Lecture 4: physical models in mechanical and aeronautic engineering, numerical solutions, formulation of optimal design problems

Florian Feppon

Spring 2022 - Seminar for Applied Mathematics

ETHzürich

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions
5.3 thermoelasticity

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions 5.3 thermoelasticity

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions
thermoelasticity

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions
5.3 thermoelasticity

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

A non-exhaustive review of shape and topology optimization techniques

 Shape optimization problemsShape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.

A non-exhaustive review of shape and topology optimization techniques

Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

A non-exhaustive review of shape and topology optimization techniques

Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized

A non-exhaustive review of shape and topology optimization techniques

Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
- J is an objective function to minimize (corresponding to a measure of the performance)

A non-exhaustive review of shape and topology optimization techniques

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
- J is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)

A non-exhaustive review of shape and topology optimization techniques

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
$-J$ is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)
- $\mathcal{U}_{\mathrm{ad}}$ is the set of admissible shapes.

A non-exhaustive review of shape and topology optimization techniques

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
$-J$ is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)
- $\mathcal{U}_{\mathrm{ad}}$ is the set of admissible shapes.

A non-exhaustive review of shape and topology optimization techniques

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
- J is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)
- $\mathcal{U}_{\mathrm{ad}}$ is the set of admissible shapes.

In industrial applications, $J(\Omega), G_{i}(\Omega)$ or $H_{j}(\Omega)$ involve the solution u_{Ω} defined with respect to a PDE model posed on Ω.

The membrane's equation

Figure: A membrane with variable height $h(x)$. Figure from Allaire 2004.

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

The membrane's equation

Figure: A membrane with variable height $h(x)$. Figure from Allaire 2004.

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

$\checkmark u(x)$ is the vertical displacement,

The membrane's equation

Figure: A membrane with variable height $h(x)$. Figure from Allaire 2004.

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

- $u(x)$ is the vertical displacement,
- $A \equiv A(x)=h(x) /$ is the strain tensor, the deformation $\nabla u(x)$ yields a local force of magnitude $A(x) \nabla u(x) \cdot \boldsymbol{n}(x)$ on the facets of an elementary domain

The membrane's equation

Figure: A membrane with variable height $h(x)$. Figure from Allaire 2004.

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

- $u(x)$ is the vertical displacement,
- $A \equiv A(x)=h(x) I$ is the strain tensor, the deformation $\nabla u(x)$ yields a local force of magnitude $A(x) \nabla u(x) \cdot \boldsymbol{n}(x)$ on the facets of an elementary domain
- $f(x)$ is a distribution of forces applied on the membrane (e.g. a pressure distribution)

The membrane's equation

Figure: A membrane with variable height $h(x)$. Figure from Allaire 2004.

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

- $u(x)$ is the vertical displacement,
- $A \equiv A(x)=h(x) I$ is the strain tensor, the deformation $\nabla u(x)$ yields a local force of magnitude $A(x) \nabla u(x) \cdot \boldsymbol{n}(x)$ on the facets of an elementary domain
- $f(x)$ is a distribution of forces applied on the membrane (e.g. a pressure distribution)
- the membrane is clamped on the boundary of Ω whence $u=0$ on $\partial \Omega$

The membrane's equation

- The equation

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}\right.
$$

is called the strong formulation of the model.

The membrane's equation

- The equation

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega, \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

is called the strong formulation of the model.

- In numerical practice we work with the weak formulation:

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x \text { for any } v \in H_{0}^{1}(\Omega)
$$

Reminders on weak formulations

Definition 1

Let $\Omega \subset \mathbb{R}^{d}$ a smooth bounded domain. We denote by $H^{1}(\Omega)$ the Sobolev space

$$
H^{1}(\Omega)=\left\{v \mid v \in L^{2}(\Omega) \text { and } \nabla v \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)\right\} .
$$

Reminders on weak formulations

Definition 1

Let $\Omega \subset \mathbb{R}^{d}$ a smooth bounded domain. We denote by $H^{1}(\Omega)$ the Sobolev space

$$
H^{1}(\Omega)=\left\{v \mid v \in L^{2}(\Omega) \text { and } \nabla v \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)\right\} .
$$

We denote by $\|v\|_{H^{1}(\Omega)}:=\|v\|_{L^{2}(\Omega)}+\|\nabla v\|_{L^{2}(\Omega)}$ the norm on $H^{1}(\Omega)$, which is a Hilbert space for the inner product

$$
(u, v)_{H^{1}(\Omega)}:=\int_{\Omega}(u v+\nabla u \cdot \nabla v) \mathrm{d} x .
$$

Reminders on weak formulations

Definition 1

Let $\Omega \subset \mathbb{R}^{d}$ a smooth bounded domain. We denote by $H^{1}(\Omega)$ the Sobolev space

$$
H^{1}(\Omega)=\left\{v \mid v \in L^{2}(\Omega) \text { and } \nabla v \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)\right\} .
$$

We denote by $\|v\|_{H^{1}(\Omega)}:=\|v\|_{L^{2}(\Omega)}+\|\nabla v\|_{L^{2}(\Omega)}$ the norm on $H^{1}(\Omega)$, which is a Hilbert space for the inner product

$$
(u, v)_{H^{1}(\Omega)}:=\int_{\Omega}(u v+\nabla u \cdot \nabla v) \mathrm{d} x .
$$

Proposition 1

There exists a constant $C>0$ such that

$$
\|\phi\|_{L^{2}(\partial \Omega)} \leq C\|\phi\|_{H^{1}(\Omega)} \text { for any } \phi \in \mathcal{C}^{\infty}(\bar{\Omega}) .
$$

Hence the application $\gamma: \phi \mapsto \phi_{\mid \partial \Omega}$ extends continuously to an application of $\gamma: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega) . \gamma(v)$ is called the trace of v and is still denoted by $v_{\mid \partial \Omega}$.

Reminders on weak formulations

Definition 2

We denote by $H_{0}^{1}(\Omega)$ the space

$$
H_{0}^{1}(\Omega):=\left\{v \in H^{1}(\Omega) \mid v_{\mid \partial \Omega}=0\right\}
$$

Reminders on weak formulations

Definition 2

We denote by $H_{0}^{1}(\Omega)$ the space

$$
H_{0}^{1}(\Omega):=\left\{v \in H^{1}(\Omega) \mid v_{\mid \partial \Omega}=0\right\} .
$$

Proposition 2 (Green formula)
Let $u, v \in H^{1}(\Omega)$. Then

$$
\int_{\Omega} \frac{\partial u}{\partial x_{i}} \mathrm{~d} x=\int_{\partial \Omega} u n_{i} \mathrm{~d} \sigma
$$

where $\boldsymbol{n}=\left(n_{1}, \ldots, n_{d}\right)$ is the outward normal to Ω.

Reminders on weak formulations

Definition 2

We denote by $H_{0}^{1}(\Omega)$ the space

$$
H_{0}^{1}(\Omega):=\left\{v \in H^{1}(\Omega) \mid v_{\mid \partial \Omega}=0\right\} .
$$

Proposition 2 (Green formula)
Let $u, v \in H^{1}(\Omega)$. Then

$$
\int_{\Omega} \frac{\partial u}{\partial x_{i}} \mathrm{~d} x=\int_{\partial \Omega} u n_{i} \mathrm{~d} \sigma
$$

where $\boldsymbol{n}=\left(n_{1}, \ldots, n_{d}\right)$ is the outward normal to Ω.
We find therefore, assuming enough regularity

$$
\int_{\Omega}-\operatorname{div}(A \nabla u) v \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial \Omega} v A \nabla u \cdot n \mathrm{~d} \sigma=\int_{\Omega} A \nabla u \cdot \nabla v \mathrm{~d} x
$$

if $v=0$ on $\partial \Omega$.

Reminders on weak formulations

- The equation

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

is called the strong formulation of the model.

- In numerical practice we work with the weak formulation:

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x \text { for any } v \in H_{0}^{1}(\Omega)
$$

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Proposition 3 (Lax Milgram's theorem)

Let V be a Hilbert space and a : $V \times V \rightarrow \mathbb{R}$ be a coercive symmetric bilinear form:

- $a(\lambda u+v, w)=\lambda a(u, w)+a(v, w)$ and $a(u, v)=a(v, u)$ for any $u, v, w \in V, \lambda \in \mathbb{R}$,

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Proposition 3 (Lax Milgram's theorem)

Let V be a Hilbert space and a : $V \times V \rightarrow \mathbb{R}$ be a coercive symmetric bilinear form:

- $a(\lambda u+v, w)=\lambda a(u, w)+a(v, w)$ and $a(u, v)=a(v, u)$ for any $u, v, w \in V, \lambda \in \mathbb{R}$,
- $|a(u, v)| \leq C\|u\| v\|v\|_{v}$ for any $u, v \in V$ with $C>0$,

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Proposition 3 (Lax Milgram's theorem)

Let V be a Hilbert space and a : $V \times V \rightarrow \mathbb{R}$ be a coercive symmetric bilinear form:

- $a(\lambda u+v, w)=\lambda a(u, w)+a(v, w)$ and $a(u, v)=a(v, u)$ for any $u, v, w \in V, \lambda \in \mathbb{R}$,
- $|a(u, v)| \leq C\|u\| v\|v\|_{v}$ for any $u, v \in V$ with $C>0$,
- $a(u, u) \geqslant C\|u\|_{V}^{2}$ for any $u \in V$ with $C>0$.

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Proposition 3 (Lax Milgram's theorem)

Let V be a Hilbert space and a : $V \times V \rightarrow \mathbb{R}$ be a coercive symmetric bilinear form:

- $a(\lambda u+v, w)=\lambda a(u, w)+a(v, w)$ and $a(u, v)=a(v, u)$ for any $u, v, w \in V, \lambda \in \mathbb{R}$,
- $|a(u, v)| \leq C\|u\| v\|v\|_{v}$ for any $u, v \in V$ with $C>0$,
- $a(u, u) \geqslant C\|u\|_{V}^{2}$ for any $u \in V$ with $C>0$.

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Proposition 3 (Lax Milgram's theorem)

Let V be a Hilbert space and a : $V \times V \rightarrow \mathbb{R}$ be a coercive symmetric bilinear form:

- $a(\lambda u+v, w)=\lambda a(u, w)+a(v, w)$ and $a(u, v)=a(v, u)$ for any $u, v, w \in V, \lambda \in \mathbb{R}$,
- $|a(u, v)| \leq C\|u\|_{v}\|v\|_{v}$ for any $u, v \in V$ with $C>0$,
- $a(u, u) \geqslant C\|u\|_{V}^{2}$ for any $u \in V$ with $C>0$.

Then for any $b \in V^{\prime}$, there exists a unique $u \in V$ solving the variational formulation
Find $u \in V$ such that $\forall v \in V, a(u, v)=b(v)$.

Reminders on weak formulations

Find $u \in H_{0}^{1}(\Omega)$ such that $\int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v d x$ for any $v \in H_{0}^{1}(\Omega)$

Proposition 3 (Lax Milgram's theorem)

Let V be a Hilbert space and a : $V \times V \rightarrow \mathbb{R}$ be a coercive symmetric bilinear form:

- $a(\lambda u+v, w)=\lambda a(u, w)+a(v, w)$ and $a(u, v)=a(v, u)$ for any $u, v, w \in V, \lambda \in \mathbb{R}$,
- $|a(u, v)| \leq C\|u\|_{v}\|v\|_{v}$ for any $u, v \in V$ with $C>0$,
- $a(u, u) \geqslant C\|u\|_{V}^{2}$ for any $u \in V$ with $C>0$.

Then for any $b \in V^{\prime}$, there exists a unique $u \in V$ solving the variational formulation
Find $u \in V$ such that $\forall v \in V, a(u, v)=b(v)$.
Here, $V=H_{0}^{1}(\Omega), a(u, v)=\int_{\Omega} A(x) \nabla u \cdot \nabla v d x, b(v)=\int_{\Omega} f v d x$.

Reminders on weak formulations

Proposition 4 (Poincaré inequality)
Assume Ω is a smooth bounded domain. There exists $C>0$ such that

$$
\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x \geqslant C \int_{\Omega}|u|^{2} \mathrm{~d} x \text { for any } u \in H_{0}^{1}(\Omega) .
$$

Reminders on weak formulations

Proposition 4 (Poincaré inequality)

Assume Ω is a smooth bounded domain. There exists $C>0$ such that

$$
\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x \geqslant C \int_{\Omega}|u|^{2} \mathrm{~d} x \text { for any } u \in H_{0}^{1}(\Omega) .
$$

Proof.

Assume the result is wrong. Then there exists a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $\int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \leq \frac{1}{n} \int_{\Omega}\left|u_{n}\right|^{2} \mathrm{~d} x$. Up to a rescaling, we may assume that $\int_{\Omega}\left|u_{n}\right|^{2} \mathrm{~d} x=1$. Then $\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)} \rightarrow 0$ while $\left\|u_{n}\right\|_{H^{1}(\Omega)}$ remains bounded. By the Rellich theorem, we may assume, up to extracting a subsequence, that $u_{n} \rightarrow u$ strongly in $L^{2}(\Omega)$ for some $u \in H^{1}(\Omega)$. Since $\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)} \rightarrow 0$, the convergence is in fact strong in $H^{1}(\Omega)$ and we obtain that $\nabla u=0$, hence u is constant on Ω. Since $u_{n} \in H_{0}^{1}(\Omega)$, we find that $u=0$ on Ω, which is not possible because $\left\|u_{n}\right\|_{L^{2}(\Omega)}=1$ implies $\|u\|_{L^{2}(\Omega)}=1$.

Reminders on weak formulations

Corollary:

- if $-\operatorname{div}(A(x) \nabla \cdot)$ is uniformly elliptic, i.e.

$$
\exists C>0, A_{i j}(x) \xi_{i} \xi_{j} \geqslant C|\boldsymbol{\xi}|^{2} \text { for all } \boldsymbol{\xi} \in \mathbb{R}^{d}
$$

then

$$
a(u, u)=\int_{\Omega} A(x) \nabla u \cdot \nabla u \mathrm{~d} x \geqslant C\|\nabla u\|_{L^{2}(\Omega)}^{2} \geqslant C\|u\|_{H^{1}(\Omega)}
$$

is a symmetric coercive bilinear form.

Reminders on weak formulations

Corollary:

- if $-\operatorname{div}(A(x) \nabla \cdot)$ is uniformly elliptic, i.e.

$$
\exists C>0, A_{i j}(x) \xi_{i} \xi_{j} \geqslant C|\boldsymbol{\xi}|^{2} \text { for all } \boldsymbol{\xi} \in \mathbb{R}^{d}
$$

then

$$
a(u, u)=\int_{\Omega} A(x) \nabla u \cdot \nabla u \mathrm{~d} x \geqslant C\|\nabla u\|_{L^{2}(\Omega)}^{2} \geqslant C\|u\|_{H^{1}(\Omega)}
$$

is a symmetric coercive bilinear form.

- Then the weak formulation

Find $u \in H_{0}^{1}(\Omega)$ such that $\forall v \in H_{0}^{1}(\Omega), a(u, v)=b(v)$,
admits a unique solution $u \in H_{0}^{1}(\Omega)$.

Reminders on the finite element method

The finite element (or Galerkin approximation) method amount to approximate the variational formulation

$$
\text { Find } u \in V \text { such that } \forall v \in V, a(u, v)=b(v)
$$

by

$$
\begin{equation*}
\text { Find } u_{h} \in \text { such that } \forall v \in V_{h}, a\left(u_{h}, v_{h}\right)=b\left(v_{h}\right) \tag{1}
\end{equation*}
$$

Reminders on the finite element method

The finite element (or Galerkin approximation) method amount to approximate the variational formulation

$$
\text { Find } u \in V \text { such that } \forall v \in V, a(u, v)=b(v)
$$

by

$$
\begin{equation*}
\text { Find } u_{h} \in \text { such that } \forall v \in V_{h}, a\left(u_{h}, v_{h}\right)=b\left(v_{h}\right) \tag{1}
\end{equation*}
$$

where $V_{h} \subset V$ is a finite dimensional subspace of V.

Reminders on the finite element method

The finite element (or Galerkin approximation) method amount to approximate the variational formulation

$$
\text { Find } u \in V \text { such that } \forall v \in V, a(u, v)=b(v)
$$

by

$$
\begin{equation*}
\text { Find } u_{h} \in \text { such that } \forall v \in V_{h}, a\left(u_{h}, v_{h}\right)=b\left(v_{h}\right) \tag{1}
\end{equation*}
$$

where $V_{h} \subset V$ is a finite dimensional subspace of V.

Lemma 3

Assume that a satisfies the condition of the Lax-Milgram's theorem. Then eq. (1) admits a unique solution $u_{h} \in V_{h}$ which can be obtained by solving a finite-dimensional symmetric linear system.

Reminders on the finite element method

The finite element (or Galerkin approximation) method amount to approximate the variational formulation

$$
\text { Find } u \in V \text { such that } \forall v \in V, a(u, v)=b(v)
$$

by

$$
\begin{equation*}
\text { Find } u_{h} \in \text { such that } \forall v \in V_{h}, a\left(u_{h}, v_{h}\right)=b\left(v_{h}\right) \tag{1}
\end{equation*}
$$

where $V_{h} \subset V$ is a finite dimensional subspace of V.

Lemma 3

Assume that a satisfies the condition of the Lax-Milgram's theorem. Then eq. (1) admits a unique solution $u_{h} \in V_{h}$ which can be obtained by solving a finite-dimensional symmetric linear system.

Proof.
Let $\left(\phi_{i}\right)_{1 \leq i \leq N_{h}}$ a basis of V_{h}. Then if $u_{h}=\sum_{j=1}^{N_{h}} u_{i} \phi_{i}$, eq. (1) is equivalent to

$$
\text { find }\left(u_{i}\right)_{1 \leq i \leq N_{h}} \text { such that } a\left(\sum_{j=1}^{N_{h}} u_{j} \phi_{j}, \phi_{i}\right)=b\left(\phi_{i}\right)
$$

that is $a\left(\phi_{i}, \phi_{j}\right) u_{j}=b\left(\phi_{i}\right), \quad 1 \leq i \leq N$.

Reminders on the finite element method

- The matrix $A_{h}=\left(a\left(\phi_{i}, \phi_{j}\right)\right)_{1 \leq i, j \leq N_{h}}$ is called the rigidity matrix.

Reminders on the finite element method

- The matrix $A_{h}=\left(a\left(\phi_{i}, \phi_{j}\right)\right)_{1 \leq i, j \leq N_{h}}$ is called the rigidity matrix.
- When using the finite element method, it is common to numerically approximate the domain Ω by a triangular or tetrahedral mesh $\mathcal{T}_{h}=\cup_{i=1}^{N} T_{i}$ with N triangles/tetrahedra T_{i} with size h

Figure: Triangular and tetrahedral meshes of a square and a cube.

Reminders on the finite element method

- The matrix $A_{h}=\left(a\left(\phi_{i}, \phi_{j}\right)\right)_{1 \leq i, j \leq N_{h}}$ is called the rigidity matrix.
- When using the finite element method, it is common to numerically approximate the domain Ω by a triangular or tetrahedral mesh $\mathcal{T}_{h}=\cup_{i=1}^{N} T_{i}$ with N triangles/tetrahedra T_{i} with size h

Figure: Triangular and tetrahedral meshes of a square and a cube.

- Typically, h is the maximum element size (maximum edge size, or maximum height of a tetrahedron)

Reminders on the finite element method

- The matrix $A_{h}=\left(a\left(\phi_{i}, \phi_{j}\right)\right)_{1 \leq i, j \leq N_{h}}$ is called the rigidity matrix.
- When using the finite element method, it is common to numerically approximate the domain Ω by a triangular or tetrahedral mesh $\mathcal{T}_{h}=\cup_{i=1}^{N} T_{i}$ with N triangles/tetrahedra T_{i} with size h

Figure: Triangular and tetrahedral meshes of a square and a cube.

- Typically, h is the maximum element size (maximum edge size, or maximum height of a tetrahedron)
- It is common to use $\mathbb{P}_{k}\left(\mathcal{T}_{h}\right)$-Lagrange finite elements for the space V_{h} :

$$
\mathbb{P}_{k}\left(\mathcal{T}_{h}\right)=\left\{v \text { continuous on } \mathcal{T}_{h} \mid v_{T_{i}} \text { is a polynomial of degree less than } k\right\} .
$$

Reminders on the finite element method

- Under reasonable assumptions on the mesh \mathcal{T}_{h} it is possible to prove that the variational approximation is convergent:

$$
\lim _{h \rightarrow 0}\left\|u-u_{h}\right\|_{H^{1}(\Omega)}=0
$$

Moreover, if $u \in H_{k+1}(\Omega)$, then we have the error estimate

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h^{k}\|u\|_{H^{k+1}(\Omega)}
$$

for some constant $C>0$ independent of u and h.

Reminders on the finite element method

- Under reasonable assumptions on the mesh \mathcal{T}_{h} it is possible to prove that the variational approximation is convergent:

$$
\lim _{h \rightarrow 0}\left\|u-u_{h}\right\|_{H^{1}(\Omega)}=0
$$

Moreover, if $u \in H_{k+1}(\Omega)$, then we have the error estimate

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h^{k}\|u\|_{H^{k+1}(\Omega)}
$$

for some constant $C>0$ independent of u and h.

- there is no need to use higher order finite element if the solution is only in $H^{1}(\Omega)$.

Reminders on the finite element method

- The equation

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

is called the strong formulation of the model.

- In numerical practice we work with the weak formulation:

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \int_{\Omega} A(x) \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x \text { for any } v \in H_{0}^{1}(\Omega)
$$

- Regularity estimates show that if $f \in H^{k}(\Omega)$, then $u \in H^{k+2}(\Omega)$.

Reminders on the finite element method

Numerical solution in FreeFEM:

Figure: Numerical solution of the membrane problem with uniform $A=I$ and $f=-1$ on an annulus domain Ω.

Formulation of a shape optimization problem

The design problem is determined by the choice of:

- an objective function $J(\Omega, h, u)$ corresponding to a measure of the performance,

Formulation of a shape optimization problem

The design problem is determined by the choice of:

- an objective function $J(\Omega, h, u)$ corresponding to a measure of the performance,
- equality or inequality constraints G_{i} or H_{i} corresponding to some specifications,

Formulation of a shape optimization problem

The design problem is determined by the choice of:

- an objective function $J(\Omega, h, u)$ corresponding to a measure of the performance,
- equality or inequality constraints G_{i} or H_{i} corresponding to some specifications,
- a design variable and an admissible set : thickness $h(x)$ of the membrane, shape of the domain Ω

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

- $J(u)$ is the work of the external force f; the smallest it is and the largest is the rigidity of the membrane

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

- $J(u)$ is the work of the external force f; the smallest it is and the largest is the rigidity of the membrane
- $J(u)$ depends on h and Ω through the solution $u \equiv u_{\Omega}$.

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

- $J(u)$ is the work of the external force f; the smallest it is and the largest is the rigidity of the membrane
- $J(u)$ depends on h and Ω through the solution $u \equiv u_{\Omega}$.

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

- $J(u)$ is the work of the external force f; the smallest it is and the largest is the rigidity of the membrane
- $J(u)$ depends on h and Ω through the solution $u \equiv u_{\Omega}$.

We may want to consider constraints:

- Volume constraint on the shape Ω :

$$
\operatorname{Vol}(\Omega):=\int_{\Omega} \mathrm{dx}=\operatorname{Vol}_{0} .
$$

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

- $J(u)$ is the work of the external force f; the smallest it is and the largest is the rigidity of the membrane
- $J(u)$ depends on h and Ω through the solution $u \equiv u_{\Omega}$.

We may want to consider constraints:

- Volume constraint on the shape Ω :

$$
\operatorname{Vol}(\Omega):=\int_{\Omega} \mathrm{dx}=\mathrm{Vol}_{0} .
$$

- Perimeter constraint:

$$
\operatorname{Per}(\Omega):=\int_{\partial \Omega} \mathrm{d} \sigma=\operatorname{Per}_{0} .
$$

Formulation of a shape optimization problem

A common objective function: the compliance $b(u)$:

$$
J(u):=\int_{\Omega} f u \mathrm{~d} x=\int_{\Omega} A \nabla u \cdot \nabla u \mathrm{~d} x=\int_{\Omega} h(x)|\nabla u|^{2} \mathrm{~d} x .
$$

- $J(u)$ is the work of the external force f; the smallest it is and the largest is the rigidity of the membrane
- $J(u)$ depends on h and Ω through the solution $u \equiv u_{\Omega}$.

We may want to consider constraints:

- Volume constraint on the shape Ω :

$$
\operatorname{Vol}(\Omega):=\int_{\Omega} \mathrm{dx}=\mathrm{Vol}_{0} .
$$

- Perimeter constraint:

$$
\operatorname{Per}(\Omega):=\int_{\partial \Omega} \mathrm{d} \sigma=\operatorname{Per}_{0} .
$$

- Minimum and maximum thickness if the design variable is h :

$$
\forall x \in \Omega, h_{\min } \leq h(x) \leq h_{\max (x)}
$$

In that case, we need to deal with a point-wise constraint.

Formulation of a shape optimization problem

For instance, an optimal design problem of the membrane reads

$$
\begin{aligned}
& \min _{\Omega} J\left(u_{\Omega}\right):=\int_{\Omega} f u d x \\
& \text { s.t. }\left\{\operatorname{Vol}(\Omega):=\int_{\Omega} \mathrm{dx}=\mathrm{Vol}_{0} .\right.
\end{aligned}
$$

and $u_{\Omega} \in H_{0}^{1}(\Omega)$ is solution to $a\left(u_{\Omega}, v\right)=b(v)$ for all $v \in H_{0}^{1}(\Omega)$.

Formulation of a shape optimization problem

For other physical models posed on bounded domains, the methodology is similar:

- determining the weak formulation of the PDE,

Formulation of a shape optimization problem

For other physical models posed on bounded domains, the methodology is similar:

- determining the weak formulation of the PDE,
- being sure of the well-posedness, regularity of the solution,

Formulation of a shape optimization problem

For other physical models posed on bounded domains, the methodology is similar:

- determining the weak formulation of the PDE,
- being sure of the well-posedness, regularity of the solution,
- devising a numerical method to solve the forward problem.

Formulation of a shape optimization problem

For other physical models posed on bounded domains, the methodology is similar:

- determining the weak formulation of the PDE,
- being sure of the well-posedness, regularity of the solution,
- devising a numerical method to solve the forward problem.
- formulating an optimal design problem: modelling of the performance through an objective function, and of the specification constraints.

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Linear elasticity

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\sigma_{s}(\boldsymbol{u})\right) & =\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{u} & =0 \text { on } \Gamma_{D} \\
\sigma_{s}(\boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{g} \text { on } \Gamma_{N} \\
\sigma_{s}(\boldsymbol{u}) \cdot \boldsymbol{n} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

Figure: A cantilever beam subjected to traction forces on Γ_{N} and zero displacement on Γ_{D}. Figure from Allaire, 2004.

Linear elasticity

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\sigma_{s}(\boldsymbol{u})\right) & =\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{u} & =0 \text { on } \Gamma_{D} \\
\sigma_{s}(\boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{g} \text { on } \Gamma_{N} \\
\sigma_{s}(\boldsymbol{u}) \cdot \boldsymbol{n} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

Figure: A cantilever beam subjected to traction forces on Γ_{N} and zero displacement on Γ_{D}.
Figure from Allaire, 2004.
$\sigma_{s}(\boldsymbol{u}):=A e(\boldsymbol{u}) \in \mathbb{R}^{d \times d}$ is the strain or solid stress tensor. The Hooke's law states that

$$
A e(\boldsymbol{u})=2 \mu e(\boldsymbol{u})+\lambda \operatorname{Tr}(e(\boldsymbol{u})) / \text { with } \boldsymbol{e}(\boldsymbol{u}):=\frac{\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{T}}{2} .
$$

Linear elasticity

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\sigma_{s}(\boldsymbol{u})\right) & =\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{u} & =0 \text { on } \Gamma_{D} \\
\sigma_{s}(\boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{g} \text { on } \Gamma_{N} \\
\sigma_{s}(\boldsymbol{u}) \cdot \boldsymbol{n} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

Figure: A cantilever beam subjected to traction forces on Γ_{N} and zero displacement on Γ_{D}.
Figure from Allaire, 2004.
$\sigma_{s}(\boldsymbol{u}):=A e(\boldsymbol{u}) \in \mathbb{R}^{d \times d}$ is the strain or solid stress tensor. The Hooke's law states that

$$
A e(\boldsymbol{u})=2 \mu e(\boldsymbol{u})+\lambda \operatorname{Tr}(e(\boldsymbol{u})) / \text { with } \boldsymbol{e}(\boldsymbol{u}):=\frac{\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{T}}{2}
$$

μ and λ are the Lamé coefficients, related to the Young modulus and Poisson ratio from the formula:

$$
\lambda=\frac{\nu E}{(1+\nu)(1-(d-1) \nu)}, \quad \mu=\frac{E}{2(1+\nu)}
$$

Linear elasticity

The weak formulation of

$$
\left\{\begin{aligned}
-\operatorname{div}(A e(\boldsymbol{u})) & =\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{u} & =0 \text { on } \Gamma_{D} \\
\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{g} \text { on } \Gamma_{N} \\
\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

Linear elasticity

The weak formulation of

$$
\left\{\begin{aligned}
-\operatorname{div}(A e(\boldsymbol{u})) & =\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{u} & =0 \text { on } \Gamma_{D} \\
\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{g} \text { on } \Gamma_{N} \\
\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

is find $\boldsymbol{u} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ such that for any $\boldsymbol{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$,

$$
\int_{\Omega} A e(\boldsymbol{u}): e(\boldsymbol{v}) \mathrm{d} x=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} x+\int_{\Gamma_{N}} \boldsymbol{g} \cdot \boldsymbol{v} \mathrm{~d} \sigma
$$

where

$$
H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)=\left\{\boldsymbol{v} \in H^{1}\left(\Omega, \mathbb{R}^{d}\right) \mid \boldsymbol{v}=0 \text { on } \Gamma_{D}\right\}
$$

Linear elasticity

The compliance minimization problem reads

$$
\begin{array}{ll}
\min _{\Omega \subset D} & J(\Omega, \boldsymbol{u}(\Omega)):=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{u} \mathrm{d} x+\int_{\Gamma_{N}} \boldsymbol{g} \cdot \boldsymbol{v} \mathrm{~d} \sigma=\int_{\Omega} A e(\boldsymbol{u}): e(\boldsymbol{u}) \mathrm{d} x \\
\text { s.t. } & \operatorname{Vol}(\Omega):=\int_{\Omega} \mathrm{d} x=V_{\text {target }} .
\end{array}
$$

Figure: Setting of the cantilever optimization problem.

Linear elasticity

- Ideally, the industry seeks to consider rather the mass minimization problem

$$
\begin{aligned}
& \min _{\Omega \subset D} \operatorname{Vol}(\Omega) \\
& \text { s.t. } e(\boldsymbol{u}): e(\boldsymbol{u})(x) \leq \mathrm{VM}_{0} \text { for any } x \in \Omega,
\end{aligned}
$$

where the constraint imposes a Von-Mises upper bound on the strain energy to prevent premature fatigue. This point-wise stress constraint is delicate to implement.

Linear elasticity

- Ideally, the industry seeks to consider rather the mass minimization problem

$$
\begin{aligned}
& \min _{\Omega \subset D} \operatorname{Vol}(\Omega) \\
& \text { s.t. } e(\boldsymbol{u}): e(\boldsymbol{u})(x) \leq \mathrm{VM}_{0} \text { for any } x \in \Omega,
\end{aligned}
$$

where the constraint imposes a Von-Mises upper bound on the strain energy to prevent premature fatigue. This point-wise stress constraint is delicate to implement.

- Non-linear models or more complex constitutive laws can be considered to account for plasticity or more realistic phenomena.

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Fluid flows

The motion of a flow can be modelled by the (transient) Navier-Stokes equations:

- \boldsymbol{v} is the fluid velocity field, p is the (static) pressure, ρ is the fluid density.

Fluid flows

The motion of a flow can be modelled by the (transient) Navier-Stokes equations:

- v is the fluid velocity field, p is the (static) pressure, ρ is the fluid density.
- $\sigma_{f}(\boldsymbol{v}, p)$ is the fluid stress tensor. For Newtonian fluids, we have

$$
\sigma_{f}(\boldsymbol{v}, p)=2 \nu e(\boldsymbol{v})-p l, \quad e(\boldsymbol{v})=\frac{\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{T}}{2}
$$

where ν is the (dynamic) fluid viscosity, so that $-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)=-\nu \Delta \boldsymbol{v}+\nabla p$.

Fluid flows

- $\nabla v v=\left(\sum_{j=1}^{d} \partial_{j} v_{i} v_{j}\right)_{1 \leq i \leq d} ;$

Fluid flows

$\nabla \nabla \boldsymbol{v} \boldsymbol{v}=\left(\sum_{j=1}^{d} \partial_{j} v_{i} v_{j}\right)_{1 \leq i \leq d} ;$
$\rightarrow \operatorname{div}(\boldsymbol{v})=0$ states that the fluid is incompressible;

Fluid flows

$\nabla \nabla \boldsymbol{v} \boldsymbol{v}=\left(\sum_{j=1}^{d} \partial_{j} v_{i} v_{j}\right)_{1 \leq i \leq d} ;$
$\rightarrow \operatorname{div}(\boldsymbol{v})=0$ states that the fluid is incompressible;
$>\boldsymbol{v}=0$ on the solid walls: the fluid sticks on them.

Fluid flows

$\nabla \nabla \boldsymbol{v} \boldsymbol{v}=\left(\sum_{j=1}^{d} \partial_{j} v_{i} v_{j}\right)_{1 \leq i \leq d} ;$
$\rightarrow \operatorname{div}(\boldsymbol{v})=0$ states that the fluid is incompressible;
$>\boldsymbol{v}=0$ on the solid walls: the fluid sticks on them.

- v$=\boldsymbol{v}_{0}$ on $\partial \Omega_{f}^{D}$: inlet boundary condition,

Fluid flows

- $\nabla v v=\left(\sum_{j=1}^{d} \partial_{j} v_{i} v_{j}\right)_{1 \leq i \leq d} ;$
- $\operatorname{div}(\boldsymbol{v})=0$ states that the fluid is incompressible;
- $v=0$ on the solid walls: the fluid sticks on them.
- $v=v_{0}$ on $\partial \Omega_{f}^{D}$: inlet boundary condition,
- $\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n}=0$ on $\partial \Omega_{f}^{N}$: outlet boundary condition.

Fluid flows

Remark: the time-derivative $\partial_{t} \boldsymbol{v}$ can be delicate to handle in an optimal design problem:

$$
\left\{\begin{aligned}
\partial_{t} \boldsymbol{v}-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v} & =\boldsymbol{f}_{f} & & \text { in } \Omega_{f} \\
\operatorname{div}(\boldsymbol{v}) & =0 & & \text { in } \Omega_{f} \\
\boldsymbol{v} & =\boldsymbol{v}_{0} & & \text { on } \partial \Omega_{f}^{D} \\
\sigma_{f}(\boldsymbol{v}, p) \boldsymbol{n} & =0 & & \text { on } \partial \Omega_{f}^{N} \\
\boldsymbol{v} & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

- when formulating the design problem, one generally is not interested in the transient behavior of the system but rather on a steady-state $\left(\partial_{t} v=0\right)$, or on a time-period in usage condition.

Fluid flows

Remark: the time-derivative $\partial_{t} \boldsymbol{v}$ can be delicate to handle in an optimal design problem:

$$
\left\{\begin{aligned}
\partial_{t} \boldsymbol{v}-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v} & =\boldsymbol{f}_{f} & & \text { in } \Omega_{f} \\
\operatorname{div}(\boldsymbol{v}) & =0 & & \text { in } \Omega_{f} \\
\boldsymbol{v} & =\boldsymbol{v}_{0} & & \text { on } \partial \Omega_{f}^{D} \\
\sigma_{f}(\boldsymbol{v}, p) \boldsymbol{n} & =0 & & \text { on } \partial \Omega_{f}^{N} \\
\boldsymbol{v} & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

- when formulating the design problem, one generally is not interested in the transient behavior of the system but rather on a steady-state $\left(\partial_{t} v=0\right)$, or on a time-period in usage condition.
- numerically, the time dependence adds an extra dimension to the problem which is hard to handle: needs to store all the intermediate time steps and to solve a backward adjoint problem with terminal condition.

Fluid flows

Remark: the time-derivative $\partial_{t} \boldsymbol{v}$ can be delicate to handle in an optimal design problem:

$$
\left\{\begin{aligned}
\partial_{t} \boldsymbol{v}-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v} & =\boldsymbol{f}_{f} & & \text { in } \Omega_{f} \\
\operatorname{div}(\boldsymbol{v}) & =0 & & \text { in } \Omega_{f} \\
\boldsymbol{v} & =\boldsymbol{v}_{0} & & \text { on } \partial \Omega_{f}^{D} \\
\sigma_{f}(\boldsymbol{v}, p) \boldsymbol{n} & =0 & & \text { on } \partial \Omega_{f}^{N} \\
\boldsymbol{v} & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

- when formulating the design problem, one generally is not interested in the transient behavior of the system but rather on a steady-state $\left(\partial_{t} v=0\right)$, or on a time-period in usage condition.
- numerically, the time dependence adds an extra dimension to the problem which is hard to handle: needs to store all the intermediate time steps and to solve a backward adjoint problem with terminal condition.

Fluid flows

Remark: the time-derivative $\partial_{t} \boldsymbol{v}$ can be delicate to handle in an optimal design problem:

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v} & =\boldsymbol{f}_{f} & & \text { in } \Omega_{f} \\
\operatorname{div}(\boldsymbol{v}) & =0 & & \text { in } \Omega_{f} \\
\boldsymbol{v} & =\boldsymbol{v}_{0} & & \text { on } \partial \Omega_{f}^{D} \\
\sigma_{f}(\boldsymbol{v}, p) \boldsymbol{n} & =0 & & \text { on } \partial \Omega_{f}^{N} \\
\boldsymbol{v} & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

- when formulating the design problem, one generally is not interested in the transient behavior of the system but rather on a steady-state $\left(\partial_{t} v=0\right)$, or on a time-period in usage condition.
- numerically, the time dependence adds an extra dimension to the problem which is hard to handle: needs to store all the intermediate time steps and to solve a backward adjoint problem with terminal condition.
We may assume in many practical cases that $\partial_{t} \boldsymbol{v}=0, \boldsymbol{v}$ does not depend on time.

Fluid flows

- The Reynolds number is the ratio between convection $\rho \nabla \boldsymbol{v} \boldsymbol{v}$ and diffusion $\nu \Delta \boldsymbol{v}$. It can be estimated as

$$
\operatorname{Re}:=\frac{\rho \mathrm{L}\left\|\mathrm{v}_{0}\right\|}{\nu}
$$

where L is a characteristic size of the problem (e.g. the width of the inlet).

Fluid flows

- The Reynolds number is the ratio between convection $\rho \nabla \boldsymbol{v} \boldsymbol{v}$ and diffusion $\nu \Delta \boldsymbol{v}$. It can be estimated as

$$
\operatorname{Re}:=\frac{\rho \mathrm{L}\left\|\mathrm{v}_{0}\right\|}{\nu}
$$

where L is a characteristic size of the problem (e.g. the width of the inlet).

- There is no universal definition because L can be chosen differently !

Fluid flows

- The Reynolds number is the ratio between convection $\rho \nabla \boldsymbol{v} \boldsymbol{v}$ and diffusion $\nu \Delta \boldsymbol{v}$. It can be estimated as

$$
\operatorname{Re}:=\frac{\rho \mathrm{L}\left\|\mathrm{v}_{0}\right\|}{\nu}
$$

where L is a characteristic size of the problem (e.g. the width of the inlet).

- There is no universal definition because L can be chosen differently !
- However, when Re is large (typically $\operatorname{Re} \geqslant 10^{3}$), convection effects dominate and the numerical simulation maybe very difficult to solve due to turbulence and boundary layer effects

Figure: Example of turbulent flows featuring vortices. Images from Wikipedia and https://studiousguy.com/turbulent-flow-examples/

- It is difficult to resolve the Navier-Stokes equations when Re starts to be greater than 10^{3}. The best large scale simulations do not go much larger than $\operatorname{Re}=6000$.

Figure: Example of turbulent flows featuring vortices. Images from Wikipedia and https://studiousguy.com/turbulent-flow-examples/

- It is difficult to resolve the Navier-Stokes equations when Re starts to be greater than 10^{3}. The best large scale simulations do not go much larger than $\operatorname{Re}=6000$.
- In the aeronautic industry, a flight encounters Reynolds number of the order of 10^{6}.

Fluid flows

Figure: Example of turbulent flows featuring vortices. Images from Wikipedia and https://studiousguy.com/turbulent-flow-examples/

- It is difficult to resolve the Navier-Stokes equations when Re starts to be greater than 10^{3}. The best large scale simulations do not go much larger than $\operatorname{Re}=6000$.
- In the aeronautic industry, a flight encounters Reynolds number of the order of 10^{6}.
- A variety of turbulence models (Large Eddy Simulation (LES), Reynold Average Navier Stokes (RANS)...) are commonly used in the aeronautic industry to obtain approximate simulation of turbulent flows.

Fluid flows

For our applications, we will assume moderate Reynolds number ($\operatorname{Re} \leq 500$). The steady-state Navier-Stokes equations are nonlinear and requires a different numerical treatment:

- the nonlinearity can be solved using the Newton method. ($\boldsymbol{v}, p)$ are solutions to the following variational problem: find $(v, p) \in v_{0}+V_{v, p}(\Gamma)$ such that

$$
\forall(\boldsymbol{w}, q) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v} \cdot \boldsymbol{v}-q \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w} \mathrm{~d} x
$$

where $V_{\boldsymbol{v}, p}(\Gamma)=\left\{(\boldsymbol{w}, q) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$.

Fluid flows

For our applications, we will assume moderate Reynolds number ($\operatorname{Re} \leq 500$). The steady-state Navier-Stokes equations are nonlinear and requires a different numerical treatment:

- the nonlinearity can be solved using the Newton method. (\boldsymbol{v}, p) are solutions to the following variational problem: find $(v, p) \in v_{0}+V_{v, p}(\Gamma)$ such that

$$
\forall(\boldsymbol{w}, \boldsymbol{q}) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v} \cdot \boldsymbol{v}-q \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w} \mathrm{~d} x
$$

where $V_{\boldsymbol{v}, p}(\Gamma)=\left\{(\boldsymbol{w}, q) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$.

- At each Newton step, an increment ($\delta \boldsymbol{v}_{k}, \delta p_{k}$) is computed by solving the linearized Navier-Stokes equations

Fluid flows

For our applications, we will assume moderate Reynolds number ($\operatorname{Re} \leq 500$). The steady-state Navier-Stokes equations are nonlinear and requires a different numerical treatment:

- the nonlinearity can be solved using the Newton method. (\boldsymbol{v}, p) are solutions to the following variational problem: find $(v, p) \in v_{0}+V_{v, p}(\Gamma)$ such that

$$
\forall(\boldsymbol{w}, q) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v} \cdot \boldsymbol{v}-q \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w} \mathrm{~d} x
$$

where $V_{\boldsymbol{v}, p}(\Gamma)=\left\{(\boldsymbol{w}, q) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$.

- At each Newton step, an increment $\left(\delta \boldsymbol{v}_{k}, \delta p_{k}\right)$ is computed by solving the linearized Navier-Stokes equations

Find $\left(\delta \boldsymbol{v}_{k}, \delta p_{k}\right) \in V_{v, p}(\Gamma)$ such that $\forall(\boldsymbol{w}, q) \in V_{v, p}(\Gamma)$,
$\int_{\Omega_{f}}\left[\sigma_{f}\left(\delta \boldsymbol{v}_{k}, \delta p_{k}\right): \nabla \boldsymbol{w}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v}_{k} \cdot \delta \boldsymbol{v}_{k}+\rho \boldsymbol{w} \cdot \nabla\left(\delta \boldsymbol{v}_{k}\right) \cdot \boldsymbol{v}_{k}-q \operatorname{div}\left(\delta \boldsymbol{v}_{k}\right)-\delta p_{k} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x$

$$
=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w} \mathrm{~d} x
$$

Fluid flows

For our applications, we will assume moderate Reynolds number ($\operatorname{Re} \leq 500$). The steady-state Navier-Stokes equations are nonlinear and requires a different numerical treatment:

- the nonlinearity can be solved using the Newton method. ($\boldsymbol{v}, p)$ are solutions to the following variational problem: find $(v, p) \in v_{0}+V_{v, p}(\Gamma)$ such that

$$
\forall(\boldsymbol{w}, q) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v} \cdot \boldsymbol{v}-q \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w} \mathrm{~d} x
$$

where $V_{\boldsymbol{v}, p}(\Gamma)=\left\{(\boldsymbol{w}, q) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$.

- At each Newton step, an increment $\left(\delta \boldsymbol{v}_{k}, \delta p_{k}\right)$ is computed by solving the linearized Navier-Stokes equations

Find $\left(\delta \boldsymbol{v}_{k}, \delta p_{k}\right) \in V_{\mathbf{v}, p}(\Gamma)$ such that $\forall(\boldsymbol{w}, q) \in V_{\boldsymbol{v}, p}(\Gamma)$,
$\int_{\Omega_{f}}\left[\sigma_{f}\left(\delta \boldsymbol{v}_{k}, \delta p_{k}\right): \nabla \boldsymbol{w}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v}_{k} \cdot \delta \boldsymbol{v}_{k}+\rho \boldsymbol{w} \cdot \nabla\left(\delta \boldsymbol{v}_{k}\right) \cdot \boldsymbol{v}_{k}-q \operatorname{div}\left(\delta \boldsymbol{v}_{k}\right)-\delta p_{k} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x$

$$
=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w} \mathrm{~d} x
$$

- The next iterate $\left(\boldsymbol{v}_{k+1}, p_{k+1}\right)$ is then obtained by setting

$$
\boldsymbol{v}_{k+1}:=\boldsymbol{v}_{k}+\delta \boldsymbol{v}_{k}, \quad p_{k+1}:=p_{k}+\delta p_{k}
$$

Fluid flows

Remarks:

- One needs different discretization spaces for the velocity and pressure for numerical stability, typically $\mathbb{P} 1 \mathrm{~b} / \mathbb{P} 1$.

Fluid flows

Remarks:

- One needs different discretization spaces for the velocity and pressure for numerical stability, typically $\mathbb{P} 1 \mathrm{~b} / \mathbb{P} 1$.
- Existence and uniqueness of solutions to the time-dependent NS equations is guaranteed in 2D. Uniqueness of strong solutions is an open question in 3D.

Fluid flows

Remarks:

- One needs different discretization spaces for the velocity and pressure for numerical stability, typically $\mathbb{P} 1 \mathrm{~b} / \mathbb{P} 1$.
- Existence and uniqueness of solutions to the time-dependent NS equations is guaranteed in 2D. Uniqueness of strong solutions is an open question in 3D.
- Existence and uniqueness of a solution to the steady-state NS equation is guaranteed for low Reynolds number (by a perturbation argument of the Stokes system).

Fluid flows

Remarks:

- One needs different discretization spaces for the velocity and pressure for numerical stability, typically $\mathbb{P} 1 \mathrm{~b} / \mathbb{P} 1$.
- Existence and uniqueness of solutions to the time-dependent NS equations is guaranteed in 2D. Uniqueness of strong solutions is an open question in 3D.
- Existence and uniqueness of a solution to the steady-state NS equation is guaranteed for low Reynolds number (by a perturbation argument of the Stokes system).
- For large Reynolds number, there may exist several solutions to the NS equations (due to nonlinearity). The relevance of the physical modelling can then be questioned because the trajectories of the solutions generally converge to a limit cycle (or worse, to a global attractor) and not to a steady state.

Fluid flows

Common design functionals:

- The drag or sum of the friction forces:

$$
\operatorname{Drag}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma)):=\int_{\Omega_{f}} \sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{v} \mathrm{d} x=\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x
$$

(It is the equivalent of the compliance for fluids)

Fluid flows

Common design functionals:

- The drag or sum of the friction forces:

$$
\operatorname{Drag}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma)):=\int_{\Omega_{f}} \sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{v} \mathrm{d} x=\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x
$$

(It is the equivalent of the compliance for fluids)

- The lift or forces generated by the flow around an obstacle along one direction:

$$
\operatorname{Lift}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma)):=-\int_{\Gamma} \boldsymbol{e}_{y} \cdot \sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \mathrm{d} s
$$

Fluid flows

Typical aerodynamic design problem:

$$
\begin{aligned}
& \min \begin{aligned}
-\operatorname{Lift}(\Gamma, v(\Gamma), p(\Gamma)) & \\
\operatorname{Drag}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma)) & \leq \mathrm{DRAG}_{0} \\
\operatorname{Vol}\left(\Omega_{f}\right) & =V_{0} \\
\boldsymbol{X}\left(\Omega_{s}\right):=\frac{1}{\left|\Omega_{s}\right|} \int_{\Omega_{s}} x \mathrm{~d} x & =x_{0}
\end{aligned}
\end{aligned}
$$

Figure: Setting of the aerodynamic design problem.

Fluid flows

Remarks:

- the functional $\operatorname{Drag}(\Gamma, v(\Gamma), p(\Gamma))$ is also a measure analogous to the (static) pressure drop:

$$
\operatorname{DP}\left(\Omega_{f}\right):=\int_{\partial \Omega_{f, \text { out }}} p \mathrm{~d} \sigma-\int_{\partial \Omega_{f, \text { in }}} p \mathrm{~d} \sigma
$$

Fluid flows

Remarks:

- the functional $\operatorname{Drag}(\Gamma, v(\Gamma), p(\Gamma))$ is also a measure analogous to the (static) pressure drop:

$$
\operatorname{DP}\left(\Omega_{f}\right):=\int_{\partial \Omega_{f, \text { out }}} p \mathrm{~d} \sigma-\int_{\partial \Omega_{f, \text { in }}} p \mathrm{~d} \sigma
$$

- this quantity is not numerically well-behaved because the pressure belongs to $L^{2}\left(\Omega_{f}\right)$ and may not have in general a well defined trace numerically.

Fluid flows

Remarks:

- the functional $\operatorname{Drag}(\Gamma, v(\Gamma), p(\Gamma))$ is also a measure analogous to the (static) pressure drop:

$$
\operatorname{DP}\left(\Omega_{f}\right):=\int_{\partial \Omega_{f, \text { out }}} p \mathrm{~d} \sigma-\int_{\partial \Omega_{f, \text { in }}} p \mathrm{~d} \sigma
$$

- this quantity is not numerically well-behaved because the pressure belongs to $L^{2}\left(\Omega_{f}\right)$ and may not have in general a well defined trace numerically.
- This problem also arises for the Lift functional, but can be bypassed by resorting to an equivalent volume formulation.

$$
\operatorname{Lift}(\Gamma)=\int_{\Omega_{f}}\left(\mathcal{X} \boldsymbol{f}_{f} \cdot \boldsymbol{e}_{y}-\rho \mathcal{X} \boldsymbol{e}_{y} \cdot \nabla \boldsymbol{v} \cdot \boldsymbol{v}-\nabla \mathcal{X} \cdot \sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{e}_{y}\right) \mathrm{d} x
$$

where \mathcal{X} is a scalar field satisfying $\mathcal{X}=1$ on $\partial \Omega_{s}$.

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:

Heat diffusion

Figure: A bi-material distrubution of two conductive media with conductivity k_{s} and k_{v}.

$$
\left\{\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right) & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s} \\
T & =T_{0} & & \text { on } \partial \Omega_{T}^{D} \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{f} \\
-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{s} \\
T_{f} & =T_{s} & & \text { on } \Gamma \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & & \text { on } \Gamma,
\end{aligned}\right.
$$

$-k_{f}, k_{s}$: conductivity coefficients in Ω_{f}, Ω_{s};

Heat diffusion

Figure: A bi-material distrubution of two conductive media with conductivity k_{s} and k_{v}.

$$
\left\{\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right) & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s} \\
T & =T_{0} & & \text { on } \partial \Omega_{T}^{D} \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{f} \\
-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{s} \\
T_{f} & =T_{s} & & \text { on } \Gamma \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & & \text { on } \Gamma,
\end{aligned}\right.
$$

- k_{f}, k_{s} : conductivity coefficients in Ω_{f}, Ω_{s};
- Q_{f}, Q_{s} : volume heat sources

Heat diffusion

Figure: A bi-material distrubution of two conductive media with conductivity k_{s} and k_{v}.

$$
\left\{\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right) & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s} \\
T & =T_{0} & & \text { on } \partial \Omega_{T}^{D} \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{f} \\
-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{s} \\
T_{f} & =T_{s} & & \text { on } \Gamma \\
-k_{f} \frac{\partial \boldsymbol{T}_{f}}{\partial \boldsymbol{n}} & =-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & & \text { on } \Gamma,
\end{aligned}\right.
$$

- k_{f}, k_{s} : conductivity coefficients in Ω_{f}, Ω_{s};
- Q_{f}, Q_{s} : volume heat sources
- T_{0} : prescribed temperature on isothermal boundary $\partial \Omega_{T}^{D}$.

Heat diffusion

Figure: A bi-material distrubution of two conductive media with conductivity k_{s} and k_{v}.

$$
\left\{\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right) & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s} \\
T & =T_{0} & & \text { on } \partial \Omega_{T}^{D} \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{f} \\
-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{s} \\
T_{f} & =T_{s} & & \text { on } \Gamma \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & & \text { on } \Gamma,
\end{aligned}\right.
$$

- k_{f}, k_{s} : conductivity coefficients in Ω_{f}, Ω_{s};
- Q_{f}, Q_{s} : volume heat sources
- T_{0} : prescribed temperature on isothermal boundary $\partial \Omega_{T}^{D}$.
- h : heat loss on the boundary $\partial \Omega_{T}^{N}$. If $h=0$, we say that the boundary is adiabatic.

Heat diffusion

The variational formulation reads find $T \in T_{0}+V_{T}(\Gamma)$ such that, for any $S \in V_{T}(\Gamma)$,

$$
\int_{\Omega_{s}} k_{s} \nabla T \cdot \nabla S \mathrm{~d} x+\int_{\Omega_{f}} k_{f} \nabla T \cdot \nabla S \mathrm{~d} x=\int_{\Omega_{s}} Q_{s} S \mathrm{~d} x+\int_{\Omega_{f}} Q_{f} S \mathrm{~d} x+\int_{\partial \Omega_{T}^{N}} h S \mathrm{ds} .
$$

where

$$
V_{T}(\Gamma)=\left\{S \in H^{1}(D) \mid S=0 \text { on } \partial \Omega_{T}^{D}\right\},
$$

Heat diffusion

The variational formulation reads find $T \in T_{0}+V_{T}(\Gamma)$ such that, for any $S \in V_{T}(\Gamma)$,

$$
\int_{\Omega_{s}} k_{s} \nabla T \cdot \nabla S \mathrm{~d} x+\int_{\Omega_{f}} k_{f} \nabla T \cdot \nabla S \mathrm{~d} x=\int_{\Omega_{s}} Q_{s} S \mathrm{~d} x+\int_{\Omega_{f}} Q_{f} S \mathrm{~d} x+\int_{\partial \Omega_{T}^{N}} h S \mathrm{~d} s .
$$

where

$$
V_{T}(\Gamma)=\left\{S \in H^{1}(D) \mid S=0 \text { on } \partial \Omega_{T}^{D}\right\},
$$

Not harder to solve than a Laplacian.

Heat diffusion

Minimizing the average temperature with a cooling material Ω_{f} :

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, T(\Gamma))=\int_{D} T \mathrm{~d} x \\
\text { s.t. } & \operatorname{Vol}\left(\Omega_{f}\right) \leq V_{\text {target }}
\end{array}
$$

Figure: A bi-material distrubution of two conductive media with conductivity k_{s} and k_{v}.

Outline

1. The membrane's equation, reminders on FEM and weak formulations
2. Linear elasticity
3. Fluid flows
4. Heat diffusion
5. Coupled physics:
5.1 convective heat transfer
5.2 fluid-structure interactions
5.3 thermoelasticity

Coupled physics

- The heat density carried out through convective transport by an incompressible flow \boldsymbol{v} is given by

$$
-\rho c_{p} \operatorname{div}\left(\boldsymbol{v} T_{f}\right)=-\rho c_{p} \boldsymbol{v} \cdot \nabla T_{f}
$$

where ρ is the fluid density and c_{p} the heat capacity of the fluid.

Coupled physics

- The heat density carried out through convective transport by an incompressible flow \boldsymbol{v} is given by

$$
-\rho c_{p} \operatorname{div}\left(\boldsymbol{v} T_{f}\right)=-\rho c_{p} \boldsymbol{v} \cdot \nabla T_{f}
$$

where ρ is the fluid density and c_{p} the heat capacity of the fluid.

- Once \boldsymbol{v} is determined by the Navier-Stokes equations. . .

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v} & =\boldsymbol{f}_{f} & & \text { in } \Omega_{f} \\
\operatorname{div}(\boldsymbol{v}) & =0 & & \text { in } \Omega_{f} \\
\boldsymbol{v} & =\boldsymbol{v}_{0} & & \text { on } \partial \Omega_{f}^{D} \\
\sigma_{f}(\boldsymbol{v}, p) \boldsymbol{n} & =0 & & \text { on } \partial \Omega_{f}^{N} \\
\boldsymbol{v} & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

Coupled physics

- then one can solve the advection-diffusion equation

$$
\left\{\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right)+\rho c_{p} \boldsymbol{v} \cdot \nabla T_{f} & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s} \\
T & =T_{0} & & \text { on } \partial \Omega_{T}^{D} \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{f} \\
-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{s} \\
T_{f} & =T_{s} & & \text { on } \Gamma \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & & \text { on } \Gamma,
\end{aligned}\right.
$$

Coupled physics

An optimal heat transfer test case:

Figure: Setting of a convective heat transfer test case.

$$
\begin{aligned}
& \min _{\Gamma} \quad J(\Gamma, v(\Gamma), T(\Gamma)):=-\int_{\Omega_{f}} \rho c_{p} v \cdot \nabla T \mathrm{~d} x \\
& \text { s.t. }\left\{\begin{array}{l}
\operatorname{DP}(p(\Gamma)):=\int_{\partial \Omega_{f}^{D}} p \mathrm{~d} s-\int_{\partial \Omega_{f}^{N}} p \mathrm{~d} s \leq \mathrm{DP}_{\text {static }} \\
\operatorname{Vol}\left(\Omega_{f}\right)=V_{\text {target }} .
\end{array}\right.
\end{aligned}
$$

Coupled physics

$$
\begin{aligned}
& \min _{\Gamma} \quad J(\Gamma, \boldsymbol{v}(\Gamma), T(\Gamma)):=-\int_{\Omega_{f}} \rho c_{p} v \cdot \nabla T \mathrm{~d} x \\
& \text { s.t. }\left\{\begin{array}{l}
\operatorname{DP}(p(\Gamma)):=\int_{\partial \Omega_{f}^{D}} p \mathrm{~d} s-\int_{\partial \Omega_{f}^{N}} p \mathrm{~d} s \leq \mathrm{DP}_{\text {static }} \\
\operatorname{Vol}\left(\Omega_{f}\right)=V_{\text {target }} .
\end{array}\right.
\end{aligned}
$$

Coupled physics

$$
\begin{aligned}
& \min _{\Gamma} J(\Gamma, \boldsymbol{v}(\Gamma), T(\Gamma)):=-\int_{\Omega_{f}} \rho c_{p} \boldsymbol{v} \cdot \nabla T \mathrm{~d} x \\
& \text { s.t. }\left\{\begin{array}{l}
\operatorname{DP}(p(\Gamma)):=\int_{\partial \Omega_{f}^{D}} p \mathrm{~d} s-\int_{\partial \Omega_{f}^{N}} p \mathrm{~d} s \leq \mathrm{DP}_{\text {static }} \\
\operatorname{Vol}\left(\Omega_{f}\right)=V_{\text {target }} .
\end{array}\right.
\end{aligned}
$$

$J(\Gamma, v(\Gamma), T(\Gamma)):=-\int_{\Omega_{f}} \rho c_{p} v \cdot \nabla T \mathrm{~d} x$ is the opposite of the heat transferred from the inlet to the outlet, indeed:

$$
\int_{\Omega_{f}} \rho c_{p} \boldsymbol{v} \cdot \nabla T \mathrm{~d} x=\int_{\partial \Omega_{f}} \rho c_{p} T(\boldsymbol{v} \cdot \boldsymbol{n}) \mathrm{d} s=\int_{\partial \Omega_{f}^{N}} \rho c_{p} T(\boldsymbol{v} \cdot \boldsymbol{n}) \mathrm{d} s+\int_{\partial \Omega_{f}^{D}} \rho c_{p} T_{0}\left(\boldsymbol{v}_{0} \cdot \boldsymbol{n}\right) \mathrm{d} s .
$$

Fluid-structure interactions

Fluid-structure interactions can be modelled by:

- $\boldsymbol{v}=0$ on the deformed solid interface: $\boldsymbol{v}(x+\boldsymbol{u}(x))=0$ for $x \in \Gamma$;

Fluid-structure interactions

Fluid-structure interactions can be modelled by:
$\downarrow \boldsymbol{v}=0$ on the deformed solid interface: $\boldsymbol{v}(x+\boldsymbol{u}(x))=0$ for $x \in \Gamma$;

- Equality of the normal stresses on the deformed solid interface:

$$
\sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } x \in(I+\boldsymbol{u})(\Gamma)
$$

Fluid-structure interactions

Fluid-structure interactions can be modelled by:
$\downarrow \boldsymbol{v}=0$ on the deformed solid interface: $\boldsymbol{v}(x+\boldsymbol{u}(x))=0$ for $x \in \Gamma$;

- Equality of the normal stresses on the deformed solid interface:

$$
\sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } x \in(I+\boldsymbol{u})(\Gamma)
$$

Fluid-structure interactions

Fluid-structure interactions can be modelled by:
$\downarrow \boldsymbol{v}=0$ on the deformed solid interface: $\boldsymbol{v}(x+\boldsymbol{u}(x))=0$ for $x \in \Gamma$;

- Equality of the normal stresses on the deformed solid interface:

$$
\sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=A e(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } x \in(I+\boldsymbol{u})(\Gamma)
$$

However, the equations of linear elasticity assume that \boldsymbol{u} is small. Therefore a convenient, straightforward approximation is

$$
\begin{equation*}
\boldsymbol{v}=0 \text { and } \sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=A e(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } \Gamma . \tag{2}
\end{equation*}
$$

Fluid-structure interactions

Fluid-structure interactions can be modelled by:
$\downarrow \boldsymbol{v}=0$ on the deformed solid interface: $\boldsymbol{v}(x+\boldsymbol{u}(x))=0$ for $x \in \Gamma$;

- Equality of the normal stresses on the deformed solid interface:

$$
\sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=A e(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } x \in(I+\boldsymbol{u})(\Gamma)
$$

However, the equations of linear elasticity assume that \boldsymbol{u} is small. Therefore a convenient, straightforward approximation is

$$
\begin{equation*}
\boldsymbol{v}=0 \text { and } \sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } \Gamma . \tag{2}
\end{equation*}
$$

The fluid-structure interaction can be modelled by an extra-Neumann boundary condition on the solid interface.

Fluid-structure interactions

Fluid-structure interactions can be modelled by:
$\downarrow \boldsymbol{v}=0$ on the deformed solid interface: $\boldsymbol{v}(x+\boldsymbol{u}(x))=0$ for $x \in \Gamma$;

- Equality of the normal stresses on the deformed solid interface:

$$
\sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=A e(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } x \in(I+\boldsymbol{u})(\Gamma)
$$

However, the equations of linear elasticity assume that \boldsymbol{u} is small. Therefore a convenient, straightforward approximation is

$$
\begin{equation*}
\boldsymbol{v}=0 \text { and } \sigma_{s}(\boldsymbol{u}) \boldsymbol{n}=\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \text { on } \Gamma . \tag{2}
\end{equation*}
$$

The fluid-structure interaction can be modelled by an extra-Neumann boundary condition on the solid interface.
The model is weakly coupled.

Fluid-structure interactions

One can still maximize the rigidity of the solid structure, which is forced by the incoming flow:

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{u}(\Gamma))=\int_{\Omega_{s}} A e(\boldsymbol{u}): e(\boldsymbol{u}) \mathrm{d} x \\
\text { s.t. } & \operatorname{Vol}\left(\Omega_{s}\right)=V_{\text {target }}
\end{array}
$$

Fluid-structure interactions

One can still maximize the rigidity of the solid structure, which is forced by the incoming flow:

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{u}(\Gamma))=\int_{\Omega_{s}} A e(\boldsymbol{u}): e(\boldsymbol{u}) \mathrm{d} x \\
\text { s.t. } & \operatorname{Vol}\left(\Omega_{s}\right)=V_{\text {target }}
\end{array}
$$

The variable $\boldsymbol{u}(\Gamma)$ depends implicitly on $\boldsymbol{v}(\Gamma)$!

- Thermal dilation due to an elevated temperature T can be modelled by an extra term in the Hooke's law:

$$
\sigma_{s}\left(\boldsymbol{u}, T_{s}\right):=A e(\boldsymbol{u})-\alpha\left(T_{s}-T_{\text {ref }}\right) / \text { with } \operatorname{Ae}(\boldsymbol{u})=2 \mu e(\boldsymbol{u})+\lambda \operatorname{Tr}(e(\boldsymbol{u})) /
$$

- Thermal dilation due to an elevated temperature T can be modelled by an extra term in the Hooke's law:

$$
\sigma_{s}\left(\boldsymbol{u}, T_{s}\right):=A e(\boldsymbol{u})-\alpha\left(T_{s}-T_{\text {ref }}\right) / \text { with } \operatorname{Ae}(\boldsymbol{u})=2 \mu e(\boldsymbol{u})+\lambda \operatorname{Tr}(e(\boldsymbol{u})) /
$$

- $\alpha>0$ is called the thermal expansion coefficient and $T_{\text {ref }}$ is the temperature at rest.

Thermoelasticity

- Thermal dilation due to an elevated temperature T can be modelled by an extra term in the Hooke's law:

$$
\sigma_{s}\left(\boldsymbol{u}, T_{s}\right):=\operatorname{Ae}(\boldsymbol{u})-\alpha\left(T_{s}-T_{\text {ref }}\right) / \text { with } \operatorname{Ae}(\boldsymbol{u})=2 \mu e(\boldsymbol{u})+\lambda \operatorname{Tr}(e(\boldsymbol{u})) /
$$

- $\alpha>0$ is called the thermal expansion coefficient and $T_{\text {ref }}$ is the temperature at rest.
- Thermoelasticity can be coupled to the convection-diffusion model which determines the temperature field T_{s}

A three-physics weakly coupled model

A three-physics weakly coupled model

- Incompressible Navier-Stokes equations for velocity and pressure (\boldsymbol{v}, p) in Ω_{f}

$$
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v}=\boldsymbol{f}_{f} \text { in } \Omega_{f}
$$

A three-physics weakly coupled model

- Incompressible Navier-Stokes equations for velocity and pressure (\boldsymbol{v}, p) in Ω_{f}

$$
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v}=\boldsymbol{f}_{f} \text { in } \Omega_{f}
$$

- Convection-diffusion for the temperature T in Ω_{f} and in Ω_{s} :

$$
\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right)+\rho \boldsymbol{v} \cdot \nabla T_{f} & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s}
\end{aligned}
$$

A three-physics weakly coupled model

- Incompressible Navier-Stokes equations for velocity and pressure (\boldsymbol{v}, p) in Ω_{f}

$$
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v}=\boldsymbol{f}_{f} \text { in } \Omega_{f}
$$

- Convection-diffusion for the temperature T in Ω_{f} and in Ω_{s} :

$$
\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right)+\rho \boldsymbol{v} \cdot \nabla T_{f} & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s}
\end{aligned}
$$

- Linear elasticity with fluid-structure interaction for mechanical deformation \boldsymbol{u} in Ω_{s} :

$$
\begin{array}{cl}
-\operatorname{div}\left(\sigma_{s}\left(\boldsymbol{u}, T_{s}\right)\right)=\boldsymbol{f}_{s} & \text { in } \Omega_{s} \\
\sigma_{s}\left(\boldsymbol{u}, T_{s}\right) \cdot \boldsymbol{n}=\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} & \text { on } \Gamma .
\end{array}
$$

Exercise

Implement one of the physical models of your choice in FreeFEM: write a PDE solver that computes \boldsymbol{u}, T, or (\boldsymbol{v}, p) for a simple domain geometry.

- https://doc.freefem.org
- https://modules.freefem.org/

