
Lecture 2: nonlinear constrained optimization. Null space gradient flows

Florian Feppon

Spring 2022 – Seminar for Applied Mathematics

Equality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t. g(x) = 0
(1)

Assume that rank(Dg(x)Dg(x)T) = p.

Definition 1

The null space and range space directions ξJ(x) and ξC (x) are defined by:

ξJ(x) := (I −DgT (DgDgT)−1Dg)∇J(x),

ξC (x) := DgT (DgDgT)−1g(x).

Equality constrained optimization

Proposition 1

Assume that the constraints g are qualified and consider the flow{
ẋ = −αJ(I −DgT (DgDgT)−1Dg(x))∇J(x)−αCDgT (DgDgT)−1g(x)

x(0) = x0

(2)

for some αJ , αC > 0. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0,T], g(x(t)) = e−αC tg(x0).

2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

∀t ∈ [0,T], ||Πg(x)(∇J(x(t)))||2V > Ce−αC t ⇒ d

dt
J(x(t)) < 0.

3. Any stationary point x∗ of eq. (2) satisfies the first-order KKT conditions, that is:{
g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.

Equality constrained optimization

Proposition 1

Assume that the constraints g are qualified and consider the flow{
ẋ = −αJ(I −DgT (DgDgT)−1Dg(x))∇J(x)−αCDgT (DgDgT)−1g(x)

x(0) = x0

(2)

for some αJ , αC > 0. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0,T], g(x(t)) = e−αC tg(x0).

2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

∀t ∈ [0,T], ||Πg(x)(∇J(x(t)))||2V > Ce−αC t ⇒ d

dt
J(x(t)) < 0.

3. Any stationary point x∗ of eq. (2) satisfies the first-order KKT conditions, that is:{
g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.

Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min
x∈V

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q,

(3)

I It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min
x∈V ,(zj)1≤j≤q

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) + z2
j = 0 1 ≤ i ≤ q,

(4)

I However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.

Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min
x∈V

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q,

(3)

I It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min
x∈V ,(zj)1≤j≤q

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) + z2
j = 0 1 ≤ i ≤ q,

(4)

I However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.

Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min
x∈V

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q,

(3)

I It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min
x∈V ,(zj)1≤j≤q

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) + z2
j = 0 1 ≤ i ≤ q,

(4)

I However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.

Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min
x∈V

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q,

(3)

I It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min
x∈V ,(zj)1≤j≤q

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) + z2
j = 0 1 ≤ i ≤ q,

(4)

I However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.

Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min
x∈V

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q,

(3)

I It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min
x∈V ,(zj)1≤j≤q

J(x)

s.t.

{
gi (x) = 0, 1 ≤ i ≤ p

hj(x) + z2
j = 0 1 ≤ i ≤ q,

(4)

I However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.

Outline

1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples

Outline

1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples

Null space gradient flows for constrained optimization

min
(x1,x2)∈R2

J(x1, x2) = x2
1 + (x2 + 3)2

s.t.

{
h1(x1, x2) = −x2

1 + x2 ≤ 0

h2(x1, x2) = −x1 − x2 − 2 ≤ 0

Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) ≤ 0, we consider:

ẋ = −αJξJ(x(t))− αCξC (x(t))

with
ξJ(x) := (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) ≤ 0, we consider:

ẋ = −αJξJ(x(t))− αCξC (x(t))

with
ξJ(x) := (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

Ĩ (x) the set of violated constraints:

Ĩ (x) = {i ∈ {1, . . . , q} | hi (x) > 0}.

CĨ (x) =
[
g(x) | (hi (x))i∈Ĩ (x)

]T

Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) ≤ 0, we consider:

ẋ = −αJξJ(x(t))− αCξC (x(t))

with
ξJ(x) := (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

Î (x) ⊂ Ĩ (x) is an “optimal” subset of the active or violated constraints which shall be
computed by mean of a dual subproblem.

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

CÎ (x) =
[
g(x) | (hi (x))i∈Î (x)

]T

Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) ≤ 0, we consider:

ẋ = −αJξJ(x(t))− αCξC (x(t))

with
ξJ(x) := (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

Î (x) ⊂ Ĩ (x) is an “optimal” subset of the active or violated constraints which shall be
computed by mean of a dual subproblem.

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

CÎ (x) =
[
g(x) | (hi (x))i∈Î (x)

]T
We assume the constraints to be qualified:

DCĨ (x)DCT
Ĩ (x)

is invertible.

Equality and inequality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

Definition 2 (range space step)

The range step ξC (x) is defined by

ξC (x) := DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

In particular:

1. ξC (x) is orthogonal to Ker(DCĨ (x)).

2. −ξC (x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ (x)(−ξC (x)) = −CĨ (x)(x).

Equality and inequality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

Definition 2 (range space step)

The range step ξC (x) is defined by

ξC (x) := DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

In particular:

1. ξC (x) is orthogonal to Ker(DCĨ (x)).

2. −ξC (x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ (x)(−ξC (x)) = −CĨ (x)(x).

Equality and inequality constrained optimization

Consider the optimization problem

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

Definition 2 (range space step)

The range step ξC (x) is defined by

ξC (x) := DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

In particular:

1. ξC (x) is orthogonal to Ker(DCĨ (x)).

2. −ξC (x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ (x)(−ξC (x)) = −CĨ (x)(x).

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(5)

ξ is tangent to the admissible cone tangent to the constraints

ξ∗(x) is the best “descent direction” respecting locally the constraints.

In what follows, we give a characterization of ξ∗(x).

We call eq. (8) the primal problem.

Equality and inequality constrained optimization

Proposition 2

Let the constraints be satisfied. There exists a unique couple of multipliers λ∗(x) ∈ Rp and

µ∗(x) ∈ Rq̃(x)
+ solution to the following quadratic optimization problem which is the dual of

eq. (8) :

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .

Equality and inequality constrained optimization

Proposition 3

Let
m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V

be the value of the dual problem . Then the value of the primal problem is
p∗(x) = −m∗(x) and the following alternative holds:

1. m∗(x) = 0: the KKT conditions hold with (necessarily unique) Lagrange multipliers

(λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x) = 0. (6)

A minimizer of the primal problem is ξ∗(x) = 0.

2. m∗(x) > 0 : eq. (6) does not hold and there exists a unique minimizer ξ∗(x) to the
primal problem, given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V
. (7)

Equality and inequality constrained optimization

Proposition 3

Let
m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V

be the value of the dual problem . Then the value of the primal problem is
p∗(x) = −m∗(x) and the following alternative holds:

1. m∗(x) = 0: the KKT conditions hold with (necessarily unique) Lagrange multipliers

(λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x) = 0. (6)

A minimizer of the primal problem is ξ∗(x) = 0.

2. m∗(x) > 0 : eq. (6) does not hold and there exists a unique minimizer ξ∗(x) to the
primal problem, given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V
. (7)

Equality and inequality constrained optimization

Proposition 3

Let
m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V

be the value of the dual problem . Then the value of the primal problem is
p∗(x) = −m∗(x) and the following alternative holds:

1. m∗(x) = 0: the KKT conditions hold with (necessarily unique) Lagrange multipliers

(λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x) = 0. (6)

A minimizer of the primal problem is ξ∗(x) = 0.

2. m∗(x) > 0 : eq. (6) does not hold and there exists a unique minimizer ξ∗(x) to the
primal problem, given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ (x)(x)T µ∗(x)||V
. (7)

Equality and inequality constrained optimization

Let (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x) the solutions of the following dual minimization problem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .

Proposition 4

Define Î (x) the set obtained by collecting the non zero components of µ∗(x):

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

Then (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î (x) by:λ∗(x)

µ̂∗(x)

 =

λÎ (x)(x)

µÎ (x)(x)

 = −(DCÎ (x)DCT
Î (x)

)−1DCÎ (x)∇J(x),

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

where µ̂∗(x) := (µ∗i (x))i∈Î (x) is the vector collecting all positive components of µ∗(x).

Equality and inequality constrained optimization

Let (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x) the solutions of the following dual minimization problem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .

Proposition 4

Define Î (x) the set obtained by collecting the non zero components of µ∗(x):

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

Then (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î (x) by:λ∗(x)

µ̂∗(x)

 =

λÎ (x)(x)

µÎ (x)(x)

 = −(DCÎ (x)DCT
Î (x)

)−1DCÎ (x)∇J(x),

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

where µ̂∗(x) := (µ∗i (x))i∈Î (x) is the vector collecting all positive components of µ∗(x).

Equality and inequality constrained optimization

Let (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x) the solutions of the following dual minimization problem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .

Proposition 4

Define Î (x) the set obtained by collecting the non zero components of µ∗(x):

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

Then (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î (x) by:λ∗(x)

µ̂∗(x)

 =

λÎ (x)(x)

µÎ (x)(x)

 = −(DCÎ (x)DCT
Î (x)

)−1DCÎ (x)∇J(x),

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

where µ̂∗(x) := (µ∗i (x))i∈Î (x) is the vector collecting all positive components of µ∗(x).

Equality and inequality constrained optimization

Let (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x) the solutions of the following dual minimization problem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨ (x)(x)T µ||V .

Proposition 4

Define Î (x) the set obtained by collecting the non zero components of µ∗(x):

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

Then (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î (x) by:λ∗(x)

µ̂∗(x)

 =

λÎ (x)(x)

µÎ (x)(x)

 = −(DCÎ (x)DCT
Î (x)

)−1DCÎ (x)∇J(x),

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

where µ̂∗(x) := (µ∗i (x))i∈Î (x) is the vector collecting all positive components of µ∗(x).

Equality and inequality constrained optimization

The null space step, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of
the following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ (x)(x)ξ≤ 0

||ξ||V ≤ 1.

(8)

where hĨ (x)(x) = (hi (x))i∈Ĩ (x).

Equality and inequality constrained optimization

In other words, ξ∗(x) is explicitly given by:

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

with
ΠC

Î (x)
(∇J(x)) = (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

whence our definition of the null space step:

Definition 3

The null space direction ξJ(x) is defined by:

ξJ(x) := ΠC
Î (x)

(∇J(x)) = (I −DCÎ (x)(x)T (DCÎ (x)DCT
Î (x)

)−1DCÎ (x))∇J(x),

Equality and inequality constrained optimization

In other words, ξ∗(x) is explicitly given by:

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

with
ΠC

Î (x)
(∇J(x)) = (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

whence our definition of the null space step:

Definition 3

The null space direction ξJ(x) is defined by:

ξJ(x) := ΠC
Î (x)

(∇J(x)) = (I −DCÎ (x)(x)T (DCÎ (x)DCT
Î (x)

)−1DCÎ (x))∇J(x),

Equality and inequality constrained optimization

In other words, ξ∗(x) is explicitly given by:

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

with
ΠC

Î (x)
(∇J(x)) = (I −DCT

Î (x)
(DCÎ (x)DCT

Î (x)
)−1DCÎ (x))(∇J(x))

Î (x) := {i ∈ Ĩ (x) |µ∗i (x) > 0}.

whence our definition of the null space step:

Definition 3

The null space direction ξJ(x) is defined by:

ξJ(x) := ΠC
Î (x)

(∇J(x)) = (I −DCÎ (x)(x)T (DCÎ (x)DCT
Î (x)

)−1DCÎ (x))∇J(x),

Equality and inequality constrained optimization

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points

Equality and inequality constrained optimization

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points

Equality and inequality constrained optimization

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points

Equality and inequality constrained optimization

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points

Equality and inequality constrained optimization

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points

Equality and inequality constrained optimization

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and hĨ (x(t)) ≤ e−αC th(x(0))

2. J decreases as soon as the violation CĨ (x(t)) is sufficiently small

3. All stationary points x∗ of the ODE are KKT points

Outline

1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues

Consider the null space gradient flow:

ẋ = −αJξJ(x)− αCξC (x).

I The right-hand side of the null space ODE is discontinuous when the set Î (x)
changes.

I How to select a “sufficiently small” time step ∆t ?

Solutions considered:

I Detect the constraints slightly before they get violated

I Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

with ∆tn an adaptive time-step.

Numerical implementation issues
Feeling inequality constraints from a short distance

Replace Ĩ (xn) with Ĩε(xn) of constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

Using a time step ∆t, it is natural to set

εi = ||∇hi (xn)||∆t

I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC ,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn)(xn),

where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

I Including constraints of Îε(xn) not in Ĩ (xn) further stabilizes these closer to the zero
barrier.

Numerical implementation issues
Feeling inequality constraints from a short distance

Replace Ĩ (xn) with Ĩε(xn) of constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

Using a time step ∆t, it is natural to set

εi = ||∇hi (xn)||∆t

I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC ,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn)(xn),

where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

I Including constraints of Îε(xn) not in Ĩ (xn) further stabilizes these closer to the zero
barrier.

Numerical implementation issues
Feeling inequality constraints from a short distance

Replace Ĩ (xn) with Ĩε(xn) of constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

Using a time step ∆t, it is natural to set

εi = ||∇hi (xn)||∆t

I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC ,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn)(xn),

where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

I Including constraints of Îε(xn) not in Ĩ (xn) further stabilizes these closer to the zero
barrier.

Numerical implementation issues
Feeling inequality constraints from a short distance

Replace Ĩ (xn) with Ĩε(xn) of constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

Using a time step ∆t, it is natural to set

εi = ||∇hi (xn)||∆t

I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC ,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn)(xn),

where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

I Including constraints of Îε(xn) not in Ĩ (xn) further stabilizes these closer to the zero
barrier.

Numerical implementation issues
Feeling inequality constraints from a short distance

Replace Ĩ (xn) with Ĩε(xn) of constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

Using a time step ∆t, it is natural to set

εi = ||∇hi (xn)||∆t

I compute the set of indices Îε(xn) of constraints “not aligned with the gradients” when
crossing {h = 0}

I compute ξJ,ε(xn) and ξC ,ε(xn) as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC ,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn)(xn),

where I ∗ε (xn) = Ĩ (xn) ∪ Îε(xn) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

I Including constraints of Îε(xn) not in Ĩ (xn) further stabilizes these closer to the zero
barrier.

Numerical implementation issues
Merit function

Lemma 4

For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn (x) := αJ

(
J(x) + Λ(xn)TCĨ (xn)(x)

)
+
αC

2
CĨ (xn)(x)TS(xn)CĨ (xn)(x)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to

the dual problem and S(xn) = (DCĨ (xn)(xn)DCĨ (xn)(xn)T)−1 is symmetric positive definite.
Then

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

is a gradient step for decreasing the function meritxn , namely:

∇meritxn (xn) = αJξJ(xn) + αCξC (xn).

Consequently:

I if meritxn (xn+1) > meritxn (xn), then ∆tn is too large !

I in practice, one decreases ∆t a finite number of times until
meritxn (xn+1) < meritxn (xn).

Numerical implementation issues
Merit function

Lemma 4

For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn (x) := αJ

(
J(x) + Λ(xn)TCĨ (xn)(x)

)
+
αC

2
CĨ (xn)(x)TS(xn)CĨ (xn)(x)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to

the dual problem and S(xn) = (DCĨ (xn)(xn)DCĨ (xn)(xn)T)−1 is symmetric positive definite.
Then

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

is a gradient step for decreasing the function meritxn ,

namely:

∇meritxn (xn) = αJξJ(xn) + αCξC (xn).

Consequently:

I if meritxn (xn+1) > meritxn (xn), then ∆tn is too large !

I in practice, one decreases ∆t a finite number of times until
meritxn (xn+1) < meritxn (xn).

Numerical implementation issues
Merit function

Lemma 4

For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn (x) := αJ

(
J(x) + Λ(xn)TCĨ (xn)(x)

)
+
αC

2
CĨ (xn)(x)TS(xn)CĨ (xn)(x)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to

the dual problem and S(xn) = (DCĨ (xn)(xn)DCĨ (xn)(xn)T)−1 is symmetric positive definite.
Then

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

is a gradient step for decreasing the function meritxn , namely:

∇meritxn (xn) = αJξJ(xn) + αCξC (xn).

Consequently:

I if meritxn (xn+1) > meritxn (xn), then ∆tn is too large !

I in practice, one decreases ∆t a finite number of times until
meritxn (xn+1) < meritxn (xn).

Numerical implementation issues
Merit function

Lemma 4

For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn (x) := αJ

(
J(x) + Λ(xn)TCĨ (xn)(x)

)
+
αC

2
CĨ (xn)(x)TS(xn)CĨ (xn)(x)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to

the dual problem and S(xn) = (DCĨ (xn)(xn)DCĨ (xn)(xn)T)−1 is symmetric positive definite.
Then

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

is a gradient step for decreasing the function meritxn , namely:

∇meritxn (xn) = αJξJ(xn) + αCξC (xn).

Consequently:

I if meritxn (xn+1) > meritxn (xn), then ∆tn is too large !

I in practice, one decreases ∆t a finite number of times until
meritxn (xn+1) < meritxn (xn).

Numerical implementation issues
Merit function

Lemma 4

For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn (x) := αJ

(
J(x) + Λ(xn)TCĨ (xn)(x)

)
+
αC

2
CĨ (xn)(x)TS(xn)CĨ (xn)(x)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to

the dual problem and S(xn) = (DCĨ (xn)(xn)DCĨ (xn)(xn)T)−1 is symmetric positive definite.
Then

xn+1 = xn −∆tn(αJξJ(xn) + αCξC (xn)),

is a gradient step for decreasing the function meritxn , namely:

∇meritxn (xn) = αJξJ(xn) + αCξC (xn).

Consequently:

I if meritxn (xn+1) > meritxn (xn), then ∆tn is too large !

I in practice, one decreases ∆t a finite number of times until
meritxn (xn+1) < meritxn (xn).

Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).

Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)

Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).

Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)

Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).

Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)

Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).

Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)

Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).

Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)

Summary

For n = 1 . . . maxiter:

1. Compute the gradients ∇J(xn), ∇gi (xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by
solving, if necessary, the identification problem a(∇J(xn), ξ) = DJ(xn) · ξ.

2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi (xn)||V h.

3. Determine the set Ĩ (xn) of active or violated constraints and the set Ĩε(xn) of
constraints violated “up to εi”:

Ĩ (xn) = {i ∈ {1, . . . , q} | hi (xn) > 0}

Ĩε(xn) = {i ∈ {1, . . . , q} | hi (xn) > −εi}.

4. Denote by q̃ε := #(Ĩε). Solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ>0

||∇J(x) + Dg(x)T λ + DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn).Infer the subset Îε(xn) ⊂ Ĩε(xn)
indicating which constraints must remain active:

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i (xn) > tolLag}. (9)

Summary

For n = 1 . . . maxiter:

5. Let I ∗ε (xn) := Ĩ (xn)∪ Îε(xn). Form the constraint vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) and
compute

ξJ(xn) = (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC (xn) = DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn).

6. For k = 1 . . . maxtrials,

6.1 Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC (xn)).

6.2 If meritxn (xn+1) < meritxn (xn), then break

Summary

For n = 1 . . . maxiter:

5. Let I ∗ε (xn) := Ĩ (xn)∪ Îε(xn). Form the constraint vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) and
compute

ξJ(xn) = (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC (xn) = DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn).

6. For k = 1 . . . maxtrials,

6.1 Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC (xn)).

6.2 If meritxn (xn+1) < meritxn (xn), then break

Summary

For n = 1 . . . maxiter:

5. Let I ∗ε (xn) := Ĩ (xn)∪ Îε(xn). Form the constraint vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) and
compute

ξJ(xn) = (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC (xn) = DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn).

6. For k = 1 . . . maxtrials,
6.1 Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC (xn)).

6.2 If meritxn (xn+1) < meritxn (xn), then break

Summary

For n = 1 . . . maxiter:

5. Let I ∗ε (xn) := Ĩ (xn)∪ Îε(xn). Form the constraint vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) and
compute

ξJ(xn) = (I −DCT
Îε(xn)

(DCÎε(xn)DCT
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC (xn) = DCTI∗ε (xn)(DCI∗ε (xn)DCTI∗ε (xn))
−1CI∗ε (xn).

6. For k = 1 . . . maxtrials,
6.1 Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC (xn)).

6.2 If meritxn (xn+1) < meritxn (xn), then break

Outline

1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples

Open source package available

Try it yourself!

https://gitlab.com/florian.feppon/null-space-optimizer

pip install nullspace optimizer

https://gitlab.com/florian.feppon/null-space-optimizer

Basic problem 1

min
(x1,x2)∈R2

J(x1, x2) := x2 + 0.3x1

s.t.

h1(x1, x2) := −x2 +
1

x1
≤ 0,

h2(x1, x2) := x1 + x2 − 3 ≤ 0.

0.5 1.0 1.5 2.0 2.5 3.0
x1

0.5

1.0

1.5

2.0

2.5

3.0

x 2

0.500

0.800

1.100

1.400

1.700

2.000

2.300

Constraints
Optimum
Initialization
EQUALIZED
SLP
AULG
NLSPACE
NLSPACE (no dual)
Objective function

Basic problem 1

min
(x1,x2)∈R2

J(x1, x2) := x2 + 0.3x1

s.t.

h1(x1, x2) := −x2 +
1

x1
≤ 0,

h2(x1, x2) := x1 + x2 − 3 ≤ 0.

0.5 1.0 1.5 2.0 2.5 3.0
x1

0.5

1.0

1.5

2.0

2.5

3.0
x 2

0.500

0.800

1.100

1.400

1.700

2.000

2.300

Constraints
Optimum
Initialization
EQUALIZED
SLP
AULG
NLSPACE
NLSPACE (no dual)
Objective function

Basic problem 1

0 100 200 300 400

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
J

(a) Objective function J

0 100 200 300 400

1.5

1.0

0.5

0.0

0.5

C1
C2

(b) Constraints h

0.0 0.5 1.0 1.5 2.0
s

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

μ1 - NLSPACE
μ2 - NLSPACE

μ1 - NLSPACE (no dual)
μ2 - NLSPACE (no dual)

(c) Evolution of the Lagrange multipliers
µ1(x(s)), µ2(x(s))

Basic problem 1

More examples in python.

