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Recap

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector
field θ:

Ωθ := (I + θ)Ω = {x + θ(x) | x ∈ Ω}

Ω
x

x + θ(x)

Ωθ = (I + θ)(Ω)

θ

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field θ is used
to deform Ω into Ωθ = (I + θ)Ω.



Recap

Let J(Ω) denote a shape functional arising e.g. in a shape optimization problem

min
Ω

J(Ω).

Definition 1

A shape functional J(Ω) is said shape differentiable if the mapping

W 1,∞(Rd ,Rd) −→ R

θ 7−→ J(Ωθ)

is Fréchet differentiable at θ = 0, i.e. if there exists a continuous linear form

DJ(Ω) ∈W 1,∞(Rd ,Rd)∗

such that the following asymptotics holds true:

J(Ωθ) = J(Ω) + DJ(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd ,Rd )

θ→0−−−→0.

The linear form DJ(Ω) is called the shape derivative of J on the domain Ω.



The boundary variation method of Hadamard

min
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J(Γ)
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Γθ = (I + θ)Γ, with θ ∈W 1,∞
0 (D,Rd), ||θ||W 1,∞(Rd ,Rd )< 1.

J(Γθ) = J(Γ) +
dJ

dθ
(θ) + o(θ), with

|o(θ)|
||θ||W 1,∞(D,Rd )

θ→0−−−→ 0.

Under suitable regularity assumptions, Hadamard structure theorem holds:

dJ

dθ
(Γ)(θ) =

∫
Γ

vJ(Γ)θ · ndσ

for some vJ(Γ) ∈ L1(Γ).

If θ · n = −vJ(Γ) on Γ, then J(Γθ) = J(Γ)− t

∫
Γ

|vJ(Γ)|2dσ + o(t) < J(Γ); θ is a descent

direction.
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The boundary variation method of Hadamard

Proposition 1

Let Ω be a bounded open set of Rd . For any f ∈W 1,1(Rd), the functional J(Ω) defined by

J(Ω) :=

∫
Ω

f (x)dx

is shape differentiable, and it holds

DJ(Ω)(θ) =

∫
Ω

div(f θ)dx =

∫
Ω

(∇f · θ + f div(θ))dx , θ ∈W 1,∞(Rd ,Rd).

If in addition Ω is smooth then the above formula can be rewritten as

DJ(Ω)(θ) =

∫
∂Ω

f θ · ndσ, θ ∈W 1,∞(Rd ,Rd).

where n denotes the outward normal to Ω.
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The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of Rd with boundary ∂Γ. For any
f ∈W 2,1(Rd), the functional J(Γ) defined by

J(Γ) :=

∫
Γ

f dσ

is shape differentiable and the shape derivative reads

DJ(Γ)(θ) =

∫
Γ

(div(f θ)− n · ∇θ · nf )dσ

=

∫
Γ

(
∂f

∂n
+ κf

)
(θ · n)dσ +

∫
∂Γ

f θ · τdl ,

where τ denotes the outward normal to ∂Γ tangent to Γ.
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The boundary variation method of Hadamard

Proposition 2

Let Γ be a smooth codimension one surface of Rd with boundary ∂Γ. For any
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where τ denotes the outward normal to ∂Γ tangent to Γ.

κ = div(n) is the mean curvature field of Γ.
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1. A model problem

2. Eulerian and Lagrangian derivatives

3. The adjoint state

4. Volume form and surface form of the shape derivative

5. Shape derivatives of arbitrary functionals
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A model problem

Consider the shape optimization problem

min
Ω

∫
Ω

j(u)dx

s.t.


−∆u = f in Ω,

u = 0 on ΓD ,

∂u

∂n
= 0 on ΓN .

Ω

ΓD

ΓN

Figure: Setting for the Poisson problem.

I ΓD : Dirichlet boundary, ΓN : Neumann boundary.

I j : R→ R with |j(x)| ≤ C(|x |2 + 1).

I Let θ ∈W 1,∞(Rd ,Rd) be a small vector field, Ωθ := (I + θ)Ω

I Let ΓD,θ := (I + θ)ΓD , ΓN,θ = (I + θ)ΓN and uθ the solution to the Laplace problem
on Ωθ.
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A model problem

Our goal: find the Fréchet derivative of

θ 7→ J(Ωθ, uθ) =

∫
Ωθ

j(uθ)dx , θ ∈W 1,∞(Rd ,Rd),

where 
−∆uθ = f in Ωθ,

uθ = 0 on ΓD,θ,

∂uθ
∂n

= 0 on ΓN,θ.
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The Eulerian derivative

Naively,
d

dθ
J(Ωθ, uθ) =

∫
∂Ω

j(u)θ · ndσ +

∫
Ω

j ′(u)

(
d

dθ
uθ

)
(θ)dx (1)

where θ 7→ d

dθ
uθ would be the derivative of θ 7→ uθ(x) with x ∈ Ω.

Definition 2

The derivative of the mapping x 7→ uθ(x), if it exists for any x ∈ Ω in a point-wise sense,
is called the Eulerian derivative of uθ, and is denoted by u′(θ).

I Difficulty 1: the derivation of θ 7→ uθ may exist for all point x ∈ Ω but not in a
uniform way in Ω (near the boundary, x + θ(x) might not be in Ω).

I Difficulty 2: the functions uθ ∈ H1(Ωθ) and u ∈ H1(Ω) belong to different definition
spaces.

I Difficulty 3: the Eulerian derivative does not always exist and eq. (1) does not make
sense.
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The Lagrangian derivative

Another approach: change of variable in fixed reference domain. Let

Vθ := {v ∈ H1(Ωθ) | v = 0 on ΓD,θ}.

The variational formulation of 
−∆uθ = f in Ωθ,

uθ = 0 on ΓD,θ,

∂uθ
∂n

= 0 on ΓN,θ.

reads find uθ ∈ Vθ such that∫
Ωθ

∇uθ · ∇vdx =

∫
Ωθ

fvdx , ∀v ∈ Vθ.

After the change of variable x = (I + θ)(y):∫
Ω

[(∇uθ)◦(I +θ)] · [(∇v)◦(I +θ)] det(I +∇θ)dy =

∫
Ω

f ◦(I +θ)v ◦(I +θ) det(I +∇θ)dy .
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The Lagrangian derivative

Lemma 3

Let f ∈ H1(Rd) and f ∈ H1(Rd ,Rd) be respectively scalar and vectorial functions, and
θ ∈W 1,∞(Rd ,Rd) with ||θ||W 1,∞(Rd ,Rd ) < 1. It holds

(∇f ) ◦ (I + θ) = (I +∇θ)−T∇(f ◦ (I + θ))

(∇f ) ◦ (I + θ) = ∇(f ◦ (I + θ))(I +∇θ)−1.

Remark 1

∇f = (∂i f )1≤i≤d is a row vector while ∇f = (∂j fi )1≤i,j≤d =
[
∇f T1 · ∇f Td

]
.



The Lagrangian derivative

∫
Ω

[(∇uθ) ◦ (I +θ)] · [∇v ◦ (I +θ)] det(I +∇θ)dy =

∫
Ω

f ◦ (I +θ)v ◦ (I +θ) det(I +∇θ)dy ,

rewrites as

find uθ ◦ (I + θ) ∈ V such that for any v ∈ V ,

〈F (θ, uθ ◦ (I + θ)), v〉V ,V ′ = 0 (2)

where

〈F (θ, u), v〉V ,V ′ =
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Ω

(I +∇θ)−T∇u · (I +∇θ)−T∇v det(I +∇θ)dx

−
∫

Ω

f ◦ (I + θ) det(I +∇θ) vdx .

I uθ ◦ (I + θ) belongs to the fixed space V !

I F : W 1,∞(Rd ,Rd)× V → V ′ is such that ∂F/∂u is invertible at (0, u(Ω)).

I The implicit function theorem yields the existence of θ 7→ uθ ◦ (I + θ) solving eq. (2).

I Since θ 7→ F (θ, u) is Fréchet differentiable, it follows that θ 7→ uθ ◦ (I + θ) is Fréchet
differentiable as a mapping W 1,∞(Rd ,Rd)→ V .
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I Since θ 7→ F (θ, u) is Fréchet differentiable, it follows that θ 7→ uθ ◦ (I + θ) is Fréchet
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The Lagrangian derivative

Definition 4

The Fréchet derivative of the mapping θ 7→ uθ ◦ (I + θ), W 1∞(Rd ,Rd)→ V at θ = 0, is
called the Lagrangian derivative of uθ, and is denoted by u̇(θ).

Remark 2

I By definition, u̇(θ) ∈ V .

I In most practical problems, u̇ exists and has the same regularity than u as soon as the
the linearized problem is well-posed.

I If the Eulerian derivative exists, then differentiating uθ ◦ (I + θ) yields

u̇(θ)(x) = u′(θ) +∇uθ · θ,

hence u′(θ) = u̇(θ)−∇u · θ. Since ∇u ∈ L2(Ω), u′(θ) has less regularity than u̇(θ).

It is safer to work with Lagrangian derivatives!
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The Fréchet derivative of the mapping θ 7→ uθ ◦ (I + θ), W 1∞(Rd ,Rd)→ V at θ = 0, is
called the Lagrangian derivative of uθ, and is denoted by u̇(θ).

Remark 2

I By definition, u̇(θ) ∈ V .

I In most practical problems, u̇ exists and has the same regularity than u as soon as the
the linearized problem is well-posed.

I If the Eulerian derivative exists, then differentiating uθ ◦ (I + θ) yields

u̇(θ)(x) = u′(θ) +∇uθ · θ,

hence u′(θ) = u̇(θ)−∇u · θ. Since ∇u ∈ L2(Ω), u′(θ) has less regularity than u̇(θ).

It is safer to work with Lagrangian derivatives!



The Lagrangian derivative

Definition 4
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Computation of u̇

Differentiating

0 = 〈F (θ, u), v〉V ,V ′ =

∫
Ω

(I +∇θ)−T∇u · (I +∇θ)−T∇v det(I +∇θ)dx

−
∫

Ω

f ◦ (I + θ) det(I +∇θ) vdx .

with respect to θ yields

0 =

∫
Ω

(I −∇θ −∇θT + div(θ)I )∇u̇ · ∇vdx −
∫

Ω

(∇f · θ + div(θ)f )vdx

i.e. find u̇(θ) ∈ V such that

∀v ∈ V ,

∫
Ω

∇u̇(θ) · ∇vdx =

∫
Ω

(∇θ +∇θT − div(θ)I )∇u · ∇vdx +

∫
Ω

div(f θ)vdx .
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When differentiating 0 =

∫
Ω

∇u · ∇vdx −
∫

Ω

fvdx :

I the shape differentiation of ∇f yields a term −∇θT∇f , of f a term ∇f · θ;

I the differentiation of dx yields a term div(θ)dx ;

I test functions v are not differentiated.
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This is a well-posed variational formulation which gives the value of u̇(θ) for any
θ ∈W 1,∞(Rd ,Rd).



A first expression of the shape derivative

Back to J(Ωθ, uθ) =

∫
Ωθ

j(uθ)dx .

Do a change of variable to rewrite

J(Ωθ, uθ) =

∫
Ω

j(uθ ◦ (I + θ)) det(I +∇θ)dx .

Then, differentiating with respect to θ yields

d

dθ
J(Ωθ, uθ)dx =

∫
Ω

(j ′(u)u̇(θ) + j(u)div(θ))dx .

Although explicit, this formula is not satisfactory because

I u̇(θ) is defined as the solution of a PDE depending on every value of
θ ∈W 1,∞(Rd ,Rd).

I It does not satisfy the Hadamard structure theorem.

The classical trick is to introduce an adjoint state.
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θ ∈W 1,∞(Rd ,Rd).

I It does not satisfy the Hadamard structure theorem.

The classical trick is to introduce an adjoint state.
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The adjoint state

Suppose that we want to compute the derivative of some function

J(θ) = f (u(θ)) s.t. A(θ)u(θ) = f .

for some matrix A(θ).

We have J ′(θ) = ∂uf · u′(θ) with

Au′(θ) = −A′(θ)u ⇔ u′(θ) = −A−1A′(θ)u.

So J ′(θ) = −∂uf · A−1A′(θ)u = −[A−T∂uf ] · A′(θ)u.

I The computation of A−T∂uf requires only one linear system inversion, in contrast to
the formula A−1A′(θ)u requiring one inversion for every value of θ.

I J ′(θ) = −p · A′(θ)u where p is the adjoint state solution to

ATp = ∂uf .
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The adjoint state

In our setting,
d

dθ
J(Ωθ, uθ)dx =

∫
Ω

(j ′(u)u̇(θ) + j(u)div(θ))dx .

where u̇(θ) ∈ V is such that

∀v ∈ V ,

∫
Ω

∇u̇(θ) · ∇vdx =

∫
Ω

(∇θ +∇θT − div(θ)I )∇u · ∇vdx +

∫
Ω

div(f θ)vdx .

We introduce p ∈ V the solution to the adjoint problem

Find p ∈ V such that ∀v ∈ V ,

∫
Ω

∇p · ∇vdx =

∫
Ω

j ′(u)vdx .

Then ∫
Ω

j ′(u)u̇(θ)dx=

∫
Ω

∇p · ∇u̇(θ)dx

=

∫
Ω

(∇θ +∇θT − div(θ)I )∇u · ∇pdx +

∫
Ω

div(f θ)pdx .
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The adjoint state

Proposition 3

Assume Ω ⊂ D is a Lipschitz bounded open set and f ∈ H1(Rd). The functional

J(Ω, u(Ω)) =

∫
Ω

j(u)dx is shape differentiable and the shape derivative reads

d

dθ
[J(Ωθ, uθ)](θ) =

∫
Ω

j(u)div(θ)dx

+

∫
Ω

[(∇θ +∇θT − div(θ)I )∇u · ∇p + pdiv(f θ)]dx , (3)

where p is the adjoint state solution to

Find p ∈ V such that ∀v ∈ V ,

∫
Ω

∇p · ∇vdx =

∫
Ω

j ′(u)vdx .

I The formula eq. (3) does require to solve a single elliptic PDE

I It is a linear form in θ, however it is not yet clear how to obtain a descent direction

I eq. (3) is called the volume form of the shape derivative; it is not yet written in the
form of a boundary integral depending only on θ · n.
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Surface expression of the shape derivative

To obtain the surface expression, we do an integration by parts:

d

dθ
[J(Ωθ, uθ)](θ) =

∫
Ω

j(u)div(θ)dx

+

∫
Ω

[(∇θ +∇θT − div(θ)I )∇u · ∇p + pdiv(f θ)]dx ,

=

∫
Ω

Λ ·θdx+

∫
∂Ω

(j(u)θ ·n+(n ·∇u)θ ·∇p+(n ·∇p)(θ ·∇u)−∇u ·∇p(θ ·n)+fpθ ·n)dσ

I There is no need to explicit Λ because, from Hadamard’s structure theorem, we know
in fact that Λ = 0;

I In fact, Hadamard’s structure theorem also implies that the above expression is zero
when θ is tangent, so this reduces to

d

dθ
[J(Ωθ, uθ)](θ) =

∫
∂Ω

(
j(u) + 2

∂u

∂n
∂p

∂n
−∇u · ∇p + fp

)
θ · ndσ

=

∫
∂Ω

(j(u) + fp)θ · ndσ +

∫
ΓD

∂u

∂n
∂p

∂n
(θ · n)dσ −

∫
ΓN

∇u · ∇p(θ · n)dσ.

I Warning, the integration by parts requires u and p to be of H2 regularity. This is
wrong in the vicinity of ΓD ∩ ΓN or if Ω has corners.
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Surface expression of the shape derivative

Proposition 4

Assume Ω is smooth and f ∈ H1(Rd). If θ = 0 on a neighborhood of ΓD ∩ ΓN , then the
shape derivative of J(Ω, u(Ω)) given by eq. (3) rewrites as a boundary integral involving
only the normal trace component θ · n of θ:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ, u(Ωθ))](θ) =

∫
∂Ω

(j(u)+fp)θ·ndσ+

∫
ΓD

∂u

∂n
∂p

∂n
θ·ndσ−

∫
ΓN

∇u·∇p (θ·n)dσ.

(4)

I eq. (4) is called the “surface expression” of the shape derivative.

I A descent direction is given by

θ · n = −t
(
j(u) + fp + 2

∂u

∂n
∂p

∂n
−∇u · ∇p

)



Surface expression of the shape derivative

Proposition 4

Assume Ω is smooth and f ∈ H1(Rd). If θ = 0 on a neighborhood of ΓD ∩ ΓN , then the
shape derivative of J(Ω, u(Ω)) given by eq. (3) rewrites as a boundary integral involving
only the normal trace component θ · n of θ:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ, u(Ωθ))](θ) =

∫
∂Ω

(j(u)+fp)θ·ndσ+

∫
ΓD

∂u

∂n
∂p

∂n
θ·ndσ−

∫
ΓN

∇u·∇p (θ·n)dσ.

(4)

I eq. (4) is called the “surface expression” of the shape derivative.

I A descent direction is given by

θ · n = −t
(
j(u) + fp + 2

∂u

∂n
∂p

∂n
−∇u · ∇p

)



Surface expression of the shape derivative

Proposition 4

Assume Ω is smooth and f ∈ H1(Rd). If θ = 0 on a neighborhood of ΓD ∩ ΓN , then the
shape derivative of J(Ω, u(Ω)) given by eq. (3) rewrites as a boundary integral involving
only the normal trace component θ · n of θ:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ, u(Ωθ))](θ) =

∫
∂Ω

(j(u)+fp)θ·ndσ+

∫
ΓD

∂u

∂n
∂p

∂n
θ·ndσ−

∫
ΓN

∇u·∇p (θ·n)dσ.

(4)

I eq. (4) is called the “surface expression” of the shape derivative.

I A descent direction is given by

θ · n = −t
(
j(u) + fp + 2

∂u

∂n
∂p

∂n
−∇u · ∇p

)



Self-adjoint functionals

I If j(u) =

∫
Ω

fudx (the compliance), then p is solution to

Find p ∈ V such that ∀v ∈ V ,

∫
Ω

∇p · ∇vdx =

∫
Ω

fvdx ,

i.e. p = u. The functional is said “self-adjoint”.
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Self-adjoint functionals

Consider the compliance minimization problem

min
Ω

∫
Γ

gudσ

s.t.



−∆u = 0 in Ω,

∂u

∂n
= 0 on ΓD ,

∂u

∂n
= g on ΓN ,

∂u

∂n
= 0 on Γ.

Ω
ΓD

ΓN

Γ

Figure: Setting for the Poisson problem.

We assume that ΓD and ΓN are fixed (θ = 0 on ΓD ∪ ΓN).

I We still have p = u and the same computation yields

d

dθ

∣∣∣∣
θ=0

[J(Ωθ, u(Ωθ))](θ) = −
∫

Γ

|∇u|2 (θ · n)dσ.

I It is always advantageous to take θ = n (e.g. to add matter) to reduce the
compliance.
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We assume that ΓD and ΓN are fixed (θ = 0 on ΓD ∪ ΓN).

I We still have p = u and the same computation yields

d
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θ=0

[J(Ωθ, u(Ωθ))](θ) = −
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Exercise

Compute the shape derivative of the compliance for the linear elasticity system.
−div(Ae(u)) = f in Ω

u = 0 on ΓD

Ae(u) · n = g on ΓN

Ae(u) · n = 0 on Γ

with Γ being the optimized boundary and

Ae(u) = 2µe(u) + λTr(e(u)) with e(u) =
∇u +∇uT

2
.

J(Ω, u) =

∫
Ω

f udx +

∫
∂Ω

g · udσ
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Shape derivatives of arbitrary functionals

In a practical implementation, for the computation of the shape derivative DJ(Ω, u(Ω))(θ),
one needs:

I to specify J(Ω, u(Ω)), which requires to solve a PDE for u(Ω), e.g.

J(Ω, u(Ω)) =

∫
Ω

j(u)dx

I to solve an adjoint system; i.e.

Find p ∈ V such that ∀v ∈ V ,

∫
Ω

∇p · ∇vdx =

∫
Ω

j ′(u)vdx .

I to assemble the shape derivative

d

dθ
[J(Ωθ, uθ)](θ) =

∫
Ω

j(u)div(θ)dx

+

∫
Ω

[(∇θ +∇θT − div(θ)I )∇u · ∇p + pdiv(f θ)]dx ,

The derivation depends a priori on the form of the shape functional. We now present a
procedure which works for arbitrary shape functionals.
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Shape derivatives for laminar flows

D

Ωf

∂ΩD
f

∂ΩN
f

Γ

∂ΩD
f

∂ΩD
f

Let us consider the Stokes equations:

−div(σf (v , p)) = ff in Ωf ,

v = v0 on ∂Ωf ,D

σf (v , p) · n = 0 on ∂Ωf ,N

v = 0 on Γ,

σf (v , p) = ν(∇v +∇vT )− pI .

We want to compute the shape derivative of an arbitrary functional of the form

J(Ωf , v(Ωf ), p(Ωf )).



Shape derivatives for laminar flows

The trick: reexpress everything in terms of v(Ωf ,θ) ◦ (I + θ) and p(Ωf ,θ) ◦ (I + θ).

Introduce the modified functional

J(θ, v̂ , p̂) := J(Ωf ,θ, v̂ ◦ (I + θ)−1, p̂ ◦ (I + θ)−1),

θ ∈W 1,∞(Rd ,Rd), v̂ ∈ H1(Ωf ,Rd), p̂ ∈ L2(Ωf ).

Then by construction,

J(Ωf ,θ, v(Ωf ,θ), p(Ωf ,θ)) = J(θ, v(Ωf ,θ) ◦ (I + θ), p(Ωf ,θ) ◦ (I + θ)).

I The functional J is defined on fixed spaces

I It brings naturally into play the Lagrangian derivatives
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Shape derivatives for laminar flows

The chain rule yields

d

dθ
[J(Ωf ,θ, v(Ωf ,θ), p(Ωf ,θ))] =

d

dθ
[J(θ, v(Ωf ,θ) ◦ (I + θ), p(Ωf ,θ) ◦ (I + θ))]

=
∂J

∂θ
(θ) +

∂J

(∂v̂ , p̂)
(v̇ , ṗ),

where (v̇ , ṗ) =
d

dθ
(v(Ωf ,θ) ◦ (I + θ), p(Ωf ,θ) ◦ (I + θ)) are the Lagrangian derivatives

of v and p.



Shape derivatives for laminar flows

The chain rule yields

d

dθ
[J(Ωf ,θ, v(Ωf ,θ), p(Ωf ,θ))] =

d

dθ
[J(θ, v(Ωf ,θ) ◦ (I + θ), p(Ωf ,θ) ◦ (I + θ))]

=
∂J

∂θ
(θ) +

∂J

(∂v̂ , p̂)
(v̇ , ṗ),
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Shape derivatives for laminar flows

(v , p) are the solutions to find (v , p) ∈ v0 + Vv,p(Γ) such that

∀(w ′, q′) ∈ Vv,p(Γ)

∫
Ωf

[
∇v : ∇w ′ − pdiv(w ′)− q′div(v)

]
dx =

∫
Ωf

ff · w ′dx ;

where Vv,p(Γ) = {(w ′, q′) ∈ H1(Ωf ,Rd)× L2(Ωf )/R |w = 0 on ∂Ωf }.

Recall that
(∇v) ◦ (I + θ) = ∇(v ◦ (I + θ))(I +∇θ)−1. Using a change of variable and differentiating
with respect to θ yields that (v̇ , ṗ) satisfy∫

Ωf

[∇v̇ : ∇w ′ − ṗdiv(w ′)− q′div(v̇)]dx =

∫
Ωf

[(∇v∇θ) : ∇w ′ +∇v : (∇w ′∇θ)

− pTr(∇w ′∇θ)− q′Tr(∇v∇θ)− (∇v : ∇w ′ − pdiv(w ′)− ff · w ′)div(θ)

+ w ′ · (∇ff θ)]dx

for all (w ′, q′) ∈ Vv,p(Γ). We introduce (w , q) the adjoint state solution to∫
Ωf

[∇w : ∇w ′ − qdiv(w ′)− q′div(w)]dx =
∂J

(∂v̂ , ∂p̂)
(w ′, q′)
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[∇v̇ : ∇w ′ − ṗdiv(w ′)− q′div(v̇)]dx =

∫
Ωf

[(∇v∇θ) : ∇w ′ +∇v : (∇w ′∇θ)

− pTr(∇w ′∇θ)− q′Tr(∇v∇θ)− (∇v : ∇w ′ − pdiv(w ′)− ff · w ′)div(θ)

+ w ′ · (∇ff θ)]dx

for all (w ′, q′) ∈ Vv,p(Γ).

We introduce (w , q) the adjoint state solution to∫
Ωf

[∇w : ∇w ′ − qdiv(w ′)− q′div(w)]dx =
∂J

(∂v̂ , ∂p̂)
(w ′, q′)



Shape derivatives for laminar flows

(v , p) are the solutions to find (v , p) ∈ v0 + Vv,p(Γ) such that

∀(w ′, q′) ∈ Vv,p(Γ)

∫
Ωf

[
∇v : ∇w ′ − pdiv(w ′)− q′div(v)

]
dx =

∫
Ωf

ff · w ′dx ;

where Vv,p(Γ) = {(w ′, q′) ∈ H1(Ωf ,Rd)× L2(Ωf )/R |w = 0 on ∂Ωf }. Recall that
(∇v) ◦ (I + θ) = ∇(v ◦ (I + θ))(I +∇θ)−1. Using a change of variable and differentiating
with respect to θ yields that (v̇ , ṗ) satisfy∫
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Shape derivatives for laminar flows

Proposition 5

Assume that the transported objective function
J(θ, v̂ , p̂) = J(Ωf ,θ, v̂ ◦ (I + θ)−1, p̂ ◦ (I + θ)−1), has continuous partial derivatives at
(θ, v̂ , p̂) = (0, v(Ωf ), p(Ωf )). Then the objective function J(Ωf , v(Ωf ), p(Ωf ) is shape
differentiable and the derivative reads

d

dθ
[J(Ωf ,θ, v(Ωf ,θ), p(Ωf ,θ))] =

∂J

∂θ
+

∫
Ωf

[(∇v∇θ) : ∇w +∇v : (∇w∇θ)

−pTr(∇w∇θ)− qTr(∇v∇θ)− (∇v : ∇w − pdiv(w)− ff · w)div(θ)

+w · (∇ff θ)]dx .

where (w , q) is the adjoint state solution to∫
Ωf

[∇w : ∇w ′ − qdiv(w ′)− q′div(w)]dx =
∂J

(∂v̂ , ∂p̂)
(w ′, q′)

I These formulas require only the knowledge of ∂J/∂θ and ∂J/∂(v̂ , p̂)

I They can be implemented in a fully automated fashion.

I This is a volume form of the shape derivative.
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differentiable and the derivative reads

d

dθ
[J(Ωf ,θ, v(Ωf ,θ), p(Ωf ,θ))] =

∂J

∂θ
+

∫
Ωf

[(∇v∇θ) : ∇w +∇v : (∇w∇θ)

−pTr(∇w∇θ)− qTr(∇v∇θ)− (∇v : ∇w − pdiv(w)− ff · w)div(θ)

+w · (∇ff θ)]dx .

where (w , q) is the adjoint state solution to∫
Ωf

[∇w : ∇w ′ − qdiv(w ′)− q′div(w)]dx =
∂J

(∂v̂ , ∂p̂)
(w ′, q′)

I These formulas require only the knowledge of ∂J/∂θ and ∂J/∂(v̂ , p̂)

I They can be implemented in a fully automated fashion.

I This is a volume form of the shape derivative.
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Shape derivatives for laminar flows

Example, the drag force:

DRAG(Ωf , v(Ωf )) =

∫
Ωf

∇v : ∇vdx .

We find that
∂J

∂θ
(θ) =

∫
Ωf

(−2(∇v∇θ) : ∇v + div(θ)∇v : ∇v)dx ,

∂J

∂(v̂ , p̂)
(w ′, q′) = 2

∫
Ωf

∇v : ∇w ′dx .
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It is also possible to write a generic formula in surface form.

Proposition 6

Assume that the state and adjoint variables (v , p), (w , q) have H2 × H1 regularity on Ωf

and that there exist fJ ∈ L1(D,Rd) and gJ ∈ L1(Γ,Rd) such that

∀θ ∈W 1,∞
0 (D,Rd),

∂J

∂θ
(θ) =

∫
D

fJ · θdx +

∫
Γ

gJ · θdσ.

Then the shape derivative of J(Ωf , v(Ωf ) rewrites as an integral over the interface Γ
depending only on θ · n:

d

dθ

[
J(Ωf ,θ, v(Ωf ,θ), p(Ωf ,θ),T (Ωf ,θ), u(Ωf ,θ))

]
(θ)

=
∂J

∂θ
(θ) +

∫
Γ

(ff ·w − σf (v , p) : ∇w + n · σf (w , q)∇v · n + n · σf (v , p)∇w · n)(θ · n)dσ

where

∀θ ∈W 1,∞
0 (D,Rd),

∂J

∂θ
(θ) :=

∫
Γ

(gJ · n)(θ · n)dσ,

is the part of
∂J

∂θ
that depends only on θ · n.
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Exercise:

I complete the derivation of shape derivative of arbitrary functionals for the linear
elasticity system

I do the same for the heat conduction problem

∂ΩD
T

T = T0

∂ΩN
T ,
∂T

∂n
= 0

Ωf , kf Ωs , ks

D

Γ

Figure: A bi-material distrubution of two
conductive media with conductivity ks and kv .



−div(kf∇Tf ) = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

T = T0 on ∂ΩD
T

−kf
∂Tf

∂n
= h on ∂ΩN

T ∩ ∂Ωf

−ks
∂Ts

∂n
= h on ∂ΩN

T ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf

∂n
= −ks

∂Ts

∂n
on Γ,


