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Equality constrained optimization

Consider the optimization problem

min  J(x)

xeV (1)

s.t. g(x)=0
Assume that rank(Dg(x)Dg(x)") = p.
Definition 1
The null space and range space directions £,(x) and &c(x) are defined by:

&(x) = (1 - Dg" (DgDg”) "' Dg)VJ(x),
&c(x) :=Dg’ (DgDg”) "g(x).



Equality constrained optimization

Proposition 1
Assume that the constraints g are qualified and consider the flow

{ % =—ay(I - Dg” (DgDg”) 'Dg(x))VJ(x)—acDg” (DgDg”) 'g(x)
x(0) = xo

(2)

for some oy, ¢ > 0. Then the following properties hold true:
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Proposition 1

Assume that the constraints g are qualified and consider the flow

{ %= —ay(l - Dg’ (DgDg”)'Dg(x))VJ(x)-acDg” (DgDg”) 'g(x)
x(0) = xo

(2)

for some oy, ac > 0. Then the following properties hold true:
1. The violation of the constraints decreases exponentially:
vt € [0, T], g(x(t)) = e~ ““"g(x0).
2. J(x(t)) decreases “as soon as the violation of the constraints is sufficiently small”:

Ve € [0, 7], Mgy (VIO > Ce 2t = S s(x(8)) < 0.

3. Any stationary point x* of eq. (2) satisfies the first-order KKT conditions, that is:

g(x’)=0
AT ERP, VI(xT) + Dg” (x)A* = Ny (VI(x¥)) = 0.
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Equality constrained optimization

Today: we see how to solve equality and inequality constrained optimization problems:

min J(x)
 Jeta=0 1<i<p ()
"l hi(x) <0, 1<j<aq,

> It is possible to recast eq. (3) as an equality constrained optimization problem using
artificial slack variables:

min J(x)

x€V,(z)1<j<q
gi(x)=0, 1<i<p (4)
s.t.
hi(x)+z =0 1<i<gq,
> However, it is also possible to solve eq. (3) directly.

Inequality constraints have a fully different nature than equality constraints.
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Null space gradient flows for constrained optimization

min J0a, %) = ¢ + (e +3)°

(x1,x0) ER2
; (31, %) = —x; + X2 <0
s.t.
ho(x1, %) =—-x1—x—2 <0
3 °
2-
1
O_ o
_1 _\




Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) < 0, we consider:
x = —as€s(x(t)) — acke(x(t))

with
£10x) = (1 = DCT, (DC;, DT ) *DC; )(TI())

¢c(x) = DY, (DC;,\DCT ) €y, (%),
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For both equality constraints g(x) = 0 and inequality constraints h(x) < 0, we consider:
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Equality and inequality constrained optimization

For both equality constraints g(x) = 0 and inequality constraints h(x) < 0, we consider:
x = —as€s(x(t)) — acke(x(t))

with
€(x) = (I = DCT, (DG DET)) D Ey ) )(VI(x))

¢c(x) = DY, (DC;,\DCT ) €y, (%),

T(x) C I(x) is an “optimal” subset of the active or violated constraints which shall be
computed by mean of a dual subproblem.

1(x) = {i € I(x) | 4 (x) > 0}

-
Gy = [g(x) | (hi(X));eT(x)]
We assume the constraints to be qualified:

DC,~(X)DC,~(TX) is invertible.
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Equality and inequality constrained optimization

Consider the optimization problem

)r(réi‘r) J(x)
g(x)=0
s.t. {h(x) <0,

Definition 2 (range space step)
The range step £c(x) is defined by

&c(x) = DCT, (DCi,y DCT,)) ™ €y, (%),

In particular:
1. &c(x) is orthogonal to Ker(DCy,)).

2. —€c(x) is a Gauss-Newton direction for the violation of the constraints:

DCy,y(—€c(x)) = — Gy ().
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Equality and inequality constrained optimization

The null space step, —&,(x) shall be set positively proportional to the solution £*(x) of
the following minimization problem:

& (x) =argmin  DJ(x)¢

Dg(x)§ =0 (5)

[I€]lv < 1.

£ is tangent to the admissible cone tangent to the constraints
£7(x) is the best “descent direction” respecting locally the constraints.
In what follows, we give a characterization of £*(x).

We call eq. (8) the primal problem.



Equality and inequality constrained optimization

Proposition 2

Let the constraints be satisfied. There exists a unique couple of multipliers X*(x) € R” and

p(x) e Ri(x) solution to the following quadratic optimization problem which is the dual of
eq. (8) :

(A" (x), p*(x)) := arg )Tmn IVJ(x) + Dg(x)" X+ Dhl(x)(x)/ruH\/.

HER atx)] ©=>0



Equality and inequality constrained optimization

Proposition 3

Let
m' () = [[VI(x) + Dg(x)7 X" (x) + Dhy (x)" " (x)|lv

be the value of the dual problem . Then the value of the primal problem is
p*(x) = —m (x) and the following alternative holds:
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be the value of the dual problem . Then the value of the primal problem is
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1. m (x) = 0: the KKT conditions hold with (necessarily unique) Lagrange multipliers
(A (x), 12" (x)) € R? x RIW:

VJ(x) + Dg(x)7 2" (x) + Dhyy (x)7 12 (x) = 0. (6)

A minimizer of the primal problem is £€"(x) = 0.



Equality and inequality constrained optimization

Proposition 3

Let

m' (%) = ||VJ(x) + Dg(x)" A" (x) + Dhy ()" 1" (x)||v
be the value of the dual problem . Then the value of the primal problem is
p*(x) = —m (x) and the following alternative holds:

1. m (x) = 0: the KKT conditions hold with (necessarily unique) Lagrange multipliers
(A (x), 12" (x)) € R? x RIW:

VJ(x)+Dg(x)7 A" (x) + Dhy ()7 12 (x) = 0. (6)

A minimizer of the primal problem is £€"(x) = 0.
2. m'(x) >0 : eq. (6) does not hold and there exists a unique minimizer £*(x) to the
primal problem, given by
VJ(x) +Dg(x)T 1" (x) + Dh~x)(x) w(x) )
[[VI(x) +Dg(x) A (%) + Dy ()7 e (4)[[v

£(x)=
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Let (A" (x), 2 (x)) € RP x R%™) the solutions of the following dual minimization problem:
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Equality and inequality constrained optimization

Let (A" (x), 2 (x)) € RP x R%™) the solutions of the following dual minimization problem:

(A(), 7 (x)) = arg min, IVJ(x) + Dg(x)" A + Dhyy ()7 pal|v-

peRI, u>o0

Proposition 4

Define T(x) the set obtained by collecting the non zero components of 11" (x):

1(x) = {i € I(x)| 11 (x) > O}.

Then (X" (x), 117 (x)) and €7 (x) are explicitly given in terms ofT(x) by:

AL i) = —(DC,,DCY)'DCy, VI(x),
B (x) II’/(X)(X)

. M, (VI(x))

§£(x)=

= e, (VI

where 1" (x) := (11; (x)),c7. is the vector collecting all positive components of 11" (x).



Equality and inequality constrained optimization

The null space step, —&,(x) shall be set positively proportional to the solution £*(x) of
the following minimization problem:

& (x) =argmin  DJ(x)¢
Dg(x)§ =0 (8)
s.t. Dir,(x)(x)ﬁg 0
l€llv < 1.

where hT(x)(X) = (hi(X))ieT(x)'



Equality and inequality constrained optimization

In other words, £*(x) is explicitly given by:

N (V)
¢ 0= Ae, (VI
with

e, (VI(x) = (I - DC,(DC;, DC,)) ' DEC;, ) (VI(x))

1(x) = {i € I(x)| 11 (x) > O}.



Equality and inequality constrained optimization

In other words, £*(x) is explicitly given by:

e, (VJ(x)

¢ 0= g VI

with
Mc, (VJ(x)) = (I =DC, (DCy,,
1(x) = {i € I(x)| 11 (x) > O}.

whence our definition of the null space step:

DC7,) *DE)(TI()



Equality and inequality constrained optimization

In other words, £*(x) is explicitly given by:

et Mo (V0

X)= -
e, (VIG)Iv

with
e, (VI(x) = (I - -DC,(DC;, )DC,) ' DEC, (VX))

1(x) = {i € 1(x) | 1/ (x) > 0}.
whence our definition of the null space step:

Definition 3
The null space direction &,(x) is defined by:

£/ =N, (VI(x)) = (1 = DGy (1) (DCiiyDET)) "D Cyy ) V().
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We can prove similarly:
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Equality and inequality constrained optimization

Consider the null space gradient flow:
X = —Ouﬁ_;(X) — Ochc(X).

We can prove similarly:

1. Constraints are asymptotically satisfied:

g(x(t)) = e”"“'g(x(0)) and hy,(,), < e”*“"h(x(0))

2. J decreases as soon as the violation C () is sufficiently small

3. All stationary points x™ of the ODE are KKT points



1. Reminders on smooth constrained optimization
2. Gradient flows for unconstrained optimization

3. Constrained optimization:
3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation
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Numerical implementation issues

Consider the null space gradient flow:

X = —Ouﬁ_;(X) — acgc(X).

> The right-hand side of the null space ODE is discontinuous when the set /(x)
changes.

» How to select a “sufficiently small” time step At ?

Solutions considered:
» Detect the constraints slightly before they get violated
» Use an appropriate “merit function”

We discretize the flow with an explicit Euler scheme:
Xnt1 = Xn — Atn(as€s(xn) + ackc(xn)),

with At, an adaptive time-step.
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Replace /(x,) with I.(x,) of constraints violated “up to ;":

Z(X") = {’ S {17 R q} ‘ hi(X") 2 _Ei}'
Using a time step At, it is natural to set

€i = ||Vhi(xa)||At

» compute the set of indices E(x,,) of constraints “not aligned with the gradients” when
crossing {h =0}

» compute &£;.¢(xn) and &c,(xn) as follows:

&.c(xa) := (1 =DC] |, (DC;(,\DC] )T DC; () )VI(xn),
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where 17 (xa) = I(xa) U l(x,,) is the set of constraints that are either violated,
saturated or not aligned with the gradient.



Numerical implementation issues

Feeling inequality constraints from a short distance

Replace /(x,) with I.(x,) of constraints violated “up to ;":

Z(X") = {’ S {17 R q} ‘ hi(X") 2 _Ei}'
Using a time step At, it is natural to set

€i = ||Vhi(xa)||At

» compute the set of indices E(x,,) of constraints “not aligned with the gradients” when
crossing {h =0}

» compute &£;.¢(xn) and &c,(xn) as follows:
T T\
€1.:00) = (1 = DG (DG, ) DC )" DC (., )V I(n),

£c,e(xa) 1= DCL ) (DCrz (5)DCL () " Ci () (X0),
where 17 (x,) = I(x) U E(x,,) is the set of constraints that are either violated,
saturated or not aligned with the gradient.

» Including constraints of I.(x,) not in I(x,) further stabilizes these closer to the zero
barrier.
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Numerical implementation issues

Merit function

Lemma 4
For a given x, € V, let merit,, : V — R be the function defined by
merit, (x) i= ay (J(x) + AG) iy (X)) + 5 Gy (X)S(x0) G (%)
Xn : n 1(xn) 2> Tl(xn) 17 =1(xn)
T
where A(x,) = {x (x)" (X”)T} is the vector of multipliers defined as the solution to

the dual problem and §(x,) = (DC,~(XH)(X,,)DC,~(Xn)(x,,)T)_1 is symmetric positive definite.
Then
Xn+1 = Xn — Atn(anJ(X") + ach(X”))?

is a gradient step for decreasing the function merity,, namely:

Vmerity,(xn) = as€i(xn) + aclc(xn).

Consequently:
> if merit,,(xpr1) > merit,,(x,), then At, is too large !

» in practice, one decreases At a finite number of times until
merity,(Xn+1) < merity,(xn»).



For n=1...maxiter:
1. Compute the gradients VJ(x,), Vgi(xn) and Vhj(x,) for 1 <i<p, 1 <j<q by
solving, if necessary, the identification problem a(VJ(xy),&) = DJ(xa) - &.
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For n=1...maxiter:
1. Compute the gradients VJ(x,), Vgi(xn) and Vhj(x,) for 1 <i<p, 1 <j<q by
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to obtain the optimal Lagrange multiplier p*(x).
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For n=1...maxiter:
1. Compute the gradients VJ(x,), Vgi(xn) and Vhj(x,) for 1 <i<p, 1 <j<q by
solving, if necessary, the identification problem a(VJ(xy),&) = DJ(xa) - &.
2. For all inequality constraints 1 </ < g, compute the tolerance

€ = ||Vh,'(Xn)||v h.

3. Determine the set /(x,) of active or violated constraints and the set I (x,) of
constraints violated “up to ¢;":

/(Xn) = {iG {L‘H?q}lhi(X") > 0}
LGy ={ie{1,...,q} | hi(x) = —€i}.
4. Denote by g. := #(7;) Solve the dual problem
(AZ () i) i=arg min|[VI(x) + Dg(x)” A+ Dhy () pallv
peRrI ™) >0

to obtain the optimal Lagrange multiplier 11" (x,).Infer the subset I.(x,) C I (xn)
indicating which constraints must remain active:

Ie(xa) = {i € le(xa) | 12 i(xn) > tolLag}. (9)



For n=1...maxiter:
5. Let I7(xa) := I(xa) U E(xn). Form the constraint vectors 7., )(xa) and Cjz(x,)(xa) and
compute
&(xa) = (I =DC] (DG, \DC] )7T'DC; () )V (),

le (xn

&c(xn) = DCL () (DCrr(x)DC (1)) 71 Ci -



For n=1...maxiter:

5. Let I7(xa) := I(xa) U E(xn). Form the constraint vectors 7., )(xa) and Cjz(x,)(xa) and
compute
&(xa) = (I =DC] (DG, \DC] )7T'DC; () )V (),

&c(xn) = DCL () (DCrr(x)DC (1)) 71 Ci -

6. For k =1...maxtrials,



For n=1...maxiter:

5. Let I7(xa) := I(xa) U E(xn). Form the constraint vectors 7., )(xa) and Cjz(x,)(xa) and
compute
&(xa) = (I =DC] (DG, \DC] )7T'DC; () )V (),
€c(x) = DCL () (DCrz () DCL () ™ C -
6. For k =1...maxtrials,
6.1 Compute the step

A
ot = 0 = e (s () + acke ().



For n=1...maxiter:

5. Let I7(xa) := I(xa) U E(xn). Form the constraint vectors 7., )(xa) and Cjz(x,)(xa) and
compute
&(xa) = (I =DC] (DG, \DC] )7T'DC; () )V (),
€c(x0) = DC/l ) (DCiz () DCik i) Ci i)
6. For k =1...maxtrials,
6.1 Compute the step
At
Xnt1 = Xn — Sy (@€ () + ackc(xn)).

6.2 If merity,(xp+1) < meritx,(xn), then break



1. Reminders on smooth constrained optimization

2. Gradient flows for unconstrained optimization
3. Constrained optimization:

3.1 Extension to equality constrained optimization
3.2 Extension to equality and inequality constrained optimization

4. Numerical implementation

5. Numerical examples



Open source package available

Try it yourself!
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https://gitlab.com/florian.feppon/null-space-optimizer

pip install nullspace_optimizer


https://gitlab.com/florian.feppon/null-space-optimizer

Basic problem 1

min J(x1, x2) = x2 + 0.3x1
(x1,x2) €ER?

1
h1(X1,X2) = —Xo + — < 0,
s.t. X1

hg(Xl,Xz) =x1+x—3 <O0.



Basic problem 1

min J(x1, x2) = x2 + 0.3x1

(x1,x2) €ER?
1
hi(x1, %) == —x2 + — <0,
s.t. X1
ho(x1,%) :=x1+x —3 <O0.
—— Constraints
3.0 *  Optimum
© Initialization
- EQUALIZED
2.5 --- stp
AULG

NLSPACE
= NLSPACE (no dual)
Objective function




Basic problem 1
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(a) Objective function J (b) Constraints h

—— H1-NLSPACE =+ ul-NLSPACE (no dual)
—— U2-NLSPACE -+ u2-NLSPACE (no dual)

(c) Evolution of the Lagrange multipliers
p1(x(s)), pa(x(s))



Basic problem 1

More examples in python.



