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Non-existence of optimal designs

Consider the minimization problem
min
x∈Rn

J(x)

for J : Rn → R a continuous functional.

Proposition 1

If J(x)→ +∞ as |x | → +∞, then there exists a global minimizer x∗ to J:

∃x∗ ∈ Rn, such that J(x∗) = inf
x∈Rn

J(x).

Proof.

Let (xn)n∈N be a minimizing sequence of J, i.e. J(xn)→ inf
x∈Rn

J(x). Since (J(xn))n∈N is

bounded, it follows that (xn)n∈N must also be bounded. Up to extracting a convergent
subsequence, we can assume that xn → x∗ for some x∗ ∈ Rn. Then J(xn)→ J(x∗) and so
J(x∗) = inf

x∈Rn
J(x).

This proof uses crucially that finite dimensional bounded sets are compact.
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Non-existence of optimal designs

When the minimization involves infinite dimensional sets, compacity is lost and
subsequences may not converge.

Example: consider the problem
min

f∈H1((0,1))
J(f ).

with

J(f ) :=

∫ 1

0

[|f |2 + (|f ′| − 1)2)]dt.

It holds that inf
f
J(f ) = 0 however there does not exist a minimizer.

Figure: This sequence (fn) converges to zero in L2(0, 1) and satisfies |f ′n | = 1 for any n ∈ N. Figure
from the lecture of G. Allaire.
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Non-existence of optimal designs

The non-existence of minimizer comes from the lack of compactness of the design space.

This non-existence phenomenon takes place in optimal design problems.
Example: Consider the compliance minimization of the membrane problem

min
Ω⊂D

J(Ω) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a(Ω)∇u) = 0 in D

a(Ω)∇u · n = e1 · n on ∂D

1

|D|

∫
Ω

dx = θ

(1)

where θ ∈ (0, 1) and
a(Ω) := α1Ω + β(1− 1Ω).

This is a membrane with variable thickness.

Proposition 2

There is no minimizing shape Ω to the compliance minimization problem eq. (2). However,
it holds

inf
Ω⊂D

J(Ω) = (αθ + (1− θ)β)−1|D|.
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Non-existence of optimal designs

Figure: A minimizing sequence for the problem 1. It is advantageous to distribute the weakest
material in horizontal strips to reduce the strain in the e2 direction while being stiff in the e1

direction. Figure from Allaire.



Non-existence of optimal designs

This has important consequences:

I there is no “optimal design” Ω, shape optimization problems therefore seek to find
one design approaching the infimum

inf
Ω⊂D

J(Ω)

I the lack of a minimizer comes from the fact that it is often advantageous to refine the
shape with more details

I in practice, numerically optimized designs are dependent on the mesh (size, type of
elements), and on the initialization.
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Non-existence of optimal designs

The existence of an optimal shape can in some examples be guaranteed under some
regularity conditions which prevent oscillations of the shape:

I under a perimeter constraint

I under a constraint on the number of holes

I under the “uniform cone property”
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Non-existence of optimal designs

Figure: Optimized designs for the same heat conduction problem with coarse to fine meshes
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Relaxation by homogenization

Consider the minimization problem
min
x∈A

J(x)

for J : E → R a continuous functional on some Hilbert space satisfying J(x)→ +∞ as
|x | → +∞, and A ⊂ E the set of admissible candidates.

Let (xn)n∈N be a minimizing sequence. This sequence must be bounded. In E , one can
extract a subsequence such that (xn) weakly converges to some x∗ ∈ E .

A condition for x∗ to be a minimizer is that x∗ ∈ A and the weak lower semi-continuity
condition :

J(x∗) ≤ lim inf
n∈N

J(xn).

Let Ā the weak closure of A. If J is weakly lower semi-continuous, then there exists a
minimizer to the relaxed minimization problem

min
x∈Ā

J(x).
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Relaxation by homogenization

I There are many ways to quantify the convergence of shapes (see Henrot et. Pierre).

I An intuitive way is to identify shapes Ω ⊂ D to their characteristic function
1Ω ∈ L∞(D):

1Ω(x) =

{
1 if x ∈ Ω,

0 if x ∈ Ω.

I The set of characteristic functions is not closed with respect to the weak(−∗)
topology of L∞(D):

{1Ω |Ω ⊂ D} = {θ ∈ L∞(D) | 0 ≤ θ(x) ≤ 1 for a.e. x ∈ D}

I Such functions ρ : D → (0, 1) can be interpreted as density functions in the set D:
ρ(x) is the local volume fraction of material around the point x .
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Relaxation by homogenization

A key idea for topology optimization: replace the optimal design problem

min
Ω⊂D

J(Ω)

with a “relaxed” version
min

ρ : D→(0,1)
J∗(ρ)

where J∗ is an extension of J to density functions ρ.

I When J depends on the solution to some PDE posed on Ω, one needs to extend the
physical model as well, e.g. the conductivity coefficient

A(Ω) = α1Ω + β(1− 1Ω)

by
A∗(ρ) = αρ+ β(1− ρ).

I However this process may lead to false minima because the value of the minimum
can change. Ideally, we would like J∗ to be the prolongation by continuity of J to the
“weak closure” of the admissible set of shapes.

I It turns out that this “weak closure” and the appropriate notion of convergence of
shapes depends on the PDE model used, and on the shape functionals.
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Relaxation by homogenization

Consider the compliance minimization problem for the conductivity equation:

min
Ω⊂D

J(Ω) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a(Ω)∇u) = 0 in D

a(Ω)∇u · n = e1 · n on ∂D

1

|D|

∫
Ω

dx = θ

(2)

where θ ∈ (0, 1) and
a(Ω) := α1Ω + β(1− 1Ω).

Proposition 3 (Tartar compactness theorem)

Let (Ωn)n∈N a sequence of domains and (un) the associated solutions. There exists a
subsequence (Ωφ(n))n∈N and (uφ(n))n∈N such that uφ(n) converges weakly in H1(D) to the
solution u∗ of the homogenized problem{

−div(a∗(x)∇u∗) = 0 in D

a∗(x)∇u∗ · n = e1 · n on ∂D.

where a∗(x) ∈ Rd×d is a positive symmetric effective matrix-valued conductivity.
Furthermore, the characteristic functions (1Ωφ(n)

)n∈N converge weakly to some density field
ρ : D → (0, 1).
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Relaxation by homogenization

I The matrix field a∗(x) characterizes somehow the anisotropy of the sequence Ωφ(n).
It contains information about the limiting microstructure.

I The limiting density function ρ : D → (0, 1) has not enough information for capturing
the anisotropic limiting behaviour of the sequence (Ω)φ(n).

Some sequence of shapes
can converge to identical ρ but different matrix field a∗.

I Both limits a∗(x) and ρ(x) can be seen as an effective description of a limiting
microstructure.

Figure: An anisotropic composite microstructure with two principal directions.
Figure from Allaire.
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I Both limits a∗(x) and ρ(x) can be seen as an effective description of a limiting
microstructure.
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Relaxation by homogenization

Definition 1

We denote by G the set of all pairs of homogenized matrix-valued fields a∗ : D → Rd×d

and densities ρ : D → (0, 1) which can be obtained as such limits (the G -closure).

The relaxation of the compliance minimization problem

min
Ω⊂D

J(Ω) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a(Ω)∇u) = 0 in D

a(Ω)∇u · n = e1 · n on ∂D

1

|D|

∫
Ω

dx = θ

where θ ∈ (0, 1) and
a(Ω) := α1Ω + β(1− 1Ω).

is

min
(a∗,ρ)∈G

J∗(a∗, ρ) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a∗∇u) = 0 in D

a∗∇u · n = e1 · n on ∂D

1

|D|

∫
D

ρdx = θ
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Relaxation by homogenization

min
(a∗,ρ)∈G
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Proposition 4

This formulation is the relaxation of the optimal design problem in the following sense:

I There exists a minimizer to eq. (3)

I any minimizing sequence of shapes (Ωn)n∈N converges in the homogenization sense to
some optimal solution (a∗, ρ) to eq. (3)

I any optimal solution to eq. (3) is the limit of a minimizing sequence (Ω)n∈N.
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Relaxation by homogenization

In order to solve numerically the relaxed formulation

min
(a∗,ρ)∈G

J∗(a∗, ρ) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a∗∇u) = 0 in D

a∗∇u · n = e1 · n on ∂D

1

|D|

∫
D

ρdx = θ

one needs to identify the set G and the matrices a∗.

This can be done through periodic homogenization.
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Relaxation by homogenization

Consider a rectangular domain D with periodic boundary conditions filled with periodic
inclusions distributed with a period ε > 0.

α

β

Y = (0, 1)d

Dε = D\ωε

D

ωε

ε

Figure: The composite domain and the unit cell Y filled with two materials α and β.

Let a : Y → {αI , βI} the Y –periodic matrix with values αI or βI in the inclusions.
Let Ω the phase associated to the material α. Then

A(Ω)(y) = a(y/ε).
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Relaxation by homogenization

Consider the conductivity problem with periodic boundary conditions.{
−div(a(y/ε)∇uε) = f in D

uε is D–periodic
(4)

Proposition 5

Assume that f is a compatible right-hand side (i.e.

∫
D

f dx = 0). There exists a unique

solution uε satisfying

∫
D

uεdx = 0. Moreover,

uε → u∗ in H1(D)

where u∗ is the unique solution to
−div(a∗∇u∗) = f in D

u∗ is D–periodic∫
D

u∗dx = 0,

and 1Ωε ⇀ θ in L2(D).
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Relaxation by homogenization

Proposition 6

The matrix a∗ is given by

a∗ij =

∫
Y

a(y)(ei +∇wi (y)) · (ej +∇wj(y))dy

where (wi (y))1≤i≤d are the solutions to the cell-problem{
−div(a(y)(ei +∇wi )) = 0 in Y

wi is Y –periodic

Proof.

This can be proved with the method of two-scale expansions: we seek

uε(x) =
+∞∑
i=0

εiui (x , x/ε)

where ui (x , y) is D–periodic in the x variable and Y periodic in the y variable. We find
that u0 is the limit u∗ predicted.
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Relaxation by homogenization

In order to solve numerically the relaxed formulation

min
(a∗,ρ)∈G×L∞(D,(0,1))
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one needs to identify the set G and the matrices a∗.

Proposition 7

Let Gθ the set of all matrices a∗ that can be obtained by periodic homogenization of the
phases α and β in proportion θ and 1− θ. Then the set G is the set of all matrix valued
fields and densities (a∗(y), ρ(y)) such that a∗(y) ∈ Gρ(y).
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Relaxation by homogenization

It is possible to compute explicitly a∗ for particular shapes of inclusions call sequential
laminates.

Figure: Figure from Allaire

Proposition 8

Assume that Y is given by two strips orthogonal to the e direction of width θ and 1− θ,
filled with two materials A and B. Then the associated homogenized tensor A∗ is given
explicitly by the formula

(A∗ − B)−1 = (A− B)−1 +
(1− θ)

Be · e e ⊗ e.



Relaxation by homogenization

The procedure can be iterated for several directions of lamination.

Figure: Figure from Allaire

Proposition 9

Let e1, . . . , ep be a set of unit vectors, θ ∈ (0, 1) and mi ∈ (0, 1), 1 ≤ i ≤ p the laminate of
rank p with lamination parameters mi defined by

θ(A∗p − B)−1 = (A− B)−1 + (1− θ)

p∑
i=1

mi
ei ⊗ ei
Bei · ei

.

The matrix A∗p corresponds to a homogenized tensor obtained by sequentially laminating
the phase B with the phase A in proportions m1 . . .mp, with a total proportion of A
being θ.



Relaxation by homogenization

The optimum value for the relaxed compliance minimization problems is attained by rank–1
laminates.

Proposition 10

There exists (a∗, ρ) a global minimizer to J∗ which is a rank one laminate.

In dimension 2, we can parametrize such laminate by the direction of lamination φ and the
volume fraction θ:

A∗(θ, φ) =

 cos(φ) sin(φ)

− sin(φ) cos(φ)

λ+
θ

λ−θ

cos(φ) − sin(φ)

sin(φ) cos(φ)


where

λ−θ = αθ + (1− θ)β, λ−θ = (α−1θ + β−1(1− θ))−1
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Relaxation by homogenization

It becomes then possible to rephrase the optimization problem as

min
(ρ,φ)∈L∞(D,(0,1)×R)

J∗(ρ, φ) :=

∫
∂D

(e1 · n)udσ

s.t.


−div(A∗(ρ(y), φ(y))∇u) = 0 in D

A∗(ρ(y), φ(y))∇u · n = e1 · n on ∂D

1

|D|

∫
D

ρdx = θ

This is a parametric optimization problem with respect to ρ and φ. It can be solved with
gradient methods as in shape optimization on a fixed mesh.
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Relaxation by homogenization

Using standard derivation, one finds indeed that

∂J

∂(ρ, φ)
=

∫
∂D

e1 · n
∂u

∂(ρ, φ)
dσ =

∫
D

A∗(ρ, φ)∇ ∂u

∂(ρ, σ)
· ∇udx

= −
∫
D

∂A∗

∂(ρ, φ)
∇u · ∇udx .



Relaxation by homogenization

Remark 1

I One needs to take into account point-wise bound constraints

0 ≤ ρ(y) ≤ 1 for all y ∈ D,

I They are harder to handle because these are numerous. Many works in density based
Topology Optimization consider the Method of Moving Asymptotes from Svanberg.

I For the linear elasticity system, the optimum value is achieved by rank d sequential
laminates, requiring some adaptations.

I In order to obtain a true shape, one can try to penalize intermediate densities with

ρn+1 ←
1− cos(πρn+1)

2

which “forces” values of ρn+1 to become closer to the values 0 or 1.
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Relaxation by homogenization

Figure: Iteration 0 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 1 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 10 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 20 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 40 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 45 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 55 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 60 (Reprint from Allaire)



Relaxation by homogenization

Figure: Iteration 60 (Reprint from Allaire)
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1. Counter examples for the non-existence of optimal designs

2. Relaxation of an optimal design problem by homogenization

3. The SIMP method

4. Inverse homogenization



The SIMP method

I SIMP: Solid Isotropic Material Penalization

I Simplification of homogenization method: interpolate the stress tensor with the
density:

min
Ω⊂D

J(Ω) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a(Ω)∇u) = 0 in D

a(Ω)∇u · n = e1 · n on ∂D

1

|D|

∫
Ω

dx = θ

with
a(Ω) := α1Ω + β(1− 1Ω).

is replaced with

min
ρ : D→(0,1)

J∗(a∗, ρ) :=

∫
∂D

(e1 · n)udσ s.t.


−div(a(ρ)∇u) = 0 in D

a(ρ)∇u · n = e1 · n on ∂D

1

|D|

∫
D

ρdx = θ

where
a(ρ) = αρp + β(1− ρp).
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The SIMP method

I The exponent p is used to penalize intermediate density values.

I This “relaxation” may yield satisfying shapes but forgets the microstructure.

I It is not guaranteed that (a(ρ), ρ) ∈ G . The method uses fictitious materials and
optimized densities might not be interpretable.

I However, we can select (a(ρ), ρ) ∈ G by taking p = 3 (for the conductivity), or to
make them satisfy suitable bounds.
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The SIMP method

Some dificulties:

I The SIMP method does not yield systematically black and white designs

I Some numerical problems can arise on rectangular meshes (checkerboard). These are
fixed by using suitable filters.

I It is not clear how to choose the interpolation for coupled physics problems

I The physics must be interpolated

I Hard to enforce geometric constraints (minimum thickness, minimum distance)
because no access to the geometry before convergence !

However, it is popular because simple to implement, works on fixed meshes, and yields
good results.
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The SIMP method

Figure: Filters for the SIMP method. Figure from Kang (2011)



The SIMP method

Figure: Large scale computations in structural design with the SIMP method. Figure from Aage et.
al. (2017)



The SIMP method

Figure: Large scale computations in convective cooling design with a density method. Figure from
Alexandersen et. al. (2016)
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Inverse homogenization

A recent trend (Geoffroy Donders (2019), and Groen (2019)): inverse homogenization.

Parametrize the microstructure of the composite material Ω:

ε

a1

a2

a3

min
(a1,...,am)∈L∞(D,Rd )

J∗(a1, . . . , am, u(a1, . . . , am))

s.t.

{
−div(A∗(a1, . . . , am)∇u) = f in D

u = 0 on ∂D,

A∗(a1, . . . , am) is the effective material tensor. Optimize then a1(x), . . . am(x) instead of Ω!
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Inverse homogenization

Figure: Optimized microstructure parameters. Figure from Donders (2019).



Inverse homogenization

(a) Optimized density (b) Optimized orientation
(c) Interpreted shape

Figure: Topology optimization of a 2-d cantilever beam by a homogenization method. Figure from
Donders (2019).



Inverse homogenization

The procedure involves the computation of a diffeomorphism projecting a cartesian grid
according to the orientation:

Figure: Reconstructed grid. Figure from Donders (2019).



Inverse homogenization

From the knowledge of the parameters, it is easy to reconstruct a minimizing sequence of
shapes

Figure: Reconstructed shapes. Figure from Donders (2019).



Inverse homogenization

Also works in 3D:

Figure: Reconstructed shapes. Figure from Groen (2019).



Inverse homogenization

I Right now, rather restricted to structural design for compliance minimization

I However, lots of potentialities offered in the future for other physics.


