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What is topology optimization ?

(a) Siemens (2017) (b) APWorks (2016)

(c) M2DO (Kambampati et. al. 2018) (d) AIRBUS (2010)



What is topology optimization ?

Figure: Minimization of the average temperature with a cooling material
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Course outline

Course material:

I My PhD thesis:
Feppon, F. Shape and topology optimization of multiphysics systems (2019). Thèse
de doctorat de l’Université Paris-Saclay préparée à l’École polytechnique.

I Lecture notes prepared for the Von Karmann Institute:
Feppon, F. Shape and topology optimization applied to Compact Heat Exchangers
(2021).



Lecture 1: nonlinear constrained optimization. Null space gradient flows
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Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill
a proposed objective.
Generically, a design optimization problem arises under the form

min
Ω⊂D

J(Ω)

s.t.

{
Gi (Ω) = 0, 1 ≤ i ≤ p

Hj(Ω) ≤ 0, 1 ≤ j ≤ q

where

I Ω is an open domain sought to be optimized

I J is an objective function to minimize (corresponding to a measure of the
performance)

I Gi and Hj are respectively p and q equality and inequality constraints
(corresponding e.g. to industrial specifications to meet)

In industrial applications, J(Ω), Gi (Ω) or Hj(Ω) involve the solution uΩ defined with
respect to a PDE model posed on Ω.
In the next lectures, we will learn how to compute shape derivatives of the functionals
J(Ω), Gi (Ω), Hi (Ω) with respect to arbitrary shape deformations.
Today, we focus on numerical algorithms for solving such optimization programs.
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2. Null space gradient flows for constrained optimization

For the exposure, let us consider the general optimization problem

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

with J : X → R, g : X → Rp and h : X → Rq Fréchet differentiable.
The set X can be

I a finite dimensional vector space, X = Rn

I a Hilbert space equipped with a scalar product a(·, ·), X = V

I a “manifold”, as in shape optimization:

X = {Ω ⊂ D |Ω Lipschitz }
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2. Null space gradient flows for constrained optimization

Optimization algorithms aim at answering the question:

From a current guess xn ∈ X , how to select the next guess xn+1 ∈ X given objective J and
constraints g , h?

Two challenges: decreasing J(xn), while making the constraints g(xn) = 0 and h(xn) ≤ 0
better satisfied.
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From a current guess xn ∈ X , how to select the next guess xn+1 ∈ X given objective J and
constraints g , h?

Two classes of algorithms, black-box and gradient-based algorithms:

I Parameter explorations: generate a random but hopefully “reasonable” population of
sample guesses (xn)n∈I , compute J(xn), gi (xn) and hi (xn), and take the best candidate.

I “Black-box” optimization: compute several values of J(xn), gi (xn), hi (xn) for a
“small” but “representative” population of (xn)n∈I , construct an approximate surrogate
model of J, gi , and hi , and solve the optimization program with the surrogate model

I “gradient-based” algorithms: use the knowledge of the derivatives of J, gi and hi to
infer a descent direction ξn. The update

xn+1 = xn + hξn

for a sufficiently small h > 0 should lead a better candidate xn+1.

For shape optimization, a single computation of J(xn), gi (xn) and hi (xn) requires to solve
PDEs: it is very costly. Black box methods cannot be considered as good methods.
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optimization problems.

The price to pay is that they require the knowledge of the gradient.
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Outline

1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples
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Differential vs. gradients

Definition 1

1. g : V → Rp is differentiable at x ∈ V if there exists a continuous linear mapping
Dg(x) : V → Rp such that

g(x + h) = g(x) + Dg(x)h + o(h) with
o(h)

||h||V
h→0−−−→ 0.

Dg(x) is called the Fréchet derivative of g at x .

2. If g : V → Rp is differentiable, for any µ ∈ Rp, there exists a unique vector
Dg(x)T µ ∈ V satisfying

∀µ ∈ Rp, ∀ξ ∈ V , 〈Dg(x)T µ, ξ〉V = µTDg(x)ξ,

The linear operator Dg(x)T : Rp → V thus defined is called the linear transpose of
Dg(x) .

3. If J : V → R is a scalar function differentiable at x ∈ V , there exists a unique vector
∇J(x) ∈ V satisfying

∀ξ ∈ V , 〈∇J(x), ξ〉V = DJ(x)ξ.

The vector ∇J(x) ∈ V is called the gradient of J at x .
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Differential vs. gradients

I Do not confuse the gradient ∇J and the differential DJ !

This difference will be
important for shape optimization algorithms.

I If g(x) = (gi (x))1≤i≤p, then DgT =
[
∇g1 ∇g2 . . . ∇gp

]
I If V = RN and 〈·, ·〉V is the usual Euclidean inner product, then

Dg = (∂jgi )1≤i≤p,1≤j≤N and DgT = DgT . Careful: physicists usually write
∇g = (∂jgi )1≤i≤p,1≤j≤N for Dg though Dg is not a gradient.

I If V = V and 〈ξ, ξ〉V := ξTAξ for A ∈ Rn×n a positive definite matrix, then
DgT = A−1DgT .

I The matrix DgDgT ∈ Rp×p has entries

(DgDgT )ij = 〈∇gi ,∇gj〉V = Dgi (x)(∇gj(x)).
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Dg = (∂jgi )1≤i≤p,1≤j≤N and DgT = DgT . Careful: physicists usually write
∇g = (∂jgi )1≤i≤p,1≤j≤N for Dg though Dg is not a gradient.

I If V = V and 〈ξ, ξ〉V := ξTAξ for A ∈ Rn×n a positive definite matrix, then
DgT = A−1DgT .

I The matrix DgDgT ∈ Rp×p has entries

(DgDgT )ij = 〈∇gi ,∇gj〉V = Dgi (x)(∇gj(x)).
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Differential vs. gradients
First order optimality conditions

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(1)

I The set {x ∈ V | g(x) = 0 and h(x) ≤ 0} is called the feasible domain.

I x∗ is called a local minimizer if there is an open neighborhood U such that x∗ solves
the minimization problem

min
x∈U

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

I if x∗ is solution to eq. (1), then x∗ is called a global minimizer.
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I A constraint gi or hj is called violated at x ∈ V if gi (x) 6= 0 or hj(x) > 0, is called
satisfied otherwise;

I A constraint hj is called active at x ∈ V if hj(x) = 0
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Differential vs. gradients

Consider the optimization problem

min
x∈V

J(x)
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g(x) = 0

h(x) ≤ 0,

Denote by Ĩ (x) the set of active or violated inequality constraints:

Ĩ (x) = {i ∈ {1, . . . , q} | hi (x) > 0},

and

CĨ (x) =
[
g(x) | (hi (x))i∈Ĩ (x)

]T
, q̃(x) := #Ĩ (x)

the vector of corresponding constraints and their number.

We say that the constraints are qualified at x ∈ V if they are linearly independent:

rank(DCĨ (x)) = p + q̃(x).

This is equivalent to
DC

Ĩ (x)
DCT

Ĩ (x)
is invertible.
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CĨ (x) =
[
g(x) | (hi (x))i∈Ĩ (x)
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Ĩ (x)
DCT
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Differential vs. gradients

Proposition 1

Assume that J, g and h are C1 functions and that the constraints are qualified.

Then if x∗

is a local minimizer, then there exist (λ∗,µ∗) ∈ Rd × Rq̃(x)
+ such that

∇J(x∗) + Dg(x∗)T λ∗ + DhĨ (x∗)(x
∗)T µ∗ = 0 (2)

I eq. (2) is called the Karush, Kuhn and Tucker condition;

I if there are no constraints, it reduces to the standard first order optimality condition

∇J(x∗) = 0

I for equality and inequality constraints, we shall interpret eq. (2) as the nullity of the
gradient projected tangentially to the constraints.
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Unconstrained optimization

Consider the unconstrained minimization problem

min
x∈V

J(x),

with J : V → R differentiable.

The gradient ∇J(x) has two roles:

Lemma 2

I −∇J(x) is the “best descent direction” at x in the sense that

− ∇J(x)

||∇J(x)||V
=

arg min
ξ∈V

DJ(x) · ξ

s.t.||ξ||V ≤ 1.

I If x is a local minimizer of J, then ∇J(x) = 0.
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Unconstrained optimization

Consider the unconstrained minimization problem

min
x∈V

J(x),

with J : V → R differentiable.

The fixed step gradient method is

xn+1 = xn − h∇J(xn). (3)

For h sufficiently small, J(xn+1) = J(xn)− h||∇J(xn)||2 + o(h) < J(xn), J has decreased!

The convergence analysis of the discrete scheme eq. (3) is delicate, it can be done for
convex functions. On the other hand, eq. (3) can be interpreted as the Euler method for
the gradient flow

dx

dt
= −∇J(x). (4)

It is easier to analyse eq. (4):

I dJ(x)

dt
= −||∇J(x)||2 < 0 so t 7→ J(x(t)) decreases along the trajectory t 7→ x(t);

I dJ(x)

dt
= 0⇔ ∇J(x) = 0: J(x(t)) decreases strictly except at a critical point.

Under mild regularity assumptions, Morse theory says that almost all the trajectories of
eq. (4) converge to a local minimizer of J.
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Extension to constrained optimization problems ?

Consider the constrained optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

I Many “iteratives” methods in literature:

I Penalty methods (like Augmented Lagrangian Method)
I Linearization methods : SLP, SQP, MMA, MFD
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Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(5)

Penalty methods (like Augmented Lagrangian Method): replace eq. (6) with

min
xn∈V

J(x) + ΛT
n C(x) +

αn

2
||C(x)||2

for a sequence of penalty parameters (Λn)n∈N, (αn)n∈N.



Constrained optimization problems

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(5)

Linearization methods (SLP, SQP, MMA, MFD): replace eq. (6) with the sequence of
linear subproblems

min
xn+1∈V

J(xn+1)

s.t.


g(xn) + Dg(xn) · (xn+1 − xn) = 0

h(xn) + Dh(xn) · (xn+1 − xn) ≤ 0

||xn+1 − xn||∞ ≤ h,

for h a small “time-step”.



Constrained optimization problems

These methods suffer from:

I the need for tuning unintuitive parameters.

I The augmented Lagrangien method worsens the solution if xn is optimal but the
multiplier Λn is not “correct”.

The objective objective function may not decrease even
if constraints are satisfied.

I “inconsistencies” when h→ 0: SLP, SQP, MFD subproblems may not have a solution
if h too small;

I these schemes cannot be interpreted as a discretization of some ODE.

In what follows, we consider an extension of the gradient flow ẋ = −∇J(x) for constrained
optimization.
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Null space gradient flows for constrained optimization

min
(x1,x2)∈R2

J(x1, x2) = x2
1 + (x2 + 3)2

s.t.

{
h1(x1, x2) = −x2

1 + x2 ≤ 0

h2(x1, x2) = −x1 − x2 − 2 ≤ 0
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Equality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t. g(x) = 0
(6)

Assume that rank(Dg(x)Dg(x)T ) = p.

Definition 3

The null space and range space directions ξJ(x) and ξC (x) are defined by:

ξJ(x) := (I −DgT (DgDgT )−1Dg)∇J(x),

ξC (x) := DgT (DgDgT )−1g(x).
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Equality constrained optimization

The following properties hold for the null space direction ξJ(x):

Lemma 4

1. V = Ker(Dg(x))⊕ Ran(Dg(x)T ), where Ran(Dg(x)T ) := {Dg(x)T λ |λ ∈ Rp} of
Dg(x)T .

2. The operator Πg(x) : V → V defined by

Πg(x) = I −DgT (DgDgT )−1Dg(x)

is the orthogonal projection onto Ker(Dg(x)) with Ker(Πg(x)) = Ran(Dg(x)T ).

3. When Πg(x)(∇J(x)) 6= 0, −ξJ(x) = −Πg(x)(∇J(x)) is the best feasible descent
direction for J in the sense that

− ξJ(x)

||ξJ(x)||V
= arg min

ξ∈V
DJ(x)ξ

s.t.

{
Dg(x)ξ = 0

〈ξ, ξ〉V ≤ 1.

(7)
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Equality constrained optimization

Lemma 5

The null space direction ξJ(x) = Πg(x)(∇J(x)) is the closest least squares approximation to
∇J(x) within the space Ker(Dg(x)):

ξJ(x) = arg min
ξ∈Ker(Dg(x))

||∇J(x)− ξ||V .

It alternatively reads
ξJ(x) = ∇J(x) + Dg(x)T λ∗(x),

where the Lagrange multiplier λ∗(x) := −(DgDgT )−1Dg∇J(x) is the unique solution to
the following least squares problem that is the dual of eq. (7):

λ∗(x) = arg min
λ∈Rp

||∇J(x) + Dg(x)T λ||V .

Remark 1

I λ∗(x) is defined for any x such that DgDgT (x) is invertible;

I ξJ(x) = 0 if and only if x satisfies the KKT condition;

I In that case, λ∗(x) is the Lagrange multiplier of the KKT condition
∇J(x) + Dg(x∗)T λ∗ = 0.
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Equality constrained optimization

The range space step:

Lemma 6

1. The range space step ξC (x) := DgT (DgDgT )−1g(x) is orthogonal to Ker(Dg(x)):

∀ξ ∈ Ker(Dg(x)), 〈ξC (x), ξ〉V = 0.

2. −ξC (x) is a descent direction for the violation of the constraints:

Dg(x)(−ξC (x)) = −g(x).

3. The set of solutions to the Gauss-Newton program

min
ξ∈V
||g(x) + Dg(x)ξ||2

is the affine subspace {−ξC (x) + ζ | ζ ∈ Ker(Dg(x))} of V .

Remark 2

The range space and null space steps are orthogonal: 〈ξJ(x), ξC (x)〉V = 0
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Equality constrained optimization

Proposition 2

Assume that the constraints g are qualified and consider the flow{
ẋ = −αJ(I −DgT (DgDgT )−1Dg(x))∇J(x)−αCDgT (DgDgT )−1g(x)

x(0) = x0

(8)

for some αJ , αC > 0. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0,T ], g(x(t)) = e−αC tg(x0).

2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

∀t ∈ [0,T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αC t ⇒ d

dt
J(x(t)) < 0.

3. Any stationary point x∗ of eq. (8) satisfies the first-order KKT conditions, that is:{
g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.
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ẋ = −αJ(I −DgT (DgDgT )−1Dg(x))∇J(x)−αCDgT (DgDgT )−1g(x)

x(0) = x0

(8)

for some αJ , αC > 0. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0,T ], g(x(t)) = e−αC tg(x0).

2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

∀t ∈ [0,T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αC t ⇒ d

dt
J(x(t)) < 0.

3. Any stationary point x∗ of eq. (8) satisfies the first-order KKT conditions, that is:{
g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.



Equality constrained optimization

Proposition 2

Assume that the constraints g are qualified and consider the flow{
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2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

∀t ∈ [0,T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αC t ⇒ d

dt
J(x(t)) < 0.

3. Any stationary point x∗ of eq. (8) satisfies the first-order KKT conditions, that is:{
g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.



Equality constrained optimization

I αJ > 0 and αC > 0 controls the trade off between decreasing J(x) and ||g(x)||.

I Consider the Euler scheme:

xn+1 = xn −∆t(αJξJ(xn) + αCξC (xn)),

1. At first order, the constraints decrease with a geometric rate:
g(xn+1) = (1 − αC∆t)g(xn) + o(∆t).

2. An accumulation point x∗ of the sequence (xn)n∈N satisfies g(x∗) = 0 and the KKT
conditions.

I The range space step ξC (xn) corrects numerical errors on the violation of the
constraint (ξJ(xn) preserves the constraint only at first order).
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Exercise: solve an equality constrained optimization problem

I Install the nullspace optimizer python package:

https:

//people.math.ethz.ch/~ffeppon/topopt_course/install_software.html

I Write an optimization program to solve the constrained minimization problem on the
hyperbola:

min
(x1,x2)∈R2

x1 + x2

s.t. x1x2 = 1.

Use (0.1, 0.1), (4, 0.25), (4, 1) as initialisations.

I Do the same to solve
max

(x1,x2)∈R2
x2

s.t.

{
(x1 − 0.5)2 + x2

2 = 2

(x1 + 0.5)2 + x2
2 = 2.

https://people.math.ethz.ch/~ffeppon/topopt_course/install_software.html
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