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Equality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t. g(x) = 0
(1)

Assume that rank(Dg(x)Dg(x)T ) = p.

Definition 1

The null space and range space directions ξJ(x) and ξC (x) are defined by:

ξJ(x) := (I −DgT (DgDgT )−1Dg)∇J(x),

ξC (x) := DgT (DgDgT )−1g(x).



Equality constrained optimization

Proposition 1

Assume that the constraints g are qualified and consider the flow{
ẋ = −αJ(I −DgT (DgDgT )−1Dg(x))∇J(x)−αCDgT (DgDgT )−1g(x)

x(0) = x0

(2)

for some αJ , αC > 0. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0,T ], g(x(t)) = e−αC tg(x0).

2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

∀t ∈ [0,T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αC t ⇒ d

dt
J(x(t)) < 0.

3. Any stationary point x∗ of eq. (2) satisfies the first-order KKT conditions, that is:{
g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.
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Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min
x∈V

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q,

(3)

I It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min
x∈V ,(zj )1≤j≤q

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) + z2
j = 0 1 ≤ i ≤ q,

(4)

I However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.
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Outline

1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples
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Null space gradient flows for constrained optimization

min
(x1,x2)∈R2

J(x1, x2) = x2
1 + (x2 + 3)2

s.t.

{
h1(x1, x2) = −x2

1 + x2 ≤ 0

h2(x1, x2) = −x1 − x2 − 2 ≤ 0



Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) ≤ 0, we consider:

ẋ = −αJξJ(x(t))− αCξC (x(t))

with
ξJ(x) := (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),



Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) ≤ 0, we consider:
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)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
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(DCĨ (x)DCT
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Ĩ (x) the set of violated constraints:

Ĩ (x) = {i ∈ {1, . . . , q} | hi (x) > 0}.

CĨ (x) =
[
g(x) | (hi (x))i∈Ĩ (x)

]T
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Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

CÎ (x) =
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We assume the constraints to be qualified:

DCĨ (x)DCT
Ĩ (x)

is invertible.



Equality and inequality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

Definition 2 (range space step)

The range step ξC (x) is defined by

ξC (x) := DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

In particular:

1. ξC (x) is orthogonal to Ker(DCĨ (x)).

2. −ξC (x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ (x)(−ξC (x)) = −CĨ (x)(x).



Equality and inequality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

Definition 2 (range space step)

The range step ξC (x) is defined by

ξC (x) := DCT
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Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.
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DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.



Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0
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Equality and inequality constrained optimization

Proposition 2

Let the constraints be satisfied. There exists a unique couple of multipliers λ∗(x) ∈ Rp and

µ∗(x) ∈ Rq̃(x)
+ solution to the following quadratic optimization problem which is the dual of

eq. (8) :

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .



Equality and inequality constrained optimization

Proposition 3

Let
m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V

be the value of the dual problem . Then the value of the primal problem is
p∗(x) = −m∗(x) and the following alternative holds:

1. m∗(x) = 0: the KKT conditions hold with (necessarily unique) Lagrange multipliers

(λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x) = 0. (6)

A minimizer of the primal problem is ξ∗(x) = 0.

2. m∗(x) > 0 : eq. (6) does not hold and there exists a unique minimizer ξ∗(x) to the
primal problem, given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V
. (7)
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Equality and inequality constrained optimization

Let (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x) the solutions of the following dual minimization problem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .

Proposition 4

Define Î (x) the set obtained by collecting the non zero components of µ∗(x):

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

Then (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î (x) by:λ∗(x)

µ̂∗(x)

 =

λÎ (x)(x)

µÎ (x)(x)

 = −(DCÎ (x)DCT
Î (x)

)−1DCÎ (x)∇J(x),

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

where µ̂∗(x) := (µ∗i (x))i∈Î (x) is the vector collecting all positive components of µ∗(x).
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The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:
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where hĨ (x)(x) = (hi (x))i∈Ĩ (x).



Equality and inequality constrained optimization

In other words, ξ∗(x) is explicitly given by:
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(DCÎ (x)DCT
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)−1DCÎ (x))(∇J(x))
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Definition 3
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Î (x)
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Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points
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2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small
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Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.



Numerical implementation issues

Consider the null space gradient flow:
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changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.



Numerical implementation issues

Consider the null space gradient flow:
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Numerical implementation issues
Feeling inequality constraints from a short distance

Replace Ĩ (xn) with Ĩε(xn) of constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

Using a time step ∆t, it is natural to set

εi = ||∇hi (xn)||∆t

I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC ,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn)(xn),

where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

I Including constraints of Îε(xn) not in Ĩ (xn) further stabilizes these closer to the zero
barrier.
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I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
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where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.
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Numerical implementation issues
Merit function

Lemma 4

For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn (x) := αJ

(
J(x) + Λ(xn)TCĨ (xn)(x)

)
+
αC

2
CĨ (xn)(x)TS(xn)CĨ (xn)(x)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to

the dual problem and S(xn) = (DCĨ (xn)(xn)DCĨ (xn)(xn)T )−1 is symmetric positive definite.
Then

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

is a gradient step for decreasing the function meritxn , namely:

∇meritxn (xn) = αJξJ(xn) + αCξC (xn).

Consequently:

I if meritxn (xn+1) > meritxn (xn), then ∆tn is too large !

I in practice, one decreases ∆t a finite number of times until
meritxn (xn+1) < meritxn (xn).
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Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).

Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)
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constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)



Summary

For n = 1 . . . maxiter:

5. Let I ∗ε (xn) := Ĩ (xn)∪ Îε(xn). Form the constraint vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) and
compute

ξJ(xn) = (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC (xn) = DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn).

6. For k = 1 . . . maxtrials,

6.1 Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC (xn)).

6.2 If meritxn (xn+1) < meritxn (xn), then break
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Open source package available

Try it yourself!

https://gitlab.com/florian.feppon/null-space-optimizer

pip install nullspace optimizer

https://gitlab.com/florian.feppon/null-space-optimizer


Basic problem 1

min
(x1,x2)∈R2

J(x1, x2) := x2 + 0.3x1

s.t.

h1(x1, x2) := −x2 +
1

x1
≤ 0,

h2(x1, x2) := x1 + x2 − 3 ≤ 0.

0.5 1.0 1.5 2.0 2.5 3.0
x1

0.5

1.0

1.5

2.0

2.5

3.0

x 2

0.500

0.800

1.100

1.400

1.700

2.000

2.300

Constraints
Optimum
Initialization
EQUALIZED
SLP
AULG
NLSPACE
NLSPACE (no dual)
Objective function



Basic problem 1

min
(x1,x2)∈R2

J(x1, x2) := x2 + 0.3x1

s.t.

h1(x1, x2) := −x2 +
1

x1
≤ 0,

h2(x1, x2) := x1 + x2 − 3 ≤ 0.

0.5 1.0 1.5 2.0 2.5 3.0
x1

0.5

1.0

1.5

2.0

2.5

3.0
x 2

0.500

0.800

1.100

1.400

1.700

2.000

2.300

Constraints
Optimum
Initialization
EQUALIZED
SLP
AULG
NLSPACE
NLSPACE (no dual)
Objective function



Basic problem 1
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Basic problem 1

More examples in python.


