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Finite Element Meshes

Definition 1

Let Ω be a polyhedral connected open set of RN . A triangular/tetrahedral mesh is a set T
of non-degenerate N-simplices (Ki )1≤i≤n which verify

1. Ki ⊂ Ω̄ and Ω̄ = ∪n
i=1Ki ,

2. for any 1 ≤ i , j ≤ n, Ki ∩ Kj is a simplex whose vertices are also vertices of Ki and Kj .

Good meshes leading to accurate FEM analysis are without “flat” triangles.
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Finite Element Meshes

Definition 2

Given a mesh T with simplices (Ki )1≤i≤n, we call the space of Pk -finite elements the
finite-dimensional set

Vh := {p ∈ C(Ω̄) | p|Ki
is a polynomial of degree less than k.}

Remark 1

A P1 function is piecewise linear on each triangle/tetrahedron and is characterized by its
values at the node of the mesh.



Finite Element Meshes

One of the most easiest way to generate meshes is to use level set functions and
remeshing.



Level set functions

Given a computational domain D, we can represent a subset Ω ⊂ D as the negative
subdomain of a scalar “level set” function φ : D → R:

φ(x) < 0 If x ∈ Ω,

φ(x) = 0 If x ∈ ∂Ω,

φ(x) > 0 If x ∈ D\Ω.



Remeshing

I It is rather difficult to mesh arbitrary domain.

I It is possible to mesh domains with explicitly parameterized boundaries

Figure: A triangular mesh with two elliptic boundaries

I It is possible to improve the “quality” of meshes using metric tensors.

Figure: Improvement of the quality of a tetrahedral mesh (Figure from Dapogny, Dobrzynski
and Frey, 2014).
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Remeshing

Elementary operations on sets can be easily performed with level-set representations:

I Ω1 ∪ Ω2 ←→ min(φ1, φ2)

I Ω1 ∩ Ω2 ←→ max(φ1, φ2)

I D\Ω ←→ −φ
Exercise: write the operation on level set which, given a material distribution Ωf ⊂ D and
a non optimizable region ω ⊂ D, returns a new set Ωf where the part Ωf ∩ ω has been
replaced with a new prescribed distribution X .

ω
D

Ωf Ωs

X

ω
D

Ωf Ωs

Figure: Enforcing non-optimizable regions ω: the distribution of material Ω inside the domain ω
should match exactly the red set X .



Remeshing

Elementary operations on sets can be easily performed with level-set representations:

I Ω1 ∪ Ω2 ←→ min(φ1, φ2)

I Ω1 ∩ Ω2 ←→ max(φ1, φ2)

I D\Ω ←→ −φ
Exercise: write the operation on level set which, given a material distribution Ωf ⊂ D and
a non optimizable region ω ⊂ D, returns a new set Ωf where the part Ωf ∩ ω has been
replaced with a new prescribed distribution X .

ω
D

Ωf Ωs

X

ω
D

Ωf Ωs

Figure: Enforcing non-optimizable regions ω: the distribution of material Ω inside the domain ω
should match exactly the red set X .



Remeshing

Elementary operations on sets can be easily performed with level-set representations:

I Ω1 ∪ Ω2 ←→ min(φ1, φ2)

I Ω1 ∩ Ω2 ←→ max(φ1, φ2)

I D\Ω ←→ −φ

Exercise: write the operation on level set which, given a material distribution Ωf ⊂ D and
a non optimizable region ω ⊂ D, returns a new set Ωf where the part Ωf ∩ ω has been
replaced with a new prescribed distribution X .

ω
D

Ωf Ωs

X

ω
D

Ωf Ωs

Figure: Enforcing non-optimizable regions ω: the distribution of material Ω inside the domain ω
should match exactly the red set X .



Remeshing

Elementary operations on sets can be easily performed with level-set representations:

I Ω1 ∪ Ω2 ←→ min(φ1, φ2)

I Ω1 ∩ Ω2 ←→ max(φ1, φ2)

I D\Ω ←→ −φ

Exercise: write the operation on level set which, given a material distribution Ωf ⊂ D and
a non optimizable region ω ⊂ D, returns a new set Ωf where the part Ωf ∩ ω has been
replaced with a new prescribed distribution X .

ω
D

Ωf Ωs

X

ω
D

Ωf Ωs

Figure: Enforcing non-optimizable regions ω: the distribution of material Ω inside the domain ω
should match exactly the red set X .



Remeshing

Elementary operations on sets can be easily performed with level-set representations:

I Ω1 ∪ Ω2 ←→ min(φ1, φ2)

I Ω1 ∩ Ω2 ←→ max(φ1, φ2)

I D\Ω ←→ −φ
Exercise: write the operation on level set which, given a material distribution Ωf ⊂ D and
a non optimizable region ω ⊂ D, returns a new set Ωf where the part Ωf ∩ ω has been
replaced with a new prescribed distribution X .

ω
D

Ωf Ωs

X

ω
D

Ωf Ωs

Figure: Enforcing non-optimizable regions ω: the distribution of material Ω inside the domain ω
should match exactly the red set X .



Outline

1. Finite Element Meshes – MMg

2. Introduction to FreeFEM

3. Numerical shape updates
3.1 Moving mesh method
3.2 The level set method
3.3 Body-fitted meshes



FreeFEM

We are going to use FreeFEM to solve PDE problems.

I FreeFEM is a powerful PDE solver (developped by F. Hecht, F. Nataf, P.-H. Tournier).

I It allows to solve PDEs with Finite Elements by writing their variational formulation in
a spirit close to the mathematics

I It allows to perform advanced operations on FEM structures

I It is interfaced with other powerful libraries, notably PETSc (linear algebra), MPI
(parallel computing).

I there are regular fixes and updates

FreeFEM allows in principle to solve large 3D FEM problems with millions of tetrahedral
elements.
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FreeFEM

Some drawbacks:

I FreeFEM might not be devoid of bugs

I the documentation is sometimes incomplete

I it is not interfaced with more communly used industrial software (using CAD
descriptions)



FreeFEM installation

FreeFEM can be a bit delicate to install. Please refer to the page

https://people.math.ethz.ch/~ffeppon/topopt_course/install_freefem.html

for the installation !

https://people.math.ethz.ch/~ffeppon/topopt_course/install_freefem.html


Heat conduction problem

Let us write a solver for the heat conduction problem

∂ΩD
T

T = T0

∂ΩN
T ,
∂T

∂n
= 0

Ωf , kf Ωs , ks

D

Γ

Figure: A bi-material distribution of two
conductive media with conductivity ks and kv .



−div(kf∇Tf ) = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

T = T0 on ∂ΩD
T

−kf
∂Tf

∂n
= h on ∂ΩN

T ∩ ∂Ωf

−ks
∂Ts

∂n
= h on ∂ΩN

T ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf

∂n
= −ks

∂Ts

∂n
on Γ,



Heat conduction problem

The variational formulation reads find T ∈ T0 + VT (Γ) such that, for any S ∈ VT (Γ),∫
Ωs

ks∇T · ∇Sdx +

∫
Ωf

kf∇T · ∇Sdx =

∫
Ωs

QsSdx +

∫
Ωf

Qf Sdx +

∫
∂ΩN

T

hSds.

where
VT (Γ) = {S ∈ H1(D) | S = 0 on ∂ΩD

T},
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Numerical shape updates

Suppose we want to solve a shape optimization problem

min
Ω

J(Ω)

and that we need to do a Hadamard’s shape update:

Ωn+1 = (I + θn)Ωn

for a current shape Ωn and vector field θn ∈W 1,∞(D,Rd).

I If Ωn has a mesh discretization, one can try nodal displacements

I If Ωn is described by a level set, one can solve an advection equation

I If Ωn is described as a meshed subdomain, then one can use a hybrid method coupling
the level set method and remeshing.
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Moving mesh method

Very simple algorithm:
xi ← xi + θ(xi ) for all nodes xi

xi θ(xi )

xi + θ(xi )

Ω

(I + θ)Ω

Figure: Discretization of a 2-d domain Ω in a simplicial mesh and its deformation by application of
a displacement vector field θ.



Moving mesh method

I In general yields poor quality meshes.

I A refinement of the method: construct an extension θ̃ such that
−div(A∇θ̃) = 0 in D,

θ̃ = θ on Γ,

θ̃ = 0 on ∂Ω\Γ

for some positive definite matrix A, where Γ is the deformed interface and ∂Ω\Γ are
fixed interfaces.

Then do
xi ← xi + θ̃(xi ).

This method does not allow to treat topological changes and yield very poor quality
meshes after a few iterations.
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Moving mesh method

(a) Initial design (b) Intermediate design (c) Final design

Figure: Moving mesh method, figures from Allaire 2007.
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The level set method

If the domain Ω is represented by a level set function:
φ(x) < 0 If x ∈ Ω,

φ(x) = 0 If x ∈ ∂Ω,

φ(x) > 0 If x ∈ D\Ω.

then the motion of a domain Ω(t) in D according to a vector field θ(x) can be captured by
the solution φ(t, x) of the advection equation:

∂φ

∂t
(t, x) + θ(x) · ∇φ(t, x) = 0, x ∈ D,

φ(0, x) = φ0(x), x ∈ D.

Indeed one can show that φ(x(t)) = φ0(x0) for any trajectory x(t) satisfying{
ẋ = θ(x)

x(0) = x0.
(1)

The new domain is then Ω(1) = {x |φ(1, x) < 0} = Φθ(Ω) where Φθ is the flow map
diffeomorphism associated with eq. (1).
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The level set method

Remark: we don’t have Φθ(Ω) = (I + θ)Ω

However one can show that for small θ,

Φθ = I + θ + O(||θ||2),

hence the first order asymptotic shape calculus works with Φθ.
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The power of the level set method:

I capture easily topological changes on fixed meshes:

Its main drawback:

I one needs to use an interpolating physical model if one relies only on a fixed meshes
where the physical interfaces are only captured implicitly
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The level set method

For instance:

I the linear elasticity equations are interpolated by using an “ersatz material” for
representing void:

−div(Ae(u)) = fs in Ωs

Ae(u) · n = 0 on Γ

u =u0 on ∂ΩD
s

Ae(u) · n = g on ∂ΩN
s

−→


−div(A(Ωs)e(u)) = f in D

u =u0 on ∂ΩD
s

Ae(u) · n = g on ∂ΩN
s

with A(Ωs) = A1Ωs + εI1D\Ωs .

I Physically, “void” is replaced with a very soft material.

I Since the physical model is different, different formulas for the shape derivative must
be implemented.
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The level set method

For instance:

I the Navier Stokes equations are interpolated by using the Brinkmann porous flow
model: 

−div(σf (v , p)) + ρ∇v v = ff in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩD
f

σf (v , p)n = 0 on ∂ΩN
f

v = 0 on Γ,

I Physically, the solid material is replaced with a slightly porous material.



The level set method

For instance:

I the Navier Stokes equations are interpolated by using the Brinkmann porous flow
model: 

−div(σf (v , p)) + ρ∇v v + α(Ωf )v = ff in D

div(v) = 0 in D

v = v0 on ∂ΩD
f

σf (v , p)n = 0 on ∂ΩN
f

with α(Ωf ) = tgv1D\Ωf
for some large value tgv.

I Physically, the solid material is replaced with a slightly porous material.



The level set method

Further remarks:

I when using the advection equation, topological changes are the outcome of some
numerical diffusion.

These are not mathematically captured by the notion of shape
derivatives and happen “fortunately” in this method

I “true topological changes” are permitted when solving the Hamilton-Jacobi equation:

∂φ

∂t
+ v |∇φ| = 0

and considering viscosity solutions.
Appropriate numerical schemes are required, which are quite delicate to implement on
triangular meshes.

I The advection equation can be solved on triangular/tetrahedral meshes with the
method of characteristics.

I A common practice is to initialize the level-set to the signed distance function to the
domain.
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The signed distance function

The signed distance function to a bounded open domain Ω ⊂ Rd is the function

dΩ : Rd → R

defined for any x ∈ Rd by

dΩ(x) =


− inf

y∈∂Ω
||x − y || if x ∈ Ω,

inf
y∈∂Ω

||x − y || if x /∈ Ω.



The signed distance function

(a) Meshed subdomain Ω ⊂ D (in blue) of a
computational domain D.

(b) Isocontours of the signed distance function dΩ.

Figure: Example of signed distance function dΩ numerically computed on a meshed domain.



The signed distance function

Figure: 3-d plot of dΩ.



The signed distance function

A fundamental property: ∇dΩ is an extension of the outward normal to dΩ constant along
the rays, in particular:

I |∇dΩ(x)| = 1 for any x ∈ D where dΩ is differentiable;

I ∇dΩ(y) = n(y) for any y ∈ ∂Ω.

It also holds that ∆dΩ = κ on ∂Ω where κ is the mean curvature of ∂Ω.
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The signed distance function

I There exist a number of numerical algorithms for computing dΩ of a mesh subdomain
(notably, the Fast Marching Method)

I From a given level set function φ0(x), solving the reinitialization equation{
∂tφ+ sign(φ)(|∇φ| − 1) = 0

φ(0, x) = φ0(x).

allows to transform φ0 into the signed distance function to the domain
Ω = {x |φ0(x) < 0}.
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The signed distance function

(a) Initial design (b) Intermediate design (c) Final design

Figure: Topology optimization with the level set method
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Body fitted meshes

A more recent trend is to combine remeshing with the level-set method to evolve
body-fitted meshes (Allaire et. al. 2014).

I Domain interface Γ exactly captured.

I Mesh size control is possible.

I Less prone to numerical diffusion,
allows to capture fine details.
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Body fitted meshes

(a) Initial design (b) Intermediate design

(c) Intermediate design featuring a topological
change

(d) Final design

Figure: Level-set based mesh evolution method (figures from Dapogny et. al., 2013).


