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Geometric constraints

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector
field θ:

Ωθ := (I + θ)Ω = {x + θ(x) | x ∈ Ω}

Ω
x

x + θ(x)

Ωθ = (I + θ)(Ω)

θ

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field θ is used to
deform Ω into Ωθ = (I + θ)Ω.
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Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill
a proposed objective.
Generically, a design optimization problem arises under the form

min
Ω⊂D

J(Ω)

s.t.

{
Gi (Ω) = 0, 1 ≤ i ≤ p

Hj(Ω) ≤ 0, 1 ≤ j ≤ q

where

I Ω is an open domain sought to be optimized

I J is an objective function to minimize (corresponding to a measure of the
performance)

I Gi and Hj are respectively p and q equality and inequality constraints
(corresponding e.g. to industrial specifications to meet)



Shape optimization problems

Today: how to take into account geometric constraints, e.g.:

I minimum thickness

I maximum thickness

I minimum distance between to
connected components

I minimum angle with respect to a
direction (overhang)
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The signed distance function

Definition 1

The signed distance function dΩ to the domain Ω ⊂ D is defined by:

∀x ∈ D, dΩ(x) =


− min

y∈∂Ω
||y − x || if x ∈ Ω,

min
y∈∂Ω

||y − x || if x ∈ D\Ω.



The signed distance function

An example: a meshed subdomain Ω ⊂ D



The signed distance function

An example: the signed distance function dΩ:



The signed distance function

Definition 2 (Skeleton set and projection)

1. The set of points x ∈ Rd for which the minimization problem

min
y∈∂Ω

||x − y || (1)

admits several minimizers is called the skeleton of Ω and is denoted by Σ.



The signed distance function

Definition 2 (Skeleton set and projection)

2. For any x ∈ Rd\Σ, the unique minimizer of eq. (1) is denoted p∂Ω(x) and is called the
(orthogonal) projection of x onto ∂Ω, in that case it holds

∀x ∈ Rd\Σ, dΩ(x) =

{
−||x − p∂Ω(x)|| if x ∈ Ω,

||x − p∂Ω(x)|| if x /∈ Ω.
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The signed distance function

Proposition 1 (Differentiability of dΩ)

Assume Ω is a C1 domain with outward normal n.

I The signed distance function dΩ is differentiable at any point x ∈ Rd\Σ, and it is not
differentiable on Σ.

I The gradient ∇dΩ is an extension of the unit normal vector n to ∂Ω pointing outward
Ω:

∀x ∈ Rd\Σ, ∇dΩ(x) = n(p∂Ω(x)).

I In particular, dΩ solves the so-called “Eikonal” equation:{
||∇dΩ|| = 1 in Rd\Σ,

dΩ = 0 on ∂Ω.
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The signed distance function

An example: the gradient of the signed distance function ∇dΩ:
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The signed distance function

Definition 3

The ray emerging from y is defined to be the one-dimensional segment

ray(y) :=
{
x ∈ D\Σ, p∂Ω(x) = y

}
.

Proposition 2

For any y ∈ ∂Ω, define ζ−(y) and ζ+(y) the distance at which the ray hits the boundary of
D or the skeleton:

∀y ∈ ∂Ω, ζ+(y) = sup{s > 0 | {y + t∇dΩ(y) | t ∈ [0, s)} ∩ (Σ ∪ ∂D) = ∅},

∀y ∈ ∂Ω, ζ−(y) = inf{s ≤ 0 | {y + t∇dΩ(y) | t ∈ (s, 0]} ∩ (Σ ∪ ∂D) = ∅}.

Then we also have
ray(y) = {y + sn(y) | ζ−(y) < s < ζ+(y)}.
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Formulation of geometric constraints

Some general principles:

I Geometric constraints are often point-wise constraints formulated from the signed
distance function, e.g.

p(dΩ(x),∇dΩ(x)) ≤ 0, for all x ∈ Ω

for some function p.

I The rationale is to approximate point-wise geometric constraints with a single
averaged energy functional, e.g. P(Ω) ≤ 0;

I Sometimes, enforcing strictly the constraint might not be desirable because the
feasible region becomes tight, or because it may prevent topological changes (such as
minimum thickness).

A trade-off can be achieved by setting the value desired for the objective function as a
constraint , e.g.:

min
Ω⊂D

P(Ω)

s.t. J(Ω) ≤ 0.9Jopt

where Jopt would be the optimal value without the constraint.
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Formulation of geometric constraints
Maximum thickness

I Maximum thickness can be formulated as follows:

∀x ∈ Ω, dΩ(x) > −dmax/2.

I We can approximate this constraint as

||dΩ||L∞(Ω) '
(

1

|Ω|

∫
Ω

|dΩ|pdx
) 1

p

≤ dmax

2

for some p large enough.

I This means taking into account the averaged constraint

Pmax(Ω) ≤ dmax with Pmax(Ω) := 2

(
1

|Ω|

∫
Ω

|dΩ|pdx
) 1

p

.
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Formulation of geometric constraints
Maximum thickness

(a) No maximum thickness
constraint

(b) dmax = 0.07.

Figure: Maximum thickness constraint for 2D arch.



Formulation of geometric constraints
Minimum thickness

I Minimum thickness can be modelled by the condition that the shape has a distance
greater than dmin/2 to its skeleton:

∀y ∈ ∂Ω, ζ−(y) < −dmin/2.

I Not straightforward to implement !

1. ζ− is not differentiable with respect to the shape
2. How to penalize y ∈ ∂Ω violating the minimum thickness is not clear
3. Enforcing the minimum thickness at all iterations would prevent topological changes to

occur.

I It is better to rely on a more flexible formulation
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Formulation of geometric constraints
Minimum thickness

We define an energy functional which is locally maximized when the minimum thickness
requirement is satisfied:

Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I the integrand is non-zero at x ∈ Ω only when dΩ(x) > −dmin/2, i.e. on the part of the
ray of length dmin/2.

I Minimizing Pmin(Ω) will therefore tend to increase the thickness of Ω up to dmin.

I In order to find a good compromise between thickness and the original optimization
problem, we use the reformulation

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt

where α is the loss of performance we allow on the objective function due to the
minimum thickness requirement

I the minimization will find shapes with good performances and which satisfy
approximately the minimum thickness constraint.



Formulation of geometric constraints
Minimum thickness

We define an energy functional which is locally maximized when the minimum thickness
requirement is satisfied:

Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I the integrand is non-zero at x ∈ Ω only when dΩ(x) > −dmin/2, i.e. on the part of the
ray of length dmin/2.

I Minimizing Pmin(Ω) will therefore tend to increase the thickness of Ω up to dmin.

I In order to find a good compromise between thickness and the original optimization
problem, we use the reformulation

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt

where α is the loss of performance we allow on the objective function due to the
minimum thickness requirement

I the minimization will find shapes with good performances and which satisfy
approximately the minimum thickness constraint.



Formulation of geometric constraints
Minimum thickness

We define an energy functional which is locally maximized when the minimum thickness
requirement is satisfied:

Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I the integrand is non-zero at x ∈ Ω only when dΩ(x) > −dmin/2, i.e. on the part of the
ray of length dmin/2.

I Minimizing Pmin(Ω) will therefore tend to increase the thickness of Ω up to dmin.
I In order to find a good compromise between thickness and the original optimization

problem, we use the reformulation

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt
where α is the loss of performance we allow on the objective function due to the
minimum thickness requirement

I the minimization will find shapes with good performances and which satisfy
approximately the minimum thickness constraint.



Formulation of geometric constraints
Minimum thickness

We define an energy functional which is locally maximized when the minimum thickness
requirement is satisfied:

Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I the integrand is non-zero at x ∈ Ω only when dΩ(x) > −dmin/2, i.e. on the part of the
ray of length dmin/2.

I Minimizing Pmin(Ω) will therefore tend to increase the thickness of Ω up to dmin.

I In order to find a good compromise between thickness and the original optimization
problem, we use the reformulation

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt
where α is the loss of performance we allow on the objective function due to the
minimum thickness requirement

I the minimization will find shapes with good performances and which satisfy
approximately the minimum thickness constraint.



Formulation of geometric constraints
Minimum thickness

We define an energy functional which is locally maximized when the minimum thickness
requirement is satisfied:

Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I the integrand is non-zero at x ∈ Ω only when dΩ(x) > −dmin/2, i.e. on the part of the
ray of length dmin/2.

I Minimizing Pmin(Ω) will therefore tend to increase the thickness of Ω up to dmin.

I In order to find a good compromise between thickness and the original optimization
problem, we use the reformulation

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt

where α is the loss of performance we allow on the objective function due to the
minimum thickness requirement

I the minimization will find shapes with good performances and which satisfy
approximately the minimum thickness constraint.



Formulation of geometric constraints
Minimum thickness

We define an energy functional which is locally maximized when the minimum thickness
requirement is satisfied:

Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I the integrand is non-zero at x ∈ Ω only when dΩ(x) > −dmin/2, i.e. on the part of the
ray of length dmin/2.

I Minimizing Pmin(Ω) will therefore tend to increase the thickness of Ω up to dmin.

I In order to find a good compromise between thickness and the original optimization
problem, we use the reformulation

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt

where α is the loss of performance we allow on the objective function due to the
minimum thickness requirement

I the minimization will find shapes with good performances and which satisfy
approximately the minimum thickness constraint.



Formulation of geometric constraints
Minimum thickness

(a) No minimum thickness constraint. (b) dmin = 0.1.

(c) dmin = 0.2

.Figure: Minimum thickness constraint for 2D cantilever.



Formulation of geometric constraints

Distance constraint:



Formulation of geometric constraints
Minimum distance constraint

An application: heat-exchangers:

d(Ωf ,hot,Ωf ,cold)

Ωf ,cold

Γ

Ωf ,hot

D

Ωs

T co
ld

T
h

ot

Figure: Minimum distance constraint for two-fluid
heat-exchangers.

Distance constraint:

d(Ωf ,hot,Ωf ,cold) > dmin.

We enforce it by imposing

∀x ∈ Ωf ,cold, dΩf ,hot (x) > dmin,

where dΩf ,hot is the signed distance
function to the domain Ωf ,hot.
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Formulation of geometric constraints
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Overhang constraint: the angle θ between the tangent plane and the vertical direction
must not be too large, e.g.

θ ≤ β
where β is the maximum angle allowed (e.g. β = π/4).
Equivalently:

∀y ∈ ∂Ω, n(y) · ey = cos(π/2 + θ) = − sin(θ) > − sin(β).
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Formulation of geometric constraints
Overhang constraint

∀y ∈ ∂Ω, n(y) · ey = cos(π/2 + θ) = − sin(θ) > − sin(β).

Remembering that n(y) = ∇dΩ(y), we can formulate this in terms of dΩ:

∀y ∈ ∂Ω,∇dΩ(y) · ey > − sin(β).

Since ∇dΩ is an extension of the normal along the rays, we can in fact consider

∀x ∈ Ω,∇dΩ(x) · ey > − sin(β).

This is equivalent to
∇dΩ · ey + sinβ > 0,

for instance

Pβ(Ω) = 0 with Pβ(Ω) :=

∫
Ω

min (∇dΩ · ey + sin(β), 0)2 dx .
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Formulation of geometric constraints
Recap

I Maximum thickness:

Pmax(Ω) ≤ dmax with Pmax(Ω) := 2

(
1

|Ω|

∫
Ω

|dΩ|pdx
) 1

p

.

I Minimum thickness:

min
Ω⊂D

Pmin(Ω)

s.t. J(Ω) ≤ αJopt
with Pmin(Ω) :=

∫
Ω

d2
Ωmax(dΩ + dmin/2, 0)2dx .

I Minimum distance constraint:

Qhot→cold(Ωf ) > dmin with Qhot→cold(Ωf ) :=

(∫
Ωf ,cold

1

|dΩf ,hot |p
dx

)− 1
p

.

I Maximum overhang:

Pβ(Ω) = 0 with Pβ(Ω) :=

∫
Ω

min (∇dΩ · ey + sin(β), 0)2 dx .
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Shape derivatives of geometric constraints

All the previous formulations bring into play functionals formulated in terms of the signed
distance function dΩ , e.g.

P(Ω) =

∫
D

j(dΩ)dx .

The shape derivative of P(Ω) reads

P ′(Ω)(θ) =

∫
D\Σ

j ′(dΩ(x))d ′Ω(θ)(x)dx

In order to compute the shape derivative of P(Ω), we need to compute the shape
derivative d ′Ω(θ).
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Shape derivatives of geometric constraints

Proposition 3

For any x /∈ Σ, the map θ 7→ d(I+θ)Ω(x) is Gâteaux-differentiable at θ as an application

from W 1,∞(Rd ,Rd) into Rd and its derivative reads

d ′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Equivalently, d ′Ω(θ) is characterized by the boundary value problem{
∇d ′Ω(θ) · ∇dΩ= 0 in D\Σ

d ′Ω(θ)= −θ · n on ∂Ω.

|θ · n|

θ

Ω
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Shape derivatives of geometric constraints

The shape derivative of P(Ω) reads

P ′(Ω)(θ) =

∫
D\Σ

j ′(dΩ(x))d ′Ω(θ)(x)dx

= −
∫
D\Σ

j ′(dΩ(x))θ(p∂Ω(x)) · n(p∂Ω(x))dx .

The composition with the projection p∂Ω is not very easy to implement.
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Shape derivatives of geometric constraints

Proposition 4

For any θ ∈W 1,∞(D,Rd), we have

P ′(Ω)(θ) = −
∫
D\Σ

j ′(dΩ(x))θ(p∂Ω(x)) · n(p∂Ω(x))dx

= −
∫
∂Ω

(∫
z∈ray(y)

j ′(dΩ(z))
d−1∏
i=1

(1 + κi (y)dΩ(z))dz

)
θ(y) · n(y)dσ(y)

=

∫
∂Ω

u(y)θ(y) · n(y)dσ(y)

with u(y) = −
∫
z∈ray(y)

j ′(dΩ(z))
d−1∏
i=1

(1 + κi (y)dΩ(z))dz .
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P ′(Ω) =

∫
∂Ω

u(y)θ(y) ·n(y)dσ(y) with u(y) = −
∫
z∈ray(y)

j ′(dΩ(z))
d−1∏
i=1

(1+κi (y)dΩ(z))dz .

Computing u requires:

1. Integrating along rays on the discretization mesh:

2. Estimating the principal curvatures κi (y).

These two operations are quite delicate to implement !
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Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays:

Proposition 5

Let û ∈ Vω be the solution to the variational problem

∀v ∈ Vω,

∫
∂Ω

ûvds +

∫
D

ω(∇dΩ · ∇û)(∇dΩ · ∇v)dx = −
∫
D

j ′(dΩ)vdx ,

Then u(y) = û(y) for any y ∈ ∂Ω.

This variational problem can easily be solved with FEM in 2D and 3D!

Sketch of the proof.

Take v = −d ′Ω(θ). Since ∇v · ∇dΩ = 0 and v = θ · n on ∂Ω, one finds∫
∂Ω

ûθ · nds =

∫
D

j ′(dΩ)d ′Ω(θ)dx .

whence û = u on ∂Ω.
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ω > 0 is a weight that can be chosen rather arbitrarily.
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ûvds +

∫
D
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Shape derivatives of geometric constraints

Recap:

I The shape derivative of a geometric constraint of the form

P(Ω) =

∫
D

j(dΩ(x))dx

reads

P ′(Ω)(θ) =

∫
D

j ′(dΩ)d ′Ω(θ)dx =

∫
∂Ω

uθ · nds.

I The function u can be computed efficiently as the trace on ∂Ω of the solution to the
variational problem

∀v ∈ Vω,

∫
∂Ω

ûvds +

∫
D

ω(∇dΩ · ∇û)(∇dΩ · ∇v)dx = −
∫
D

j ′(dΩ)vdx ,
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Numerical examples
Maximum thickness on MBB beam

Figure: MBB beam without thickness constraint



Numerical examples
Maximum thickness on MBB beam

Figure: MBB beam with maximum thickness constraint



Numerical examples
Minimum thickness on MBB beam

Figure: MBB beam without minimum thickness constraint
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Minimum thickness on MBB beam

Figure: MBB beam with thickness constraint



Numerical examples
Minimum thickness on MBB beam

Figure: MBB beam with minimum thickness constraint



Numerical examples
Minimum distance constraint

d(Ωf ,hot,Ωf ,cold)

Ωf ,cold

Γ

Ωf ,hot

D

Ωs

T co
ld

T
h

ot

Figure: Settings of the heat exchanger topology
optimization problem .

Non-penetration constraint:

d(Ωf ,hot,Ωf ,cold) > dmin.

We enforce it by imposing

∀x ∈ Ωf ,cold, dΩf ,hot (x) > dmin,

where dΩf ,hot is the signed distance
function to the domain Ωf ,hot.
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Minimum distance constraint



Numerical examples
3D fluid-to-fluid heat exchanger

x

z
y

d(Ωf ,hot,Ωf ,cold) > dmin

Thot

Tcold

D

Ωf ,hot

Ωf ,cold

Figure: Schematic of the 3D setting.



Numerical examples

Figure: Initial distribution of fluid considered for the 3D heat exchanger test case.
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Numerical examples

(a) Cold phase (b) Hot phase

Figure: Separate plots of the topologically optimized cold and hot fluid phases in the configuration
dmin = 0.04.



Numerical examples

Figure: Cut of the resulting solid domain


