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The boundary variation method of Hadamard

Everything started with a memoir of Hadamard in 1908.



The boundary variation method of Hadamard

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector
field θ:

Ωθ := (I + θ)Ω = {x + θ(x) | x ∈ Ω}

Ω
x

x + θ(x)

Ωθ = (I + θ)(Ω)

θ

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field θ is used
to deform Ω into Ωθ = (I + θ)Ω.
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The boundary variation method of Hadamard

We assume that the parameterizing vector field θ is Lipschitz: θ ∈W 1,∞(Rd ,Rd) where

W 1,∞(Rd ,Rd) = {θ ∈ L∞(Rd) |∇θ ∈ L∞(Rd)}.

If θ is sufficiently small, then I + θ is a diffeomorphism.

Lemma 1

For any θ ∈W 1,∞(Rd ,Rd) such that ||θ||W 1,∞(Rd ,Rd ) < 1, the map I + θ is a bijection

satisfying (I + θ)−1 − I ∈W 1,∞(Rd ,Rd).

Sketch of proof.

Formally, the inverse map is given by

(I + θ)−1 =
+∞∑
k=0

(−1)k
k times︷ ︸︸ ︷

θ ◦ · · · ◦ θ,

where the above series is convergent in the norm of W 1,∞(Rd ,Rd). .
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The boundary variation method of Hadamard

Let J(Ω) denote a shape functional arising e.g. in a shape optimization problem

min
Ω

J(Ω).

Definition 2

A shape functional J(Ω) is said shape differentiable if the mapping

W 1,∞(Rd ,Rd) −→ R

θ 7−→ J(Ωθ)

is Fréchet differentiable at θ = 0, i.e. if there exists a continuous linear form

DJ(Ω) ∈W 1,∞(Rd ,Rd)∗

such that the following asymptotics holds true:

J(Ωθ) = J(Ω) + DJ(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd ,Rd )

θ→0−−−→0.

The linear form DJ(Ω) is called the shape derivative of J on the domain Ω.
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The boundary variation method of Hadamard

Remark 1

W 1,∞(Rd ,Rd)∗ is the dual space of W 1,∞(Rd ,Rd). The definition the existence of some
constant C(Ω) independent of θ such that

∀θ ∈W 1,∞(Rd ,Rd), |DJ(Ω)(θ)| ≤ C(Ω)||θ||W 1,∞(Rd ,Rd ).

Remark 2

In case where the shape to optimize is an interface Γ, a functional J(Γ) is said shape
differentiable if θ 7→ J(Γθ) is differentiable and the shape derivative DJ(Γ)(θ) is defined
analogously to theorem 2.
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The boundary variation method of Hadamard

Remark 3

It will be convenient to write shape derivatives with a d/dθ differential notation:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ)](θ) := DJ(Ω)(θ),

where with a little abuse of notations, we have also denoted by θ the direction in which
θ 7→ J(Ωθ) is differentiated.



The boundary variation method of Hadamard

An important result: Hadamard’s structure theorem.

Proposition 1 (Hadamard’s structure theorem)

Let Ω a smooth bounded open set of Rd and J(Ω) a shape differentiable functional. If
θ1,θ2 ∈W 1,∞(Rd ,Rd) are such that θ2 − θ1 ∈ C1(Rd ,Rd) and θ1 · n = θ2 · n on ∂Ω, then
it holds

DJ(Ω)(θ1) = DJ(Ω)(θ2).

Vector fields which are tangent to ∂Ω induce no variations of J(Ω).
For smooth domains, DJ(Ω) depends only on θ · n.

In what follows, we will see that under suitable regularity assumptions, shape derivatives
can often be written as

DJ(Ω) =

∫
∂Ω

vJ(Ω)θ · ndσ.

If we set θ = −tvJ(Ω)n for a sufficiently small t > 0, then we have

J(Ωθ) = J(Ω)− t

∫
∂Ω

|vf (Ω)|2dσ + O(t2)

and Ωθ is a “better” candidate than Ω.
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Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of Rd . For any f ∈W 1,1(Rd), the functional J(Ω) defined by

J(Ω) :=

∫
Ω

f (x)dx

is shape differentiable, and it holds

DJ(Ω)(θ) =

∫
Ω

div(f θ)dx =

∫
Ω

(∇f · θ + f div(θ))dx , θ ∈W 1,∞(Rd ,Rd).

If in addition Ω is smooth then the above formula can be rewritten as

DJ(Ω)(θ) =

∫
∂Ω

f θ · ndσ, θ ∈W 1,∞(Rd ,Rd).

where n denotes the outward normal to Ω.
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Volume form of the shape derivative.
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Shape derivatives of volume and surface integrals

For instance, we find that the volume

Vol(Ω) := |Ω| =

∫
Ω

dx

is shape differentiable and

DVol(Ω)(θ) =

∫
∂Ω

θ · ndx .

The volume increases if θ is positively proportional to n on ∂Ω.
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Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of Rd with boundary ∂Γ. For any f ∈W 2,1(Rd),
the functional J(Γ) defined by

J(Γ) :=

∫
Γ

f dσ

is shape differentiable and the shape derivative reads

DJ(Γ)(θ) =

∫
Γ

(div(f θ)− n · ∇θ · nf )dσ

=

∫
Γ

(
∂f

∂n
+ κf

)
(θ · n)dσ +

∫
∂Γ

f θ · τdl ,

where τ denotes the outward normal to ∂Γ tangent to Γ.
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κ is the mean curvature field of Γ.



Shape derivatives of volume and surface integrals
Reminders on differential geometry

Proposition 4 (Principal curvatures)

Let Γ be a C2 manifold and let n be any differentiable unit vector field normal to Γ. The
gradient of the normal ∇n satisfies:

1. ∀y ∈ Γ, ∇n(y) · n(y) = 0,

2. ∀y ∈ Γ, ∇n(y)T = ∇n(y).

Proof.

1. Since n is a differentiable unit vector, i.e. ||n(x)||2 = 1 for any x in a neighborhood of
Γ, we have by differentiation with respect to some vector h that
0 = 2〈∇n(x) · h, n(x)〉 whence ∇n(y)T · n(y) = 0.

2. Let τ1 and τ2 be two tangent vector fields on Γ. Recall that the Lie derivative
Dτ1τ2 −Dτ2τ1 is also a tangent vector on Γ (this is a consequence of Schwartz
theorem), therefore

n ·Dτ1τ2 = n ·Dτ2τ1. (1)

Then, differentiating 0 = n · τ1 along the vector field τ2 and 0 = n · τ2 along τ1 yields

Dτ2n · τ1 + n ·Dτ2τ1 = 0 = Dτ1n · τ2 + n ·Dτ1τ2.

Using (1), we obtain τ1 · ∇n τ2 = τ2 · ∇n τ1, i.e. ∇n(y)T = ∇n(y).
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1. ∀y ∈ Γ, ∇n(y) · n(y) = 0,

2. ∀y ∈ Γ, ∇n(y)T = ∇n(y).

Proof.

1. Since n is a differentiable unit vector, i.e. ||n(x)||2 = 1 for any x in a neighborhood of
Γ, we have by differentiation with respect to some vector h that
0 = 2〈∇n(x) · h, n(x)〉 whence ∇n(y)T · n(y) = 0.

2. Let τ1 and τ2 be two tangent vector fields on Γ.

Recall that the Lie derivative
Dτ1τ2 −Dτ2τ1 is also a tangent vector on Γ (this is a consequence of Schwartz
theorem), therefore

n ·Dτ1τ2 = n ·Dτ2τ1. (1)

Then, differentiating 0 = n · τ1 along the vector field τ2 and 0 = n · τ2 along τ1 yields

Dτ2n · τ1 + n ·Dτ2τ1 = 0 = Dτ1n · τ2 + n ·Dτ1τ2.

Using (1), we obtain τ1 · ∇n τ2 = τ2 · ∇n τ1, i.e. ∇n(y)T = ∇n(y).
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Proposition 5 (Principal curvatures)

Let Γ be a C2 manifold and let n be any differentiable unit vector field normal outward to
Γ. The gradient of the normal ∇n satisfies:

1. ∀y ∈ Γ, ∇n(y) · n(y) = 0,

2. ∀y ∈ Γ, ∇nT = ∇n.

In other words, for any y ∈ Γ, ∇n(y) is a symmetric matrix. Consequently, it can be
diagonalized as

∀y ∈ Γ, ∇n(y) =
d−1∑
i=1

κi (y)τi (y)τi (y)T .

The real numbers (κi (y))1≤i≤d−1 and the tangent eigenvectors (τi (y))1≤i≤d−1 are called
principal curvatures and principal directions of Γ at y .

The mean curvature of Γ is the real number κ(y) defined by

κ(y) :=
d−1∑
i=1

κi (y) = Tr(∇n(y)) = div(n(y)).

∇n is also called the Weingarten map of Γ.
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Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of Rd with boundary ∂Γ. For any f ∈W 2,1(Rd),
the functional J(Γ) defined by

J(Γ) :=

∫
Γ

f dσ

is shape differentiable and the shape derivative reads

DJ(Γ)(θ) =

∫
Γ

(div(f θ)− n · ∇θ · nf )dσ

=

∫
Γ

(
∂f

∂n
+ κf

)
(θ · n)dσ +

∫
∂Γ

f θ · τdl ,

where τ denotes the outward normal to ∂Γ tangent to Γ.

κ is the mean curvature field of Γ.



Shape derivatives of volume and surface integrals

For instance, we find that the perimeter

Per(Ω) := |∂Ω| =

∫
∂Ω

dσ

is shape differentiable and

DPer(Ω)(θ) =

∫
∂Ω

κθ · ndσ.

The perimeter decreases if θ is positively proportional to −κn on ∂Ω.
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Proofs

Proposition 6

If Φ is a Lipschitz diffeomorphism of Rd and Ω ⊂ Rd an open set, then for any
f ∈ L1(Φ(Ω)), f ◦ Φ belongs to L1(Ω) and it holds∫

Φ(Ω)

f dx =

∫
Ω

f ◦ Φ | det(∇Φ)|dx .



Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of Rd . For any f ∈W 1,1(Rd), the functional J(Ω) defined by

J(Ω) :=

∫
Ω

f (x)dx

is shape differentiable, and it holds

DJ(Ω)(θ) =

∫
Ω

div(f θ)dx =

∫
Ω

(∇f · θ + f div(θ))dx , θ ∈W 1,∞(Rd ,Rd).

If in addition Ω is smooth then the above formula can be rewritten as

DJ(Ω)(θ) =

∫
∂Ω

f θ · ndσ, θ ∈W 1,∞(Rd ,Rd).

where n denotes the outward normal to Ω.



Shape derivatives of volume and surface integrals

Proof of Proposition 2.

The application of the change of variable formula yields

J(Ωθ) =

∫
(I+θ)Ω

f dx =

∫
Ω

f ◦ (I + θ) det(I +∇θ)dx

=

∫
Ω

(∇f · θ + f div(θ))dx + o(θ).

where we recall that det(I + H) = 1 + Tr(H) + o(H).
The results follow by using

div(f θ) = ∇f · θ + f div(θ)

and an integration by parts.
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Shape derivatives of volume and surface integrals

For the shape differentiation of a surface integral, we use the following change of variable
formula on surfaces:

Proposition 7

Let Γ be a C1 codimension one surface and Φ a C1 diffeomorphism of Rd . Then for any
function f ∈ L1(Φ(Γ)), it holds f ◦ Φ ∈ L1(Γ) and∫

Φ(Γ)

f dσ =

∫
Γ

f ◦ Φ | det(∇Φ)| ||(∇Φ)−Tn||dσ,

where n is any normal vector field to Γ.

The proof use the following result:

Proposition 8

Given a smooth normal vector field n to Γ, a smooth normal vector field to Φ(Γ) is given by

nΦ(Γ)(Φ(y)) =
∇Φ−T (y)n(y)

||∇Φ−T (y)n(y)|| , y ∈ Γ.
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Proof of Proposition 3.

Using the change of variable formula, we find∫
Γθ

f dσ =

∫
Γ

f ◦ (I + θ) | det(I +∇θ)| ||(I +∇θ)−Tn||dσ

=

∫
Γ

(∇f · θ + f div(θ)− n · ∇θ nf )dσ + o(θ)

=

∫
Γ

(div(f θ)− n · ∇θ nf )dσ + o(θ).

In order to obtain the final expression, we use the tangential calculus formula

div(f θ) = divΓ(f θ) + n · ∇(f θ) n

= divΓ(f θΓ) + κf θ · n +
∂f

∂n
θ · n + f n · ∇θ n.

Finally, the divergence theorem on surfaces reads∫
Γ

divΓ(f θΓ)dσ =

∫
∂Γ

f θ · τdl .

whence the result.
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Proposition 3

Let Γ a smooth codimension one surface of Rd with boundary ∂Γ. For any f ∈W 2,1(Rd),
the functional J(Γ) defined by

J(Γ) :=

∫
Γ

f dσ

is shape differentiable and the shape derivative reads

DJ(Γ)(θ) =

∫
Γ
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where τ denotes the outward normal to ∂Γ tangent to Γ.

Analogous to the surface form of the shape derivative.



Shape derivatives of volume and surface integrals

Exercise.

Let Γ be a smooth codimension one surface of Rd with boundary ∂Γ and differentiable
normal vector field n. Let f ∈W 2,1(Rd ,Rd).

What is the shape derivative of J(Γ) :=

∫
Γ

f · ndσ ?
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