Lecture 5: Shape differential calculus.

Florian Feppon

Spring 2022 - Seminar for Applied Mathematics

> ETHzürich

Outline

1. Hadamard's shape derivatives
2. Shape derivatives of volume and surface integrals
3. Proofs: change of variable formulas and tangential calculus

Outline

1. Hadamard's shape derivatives
2. Shape derivatives of volume and surface integrals
3. Proofs: change of variable formulas and tangential calculus

Outline

1. Hadamard's shape derivatives
2. Shape derivatives of volume and surface integrals
3. Proofs: change of variable formulas and tangential calculus

Outline

1. Hadamard's shape derivatives
2. Shape derivatives of volume and surface integrals
3. Proofs: change of variable formulas and tangential calculus

The boundary variation method of Hadamard

Everything started with a memoir of Hadamard in 1908.

> mémoires
> PRESEMES PGR DTENS SAWANTS
> A Lincadéme des sciences DE LTYSTPTE Matozal DE FRINCE. TOME NXXIH. - N 4.

> MÉmolre
> sen
> LE PROBLEME D'NNALISE
> RELATfF i éelmame
> PLAQUES ÉLASTIQUES EMCASTREES, pse
> M. Jacques hadabatro.

Dans le prísent mémoine, jat principalement ear vue l'éude de In loi sumant laqucllc varient les diverses quantites qui interrienneat dams la déternination des fonetions bihumoniques lorsqu'on fait varier la forme du domaine qui les merendre.
Les prohtiemes fondamentiaux relatils at Jéquation $\Delta \Delta V=0$ el aux equations connexes $1 \Delta \mathrm{~V}-6 \mathrm{~V}-0$ peatuent tre regardes comm résohis en principe par la théorie des Equations intégrafas do

The boundary variation method of Hadamard

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector field $\boldsymbol{\theta}$:

$$
\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega=\{x+\boldsymbol{\theta}(x) \mid x \in \Omega\}
$$

The boundary variation method of Hadamard

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector field $\boldsymbol{\theta}$:

$$
\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega=\{x+\boldsymbol{\theta}(x) \mid x \in \Omega\}
$$

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field $\boldsymbol{\theta}$ is used to deform Ω into $\Omega_{\theta}=(I+\theta) \Omega$.

The boundary variation method of Hadamard

We assume that the parameterizing vector field $\boldsymbol{\theta}$ is Lipschitz: $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ where

$$
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)=\left\{\boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right) \mid \nabla \boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right)\right\}
$$

The boundary variation method of Hadamard

We assume that the parameterizing vector field $\boldsymbol{\theta}$ is Lipschitz: $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ where

$$
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)=\left\{\boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right) \mid \nabla \boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right)\right\}
$$

If $\boldsymbol{\theta}$ is sufficiently small, then $I+\boldsymbol{\theta}$ is a diffeomorphism.

The boundary variation method of Hadamard

We assume that the parameterizing vector field $\boldsymbol{\theta}$ is Lipschitz: $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ where

$$
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)=\left\{\boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right) \mid \nabla \boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right)\right\}
$$

If $\boldsymbol{\theta}$ is sufficiently small, then $I+\boldsymbol{\theta}$ is a diffeomorphism.
Lemma 1
For any $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}<1$, the map $I+\boldsymbol{\theta}$ is a bijection satisfying $(I+\boldsymbol{\theta})^{-1}-I \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

The boundary variation method of Hadamard

We assume that the parameterizing vector field $\boldsymbol{\theta}$ is Lipschitz: $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ where

$$
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)=\left\{\boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right) \mid \nabla \boldsymbol{\theta} \in L^{\infty}\left(\mathbb{R}^{d}\right)\right\}
$$

If $\boldsymbol{\theta}$ is sufficiently small, then $I+\boldsymbol{\theta}$ is a diffeomorphism.

Lemma 1

For any $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}<1$, the map $I+\boldsymbol{\theta}$ is a bijection satisfying $(I+\boldsymbol{\theta})^{-1}-I \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

Sketch of proof.

Formally, the inverse map is given by

$$
(I+\boldsymbol{\theta})^{-1}=\sum_{k=0}^{+\infty}(-1)^{k} \overbrace{\boldsymbol{\theta} \circ \cdots \circ \boldsymbol{\theta}}^{k \text { times }}
$$

where the above series is convergent in the norm of $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

The boundary variation method of Hadamard

Let $J(\Omega)$ denote a shape functional arising e.g. in a shape optimization problem

$$
\min _{\Omega} J(\Omega) .
$$

The boundary variation method of Hadamard

Let $J(\Omega)$ denote a shape functional arising e.g. in a shape optimization problem

$$
\min _{\Omega} J(\Omega) .
$$

Definition 2

A shape functional $J(\Omega)$ is said shape differentiable if the mapping

$$
\begin{aligned}
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) & \longrightarrow \mathbb{R} \\
\boldsymbol{\theta} & \longmapsto J\left(\Omega_{\theta}\right)
\end{aligned}
$$

is Fréchet differentiable at $\boldsymbol{\theta}=0$,

The boundary variation method of Hadamard

Let $J(\Omega)$ denote a shape functional arising e.g. in a shape optimization problem

$$
\min _{\Omega} J(\Omega) .
$$

Definition 2

A shape functional $J(\Omega)$ is said shape differentiable if the mapping

$$
\begin{aligned}
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) & \longrightarrow \mathbb{R} \\
\boldsymbol{\theta} & \longmapsto J\left(\Omega_{\theta}\right)
\end{aligned}
$$

is Fréchet differentiable at $\boldsymbol{\theta}=0$, i.e. if there exists a continuous linear form

$$
\operatorname{DJ}(\Omega) \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)^{*}
$$

such that the following asymptotics holds true:

$$
J\left(\Omega_{\theta}\right)=J(\Omega)+\mathrm{D} J(\Omega)(\boldsymbol{\theta})+o(\boldsymbol{\theta}), \quad \text { where } \frac{|o(\boldsymbol{\theta})|}{\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}} \xrightarrow{\theta \rightarrow 0} 0
$$

The boundary variation method of Hadamard

Let $J(\Omega)$ denote a shape functional arising e.g. in a shape optimization problem

$$
\min _{\Omega} J(\Omega) .
$$

Definition 2

A shape functional $J(\Omega)$ is said shape differentiable if the mapping

$$
\begin{aligned}
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) & \longrightarrow \mathbb{R} \\
\boldsymbol{\theta} & \longmapsto J\left(\Omega_{\theta}\right)
\end{aligned}
$$

is Fréchet differentiable at $\boldsymbol{\theta}=0$, i.e. if there exists a continuous linear form

$$
\operatorname{DJ}(\Omega) \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)^{*}
$$

such that the following asymptotics holds true:

$$
J\left(\Omega_{\theta}\right)=J(\Omega)+\mathrm{D} J(\Omega)(\boldsymbol{\theta})+o(\boldsymbol{\theta}), \quad \text { where } \frac{|o(\boldsymbol{\theta})|}{\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}} \xrightarrow{\theta \rightarrow 0} 0
$$

The linear form $\mathrm{D} J(\Omega)$ is called the shape derivative of J on the domain Ω.

The boundary variation method of Hadamard

Remark 1

$W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)^{*}$ is the dual space of $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. The definition the existence of some constant $C(\Omega)$ independent of $\boldsymbol{\theta}$ such that

$$
\forall \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right),|\mathrm{D} J(\Omega)(\boldsymbol{\theta})| \leq C(\Omega)\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)} .
$$

The boundary variation method of Hadamard

Remark 1

$W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)^{*}$ is the dual space of $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. The definition the existence of some constant $C(\Omega)$ independent of $\boldsymbol{\theta}$ such that

$$
\forall \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right),|\mathrm{D} J(\Omega)(\boldsymbol{\theta})| \leq C(\Omega)\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}
$$

Remark 2

In case where the shape to optimize is an interface Γ, a functional $J(\Gamma)$ is said shape differentiable if $\boldsymbol{\theta} \mapsto J\left(\Gamma_{\theta}\right)$ is differentiable and the shape derivative $\mathrm{D} J(\Gamma)(\boldsymbol{\theta})$ is defined analogously to theorem 2.

Remark 3

It will be convenient to write shape derivatives with a $\mathrm{d} / \mathrm{d} \boldsymbol{\theta}$ differential notation:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=0}\left[J\left(\Omega_{\theta}\right)\right](\boldsymbol{\theta}):=\mathrm{D} J(\Omega)(\boldsymbol{\theta}),
$$

where with a little abuse of notations, we have also denoted by $\boldsymbol{\theta}$ the direction in which $\boldsymbol{\theta} \mapsto J\left(\Omega_{\theta}\right)$ is differentiated.

The boundary variation method of Hadamard

An important result: Hadamard's structure theorem.

Proposition 1 (Hadamard's structure theorem)

Let Ω a smooth bounded open set of \mathbb{R}^{d} and $J(\Omega)$ a shape differentiable functional. If $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ are such that $\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1} \in \mathcal{C}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $\boldsymbol{\theta}_{1} \cdot \boldsymbol{n}=\boldsymbol{\theta}_{2} \cdot \boldsymbol{n}$ on $\partial \Omega$, then it holds

$$
\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{1}\right)=\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{2}\right)
$$

The boundary variation method of Hadamard

An important result: Hadamard's structure theorem.

Proposition 1 (Hadamard's structure theorem)

Let Ω a smooth bounded open set of \mathbb{R}^{d} and $J(\Omega)$ a shape differentiable functional. If $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ are such that $\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1} \in \mathcal{C}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $\boldsymbol{\theta}_{1} \cdot \boldsymbol{n}=\boldsymbol{\theta}_{2} \cdot \boldsymbol{n}$ on $\partial \Omega$, then it holds

$$
\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{1}\right)=\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{2}\right)
$$

Vector fields which are tangent to $\partial \Omega$ induce no variations of $J(\Omega)$.

The boundary variation method of Hadamard

An important result: Hadamard's structure theorem.

Proposition 1 (Hadamard's structure theorem)

Let Ω a smooth bounded open set of \mathbb{R}^{d} and $J(\Omega)$ a shape differentiable functional. If $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ are such that $\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1} \in \mathcal{C}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $\boldsymbol{\theta}_{1} \cdot \boldsymbol{n}=\boldsymbol{\theta}_{2} \cdot \boldsymbol{n}$ on $\partial \Omega$, then it holds

$$
\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{1}\right)=\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{2}\right)
$$

Vector fields which are tangent to $\partial \Omega$ induce no variations of $J(\Omega)$. For smooth domains, $\mathrm{D} J(\Omega)$ depends only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$.

The boundary variation method of Hadamard

An important result: Hadamard's structure theorem.

Proposition 1 (Hadamard's structure theorem)

Let Ω a smooth bounded open set of \mathbb{R}^{d} and $J(\Omega)$ a shape differentiable functional. If $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ are such that $\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1} \in \mathcal{C}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $\boldsymbol{\theta}_{1} \cdot \boldsymbol{n}=\boldsymbol{\theta}_{2} \cdot \boldsymbol{n}$ on $\partial \Omega$, then it holds

$$
\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{1}\right)=\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{2}\right)
$$

Vector fields which are tangent to $\partial \Omega$ induce no variations of $J(\Omega)$. For smooth domains, $\mathrm{D} J(\Omega)$ depends only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$.
In what follows, we will see that under suitable regularity assumptions, shape derivatives can often be written as

$$
\mathrm{D} J(\Omega)=\int_{\partial \Omega} v_{J}(\Omega) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

The boundary variation method of Hadamard

An important result: Hadamard's structure theorem.

Proposition 1 (Hadamard's structure theorem)

Let Ω a smooth bounded open set of \mathbb{R}^{d} and $J(\Omega)$ a shape differentiable functional. If $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ are such that $\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1} \in \mathcal{C}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $\boldsymbol{\theta}_{1} \cdot \boldsymbol{n}=\boldsymbol{\theta}_{2} \cdot \boldsymbol{n}$ on $\partial \Omega$, then it holds

$$
\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{1}\right)=\mathrm{D} J(\Omega)\left(\boldsymbol{\theta}_{2}\right)
$$

Vector fields which are tangent to $\partial \Omega$ induce no variations of $J(\Omega)$.
For smooth domains, $\mathrm{D} J(\Omega)$ depends only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$.
In what follows, we will see that under suitable regularity assumptions, shape derivatives can often be written as

$$
\mathrm{D} J(\Omega)=\int_{\partial \Omega} v_{J}(\Omega) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma .
$$

If we set $\boldsymbol{\theta}=-t v_{J}(\Omega) \boldsymbol{n}$ for a sufficiently small $t>0$, then we have

$$
J\left(\Omega_{\theta}\right)=J(\Omega)-t \int_{\partial \Omega}\left|v_{f}(\Omega)\right|^{2} \mathrm{~d} \sigma+O\left(t^{2}\right)
$$

and Ω_{θ} is a "better" candidate than Ω.

Outline

1. Hadamard's shape derivatives
2. Shape derivatives of volume and surface integrals
3. Proofs: change of variable formulas and tangential calculus

Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) .
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) .
$$

where \boldsymbol{n} denotes the outward normal to Ω.

Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

where \boldsymbol{n} denotes the outward normal to Ω.
Volume form of the shape derivative.

Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

where \boldsymbol{n} denotes the outward normal to Ω.
Surface form of the shape derivative.

Shape derivatives of volume and surface integrals

For instance, we find that the volume

$$
\operatorname{Vol}(\Omega):=|\Omega|=\int_{\Omega} \mathrm{d} x
$$

is shape differentiable and

Shape derivatives of volume and surface integrals

For instance, we find that the volume

$$
\operatorname{Vol}(\Omega):=|\Omega|=\int_{\Omega} \mathrm{d} x
$$

is shape differentiable and

$$
\operatorname{DVol}(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} x
$$

Shape derivatives of volume and surface integrals

For instance, we find that the volume

$$
\operatorname{Vol}(\Omega):=|\Omega|=\int_{\Omega} \mathrm{d} x
$$

is shape differentiable and

$$
\operatorname{DVol}(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} x .
$$

The volume increases if $\boldsymbol{\theta}$ is positively proportional to \boldsymbol{n} on $\partial \Omega$.

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Analogous to the volume form of the shape derivative.

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Analogous to the surface form of the shape derivative.

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.
κ is the mean curvature field of Γ.

Shape derivatives of volume and surface integrals

Reminders on differential geometry

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Shape derivatives of volume and surface integrals

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Proof.

1. Since \boldsymbol{n} is a differentiable unit vector, i.e. $\|\boldsymbol{n}(x)\|^{2}=1$ for any x in a neighborhood of Γ, we have by differentiation with respect to some vector h that $0=2\langle\nabla n(x) \cdot h, \boldsymbol{n}(x)\rangle$ whence $\nabla n(y)^{T} \cdot \boldsymbol{n}(y)=0$.

Shape derivatives of volume and surface integrals

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Proof.

1. Since \boldsymbol{n} is a differentiable unit vector, i.e. $\|\boldsymbol{n}(x)\|^{2}=1$ for any x in a neighborhood of Γ, we have by differentiation with respect to some vector h that $0=2\langle\nabla n(x) \cdot h, \boldsymbol{n}(x)\rangle$ whence $\nabla n(y)^{T} \cdot \boldsymbol{n}(y)=0$.
2. Let $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{2}$ be two tangent vector fields on Γ.

Shape derivatives of volume and surface integrals

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Proof.

1. Since \boldsymbol{n} is a differentiable unit vector, i.e. $\|\boldsymbol{n}(x)\|^{2}=1$ for any x in a neighborhood of Γ, we have by differentiation with respect to some vector h that $0=2\langle\nabla n(x) \cdot h, \boldsymbol{n}(x)\rangle$ whence $\nabla n(y)^{T} \cdot \boldsymbol{n}(y)=0$.
2. Let $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{2}$ be two tangent vector fields on Γ.

Shape derivatives of volume and surface integrals

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Proof.

1. Since \boldsymbol{n} is a differentiable unit vector, i.e. $\|\boldsymbol{n}(x)\|^{2}=1$ for any x in a neighborhood of Γ, we have by differentiation with respect to some vector h that $0=2\langle\nabla n(x) \cdot h, \boldsymbol{n}(x)\rangle$ whence $\nabla n(y)^{T} \cdot \boldsymbol{n}(y)=0$.
2. Let τ_{1} and τ_{2} be two tangent vector fields on Γ. Recall that the Lie derivative $\mathrm{D}_{\tau_{1}} \boldsymbol{\tau}_{2}-\mathrm{D}_{\tau_{2}} \tau_{1}$ is also a tangent vector on Γ (this is a consequence of Schwartz theorem), therefore

$$
\begin{equation*}
\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{\tau}_{2}=\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{\tau}_{1} \tag{1}
\end{equation*}
$$

Shape derivatives of volume and surface integrals

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Proof.

1. Since \boldsymbol{n} is a differentiable unit vector, i.e. $\|\boldsymbol{n}(x)\|^{2}=1$ for any x in a neighborhood of Γ, we have by differentiation with respect to some vector h that $0=2\langle\nabla n(x) \cdot h, \boldsymbol{n}(x)\rangle$ whence $\nabla n(y)^{T} \cdot \boldsymbol{n}(y)=0$.
2. Let τ_{1} and τ_{2} be two tangent vector fields on Γ. Recall that the Lie derivative $\mathrm{D}_{\tau_{1}} \boldsymbol{\tau}_{2}-\mathrm{D}_{\tau_{2}} \tau_{1}$ is also a tangent vector on Γ (this is a consequence of Schwartz theorem), therefore

$$
\begin{equation*}
\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{\tau}_{2}=\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{\tau}_{1} \tag{1}
\end{equation*}
$$

Then, differentiating $0=\boldsymbol{n} \cdot \boldsymbol{\tau}_{1}$ along the vector field $\boldsymbol{\tau}_{2}$ and $0=\boldsymbol{n} \cdot \boldsymbol{\tau}_{2}$ along $\boldsymbol{\tau}_{1}$ yields

$$
\mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{n} \cdot \boldsymbol{\tau}_{1}+\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{\tau}_{1}=0=\mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{n} \cdot \boldsymbol{\tau}_{2}+\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{\tau}_{2} .
$$

Shape derivatives of volume and surface integrals

Proposition 4 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Proof.

1. Since \boldsymbol{n} is a differentiable unit vector, i.e. $\|\boldsymbol{n}(x)\|^{2}=1$ for any x in a neighborhood of Γ, we have by differentiation with respect to some vector h that $0=2\langle\nabla n(x) \cdot h, \boldsymbol{n}(x)\rangle$ whence $\nabla n(y)^{T} \cdot \boldsymbol{n}(y)=0$.
2. Let τ_{1} and τ_{2} be two tangent vector fields on Γ. Recall that the Lie derivative $\mathrm{D}_{\tau_{1}} \tau_{2}-\mathrm{D}_{\tau_{2}} \tau_{1}$ is also a tangent vector on Γ (this is a consequence of Schwartz theorem), therefore

$$
\begin{equation*}
\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{\tau}_{2}=\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{\tau}_{1} \tag{1}
\end{equation*}
$$

Then, differentiating $0=\boldsymbol{n} \cdot \boldsymbol{\tau}_{1}$ along the vector field $\boldsymbol{\tau}_{2}$ and $0=\boldsymbol{n} \cdot \boldsymbol{\tau}_{2}$ along $\boldsymbol{\tau}_{1}$ yields

$$
\mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{n} \cdot \boldsymbol{\tau}_{1}+\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{2}} \boldsymbol{\tau}_{1}=0=\mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{n} \cdot \boldsymbol{\tau}_{2}+\boldsymbol{n} \cdot \mathrm{D}_{\boldsymbol{\tau}_{1}} \boldsymbol{\tau}_{2} .
$$

Using (1), we obtain $\boldsymbol{\tau}_{1} \cdot \nabla \boldsymbol{n} \boldsymbol{\tau}_{2}=\boldsymbol{\tau}_{2} \cdot \nabla \boldsymbol{n} \boldsymbol{\tau}_{1}$, i.e. $\nabla \boldsymbol{n}(y)^{T}=\nabla \boldsymbol{n}(y)$.

Shape derivatives of volume and surface integrals

Reminders on differential geometry

Proposition 5 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal outward to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}^{T}=\nabla \boldsymbol{n}$.

Shape derivatives of volume and surface integrals

Reminders on differential geometry

Proposition 5 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal outward to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}^{T}=\nabla \boldsymbol{n}$.

In other words, for any $y \in \Gamma, \nabla \boldsymbol{n}(y)$ is a symmetric matrix.

Shape derivatives of volume and surface integrals

Proposition 5 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal outward to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}^{T}=\nabla \boldsymbol{n}$.

In other words, for any $y \in \Gamma, \nabla \boldsymbol{n}(y)$ is a symmetric matrix. Consequently, it can be diagonalized as

$$
\forall y \in \Gamma, \nabla \boldsymbol{n}(y)=\sum_{i=1}^{d-1} \kappa_{i}(y) \tau_{i}(y) \boldsymbol{\tau}_{i}(y)^{T}
$$

The real numbers $\left(\kappa_{i}(y)\right)_{1 \leq i \leq d-1}$ and the tangent eigenvectors $\left(\tau_{i}(y)\right)_{1 \leq i \leq d-1}$ are called principal curvatures and principal directions of Γ at y.

Shape derivatives of volume and surface integrals

Proposition 5 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal outward to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}^{T}=\nabla \boldsymbol{n}$.

In other words, for any $y \in \Gamma, \nabla \boldsymbol{n}(y)$ is a symmetric matrix. Consequently, it can be diagonalized as

$$
\forall y \in \Gamma, \nabla \boldsymbol{n}(y)=\sum_{i=1}^{d-1} \kappa_{i}(y) \tau_{i}(y) \boldsymbol{\tau}_{i}(y)^{T}
$$

The real numbers $\left(\kappa_{i}(y)\right)_{1 \leq i \leq d-1}$ and the tangent eigenvectors $\left(\tau_{i}(y)\right)_{1 \leq i \leq d-1}$ are called principal curvatures and principal directions of Γ at y.

The mean curvature of Γ is the real number $\kappa(y)$ defined by

$$
\kappa(y):=\sum_{i=1}^{d-1} \kappa_{i}(y)=\operatorname{Tr}(\nabla \boldsymbol{n}(y))=\operatorname{div}(\boldsymbol{n}(y))
$$

Shape derivatives of volume and surface integrals

Proposition 5 (Principal curvatures)

Let Γ be a \mathcal{C}^{2} manifold and let \boldsymbol{n} be any differentiable unit vector field normal outward to Γ. The gradient of the normal $\nabla \boldsymbol{n}$ satisfies:

1. $\forall y \in \Gamma, \nabla \boldsymbol{n}(y) \cdot \boldsymbol{n}(y)=0$,
2. $\forall y \in \Gamma, \nabla \boldsymbol{n}^{T}=\nabla \boldsymbol{n}$.

In other words, for any $y \in \Gamma, \nabla \boldsymbol{n}(y)$ is a symmetric matrix. Consequently, it can be diagonalized as

$$
\forall y \in \Gamma, \nabla \boldsymbol{n}(y)=\sum_{i=1}^{d-1} \kappa_{i}(y) \tau_{i}(y) \boldsymbol{\tau}_{i}(y)^{T}
$$

The real numbers $\left(\kappa_{i}(y)\right)_{1 \leq i \leq d-1}$ and the tangent eigenvectors $\left(\tau_{i}(y)\right)_{1 \leq i \leq d-1}$ are called principal curvatures and principal directions of Γ at y.

The mean curvature of Γ is the real number $\kappa(y)$ defined by

$$
\kappa(y):=\sum_{i=1}^{d-1} \kappa_{i}(y)=\operatorname{Tr}(\nabla \boldsymbol{n}(y))=\operatorname{div}(\boldsymbol{n}(y))
$$

$\nabla \boldsymbol{n}$ is also called the Weingarten map of Γ.

Shape derivatives of volume and surface integrals

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.
κ is the mean curvature field of Γ.

Shape derivatives of volume and surface integrals

For instance, we find that the perimeter

$$
\operatorname{Per}(\Omega):=|\partial \Omega|=\int_{\partial \Omega} \mathrm{d} \sigma
$$

is shape differentiable and

Shape derivatives of volume and surface integrals

For instance, we find that the perimeter

$$
\operatorname{Per}(\Omega):=|\partial \Omega|=\int_{\partial \Omega} \mathrm{d} \sigma
$$

is shape differentiable and

$$
\operatorname{DPer}(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} \kappa \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma .
$$

Shape derivatives of volume and surface integrals

For instance, we find that the perimeter

$$
\operatorname{Per}(\Omega):=|\partial \Omega|=\int_{\partial \Omega} \mathrm{d} \sigma
$$

is shape differentiable and

$$
\operatorname{DPer}(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} \kappa \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma .
$$

The perimeter decreases if $\boldsymbol{\theta}$ is positively proportional to $-\kappa \boldsymbol{n}$ on $\partial \Omega$.

Outline

1. Hadamard's shape derivatives
2. Shape derivatives of volume and surface integrals
3. Proofs: change of variable formulas and tangential calculus

Proofs

The proof of these propositions relies on

- change of variable formulas

Proofs

The proof of these propositions relies on

- change of variable formulas
- tangential differential calculus.

Proofs

Proposition 6

If Φ is a Lipschitz diffeomorphism of \mathbb{R}^{d} and $\Omega \subset \mathbb{R}^{d}$ an open set, then for any $f \in L^{1}(\Phi(\Omega)), f \circ \Phi$ belongs to $L^{1}(\Omega)$ and it holds

$$
\int_{\Phi(\Omega)} f \mathrm{~d} x=\int_{\Omega} f \circ \Phi|\operatorname{det}(\nabla \Phi)| \mathrm{d} x .
$$

Shape derivatives of volume and surface integrals

Proposition 2

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) .
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) .
$$

where \boldsymbol{n} denotes the outward normal to Ω.

Shape derivatives of volume and surface integrals

Proof of Proposition 2.

The application of the change of variable formula yields

$$
J\left(\Omega_{\boldsymbol{\theta}}\right)=\int_{(I+\boldsymbol{\theta}) \Omega} f \mathrm{~d} x=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 2.

The application of the change of variable formula yields

$$
\begin{aligned}
J\left(\Omega_{\boldsymbol{\theta}}\right) & =\int_{(I+\boldsymbol{\theta}) \Omega} f \mathrm{~d} x=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
& =\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x+o(\boldsymbol{\theta}) .
\end{aligned}
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 2.

The application of the change of variable formula yields

$$
\begin{aligned}
J\left(\Omega_{\boldsymbol{\theta}}\right) & =\int_{(I+\boldsymbol{\theta}) \Omega} f \mathrm{~d} x=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
& =\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x+o(\boldsymbol{\theta})
\end{aligned}
$$

where we recall that $\operatorname{det}(I+H)=1+\operatorname{Tr}(H)+o(H)$.

Shape derivatives of volume and surface integrals

Proof of Proposition 2.

The application of the change of variable formula yields

$$
\begin{aligned}
J\left(\Omega_{\boldsymbol{\theta}}\right) & =\int_{(I+\boldsymbol{\theta}) \Omega} f \mathrm{~d} x=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
& =\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x+o(\boldsymbol{\theta})
\end{aligned}
$$

where we recall that $\operatorname{det}(I+H)=1+\operatorname{Tr}(H)+o(H)$.
The results follow by using

$$
\operatorname{div}(f \boldsymbol{\theta})=\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})
$$

and an integration by parts.

Shape derivatives of volume and surface integrals

For the shape differentiation of a surface integral, we use the following change of variable formula on surfaces:

Shape derivatives of volume and surface integrals

For the shape differentiation of a surface integral, we use the following change of variable formula on surfaces:

Proposition 7

Let Γ be a \mathcal{C}^{1} codimension one surface and Φ a \mathcal{C}^{1} diffeomorphism of \mathbb{R}^{d}. Then for any function $f \in L^{1}(\Phi(\Gamma))$, it holds $f \circ \Phi \in L^{1}(\Gamma)$ and

$$
\int_{\Phi(\Gamma)} f \mathrm{~d} \sigma=\int_{\Gamma} f \circ \Phi|\operatorname{det}(\nabla \Phi)|\left\|(\nabla \Phi)^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma
$$

where \boldsymbol{n} is any normal vector field to Γ.

Shape derivatives of volume and surface integrals

For the shape differentiation of a surface integral, we use the following change of variable formula on surfaces:

Proposition 7

Let Γ be a \mathcal{C}^{1} codimension one surface and Φ a \mathcal{C}^{1} diffeomorphism of \mathbb{R}^{d}. Then for any function $f \in L^{1}(\Phi(\Gamma))$, it holds $f \circ \Phi \in L^{1}(\Gamma)$ and

$$
\int_{\Phi(\Gamma)} f \mathrm{~d} \sigma=\int_{\Gamma} f \circ \Phi|\operatorname{det}(\nabla \Phi)|\left\|(\nabla \Phi)^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma
$$

where \boldsymbol{n} is any normal vector field to Γ.
The proof use the following result:

Proposition 8

Given a smooth normal vector field n to Γ, a smooth normal vector field to $\Phi(\Gamma)$ is given by

$$
\boldsymbol{n}_{\Phi(\Gamma)}(\Phi(y))=\frac{\nabla \Phi^{-T}(y) \boldsymbol{n}(y)}{\left\|\nabla \Phi^{-T}(y) \boldsymbol{n}(y)\right\|}, \quad y \in \Gamma
$$

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma=\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\begin{aligned}
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma & =\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma \\
& =\int_{\Gamma}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta})
\end{aligned}
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\begin{aligned}
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma & =\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma \\
& =\int_{\Gamma}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) \\
& =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) .
\end{aligned}
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\begin{aligned}
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma & =\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma \\
& =\int_{\Gamma}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) \\
& =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) .
\end{aligned}
$$

In order to obtain the final expression, we use the tangential calculus formula

$$
\operatorname{div}(f \boldsymbol{\theta})=\operatorname{div}_{\Gamma}(f \boldsymbol{\theta})+\boldsymbol{n} \cdot \nabla(f \boldsymbol{\theta}) \boldsymbol{n}
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\begin{aligned}
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma & =\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma \\
& =\int_{\Gamma}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) \\
& =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) .
\end{aligned}
$$

In order to obtain the final expression, we use the tangential calculus formula

$$
\begin{aligned}
\operatorname{div}(f \boldsymbol{\theta}) & =\operatorname{div}_{\Gamma}(f \boldsymbol{\theta})+\boldsymbol{n} \cdot \nabla(f \boldsymbol{\theta}) \boldsymbol{n} \\
& =\operatorname{div}_{\Gamma}\left(f \boldsymbol{\theta}_{\Gamma}\right)+\kappa f \boldsymbol{\theta} \cdot \boldsymbol{n}+\frac{\partial f}{\partial \boldsymbol{n}} \boldsymbol{\theta} \cdot \boldsymbol{n}+f \boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} .
\end{aligned}
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\begin{aligned}
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma & =\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma \\
& =\int_{\Gamma}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) \\
& =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) .
\end{aligned}
$$

In order to obtain the final expression, we use the tangential calculus formula

$$
\begin{aligned}
\operatorname{div}(f \boldsymbol{\theta}) & =\operatorname{div}_{\Gamma}(f \boldsymbol{\theta})+\boldsymbol{n} \cdot \nabla(f \boldsymbol{\theta}) \boldsymbol{n} \\
& =\operatorname{div}_{\Gamma}\left(f \boldsymbol{\theta}_{\Gamma}\right)+\kappa f \boldsymbol{\theta} \cdot \boldsymbol{n}+\frac{\partial f}{\partial \boldsymbol{n}} \boldsymbol{\theta} \cdot \boldsymbol{n}+f \boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} .
\end{aligned}
$$

Finally, the divergence theorem on surfaces reads

$$
\int_{\Gamma} \operatorname{div}_{\Gamma}\left(f \boldsymbol{\theta}_{\Gamma}\right) \mathrm{d} \sigma=\int_{\partial \Gamma} \boldsymbol{f} \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{d} /
$$

Shape derivatives of volume and surface integrals

Proof of Proposition 3.

Using the change of variable formula, we find

$$
\begin{aligned}
\int_{\Gamma_{\boldsymbol{\theta}}} f \mathrm{~d} \sigma & =\int_{\Gamma} f \circ(I+\boldsymbol{\theta})|\operatorname{det}(\mathrm{I}+\nabla \boldsymbol{\theta})|\left\|(\mathrm{I}+\nabla \boldsymbol{\theta})^{-T} \boldsymbol{n}\right\| \mathrm{d} \sigma \\
& =\int_{\Gamma}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) \\
& =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} f) \mathrm{d} \sigma+o(\boldsymbol{\theta}) .
\end{aligned}
$$

In order to obtain the final expression, we use the tangential calculus formula

$$
\begin{aligned}
\operatorname{div}(f \boldsymbol{\theta}) & =\operatorname{div}_{\Gamma}(f \boldsymbol{\theta})+\boldsymbol{n} \cdot \nabla(f \boldsymbol{\theta}) \boldsymbol{n} \\
& =\operatorname{div}_{\Gamma}\left(f \boldsymbol{\theta}_{\ulcorner }\right)+\kappa f \boldsymbol{\theta} \cdot \boldsymbol{n}+\frac{\partial f}{\partial \boldsymbol{n}} \boldsymbol{\theta} \cdot \boldsymbol{n}+f \boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \boldsymbol{n} .
\end{aligned}
$$

Finally, the divergence theorem on surfaces reads

$$
\int_{\Gamma} \operatorname{div} \Gamma\left(f \boldsymbol{\theta}_{\Gamma}\right) \mathrm{d} \sigma=\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
$$

whence the result.

Shape derivatives of volume and surface integrals

Proposition 3

Let Γ a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Analogous to the surface form of the shape derivative.

Shape derivatives of volume and surface integrals

Exercise.

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$ and differentiable normal vector field \boldsymbol{n}. Let $\boldsymbol{f} \in W^{2,1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

Shape derivatives of volume and surface integrals

Exercise.

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$ and differentiable normal vector field \boldsymbol{n}. Let $\boldsymbol{f} \in W^{2,1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

What is the shape derivative of $J(\Gamma):=\int_{\Gamma} \boldsymbol{f} \cdot \boldsymbol{n} \mathrm{d} \sigma$?

