
Lecture 11: Three-dimensional topology optimization. Domain
Decomposition methods and parallel computing.

Florian Feppon

Spring 2022 – Seminar for Applied Mathematics



Outline

1. Challenges in three-dimensional topology optimization

2. A glimpse on domain decomposition methods and PETSc

3. Implementing a topology optimization test case



Outline

1. Challenges in three-dimensional topology optimization

2. A glimpse on domain decomposition methods and PETSc

3. Implementing a topology optimization test case



Outline

1. Challenges in three-dimensional topology optimization

2. A glimpse on domain decomposition methods and PETSc

3. Implementing a topology optimization test case



Outline

1. Challenges in three-dimensional topology optimization

2. A glimpse on domain decomposition methods and PETSc

3. Implementing a topology optimization test case



The coupled physics model

⌦f

⌦s
�

v0@⌦D
f

@⌦D
s

u0

n

I Incompressible Navier-Stokes system for the velocity and pressure (v , p) in Ωf

−div(σf (v , p)) + ρ∇v v = ff in Ωf

I Convection-diffusion for the temperature T in Ωf and Ωs :

−div(kf∇Tf ) + ρv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

I Thermo-elasticity with fluid-structure interaction for u iin Ωs :

−div(σs(u,Ts)) = fs in Ωs

σs(u,Ts) · n= σf (v , p) · n on Γ.



The coupled physics model

⌦f

⌦s
�

v0@⌦D
f

@⌦D
s

u0

n

I Incompressible Navier-Stokes system for the velocity and pressure (v , p) in Ωf

−div(σf (v , p)) + ρ∇v v = ff in Ωf

I Convection-diffusion for the temperature T in Ωf and Ωs :

−div(kf∇Tf ) + ρv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

I Thermo-elasticity with fluid-structure interaction for u iin Ωs :

−div(σs(u,Ts)) = fs in Ωs

σs(u,Ts) · n= σf (v , p) · n on Γ.



The coupled physics model

⌦f

⌦s
�

v0@⌦D
f

@⌦D
s

u0

n

I Incompressible Navier-Stokes system for the velocity and pressure (v , p) in Ωf

−div(σf (v , p)) + ρ∇v v = ff in Ωf

I Convection-diffusion for the temperature T in Ωf and Ωs :

−div(kf∇Tf ) + ρv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

I Thermo-elasticity with fluid-structure interaction for u iin Ωs :

−div(σs(u,Ts)) = fs in Ωs

σs(u,Ts) · n= σf (v , p) · n on Γ.



The coupled physics model

⌦f

⌦s
�

v0@⌦D
f

@⌦D
s

u0

n

I Incompressible Navier-Stokes system for the velocity and pressure (v , p) in Ωf

−div(σf (v , p)) + ρ∇v v = ff in Ωf

I Convection-diffusion for the temperature T in Ωf and Ωs :

−div(kf∇Tf ) + ρv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

I Thermo-elasticity with fluid-structure interaction for u iin Ωs :

−div(σs(u,Ts)) = fs in Ωs

σs(u,Ts) · n= σf (v , p) · n on Γ.



The coupled physics model

Our goal: solve generic topology optimization problems of the type

min
Γ

J(Γ, v(Γ), p(Γ),T (Γ), u(Γ))

s.c. gi (Γ, v(Γ), p(Γ),T (Γ), u(Γ)) = 0, 1 ≤ i ≤ p

hi (Γ, v(Γ), p(Γ),T (Γ), u(Γ)) ≤ 0, 1 ≤ i ≤ q

.

where u(Γ), v(Γ), p(Γ), T (Γ) are the solutions to PDE models.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables

2. same PDEs for the adjoint variables
3. same shape derivatives
4. same null space optimization algorithm
5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables
2. same PDEs for the adjoint variables

3. same shape derivatives
4. same null space optimization algorithm
5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables
2. same PDEs for the adjoint variables
3. same shape derivatives

4. same null space optimization algorithm
5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables
2. same PDEs for the adjoint variables
3. same shape derivatives
4. same null space optimization algorithm

5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables
2. same PDEs for the adjoint variables
3. same shape derivatives
4. same null space optimization algorithm
5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables
2. same PDEs for the adjoint variables
3. same shape derivatives
4. same null space optimization algorithm
5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

I In theory, no change from the point of view of the methodology
1. same PDEs for the state variables
2. same PDEs for the adjoint variables
3. same shape derivatives
4. same null space optimization algorithm
5. same shape updates Ω 7→ (I + θ)Ω.

I In practice, the implementation must be completely revised.



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N
2. vectorial variables have three components instead of two
3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per

vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N

2. vectorial variables have three components instead of two
3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per

vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N
2. vectorial variables have three components instead of two

3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per
vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N
2. vectorial variables have three components instead of two
3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per

vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N
2. vectorial variables have three components instead of two
3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per

vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N
2. vectorial variables have three components instead of two
3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per

vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

Why is it hard to do three-dimensional Topology Optimization ?
I the size of the meshes become very large:

1. O(N3) instead of O(N2) vertices for resolving a domain with resolution 1/N
2. vectorial variables have three components instead of two
3. the combinatorial complexity of the mesh increases: approximately 6 tetrahedra per

vertices rather than 3 triangles per vertices.

I Finite element linear systems become very large: hard to store them in memory,
hard to solve them with direct methods (LU decomposition). Need for adapted
numerical technique.

I Remeshing becomes also quite expensive in 3D due to the number of combinatorial
operations (while it is inexpensive in 2D).



Challenges in three-dimensional topology optimization

A solution: parallel computing and domain decomposition.

I parallel computing: use of distributed processors and memory. Operations are done
independently with a few synchronization operations.

I domain decomposition: the computational mesh is partitioned into as many
submeshes as the number of CPUs. FEM Operations are performed independently on
these submeshes (matrix assembly, liner system solve, etc.).

I preconditioners: iterative techniques are used to solve the linear systems. The
number of iterations required is decreased by preconditioning.

It is possible to mesh in parallel (ParMmg). However the level-set discretization feature is
still not yet available.
In the present class, we focus on making FEM operations in parallel.



Challenges in three-dimensional topology optimization

A solution: parallel computing and domain decomposition.

I parallel computing: use of distributed processors and memory. Operations are done
independently with a few synchronization operations.

I domain decomposition: the computational mesh is partitioned into as many
submeshes as the number of CPUs. FEM Operations are performed independently on
these submeshes (matrix assembly, liner system solve, etc.).

I preconditioners: iterative techniques are used to solve the linear systems. The
number of iterations required is decreased by preconditioning.

It is possible to mesh in parallel (ParMmg). However the level-set discretization feature is
still not yet available.
In the present class, we focus on making FEM operations in parallel.



Challenges in three-dimensional topology optimization

A solution: parallel computing and domain decomposition.

I parallel computing: use of distributed processors and memory. Operations are done
independently with a few synchronization operations.

I domain decomposition: the computational mesh is partitioned into as many
submeshes as the number of CPUs. FEM Operations are performed independently on
these submeshes (matrix assembly, liner system solve, etc.).

I preconditioners: iterative techniques are used to solve the linear systems. The
number of iterations required is decreased by preconditioning.

It is possible to mesh in parallel (ParMmg). However the level-set discretization feature is
still not yet available.
In the present class, we focus on making FEM operations in parallel.



Challenges in three-dimensional topology optimization

A solution: parallel computing and domain decomposition.

I parallel computing: use of distributed processors and memory. Operations are done
independently with a few synchronization operations.

I domain decomposition: the computational mesh is partitioned into as many
submeshes as the number of CPUs. FEM Operations are performed independently on
these submeshes (matrix assembly, liner system solve, etc.).

I preconditioners: iterative techniques are used to solve the linear systems. The
number of iterations required is decreased by preconditioning.

It is possible to mesh in parallel (ParMmg). However the level-set discretization feature is
still not yet available.
In the present class, we focus on making FEM operations in parallel.



Challenges in three-dimensional topology optimization

A solution: parallel computing and domain decomposition.

I parallel computing: use of distributed processors and memory. Operations are done
independently with a few synchronization operations.

I domain decomposition: the computational mesh is partitioned into as many
submeshes as the number of CPUs. FEM Operations are performed independently on
these submeshes (matrix assembly, liner system solve, etc.).

I preconditioners: iterative techniques are used to solve the linear systems. The
number of iterations required is decreased by preconditioning.

It is possible to mesh in parallel (ParMmg). However the level-set discretization feature is
still not yet available.

In the present class, we focus on making FEM operations in parallel.



Challenges in three-dimensional topology optimization

A solution: parallel computing and domain decomposition.

I parallel computing: use of distributed processors and memory. Operations are done
independently with a few synchronization operations.

I domain decomposition: the computational mesh is partitioned into as many
submeshes as the number of CPUs. FEM Operations are performed independently on
these submeshes (matrix assembly, liner system solve, etc.).

I preconditioners: iterative techniques are used to solve the linear systems. The
number of iterations required is decreased by preconditioning.

It is possible to mesh in parallel (ParMmg). However the level-set discretization feature is
still not yet available.
In the present class, we focus on making FEM operations in parallel.



Outline

1. Challenges in three-dimensional topology optimization

2. A glimpse on domain decomposition methods and PETSc

3. Implementing a topology optimization test case



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.

Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods



Domain decomposition methods



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.

Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.

Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.

Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.

It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).

In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).

For instance, ∫
T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

First step: partitioning the mesh T into T1, . . . , Tncpu.
Several librairies available for this: metis, pardiso, available in FreeFEM.
Ghost cells are sometimes added to the partitioned submeshes for the additive schwarz
method.
Sometimes the domains Ti overlap: we use then a partition of unity (Di )1≤i≤ncpu such that

1 =
∑

1≤i≤ncpu

Di .

Each of the submeshes have their own address space. The goal is to minimize
communication between processors.
It can be important to have access to the restriction operators Ri : T → Ti to perform
global operations (e.g. reconstruct the global solution from the local one).
In general, we try to avoid as much as possible to use the global solution and prefer to do
everything in parallel (e.g. matrix assemblies, computing the objective function, etc.).
For instance, ∫

T
j(u)Dx =

∑
1≤i≤ncpu

∫
Ti
Di j(Riu)dx .

Everything must be thought in parallel → completely revised implementation.



Domain decomposition methods

I Parallel computing is achieved thanks to a dedicated Message Passing Interface
(MPI) for communicating between CPUs. Several possibles: OpenMPI, mpich,
intel-mpi, etc.

I FreeFEM is interfaced with them through the command FreeFem++-mpi.

I Script is run simultaneously by several processus. Communication of data between
processes is achieved by several commands: mpiComm, mpiGroup, mpiRequest,
broadcast, mpiAllGather. . .



Domain decomposition methods

I Parallel computing is achieved thanks to a dedicated Message Passing Interface
(MPI) for communicating between CPUs. Several possibles: OpenMPI, mpich,
intel-mpi, etc.

I FreeFEM is interfaced with them through the command FreeFem++-mpi.

I Script is run simultaneously by several processus. Communication of data between
processes is achieved by several commands: mpiComm, mpiGroup, mpiRequest,
broadcast, mpiAllGather. . .



Domain decomposition methods

I Parallel computing is achieved thanks to a dedicated Message Passing Interface
(MPI) for communicating between CPUs. Several possibles: OpenMPI, mpich,
intel-mpi, etc.

I FreeFEM is interfaced with them through the command FreeFem++-mpi.

I Script is run simultaneously by several processus. Communication of data between
processes is achieved by several commands: mpiComm, mpiGroup, mpiRequest,
broadcast, mpiAllGather. . .



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method.

A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step. CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method.

A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step. CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method. A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1.

Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step. CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method. A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step. CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method. A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step.

CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method. A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step.

CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method. A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step.

CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

Linear system solves:
Ax = b.

I Most efficient method, if enough memory : factorization method. A = LU with L
and U lower and upper-triangular. Then A−1 = U−1L−1. Variants to do it in parallel.
However requires a lot of memory (complexity of order O(N2) with N the number of
degrees of freedom).

I If not enough memory, (for very large systems) it is more efficient to use iterative
methods with preconditioners.

I The conjugate gradient method (CG) for positive symmetric A:

x0 := b; xn+1 = xn − αnΠn(Axn − b)

where Πn is the orthogonal projection onto span(x0, x1, . . . , xn)⊥ and αn an optimal
time step. CG requires only matrix-vector products → efficient in memory.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

I CG can be extended to arbitrary matrices (Generalized Minimal Residual Method,
GMRES).

I Iterative methods can be slow to converge.

I They are accelerated by preconditioning.

Ax = b ⇔ MlAMry = Mlb with x = Mry .

where Ml and Mr are called left and right-preconditioners.

I The error rate for CG to reach a desired accuracy decreases as(√
κ(A)− 1√
κ(A) + 1

)k

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix.

I A “good” preconditioner should be chosen such that

MlAMr ' I .

Ml and Mr need to be approximate left and right-inverses for A.



Domain decomposition methods

The additive schwarz method:

I Assemble the matrix A in parallel (construct the matrix Ai on each submesh and
update the connecting nodes).

I Define a preconditioner M for the matrix A.

I Solve MAx = Mb with CG or GMRES.

I For the addititive Schwarz method, we use the block preconditioner

M :=


A−1

1

. . .

A−1
m

 ,
where Ai is the restriction of the matrix A to the subdomain i .

I The inverse of each of the matrices Ai can itself be computed with iterative methods,
with physics dependent preconditioners.



Domain decomposition methods

The additive schwarz method:

I Assemble the matrix A in parallel (construct the matrix Ai on each submesh and
update the connecting nodes).

I Define a preconditioner M for the matrix A.

I Solve MAx = Mb with CG or GMRES.

I For the addititive Schwarz method, we use the block preconditioner

M :=


A−1

1

. . .

A−1
m

 ,
where Ai is the restriction of the matrix A to the subdomain i .

I The inverse of each of the matrices Ai can itself be computed with iterative methods,
with physics dependent preconditioners.



Domain decomposition methods

The additive schwarz method:

I Assemble the matrix A in parallel (construct the matrix Ai on each submesh and
update the connecting nodes).

I Define a preconditioner M for the matrix A.

I Solve MAx = Mb with CG or GMRES.

I For the addititive Schwarz method, we use the block preconditioner

M :=


A−1

1

. . .

A−1
m

 ,
where Ai is the restriction of the matrix A to the subdomain i .

I The inverse of each of the matrices Ai can itself be computed with iterative methods,
with physics dependent preconditioners.



Domain decomposition methods

The additive schwarz method:

I Assemble the matrix A in parallel (construct the matrix Ai on each submesh and
update the connecting nodes).

I Define a preconditioner M for the matrix A.

I Solve MAx = Mb with CG or GMRES.

I For the addititive Schwarz method, we use the block preconditioner

M :=


A−1

1

. . .

A−1
m

 ,
where Ai is the restriction of the matrix A to the subdomain i .

I The inverse of each of the matrices Ai can itself be computed with iterative methods,
with physics dependent preconditioners.



Domain decomposition methods

The additive schwarz method:

I Assemble the matrix A in parallel (construct the matrix Ai on each submesh and
update the connecting nodes).

I Define a preconditioner M for the matrix A.

I Solve MAx = Mb with CG or GMRES.

I For the addititive Schwarz method, we use the block preconditioner

M :=


A−1

1

. . .

A−1
m

 ,
where Ai is the restriction of the matrix A to the subdomain i .

I The inverse of each of the matrices Ai can itself be computed with iterative methods,
with physics dependent preconditioners.



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG

Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG

Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG
Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG
Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG
Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG
Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

Physics dependent preconditioners:

I Linear elasticity: Geometric Algebraic Multigrid (GAMG) + CG
Use of coarse meshes to smoothen high frequency errors

I Thermal conduction : hypre solver (use also boomerAmg or algebraic multigric)

I Navier-Stokes equations : fieldsplit preconditioner (using a Schur complement method)
and divergence penalization for the Oseen problem (Moulin, Jolivet, Marquet 2019)

One can also use approximate algebraic methods on the submatrices Ai : incomplete LU,
MUMPS solver, a fixed number of iterations of CG or GMRES, etc. . .



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.



Domain decomposition methods

To summarize:

I Assemble matrices in parallel

I Use an iterative method (CG or GMRES) and a block preconditioner for the
distributed matrix A

I Use factorization or iterative methods with adapted preconditioners for the block
matrices Ai .

I with a “good” preconditioner, global iteration scheme converges in less than approx.
100 iterations.

I The solution will be known in parallel → reconstruct it on the global mesh (use
partition of unity) or assemble quantities of interest in paralellel.

In FreeFEM, these operations can be achieved rather easily with:

1. PETSc (Portable, Extensible Toolkit for Scientific Computation): flexible and very
powerful library for solving FEM problem

2. the interface FreeFEM/PETSc written by Pierre Jolivet which allows to perform all
the domain decomposition and preconditioning with minimum knowledge.


