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Motivation: time-modulated acoustic metamaterials

Acoustic scattering of an incident field uin through a cloud of high-contrast obstacles:

uin(t, x)

us(t, x)

Our goal: understand the physics of the effective medium for time-modulated high-contrast
obstacles.
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Motivation: time-modulated acoustic metamaterials

Potential applications of high-contrast time-modulated metamaterials:

1. frequency conversion

2. signal amplification

3. spontaneous radiation

4. non-reciprocal propagation

5. spacetime cloaking
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In our setting:

I modulation ρ(t) of the physical parameter periodic, with high frequency Ω� ω

I high contrast δ :=
ρr
ρ0
→ 0

I subwavelength setting ω → 0

In most situations the fast modulation ρ(t) is averaged. Everything happens as if we
have a static material with some effective parameter ρ∗. The scattered field propagates
with frequency ω.
However for an exceptional tuning of ρ(t), a strong coupling arises. The scattered field
contains high frequency components. Outgoing modes growing exponentially in time
may also arise.
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1. The unmodulated case: point scatterer approximations and effective medium theory

2. Resonances in the static case and in the time-modulated case

3. Point scatterer approximation and effective medium in the time-modulated case.
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The static case

y1

y2 yN

y3

yi
D

s

DN,s = ∪N
i=1(yi + sD)

Ω

uin(t, x)

uN,s(t, x)

Material parameters:

I in D: density ρr , bulk modulus κr

I outside D: density ρ0, bulk modulus κ0.

I high-contrast regime:

δ :=
ρr
ρ0
→ 0

I Homogenization regime: N → +∞, s → 0, centers (yi )1≤i≤N randomly distributed in
Ω according to a density V (x)dx .
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The static case

I The scattering problem for this high-contrast material:
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+

=
1

ρr

∂u

∂n

∣∣∣∣
−

on R× ∂DN,s , 1 ≤ i ≤ N,

u|+ = u|− on R× ∂DN,s ,

u − uin is outgoing.

I Denote by v0 and vr the wave speeds in D and R3\D:

v0 :=

√
κ0

ρ0
, vr =

√
κr

ρr
.

I The incident field uin(t, x) is time-harmonic with frequency ω:

uin(t, x) = e−iωt ûin(x) with ∆ûin +
ω2

v 2
0

ûin = 0 in R3.

I The total field is itself time-harmonic, u(t, x) = e−iωt û(x) and û satisfies the outgoing

Sommerfeld Radiation condition (∂|x| −
iω

v0
)û = O(|x |−2) as |x | → +∞.
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The static case

The key ingredient for understanding the effective physics of the medium is the point
scatterer approximation.

I Consider scattering against a single resonator D, centered at 0:

D

κr , ρr
R3\D
κ0, ρ0

uin
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I In this rescaled situation, consider the subwavelength regime

ω → 0

I Two complex subwavelength resonant frequencies:

ω±(δ) = vrδ
1
2

√
cap (D)

|D| −
iv 2

r cap (D)2

8πv0|D|
δ + O(δ

3
2 ),

with negative imaginary part.
I We have the point scatterer (far field) approximation

û(x)− ûin(x) ' ûin(0)
ω2

ω2
M
− 1 + iωcap (D)

4πv0

cap (D)Γ
ω
v0 (x) as |x | → +∞,

where cap (D) is the capacity of D and

Γ
ω
v0 (x) = −e

i ω
v0
|x|

4π|x | .
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ω2

ω2
M
− 1 + iωcap (D)

4πv0

cap (D)Γ
ω
v0 (x) as |x | → +∞,

where cap (D) is the capacity of D and

Γ
ω
v0 (x) = −e

i ω
v0
|x|

4π|x | . and ωM := vr

√
cap (D)

|D| δ
1
2 .

I Field enhancement of order O(δ−
1
2 ) for ω close to ωM .



The static case

I For a rescaled resonator sD:

cap (sD) = scap (D), |sD| = s3|D|

so ωM rescales as

ωM := vr

√
cap (D)

|D|
δ

1
2

s
,

i.e. ωM = O(1) if s = O(δ
1
2 ).

I Foldy-Lax approximation:



The static case

I For a rescaled resonator sD:

cap (sD) = scap (D), |sD| = s3|D|

so ωM rescales as

ωM := vr

√
cap (D)

|D|
δ

1
2

s
,

i.e. ωM = O(1) if s = O(δ
1
2 ).

I Foldy-Lax approximation:



The static case

I For a rescaled resonator sD:

cap (sD) = scap (D), |sD| = s3|D|

so ωM rescales as

ωM := vr

√
cap (D)

|D|
δ

1
2

s
,

i.e. ωM = O(1) if s = O(δ
1
2 ).

I Foldy-Lax approximation:



The static case

I For a rescaled resonator sD:

cap (sD) = scap (D), |sD| = s3|D|

so ωM rescales as

ωM := vr

√
cap (D)

|D|
δ

1
2

s
,

i.e. ωM = O(1) if s = O(δ
1
2 ).

I Foldy-Lax approximation:

single scatterer: û(x)− ûin(x) ' ûin(0)
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ûN,s(yj)
ω2

ω2
M
− 1

sNcap (D)Γ
ω
v0 (yi − yj)

I Law of large numbers: convergence to the integral equation

û(y)− ûin(y) =

∫
Ω
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Outline

1. The unmodulated case: point scatterer approximations and effective medium theory

2. Resonances in the static case and in the time-modulated case

3. Point scatterer approximation and effective medium in the time-modulated case.



Time-modulated metamaterials

Consider scattering against a single time-modulated resonator D, centered at 0:

D

κr , ρ(t)ρr
R3\D
κ0, ρ0

uin
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1

κ0

∂2u

∂t2
− 1

ρ0
∆u = 0 in R× R3\D̄,

1

κr

∂2u

∂t2
− 1

ρ(t)ρr
∆u = 0 in R× D,

1

ρ0

∂u

∂n

∣∣∣∣
+

=
1

ρrρ(t)

∂u

∂n

∣∣∣∣
−

on R× ∂D, 1 ≤ i ≤ N,

u|+ = u|− on R× ∂D,
u − uin is outgoing.

ρ is periodic of period T : ρ(t + T ) = ρ(t) and

Ω :=
2π

T
= O(1).
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Time-modulated metamaterials

We still assume that uin is time harmonic:

uin(t, x) = e−iωt ûin(x),

and the regimes ω → 0, δ = ρr/ρ0 → 0.

Question: what does “u − uin outgoing” mean ?
Seek u in the form of

u(t, x) = e−iωt û(t, x) with t 7→ u(t, x) T–periodic.

This can be justified with the Bloch transform.
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Time-modulated metamaterials

û satisfies then

1

κ0
(−iω + ∂t)
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+

, (t, x) ∈ R× ∂D,

û|+(t, x) = û|−(t, x), (t, x) ∈ R× ∂D,
t 7→ û(t, x) is T–periodic,

e−iωt(û(t, x)− ûin(t, x)) is outgoing.

We can show that the “right” outgoing radiation condition for û is(
∂|x| −

iω

v0
+

1

v0
∂t

)
û(t, x) = O(|x |−2).

Equivalent to say that all Fourier modes are outgoing.
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∂|x| −

iω

v0
+

1

v0
∂t

)
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Time-modulated metamaterials

To analyze resonances, it is useful to introduce the Dirichlet-to-Neumann operator. For a
T–periodic Dirichlet datum f (t, x), consider the solution wf (t, x) to

1

v 2
0

(−iω + ∂t)
2 wf (t, x)−∆wf (t, x) = 0, (t, x) ∈ R× R3\D̄,

wf (t, x) = f (t, x), (t, x) ∈ R× ∂D,
t 7→ wf (t, x) is T–periodic(

∂|x| −
iω

v0
+

1

v0
∂t

)
wf (t, x) = O(|x |−2) as |x | → +∞.

The Dirichlet-to-Neumann map is the operator T ω defined by

T ω[f ] =
∂wf

∂n
on ∂D.

Static case retrieved by removing the ∂t term.
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Time-modulated metamaterials

The scattering problem can be rephrased in D only thanks to T ω:

1

ρ(t)

∂û(t, x)

∂n

∣∣∣∣
−

= δ
∂û(t, x)

∂n

∣∣∣∣
+

= δ
∂(û − ûin)

∂n

∣∣∣∣
+

+ δ
∂ûin
∂n

= δT ω[(û − ûin)] + δ
∂ûin
∂n

.

Therefore û satisfies:

1

v 2
r

(−iω + ∂t)
2 û(t, x)− 1

ρ(t)
∆û(t, x) = 0, (t, x) ∈ R× D,

1

ρ(t)

∂û(t, x)

∂n
− δT ω[û(t, x)] = δ

(
∂ûin
∂n
− T ω[ûin]

)
, (t, x) ∈ R× ∂D,

t 7→ û(t, x) is T–periodic.

Resonances: complex values ω(δ) for which the above admits a non-zero solution with
ûin = 0.
Equivalently,

A(ω, δ)û = F (ûin)⇒ û = A(ω, δ)−1F (ûin).

Resonances are the poles of A(ω, δ), yield amplification for ω ' ω(δ).
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∂û(t, x)

∂n

∣∣∣∣
+

= δ
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2 û(t, x)− 1

ρ(t)
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ûin = 0.
Equivalently,
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Therefore û satisfies:

1

v 2
r

(−iω + ∂t)
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∂ûin
∂n
− T ω[ûin]
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∂ûin
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∂û(t, x)

∂n
− δT ω[û(t, x)] = δ

(
∂ûin
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Resonances are the poles of A(ω, δ), yield amplification for ω ' ω(δ).



Time-modulated metamaterials

Set δ = 0 and ω = 0: 
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Separation of variables shows that û(t, x) = pm(t)φl(x) for pm(t) and φl(x) solutions to
the eigenvalue problems−

d2

dt2
pm(t) =

µm

ρ(t)
pm(t),

pm is T–periodic.

and


−∆φl = λlφl in D,

∂φl

∂n
= 0 on ∂D,

l ∈ N.

at the condition that the Sturm-Liouville and Neumann eigenvalue coincide!

µm

v 2
r

= λl .
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Time-modulated metamaterials

Set
Λ := {(l ,m) ∈ N× N | µm

v 2
r

= λl}.

I In general Λ = {(0, 0)} associated to µ0/v
2
r = 0 = λ0 and constant p0, φ0.

I If ρ(t) is well tuned, then it is possible that Λ 6= {(0, 0)}.
I If Λ = {(0, 0)}: situation analogous to the static case, the modulation ρ(t) is

averaged.

I Assume Λ = {(0, 0), (l ,m)} for some (l ,m) 6= (0, 0). Then, by perturbation, one can
construct two oscillating modes

v(t, x) ' α0,0(ω, δ) + αl,m(ω, δ)pm(t)φl(x)

such that

1

v 2
r

(−iω + ∂t)
2 v(t, x)− 1

ρ(t)
∆v(t, x) = 0, (t, x) ∈ R× D,

1

ρ(t)

∂v(t, x)

∂n
− δT ω[v(t, x)] = 0, (t, x) ∈ R× ∂D,

t 7→ v(t, x) is T–periodic.

for some complex resonant frequencies ω ≡ ω±i (δ), i = 1, 2, satisfying ω±i (δ)→ 0 as
δ → 0.
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Time-modulated metamaterials

Proposition 1

The leading asymptotic of the subwavelength resonances ω±i (δ) satisfy, to the first order:

ω±i (δ) ∼ ±vr δ
1
2 λ

1
2
i , 1 ≤ i ≤ #Λ,

where (λi )1≤i≤#Λ are the (complex) eigenvalues of the generalized eigenvalue problem

Tai + λiGai = 0, G = diag(γm)(m,l)∈Λ.

T ≡ (Tml,m′ l′ )(m,l),(m′,l′)∈Λ×Λ is the (real) matrix

Tml,m′ l′ :=

∫ T

0

∫
∂D
T 0[pmφl ]pm′ (t)φl′ (x)dtdσ(x).

and (γm)1≤m≤#Λ are the numbers

γm :=

∫ T

0

(
−2

d

dt
p1
mpm + |pm(t)|2

)
dt

where p1
m is the unique solution to the ODE

−
d2p1

m

dt2
−

µm

ρ(t)
p1
m = −2

dpm

dt
,

p1
m is T–periodic,∫ T

0

1

ρ(t)
p1
m(t)pm(t)dt = 0.
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Time-modulated metamaterials

I T and (γm)(m,l)∈Λ have no distinguished signs if Λ 6= {(0, 0)}.

I As a consequence, the eigenvalues λi are in general complex, and one of the resonant
frequencies, say ω+

i (δ), has positive imaginary part .

I This means that e−iω+
i (δ)tv(t, x) is an outgoing, and exponentially growing solution

to the scattering problem.
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Time-modulated metamaterials

In any case, the scattered field contains high frequency components.

Proposition 2

Assume Λ = {(0, 0), (l ,m)}. We have the following asymptotic expansion for û(t, x) inside D:

û(t, x) =
ûin(0)

g(ω, δ)

[
−
(
ω2

v2
r δ
γm + Tml,ml

)
1D +

(∫ T

0
pm(t)dt

∫
∂D

∂Φ

∂n
φldσ

)
pm(t)φl (x)

]
+ O(δ

1
2 ). (1)

where g(ω, δ) is vanishing at the complex frequency ω = ω±i (δ) and Φ is the solution to the
exterior problem 

∆Φ = 0 in R3\D
Φ = 1 on ∂D

Φ(x) = O(|x |−1) as |x | → +∞.

In the “worst” case, 1/g(ω, δ) = O(1), so that the high frequency effect due to pm(t)φl (x) is
visible at first order.
If the imaginary part of ω±i (δ) is of order O(δ), then we have a strong amplification for ω close to

<(ω±i (δ)).



Time-modulated metamaterials

In any case, the scattered field contains high frequency components.

Proposition 2

Assume Λ = {(0, 0), (l ,m)}. We have the following asymptotic expansion for û(t, x) inside D:
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Assume Λ = {(0, 0), (l ,m)}. We have the following asymptotic expansion for û(t, x) inside D:

û(t, x) =
ûin(0)

g(ω, δ)

[
−
(
ω2

v2
r δ
γm + Tml,ml

)
1D +

(∫ T

0
pm(t)dt

∫
∂D

∂Φ

∂n
φldσ

)
pm(t)φl (x)

]
+ O(δ

1
2 ). (1)

where g(ω, δ) is vanishing at the complex frequency ω = ω±i (δ) and Φ is the solution to the
exterior problem 

∆Φ = 0 in R3\D
Φ = 1 on ∂D

Φ(x) = O(|x |−1) as |x | → +∞.

In the “worst” case, 1/g(ω, δ) = O(1), so that the high frequency effect due to pm(t)φl (x) is
visible at first order.
If the imaginary part of ω±i (δ) is of order O(δ), then we have a strong amplification for ω close to

<(ω±i (δ)).



Outline

1. The unmodulated case: point scatterer approximations and effective medium theory

2. Resonances in the static case and in the time-modulated case

3. Point scatterer approximation and effective medium in the time-modulated case.



Effective medium theory

Proposition 3

The scattered field generated by the time modulated resonator satisfies the following far field
expansion:

û(x)− ûin(x) '
ûin(0)

g(ω, δ)

[(
ω2

v2
r δ
γm + Tml,ml

)
cap (D)

+

(∫ T

0
pm(t)dt

∫
∂D

∂Φ

∂n
φldσ

)
Fml

(
t −
|x |
v0
,
x

|x |

)]
Γ

ω0
v0 (x)

+ ûin(0)cap (D)Γ
ω
v0 (x).

for function Fml (t, x) which is T–periodic in the variable t.



Effective medium theory

uin(t, x)

D

ρ(t)

us(t, x)



Effective medium theory

Effective medium theory in a heterogeneous medium.

y1

y2 yN

y3

yi
D

s

DN,s = ∪N
i=1(yi + sD)

Ω

uin(t, x)

uN,s(t, x)



Effective medium theory

Scalings:

I D → sD

I T → sT , ρ→ ρ(·/s). Fast modulation with large frequency 2π/(sT )→ +∞!

I The Neumann and Sturm-Liouville eigenvalues scale as

µm →
µm

s2
and λl →

λl

s2
,

so that it is possible to keep a constant set

Λ =

{
(m, l) ∈ N× N | λl

s2
=

µm

s2v 2
r

}
=

{
(m, l) ∈ N× N |λl =

µm

v 2
r

}
I The resonant frequencies scales again as

ω±i (δ) ∼ λ
1
2
i vr

δ
1
2

s
,

which shows that for s = O(δ
1
2 ), ω can be of order one.



Effective medium theory

We find then the following effective homogenized equation for the scattering of wave in the fast
temporal medium:

u(t, y)− sN

∫
Ω
Kω,δ

(
t −
|y − y ′|

v0
,
y − y ′

|y − y ′|

)
Γ

ω0
v0 (y − y ′)V (y ′)û(t, y ′)dy ′ = ûin(y), y ∈ Ω.

where
Kω,δ(t, y) := [A(sω, δ) + B(sω, δ)Fml (t, y)]

for some coefficients A(sω, δ) and B(sω, δ).

Using Fourier series, this is equivalent to a cascade of Helmholtz equation for each of the Fourier
modes with a frequency dependent refractive index.
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Feppon and Ammari, Modal decompositions and point scatterer approximations near the
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Feppon and Ammari, Homogenization of sound-absorbing and high-contrast acoustic
metamaterials in subcritical regimes (2021).
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