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A non-exhaustive review of shape and topology optimization techniques
Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill
a proposed objective.

Generically, a design optimization problem arises under the form

min
Ω∈Uad

J(Ω)

s.t.

{
Gi (Ω) = 0, 1 ≤ i ≤ p

Hj(Ω) ≤ 0, 1 ≤ j ≤ q

where

I Ω is an open domain sought to be optimized

I J is an objective function to minimize (corresponding to a measure of the
performance)

I Gi and Hj are respectively p and q equality and inequality constraints
(corresponding e.g. to industrial specifications to meet)

I Uad is the set of admissible shapes.

In industrial applications, J(Ω), Gi (Ω) or Hj(Ω) involve the solution uΩ defined with
respect to a PDE model posed on Ω .
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The membrane’s equation

Ω

∂Ω

Figure: A membrane with variable height h(x). Figure from Allaire 2004.

{
−div(A∇u) = f in Ω,

u = 0 on ∂Ω.

I u(x) is the vertical displacement,

I A ≡ A(x) = h(x)I is the strain tensor, the deformation ∇u(x) yields a local force of
magnitude A(x)∇u(x) · n(x) on the facets of an elementary domain

I f (x) is a distribution of forces applied on the membrane (e.g. a pressure distribution)

I the membrane is clamped on the boundary of Ω whence u = 0 on ∂Ω
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The membrane’s equation

I The equation {
−div(A∇u) = f in Ω,

u = 0 on ∂Ω.

is called the strong formulation of the model.

I In numerical practice we work with the weak formulation:

Find u ∈ H1
0 (Ω) such that

∫
Ω

A(x)∇u · ∇vdx =

∫
Ω

fvdx for any v ∈ H1
0 (Ω)

I Regularity estimates show that if f ∈ Hk(Ω), then u ∈ Hk+2(Ω).
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Reminders on weak formulations

Definition 1

Let Ω ⊂ Rd a smooth bounded domain. We denote by H1(Ω) the Sobolev space

H1(Ω) = {v | v ∈ L2(Ω) and ∇v ∈ L2(Ω,Rd)}.

We denote by ||v ||H1(Ω) := ||v ||L2(Ω) + ||∇v ||L2(Ω) the norm on H1(Ω), which is a Hilbert
space for the inner product

(u, v)H1(Ω) :=

∫
Ω

(uv +∇u · ∇v)dx .

Proposition 1

There exists a constant C > 0 such that

||φ||L2(∂Ω) ≤ C ||φ||H1(Ω) for any φ ∈ C∞(Ω̄).

Hence the application γ : φ 7→ φ|∂Ω extends continuously to an application of

γ : H1(Ω)→ L2(∂Ω). γ(v) is called the trace of v and is still denoted by v|∂Ω.
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Reminders on weak formulations

Definition 2

We denote by H1
0 (Ω) the space

H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0}.

Proposition 2 (Green formula)

Let u, v ∈ H1(Ω). Then ∫
Ω

∂u

∂xi
dx =

∫
∂Ω

unidσ

where n = (n1, . . . , nd) is the outward normal to Ω.

We find therefore, assuming enough regularity∫
Ω

−div(A∇u)vdx =

∫
Ω

A∇u · ∇vdx −
∫
∂Ω

vA∇u · ndσ =

∫
Ω

A∇u · ∇vdx

if v = 0 on ∂Ω.
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Reminders on weak formulations

Find u ∈ H1
0 (Ω) such that

∫
Ω

A(x)∇u · ∇vdx =

∫
Ω

fvdx for any v ∈ H1
0 (Ω)

Proposition 3 (Lax Milgram’s theorem)

Let V be a Hilbert space and a : V × V → R be a coercive symmetric bilinear form:

I a(λu + v ,w) = λa(u,w) + a(v ,w) and a(u, v) = a(v , u) for any u, v ,w ∈ V , λ ∈ R,

I |a(u, v)| ≤ C ||u||V ||v ||V for any u, v ∈ V with C > 0,

I a(u, u) > C ||u||2V for any u ∈ V with C > 0.

Then for any b ∈ V ′, there exists a unique u ∈ V solving the variational formulation

Find u ∈ V such that ∀v ∈ V , a(u, v) = b(v).

Here, V = H1
0 (Ω), a(u, v) =

∫
Ω

A(x)∇u · ∇vdx , b(v) =

∫
Ω

fvdx .
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Reminders on weak formulations

Proposition 4 (Poincaré inequality)

Assume Ω is a smooth bounded domain. There exists C > 0 such that∫
Ω

|∇u|2dx > C

∫
Ω

|u|2dx for any u ∈ H1
0 (Ω).

Proof.

Assume the result is wrong. Then there exists a sequence (un)n∈N such that∫
Ω

|∇un|2dx ≤ 1

n

∫
Ω

|un|2dx . Up to a rescaling, we may assume that

∫
Ω

|un|2dx = 1. Then

||∇un||L2(Ω) → 0 while ||un||H1(Ω) remains bounded. By the Rellich theorem, we may

assume, up to extracting a subsequence, that un → u strongly in L2(Ω) for some
u ∈ H1(Ω). Since ||∇un||L2(Ω) → 0, the convergence is in fact strong in H1(Ω) and we

obtain that ∇u = 0, hence u is constant on Ω. Since un ∈ H1
0 (Ω), we find that u = 0 on

Ω, which is not possible because ||un||L2(Ω) = 1 implies ||u||L2(Ω) = 1.



Reminders on weak formulations

Proposition 4 (Poincaré inequality)
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Reminders on weak formulations

Corollary:

I if −div(A(x)∇·) is uniformly elliptic, i.e.

∃C > 0 , Aij(x)ξiξj > C |ξ|2 for all ξ ∈ Rd

then

a(u, u) =

∫
Ω

A(x)∇u · ∇udx > C ||∇u||2L2(Ω) > C ||u||H1(Ω)

is a symmetric coercive bilinear form.

I Then the weak formulation

Find u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω), a(u, v) = b(v),

admits a unique solution u ∈ H1
0 (Ω).
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Reminders on the finite element method

The finite element (or Galerkin approximation) method amount to approximate the
variational formulation

Find u ∈ V such that ∀v ∈ V , a(u, v) = b(v),

by
Find uh ∈ such that ∀v ∈ Vh, a(uh, vh) = b(vh), (1)

where Vh ⊂ V is a finite dimensional subspace of V .

Lemma 3

Assume that a satisfies the condition of the Lax-Milgram’s theorem. Then eq. (1) admits a
unique solution uh ∈ Vh which can be obtained by solving a finite-dimensional symmetric
linear system.

Proof.

Let (φi )1≤i≤Nh a basis of Vh. Then if uh =

Nh∑
j=1

uiφi , eq. (1) is equivalent to

find (ui )1≤i≤Nh such that a

(
Nh∑
j=1

ujφj , φi

)
= b(φi ),

that is a(φi , φj)uj = b(φi ), 1 ≤ i ≤ N.
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Reminders on the finite element method

I The matrix Ah = (a(φi , φj))1≤i,j≤Nh is called the rigidity matrix.

I When using the finite element method, it is common to numerically approximate the
domain Ω by a triangular or tetrahedral mesh Th = ∪N

i=1Ti with N triangles/tetrahedra
Ti with size h

Figure: Triangular and tetrahedral meshes of a square and a cube.

I Typically, h is the maximum element size (maximum edge size, or maximum height of
a tetrahedron)

I It is common to use Pk(Th)-Lagrange finite elements for the space Vh:

Pk(Th) = {v continuous on Th | vTi is a polynomial of degree less than k}.
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Reminders on the finite element method

I Under reasonable assumptions on the mesh Th it is possible to prove that the
variational approximation is convergent:

lim
h→0
||u − uh||H1(Ω) = 0.

Moreover, if u ∈ Hk+1(Ω) , then we have the error estimate

||u − uh||H1(Ω) ≤ Chk ||u||Hk+1(Ω)

for some constant C > 0 independent of u and h.

I there is no need to use higher order finite element if the solution is only in H1(Ω).
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Reminders on the finite element method

I The equation {
−div(A∇u) = f in Ω,

u = 0 on ∂Ω.

is called the strong formulation of the model.

I In numerical practice we work with the weak formulation:

Find u ∈ H1
0 (Ω) such that

∫
Ω

A(x)∇u · ∇vdx =

∫
Ω

fvdx for any v ∈ H1
0 (Ω)

I Regularity estimates show that if f ∈ Hk(Ω), then u ∈ Hk+2(Ω).



Reminders on the finite element method

Numerical solution in FreeFEM:

Figure: Numerical solution of the membrane problem with uniform A = I and f = −1 on an
annulus domain Ω.



Formulation of a shape optimization problem

The design problem is determined by the choice of:

I an objective function J(Ω, h, u) corresponding to a measure of the performance,

I equality or inequality constraints Gi or Hi corresponding to some specifications,

I a design variable and an admissible set : thickness h(x) of the membrane, shape of
the domain Ω
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Formulation of a shape optimization problem

A common objective function: the compliance b(u):

J(u) :=

∫
Ω

fudx =

∫
Ω

A∇u · ∇udx =

∫
Ω

h(x)|∇u|2dx .

I J(u) is the work of the external force f ; the smallest it is and the largest is the rigidity
of the membrane

I J(u) depends on h and Ω through the solution u ≡ uΩ.

We may want to consider constraints:

I Volume constraint on the shape Ω:

Vol(Ω) :=

∫
Ω

dx = Vol0.

I Perimeter constraint:

Per(Ω) :=

∫
∂Ω

dσ = Per0.

I Minimum and maximum thickness if the design variable is h:

∀x ∈ Ω, hmin ≤ h(x) ≤ hmax(x)

In that case, we need to deal with a point-wise constraint.
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Formulation of a shape optimization problem

For instance, an optimal design problem of the membrane reads

min
Ω

J(uΩ) :=

∫
Ω

fudx

s.t.

{
Vol(Ω) :=

∫
Ω

dx = Vol0.

and uΩ ∈ H1
0 (Ω) is solution to a(uΩ, v) = b(v) for all v ∈ H1

0 (Ω).



Formulation of a shape optimization problem

For other physical models posed on bounded domains, the methodology is similar:

I determining the weak formulation of the PDE,

I being sure of the well-posedness, regularity of the solution,

I devising a numerical method to solve the forward problem.

I formulating an optimal design problem: modelling of the performance through an
objective function, and of the specification constraints.
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Outline

1. The membrane’s equation, reminders on FEM and weak formulations

2. Linear elasticity

3. Fluid flows

4. Heat diffusion

5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions
5.3 thermoelasticity



Linear elasticity

Figure: A cantilever beam subjected to traction
forces on ΓN and zero displacement on ΓD .
Figure from Allaire, 2004.


−div(σs(u)) = f in Ω

u = 0 on ΓD

σs(u) · n = g on ΓN

σs(u) · n = 0 on Γ

σs(u) := Ae(u) ∈ Rd×d is the strain or solid stress tensor. The Hooke’s law states that

Ae(u) = 2µe(u) + λTr(e(u))I with e(u) :=
∇u +∇uT

2
.

µ and λ are the Lamé coefficients, related to the Young modulus and Poisson ratio from
the formula:

λ =
νE

(1 + ν)(1− (d − 1)ν)
, µ =

E

2(1 + ν)
.
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Linear elasticity

The weak formulation of 
−div(Ae(u)) = f in Ω

u = 0 on ΓD

Ae(u) · n = g on ΓN

Ae(u) · n = 0 on Γ

is find u ∈ H1
0 (Ω,Rd) such that for any v ∈ H1

0 (Ω,Rd),∫
Ω

Ae(u) : e(v)dx =

∫
Ω

f · vdx +

∫
ΓN

g · vdσ,

where
H1

0 (Ω,Rd) = {v ∈ H1(Ω,Rd) | v = 0 on ΓD}.
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Linear elasticity

The compliance minimization problem reads

min
Ω⊂D

J(Ω, u(Ω)) :=

∫
Ω

f · udx +

∫
ΓN

g · vdσ =

∫
Ω

Ae(u) : e(u)dx

s.t. Vol(Ω) :=

∫
Ω

dx = Vtarget .

g

0.2

ΓD

ΓD

ΓN

D

Figure: Setting of the cantilever optimization problem.



Linear elasticity

I Ideally, the industry seeks to consider rather the mass minimization problem

min
Ω⊂D

Vol(Ω)

s.t. e(u) : e(u)(x) ≤ VM0 for any x ∈ Ω,

where the constraint imposes a Von-Mises upper bound on the strain energy to
prevent premature fatigue. This point-wise stress constraint is delicate to implement.

I Non-linear models or more complex constitutive laws can be considered to account for
plasticity or more realistic phenomena.
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Fluid flows

The motion of a flow can be modelled by the (transient) Navier-Stokes equations:

D

Ωf

∂ΩD
f

∂ΩN
f

Γ

∂ΩD
f

∂ΩD
f



∂tv − div(σf (v , p)) + ρ∇v v = ff in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩD
f

σf (v , p)n = 0 on ∂ΩN
f

v = 0 on Γ,

I v is the fluid velocity field, p is the (static) pressure, ρ is the fluid density.

I σf (v , p) is the fluid stress tensor. For Newtonian fluids, we have

σf (v , p) = 2νe(v)− pI , e(v) =
∇v +∇vT

2

where ν is the (dynamic) fluid viscosity, so that −div(σf (v , p)) = −ν∆v +∇p.
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∇v +∇vT

2

where ν is the (dynamic) fluid viscosity, so that −div(σf (v , p)) = −ν∆v +∇p.
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1≤i≤d

;

I div(v) = 0 states that the fluid is incompressible;

I v = 0 on the solid walls: the fluid sticks on them.

I v = v0 on ∂ΩD
f : inlet boundary condition,

I σf (v , p) · n = 0 on ∂ΩN
f : outlet boundary condition.
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Fluid flows

Remark: the time-derivative ∂tv can be delicate to handle in an optimal design problem:

∂tv − div(σf (v , p)) + ρ∇v v = ff in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩD
f

σf (v , p)n = 0 on ∂ΩN
f

v = 0 on Γ,

I when formulating the design problem, one generally is not interested in the transient
behavior of the system but rather on a steady-state (∂tv = 0), or on a time-period in
usage condition.

I numerically, the time dependence adds an extra dimension to the problem which is
hard to handle: needs to store all the intermediate time steps and to solve a backward
adjoint problem with terminal condition.

We may assume in many practical cases that ∂tv = 0, v does not depend on time.
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Fluid flows

I The Reynolds number is the ratio between convection ρ∇vv and diffusion ν∆v . It can
be estimated as

Re :=
ρL||v0||

ν

where L is a characteristic size of the problem (e.g. the width of the inlet).

I There is no universal definition because L can be chosen differently !

I However, when Re is large (typically Re > 103), convection effects dominate and the
numerical simulation maybe very difficult to solve due to turbulence and boundary
layer effects
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Fluid flows

Figure: Example of turbulent flows featuring vortices. Images from Wikipedia and
https://studiousguy.com/turbulent-flow-examples/

I It is difficult to resolve the Navier-Stokes equations when Re starts to be greater than
103. The best large scale simulations do not go much larger than Re = 6000.

I In the aeronautic industry, a flight encounters Reynolds number of the order of 106.

I A variety of turbulence models (Large Eddy Simulation (LES), Reynold Average
Navier Stokes (RANS). . . ) are commonly used in the aeronautic industry to obtain
approximate simulation of turbulent flows.

https://studiousguy.com/turbulent-flow-examples/
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Fluid flows

For our applications, we will assume moderate Reynolds number (Re ≤ 500). The
steady-state Navier-Stokes equations are nonlinear and requires a different numerical
treatment:

I the nonlinearity can be solved using the Newton method. (v , p) are solutions to the
following variational problem: find (v , p) ∈ v0 + Vv,p(Γ) such that

∀(w , q) ∈ Vv,p(Γ)

∫
Ωf

[σf (v , p) : ∇w + ρw · ∇v · v − qdiv(v)] dx =

∫
Ωf

ff · wdx ;

where Vv,p(Γ) = {(w , q) ∈ H1(Ωf ,Rd)× L2(Ωf )/R |w = 0 on ∂Ωf }.

I At each Newton step, an increment (δvk , δpk) is computed by solving the linearized
Navier-Stokes equations

Find (δvk , δpk) ∈ Vv,p(Γ) such that ∀(w , q) ∈ Vv,p(Γ),∫
Ωf

[σf (δvk , δpk) : ∇w + ρw · ∇vk · δvk + ρw · ∇(δvk) · vk − qdiv(δvk)− δpkdiv(w)] dx

=

∫
Ωf

ff · wdx .

I The next iterate (vk+1, pk+1) is then obtained by setting
vk+1 := vk + δvk , pk+1 := pk + δpk .
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Fluid flows

Remarks:

I One needs different discretization spaces for the velocity and pressure for numerical
stability, typically P1b/P1.

I Existence and uniqueness of solutions to the time-dependent NS equations is
guaranteed in 2D. Uniqueness of strong solutions is an open question in 3D.

I Existence and uniqueness of a solution to the steady-state NS equation is guaranteed
for low Reynolds number (by a perturbation argument of the Stokes system).

I For large Reynolds number, there may exist several solutions to the NS equations (due
to nonlinearity). The relevance of the physical modelling can then be questioned
because the trajectories of the solutions generally converge to a limit cycle (or worse,
to a global attractor) and not to a steady state.
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Fluid flows

Common design functionals:

I The drag or sum of the friction forces:

Drag(Γ, v(Γ), p(Γ)) :=

∫
Ωf

σf (v , p) : ∇vdx =

∫
Ωf

2νe(v) : e(v)dx .

(It is the equivalent of the compliance for fluids)

I The lift or forces generated by the flow around an obstacle along one direction:

Lift(Γ, v(Γ), p(Γ)) := −
∫

Γ

ey · σf (v , p) · nds,
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Fluid flows

Typical aerodynamic design problem:

v = v0

v · n = 0

v · n = 0

Ωs

Ωf

Γ

Figure: Setting of the aerodynamic
design problem.

min − Lift(Γ, v(Γ), p(Γ))

s.t.


Drag(Γ, v(Γ), p(Γ)) ≤ DRAG0

Vol(Ωf ) = V0

X (Ωs) :=
1

|Ωs |

∫
Ωs

xdx = x0.



Fluid flows

Remarks:

I the functional Drag(Γ, v(Γ), p(Γ)) is also a measure analogous to the (static) pressure
drop:

DP(Ωf ) :=

∫
∂Ωf ,out

pdσ −
∫
∂Ωf ,in

pdσ.

I this quantity is not numerically well-behaved because the pressure belongs to L2(Ωf )
and may not have in general a well defined trace numerically.

I This problem also arises for the Lift functional, but can be bypassed by resorting to an
equivalent volume formulation.

Lift(Γ) =

∫
Ωf

(X ff · ey − ρX ey · ∇v · v −∇X · σf (v , p) · ey )dx

where X is a scalar field satisfying X = 1 on ∂Ωs .
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Outline

1. The membrane’s equation, reminders on FEM and weak formulations

2. Linear elasticity

3. Fluid flows

4. Heat diffusion

5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions
5.3 thermoelasticity



Heat diffusion
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D

Γ

Figure: A bi-material distrubution of two
conductive media with conductivity ks and kv .



−div(kf∇Tf ) = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

T = T0 on ∂ΩD
T

−kf
∂Tf

∂n
= h on ∂ΩN

T ∩ ∂Ωf

−ks
∂Ts

∂n
= h on ∂ΩN

T ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf

∂n
= −ks

∂Ts

∂n
on Γ,

I kf , ks : conductivity coefficients in Ωf , Ωs ;

I Qf , Qs : volume heat sources

I T0: prescribed temperature on isothermal boundary ∂ΩD
T .

I h: heat loss on the boundary ∂ΩN
T . If h = 0, we say that the boundary is adiabatic.
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T . If h = 0, we say that the boundary is adiabatic.



Heat diffusion

The variational formulation reads find T ∈ T0 + VT (Γ) such that, for any S ∈ VT (Γ),∫
Ωs

ks∇T · ∇Sdx +

∫
Ωf

kf∇T · ∇Sdx =

∫
Ωs

QsSdx +

∫
Ωf

Qf Sdx +

∫
∂ΩN

T

hSds.

where
VT (Γ) = {S ∈ H1(D) | S = 0 on ∂ΩD

T},

Not harder to solve than a Laplacian.
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Heat diffusion

Minimizing the average temperature with a cooling material Ωf :

∂ΩD
T

T = T0

∂ΩN
T ,
∂T

∂n
= 0

Ωf , kf Ωs , ks

D

Γ

Figure: A bi-material distrubution of two
conductive media with conductivity ks and kv .

min
Γ

J(Γ,T (Γ)) =

∫
D

Tdx

s.t. Vol(Ωf ) ≤ Vtarget .



Outline

1. The membrane’s equation, reminders on FEM and weak formulations

2. Linear elasticity

3. Fluid flows

4. Heat diffusion
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5.1 convective heat transfer
5.2 fluid-structure interactions
5.3 thermoelasticity



Coupled physics
Convective heat transfer

I The heat density carried out through convective transport by an incompressible flow v
is given by

−ρcpdiv(vTf ) = −ρcpv · ∇Tf

where ρ is the fluid density and cp the heat capacity of the fluid.

I Once v is determined by the Navier-Stokes equations. . .

−div(σf (v , p)) + ρ∇v v = ff in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩD
f

σf (v , p)n = 0 on ∂ΩN
f

v = 0 on Γ
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Coupled physics
Convective heat transfer

I then one can solve the advection-diffusion equation

−div(kf∇Tf )+ρcpv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

T = T0 on ∂ΩD
T

−kf
∂Tf

∂n
= h on ∂ΩN

T ∩ ∂Ωf

−ks
∂Ts

∂n
= h on ∂ΩN

T ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf

∂n
= −ks

∂Ts

∂n
on Γ,
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Coupled physics
Convective heat transfer

An optimal heat transfer test case:

Figure: Setting of a convective heat transfer test case.

min
Γ

J(Γ, v(Γ),T (Γ)) := −
∫

Ωf

ρcpv · ∇Tdx

s.t.


DP(p(Γ)) :=

∫
∂ΩD

f

pds −
∫
∂ΩN

f

pds ≤ DPstatic

Vol(Ωf ) = Vtarget .
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ρcpT0(v0 · n)ds.
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Fluid-structure interactions
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Fluid-structure interactions can be modelled by:

I v = 0 on the deformed solid interface: v(x + u(x)) = 0 for x ∈ Γ;

I Equality of the normal stresses on the deformed solid interface:
σs(u)n = Ae(u) · n = σf (v , p) · n on x ∈ (I + u)(Γ).

However, the equations of linear elasticity assume that u is small. Therefore a convenient,
straightforward approximation is

v = 0 and σs(u)n = Ae(u) · n = σf (v , p) · n on Γ. (2)

The fluid-structure interaction can be modelled by an extra-Neumann boundary condition
on the solid interface.
The model is weakly coupled.
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Fluid-structure interactions

One can still maximize the rigidity of the solid structure, which is forced by the incoming
flow:

min
Γ

J(Γ, u(Γ)) =

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) = Vtarget .

The variable u(Γ) depends implicitly on v(Γ)!
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Thermoelasticity

I Thermal dilation due to an elevated temperature T can be modelled by an extra term
in the Hooke’s law:

σs(u,Ts) := Ae(u)− α(Ts − Tref)I with Ae(u) = 2µe(u) + λTr(e(u))I .

I α > 0 is called the thermal expansion coefficient and Tref is the temperature at rest.

I Thermoelasticity can be coupled to the convection-diffusion model which determines
the temperature field Ts
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A three-physics weakly coupled model
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I Incompressible Navier-Stokes equations for velocity and pressure (v , p) inΩf

−div(σf (v , p)) + ρ∇v v = ff in Ωf

I Convection-diffusion for the temperature T in Ωf and in Ωs :

−div(kf∇Tf ) + ρv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

I Linear elasticity with fluid-structure interaction for mechanical deformation u in Ωs :

−div(σs(u,Ts)) = fs in Ωs

σs(u,Ts) · n= σf (v , p) · n on Γ.
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Exercise

Implement one of the physical models of your choice in FreeFEM: write a PDE solver that
computes u, T , or (v , p) for a simple domain geometry.

I https://doc.freefem.org

I https://modules.freefem.org/

https://doc.freefem.org
https://modules.freefem.org/

