to the following
Lippmann-Schwinger equation:

(
∆ + k2 − sNQ(s, δ)ρ1Ω

)
u = 0,(

∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

(2)

There exists an event HN0 which holds with large probability P(HN0 )→ 1 as N0 → +∞
such that when HN0 is realized, u is an approximation of the solution field uN,s with the
following error estimates:

1. on any ball B(0, r) such that Ω ⊂ B(0, r) and for any N > N0:

E[||uN,s − u||2L2(B(0,R))|HN0 ]
1
2 ≤ csNQ(s, δ) max(δ

1
2 N,N−

1
2 );

2. on any bounded open subset A ⊂ R3\Ω away from the resonators, and for any
N > N0:

E[||∇uN,s −∇u||L2(A)|H
2
N0

]
1
2 ≤ csNQ(s, δ) max(δ

1
2 N,N−

1
2 ).



High-contrast metamaterials

I If sNQ(s, δ)→ 0 (s is too far from the resonant size si (δ)), then the effective medium
is transparent.

I If sNQ(s, δ)→ Λ with Λ ∈ R, then uN,s converges to the solution to
(

∆ + k2 − Λρ1Ω

)
u = 0,(

∂

∂|x | − ik

)
(u − uin) = O(|x |−2) as |x | → +∞.

I If Λ > 0 (s is slightly greater than the resonant size si (δ), but not too close), then the
effective medium is dissipative .

I If Λ < 0 (s is slightly smaller than the resonant size si (δ), but not too close), then the
effective medium is dispersive .

I If sNQ(s, δ)→ +∞, we expect that the medium solidifies as for sound-absorbing
obstacles. If sNQ(s, δ)→ −∞, then the medium becomes highly dispersive. The
analysis of these cases remain opened.
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I If sNQ(s, δ)→ +∞, we expect that the medium solidifies as for sound-absorbing
obstacles. If sNQ(s, δ)→ −∞, then the medium becomes highly dispersive. The
analysis of these cases remain opened.
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Time-modulated acoustic high-contrast metamaterials

D

ρ(t)ρr

ρ0

R3\D̄

uin(t, x) u(t, x)

In our setting:

I modulation ρ(t) of the physical parameter periodic, with high frequency Ω� ω

I high contrast δ :=
ρr
ρ0
→ 0

I subwavelength setting ω → 0

In most situations the fast modulation ρ(t) is averaged. Everything happens as if we
have a static material with some effective parameter ρ∗. The scattered field propagates
with frequency ω.
However for an exceptional tuning of ρ(t), a strong coupling arises. The scattered field
contains high frequency components. Outgoing modes growing exponentially in time
may also arise.
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Time-modulated acoustic high-contrast metamaterials

Consider the limit equation in D when δ → 0:

1

v 2
r
∂2
t û −

1

ρ(t)
∆û = 0, (t, x) ∈ R× D

1

ρ(t)

∂û(t, x)

∂n
= 0, (t, x) ∈ R× ∂D,

t 7→ û(t, x) is T–periodic.

Separation of variables shows that û(t, x) = pm(t)φl(x) for pm(t) and φl(x) solutions to
the eigenvalue problems−

d2

dt2
pm(t) =

µm

ρ(t)
pm(t),

pm is T–periodic.

and


−∆φl = λlφl in D,

∂φl

∂n
= 0 on ∂D,

l ∈ N.

at the condition that the Sturm-Liouville and Neumann eigenvalue coincide!

µm

v 2
r

= λl .
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Separation of variables shows that û(t, x) = pm(t)φl(x) for pm(t) and φl(x) solutions to
the eigenvalue problems−

d2

dt2
pm(t) =

µm

ρ(t)
pm(t),

pm is T–periodic.

and


−∆φl = λlφl in D,

∂φl

∂n
= 0 on ∂D,

l ∈ N.

at the condition that the Sturm-Liouville and Neumann eigenvalue coincide!

µm

v 2
r

= λl .



Time-modulated acoustic high-contrast metamaterials

Set
Λ := {(l ,m) ∈ N× N | µm

v 2
r

= λl}.

I In general Λ = {(0, 0)} associated to µ0/v
2
r = 0 = λ0 and constant p0, φ0.

I If ρ(t) is well tuned, then it is possible that Λ 6= {(0, 0)}.
I If Λ = {(0, 0)}: situation analogous to the static case, the modulation ρ(t) is

averaged.

I Assume Λ = {(0, 0), (l ,m)} for some (l ,m) 6= (0, 0). Then, one can construct two
oscillating modes satisfying

v(t, x) ' α0,0 + αl,mpm(t)φl(x) in D
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Time-modulated acoustic high-contrast metamaterials

Proposition 3

There exist 2#Λ subwavelength resonances ω±i (δ) whose leading asymptotic satisfy, to the first
order:

ω±i (δ) ∼ ±vr δ
1
2 λ

1
2
i , 1 ≤ i ≤ #Λ,

where (λi )1≤i≤#Λ are the (complex) eigenvalues of a generalized eigenvalue problem

Tai + λiGai = 0, G = diag(γm)(m,l)∈Λ.

T and (γm)m,l∈Λ have no distinguished signes, hence the eigenvalues λi are in general complex and
one of them has positive imaginary part, leading to ougoing exponentially increasing modes.
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Effective medium theory

Proposition 4

The scattered field generated by the time modulated resonator admits the following far field

expansion as |x | → +∞ and ω = O(δ
1
2 ):

û(x)−ûin(x) = ûin(0)

(
A

(
ω2

v2
r δ

)
+ B

(
ω2

v2
r δ

)
Gml

(
t −
|x |
v0
,
x

|x |

))
(1+O(δ

1
2 )+O(|x |−1))Γ

ω
v0 (x),

for function Gml (t, x) which is T–periodic in the variable t and constant coefficients A(ω2/v2
r δ)

and B(ω2/v2
r δ).



Effective medium theory

Scalings:

I D → sD

I T → sT , ρ→ ρ(·/s). Fast modulation with large frequency 2π/(sT )→ +∞!

I The Neumann and Sturm-Liouville eigenvalues scale as

µm →
µm

s2
and λl →

λl

s2
,

so that it is possible to keep a constant set

Λ =

{
(m, l) ∈ N× N | λl

s2
=

µm

s2v 2
r

}
=

{
(m, l) ∈ N× N |λl =

µm

v 2
r

}
I The resonant frequencies scales again as

ω±i (δ) ∼ λ
1
2
i vr

δ
1
2

s
,

which shows that for s = O(δ
1
2 ), ω can be of order one.



Effective medium theory

We find then the following effective homogenized equation for the scattering of wave in the
fast temporal medium:

ueff(t, y)− sN

∫
Ω

Kω,δ

(
t − |y − y ′|

v0
,
y − y ′

|y − y ′|

)
Γ

ω0
v0 (y − y ′)V (y ′)ûeff(t, y ′)dy ′

= ûin(y), y ∈ Ω.

where
Kω,δ(t, y) :=

[
A(s2ω2/v 2

r δ) + B(s2ω2/v 2
r δ)Gml (t, y)

]
.

Using Fourier series, this is equivalent to a cascade of Helmholtz equation for each of the
Fourier modes with a frequency dependent refractive index.
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= ûin(y), y ∈ Ω.

where
Kω,δ(t, y) :=

[
A(s2ω2/v 2

r δ) + B(s2ω2/v 2
r δ)Gml (t, y)

]
.

Using Fourier series, this is equivalent to a cascade of Helmholtz equation for each of the
Fourier modes with a frequency dependent refractive index.



Preprint

The full details are available in the preprints

Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic
metamaterials in subcritical regimes (2021).
feppon:time, feppon:time (feppon:time)

Related works:

Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2022)

Feppon and Ammari, Modal decompositions and point scatterer approximations near the
Minnaert resonance frequencies (2022)

Thank you for your attention.



Preprint

The full details are available in the preprints

Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic
metamaterials in subcritical regimes (2021).
feppon:time, feppon:time (feppon:time)

Related works:

Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2022)

Feppon and Ammari, Modal decompositions and point scatterer approximations near the
Minnaert resonance frequencies (2022)

Thank you for your attention.



Preprint

The full details are available in the preprints

Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic
metamaterials in subcritical regimes (2021).
feppon:time, feppon:time (feppon:time)

Related works:

Feppon and Ammari, Analysis of a Monte-Carlo Nystrom method (2022)

Feppon and Ammari, Modal decompositions and point scatterer approximations near the
Minnaert resonance frequencies (2022)

Thank you for your attention.


