Lecture 8: Shape derivatives of arbitrary functionals. Complete shape optimization algorithms.

Florian Feppon

Spring 2022 - Seminar for Applied Mathematics

ETHzürich

Recap

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector field $\boldsymbol{\theta}$:

$$
\Omega_{\boldsymbol{\theta}}:=(I+\boldsymbol{\theta}) \Omega=\{x+\boldsymbol{\theta}(x) \mid x \in \Omega\}
$$

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field $\boldsymbol{\theta}$ is used to deform Ω into $\Omega_{\theta}=(I+\theta) \Omega$.

Recap

Let $J(\Omega)$ denote a shape functional arising e.g. in a shape optimization problem

$$
\min _{\Omega} J(\Omega)
$$

Definition 1

A shape functional $J(\Omega)$ is said shape differentiable if the mapping

$$
\begin{aligned}
W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) & \longrightarrow \mathbb{R} \\
\boldsymbol{\theta} & \longmapsto J\left(\Omega_{\theta}\right)
\end{aligned}
$$

is Fréchet differentiable at $\boldsymbol{\theta}=0$, i.e. if there exists a continuous linear form

$$
\operatorname{DJ}(\Omega) \in W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)^{*}
$$

such that the following asymptotics holds true:

$$
J\left(\Omega_{\theta}\right)=J(\Omega)+\mathrm{D} J(\Omega)(\boldsymbol{\theta})+o(\boldsymbol{\theta}), \quad \text { where } \frac{|o(\boldsymbol{\theta})|}{\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}} \xrightarrow{\theta \rightarrow 0} 0 .
$$

The linear form $\mathrm{D} J(\Omega)$ is called the shape derivative of J on the domain Ω.

The boundary variation method of Hadamard

Under suitable regularity assumptions, Hadamard structure theorem holds:

$$
\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\Gamma)(\boldsymbol{\theta})=\int_{\Gamma} v_{J}(\Gamma) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

for some $v_{J}(\Gamma) \in L^{1}(\Gamma)$.
If $\boldsymbol{\theta} \cdot \boldsymbol{n}=-v J(\Gamma)$ on Γ, then $J\left(\Gamma_{\theta}\right)=J(\Gamma)-t \int_{\Gamma}\left|v_{J}(\Gamma)\right|^{2} \mathrm{~d} \sigma+o(t)<J(\Gamma) ; \boldsymbol{\theta}$ is a descent direction.

The boundary variation method of Hadamard

Under suitable regularity assumptions, Hadamard structure theorem holds:

$$
\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\Gamma)(\boldsymbol{\theta})=\int_{\Gamma} v_{J}(\Gamma) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

for some $v_{J}(\Gamma) \in L^{1}(\Gamma)$.
If $\boldsymbol{\theta} \cdot \boldsymbol{n}=-v J(\Gamma)$ on Γ, then $J\left(\Gamma_{\theta}\right)=J(\Gamma)-t \int_{\Gamma}\left|v_{J}(\Gamma)\right|^{2} \mathrm{~d} \sigma+o(t)<J(\Gamma) ; \boldsymbol{\theta}$ is a descent direction.

The boundary variation method of Hadamard

Under suitable regularity assumptions, Hadamard structure theorem holds:

$$
\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\Gamma)(\boldsymbol{\theta})=\int_{\Gamma} v_{J}(\Gamma) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

for some $v_{J}(\Gamma) \in L^{1}(\Gamma)$.
If $\boldsymbol{\theta} \cdot \boldsymbol{n}=-v J(\Gamma)$ on Γ, then $J\left(\Gamma_{\theta}\right)=J(\Gamma)-t \int_{\Gamma}\left|v_{J}(\Gamma)\right|^{2} \mathrm{~d} \sigma+o(t)<J(\Gamma) ; \boldsymbol{\theta}$ is a descent direction.

The boundary variation method of Hadamard

Under suitable regularity assumptions, Hadamard structure theorem holds:

$$
\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\Gamma)(\boldsymbol{\theta})=\int_{\Gamma} v_{J}(\Gamma) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} \sigma
$$

for some $v_{J}(\Gamma) \in L^{1}(\Gamma)$.
If $\boldsymbol{\theta} \cdot \boldsymbol{n}=-v J(\Gamma)$ on Γ, then $J\left(\Gamma_{\theta}\right)=J(\Gamma)-t \int_{\Gamma}\left|v_{J}(\Gamma)\right|^{2} \mathrm{~d} \sigma+o(t)<J(\Gamma) ; \boldsymbol{\theta}$ is a descent direction.

Outline

1. Shape derivatives of arbitrary functionals 2. Optimization on manifolds

Outline

1. Shape derivatives of arbitrary functionals
2. Optimization on manifolds

Outline

1. Shape derivatives of arbitrary functionals
2. Optimization on manifolds

Manifold structure of shape optimization

Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \subset D} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
$-J$ is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)
In industrial applications, $J(\Omega), G_{i}(\Omega)$ or $H_{j}(\Omega)$ involve the solution u_{Ω} defined with respect to a PDE model posed on Ω.
In the previous lectures, we have learned how to compute shape derivatives of the functionals $J(\Omega), G_{i}(\Omega), H_{i}(\Omega)$ with respect to arbitrary shape deformations

Manifold structure of shape optimization

Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \subset D} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
$-J$ is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)
In industrial applications, $J(\Omega), G_{i}(\Omega)$ or $H_{j}(\Omega)$ involve the solution u_{Ω} defined with respect to a PDE model posed on Ω.
In the previous lectures, we have learned how to compute shape derivatives of the functionals $J(\Omega), G_{i}(\Omega), H_{i}(\Omega)$ with respect to arbitrary shape deformations Today, we see how to adapt the null space optimization algorithm to this infinite dimensional setting.

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable.

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} \quad J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable. We have seen that when $\mathcal{X}=V$ with V a Hilbert space, we can solve eq. (1) with the gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} \quad J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable. We have seen that when $\mathcal{X}=V$ with V a Hilbert space, we can solve eq. (1) with the gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)}\right)(\nabla J(x)) \\
\boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\widetilde{\Gamma}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{\Gamma}(x)}(x)
\end{gathered}
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable. We have seen that when $\mathcal{X}=V$ with V a Hilbert space, we can solve eq. (1) with the gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

$$
\begin{aligned}
& \xi_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{\Pi}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}\right)(\nabla J(x)) \\
& \xi_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{I}(x)}(x),
\end{aligned}
$$

$\widetilde{I}(x)$ the set of violated constraints:

$$
\begin{aligned}
\tilde{I}(x) & =\left\{i \in\{1, \ldots, q\} \mid h_{i}(x) \geqslant 0\right\} . \\
\boldsymbol{C}_{\tilde{I}(x)} & =\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid & \left(h_{i}(x)\right)_{i \in \tilde{I}(x)}
\end{array}\right]^{T}
\end{aligned}
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable. We have seen that when $\mathcal{X}=V$ with V a Hilbert space, we can solve eq. (1) with the gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}\right)(\nabla J(x)) \\
\boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{\boldsymbol{I}}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Pi}(x)}(x),
\end{gathered}
$$

$\widehat{I}(x) \subset \widetilde{I}(x)$ is an "optimal" subset of the active or violated constraints which can be computed by the dual quadratic subproblem.

$$
\begin{gathered}
\widehat{\jmath}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} . \\
\boldsymbol{C}_{\overparen{I}(x)}=\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid & \left(h_{i}(x)\right)_{i \in \in(x)}
\end{array}\right]^{T}
\end{gathered}
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable. We have seen that when $\mathcal{X}=V$ with V a Hilbert space, we can solve eq. (1) with the gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}\right)(\nabla J(x)) \\
\boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{\boldsymbol{I}}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Pi}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Pi}(x)}(x),
\end{gathered}
$$

$\widehat{I}(x) \subset \widetilde{I}(x)$ is an "optimal" subset of the active or violated constraints which can be computed by the dual quadratic subproblem.

$$
\begin{gathered}
\widehat{\jmath}(x):=\left\{i \in \widetilde{I}(x) \mid \mu_{i}^{*}(x)>0\right\} . \\
\boldsymbol{C}_{\overparen{I}(x)}=\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid & \left(h_{i}(x)\right)_{i \in \in(x)}
\end{array}\right]^{T}
\end{gathered}
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{align*}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right. \tag{1}
\end{align*}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable. We have seen that when $\mathcal{X}=V$ with V a Hilbert space, we can solve eq. (1) with the gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

$$
\begin{aligned}
& \boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{T}(x)} \mathrm{D} \boldsymbol{C}_{\widehat{\Lambda}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\Lambda}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\top}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\top}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x),
\end{aligned}
$$

The gradient ∇ and the transpose \mathcal{T} are defined with respect to the inner product $a(\cdot, \cdot)$ of V :

$$
\begin{gathered}
\langle\nabla J, \boldsymbol{\xi}\rangle_{V}=\mathrm{D} J(x) \cdot \boldsymbol{\xi} \text { for any } \boldsymbol{\xi} \in V, \\
\left\langle\mathrm{D} \boldsymbol{C}(x)^{\tau} \boldsymbol{\mu}, \boldsymbol{\xi}\right\rangle_{V}=\boldsymbol{\mu}^{T} \mathrm{D} \boldsymbol{C}(x) \cdot \boldsymbol{\xi}, \quad \text { for any } \boldsymbol{\xi} \in V .
\end{gathered}
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} \quad J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

- For our application, we consider

$$
\mathcal{X}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}
$$

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} \quad J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

- For our application, we consider

$$
\mathcal{X}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}
$$

\mathcal{X} is not a Hilbert space!

Manifold structure of shape optimization

In the first lecture, we have considered

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

- For our application, we consider

$$
\mathcal{X}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}
$$

\mathcal{X} is not a Hilbert space!
However \mathcal{X} has some manifold structure that allows for optimization.

Manifold structure of shape optimization

Definition 2

- A "manifold" is a set \mathcal{M} such that at any $x \in \mathcal{M}$, there exist a tangent vector space \mathcal{T}_{x} and a mapping

$$
\rho_{x}: \mathcal{T}_{x} \rightarrow \mathcal{M}
$$

defined on a neighborhood of zero satisfying the consistency condition

$$
\rho_{x}(0)=x
$$

ρ_{\times}is called a retraction.

Manifold structure of shape optimization

Definition 2

- A "manifold" is a set \mathcal{M} such that at any $x \in \mathcal{M}$, there exist a tangent vector space \mathcal{T}_{x} and a mapping

$$
\rho_{x}: \mathcal{T}_{x} \rightarrow \mathcal{M}
$$

defined on a neighborhood of zero satisfying the consistency condition

$$
\rho_{x}(0)=x
$$

ρ_{x} is called a retraction.

- We say that a function $J: \mathcal{M} \rightarrow \mathbb{R}$ is Fréchet differentiable at x if there exists a linear form $\mathrm{DJ}: \mathcal{T}_{x} \rightarrow \mathcal{M}$ such that:

$$
\begin{equation*}
J\left(\rho_{x}(\Delta t \boldsymbol{\xi})\right)=J(x)+\Delta t \mathrm{D} J(x) \cdot \boldsymbol{\xi}+o(\Delta t) \text { as } \Delta t \rightarrow 0 \tag{2}
\end{equation*}
$$

Manifold structure of shape optimization

Figure: Optimization on a manifold \mathcal{M} : the retraction ρ_{\times}projects tangential motions $\boldsymbol{\xi} \in T_{X}$ from $x \in \mathcal{M}$ back onto the optimization domain \mathcal{M}.

Manifold structure of shape optimization

Definition 2

- A "manifold" is a set \mathcal{M} such that at any $x \in \mathcal{M}$, there exist a tangent vector space \mathcal{T}_{x} and a mapping

$$
\rho_{x}: \mathcal{T}_{x} \rightarrow \mathcal{M}
$$

defined on a neighborhood of zero satisfying the consistency condition

$$
\rho_{x}(0)=x
$$

ρ_{x} is called a retraction.

- We say that a function $J: \mathcal{M} \rightarrow \mathbb{R}$ is Fréchet differentiable at x if there exists a linear form $\mathrm{DJ}: \mathcal{T}_{x} \rightarrow \mathcal{M}$ such that:

$$
\begin{equation*}
J\left(\rho_{x}(\Delta t \boldsymbol{\xi})\right)=J(x)+\Delta t \mathrm{D} J(x) \cdot \boldsymbol{\xi}+o(\Delta t) \text { as } \Delta t \rightarrow 0 \tag{2}
\end{equation*}
$$

Manifold structure of shape optimization

Definition 2

- A "manifold" is a set \mathcal{M} such that at any $x \in \mathcal{M}$, there exist a tangent vector space \mathcal{T}_{x} and a mapping

$$
\rho_{x}: \mathcal{T}_{x} \rightarrow \mathcal{M}
$$

defined on a neighborhood of zero satisfying the consistency condition

$$
\rho_{x}(0)=x
$$

ρ_{x} is called a retraction.

- We say that a function $J: \mathcal{M} \rightarrow \mathbb{R}$ is Fréchet differentiable at x if there exists a linear form $\mathrm{DJ}: \mathcal{T}_{x} \rightarrow \mathcal{M}$ such that:

$$
\begin{equation*}
J\left(\rho_{x}(\Delta t \boldsymbol{\xi})\right)=J(x)+\Delta t \mathrm{D} J(x) \cdot \boldsymbol{\xi}+o(\Delta t) \text { as } \Delta t \rightarrow 0 \tag{2}
\end{equation*}
$$

Manifold structure of shape optimization

Definition 2

- A "manifold" is a set \mathcal{M} such that at any $x \in \mathcal{M}$, there exist a tangent vector space \mathcal{T}_{x} and a mapping

$$
\rho_{x}: \mathcal{T}_{x} \rightarrow \mathcal{M}
$$

defined on a neighborhood of zero satisfying the consistency condition

$$
\rho_{x}(0)=x
$$

ρ_{x} is called a retraction.

- We say that a function $J: \mathcal{M} \rightarrow \mathbb{R}$ is Fréchet differentiable at x if there exists a linear form $\mathrm{DJ}: \mathcal{T}_{x} \rightarrow \mathcal{M}$ such that:

$$
\begin{equation*}
J\left(\rho_{x}(\Delta t \boldsymbol{\xi})\right)=J(x)+\Delta t \mathrm{D} J(x) \cdot \boldsymbol{\xi}+o(\Delta t) \text { as } \Delta t \rightarrow 0 \tag{2}
\end{equation*}
$$

Assuming $\mathcal{M}=\mathbb{R}^{k}$ and using the chain rule, eq. (2) is similar to the consistency condition

$$
\forall \boldsymbol{\xi} \in \mathcal{T}_{x},\left.\quad \frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} \rho_{x}(t \boldsymbol{\xi})=\boldsymbol{\xi}
$$

Manifold structure of shape optimization

Definition 2

- A "manifold" is a set \mathcal{M} such that at any $x \in \mathcal{M}$, there exist a tangent vector space \mathcal{T}_{x} and a mapping

$$
\rho_{x}: \mathcal{T}_{x} \rightarrow \mathcal{M}
$$

defined on a neighborhood of zero satisfying the consistency condition

$$
\rho_{x}(0)=x
$$

ρ_{x} is called a retraction.

- We say that a function $J: \mathcal{M} \rightarrow \mathbb{R}$ is Fréchet differentiable at x if there exists a linear form $\mathrm{DJ}: \mathcal{T}_{x} \rightarrow \mathcal{M}$ such that:

$$
\begin{equation*}
J\left(\rho_{x}(\Delta t \boldsymbol{\xi})\right)=J(x)+\Delta t \mathrm{D} J(x) \cdot \boldsymbol{\xi}+o(\Delta t) \text { as } \Delta t \rightarrow 0 \tag{2}
\end{equation*}
$$

eq. (2) is the definition of shape derivative for

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}
$$

with $\mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $\rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega$.

Manifold structure of shape optimization

If further, \mathcal{T}_{x} is a Hilbert space, then it is possible to implement the null space gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

by considering the following Euler step:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)} \mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\Lambda}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x),
\end{aligned}
$$

Manifold structure of shape optimization

If further, \mathcal{T}_{x} is a Hilbert space, then it is possible to implement the null space gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

by considering the following Euler step:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\imath}(x)} \mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)}^{\tau}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\imath}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x),
\end{aligned}
$$

- This method is consistent because by definition of the derivative,

$$
J\left(x_{n+1}\right)=J\left(\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right)\right)=J\left(x_{n}\right)+\Delta t \mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}_{n}+o(\Delta t)
$$

Manifold structure of shape optimization

If further, \mathcal{T}_{x} is a Hilbert space, then it is possible to implement the null space gradient flow

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x)-\alpha_{C} \boldsymbol{\xi}_{C}(x)
$$

by considering the following Euler step:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\imath}(x)} \mathrm{D} \boldsymbol{C}_{\hat{\Lambda}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\boldsymbol{I}}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x),
\end{aligned}
$$

- This method is consistent because by definition of the derivative,

$$
J\left(x_{n+1}\right)=J\left(\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right)\right)=J\left(x_{n}\right)+\Delta t \mathrm{D} J\left(x_{n}\right) \cdot \boldsymbol{\xi}_{n}+o(\Delta t)
$$

- Gradient and transposes are defined with respect to the inner product of $V=\mathcal{T}_{x}$:

$$
\begin{gathered}
\langle\nabla J, \boldsymbol{\xi}\rangle_{V}=\mathrm{D} J(x) \cdot \boldsymbol{\xi} \text { for any } \boldsymbol{\xi} \in V \\
\left\langle\mathrm{D} \boldsymbol{C}(x)^{\top} \boldsymbol{\mu}, \boldsymbol{\xi}\right\rangle_{V}=\boldsymbol{\mu}^{T} \mathrm{D} \boldsymbol{C}(x) \cdot \boldsymbol{\xi}, \quad \text { for any } \boldsymbol{\xi} \in V .
\end{gathered}
$$

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space).

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space). In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{v}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin.

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space). In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{v}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space). In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{v}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space). In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{v}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.
However $H^{m}\left(\Omega, \mathbb{R}^{d}\right) \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$ for $m>d / 2$.

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space). In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{v}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.
However $H^{m}\left(\Omega, \mathbb{R}^{d}\right) \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$ for $m>d / 2$.

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space).
In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle v=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.
However $H^{m}\left(\Omega, \mathbb{R}^{d}\right) \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$ for $m>d / 2$.
- However it works well in practice and is easy to implement: just requires to solve a Laplace equation!

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space).
In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle v=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.
However $H^{m}\left(\Omega, \mathbb{R}^{d}\right) \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$ for $m>d / 2$.
- However it works well in practice and is easy to implement: just requires to solve a Laplace equation!

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space).
In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{v}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.
However $H^{m}\left(\Omega, \mathbb{R}^{d}\right) \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$ for $m>d / 2$.
- However it works well in practice and is easy to implement: just requires to solve a Laplace equation!
- γ tunes the level of diffusion of the shape derivative from the boundary Γ.

Manifold structure of shape optimization

For shape optimization,

$$
\mathcal{M}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}, \mathcal{T}_{\Omega}=W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad \rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega
$$

Unfortunately, $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is not a Hilbert space (it is a Banach space).
In practice, one takes

$$
\begin{gathered}
\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle v=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x
\end{gathered}
$$

with γ proportional to the mesh size hmin .

- The choice $\mathcal{T}_{\Omega}=H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ is not completely consistent because $H^{1}\left(\Omega, \mathbb{R}^{d}\right) \not \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$.
However $H^{m}\left(\Omega, \mathbb{R}^{d}\right) \subset W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$ for $m>d / 2$.
- However it works well in practice and is easy to implement: just requires to solve a Laplace equation!
$-\gamma$ tunes the level of diffusion of the shape derivative from the boundary Γ.
- Gradient $\nabla J(\Omega)$ vs. differential $\mathrm{D} J(\Omega)$:

$$
\left\langle\nabla J(\Omega), \boldsymbol{\theta}^{\prime}\right\rangle_{V}=\mathrm{D} J(\Omega) \cdot \boldsymbol{\theta}^{\prime} \text { for all } \boldsymbol{\theta}^{\prime} \in V
$$

Manifold structure of shape optimization

Remark 1

For enforcing non-optimizable regions $\omega \subset \Omega$, we need the descent direction $\boldsymbol{\theta}$ to satisfy

$$
\boldsymbol{\theta} \cdot \boldsymbol{n} \geqslant 0 \text { on } \partial \omega .
$$

Manifold structure of shape optimization

Remark 1

For enforcing non-optimizable regions $\omega \subset \Omega$, we need the descent direction $\boldsymbol{\theta}$ to satisfy

$$
\boldsymbol{\theta} \cdot \boldsymbol{n} \geqslant 0 \text { on } \partial \omega .
$$

An easy way to do it is to enforce

$$
\boldsymbol{\theta}=0 \text { in } \omega,
$$

Manifold structure of shape optimization

Remark 1

For enforcing non-optimizable regions $\omega \subset \Omega$, we need the descent direction $\boldsymbol{\theta}$ to satisfy

$$
\boldsymbol{\theta} \cdot \boldsymbol{n} \geqslant 0 \text { on } \partial \omega .
$$

An easy way to do it is to enforce

$$
\boldsymbol{\theta}=0 \text { in } \omega
$$

which can be done by considering

$$
\begin{gathered}
\mathcal{T}_{\Omega}:=\left\{\boldsymbol{\theta} \in H^{1}\left(\Omega, \mathbb{R}^{d}\right) \mid \boldsymbol{\theta}=0 \text { in } \omega\right\} . \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{\mathcal{T}(\Omega)}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x .
\end{gathered}
$$

Manifold structure of shape optimization

Remark 1

For enforcing non-optimizable regions $\omega \subset \Omega$, we need the descent direction $\boldsymbol{\theta}$ to satisfy

$$
\boldsymbol{\theta} \cdot \boldsymbol{n} \geqslant 0 \text { on } \partial \omega .
$$

An easy way to do it is to enforce

$$
\boldsymbol{\theta}=0 \text { in } \omega
$$

which can be done by considering

$$
\begin{gathered}
\mathcal{T}_{\Omega}:=\left\{\boldsymbol{\theta} \in H^{1}\left(\Omega, \mathbb{R}^{d}\right) \mid \boldsymbol{\theta}=0 \text { in } \omega\right\} \\
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{\mathcal{T}(\Omega)}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x .
\end{gathered}
$$

The identification of $\nabla J(\Omega)$ amounts to solve a Laplace equation with zero boundary Dirichlet condition on ω.

Manifold structure of shape optimization

Summary:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{c} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \xi_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Gamma}(x)}(x),
\end{aligned}
$$

Manifold structure of shape optimization

Summary:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \xi_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}\right)(\nabla J(x)) \\
& \xi_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Gamma}(x)}(x),
\end{aligned}
$$

1. null space and range space directions $\xi_{J}(\Omega)$ and $\xi_{C}(\Omega)$ are computed by solving identification problems with

$$
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{\mathcal{T}(\Omega)}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x .
$$

Manifold structure of shape optimization

Summary:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \xi_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Gamma}(x)}(x),
\end{aligned}
$$

1. null space and range space directions $\xi_{J}(\Omega)$ and $\xi_{C}(\Omega)$ are computed by solving identification problems with

$$
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{\mathcal{T}(\Omega)}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x .
$$

2. the design update is performed with the retraction map $\rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega$:

$$
\Omega_{n+1}=\rho_{\Omega_{n}}\left(-\Delta t\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(\Omega_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(\Omega_{n}\right)\right) .\right.
$$

Manifold structure of shape optimization

Summary:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \xi_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}\right)(\nabla J(x)) \\
& \boldsymbol{\xi}_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Gamma}(x)}(x),
\end{aligned}
$$

1. null space and range space directions $\xi_{J}(\Omega)$ and $\xi_{C}(\Omega)$ are computed by solving identification problems with

$$
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{\mathcal{T}(\Omega)}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x .
$$

2. the design update is performed with the retraction map $\rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega$:

$$
\Omega_{n+1}=\rho_{\Omega_{n}}\left(-\Delta t\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(\Omega_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(\Omega_{n}\right)\right) .\right.
$$

Manifold structure of shape optimization

Summary:

$$
\begin{aligned}
& x_{n+1}=\rho_{x_{n}}\left(\Delta t \boldsymbol{\xi}_{n}\right) \text { with } \boldsymbol{\xi}_{n}=-\alpha_{J} \boldsymbol{\xi}_{J}\left(x_{n}\right)-\alpha_{C} \boldsymbol{\xi}_{C}\left(x_{n}\right) . \\
& \xi_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\tau}\left(\mathrm{D} \boldsymbol{C}_{\overparen{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\boldsymbol{T}(x)}^{\tau}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{T}(x)}\right)(\nabla J(x)) \\
& \xi_{C}(x)=\mathrm{D} \boldsymbol{C}_{\tilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\tilde{\Gamma}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\tilde{\Gamma}(x)}(x),
\end{aligned}
$$

1. null space and range space directions $\xi_{J}(\Omega)$ and $\xi_{C}(\Omega)$ are computed by solving identification problems with

$$
\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right\rangle_{\mathcal{T}(\Omega)}=\int_{D}\left(\gamma^{2} \nabla \boldsymbol{\theta}: \nabla \boldsymbol{\theta}^{\prime}+\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\prime}\right) \mathrm{d} x .
$$

2. the design update is performed with the retraction map $\rho_{\Omega}(\boldsymbol{\theta})=(I+\boldsymbol{\theta}) \Omega$:

$$
\Omega_{n+1}=\rho_{\Omega_{n}}\left(-\Delta t\left(\alpha_{J} \boldsymbol{\xi}_{J}\left(\Omega_{n}\right)+\alpha_{C} \boldsymbol{\xi}_{C}\left(\Omega_{n}\right)\right) .\right.
$$

In practice, the design update is performed with the level-set method, and/or remeshing, which is still consistent at first order.

