Lecture 2: nonlinear constrained optimization. Null space gradient flows

Florian Feppon

Spring 2022 - Seminar for Applied Mathematics

## ETHzürich

## Equality constrained optimization

Consider the optimization problem

$$
\begin{align*}
& \min _{x \in V} J(x)  \tag{1}\\
& \text { s.t. } g(x)=0
\end{align*}
$$

Assume that $\operatorname{rank}\left(\mathrm{Dg}(x) \mathrm{Dg}(x)^{\mathcal{T}}\right)=p$.

## Definition 1

The null space and range space directions $\boldsymbol{\xi}_{J}(x)$ and $\boldsymbol{\xi}_{C}(x)$ are defined by:

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{g}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{g}\right) \nabla J(x), \\
\boldsymbol{\xi}_{C}(x):=\mathrm{D} \boldsymbol{g}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{g D} \boldsymbol{g}^{\mathcal{T}}\right)^{-1} \boldsymbol{g}(x) .
\end{gathered}
$$

## Equality constrained optimization

## Proposition 1

Assume that the constraints $\mathbf{g}$ are qualified and consider the flow

$$
\left\{\begin{align*}
\dot{x} & =-\alpha_{J}\left(I-\mathrm{D} \boldsymbol{g}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{g}(x)\right) \nabla J(x)-\alpha_{C} \mathrm{D} \boldsymbol{g}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{\mathcal{T}}\right)^{-1} \boldsymbol{g}(x)  \tag{2}\\
x(0) & =x_{0}
\end{align*}\right.
$$

for some $\alpha_{J}, \alpha_{C}>0$. Then the following properties hold true:

## Equality constrained optimization

## Proposition 1

Assume that the constraints $\mathbf{g}$ are qualified and consider the flow

$$
\left\{\begin{align*}
\dot{x} & =-\alpha_{J}\left(I-\mathrm{D} \boldsymbol{g}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{g}(x)\right) \nabla J(x)-\alpha_{C} \mathrm{Dg}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{\mathcal{T}}\right)^{-1} \boldsymbol{g}(x)  \tag{2}\\
x(0) & =x_{0}
\end{align*}\right.
$$

for some $\alpha_{J}, \alpha_{C}>0$. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

$$
\forall t \in[0, T], \boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}\left(x_{0}\right)
$$

2. $J(x(t))$ decreases "as soon as the violation of the constraints is sufficiently small":

$$
\forall t \in[0, T],\left\|\Pi_{g(x)}(\nabla J(x(t)))\right\|_{V}^{2}>C e^{-\alpha_{C} t} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} t} J(x(t))<0
$$

3. Any stationary point $x^{*}$ of eq. (2) satisfies the first-order $K K T$ conditions, that is:

$$
\left\{\begin{aligned}
\boldsymbol{g}\left(x^{*}\right) & =0 \\
\exists \boldsymbol{\lambda}^{*} \in \mathbb{R}^{p}, \nabla J\left(x^{*}\right)+\mathrm{Dg}^{\mathcal{T}}\left(x^{*}\right) \boldsymbol{\lambda}^{*} & =\Pi_{g\left(x^{*}\right)}\left(\nabla J\left(x^{*}\right)\right)=0 .
\end{aligned}\right.
$$

## Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

$$
\begin{align*}
& \min _{x \in V} \quad J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
g_{i}(x)=0, \quad 1 \leq i \leq p \\
h_{j}(x) \leq 0, \quad 1 \leq j \leq q,
\end{array}\right. \tag{3}
\end{align*}
$$

## Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

$$
\begin{align*}
& \min _{x \in V} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
g_{i}(x)=0, \quad 1 \leq i \leq p \\
h_{j}(x) \leq 0, \quad 1 \leq j \leq q
\end{array}\right. \tag{3}
\end{align*}
$$

- It is possible to recast eq. (3) as an equality constrained optimization problem using artificial slack variables:

$$
\begin{align*}
& \min _{x \in V,\left(z_{j}\right)_{1 \leq j \leq q}} J(x) \\
& \text { s.t. }\left\{\begin{aligned}
g_{i}(x) & =0, & & 1 \leq i \leq p \\
h_{j}(x)+z_{j}^{2} & =0 & & 1 \leq i \leq q,
\end{aligned}\right. \tag{4}
\end{align*}
$$

## Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

$$
\begin{align*}
& \min _{x \in V} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
g_{i}(x)=0, \quad 1 \leq i \leq p \\
h_{j}(x) \leq 0, \quad 1 \leq j \leq q,
\end{array}\right. \tag{3}
\end{align*}
$$

- It is possible to recast eq. (3) as an equality constrained optimization problem using artificial slack variables:

$$
\begin{align*}
& \min _{x \in V,\left(z_{j}\right)_{1 \leq j \leq q}} J(x) \\
& \text { s.t. }\left\{\begin{aligned}
g_{i}(x) & =0, & & 1 \leq i \leq p \\
h_{j}(x)+z_{j}^{2} & =0 & & 1 \leq i \leq q,
\end{aligned}\right. \tag{4}
\end{align*}
$$

- However, it is also possible to solve eq. (3) directly.


## Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

$$
\begin{align*}
& \min _{x \in V} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
g_{i}(x)=0, \quad 1 \leq i \leq p \\
h_{j}(x) \leq 0, \quad 1 \leq j \leq q,
\end{array}\right. \tag{3}
\end{align*}
$$

- It is possible to recast eq. (3) as an equality constrained optimization problem using artificial slack variables:

$$
\begin{align*}
& \min _{x \in V,\left(z_{j}\right)_{1 \leq j \leq q}} J(x) \\
& \text { s.t. }\left\{\begin{aligned}
g_{i}(x) & =0, & & 1 \leq i \leq p \\
h_{j}(x)+z_{j}^{2} & =0 & & 1 \leq i \leq q,
\end{aligned}\right. \tag{4}
\end{align*}
$$

- However, it is also possible to solve eq. (3) directly.


## Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

$$
\begin{align*}
& \min _{x \in V} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
g_{i}(x)=0, \quad 1 \leq i \leq p \\
h_{j}(x) \leq 0, \quad 1 \leq j \leq q
\end{array}\right. \tag{3}
\end{align*}
$$

- It is possible to recast eq. (3) as an equality constrained optimization problem using artificial slack variables:

$$
\begin{align*}
& \min _{x \in V,\left(z_{j}\right)_{1 \leq j \leq q}} J(x) \\
& \text { s.t. }\left\{\begin{array}{r}
g_{i}(x)=0, \\
h_{j}(x)+z_{j}^{2}=0
\end{array} \quad 1 \leq i \leq p\right.  \tag{4}\\
& 1 \leq i \leq q
\end{aligned}, ~ \begin{aligned}
& 1 \leq 2
\end{align*}
$$

- However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.

## Outline

1. Reminders on smooth constrained optimization
2. Gradient flows for unconstrained optimization
3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization
4. Numerical implementation
5. Numerical examples

## Outline

1. Reminders on smooth constrained optimization
2. Gradient flows for unconstrained optimization
3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization
4. Numerical implementation
5. Numerical examples

## Null space gradient flows for constrained optimization

$$
\begin{aligned}
\min _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}} J\left(x_{1}, x_{2}\right)=x_{1}^{2}+\left(x_{2}+3\right)^{2} \\
\text { s.t. } \begin{cases}h_{1}\left(x_{1}, x_{2}\right)=-x_{1}^{2}+x_{2} & \leq 0 \\
h_{2}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}-2 & \leq 0\end{cases}
\end{aligned}
$$



## Equality and inequality constrained optimization

For both equality constraints $\boldsymbol{g}(x)=0$ and inequality constraints $\boldsymbol{h}(x) \leq 0$, we consider:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \boldsymbol{\xi}_{C}(x(t))
$$

with

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)}\right)(\nabla J(x)) \\
\boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{\Pi}(x)}(x)
\end{gathered}
$$

## Equality and inequality constrained optimization

For both equality constraints $\boldsymbol{g}(x)=0$ and inequality constraints $\boldsymbol{h}(x) \leq 0$, we consider:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \boldsymbol{\xi}_{C}(x(t))
$$

with

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Lambda}(x)} \mathrm{D} \boldsymbol{C}_{\widehat{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\Lambda}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x),
\end{aligned}
$$

$\widetilde{I}(x)$ the set of violated constraints:

$$
\begin{gathered}
\widetilde{I}(x)=\left\{i \in\{1, \ldots, q\} \mid h_{i}(x) \geqslant 0\right\} . \\
\boldsymbol{C}_{\widetilde{I}(x)}=\left[\begin{array}{lll}
g(x) & \mid & \left(h_{i}(x)\right)_{i \in \tilde{I}(x)}
\end{array}\right]^{T}
\end{gathered}
$$

## Equality and inequality constrained optimization

For both equality constraints $\boldsymbol{g}(x)=0$ and inequality constraints $\boldsymbol{h}(x) \leq 0$, we consider:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \boldsymbol{\xi}_{C}(x(t))
$$

with

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Lambda}(x)} \mathrm{D} \boldsymbol{C}_{\widehat{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\Lambda}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x),
\end{aligned}
$$

$\widehat{I}(x) \subset \widetilde{I}(x)$ is an "optimal" subset of the active or violated constraints which shall be computed by mean of a dual subproblem.

$$
\begin{gathered}
\widehat{I}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} . \\
\boldsymbol{C}_{\widehat{\Pi}(x)}=\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid & \left(h_{i}(x)\right)_{i \in \widehat{I}(x)}
\end{array}\right]^{T}
\end{gathered}
$$

## Equality and inequality constrained optimization

For both equality constraints $\boldsymbol{g}(x)=0$ and inequality constraints $\boldsymbol{h}(x) \leq 0$, we consider:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \boldsymbol{\xi}_{C}(x(t))
$$

with

$$
\begin{aligned}
\boldsymbol{\xi}_{J}(x): & =\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\widetilde{\Gamma}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{\Gamma}(x)}(x)
\end{aligned}
$$

$\widehat{I}(x) \subset \widetilde{I}(x)$ is an "optimal" subset of the active or violated constraints which shall be computed by mean of a dual subproblem.

$$
\begin{gathered}
\widehat{I}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} \\
\boldsymbol{C}_{\widehat{\Pi}(x)}=\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid & \left(h_{i}(x)\right)_{i \in \widehat{I}(x)}
\end{array}\right]^{T}
\end{gathered}
$$

We assume the constraints to be qualified:
$\mathrm{D} \boldsymbol{C}_{\widetilde{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}$ is invertible.

## Equality and inequality constrained optimization

Consider the optimization problem

$$
\begin{aligned}
& \min _{x \in V} \quad J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

Definition 2 (range space step)
The range step $\boldsymbol{\xi}_{C}(x)$ is defined by

$$
\xi_{C}(x):=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{l}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x)
$$

## Equality and inequality constrained optimization

Consider the optimization problem

$$
\begin{aligned}
& \min _{x \in V} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0,
\end{array}\right.
\end{aligned}
$$

Definition 2 (range space step)
The range step $\boldsymbol{\xi}_{C}(x)$ is defined by

$$
\xi_{C}(x):=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{l}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x)
$$

In particular:

1. $\boldsymbol{\xi}_{C}(x)$ is orthogonal to $\operatorname{Ker}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}\right)$.

## Equality and inequality constrained optimization

Consider the optimization problem

$$
\begin{aligned}
& \min _{x \in V} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0,
\end{array}\right.
\end{aligned}
$$

Definition 2 (range space step)
The range step $\boldsymbol{\xi}_{C}(x)$ is defined by

$$
\xi_{C}(x):=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{l}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x)
$$

In particular:

1. $\boldsymbol{\xi}_{C}(x)$ is orthogonal to $\operatorname{Ker}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}\right)$.
2. $-\boldsymbol{\xi}_{C}(x)$ is a Gauss-Newton direction for the violation of the constraints:

$$
\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}\left(-\boldsymbol{\xi}_{C}(x)\right)=-\boldsymbol{C}_{\widetilde{I}(x)}(x)
$$

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

$$
\begin{array}{r}
\boldsymbol{\xi}^{*}(x)=\arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
\text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\bar{I}(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| v \leq 1
\end{array}\right. \tag{5}
\end{array}
$$

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

$$
\begin{array}{r}
\boldsymbol{\xi}^{*}(x)=\arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
\text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\Gamma(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| v \leq 1
\end{array}\right. \tag{5}
\end{array}
$$

$\boldsymbol{\xi}$ is tangent to the admissible cone tangent to the constraints

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

$$
\begin{array}{r}
\boldsymbol{\xi}^{*}(x)=\arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
\text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| v \leq 1
\end{array}\right. \tag{5}
\end{array}
$$

$\boldsymbol{\xi}$ is tangent to the admissible cone tangent to the constraints
$\xi^{*}(x)$ is the best "descent direction" respecting locally the constraints.

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

$$
\begin{align*}
& \boldsymbol{\xi}^{*}(x)= \arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
& \text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| v \leq 1
\end{array}\right. \tag{5}
\end{align*}
$$

$\boldsymbol{\xi}$ is tangent to the admissible cone tangent to the constraints
$\xi^{*}(x)$ is the best "descent direction" respecting locally the constraints.
In what follows, we give a characterization of $\xi^{*}(x)$.

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

$$
\begin{array}{r}
\boldsymbol{\xi}^{*}(x)=\arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
\text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| v \leq 1
\end{array}\right. \tag{5}
\end{array}
$$

$\boldsymbol{\xi}$ is tangent to the admissible cone tangent to the constraints
$\boldsymbol{\xi}^{*}(x)$ is the best "descent direction" respecting locally the constraints.
In what follows, we give a characterization of $\boldsymbol{\xi}^{*}(x)$.
We call eq. (8) the primal problem.

## Equality and inequality constrained optimization

## Proposition 2

Let the constraints be satisfied. There exists a unique couple of multipliers $\boldsymbol{\lambda}^{*}(x) \in \mathbb{R}^{p}$ and $\boldsymbol{\mu}^{*}(x) \in \mathbb{R}_{+}^{\widetilde{q}(x)}$ solution to the following quadratic optimization problem which is the dual of eq. (8) :

$$
\left(\boldsymbol{\lambda}^{*}(x), \boldsymbol{\mu}^{*}(x)\right):=\arg \min _{\substack{\lambda \in \mathbb{R}^{p} \\ \mu \in \mathbb{R}^{q(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} g(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\widetilde{\Gamma}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

## Equality and inequality constrained optimization

## Proposition 3

Let

$$
m^{*}(x):=\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}^{*}(x)\right\| v
$$

be the value of the dual problem. Then the value of the primal problem is $p^{*}(x)=-m^{*}(x)$ and the following alternative holds:

## Equality and inequality constrained optimization

## Proposition 3

Let

$$
m^{*}(x):=\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}^{*}(x)\right\| v
$$

be the value of the dual problem. Then the value of the primal problem is
$p^{*}(x)=-m^{*}(x)$ and the following alternative holds:

1. $m^{*}(x)=0$ : the KKT conditions hold with (necessarily unique) Lagrange multipliers
$\left(\lambda^{*}(x), \mu^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}_{+}^{\tilde{q}(x)}:$

$$
\begin{equation*}
\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \lambda^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x)^{\mathcal{T}} \mu^{*}(x)=0 \tag{6}
\end{equation*}
$$

A minimizer of the primal problem is $\xi^{*}(x)=0$.

## Equality and inequality constrained optimization

## Proposition 3

Let

$$
m^{*}(x):=\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}^{*}(x)\right\| v
$$

be the value of the dual problem. Then the value of the primal problem is
$p^{*}(x)=-m^{*}(x)$ and the following alternative holds:

1. $m^{*}(x)=0$ : the KKT conditions hold with (necessarily unique) Lagrange multipliers $\left(\lambda^{*}(x), \mu^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}_{+}^{\tilde{q}(x)}:$

$$
\begin{equation*}
\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \lambda^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{I}(x)}(x)^{\mathcal{T}} \mu^{*}(x)=0 \tag{6}
\end{equation*}
$$

A minimizer of the primal problem is $\xi^{*}(x)=0$.
2. $m^{*}(x)>0$ : eq. (6) does not hold and there exists a unique minimizer $\xi^{*}(x)$ to the primal problem, given by

$$
\begin{equation*}
\boldsymbol{\xi}^{*}(x)=-\frac{\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \lambda^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{\boldsymbol{I}}(x)}(x)^{\mathcal{T}} \mu^{*}(x)}{\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \lambda^{*}(x)+\mathrm{D} \boldsymbol{h}_{\tilde{\boldsymbol{l}}(x)}(x)^{\mathcal{T}} \mu^{*}(x)\right\| v} \tag{7}
\end{equation*}
$$

## Equality and inequality constrained optimization

Let $\left(\lambda^{*}(x), \mu^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}^{\tilde{q}(x)}$ the solutions of the following dual minimization problem:

$$
\left(\lambda^{*}(x), \mu^{*}(x)\right):=\arg \min _{\substack{\lambda \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\bar{q}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\tilde{\boldsymbol{I}}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

## Equality and inequality constrained optimization

Let $\left(\lambda^{*}(x), \mu^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}^{\tilde{q}(x)}$ the solutions of the following dual minimization problem:

$$
\left(\lambda^{*}(x), \mu^{*}(x)\right):=\arg \min _{\substack{\lambda \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\bar{q}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\widetilde{\boldsymbol{I}}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

## Proposition 4

Define $\widehat{I}(x)$ the set obtained by collecting the non zero components of $\mu^{*}(x)$ :

$$
\widehat{I}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} .
$$

## Equality and inequality constrained optimization

Let $\left(\lambda^{*}(x), \mu^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}^{\tilde{q}(x)}$ the solutions of the following dual minimization problem:

$$
\left(\lambda^{*}(x), \mu^{*}(x)\right):=\arg \min _{\substack{\lambda \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\bar{q}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\widetilde{\boldsymbol{I}}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

## Proposition 4

Define $\widehat{I}(x)$ the set obtained by collecting the non zero components of $\mu^{*}(x)$ :

$$
\widehat{I}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} .
$$

Then $\left(\lambda^{*}(x), \mu^{*}(x)\right)$ and $\xi^{*}(x)$ are explicitly given in terms of $\widehat{I}(x)$ by:

$$
\begin{gathered}
{\left[\begin{array}{l}
\lambda^{*}(x) \\
\widehat{\mu}^{*}(x)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{\overparen{T}(x)}(x) \\
\mu_{\overparen{T}(x)}(x)
\end{array}\right]=-\left(\mathrm{D} \boldsymbol{C}_{\widehat{T}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)} \nabla J(x),} \\
\xi^{*}(x)=-\frac{\Pi_{C_{\overparen{T}(x)}}(\nabla J(x))}{\left\|\Pi_{C_{\overparen{\imath}(x)}}(\nabla J(x))\right\|_{v}},
\end{gathered}
$$

## Equality and inequality constrained optimization

Let $\left(\lambda^{*}(x), \mu^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}^{\tilde{q}(x)}$ the solutions of the following dual minimization problem:

$$
\left(\lambda^{*}(x), \mu^{*}(x)\right):=\arg \min _{\substack{\lambda \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\mathcal{q}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\tilde{\boldsymbol{I}}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

## Proposition 4

Define $\widehat{I}(x)$ the set obtained by collecting the non zero components of $\mu^{*}(x)$ :

$$
\widehat{I}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} .
$$

Then $\left(\lambda^{*}(x), \mu^{*}(x)\right)$ and $\xi^{*}(x)$ are explicitly given in terms of $\widehat{I}(x)$ by:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\lambda^{*}(x) \\
\widehat{\mu}^{*}(x)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{\overparen{\Gamma}(x)}(x) \\
\mu_{\overparen{(x)}}(x)
\end{array}\right]=-\left(\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)} \mathrm{D} \boldsymbol{C}_{\widehat{\Gamma}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\Pi}(x)} \nabla J(x),} \\
& \xi^{*}(x)=-\frac{\Pi_{C_{\overparen{T}(x)}}(\nabla J(x))}{\left\|\Pi_{C_{\overparen{\Gamma}(x)}}(\nabla J(x))\right\| v},
\end{aligned}
$$

where $\widehat{\mu}^{*}(x):=\left(\mu_{i}^{*}(x)\right)_{i \in \hat{\Pi}(x)}$ is the vector collecting all positive components of $\mu^{*}(x)$.

## Equality and inequality constrained optimization

The null space step, $-\boldsymbol{\xi}_{J}(x)$ shall be set positively proportional to the solution $\boldsymbol{\xi}^{*}(x)$ of the following minimization problem:

$$
\begin{array}{r}
\boldsymbol{\xi}^{*}(x)=\arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
\text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\Gamma(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| v \leq 1
\end{array}\right. \tag{8}
\end{array}
$$

where $\boldsymbol{h}_{\tilde{\boldsymbol{T}}(x)}(x)=\left(h_{i}(x)\right)_{i \in \tilde{I}(x)}$.

## Equality and inequality constrained optimization

In other words, $\boldsymbol{\xi}^{*}(x)$ is explicitly given by:

$$
\boldsymbol{\xi}^{*}(x)=-\frac{\Pi_{C_{\overparen{\Gamma}(x)}}(\nabla J(x))}{\left\|\Pi_{C_{\overparen{T}(x)}}(\nabla J(x))\right\|_{v}},
$$

with

$$
\begin{gathered}
\Pi_{\boldsymbol{C}_{\overparen{I}(x)}}(\nabla J(x))=\left(I-\mathrm{D} \boldsymbol{C}_{\widehat{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{I}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{I}(x)}\right)(\nabla J(x)) \\
\widehat{I}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\}
\end{gathered}
$$

## Equality and inequality constrained optimization

In other words, $\boldsymbol{\xi}^{*}(x)$ is explicitly given by:

$$
\boldsymbol{\xi}^{*}(x)=-\frac{\Pi_{C_{\overparen{T}(x)}}(\nabla J(x))}{\left\|\Pi_{C_{T(x)}}(\nabla J(x))\right\|_{v}}
$$

with

$$
\begin{gathered}
\Pi_{\boldsymbol{C}_{\overparen{I}(x)}}(\nabla J(x))=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\Pi}(x)}\right)(\nabla J(x)) \\
\widehat{l}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\}
\end{gathered}
$$

whence our definition of the null space step:

## Equality and inequality constrained optimization

In other words, $\boldsymbol{\xi}^{*}(x)$ is explicitly given by:

$$
\boldsymbol{\xi}^{*}(x)=-\frac{\Pi_{C_{\overparen{T}(x)}}(\nabla J(x))}{\left\|\Pi_{C_{\overparen{T}(x)}}(\nabla J(x))\right\|_{v}}
$$

with

$$
\begin{gathered}
\Pi_{\boldsymbol{C}_{\overparen{I}(x)}}(\nabla J(x))=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\Pi}(x)}\right)(\nabla J(x)) \\
\widehat{l}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\}
\end{gathered}
$$

whence our definition of the null space step:

## Definition 3

The null space direction $\xi_{J}(x)$ is defined by:

$$
\boldsymbol{\xi}_{J}(x):=\Pi_{\boldsymbol{C}_{\overparen{I}(x)}}(\nabla J(x))=\left(I-\mathrm{D} \boldsymbol{C}_{\widehat{\Gamma}(x)}(x)^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\widehat{\Pi}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\imath}(x)}\right) \nabla J(x)
$$

## Equality and inequality constrained optimization

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

## Equality and inequality constrained optimization

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x) .
$$

We can prove similarly:

1. Constraints are asymptotically satisfied:

$$
\boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}(x(0)) \text { and } \boldsymbol{h}_{\tilde{\boldsymbol{T}}(x(t))} \leq e^{-\alpha_{C} t} \boldsymbol{h}(x(0))
$$

## Equality and inequality constrained optimization

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x) .
$$

We can prove similarly:

1. Constraints are asymptotically satisfied:

$$
\boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}(x(0)) \text { and } \boldsymbol{h}_{\tilde{\boldsymbol{T}}(x(t))} \leq e^{-\alpha_{C} t} \boldsymbol{h}(x(0))
$$

## Equality and inequality constrained optimization

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

We can prove similarly:

1. Constraints are asymptotically satisfied:

$$
\boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}(x(0)) \text { and } \boldsymbol{h}_{\tilde{\boldsymbol{I}}(x(t))} \leq e^{-\alpha_{C} t} \boldsymbol{h}(x(0))
$$

2. J decreases as soon as the violation $C_{\overparen{I}(x(t))}$ is sufficiently small

## Equality and inequality constrained optimization

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

We can prove similarly:

1. Constraints are asymptotically satisfied:

$$
\boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}(x(0)) \text { and } \boldsymbol{h}_{\tilde{\boldsymbol{I}}(x(t))} \leq e^{-\alpha_{C} t} \boldsymbol{h}(x(0))
$$

2. J decreases as soon as the violation $C_{\overparen{I}(x(t))}$ is sufficiently small

## Equality and inequality constrained optimization

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

We can prove similarly:

1. Constraints are asymptotically satisfied:

$$
\boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}(x(0)) \text { and } \boldsymbol{h}_{\tilde{\boldsymbol{I}}(x(t))} \leq e^{-\alpha_{C} t} \boldsymbol{h}(x(0))
$$

2. J decreases as soon as the violation $C_{\overparen{I}(x(t))}$ is sufficiently small
3. All stationary points $x^{*}$ of the ODE are KKT points

## Outline

1. Reminders on smooth constrained optimization
2. Gradient flows for unconstrained optimization
3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization
4. Numerical implementation
5. Numerical examples

## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.


## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.
- How to select a "sufficiently small" time step $\Delta t$ ?


## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.
- How to select a "sufficiently small" time step $\Delta t$ ?


## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.
- How to select a "sufficiently small" time step $\Delta t$ ?

Solutions considered:

- Detect the constraints slightly before they get violated


## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.
- How to select a "sufficiently small" time step $\Delta t$ ?

Solutions considered:

- Detect the constraints slightly before they get violated
- Use an appropriate "merit function"


## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.
- How to select a "sufficiently small" time step $\Delta t$ ?

Solutions considered:

- Detect the constraints slightly before they get violated
- Use an appropriate "merit function"


## Numerical implementation issues

Consider the null space gradient flow:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

- The right-hand side of the null space ODE is discontinuous when the set $\widehat{l}(x)$ changes.
- How to select a "sufficiently small" time step $\Delta t$ ?

Solutions considered:

- Detect the constraints slightly before they get violated
- Use an appropriate "merit function"

We discretize the flow with an explicit Euler scheme:

$$
x_{n+1}=x_{n}-\Delta t_{n}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right)\right)
$$

with $\Delta t_{n}$ an adaptive time-step.

## Numerical implementation issues

Feeling inequality constraints from a short distance
Replace $\widetilde{I}\left(x_{n}\right)$ with $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
$$

## Numerical implementation issues

Feeling inequality constraints from a short distance
Replace $\widetilde{I}\left(x_{n}\right)$ with $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\tilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
$$

Using a time step $\Delta t$, it is natural to set

$$
\epsilon_{i}=\left\|\nabla h_{i}\left(x_{n}\right)\right\| \Delta t
$$

## Numerical implementation issues

Feeling inequality constraints from a short distance
Replace $\widetilde{I}\left(x_{n}\right)$ with $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
$$

Using a time step $\Delta t$, it is natural to set

$$
\epsilon_{i}=\left\|\nabla h_{i}\left(x_{n}\right)\right\| \Delta t
$$

- compute the set of indices $\hat{\mathrm{I}}_{\epsilon}\left(x_{n}\right)$ of constraints "not aligned with the gradients" when crossing $\{\boldsymbol{h}=0\}$


## Numerical implementation issues

Replace $\widetilde{I}\left(x_{n}\right)$ with $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
$$

Using a time step $\Delta t$, it is natural to set

$$
\epsilon_{i}=\left\|\nabla h_{i}\left(x_{n}\right)\right\| \Delta t
$$

- compute the set of indices $\widehat{\widehat{\epsilon}}_{\epsilon}\left(x_{n}\right)$ of constraints "not aligned with the gradients" when crossing $\{\boldsymbol{h}=0\}$
- compute $\boldsymbol{\xi}_{J, \epsilon}\left(x_{n}\right)$ and $\boldsymbol{\xi}_{C, \epsilon}\left(x_{n}\right)$ as follows:

$$
\begin{gathered}
\boldsymbol{\xi}_{J, \epsilon}\left(x_{n}\right):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}_{\epsilon}\left(x_{n}\right)}^{\top}\left(\mathrm{D} \boldsymbol{C}_{\hat{\epsilon}_{\epsilon}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}_{\epsilon}\left(x_{n}\right)}^{\top}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\hat{\epsilon}_{\epsilon}\left(x_{n}\right)}\right) \nabla J\left(x_{n}\right), \\
\left.\boldsymbol{\xi}_{C, \epsilon}\left(x_{n}\right):=\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)}^{\top}\right)\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)}^{\top}\right)^{-1} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)}\left(x_{n}\right),
\end{gathered}
$$

where $I_{\epsilon}^{*}\left(x_{n}\right)=\widetilde{I}\left(x_{n}\right) \cup \widehat{I_{\epsilon}}\left(x_{n}\right)$ is the set of constraints that are either violated, saturated or not aligned with the gradient.

## Numerical implementation issues

Replace $\widetilde{I}\left(x_{n}\right)$ with $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
$$

Using a time step $\Delta t$, it is natural to set

$$
\epsilon_{i}=\left\|\nabla h_{i}\left(x_{n}\right)\right\| \Delta t
$$

- compute the set of indices $\widehat{\epsilon}_{\epsilon}\left(x_{n}\right)$ of constraints "not aligned with the gradients" when crossing $\{\boldsymbol{h}=0\}$
- compute $\boldsymbol{\xi}_{J, \epsilon}\left(x_{n}\right)$ and $\xi_{C, \epsilon}\left(x_{n}\right)$ as follows:

$$
\begin{gathered}
\boldsymbol{\xi}_{J, \epsilon}\left(x_{n}\right):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}_{\epsilon}\left(x_{n}\right)}^{\top}\left(\mathrm{D} \boldsymbol{C}_{\hat{\epsilon}_{\epsilon}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}_{\epsilon}\left(x_{n}\right)}^{\top}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\hat{T}_{\epsilon}\left(x_{n}\right)}\right) \nabla J\left(x_{n}\right), \\
\boldsymbol{\xi}_{C, \epsilon}\left(x_{n}\right):=\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)}^{\top}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)}^{\top}\right)^{-1} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)}\left(x_{n}\right),
\end{gathered}
$$

where $I_{\epsilon}^{*}\left(x_{n}\right)=\widetilde{I}\left(x_{n}\right) \cup \widehat{I_{\epsilon}}\left(x_{n}\right)$ is the set of constraints that are either violated, saturated or not aligned with the gradient.

- Including constraints of $\widehat{\epsilon}_{\epsilon}\left(x_{n}\right)$ not in $\widetilde{I}\left(x_{n}\right)$ further stabilizes these closer to the zero barrier.


## Numerical implementation issues

Merit function

## Lemma 4

For a given $x_{n} \in V$, let merit $x_{x_{n}}: V \rightarrow \mathbb{R}$ be the function defined by

$$
\left.\operatorname{merit}_{x_{n}}(x):=\alpha\right\lrcorner\left(J(x)+\boldsymbol{\Lambda}\left(x_{n}\right)^{T} \boldsymbol{C}_{\overparen{I}\left(x_{n}\right)}(x)\right)+\frac{\alpha c}{2} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)^{T} \boldsymbol{S}\left(x_{n}\right) \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)
$$

## Numerical implementation issues

Merit function

## Lemma 4

For a given $x_{n} \in V$, let merit $x_{x_{n}}: V \rightarrow \mathbb{R}$ be the function defined by

$$
\operatorname{merit}_{x_{n}}(x):=\alpha_{J}\left(J(x)+\boldsymbol{\Lambda}\left(x_{n}\right)^{T} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)\right)+\frac{\alpha c}{2} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)^{T} \boldsymbol{S}\left(x_{n}\right) \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)
$$

where $\Lambda\left(x_{n}\right)=\left[\begin{array}{ll}\lambda^{*}\left(x_{n}\right)^{\top} & \mu^{*}\left(x_{n}\right)^{\top}\end{array}\right]^{\top}$ is the vector of multipliers defined as the solution to the dual problem and $\boldsymbol{S}\left(x_{n}\right)=\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}\left(x_{n}\right)}\left(x_{n}\right) \mathrm{D} \boldsymbol{C}_{\tilde{\Pi}\left(x_{n}\right)}\left(x_{n}\right)^{\mathcal{T}}\right)^{-1}$ is symmetric positive definite. Then

$$
x_{n+1}=x_{n}-\Delta t_{n}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right)\right),
$$

is a gradient step for decreasing the function merit $t_{x_{n}}$,

## Numerical implementation issues

Merit function

## Lemma 4

For a given $x_{n} \in V$, let merit $x_{x_{n}}: V \rightarrow \mathbb{R}$ be the function defined by

$$
\operatorname{merit}_{x_{n}}(x):=\alpha_{J}\left(J(x)+\boldsymbol{\Lambda}\left(x_{n}\right)^{T} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)\right)+\frac{\alpha c}{2} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)^{T} \boldsymbol{S}\left(x_{n}\right) \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)
$$

where $\Lambda\left(x_{n}\right)=\left[\begin{array}{ll}\lambda^{*}\left(x_{n}\right)^{\top} & \mu^{*}\left(x_{n}\right)^{\top}\end{array}\right]^{\top}$ is the vector of multipliers defined as the solution to the dual problem and $\boldsymbol{S}\left(x_{n}\right)=\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}\left(x_{n}\right)}\left(x_{n}\right) \mathrm{D} \boldsymbol{C}_{\tilde{\Pi}\left(x_{n}\right)}\left(x_{n}\right)^{\mathcal{T}}\right)^{-1}$ is symmetric positive definite. Then

$$
x_{n+1}=x_{n}-\Delta t_{n}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{c} \boldsymbol{\xi}_{c}\left(x_{n}\right)\right),
$$

is a gradient step for decreasing the function merit $t_{x_{n}}$, namely:

$$
\nabla \operatorname{merit}_{x_{n}}\left(x_{n}\right)=\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{c} \boldsymbol{\xi}_{c}\left(x_{n}\right) .
$$

## Numerical implementation issues

Merit function

## Lemma 4

For a given $x_{n} \in V$, let merit $x_{x_{n}}: V \rightarrow \mathbb{R}$ be the function defined by

$$
\operatorname{merit}_{x_{n}}(x):=\alpha J\left(J(x)+\boldsymbol{\Lambda}\left(x_{n}\right)^{T} \boldsymbol{C}_{\tilde{\boldsymbol{T}}\left(x_{n}\right)}(x)\right)+\frac{\alpha c}{2} \boldsymbol{C}_{\tilde{T}_{\left(x_{n}\right)}(x)^{T} \boldsymbol{S}\left(x_{n}\right) \boldsymbol{C}_{\boldsymbol{T}\left(x_{n}\right)}(x), ~}
$$

where $\Lambda\left(x_{n}\right)=\left[\begin{array}{ll}\lambda^{*}\left(x_{n}\right)^{\top} & \mu^{*}\left(x_{n}\right)^{\top}\end{array}\right]^{\top}$ is the vector of multipliers defined as the solution to the dual problem and $\boldsymbol{S}\left(x_{n}\right)=\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}\left(x_{n}\right)}\left(x_{n}\right) \mathrm{D} \boldsymbol{C}_{\tilde{\Pi}\left(x_{n}\right)}\left(x_{n}\right)^{\mathcal{T}}\right)^{-1}$ is symmetric positive definite. Then

$$
x_{n+1}=x_{n}-\Delta t_{n}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right)\right),
$$

is a gradient step for decreasing the function merit $t_{x_{n}}$, namely:

$$
\nabla \operatorname{merit}_{x_{n}}\left(x_{n}\right)=\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) .
$$

Consequently:

- if $\operatorname{merit}_{x_{n}}\left(x_{n+1}\right)>\operatorname{merit}_{x_{n}}\left(x_{n}\right)$, then $\Delta t_{n}$ is too large !


## Numerical implementation issues

Merit function

## Lemma 4

For a given $x_{n} \in V$, let merit $x_{x_{n}}: V \rightarrow \mathbb{R}$ be the function defined by

$$
\operatorname{merit}_{x_{n}}(x):=\alpha_{J}\left(J(x)+\boldsymbol{\Lambda}\left(x_{n}\right)^{T} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)\right)+\frac{\alpha c}{2} \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)^{T} \boldsymbol{S}\left(x_{n}\right) \boldsymbol{C}_{\tilde{I}\left(x_{n}\right)}(x)
$$

where $\Lambda\left(x_{n}\right)=\left[\begin{array}{ll}\lambda^{*}\left(x_{n}\right)^{\top} & \mu^{*}\left(x_{n}\right)^{\top}\end{array}\right]^{\top}$ is the vector of multipliers defined as the solution to the dual problem and $\boldsymbol{S}\left(x_{n}\right)=\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}\left(x_{n}\right)}\left(x_{n}\right) \mathrm{D} \boldsymbol{C}_{\tilde{\Pi}\left(x_{n}\right)}\left(x_{n}\right)^{\mathcal{T}}\right)^{-1}$ is symmetric positive definite. Then

$$
x_{n+1}=x_{n}-\Delta t_{n}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right)\right),
$$

is a gradient step for decreasing the function merit $t_{x_{n}}$, namely:

$$
\nabla \operatorname{merit}_{x_{n}}\left(x_{n}\right)=\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) .
$$

Consequently:

- if merit $x_{x_{n}}\left(x_{n+1}\right)>\operatorname{merit}_{x_{n}}\left(x_{n}\right)$, then $\Delta t_{n}$ is too large !
- in practice, one decreases $\Delta t$ a finite number of times until $\operatorname{merit}_{x_{n}}\left(x_{n+1}\right)<\operatorname{merit}_{x_{n}}\left(x_{n}\right)$.


## Summary

For $n=1 \ldots$ maxiter:

1. Compute the gradients $\nabla J\left(x_{n}\right), \nabla g_{i}\left(x_{n}\right)$ and $\nabla h_{j}\left(x_{n}\right)$ for $1 \leq i \leq p, 1 \leq j \leq q$ by solving, if necessary, the identification problem $a\left(\nabla J\left(x_{n}\right), \boldsymbol{\xi}\right)=\mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}$.

## Summary

For $n=1 \ldots$ maxiter:

1. Compute the gradients $\nabla J\left(x_{n}\right), \nabla g_{i}\left(x_{n}\right)$ and $\nabla h_{j}\left(x_{n}\right)$ for $1 \leq i \leq p, 1 \leq j \leq q$ by solving, if necessary, the identification problem $a\left(\nabla J\left(x_{n}\right), \boldsymbol{\xi}\right)=\mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}$.
2. For all inequality constraints $1 \leq i \leq q$, compute the tolerance

$$
\epsilon_{i}:=\left\|\nabla h_{i}\left(x_{n}\right)\right\| v h .
$$

## Summary

For $n=1$... maxiter:

1. Compute the gradients $\nabla J\left(x_{n}\right), \nabla g_{i}\left(x_{n}\right)$ and $\nabla h_{j}\left(x_{n}\right)$ for $1 \leq i \leq p, 1 \leq j \leq q$ by solving, if necessary, the identification problem $a\left(\nabla J\left(x_{n}\right), \boldsymbol{\xi}\right)=\mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}$.
2. For all inequality constraints $1 \leq i \leq q$, compute the tolerance

$$
\epsilon_{i}:=\left\|\nabla h_{i}\left(x_{n}\right)\right\| v \mathrm{~h} .
$$

3. Determine the set $\widetilde{I}\left(x_{n}\right)$ of active or violated constraints and the set $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\begin{gathered}
\widetilde{I}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant 0\right\} \\
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
\end{gathered}
$$

## Summary

For $n=1$... maxiter:

1. Compute the gradients $\nabla J\left(x_{n}\right), \nabla g_{i}\left(x_{n}\right)$ and $\nabla h_{j}\left(x_{n}\right)$ for $1 \leq i \leq p, 1 \leq j \leq q$ by solving, if necessary, the identification problem $a\left(\nabla J\left(x_{n}\right), \boldsymbol{\xi}\right)=\mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}$.
2. For all inequality constraints $1 \leq i \leq q$, compute the tolerance

$$
\epsilon_{i}:=\left\|\nabla h_{i}\left(x_{n}\right)\right\| v \mathrm{~h} .
$$

3. Determine the set $\widetilde{I}\left(x_{n}\right)$ of active or violated constraints and the set $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\begin{gathered}
\widetilde{I}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant 0\right\} \\
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
\end{gathered}
$$

4. Denote by $\widetilde{\boldsymbol{q}}_{\epsilon}:=\#\left(\widetilde{I}_{\epsilon}\right)$. Solve the dual problem

$$
\left(\boldsymbol{\lambda}_{\epsilon}^{*}\left(x_{n}\right), \boldsymbol{\mu}_{\epsilon}^{*}\left(x_{n}\right)\right):=\arg \min _{\substack{\boldsymbol{\lambda} \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\mathcal{R}_{\epsilon}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\tilde{\boldsymbol{T}}_{\epsilon}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

to obtain the optimal Lagrange multiplier $\boldsymbol{\mu}^{*}\left(x_{n}\right)$.

## Summary

For $n=1$... maxiter:

1. Compute the gradients $\nabla J\left(x_{n}\right), \nabla g_{i}\left(x_{n}\right)$ and $\nabla h_{j}\left(x_{n}\right)$ for $1 \leq i \leq p, 1 \leq j \leq q$ by solving, if necessary, the identification problem $a\left(\nabla J\left(x_{n}\right), \boldsymbol{\xi}\right)=\mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}$.
2. For all inequality constraints $1 \leq i \leq q$, compute the tolerance

$$
\epsilon_{i}:=\left\|\nabla h_{i}\left(x_{n}\right)\right\| v \mathrm{~h} .
$$

3. Determine the set $\widetilde{I}\left(x_{n}\right)$ of active or violated constraints and the set $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\begin{gathered}
\widetilde{I}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant 0\right\} \\
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
\end{gathered}
$$

4. Denote by $\widetilde{\boldsymbol{q}}_{\epsilon}:=\#\left(\widetilde{I}_{\epsilon}\right)$. Solve the dual problem

$$
\left(\boldsymbol{\lambda}_{\epsilon}^{*}\left(x_{n}\right), \boldsymbol{\mu}_{\epsilon}^{*}\left(x_{n}\right)\right):=\arg \min _{\substack{\boldsymbol{\lambda} \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\mathcal{R}_{\epsilon}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\tilde{\boldsymbol{T}}_{\epsilon}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}
$$

to obtain the optimal Lagrange multiplier $\boldsymbol{\mu}^{*}\left(x_{n}\right)$.

## Summary

For $n=1$... maxiter:

1. Compute the gradients $\nabla J\left(x_{n}\right), \nabla g_{i}\left(x_{n}\right)$ and $\nabla h_{j}\left(x_{n}\right)$ for $1 \leq i \leq p, 1 \leq j \leq q$ by solving, if necessary, the identification problem $a\left(\nabla J\left(x_{n}\right), \boldsymbol{\xi}\right)=\mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}$.
2. For all inequality constraints $1 \leq i \leq q$, compute the tolerance

$$
\epsilon_{i}:=\left\|\nabla h_{i}\left(x_{n}\right)\right\| v \mathrm{~h} .
$$

3. Determine the set $\widetilde{I}\left(x_{n}\right)$ of active or violated constraints and the set $\widetilde{I}_{\epsilon}\left(x_{n}\right)$ of constraints violated "up to $\epsilon_{i}$ ":

$$
\begin{gathered}
\widetilde{I}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant 0\right\} \\
\widetilde{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in\{1, \ldots, q\} \mid h_{i}\left(x_{n}\right) \geqslant-\epsilon_{i}\right\} .
\end{gathered}
$$

4. Denote by $\widetilde{\boldsymbol{q}}_{\epsilon}:=\#\left(\tilde{I}_{\epsilon}\right)$. Solve the dual problem

$$
\left(\boldsymbol{\lambda}_{\epsilon}^{*}\left(x_{n}\right), \boldsymbol{\mu}_{\epsilon}^{*}\left(x_{n}\right)\right):=\arg \min _{\substack{\boldsymbol{\lambda} \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\boldsymbol{q}}(x)} \boldsymbol{\mu} \geqslant 0}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D}_{\boldsymbol{T}_{\epsilon}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{V}
$$

to obtain the optimal Lagrange multiplier $\boldsymbol{\mu}^{*}\left(x_{n}\right)$.Infer the subset $\widehat{I}_{\epsilon}\left(x_{n}\right) \subset \widetilde{I}_{\epsilon}\left(x_{n}\right)$ indicating which constraints must remain active:

$$
\begin{equation*}
\widehat{I}_{\epsilon}\left(x_{n}\right)=\left\{i \in \widetilde{I}_{\epsilon}\left(x_{n}\right) \mid \mu_{\epsilon, i}^{*}\left(x_{n}\right)>\text { tolLag }\right\} . \tag{9}
\end{equation*}
$$

## Summary

For $n=1 \ldots$ maxiter:
5. Let $I_{\epsilon}^{*}\left(x_{n}\right):=\widetilde{I}\left(x_{n}\right) \cup \widehat{I_{\epsilon}}\left(x_{n}\right)$. Form the constraint vectors $C_{\widehat{I}_{\epsilon}\left(x_{n}\right)}\left(x_{n}\right)$ and $C_{l_{\epsilon}^{*}\left(x_{n}\right)}\left(x_{n}\right)$ and compute

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}\left(x_{n}\right)=\left(I-\mathrm{D} \boldsymbol{C}_{\widehat{l}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{l}_{\epsilon}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\widehat{\epsilon}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{I}}_{\epsilon}\left(x_{n}\right)}\right) \nabla J\left(x_{n}\right), \\
& \boldsymbol{\xi}_{C}\left(x_{n}\right)=\mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)} .
\end{aligned}
$$

## Summary

For $n=1 \ldots$ maxiter:
5. Let $I_{\epsilon}^{*}\left(x_{n}\right):=\widetilde{I}\left(x_{n}\right) \cup \widehat{I_{\epsilon}}\left(x_{n}\right)$. Form the constraint vectors $C_{\widehat{I}_{\epsilon}\left(x_{n}\right)}\left(x_{n}\right)$ and $C_{l_{\epsilon}^{*}\left(x_{n}\right)}\left(x_{n}\right)$ and compute

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}\left(x_{n}\right)=\left(I-\mathrm{D} \boldsymbol{C}_{\widehat{l}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{l}_{\epsilon}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\widehat{\epsilon}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{I}}_{\epsilon}\left(x_{n}\right)}\right) \nabla J\left(x_{n}\right), \\
& \boldsymbol{\xi}_{C}\left(x_{n}\right)=\mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)} .
\end{aligned}
$$

6 . For $k=1 \ldots$ maxtrials,

## Summary

For $n=1 \ldots$ maxiter:
5. Let $I_{\epsilon}^{*}\left(x_{n}\right):=\widetilde{I}\left(x_{n}\right) \cup \widehat{I_{\epsilon}}\left(x_{n}\right)$. Form the constraint vectors $C_{\widehat{I}_{\epsilon}\left(x_{n}\right)}\left(x_{n}\right)$ and $C_{l_{\epsilon}^{*}\left(x_{n}\right)}\left(x_{n}\right)$ and compute

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}\left(x_{n}\right)=\left(I-\mathrm{D} \boldsymbol{C}_{\hat{l}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{T}}_{\epsilon}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{l}}_{\epsilon}\left(x_{n}\right)}\right) \nabla J\left(x_{n}\right), \\
& \boldsymbol{\xi}_{C}\left(x_{n}\right)=\mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)} .
\end{aligned}
$$

6 . For $k=1 \ldots$ maxtrials,
6.1 Compute the step

$$
x_{n+1}=x_{n}-\frac{\Delta t}{2^{k-1}}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right)\right)
$$

## Summary

For $n=1 \ldots$ maxiter:
5. Let $I_{\epsilon}^{*}\left(x_{n}\right):=\widetilde{I}\left(x_{n}\right) \cup \widehat{I_{\epsilon}}\left(x_{n}\right)$. Form the constraint vectors $\boldsymbol{C}_{\widehat{I}_{\epsilon}\left(x_{n}\right)}\left(x_{n}\right)$ and $\boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}\left(x_{n}\right)$ and compute

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}\left(x_{n}\right)=\left(I-\mathrm{D} \boldsymbol{C}_{\widehat{l}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{I}}_{\epsilon}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{\widehat{\epsilon}_{\epsilon}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{l}}_{\epsilon}\left(x_{n}\right)}\right) \nabla J\left(x_{n}\right), \\
& \boldsymbol{\xi}_{C}\left(x_{n}\right)=\mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{l}_{\epsilon}^{*}\left(x_{n}\right)} \mathrm{D} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{l_{\epsilon}^{*}\left(x_{n}\right)} .
\end{aligned}
$$

6 . For $k=1 \ldots$ maxtrials,
6.1 Compute the step

$$
x_{n+1}=x_{n}-\frac{\Delta t}{2^{k-1}}\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right)\right)
$$

6.2 If merit ${ }_{x_{n}}\left(x_{n+1}\right)<\operatorname{merit}_{x_{n}}\left(x_{n}\right)$, then break

## Outline

1. Reminders on smooth constrained optimization
2. Gradient flows for unconstrained optimization
3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization
4. Numerical implementation
5. Numerical examples

## Open source package available

Try it yourself!

https://gitlab.com/florian.feppon/null-space-optimizer
pip install nullspace_optimizer

## Basic problem 1

$$
\begin{aligned}
\min _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}} J\left(x_{1}, x_{2}\right):=x_{2}+0.3 x_{1} \\
\text { s.t. } \begin{cases}h_{1}\left(x_{1}, x_{2}\right):=-x_{2}+\frac{1}{x_{1}} & \leq 0 \\
h_{2}\left(x_{1}, x_{2}\right):=x_{1}+x_{2}-3 & \leq 0\end{cases}
\end{aligned}
$$

## Basic problem 1

$$
\begin{array}{rl}
\min _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}} & J\left(x_{1}, x_{2}\right):=x_{2}+0.3 x_{1} \\
\text { s.t. } \begin{cases}h_{1}\left(x_{1}, x_{2}\right):=-x_{2}+\frac{1}{x_{1}} & \leq 0, \\
h_{2}\left(x_{1}, x_{2}\right):=x_{1}+x_{2}-3 & \leq 0 .\end{cases}
\end{array}
$$



## Basic problem 1


(a) Objective function $J$

(b) Constraints $\boldsymbol{h}$

(c) Evolution of the Lagrange multipliers $\mu_{1}(x(s)), \mu_{2}(x(s))$

## Basic problem 1

More examples in python.

