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Recap

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector
field θ:

Ωθ := (I + θ)Ω = {x + θ(x) | x ∈ Ω}

Ω
x

x + θ(x)

Ωθ = (I + θ)(Ω)

θ

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field θ is used
to deform Ω into Ωθ = (I + θ)Ω.



Recap

Let J(Ω) denote a shape functional arising e.g. in a shape optimization problem

min
Ω

J(Ω).

Definition 1

A shape functional J(Ω) is said shape differentiable if the mapping

W 1,∞(Rd ,Rd) −→ R

θ 7−→ J(Ωθ)

is Fréchet differentiable at θ = 0, i.e. if there exists a continuous linear form

DJ(Ω) ∈W 1,∞(Rd ,Rd)∗

such that the following asymptotics holds true:

J(Ωθ) = J(Ω) + DJ(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd ,Rd )

θ→0−−−→0.

The linear form DJ(Ω) is called the shape derivative of J on the domain Ω.



The boundary variation method of Hadamard

min
Γ

J(Γ)
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Γθ = (I + θ)Γ, with θ ∈W 1,∞
0 (D,Rd), ||θ||W 1,∞(Rd ,Rd )< 1.

J(Γθ) = J(Γ) +
dJ

dθ
(θ) + o(θ), with

|o(θ)|
||θ||W 1,∞(D,Rd )

θ→0−−−→ 0.

Under suitable regularity assumptions, Hadamard structure theorem holds:

dJ

dθ
(Γ)(θ) =

∫
Γ

vJ(Γ)θ · ndσ

for some vJ(Γ) ∈ L1(Γ).

If θ · n = −vJ(Γ) on Γ, then J(Γθ) = J(Γ)− t

∫
Γ

|vJ(Γ)|2dσ + o(t) < J(Γ); θ is a descent

direction.
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Manifold structure of shape optimization

Generically, a design optimization problem arises under the form

min
Ω⊂D

J(Ω)

s.t.

{
Gi (Ω) = 0, 1 ≤ i ≤ p

Hj(Ω) ≤ 0, 1 ≤ j ≤ q

where

I Ω is an open domain sought to be optimized

I J is an objective function to minimize (corresponding to a measure of the
performance)

I Gi and Hj are respectively p and q equality and inequality constraints
(corresponding e.g. to industrial specifications to meet)

In industrial applications, J(Ω), Gi (Ω) or Hj(Ω) involve the solution uΩ defined with
respect to a PDE model posed on Ω.
In the previous lectures, we have learned how to compute shape derivatives of the
functionals J(Ω), Gi (Ω), Hi (Ω) with respect to arbitrary shape deformations

Today, we see how to adapt the null space optimization algorithm to this infinite
dimensional setting.
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Manifold structure of shape optimization

In the first lecture, we have considered

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(1)

with J : X → R, g : X → Rp and h : X → Rq Fréchet differentiable.

We have seen
that when X = V with V a Hilbert space, we can solve eq. (1) with the gradient flow

ẋ = −αJξJ(x)− αCξC (x)

ξJ(x) := (I −DCT
Î (x)

(DCÎ (x)DCT
Î (x)

)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),
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Ĩ (x) the set of violated constraints:

Ĩ (x) = {i ∈ {1, . . . , q} | hi (x) > 0}.

CĨ (x) =
[
g(x) | (hi (x))i∈Ĩ (x)

]T
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The gradient ∇ and the transpose T are defined with respect to the inner product a(·, ·) of
V :

〈∇J, ξ〉V = DJ(x) · ξ for any ξ ∈ V ,
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X = {Ω ⊂ D |Ω Lipschitz }.

X is not a Hilbert space !
However X has some manifold structure that allows for optimization.
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Manifold structure of shape optimization

Definition 2

I A “manifold” is a set M such that at any x ∈M, there exist a tangent vector space
Tx and a mapping

ρx : Tx →M

defined on a neighborhood of zero satisfying the consistency condition

ρx(0) = x .

ρx is called a retraction.

I We say that a function J : M→ R is Fréchet differentiable at x if there exists a
linear form DJ : Tx →M such that:

J(ρx(∆tξ)) = J(x) + ∆tDJ(x) · ξ + o(∆t) as ∆t → 0. (2)
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Manifold structure of shape optimization

ρx(ξ)

x

ξ

Tx

M

ρx

Figure: Optimization on a manifold M: the retraction ρx projects tangential motions ξ ∈ Tx from
x ∈ M back onto the optimization domain M.
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Assuming M = Rk and using the chain rule, eq. (2) is similar to the consistency condition

∀ξ ∈ Tx ,
d

dt

∣∣∣∣
t=0

ρx(tξ) = ξ.
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Definition 2

I A “manifold” is a set M such that at any x ∈M, there exist a tangent vector space
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eq. (2) is the definition of shape derivative for

M = {Ω ⊂ D |Ω Lipschitz}

with TΩ = W 1,∞(Rd ,Rd) and ρΩ(θ) = (I + θ)Ω.



Manifold structure of shape optimization

If further, Tx is a Hilbert space, then it is possible to implement the null space gradient
flow

ẋ = −αJξJ(x)− αCξC (x)

by considering the following Euler step:

xn+1 = ρxn (∆tξn) with ξn = −αJξJ(xn)− αCξC (xn).

ξJ(x) := (I −DCT
Î (x)

(DCÎ (x)DCT
Î (x)

)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

I This method is consistent because by definition of the derivative,

J(xn+1) = J(ρxn (∆tξn)) = J(xn) + ∆tDJ(xn) · ξn + o(∆t).

I Gradient and transposes are defined with respect to the inner product of V = Tx :

〈∇J, ξ〉V = DJ(x) · ξ for any ξ ∈ V ,

〈DC(x)T µ, ξ〉V = µTDC(x) · ξ, for any ξ ∈ V .



Manifold structure of shape optimization

If further, Tx is a Hilbert space, then it is possible to implement the null space gradient
flow
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Manifold structure of shape optimization

For shape optimization,

M = {Ω ⊂ D |Ω Lipschitz}, TΩ = W 1,∞(Rd ,Rd), ρΩ(θ) = (I + θ)Ω.

Unfortunately, W 1,∞(Rd ,Rd) is not a Hilbert space (it is a Banach space).
In practice, one takes

TΩ = H1(Ω,Rd)

〈θ,θ′〉V =

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx

with γ proportional to the mesh size hmin.

I The choice TΩ = H1(Ω,Rd) is not completely consistent because
H1(Ω,Rd) 6⊂W 1,∞(Ω,Rd).
However Hm(Ω,Rd) ⊂W 1,∞(Ω,Rd) for m > d/2.

I However it works well in practice and is easy to implement: just requires to solve a
Laplace equation !

I γ tunes the level of diffusion of the shape derivative from the boundary Γ.

I Gradient ∇J(Ω) vs. differential DJ(Ω):

〈∇J(Ω),θ′〉V = DJ(Ω) · θ′ for all θ′ ∈ V .
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Manifold structure of shape optimization

Remark 1

For enforcing non-optimizable regions ω ⊂ Ω, we need the descent direction θ to satisfy

θ · n > 0 on ∂ω.

An easy way to do it is to enforce
θ = 0 in ω,

which can be done by considering

TΩ := {θ ∈ H1(Ω,Rd) |θ = 0 in ω}.

〈θ,θ′〉T (Ω) =

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx .

The identification of ∇J(Ω) amounts to solve a Laplace equation with zero boundary
Dirichlet condition on ω.
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Manifold structure of shape optimization

Summary:
xn+1 = ρxn (∆tξn) with ξn = −αJξJ(xn)− αCξC (xn).

ξJ(x) := (I −DCT
Î (x)

(DCÎ (x)DCT
Î (x)

)−1DCÎ (x))(∇J(x))

ξC (x) = DCT
Ĩ (x)

(DCĨ (x)DCT
Ĩ (x)

)−1CĨ (x)(x),

1. null space and range space directions ξJ(Ω) and ξC (Ω) are computed by solving
identification problems with

〈θ,θ′〉T (Ω) =

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx .

2. the design update is performed with the retraction map ρΩ(θ) = (I + θ)Ω:

Ωn+1 = ρΩn (−∆t(αJξJ(Ωn) + αCξC (Ωn)).

In practice, the design update is performed with the level-set method, and/or
remeshing, which is still consistent at first order.



Manifold structure of shape optimization

Summary:
xn+1 = ρxn (∆tξn) with ξn = −αJξJ(xn)− αCξC (xn).

ξJ(x) := (I −DCT
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