Lecture 6: Shape derivatives of PDE constrained functionals.

Florian Feppon

Spring 2022 - Seminar for Applied Mathematics

ETHzürich

Recap

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector field $\boldsymbol{\theta}$:

$$
\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega=\{x+\boldsymbol{\theta}(x) \mid x \in \Omega\}
$$

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field $\boldsymbol{\theta}$ is used to deform Ω into $\Omega_{\theta}=(I+\theta) \Omega$.

Recap

Let $J(\Omega)$ denote a shape functional arising e.g. in a shape optimization problem

$$
\min _{\Omega} J(\Omega)
$$

Definition 1

A shape functional $J(\Omega)$ is said shape differentiable if the mapping

$$
\begin{aligned}
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) & \longrightarrow \mathbb{R} \\
\boldsymbol{\theta} & \longmapsto J\left(\Omega_{\theta}\right)
\end{aligned}
$$

is Fréchet differentiable at $\boldsymbol{\theta}=0$, i.e. if there exists a continuous linear form

$$
\operatorname{DJ}(\Omega) \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)^{*}
$$

such that the following asymptotics holds true:

$$
J\left(\Omega_{\theta}\right)=J(\Omega)+\mathrm{D} J(\Omega)(\boldsymbol{\theta})+o(\boldsymbol{\theta}), \quad \text { where } \frac{|o(\boldsymbol{\theta})|}{\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}} \xrightarrow{\theta \rightarrow 0} 0 .
$$

The linear form $\mathrm{D} J(\Omega)$ is called the shape derivative of J on the domain Ω.

The boundary variation method of Hadamard

$\min _{\Gamma} J(\Gamma)$

The boundary variation method of Hadamard

$$
\begin{gathered}
\Gamma_{\boldsymbol{\theta}}=(I+\boldsymbol{\theta}) \Gamma, \text { with } \theta \in W_{0}^{1, \infty}\left(D, \mathbb{R}^{d}\right),\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}<1 . \\
J\left(\Gamma_{\boldsymbol{\theta}}\right)=J(\Gamma)+\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\boldsymbol{\theta})+o(\boldsymbol{\theta}), \quad \text { with } \frac{|o(\theta)|}{\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(D, \mathbb{R}^{d}\right)}} \xrightarrow{\theta \rightarrow 0} 0 .
\end{gathered}
$$

The boundary variation method of Hadamard

Under suitable regularity assumptions, Hadamard structure theorem holds:

$$
\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\Gamma)(\boldsymbol{\theta})=\int_{\Gamma} v_{J}(\Gamma) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

for some $v_{J}(\Gamma) \in L^{1}(\Gamma)$.

The boundary variation method of Hadamard

Under suitable regularity assumptions, Hadamard structure theorem holds:

$$
\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\Gamma)(\boldsymbol{\theta})=\int_{\Gamma} v_{J}(\Gamma) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

for some $v_{J}(\Gamma) \in L^{1}(\Gamma)$.
If $\boldsymbol{\theta} \cdot \boldsymbol{n}=-v_{J}(\Gamma)$ on Γ, then $J\left(\Gamma_{\theta}\right)=J(\Gamma)-t \int_{\Gamma}\left|v_{J}(\Gamma)\right|^{2} \mathrm{~d} \sigma+o(t)<J(\Gamma) ; \boldsymbol{\theta}$ is a descent direction.

The boundary variation method of Hadamard

Proposition 1

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

The boundary variation method of Hadamard

Proposition 1

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

where \boldsymbol{n} denotes the outward normal to Ω.

The boundary variation method of Hadamard

Proposition 1

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

where \boldsymbol{n} denotes the outward normal to Ω.
Volume form of the shape derivative.

The boundary variation method of Hadamard

Proposition 1

Let Ω be a bounded open set of \mathbb{R}^{d}. For any $f \in W^{1,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Omega)$ defined by

$$
J(\Omega):=\int_{\Omega} f(x) \mathrm{d} x
$$

is shape differentiable, and it holds

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+f \operatorname{div}(\boldsymbol{\theta})) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

If in addition Ω is smooth then the above formula can be rewritten as

$$
\mathrm{D} J(\Omega)(\boldsymbol{\theta})=\int_{\partial \Omega} f \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

where \boldsymbol{n} denotes the outward normal to Ω.
Surface form of the shape derivative.

The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Analogous to the volume form of the shape derivative.

The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.

Analogous to the surface form of the shape derivative.

The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of \mathbb{R}^{d} with boundary $\partial \Gamma$. For any $f \in W^{2,1}\left(\mathbb{R}^{d}\right)$, the functional $J(\Gamma)$ defined by

$$
J(\Gamma):=\int_{\Gamma} f \mathrm{~d} \sigma
$$

is shape differentiable and the shape derivative reads

$$
\begin{aligned}
\mathrm{D} J(\Gamma)(\boldsymbol{\theta}) & =\int_{\Gamma}(\operatorname{div}(f \boldsymbol{\theta})-\boldsymbol{n} \cdot \nabla \boldsymbol{\theta} \cdot \boldsymbol{n} f) \mathrm{d} \sigma \\
& =\int_{\Gamma}\left(\frac{\partial f}{\partial \boldsymbol{n}}+\kappa f\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma+\int_{\partial \Gamma} f \boldsymbol{\theta} \cdot \boldsymbol{\tau} \mathrm{~d} /
\end{aligned}
$$

where $\boldsymbol{\tau}$ denotes the outward normal to $\partial \Gamma$ tangent to Γ.
$\kappa=\operatorname{div}(\boldsymbol{n})$ is the mean curvature field of Γ.

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

A model problem

Consider the shape optimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega} j(u) \mathrm{d} x \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =f \text { in } \Omega \\
u & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N}
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

A model problem

Consider the shape optimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega} j(u) \mathrm{d} x \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =f \text { in } \Omega, \\
u & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N} .
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.
$-\Gamma_{D}$: Dirichlet boundary, Γ_{N} : Neumann boundary.

A model problem

Consider the shape optimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega} j(u) \mathrm{d} x \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =f \text { in } \Omega, \\
u & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N} .
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

- Γ_{D} : Dirichlet boundary, Γ_{N} : Neumann boundary.
$\triangleright j: \mathbb{R} \rightarrow \mathbb{R}$ with $|j(x)| \leq C\left(|x|^{2}+1\right)$.

A model problem

Consider the shape optimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega} j(u) \mathrm{d} x \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =f \text { in } \Omega \\
u & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N}
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

- Γ_{D} : Dirichlet boundary, Γ_{N} : Neumann boundary.
$\triangleright j: \mathbb{R} \rightarrow \mathbb{R}$ with $|j(x)| \leq C\left(|x|^{2}+1\right)$.
- Let $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a small vector field, $\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega$

A model problem

Consider the shape optimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega} j(u) \mathrm{d} x \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =f \text { in } \Omega, \\
u & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N} .
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

- Γ_{D} : Dirichlet boundary, Γ_{N} : Neumann boundary.
$\triangleright j: \mathbb{R} \rightarrow \mathbb{R}$ with $|j(x)| \leq C\left(|x|^{2}+1\right)$.
- Let $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a small vector field, $\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega$

Let $\Gamma_{D, \boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Gamma_{D}, \Gamma_{N, \boldsymbol{\theta}}=(I+\boldsymbol{\theta}) \Gamma_{N}$ and $u_{\boldsymbol{\theta}}$ the solution to the Laplace problem on Ω_{θ}.

A model problem

Consider the shape minimization problem

$$
\begin{aligned}
& \min _{\theta \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)} \int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u_{\boldsymbol{\theta}} & =f \text { in } \Omega_{\boldsymbol{\theta}} \\
u_{\boldsymbol{\theta}} & =0 \text { on } \Gamma_{D, \boldsymbol{\theta}} \\
\frac{\partial u_{\theta}}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N, \boldsymbol{\theta}}
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

- Γ_{D} : Dirichlet boundary, Γ_{N} : Neumann boundary.
$\triangleright j: \mathbb{R} \rightarrow \mathbb{R}$ with $|j(x)| \leq C\left(|x|^{2}+1\right)$.
- Let $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a small vector field, $\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega$

Let $\Gamma_{D, \boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Gamma_{D}, \Gamma_{N, \boldsymbol{\theta}}=(I+\boldsymbol{\theta}) \Gamma_{N}$ and $u_{\boldsymbol{\theta}}$ the solution to the Laplace problem on Ω_{θ}.

A model problem

Our goal: find the Fréchet derivative of

$$
\boldsymbol{\theta} \mapsto J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x, \quad \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
$$

where

$$
\left\{\begin{aligned}
-\Delta u_{\boldsymbol{\theta}} & =f \text { in } \Omega_{\boldsymbol{\theta}}, \\
u_{\boldsymbol{\theta}} & =0 \text { on } \Gamma_{D, \boldsymbol{\theta}} \\
\frac{\partial u_{\boldsymbol{\theta}}}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N, \boldsymbol{\theta}}
\end{aligned}\right.
$$

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

The Eulerian derivative

Naively,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\partial \Omega} j(u) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Omega} j^{\prime}(u)\left(\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}\right)(\boldsymbol{\theta}) \mathrm{d} x \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta} \mapsto \frac{\mathrm{d}}{\mathrm{d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}$ would be the derivative of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}(x)$ with $x \in \Omega$.

The Eulerian derivative

Naively,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\partial \Omega} j(u) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Omega} j^{\prime}(u)\left(\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}\right)(\boldsymbol{\theta}) \mathrm{d} x \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta} \mapsto \frac{\mathrm{d}}{\mathrm{d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}$ would be the derivative of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}(x)$ with $x \in \Omega$.

Definition 2

The derivative of the mapping $x \mapsto u_{\theta}(x)$, if it exists for any $x \in \Omega$ in a point-wise sense, is called the Eulerian derivative of $u_{\boldsymbol{\theta}}$, and is denoted by $u^{\prime}(\boldsymbol{\theta})$.

The Eulerian derivative

Naively,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\partial \Omega} j(u) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Omega} j^{\prime}(u)\left(\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}\right)(\boldsymbol{\theta}) \mathrm{d} x \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta} \mapsto \frac{\mathrm{d}}{\mathrm{d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}$ would be the derivative of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}(x)$ with $x \in \Omega$.

Definition 2

The derivative of the mapping $x \mapsto u_{\theta}(x)$, if it exists for any $x \in \Omega$ in a point-wise sense, is called the Eulerian derivative of $u_{\boldsymbol{\theta}}$, and is denoted by $u^{\prime}(\boldsymbol{\theta})$.

- Difficulty 1: the derivation of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}$ may exist for all point $x \in \Omega$ but not in a uniform way in Ω (near the boundary, $x+\boldsymbol{\theta}(x)$ might not be in Ω).

The Eulerian derivative

Naively,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\partial \Omega} j(u) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Omega} j^{\prime}(u)\left(\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}\right)(\boldsymbol{\theta}) \mathrm{d} x \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta} \mapsto \frac{\mathrm{d}}{\mathrm{d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}$ would be the derivative of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}(x)$ with $x \in \Omega$.

Definition 2

The derivative of the mapping $x \mapsto u_{\theta}(x)$, if it exists for any $x \in \Omega$ in a point-wise sense, is called the Eulerian derivative of $u_{\boldsymbol{\theta}}$, and is denoted by $u^{\prime}(\boldsymbol{\theta})$.

- Difficulty 1: the derivation of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}$ may exist for all point $x \in \Omega$ but not in a uniform way in Ω (near the boundary, $x+\boldsymbol{\theta}(x)$ might not be in Ω).
- Difficulty 2: the functions $u_{\boldsymbol{\theta}} \in H^{1}\left(\Omega_{\theta}\right)$ and $u \in H^{1}(\Omega)$ belong to different definition spaces.

The Eulerian derivative

Naively,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\partial \Omega} j(u) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Omega} j^{\prime}(u)\left(\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}\right)(\boldsymbol{\theta}) \mathrm{d} x \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta} \mapsto \frac{\mathrm{d}}{\mathrm{d} \boldsymbol{\theta}} u_{\boldsymbol{\theta}}$ would be the derivative of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}(x)$ with $x \in \Omega$.

Definition 2

The derivative of the mapping $x \mapsto u_{\theta}(x)$, if it exists for any $x \in \Omega$ in a point-wise sense, is called the Eulerian derivative of $u_{\boldsymbol{\theta}}$, and is denoted by $u^{\prime}(\boldsymbol{\theta})$.

- Difficulty 1: the derivation of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}}$ may exist for all point $x \in \Omega$ but not in a uniform way in Ω (near the boundary, $x+\boldsymbol{\theta}(x)$ might not be in Ω).
- Difficulty 2: the functions $u_{\theta} \in H^{1}\left(\Omega_{\theta}\right)$ and $u \in H^{1}(\Omega)$ belong to different definition spaces.
- Difficulty 3: the Eulerian derivative does not always exist and eq. (1) does not make sense.

The Lagrangian derivative

Another approach: change of variable in fixed reference domain. Let

$$
V_{\theta}:=\left\{v \in H^{1}\left(\Omega_{\theta}\right) \mid v=0 \text { on } \Gamma_{D, \theta}\right\} .
$$

The Lagrangian derivative

Another approach: change of variable in fixed reference domain. Let

$$
V_{\theta}:=\left\{v \in H^{1}\left(\Omega_{\theta}\right) \mid v=0 \text { on } \Gamma_{D, \theta}\right\} .
$$

The variational formulation of

$$
\left\{\begin{aligned}
-\Delta u_{\boldsymbol{\theta}} & =f \text { in } \Omega_{\boldsymbol{\theta}}, \\
u_{\boldsymbol{\theta}} & =0 \text { on } \Gamma_{D, \boldsymbol{\theta}}, \\
\frac{\partial u_{\boldsymbol{\theta}}}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N, \boldsymbol{\theta}} .
\end{aligned}\right.
$$

reads find $u_{\boldsymbol{\theta}} \in V_{\boldsymbol{\theta}}$ such that

$$
\int_{\Omega_{\boldsymbol{\theta}}} \nabla u_{\boldsymbol{\theta}} \cdot \nabla v \mathrm{~d} x=\int_{\Omega_{\boldsymbol{\theta}}} f v \mathrm{~d} x, \quad \forall v \in V_{\boldsymbol{\theta}}
$$

The Lagrangian derivative

Another approach: change of variable in fixed reference domain. Let

$$
V_{\theta}:=\left\{v \in H^{1}\left(\Omega_{\theta}\right) \mid v=0 \text { on } \Gamma_{D, \theta}\right\} .
$$

The variational formulation of

$$
\left\{\begin{aligned}
-\Delta u_{\boldsymbol{\theta}} & =f \text { in } \Omega_{\boldsymbol{\theta}}, \\
u_{\boldsymbol{\theta}} & =0 \text { on } \Gamma_{D, \boldsymbol{\theta}}, \\
\frac{\partial u_{\boldsymbol{\theta}}}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{N, \boldsymbol{\theta}}
\end{aligned}\right.
$$

reads find $u_{\boldsymbol{\theta}} \in V_{\boldsymbol{\theta}}$ such that

$$
\int_{\Omega_{\boldsymbol{\theta}}} \nabla u_{\boldsymbol{\theta}} \cdot \nabla v \mathrm{~d} x=\int_{\Omega_{\boldsymbol{\theta}}} f v \mathrm{~d} x, \quad \forall v \in V_{\boldsymbol{\theta}}
$$

After the change of variable $x=(I+\boldsymbol{\theta})(y)$:
$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[(\nabla v) \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$.

The Lagrangian derivative

Lemma 3

Let $f \in H^{1}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{f} \in H^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be respectively scalar and vectorial functions, and $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ with $\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}<1$. It holds

$$
\begin{aligned}
& (\nabla f) \circ(I+\boldsymbol{\theta})=(I+\nabla \boldsymbol{\theta})^{-T} \nabla(f \circ(I+\boldsymbol{\theta})) \\
& (\nabla \boldsymbol{f}) \circ(I+\boldsymbol{\theta})=\nabla(\boldsymbol{f} \circ(I+\boldsymbol{\theta}))(I+\nabla \boldsymbol{\theta})^{-1} .
\end{aligned}
$$

Remark 1

$\nabla f=\left(\partial_{i} f\right)_{1 \leq i \leq d}$ is a row vector while $\nabla \boldsymbol{f}=\left(\partial_{j} f_{i}\right)_{1 \leq i, j \leq d}=\left[\begin{array}{lll}\nabla f_{1}^{\top} & \cdot & \nabla f_{d}^{\top}\end{array}\right]$.

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y$, rewrites as

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$, rewrites as find $u_{\theta} \circ(I+\theta) \in V$ such that for any $v \in V$,

$$
\begin{equation*}
\left\langle F\left(\boldsymbol{\theta}, u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right), v\right\rangle_{v, v^{\prime}}=0 \tag{2}
\end{equation*}
$$

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$, rewrites as find $u_{\theta} \circ(I+\theta) \in V$ such that for any $v \in V$,

$$
\begin{equation*}
\left\langle F\left(\boldsymbol{\theta}, u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right), v\right\rangle_{v, v^{\prime}}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
&\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$, rewrites as find $u_{\theta} \circ(I+\theta) \in V$ such that for any $v \in V$,

$$
\begin{equation*}
\left\langle F\left(\boldsymbol{\theta}, u_{\theta} \circ(I+\theta)\right), v\right\rangle_{v_{,}, v^{\prime}}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
&\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

- $u_{\theta} \circ(I+\theta)$ belongs to the fixed space V !

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$, rewrites as find $u_{\theta} \circ(I+\theta) \in V$ such that for any $v \in V$,

$$
\begin{equation*}
\left\langle F\left(\boldsymbol{\theta}, u_{\theta} \circ(I+\boldsymbol{\theta})\right), v\right\rangle_{v, v^{\prime}}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
&\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

$-u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})$ belongs to the fixed space V !
$\checkmark F: W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \times V \rightarrow V^{\prime}$ is such that $\partial F / \partial u$ is invertible at $(0, u(\Omega))$.

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$, rewrites as find $u_{\theta} \circ(I+\theta) \in V$ such that for any $v \in V$,

$$
\begin{equation*}
\left\langle F\left(\theta, u_{\theta} \circ(I+\theta)\right), v\right\rangle_{v, v^{\prime}}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
&\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

$-u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})$ belongs to the fixed space V !
$\triangleright F: W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \times V \rightarrow V^{\prime}$ is such that $\partial F / \partial u$ is invertible at $(0, u(\Omega))$.

- The implicit function theorem yields the existence of $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})$ solving eq.

The Lagrangian derivative

$\int_{\Omega}\left[\left(\nabla u_{\boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right] \cdot[\nabla v \circ(I+\boldsymbol{\theta})] \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} y=\int_{\Omega} f \circ(I+\boldsymbol{\theta}) v \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} \boldsymbol{y}$, rewrites as find $u_{\theta} \circ(I+\theta) \in V$ such that for any $v \in V$,

$$
\begin{equation*}
\left\langle F\left(\boldsymbol{\theta}, u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right), v\right\rangle_{v_{,}, v^{\prime}}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
&\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

- $u_{\theta} \circ(I+\theta)$ belongs to the fixed space V !
- $F: W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \times V \rightarrow V^{\prime}$ is such that $\partial F / \partial u$ is invertible at $(0, u(\Omega))$.
- The implicit function theorem yields the existence of $\boldsymbol{\theta} \mapsto u_{\theta} \circ(I+\theta)$ solving eq. (2).
- Since $\boldsymbol{\theta} \mapsto F(\boldsymbol{\theta}, u)$ is Fréchet differentiable, it follows that $\boldsymbol{\theta} \mapsto u_{\theta} \circ(I+\boldsymbol{\theta})$ is Fréchet differentiable as a mapping $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$.

The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta}), W^{1 \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$ at $\boldsymbol{\theta}=0$, is called the Lagrangian derivative of $u_{\boldsymbol{\theta}}$, and is denoted by $\dot{u}(\boldsymbol{\theta})$.

The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta}), W^{1 \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$ at $\boldsymbol{\theta}=0$, is called the Lagrangian derivative of u_{θ}, and is denoted by $\dot{u}(\boldsymbol{\theta})$.

Remark 2

- By definition, $\dot{u}(\boldsymbol{\theta}) \in V$.

The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping $\boldsymbol{\theta} \mapsto u_{\theta} \circ(I+\boldsymbol{\theta}), W^{1 \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$ at $\boldsymbol{\theta}=0$, is called the Lagrangian derivative of u_{θ}, and is denoted by $\dot{u}(\boldsymbol{\theta})$.

Remark 2

- By definition, $\dot{u}(\boldsymbol{\theta}) \in V$.
- In most practical problems, \dot{u} exists and has the same regularity than u as soon as the the linearized problem is well-posed.

The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping $\boldsymbol{\theta} \mapsto u_{\theta} \circ(I+\boldsymbol{\theta}), W^{1 \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$ at $\boldsymbol{\theta}=0$, is called the Lagrangian derivative of u_{θ}, and is denoted by $\dot{u}(\boldsymbol{\theta})$.

Remark 2

- By definition, $\dot{u}(\boldsymbol{\theta}) \in V$.
- In most practical problems, \dot{u} exists and has the same regularity than u as soon as the the linearized problem is well-posed.
- If the Eulerian derivative exists, then differentiating $u_{\theta} \circ(I+\theta)$ yields

$$
\dot{u}(\boldsymbol{\theta})(x)=u^{\prime}(\boldsymbol{\theta})+\nabla u_{\boldsymbol{\theta}} \cdot \boldsymbol{\theta},
$$

hence $u^{\prime}(\boldsymbol{\theta})=\dot{u}(\boldsymbol{\theta})-\nabla u \cdot \boldsymbol{\theta}$. Since $\nabla u \in L^{2}(\Omega), u^{\prime}(\boldsymbol{\theta})$ has less regularity than $\dot{u}(\boldsymbol{\theta})$.

The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping $\boldsymbol{\theta} \mapsto u_{\theta} \circ(I+\boldsymbol{\theta}), W^{1 \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$ at $\boldsymbol{\theta}=0$, is called the Lagrangian derivative of u_{θ}, and is denoted by $\dot{u}(\boldsymbol{\theta})$.

Remark 2

- By definition, $\dot{u}(\boldsymbol{\theta}) \in V$.
- In most practical problems, \dot{u} exists and has the same regularity than u as soon as the the linearized problem is well-posed.
- If the Eulerian derivative exists, then differentiating $u_{\theta} \circ(I+\theta)$ yields

$$
\dot{u}(\boldsymbol{\theta})(x)=u^{\prime}(\boldsymbol{\theta})+\nabla u_{\boldsymbol{\theta}} \cdot \boldsymbol{\theta},
$$

hence $u^{\prime}(\boldsymbol{\theta})=\dot{u}(\boldsymbol{\theta})-\nabla u \cdot \boldsymbol{\theta}$. Since $\nabla u \in L^{2}(\Omega), u^{\prime}(\boldsymbol{\theta})$ has less regularity than $\dot{u}(\boldsymbol{\theta})$.

The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping $\boldsymbol{\theta} \mapsto u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta}), W^{1 \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow V$ at $\boldsymbol{\theta}=0$, is called the Lagrangian derivative of $u_{\boldsymbol{\theta}}$, and is denoted by $\dot{u}(\boldsymbol{\theta})$.

Remark 2

- By definition, $\dot{u}(\boldsymbol{\theta}) \in V$.
- In most practical problems, \dot{u} exists and has the same regularity than u as soon as the the linearized problem is well-posed.
- If the Eulerian derivative exists, then differentiating $u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})$ yields

$$
\dot{u}(\boldsymbol{\theta})(x)=u^{\prime}(\boldsymbol{\theta})+\nabla u_{\boldsymbol{\theta}} \cdot \boldsymbol{\theta}
$$

hence $u^{\prime}(\boldsymbol{\theta})=\dot{u}(\boldsymbol{\theta})-\nabla u \cdot \boldsymbol{\theta}$. Since $\nabla u \in L^{2}(\Omega), u^{\prime}(\boldsymbol{\theta})$ has less regularity than $\dot{u}(\boldsymbol{\theta})$.
It is safer to work with Lagrangian derivatives!

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) \mathrm{vd} x
$$

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) v \mathrm{~d} x
$$

i.e. find $\dot{u}(\boldsymbol{\theta}) \in V$ such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) v \mathrm{~d} x
$$

i.e. find $\dot{u}(\theta) \in V$ such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

Remark 3

When differentiating $0=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Omega} f v \mathrm{~d} x$:

- the shape differentiation of ∇f yields a term $-\nabla \boldsymbol{\theta}^{T} \nabla f$, of f a term $\nabla f \cdot \boldsymbol{\theta}$;

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) v \mathrm{~d} x
$$

i.e. find $\dot{u}(\theta) \in V$ such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

Remark 3

When differentiating $0=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Omega} f v \mathrm{~d} x$:

- the shape differentiation of ∇f yields a term $-\nabla \boldsymbol{\theta}^{T} \nabla f$, of f a term $\nabla f \cdot \boldsymbol{\theta}$;
- the differentiation of $\mathrm{d} x$ yields a term $\operatorname{div}(\theta) \mathrm{d} x$;

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) v \mathrm{~d} x
$$

i.e. find $\dot{u}(\theta) \in V$ such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

Remark 3

When differentiating $0=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Omega} f v \mathrm{~d} x$:

- the shape differentiation of ∇f yields a term $-\nabla \boldsymbol{\theta}^{T} \nabla f$, of f a term $\nabla f \cdot \boldsymbol{\theta}$;
- the differentiation of $\mathrm{d} x$ yields a term $\operatorname{div}(\theta) \mathrm{d} x$;
- test functions v are not differentiated.

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) v \mathrm{~d} x
$$

i.e. find $\dot{u}(\theta) \in V$ such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

Remark 3

When differentiating $0=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Omega} f v \mathrm{~d} x$:

- the shape differentiation of ∇f yields a term $-\nabla \boldsymbol{\theta}^{T} \nabla f$, of f a term $\nabla f \cdot \boldsymbol{\theta}$;
- the differentiation of $\mathrm{d} x$ yields a term $\operatorname{div}(\theta) \mathrm{d} x$;
- test functions v are not differentiated.

Computation of \dot{u}

Differentiating

$$
\begin{aligned}
& 0=\langle F(\boldsymbol{\theta}, u), v\rangle_{v, v^{\prime}}=\int_{\Omega}(I+\nabla \boldsymbol{\theta})^{-T} \nabla u \cdot(I+\nabla \boldsymbol{\theta})^{-T} \nabla v \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x \\
&-\int_{\Omega} f \circ(I+\boldsymbol{\theta}) \operatorname{det}(I+\nabla \boldsymbol{\theta}) v \mathrm{~d} x .
\end{aligned}
$$

with respect to $\boldsymbol{\theta}$ yields

$$
0=\int_{\Omega}\left(I-\nabla \boldsymbol{\theta}-\nabla \boldsymbol{\theta}^{T}+\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla \dot{u} \cdot \nabla v \mathrm{~d} x-\int_{\Omega}(\nabla f \cdot \boldsymbol{\theta}+\operatorname{div}(\boldsymbol{\theta}) f) v \mathrm{~d} x
$$

i.e. find $\dot{u}(\theta) \in V$ such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

This is a well-posed variational formulation which gives the value of $\dot{u}(\boldsymbol{\theta})$ for any $\theta \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

$$
\text { Back to } J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x \text {. }
$$

A first expression of the shape derivative

Back to $J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x$.
Do a change of variable to rewrite

$$
J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\Omega} j\left(u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x .
$$

A first expression of the shape derivative

Back to $J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x$.
Do a change of variable to rewrite

$$
J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\Omega} j\left(u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x .
$$

Then, differentiating with respect to $\boldsymbol{\theta}$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

A first expression of the shape derivative

Back to $J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x$.
Do a change of variable to rewrite

$$
J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\Omega} j\left(u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x
$$

Then, differentiating with respect to $\boldsymbol{\theta}$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

Although explicit, this formula is not satisfactory because

- $\dot{u}(\boldsymbol{\theta})$ is defined as the solution of a PDE depending on every value of $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

A first expression of the shape derivative

Back to $J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x$.
Do a change of variable to rewrite

$$
J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\Omega} j\left(u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x
$$

Then, differentiating with respect to $\boldsymbol{\theta}$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

Although explicit, this formula is not satisfactory because

- $\dot{u}(\boldsymbol{\theta})$ is defined as the solution of a PDE depending on every value of $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.
- It does not satisfy the Hadamard structure theorem.

A first expression of the shape derivative

Back to $J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x$.
Do a change of variable to rewrite

$$
J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\Omega} j\left(u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x
$$

Then, differentiating with respect to $\boldsymbol{\theta}$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

Although explicit, this formula is not satisfactory because

- $\dot{u}(\boldsymbol{\theta})$ is defined as the solution of a PDE depending on every value of $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.
- It does not satisfy the Hadamard structure theorem.

A first expression of the shape derivative

Back to $J\left(\Omega_{\theta}, u_{\theta}\right)=\int_{\Omega_{\theta}} j\left(u_{\theta}\right) \mathrm{d} x$.
Do a change of variable to rewrite

$$
J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)=\int_{\Omega} j\left(u_{\boldsymbol{\theta}} \circ(I+\boldsymbol{\theta})\right) \operatorname{det}(I+\nabla \boldsymbol{\theta}) \mathrm{d} x
$$

Then, differentiating with respect to $\boldsymbol{\theta}$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

Although explicit, this formula is not satisfactory because

- $\dot{u}(\boldsymbol{\theta})$ is defined as the solution of a PDE depending on every value of $\boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.
- It does not satisfy the Hadamard structure theorem.

The classical trick is to introduce an adjoint state.

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

The adjoint state

Suppose that we want to compute the derivative of some function

$$
J(\boldsymbol{\theta})=f(u(\boldsymbol{\theta})) \quad \text { s.t. } \quad A(\boldsymbol{\theta}) u(\boldsymbol{\theta})=f .
$$

for some matrix $A(\theta)$.

The adjoint state

Suppose that we want to compute the derivative of some function

$$
J(\boldsymbol{\theta})=f(u(\boldsymbol{\theta})) \quad \text { s.t. } \quad A(\boldsymbol{\theta}) u(\boldsymbol{\theta})=f .
$$

for some matrix $A(\boldsymbol{\theta})$.
We have $J^{\prime}(\boldsymbol{\theta})=\partial_{u} f \cdot u^{\prime}(\boldsymbol{\theta})$ with

$$
A u^{\prime}(\boldsymbol{\theta})=-A^{\prime}(\boldsymbol{\theta}) u \Leftrightarrow u^{\prime}(\boldsymbol{\theta})=-A^{-1} A^{\prime}(\boldsymbol{\theta}) u .
$$

The adjoint state

Suppose that we want to compute the derivative of some function

$$
J(\boldsymbol{\theta})=f(u(\boldsymbol{\theta})) \quad \text { s.t. } \quad A(\boldsymbol{\theta}) u(\boldsymbol{\theta})=f .
$$

for some matrix $A(\boldsymbol{\theta})$.
We have $J^{\prime}(\boldsymbol{\theta})=\partial_{u} f \cdot u^{\prime}(\boldsymbol{\theta})$ with

$$
A u^{\prime}(\theta)=-A^{\prime}(\theta) u \Leftrightarrow u^{\prime}(\theta)=-A^{-1} A^{\prime}(\theta) u .
$$

So $J^{\prime}(\boldsymbol{\theta})=-\partial_{u} f \cdot A^{-1} A^{\prime}(\boldsymbol{\theta}) u=-\left[A^{-T} \partial_{u} f\right] \cdot A^{\prime}(\boldsymbol{\theta}) u$.

The adjoint state

Suppose that we want to compute the derivative of some function

$$
J(\boldsymbol{\theta})=f(u(\boldsymbol{\theta})) \quad \text { s.t. } \quad A(\boldsymbol{\theta}) u(\boldsymbol{\theta})=f .
$$

for some matrix $A(\theta)$.
We have $J^{\prime}(\boldsymbol{\theta})=\partial_{u} f \cdot u^{\prime}(\boldsymbol{\theta})$ with

$$
A u^{\prime}(\boldsymbol{\theta})=-A^{\prime}(\boldsymbol{\theta}) u \Leftrightarrow u^{\prime}(\boldsymbol{\theta})=-A^{-1} A^{\prime}(\boldsymbol{\theta}) u
$$

So $J^{\prime}(\boldsymbol{\theta})=-\partial_{u} f \cdot A^{-1} A^{\prime}(\boldsymbol{\theta}) u=-\left[A^{-T} \partial_{u} f\right] \cdot A^{\prime}(\boldsymbol{\theta}) u$.

- The computation of $A^{-T} \partial_{u} f$ requires only one linear system inversion, in contrast to the formula $A^{-1} A^{\prime}(\boldsymbol{\theta}) u$ requiring one inversion for every value of $\boldsymbol{\theta}$.

The adjoint state

Suppose that we want to compute the derivative of some function

$$
J(\boldsymbol{\theta})=f(u(\boldsymbol{\theta})) \quad \text { s.t. } \quad A(\boldsymbol{\theta}) u(\boldsymbol{\theta})=f .
$$

for some matrix $A(\theta)$.
We have $J^{\prime}(\boldsymbol{\theta})=\partial_{u} f \cdot u^{\prime}(\boldsymbol{\theta})$ with

$$
A u^{\prime}(\boldsymbol{\theta})=-A^{\prime}(\boldsymbol{\theta}) u \Leftrightarrow u^{\prime}(\boldsymbol{\theta})=-A^{-1} A^{\prime}(\boldsymbol{\theta}) u
$$

So $J^{\prime}(\boldsymbol{\theta})=-\partial_{u} f \cdot A^{-1} A^{\prime}(\boldsymbol{\theta}) u=-\left[A^{-T} \partial_{u} f\right] \cdot A^{\prime}(\boldsymbol{\theta}) u$.

- The computation of $A^{-T} \partial_{u} f$ requires only one linear system inversion, in contrast to the formula $A^{-1} A^{\prime}(\boldsymbol{\theta}) u$ requiring one inversion for every value of $\boldsymbol{\theta}$.
- $J^{\prime}(\boldsymbol{\theta})=-p \cdot A^{\prime}(\boldsymbol{\theta}) u$ where p is the adjoint state solution to

$$
A^{T} p=\partial_{u} f
$$

The adjoint state

In our setting,

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

where $\dot{u}(\boldsymbol{\theta}) \in V$ is such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

The adjoint state

In our setting,

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

where $\dot{u}(\boldsymbol{\theta}) \in V$ is such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

We introduce $p \in V$ the solution to the adjoint problem
Find $p \in V$ such that $\forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x$.

The adjoint state

In our setting,

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

where $\dot{u}(\boldsymbol{\theta}) \in V$ is such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

We introduce $p \in V$ the solution to the adjoint problem

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x
$$

Then

$$
\int_{\Omega} j^{\prime}(u) \dot{u}(\boldsymbol{\theta}) \mathrm{d} x=\int_{\Omega} \nabla p \cdot \nabla \dot{u}(\boldsymbol{\theta}) \mathrm{d} x
$$

The adjoint state

In our setting,

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right) \mathrm{d} x=\int_{\Omega}\left(j^{\prime}(u) \dot{u}(\boldsymbol{\theta})+j(u) \operatorname{div}(\boldsymbol{\theta})\right) \mathrm{d} x .
$$

where $\dot{u}(\boldsymbol{\theta}) \in V$ is such that

$$
\forall v \in V, \int_{\Omega} \nabla \dot{u}(\boldsymbol{\theta}) \cdot \nabla v \mathrm{~d} x=\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) v \mathrm{~d} x .
$$

We introduce $p \in V$ the solution to the adjoint problem

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x
$$

Then

$$
\begin{aligned}
\int_{\Omega} j^{\prime}(u) \dot{u}(\boldsymbol{\theta}) \mathrm{d} x & =\int_{\Omega} \nabla p \cdot \nabla \dot{u}(\boldsymbol{\theta}) \mathrm{d} x \\
& =\int_{\Omega}\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p \mathrm{~d} x+\int_{\Omega} \operatorname{div}(f \boldsymbol{\theta}) p \mathrm{~d} x
\end{aligned}
$$

The adjoint state

Proposition 3

Assume $\Omega \subset D$ is a Lipschitz bounded open set and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. The functional $J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x$ is shape differentiable and the shape derivative reads

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) & \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& +\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \tag{3}
\end{align*}
$$

where p is the adjoint state solution to

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x \text {. }
$$

The adjoint state

Proposition 3

Assume $\Omega \subset D$ is a Lipschitz bounded open set and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. The functional $J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x$ is shape differentiable and the shape derivative reads

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\theta}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) & \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& +\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \tag{3}
\end{align*}
$$

where p is the adjoint state solution to

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x \text {. }
$$

- The formula eq. (3) does require to solve a single elliptic PDE

The adjoint state

Proposition 3

Assume $\Omega \subset D$ is a Lipschitz bounded open set and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. The functional $J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x$ is shape differentiable and the shape derivative reads

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\theta}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) & \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& +\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \tag{3}
\end{align*}
$$

where p is the adjoint state solution to

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x \text {. }
$$

- The formula eq. (3) does require to solve a single elliptic PDE
- It is a linear form in $\boldsymbol{\theta}$, however it is not yet clear how to obtain a descent direction

The adjoint state

Proposition 3

Assume $\Omega \subset D$ is a Lipschitz bounded open set and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. The functional $J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x$ is shape differentiable and the shape derivative reads

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\theta}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) & \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& +\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \tag{3}
\end{align*}
$$

where p is the adjoint state solution to

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x \text {. }
$$

- The formula eq. (3) does require to solve a single elliptic PDE
- It is a linear form in $\boldsymbol{\theta}$, however it is not yet clear how to obtain a descent direction
- eq. (3) is called the volume form of the shape derivative; it is not yet written in the form of a boundary integral depending only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$.

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& \quad+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \\
& =\int_{\Omega} \Lambda \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\partial \Omega}(j(u) \boldsymbol{\theta} \cdot \boldsymbol{n}+(\boldsymbol{n} \cdot \nabla u) \boldsymbol{\theta} \cdot \nabla p+(\boldsymbol{n} \cdot \nabla p)(\boldsymbol{\theta} \cdot \nabla u)-\nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n})+f p \boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& \quad+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \\
& =\int_{\Omega} \Lambda \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\partial \Omega}(j(u) \boldsymbol{\theta} \cdot \boldsymbol{n}+(\boldsymbol{n} \cdot \nabla u) \boldsymbol{\theta} \cdot \nabla p+(\boldsymbol{n} \cdot \nabla p)(\boldsymbol{\theta} \cdot \nabla u)-\nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n})+f p \boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& \quad+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \\
& =\int_{\Omega} \Lambda \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\partial \Omega}(j(u) \boldsymbol{\theta} \cdot \boldsymbol{n}+(\boldsymbol{n} \cdot \nabla u) \boldsymbol{\theta} \cdot \nabla p+(\boldsymbol{n} \cdot \nabla p)(\boldsymbol{\theta} \cdot \nabla u)-\nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n})+f p \boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

- There is no need to explicit Λ because, from Hadamard's structure theorem, we know in fact that $\Lambda=0$;

Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& \quad+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \\
& =\int_{\Omega} \Lambda \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\partial \Omega}(j(u) \boldsymbol{\theta} \cdot \boldsymbol{n}+(\boldsymbol{n} \cdot \nabla u) \boldsymbol{\theta} \cdot \nabla p+(\boldsymbol{n} \cdot \nabla p)(\boldsymbol{\theta} \cdot \nabla u)-\nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n})+f p \boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

- There is no need to explicit Λ because, from Hadamard's structure theorem, we know in fact that $\Lambda=0$;
- In fact, Hadamard's structure theorem also implies that the above expression is zero when $\boldsymbol{\theta}$ is tangent, so this reduces to

Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& \quad+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \\
& =\int_{\Omega} \Lambda \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\partial \Omega}(j(u) \boldsymbol{\theta} \cdot \boldsymbol{n}+(\boldsymbol{n} \cdot \nabla u) \boldsymbol{\theta} \cdot \nabla p+(\boldsymbol{n} \cdot \nabla p)(\boldsymbol{\theta} \cdot \nabla u)-\nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n})+f p \boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

- There is no need to explicit Λ because, from Hadamard's structure theorem, we know in fact that $\Lambda=0$;
- In fact, Hadamard's structure theorem also implies that the above expression is zero when $\boldsymbol{\theta}$ is tangent, so this reduces to

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta}) & =\int_{\partial \Omega}\left(j(u)+2 \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}}-\nabla u \cdot \nabla p+f p\right) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma \\
& =\int_{\partial \Omega}(j(u)+f p) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Gamma_{D}} \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}}(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma-\int_{\Gamma_{N}} \nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma .
\end{aligned}
$$

Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& \quad+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x, \\
& =\int_{\Omega} \Lambda \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\partial \Omega}(j(u) \boldsymbol{\theta} \cdot \boldsymbol{n}+(\boldsymbol{n} \cdot \nabla u) \boldsymbol{\theta} \cdot \nabla p+(\boldsymbol{n} \cdot \nabla p)(\boldsymbol{\theta} \cdot \nabla u)-\nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n})+f p \boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

- There is no need to explicit Λ because, from Hadamard's structure theorem, we know in fact that $\Lambda=0$;
- In fact, Hadamard's structure theorem also implies that the above expression is zero when $\boldsymbol{\theta}$ is tangent, so this reduces to

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta}) & =\int_{\partial \Omega}\left(j(u)+2 \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}}-\nabla u \cdot \nabla p+f p\right) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma \\
& =\int_{\partial \Omega}(j(u)+f p) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Gamma_{D}} \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}}(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma-\int_{\Gamma_{N}} \nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma .
\end{aligned}
$$

- Warning, the integration by parts requires u and p to be of H^{2} regularity. This is wrong in the vicinity of $\Gamma_{D} \cap \Gamma_{N}$ or if Ω has corners.

Surface expression of the shape derivative

Proposition 4

Assume Ω is smooth and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. If $\boldsymbol{\theta}=0$ on a neighborhood of $\Gamma_{D} \cap \Gamma_{N}$, then the shape derivative of $J(\Omega, u(\Omega))$ given by eq. (3) rewrites as a boundary integral involving only the normal trace component $\boldsymbol{\theta} \cdot \boldsymbol{n}$ of $\boldsymbol{\theta}$:

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=0}\left[J\left(\Omega_{\boldsymbol{\theta}}, u\left(\Omega_{\boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta})=\int_{\partial \Omega}(j(u)+f p) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Gamma_{D}} \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}} \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma-\int_{\Gamma_{N}} \nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma . \tag{4}
\end{equation*}
$$

Surface expression of the shape derivative

Proposition 4

Assume Ω is smooth and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. If $\boldsymbol{\theta}=0$ on a neighborhood of $\Gamma_{D} \cap \Gamma_{N}$, then the shape derivative of $J(\Omega, u(\Omega))$ given by eq. (3) rewrites as a boundary integral involving only the normal trace component $\boldsymbol{\theta} \cdot \boldsymbol{n}$ of $\boldsymbol{\theta}$:

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=0}\left[J\left(\Omega_{\boldsymbol{\theta}}, u\left(\Omega_{\boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta})=\int_{\partial \Omega}(j(u)+f p) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Gamma_{D}} \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}} \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma-\int_{\Gamma_{N}} \nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma \tag{4}
\end{equation*}
$$

- eq. (4) is called the "surface expression" of the shape derivative.

Surface expression of the shape derivative

Proposition 4

Assume Ω is smooth and $f \in H^{1}\left(\mathbb{R}^{d}\right)$. If $\boldsymbol{\theta}=0$ on a neighborhood of $\Gamma_{D} \cap \Gamma_{N}$, then the shape derivative of $J(\Omega, u(\Omega))$ given by eq. (3) rewrites as a boundary integral involving only the normal trace component $\boldsymbol{\theta} \cdot \boldsymbol{n}$ of $\boldsymbol{\theta}$:

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=0}\left[J\left(\Omega_{\boldsymbol{\theta}}, u\left(\Omega_{\boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta})=\int_{\partial \Omega}(j(u)+f p) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma+\int_{\Gamma_{D}} \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}} \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} \sigma-\int_{\Gamma_{N}} \nabla u \cdot \nabla p(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma . \tag{4}
\end{equation*}
$$

- eq. (4) is called the "surface expression" of the shape derivative.
- A descent direction is given by

$$
\boldsymbol{\theta} \cdot \boldsymbol{n}=-t\left(j(u)+f p+2 \frac{\partial u}{\partial \boldsymbol{n}} \frac{\partial p}{\partial \boldsymbol{n}}-\nabla u \cdot \nabla p\right)
$$

Self-adjoint functionals

- If $j(u)=\int_{\Omega} f u \mathrm{~d} x$ (the compliance), then p is solution to

Find $p \in V$ such that $\forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x$,

Self-adjoint functionals

- If $j(u)=\int_{\Omega} f u \mathrm{~d} x$ (the compliance), then p is solution to

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x,
$$

i.e. $p=u$.

Self-adjoint functionals

- If $j(u)=\int_{\Omega} f u \mathrm{~d} x$ (the compliance), then p is solution to

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x,
$$

i.e. $p=u$. The functional is said "self-adjoint".

Self-adjoint functionals

Consider the compliance minimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Gamma} g u \mathrm{~d} \sigma \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =0 \text { in } \Omega \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial \boldsymbol{n}} & =g \text { on } \Gamma_{N} \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma .
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

Self-adjoint functionals

Consider the compliance minimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Gamma} \operatorname{gud} \sigma \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =0 \text { in } \Omega, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =g \text { on } \Gamma_{N}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma .
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

We assume that Γ_{D} and Γ_{N} are fixed $\left(\boldsymbol{\theta}=0\right.$ on $\left.\Gamma_{D} \cup \Gamma_{N}\right)$.

Self-adjoint functionals

Consider the compliance minimization problem

$$
\begin{aligned}
& \min _{\Omega} \int_{\Gamma} g u \mathrm{~d} \sigma \\
& \text { s.t. }\left\{\begin{aligned}
-\Delta u & =0 \text { in } \Omega, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma_{D}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =g \text { on } \Gamma_{N}, \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \text { on } \Gamma .
\end{aligned}\right.
\end{aligned}
$$

Figure: Setting for the Poisson problem.

We assume that Γ_{D} and Γ_{N} are fixed $\left(\boldsymbol{\theta}=0\right.$ on $\left.\Gamma_{D} \cup \Gamma_{N}\right)$.

- We still have $p=u$ and the same computation yields

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=0}\left[J\left(\Omega_{\boldsymbol{\theta}}, u\left(\Omega_{\boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta})=-\int_{\Gamma}|\nabla u|^{2}(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
$$

- It is always advantageous to take $\boldsymbol{\theta}=\boldsymbol{n}$ (e.g. to add matter) to reduce the compliance.

Exercise

Compute the shape derivative of the compliance for the linear elasticity system.

$$
\left\{\begin{aligned}
-\operatorname{div}(A e(\boldsymbol{u})) & =\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{u} & =0 \text { on } \Gamma_{D} \\
\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{g} \text { on } \Gamma_{N} \\
\operatorname{Ae}(\boldsymbol{u}) \cdot \boldsymbol{n} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

with Γ being the optimized boundary and

$$
\begin{gathered}
\operatorname{Ae}(\boldsymbol{u})=2 \boldsymbol{\mu e}(\boldsymbol{u})+\lambda \operatorname{Tr}(e(\boldsymbol{u})) \text { with } e(\boldsymbol{u})=\frac{\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{T}}{2} . \\
J(\Omega, \boldsymbol{u})=\int_{\Omega} f \boldsymbol{u} \mathrm{~d} x+\int_{\partial \Omega} \boldsymbol{g} \cdot \boldsymbol{u} \mathrm{d} \sigma
\end{gathered}
$$

Outline

1. A model problem
2. Eulerian and Lagrangian derivatives
3. The adjoint state
4. Volume form and surface form of the shape derivative
5. Shape derivatives of arbitrary functionals

Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative $\mathrm{D} J(\Omega, u(\Omega))(\boldsymbol{\theta})$, one needs:

- to specify $J(\Omega, u(\Omega))$, which requires to solve a PDE for $u(\Omega)$, e.g.

$$
J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x
$$

Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative $\mathrm{D} J(\Omega, u(\Omega))(\boldsymbol{\theta})$, one needs:

- to specify $J(\Omega, u(\Omega))$, which requires to solve a PDE for $u(\Omega)$, e.g.

$$
J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x
$$

- to solve an adjoint system; i.e.

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x .
$$

Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative $\mathrm{D} J(\Omega, u(\Omega))(\boldsymbol{\theta})$, one needs:

- to specify $J(\Omega, u(\Omega))$, which requires to solve a PDE for $u(\Omega)$, e.g.

$$
J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x
$$

- to solve an adjoint system; i.e.

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x .
$$

- to assemble the shape derivative

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) & \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& +\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x
\end{aligned}
$$

Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative $\mathrm{D} J(\Omega, u(\Omega))(\boldsymbol{\theta})$, one needs:

- to specify $J(\Omega, u(\Omega))$, which requires to solve a PDE for $u(\Omega)$, e.g.

$$
J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x
$$

- to solve an adjoint system; i.e.

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x .
$$

- to assemble the shape derivative

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) & \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
& +\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x
\end{aligned}
$$

Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative $\mathrm{D} J(\Omega, u(\Omega))(\boldsymbol{\theta})$, one needs:

- to specify $J(\Omega, u(\Omega))$, which requires to solve a PDE for $u(\Omega)$, e.g.

$$
J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x
$$

- to solve an adjoint system; i.e.

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x .
$$

- to assemble the shape derivative

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
&+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x
\end{aligned}
$$

The derivation depends a priori on the form of the shape functional.

Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative $\mathrm{D} J(\Omega, u(\Omega))(\boldsymbol{\theta})$, one needs:

- to specify $J(\Omega, u(\Omega))$, which requires to solve a PDE for $u(\Omega)$, e.g.

$$
J(\Omega, u(\Omega))=\int_{\Omega} j(u) \mathrm{d} x
$$

- to solve an adjoint system; i.e.

$$
\text { Find } p \in V \text { such that } \forall v \in V, \int_{\Omega} \nabla p \cdot \nabla v \mathrm{~d} x=\int_{\Omega} j^{\prime}(u) v \mathrm{~d} x .
$$

- to assemble the shape derivative

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{\boldsymbol{\theta}}, u_{\boldsymbol{\theta}}\right)\right](\boldsymbol{\theta})=\int_{\Omega} j(u) \operatorname{div}(\boldsymbol{\theta}) \mathrm{d} x \\
&+\int_{\Omega}\left[\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}-\operatorname{div}(\boldsymbol{\theta}) I\right) \nabla u \cdot \nabla p+p \operatorname{div}(f \boldsymbol{\theta})\right] \mathrm{d} x
\end{aligned}
$$

The derivation depends a priori on the form of the shape functional. We now present a procedure which works for arbitrary shape functionals.

Shape derivatives for laminar flows

Let us consider the Stokes equations:

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right) & =\boldsymbol{f}_{f} \text { in } \Omega_{f} \\
\boldsymbol{v} & =\boldsymbol{v}_{0} \text { on } \partial \Omega_{f, D} \\
\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} & =0 \text { on } \partial \Omega_{f, N} \\
\boldsymbol{v} & =0 \text { on } \Gamma \\
\sigma_{f}(\boldsymbol{v}, p) & =\nu\left(\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{T}\right)-p l
\end{aligned}\right.
$$

We want to compute the shape derivative of an arbitrary functional of the form

$$
J\left(\Omega_{f}, v\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right)
$$

Shape derivatives for laminar flows

The trick: reexpress everything in terms of $\boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$ and $p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$.

Shape derivatives for laminar flows

The trick: reexpress everything in terms of $\boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$ and $p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$. Introduce the modified functional

$$
\begin{aligned}
& \mathfrak{J}(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p}):=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\boldsymbol{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right), \\
& \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \hat{\boldsymbol{v}} \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right), \hat{p} \in L^{2}\left(\Omega_{f}\right) .
\end{aligned}
$$

Shape derivatives for laminar flows

The trick: reexpress everything in terms of $\boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$ and $p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$. Introduce the modified functional

$$
\begin{aligned}
& \mathfrak{J}(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p}):=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\boldsymbol{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right), \\
& \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \hat{\boldsymbol{v}} \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right), \hat{p} \in L^{2}\left(\Omega_{f}\right) .
\end{aligned}
$$

Then by construction,

$$
J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)=\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)
$$

Shape derivatives for laminar flows

The trick: reexpress everything in terms of $\boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$ and $p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$. Introduce the modified functional

$$
\begin{aligned}
& \mathfrak{J}(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p}):=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\boldsymbol{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right), \\
& \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \hat{\boldsymbol{v}} \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right), \hat{p} \in L^{2}\left(\Omega_{f}\right) .
\end{aligned}
$$

Then by construction,

$$
J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)=\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)
$$

- The functional \mathfrak{J} is defined on fixed spaces

Shape derivatives for laminar flows

The trick: reexpress everything in terms of $\boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$ and $p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})$. Introduce the modified functional

$$
\begin{aligned}
& \mathfrak{J}(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p}):=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\boldsymbol{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right), \\
& \boldsymbol{\theta} \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \hat{\boldsymbol{v}} \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right), \hat{p} \in L^{2}\left(\Omega_{f}\right) .
\end{aligned}
$$

Then by construction,

$$
J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)=\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)
$$

- The functional \mathfrak{J} is defined on fixed spaces
- It brings naturally into play the Lagrangian derivatives

Shape derivatives for laminar flows

The chain rule yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} & {\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)\right] } \\
& =\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \hat{p})}(\dot{\boldsymbol{v}}, \dot{p}),
\end{aligned}
$$

Shape derivatives for laminar flows

The chain rule yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} & {\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)\right] } \\
& =\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \hat{p})}(\dot{\boldsymbol{v}}, \dot{p}),
\end{aligned}
$$

where $(\dot{\boldsymbol{v}}, \dot{p})=\frac{\mathrm{d}}{\mathrm{d} \boldsymbol{\theta}}\left(\boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)$ are the Lagrangian derivatives of v and p.

Shape derivatives for laminar flows

(\boldsymbol{v}, p) are the solutions to find $(\boldsymbol{v}, p) \in \boldsymbol{v}_{0}+V_{v, p}(\Gamma)$ such that

$$
\forall\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime}-p \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w}^{\prime} \mathrm{d} x
$$

where $V_{v, p}(\Gamma)=\left\{\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$.

Shape derivatives for laminar flows

(\boldsymbol{v}, p) are the solutions to find $(\boldsymbol{v}, p) \in \boldsymbol{v}_{0}+V_{\mathbf{v}, p}(\Gamma)$ such that

$$
\forall\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime}-p \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w}^{\prime} \mathrm{d} x
$$

where $V_{\boldsymbol{v}, p}(\Gamma)=\left\{\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$. Recall that $(\nabla \boldsymbol{v}) \circ(I+\boldsymbol{\theta})=\nabla(\boldsymbol{v} \circ(I+\boldsymbol{\theta}))(I+\nabla \boldsymbol{\theta})^{-1}$. Using a change of variable and differentiating with respect to $\boldsymbol{\theta}$ yields that $(\dot{\boldsymbol{v}}, \dot{p})$ satisfy

$$
\begin{array}{r}
\int_{\Omega_{f}}\left[\nabla \dot{\boldsymbol{v}}: \nabla \boldsymbol{w}^{\prime}-\dot{p} \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\dot{v})\right] \mathrm{d} x=\int_{\Omega_{f}}\left[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}^{\prime}+\nabla \boldsymbol{v}:\left(\nabla \boldsymbol{w}^{\prime} \nabla \boldsymbol{\theta}\right)\right. \\
\quad-p \operatorname{Tr}\left(\nabla \boldsymbol{w}^{\prime} \nabla \boldsymbol{\theta}\right)-q^{\prime} \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime}-p \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-\boldsymbol{f}_{f} \cdot \boldsymbol{w}^{\prime}\right) \operatorname{div}(\boldsymbol{\theta}) \\
\left.+\boldsymbol{w}^{\prime} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x
\end{array}
$$

for all $\left(w^{\prime}, q^{\prime}\right) \in V_{v, p}(\Gamma)$.

Shape derivatives for laminar flows

(\boldsymbol{v}, p) are the solutions to find $(\boldsymbol{v}, p) \in \boldsymbol{v}_{0}+V_{\mathbf{v}, p}(\Gamma)$ such that

$$
\forall\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in V_{\boldsymbol{v}, p}(\Gamma) \quad \int_{\Omega_{f}}\left[\nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime}-p \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{v})\right] \mathrm{d} x=\int_{\Omega_{f}} \boldsymbol{f}_{f} \cdot \boldsymbol{w}^{\prime} \mathrm{d} x ;
$$

where $V_{\boldsymbol{v}, p}(\Gamma)=\left\{\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in H^{1}\left(\Omega_{f}, \mathbb{R}^{d}\right) \times L^{2}\left(\Omega_{f}\right) / \mathbb{R} \mid \boldsymbol{w}=0\right.$ on $\left.\partial \Omega_{f}\right\}$. Recall that $(\nabla \boldsymbol{v}) \circ(I+\boldsymbol{\theta})=\nabla(\boldsymbol{v} \circ(I+\boldsymbol{\theta}))(I+\nabla \boldsymbol{\theta})^{-1}$. Using a change of variable and differentiating with respect to $\boldsymbol{\theta}$ yields that $(\dot{\boldsymbol{v}}, \dot{p})$ satisfy

$$
\begin{array}{r}
\int_{\Omega_{f}}\left[\nabla \dot{\boldsymbol{v}}: \nabla \boldsymbol{w}^{\prime}-\dot{p} \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\dot{v})\right] \mathrm{d} x=\int_{\Omega_{f}}\left[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}^{\prime}+\nabla \boldsymbol{v}:\left(\nabla \boldsymbol{w}^{\prime} \nabla \boldsymbol{\theta}\right)\right. \\
\quad-p \operatorname{Tr}\left(\nabla \boldsymbol{w}^{\prime} \nabla \boldsymbol{\theta}\right)-q^{\prime} \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime}-p \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-\boldsymbol{f}_{f} \cdot \boldsymbol{w}^{\prime}\right) \operatorname{div}(\boldsymbol{\theta}) \\
\left.+\boldsymbol{w}^{\prime} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x
\end{array}
$$

for all $\left(w^{\prime}, q^{\prime}\right) \in V_{v, p}(\Gamma)$. We introduce (w, q) the adjoint state solution to

$$
\int_{\Omega_{f}}\left[\nabla \boldsymbol{w}: \nabla \boldsymbol{w}^{\prime}-q \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x=\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \partial \hat{p})}\left(w^{\prime}, q^{\prime}\right)
$$

Shape derivatives for laminar flows

The chain rule yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} & {\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)\right] } \\
& =\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \hat{p})}(\dot{\boldsymbol{v}}, \dot{p})
\end{aligned}
$$

Shape derivatives for laminar flows

The chain rule yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}[& \left.J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)\right] \\
= & \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \hat{p})}(\dot{\boldsymbol{v}}, \dot{p}) \\
= & \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}+\int_{\Omega_{f}}[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}+\nabla \boldsymbol{v}:(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta}) \\
& -p \operatorname{Tr}(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta})-q \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}-p \operatorname{div}(\boldsymbol{w})-\boldsymbol{f}_{f} \cdot \boldsymbol{w}\right) \operatorname{div}(\boldsymbol{\theta}) \\
& \left.+\boldsymbol{w} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x .
\end{aligned}
$$

Shape derivatives for laminar flows

The chain rule yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}[& \left.J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[\mathfrak{J}\left(\boldsymbol{\theta}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta}), p\left(\Omega_{f, \boldsymbol{\theta}}\right) \circ(I+\boldsymbol{\theta})\right)\right] \\
= & \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \hat{p})}(\dot{\boldsymbol{v}}, \dot{p}) \\
= & \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}+\int_{\Omega_{f}}[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}+\nabla \boldsymbol{v}:(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta}) \\
& -p \operatorname{Tr}(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta})-q \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}-p \operatorname{div}(\boldsymbol{w})-\boldsymbol{f}_{f} \cdot \boldsymbol{w}\right) \operatorname{div}(\boldsymbol{\theta}) \\
& \left.+\boldsymbol{w} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x .
\end{aligned}
$$

Shape derivatives for laminar flows

Proposition 5

Assume that the transported objective function $\mathfrak{J}(\boldsymbol{\theta}, \hat{\mathbf{v}}, \hat{p})=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\mathbf{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right)$, has continuous partial derivatives at $(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p})=\left(0, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right)$. Then the objective function $J\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right.$ is shape differentiable and the derivative reads

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}+\int_{\Omega_{f}}[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}+\nabla \boldsymbol{v}:(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta}) \\
& \quad-p \operatorname{Tr}(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta})-q \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}-p \operatorname{div}(\boldsymbol{w})-\boldsymbol{f}_{f} \cdot \boldsymbol{w}\right) \operatorname{div}(\boldsymbol{\theta}) \\
& \left.\quad+\boldsymbol{w} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x .
\end{aligned}
$$

where $(\boldsymbol{w}, \boldsymbol{q})$ is the adjoint state solution to

$$
\int_{\Omega_{f}}\left[\nabla \boldsymbol{w}: \nabla \boldsymbol{w}^{\prime}-q \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x=\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \partial \hat{p})}\left(w^{\prime}, q^{\prime}\right)
$$

Shape derivatives for laminar flows

Proposition 5

Assume that the transported objective function $\mathfrak{J}(\boldsymbol{\theta}, \hat{\mathbf{v}}, \hat{p})=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\mathbf{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right)$, has continuous partial derivatives at $(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p})=\left(0, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right)$. Then the objective function $J\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right.$ is shape differentiable and the derivative reads

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}+\int_{\Omega_{f}}[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}+\nabla \boldsymbol{v}:(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta}) \\
& \quad-p \operatorname{Tr}(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta})-q \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}-p \operatorname{div}(\boldsymbol{w})-\boldsymbol{f}_{f} \cdot \boldsymbol{w}\right) \operatorname{div}(\boldsymbol{\theta}) \\
& \left.\quad+\boldsymbol{w} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x .
\end{aligned}
$$

where $(\boldsymbol{w}, \boldsymbol{q})$ is the adjoint state solution to

$$
\int_{\Omega_{f}}\left[\nabla \boldsymbol{w}: \nabla \boldsymbol{w}^{\prime}-q \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x=\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \partial \hat{p})}\left(w^{\prime}, q^{\prime}\right)
$$

- These formulas require only the knowledge of $\partial \mathfrak{J} / \partial \boldsymbol{\theta}$ and $\partial \mathfrak{J} / \partial(\hat{\boldsymbol{v}}, \hat{p})$

Shape derivatives for laminar flows

Proposition 5

Assume that the transported objective function $\mathfrak{J}(\boldsymbol{\theta}, \hat{\mathbf{v}}, \hat{p})=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\mathbf{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right)$, has continuous partial derivatives at $(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p})=\left(0, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right)$. Then the objective function $J\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right.$ is shape differentiable and the derivative reads

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}+\int_{\Omega_{f}}[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}+\nabla \boldsymbol{v}:(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta}) \\
& \quad-p \operatorname{Tr}(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta})-q \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}-p \operatorname{div}(\boldsymbol{w})-\boldsymbol{f}_{f} \cdot \boldsymbol{w}\right) \operatorname{div}(\boldsymbol{\theta}) \\
& \left.\quad+\boldsymbol{w} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x .
\end{aligned}
$$

where $(\boldsymbol{w}, \boldsymbol{q})$ is the adjoint state solution to

$$
\int_{\Omega_{f}}\left[\nabla \boldsymbol{w}: \nabla \boldsymbol{w}^{\prime}-q \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x=\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \partial \hat{p})}\left(w^{\prime}, q^{\prime}\right)
$$

- These formulas require only the knowledge of $\partial \mathfrak{J} / \partial \boldsymbol{\theta}$ and $\partial \mathfrak{J} / \partial(\hat{\boldsymbol{v}}, \hat{p})$
- They can be implemented in a fully automated fashion.

Shape derivatives for laminar flows

Proposition 5

Assume that the transported objective function $\mathfrak{J}(\boldsymbol{\theta}, \hat{\mathbf{v}}, \hat{p})=J\left(\Omega_{f, \boldsymbol{\theta}}, \hat{\mathbf{v}} \circ(I+\boldsymbol{\theta})^{-1}, \hat{p} \circ(I+\boldsymbol{\theta})^{-1}\right)$, has continuous partial derivatives at $(\boldsymbol{\theta}, \hat{\boldsymbol{v}}, \hat{p})=\left(0, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right)$. Then the objective function $J\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right), p\left(\Omega_{f}\right)\right.$ is shape differentiable and the derivative reads

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right]=\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}+\int_{\Omega_{f}}[(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{w}+\nabla \boldsymbol{v}:(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta}) \\
& \quad-p \operatorname{Tr}(\nabla \boldsymbol{w} \nabla \boldsymbol{\theta})-q \operatorname{Tr}(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta})-\left(\nabla \boldsymbol{v}: \nabla \boldsymbol{w}-p \operatorname{div}(\boldsymbol{w})-\boldsymbol{f}_{f} \cdot \boldsymbol{w}\right) \operatorname{div}(\boldsymbol{\theta}) \\
& \left.\quad+\boldsymbol{w} \cdot\left(\nabla \boldsymbol{f}_{f} \boldsymbol{\theta}\right)\right] \mathrm{d} x .
\end{aligned}
$$

where $(\boldsymbol{w}, \boldsymbol{q})$ is the adjoint state solution to

$$
\int_{\Omega_{f}}\left[\nabla \boldsymbol{w}: \nabla \boldsymbol{w}^{\prime}-q \operatorname{div}\left(\boldsymbol{w}^{\prime}\right)-q^{\prime} \operatorname{div}(\boldsymbol{w})\right] \mathrm{d} x=\frac{\partial \mathfrak{J}}{(\partial \hat{\boldsymbol{v}}, \partial \hat{p})}\left(w^{\prime}, q^{\prime}\right)
$$

- These formulas require only the knowledge of $\partial \mathfrak{J} / \partial \boldsymbol{\theta}$ and $\partial \mathfrak{J} / \partial(\hat{\boldsymbol{v}}, \hat{p})$
- They can be implemented in a fully automated fashion.
- This is a volume form of the shape derivative.

Shape derivatives for laminar flows

Example, the drag force:

$$
\operatorname{DRAG}\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right)\right)=\int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{v} \mathrm{d} x
$$

We find that

$$
\begin{gathered}
\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})=\int_{\Omega_{f}}(-2(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{v}+\operatorname{div}(\boldsymbol{\theta}) \nabla \boldsymbol{v}: \nabla \boldsymbol{v}) \mathrm{d} x \\
\frac{\partial \mathfrak{I}}{\partial(\hat{\boldsymbol{v}}, \hat{p})}\left(\boldsymbol{w}^{\prime}, \boldsymbol{q}^{\prime}\right)=2 \int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime} \mathrm{d} x .
\end{gathered}
$$

Shape derivatives for laminar flows

It is also possible to write a generic formula in surface form.

Shape derivatives for laminar flows

It is also possible to write a generic formula in surface form.

Proposition 6

Assume that the state and adjoint variables $(v, p),(w, q)$ have $H^{2} \times H^{1}$ regularity on Ω_{f} and that there exist $\boldsymbol{f}_{\mathfrak{J}} \in L^{1}\left(D, \mathbb{R}^{d}\right)$ and $\boldsymbol{g}_{\mathfrak{J}} \in L^{1}\left(\Gamma, \mathbb{R}^{d}\right)$ such that

$$
\forall \boldsymbol{\theta} \in W_{0}^{1, \infty}\left(D, \mathbb{R}^{d}\right), \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})=\int_{D} \boldsymbol{f}_{\mathfrak{J}} \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\Gamma} \boldsymbol{g}_{\mathfrak{J}} \cdot \boldsymbol{\theta} \mathrm{d} \sigma
$$

Shape derivatives for laminar flows

It is also possible to write a generic formula in surface form.

Proposition 6

Assume that the state and adjoint variables $(\boldsymbol{v}, p),(\boldsymbol{w}, q)$ have $H^{2} \times H^{1}$ regularity on Ω_{f} and that there exist $\boldsymbol{f}_{\mathfrak{J}} \in L^{1}\left(D, \mathbb{R}^{d}\right)$ and $\boldsymbol{g}_{\mathfrak{J}} \in L^{1}\left(\Gamma, \mathbb{R}^{d}\right)$ such that

$$
\forall \boldsymbol{\theta} \in W_{0}^{1, \infty}\left(D, \mathbb{R}^{d}\right), \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})=\int_{D} \boldsymbol{f}_{\mathfrak{J}} \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\Gamma} \boldsymbol{g}_{\mathfrak{J}} \cdot \boldsymbol{\theta} \mathrm{d} \sigma
$$

Then the shape derivative of $J\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right)\right.$ rewrites as an integral over the interface Γ depending only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right), T\left(\Omega_{f, \boldsymbol{\theta}}\right), \boldsymbol{u}\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta}) \\
= & \frac{\overline{\partial \mathfrak{J}}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\int_{\Gamma}\left(\boldsymbol{f}_{f} \cdot \boldsymbol{w}-\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\boldsymbol{n} \cdot \sigma_{f}(\boldsymbol{w}, \boldsymbol{q}) \nabla \boldsymbol{v} \cdot \boldsymbol{n}+\boldsymbol{n} \cdot \sigma_{f}(\boldsymbol{v}, p) \nabla \boldsymbol{w} \cdot \boldsymbol{n}\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

Shape derivatives for laminar flows

It is also possible to write a generic formula in surface form.

Proposition 6

Assume that the state and adjoint variables $(\boldsymbol{v}, p),(\boldsymbol{w}, q)$ have $H^{2} \times H^{1}$ regularity on Ω_{f} and that there exist $\boldsymbol{f}_{\mathfrak{J}} \in L^{1}\left(D, \mathbb{R}^{d}\right)$ and $\boldsymbol{g}_{\mathfrak{J}} \in L^{1}\left(\Gamma, \mathbb{R}^{d}\right)$ such that

$$
\forall \boldsymbol{\theta} \in W_{0}^{1, \infty}\left(D, \mathbb{R}^{\boldsymbol{d}}\right), \frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})=\int_{D} \boldsymbol{f}_{\mathfrak{J}} \cdot \boldsymbol{\theta} \mathrm{d} x+\int_{\Gamma} \boldsymbol{g}_{\mathfrak{J}} \cdot \boldsymbol{\theta} \mathrm{d} \sigma
$$

Then the shape derivative of $J\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right)\right.$ rewrites as an integral over the interface Γ depending only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}}\left[J\left(\Omega_{f, \boldsymbol{\theta}}, \boldsymbol{v}\left(\Omega_{f, \boldsymbol{\theta}}\right), p\left(\Omega_{f, \boldsymbol{\theta}}\right), T\left(\Omega_{f, \boldsymbol{\theta}}\right), \boldsymbol{u}\left(\Omega_{f, \boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta}) \\
= & \frac{\overline{\partial \mathfrak{J}}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\int_{\Gamma}\left(\boldsymbol{f}_{f} \cdot \boldsymbol{w}-\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\boldsymbol{n} \cdot \sigma_{f}(\boldsymbol{w}, \boldsymbol{q}) \nabla \boldsymbol{v} \cdot \boldsymbol{n}+\boldsymbol{n} \cdot \sigma_{f}(\boldsymbol{v}, p) \nabla \boldsymbol{w} \cdot \boldsymbol{n}\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma
\end{aligned}
$$

where

$$
\forall \boldsymbol{\theta} \in W_{0}^{1, \infty}\left(D, \mathbb{R}^{d}\right), \quad \overline{\overline{\partial ⿹}} \overline{\partial \boldsymbol{\theta}}(\boldsymbol{\theta}):=\int_{\Gamma}\left(\boldsymbol{g}_{\mathfrak{J}} \cdot \boldsymbol{n}\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} \sigma,
$$

is the part of $\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}$ that depends only on $\boldsymbol{\theta} \cdot \boldsymbol{n}$.

Shape derivatives for laminar flows

Example, the drag force:

$$
\operatorname{DRAG}\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right)\right)=\int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{v} \mathrm{d} x
$$

We find that

$$
\begin{aligned}
\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})= & \int_{\Omega_{f}}(-2(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{v}+\operatorname{div}(\boldsymbol{\theta}) \nabla \boldsymbol{v}: \nabla \boldsymbol{v}) \mathrm{d} x, \\
& \frac{\partial \mathfrak{J}}{\partial(\hat{\boldsymbol{v}}, \hat{\rho})}\left(\boldsymbol{w}^{\prime}, \boldsymbol{q}^{\prime}\right)=2 \int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime} \mathrm{d} x .
\end{aligned}
$$

Shape derivatives for laminar flows

Example, the drag force:

$$
\operatorname{DRAG}\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right)\right)=\int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{v} \mathrm{d} x
$$

We find that

$$
\begin{gathered}
\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})=\int_{\Omega_{f}}(-2(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{v}+\operatorname{div}(\boldsymbol{\theta}) \nabla \boldsymbol{v}: \nabla \boldsymbol{v}) \mathrm{d} x \\
\frac{\partial \mathfrak{J}}{\partial(\hat{\boldsymbol{v}}, \hat{p})}\left(\boldsymbol{w}^{\prime}, \boldsymbol{q}^{\prime}\right)=2 \int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime} \mathrm{d} x . \\
\overline{\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}}(\boldsymbol{\theta})=\int_{\partial \Omega_{f}}\left(-2(\nabla \boldsymbol{v} \boldsymbol{n})^{2}+\nabla \boldsymbol{v}: \nabla \boldsymbol{v}\right) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
\end{gathered}
$$

Shape derivatives for laminar flows

Example, the drag force:

$$
\operatorname{DRAG}\left(\Omega_{f}, \boldsymbol{v}\left(\Omega_{f}\right)\right)=\int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{v} \mathrm{d} x
$$

We find that

$$
\begin{gathered}
\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})=\int_{\Omega_{f}}(-2(\nabla \boldsymbol{v} \nabla \boldsymbol{\theta}): \nabla \boldsymbol{v}+\operatorname{div}(\boldsymbol{\theta}) \nabla \boldsymbol{v}: \nabla \boldsymbol{v}) \mathrm{d} x \\
\frac{\partial \mathfrak{I}}{\partial(\hat{\boldsymbol{v}}, \hat{p})}\left(\boldsymbol{w}^{\prime}, \boldsymbol{q}^{\prime}\right)=2 \int_{\Omega_{f}} \nabla \boldsymbol{v}: \nabla \boldsymbol{w}^{\prime} \mathrm{d} x . \\
\overline{\frac{\partial \mathfrak{J}}{\partial \boldsymbol{\theta}}}(\boldsymbol{\theta})=\int_{\partial \Omega_{f}}\left(-2(\nabla \boldsymbol{v} \boldsymbol{n})^{2}+\nabla \boldsymbol{v}: \nabla \boldsymbol{v}\right) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma \\
=-\int_{\partial \Omega_{f}}(\nabla \boldsymbol{v}: \nabla \boldsymbol{v}) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma .
\end{gathered}
$$

Shape derivatives for laminar flows

Exercise:

- complete the derivation of shape derivative of arbitrary functionals for the linear elasticity system
- do the same for the heat conduction problem

Figure: A bi-material distrubution of two conductive media with conductivity k_{s} and k_{v}.

$$
\left\{\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right) & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s} \\
T & =T_{0} & & \text { on } \partial \Omega_{T}^{D} \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{f} \\
-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & =h & & \text { on } \partial \Omega_{T}^{N} \cap \partial \Omega_{s} \\
T_{f} & =T_{s} & & \text { on } \Gamma \\
-k_{f} \frac{\partial T_{f}}{\partial \boldsymbol{n}} & =-k_{s} \frac{\partial T_{s}}{\partial \boldsymbol{n}} & & \text { on } \Gamma,
\end{aligned}\right.
$$

