Lecture 12: shape optimization with geometric constraints.

Florian Feppon

Spring 2022 - Seminar for Applied Mathematics

> ETHzürich

Geometric constraints

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector field θ :

$$
\Omega_{\theta}:=(I+\theta) \Omega=\{x+\theta(x) \mid x \in \Omega\}
$$

Geometric constraints

Given a Lipschitz domain Ω, we parameterize deformations of Ω by a continuous vector field θ :

$$
\Omega_{\theta}:=(I+\theta) \Omega=\{x+\theta(x) \mid x \in \Omega\}
$$

Figure: Deformation of a domain Ω with the method of Hadamard. A small vector field θ is used to deform Ω into $\Omega_{\theta}=(I+\theta) \Omega$.

Shape optimization problems

Shape/Topology optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Generically, a design optimization problem arises under the form

$$
\begin{aligned}
& \min _{\Omega \subset D} J(\Omega) \\
& \text { s.t. } \begin{cases}G_{i}(\Omega)=0, & 1 \leq i \leq p \\
H_{j}(\Omega) \leq 0, & 1 \leq j \leq q\end{cases}
\end{aligned}
$$

where

- Ω is an open domain sought to be optimized
- J is an objective function to minimize (corresponding to a measure of the performance)
- G_{i} and H_{j} are respectively p and q equality and inequality constraints (corresponding e.g. to industrial specifications to meet)

Shape optimization problems

Today: how to take into account geometric constraints, e.g.:

minimum thickness

Shape optimization problems

Today: how to take into account geometric constraints, e.g.:

- minimum thickness

- maximum thickness

Shape optimization problems

Today: how to take into account geometric constraints, e.g.:

- minimum thickness
- maximum thickness
- minimum distance between to connected components

Shape optimization problems

Today: how to take into account geometric constraints, e.g.:

- minimum thickness
- maximum thickness
- minimum distance between to connected components
- minimum angle with respect to a direction (overhang)

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

The signed distance function

Definition 1

The signed distance function d_{Ω} to the domain $\Omega \subset D$ is defined by:

$$
\forall x \in D, \quad d_{\Omega}(x)= \begin{cases}-\min _{y \in \partial \Omega}\|y-x\| & \text { if } x \in \Omega, \\ \min _{y \in \partial \Omega}\|y-x\| & \text { if } x \in D \backslash \Omega .\end{cases}
$$

The signed distance function

An example: a meshed subdomain $\Omega \subset D$

The signed distance function

An example: the signed distance function d_{Ω} :

The signed distance function

Definition 2 (Skeleton set and projection)

1. The set of points $x \in \mathbb{R}^{d}$ for which the minimization problem

$$
\begin{equation*}
\min _{y \in \partial \Omega}\|x-y\| \tag{1}
\end{equation*}
$$

admits several minimizers is called the skeleton of Ω and is denoted by Σ.

The signed distance function

Definition 2 (Skeleton set and projection)

2. For any $x \in \mathbb{R}^{d} \backslash \Sigma$, the unique minimizer of eq. (1) is denoted $p_{\partial \Omega}(x)$ and is called the (orthogonal) projection of x onto $\partial \Omega$, in that case it holds

$$
\forall x \in \mathbb{R}^{d} \backslash \Sigma, d_{\Omega}(x)=\left\{\begin{array}{r}
-\left\|x-p_{\partial \Omega}(x)\right\| \text { if } x \in \Omega \\
\left\|x-p_{\partial \Omega}(x)\right\| \text { if } x \notin \Omega
\end{array}\right.
$$

The signed distance function

Definition 2 (Skeleton set and projection)

2. For any $x \in \mathbb{R}^{d} \backslash \Sigma$, the unique minimizer of eq. (1) is denoted $p_{\partial \Omega}(x)$ and is called the (orthogonal) projection of x onto $\partial \Omega$, in that case it holds

$$
\forall x \in \mathbb{R}^{d} \backslash \Sigma, d_{\Omega}(x)=\left\{\begin{array}{r}
-\left\|x-p_{\partial \Omega}(x)\right\| \text { if } x \in \Omega \\
\left\|x-p_{\partial \Omega}(x)\right\| \text { if } x \notin \Omega
\end{array}\right.
$$

The signed distance function

The signed distance function

Proposition 1 (Differentiability of d_{Ω})

Assume Ω is a \mathcal{C}^{1} domain with outward normal n.

- The signed distance function d_{Ω} is differentiable at any point $x \in \mathbb{R}^{d} \backslash \Sigma$, and it is not differentiable on Σ.

The signed distance function

An example: the signed distance function d_{Ω} :

The signed distance function

Proposition 1 (Differentiability of d_{Ω})

Assume Ω is a \mathcal{C}^{1} domain with outward normal n.

- The signed distance function d_{Ω} is differentiable at any point $x \in \mathbb{R}^{d} \backslash \Sigma$, and it is not differentiable on Σ.

The signed distance function

Proposition 1 (Differentiability of d_{Ω})

Assume Ω is a \mathcal{C}^{1} domain with outward normal \boldsymbol{n}.

- The signed distance function d_{Ω} is differentiable at any point $x \in \mathbb{R}^{d} \backslash \Sigma$, and it is not differentiable on Σ.
- The gradient ∇d_{Ω} is an extension of the unit normal vector \boldsymbol{n} to $\partial \Omega$ pointing outward Ω :

$$
\forall x \in \mathbb{R}^{d} \backslash \Sigma, \nabla d_{\Omega}(x)=\boldsymbol{n}\left(p_{\partial \Omega}(x)\right)
$$

The signed distance function

An example: the gradient of the signed distance function ∇d_{Ω} :

The signed distance function

Proposition 1 (Differentiability of d_{Ω})

Assume Ω is a \mathcal{C}^{1} domain with outward normal \boldsymbol{n}.

- The signed distance function d_{Ω} is differentiable at any point $x \in \mathbb{R}^{d} \backslash \Sigma$, and it is not differentiable on Σ.
- The gradient ∇d_{Ω} is an extension of the unit normal vector \boldsymbol{n} to $\partial \Omega$ pointing outward Ω :

$$
\forall x \in \mathbb{R}^{d} \backslash \Sigma, \nabla d_{\Omega}(x)=\boldsymbol{n}\left(p_{\partial \Omega}(x)\right)
$$

The signed distance function

Proposition 1 (Differentiability of d_{Ω})

Assume Ω is a \mathcal{C}^{1} domain with outward normal \boldsymbol{n}.

- The signed distance function d_{Ω} is differentiable at any point $x \in \mathbb{R}^{d} \backslash \Sigma$, and it is not differentiable on Σ.
- The gradient ∇d_{Ω} is an extension of the unit normal vector \boldsymbol{n} to $\partial \Omega$ pointing outward Ω :

$$
\forall x \in \mathbb{R}^{d} \backslash \Sigma, \nabla d_{\Omega}(x)=\boldsymbol{n}\left(p_{\partial \Omega}(x)\right)
$$

- In particular, d_{Ω} solves the so-called "Eikonal" equation:

$$
\left\{\begin{aligned}
\left\|\nabla d_{\Omega}\right\| & =1 \text { in } \mathbb{R}^{d} \backslash \Sigma \\
d_{\Omega} & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

The signed distance function

Definition 3

The ray emerging from y is defined to be the one-dimensional segment

$$
\operatorname{ray}(y):=\left\{x \in D \backslash \bar{\Sigma}, \quad p_{\partial \Omega}(x)=y\right\}
$$

The signed distance function

Definition 3

The ray emerging from y is defined to be the one-dimensional segment

$$
\operatorname{ray}(y):=\left\{x \in D \backslash \bar{\Sigma}, \quad p_{\partial \Omega}(x)=y\right\}
$$

Proposition 2

For any $y \in \partial \Omega$, define $\zeta_{-}(y)$ and $\zeta_{+}(y)$ the distance at which the ray hits the boundary of D or the skeleton:

$$
\begin{aligned}
& \forall y \in \partial \Omega, \quad \zeta_{+}(y)=\sup \left\{s \geqslant 0 \mid\left\{y+t \nabla d_{\Omega}(y) \mid t \in[0, s)\right\} \cap(\bar{\Sigma} \cup \partial D)=\emptyset\right\} \\
& \forall y \in \partial \Omega, \quad \zeta_{-}(y)=\inf \left\{s \leq 0 \mid\left\{y+t \nabla d_{\Omega}(y) \mid t \in(s, 0]\right\} \cap(\bar{\Sigma} \cup \partial D)=\emptyset\right\}
\end{aligned}
$$

The signed distance function

Definition 3

The ray emerging from y is defined to be the one-dimensional segment

$$
\operatorname{ray}(y):=\left\{x \in D \backslash \bar{\Sigma}, \quad p_{\partial \Omega}(x)=y\right\}
$$

Proposition 2

For any $y \in \partial \Omega$, define $\zeta_{-}(y)$ and $\zeta_{+}(y)$ the distance at which the ray hits the boundary of D or the skeleton:

$$
\begin{aligned}
& \forall y \in \partial \Omega, \quad \zeta_{+}(y)=\sup \left\{s \geqslant 0 \mid\left\{y+t \nabla d_{\Omega}(y) \mid t \in[0, s)\right\} \cap(\bar{\Sigma} \cup \partial D)=\emptyset\right\} \\
& \forall y \in \partial \Omega, \quad \zeta_{-}(y)=\inf \left\{s \leq 0 \mid\left\{y+t \nabla d_{\Omega}(y) \mid t \in(s, 0]\right\} \cap(\bar{\Sigma} \cup \partial D)=\emptyset\right\}
\end{aligned}
$$

Then we also have

$$
\operatorname{ray}(y)=\left\{y+\operatorname{sn}(y) \mid \zeta_{-}(y)<s<\zeta_{+}(y)\right\}
$$

The signed distance function

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Formulation of geometric constraints

Some general principles:

- Geometric constraints are often point-wise constraints formulated from the signed distance function, e.g.

$$
p\left(d_{\Omega}(x), \nabla d_{\Omega}(x)\right) \leq 0, \quad \text { for all } x \in \Omega
$$

for some function p.

Formulation of geometric constraints

Some general principles:

- Geometric constraints are often point-wise constraints formulated from the signed distance function, e.g.

$$
p\left(d_{\Omega}(x), \nabla d_{\Omega}(x)\right) \leq 0, \quad \text { for all } x \in \Omega
$$

for some function p.

- The rationale is to approximate point-wise geometric constraints with a single averaged energy functional, e.g. $P(\Omega) \leq 0$;

Formulation of geometric constraints

Some general principles:

- Geometric constraints are often point-wise constraints formulated from the signed distance function, e.g.

$$
p\left(d_{\Omega}(x), \nabla d_{\Omega}(x)\right) \leq 0, \quad \text { for all } x \in \Omega
$$

for some function p.

- The rationale is to approximate point-wise geometric constraints with a single averaged energy functional, e.g. $P(\Omega) \leq 0$;
- Sometimes, enforcing strictly the constraint might not be desirable because the feasible region becomes tight, or because it may prevent topological changes (such as minimum thickness).

Formulation of geometric constraints

Some general principles:

- Geometric constraints are often point-wise constraints formulated from the signed distance function, e.g.

$$
p\left(d_{\Omega}(x), \nabla d_{\Omega}(x)\right) \leq 0, \quad \text { for all } x \in \Omega
$$

for some function p.

- The rationale is to approximate point-wise geometric constraints with a single averaged energy functional, e.g. $P(\Omega) \leq 0$;
- Sometimes, enforcing strictly the constraint might not be desirable because the feasible region becomes tight, or because it may prevent topological changes (such as minimum thickness).

Formulation of geometric constraints

Some general principles:

- Geometric constraints are often point-wise constraints formulated from the signed distance function, e.g.

$$
p\left(d_{\Omega}(x), \nabla d_{\Omega}(x)\right) \leq 0, \quad \text { for all } x \in \Omega
$$

for some function p.

- The rationale is to approximate point-wise geometric constraints with a single averaged energy functional, e.g. $P(\Omega) \leq 0$;
- Sometimes, enforcing strictly the constraint might not be desirable because the feasible region becomes tight, or because it may prevent topological changes (such as minimum thickness).
A trade-off can be achieved by setting the value desired for the objective function as a constraint, e.g.:

$$
\begin{array}{cl}
\min _{\Omega \subset D} & P(\Omega) \\
\text { s.t. } & J(\Omega) \leq 0.9 \mathrm{~J}_{o p t}
\end{array}
$$

where $\mathrm{J}_{\text {opt }}$ would be the optimal value without the constraint.

Formulation of geometric constraints

Maximum thickness

- Maximum thickness can be formulated as follows:

$$
\forall x \in \Omega, \quad d_{\Omega}(x) \geqslant-d_{\max } / 2
$$

Formulation of geometric constraints

Maximum thickness

- Maximum thickness can be formulated as follows:

$$
\forall x \in \Omega, \quad d_{\Omega}(x) \geqslant-d_{\max } / 2
$$

Formulation of geometric constraints

Maximum thickness

- Maximum thickness can be formulated as follows:

$$
\forall x \in \Omega, \quad d_{\Omega}(x) \geqslant-d_{\max } / 2
$$

- We can approximate this constraint as

$$
\left\|d_{\Omega}\right\|_{L \infty(\Omega)} \simeq\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \leq \frac{d_{\max }}{2}
$$

for some p large enough.

Formulation of geometric constraints

- Maximum thickness can be formulated as follows:

$$
\forall x \in \Omega, \quad d_{\Omega}(x) \geqslant-d_{\max } / 2
$$

- We can approximate this constraint as

$$
\left\|d_{\Omega}\right\|_{L \infty(\Omega)} \simeq\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \leq \frac{d_{\max }}{2}
$$

for some p large enough.

- This means taking into account the averaged constraint

$$
P_{\max }(\Omega) \leq d_{\max } \text { with } P_{\max }(\Omega):=2\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

Formulation of geometric constraints

Maximum thickness

(a) No maximum thickness constraint

(b) $d_{\max }=0.07$.

Figure: Maximum thickness constraint for 2D arch.

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

Formulation of geometric constraints

Minimum thickness

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

- Not straightforward to implement!

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

- Not straightforward to implement !

1. ζ_{-}is not differentiable with respect to the shape

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

- Not straightforward to implement !

1. ζ_{-}is not differentiable with respect to the shape
2. How to penalize $y \in \partial \Omega$ violating the minimum thickness is not clear

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

- Not straightforward to implement !

1. ζ_{-}is not differentiable with respect to the shape
2. How to penalize $y \in \partial \Omega$ violating the minimum thickness is not clear
3. Enforcing the minimum thickness at all iterations would prevent topological changes to occur.

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

- Not straightforward to implement !

1. ζ_{-}is not differentiable with respect to the shape
2. How to penalize $y \in \partial \Omega$ violating the minimum thickness is not clear
3. Enforcing the minimum thickness at all iterations would prevent topological changes to occur.

Formulation of geometric constraints

- Minimum thickness can be modelled by the condition that the shape has a distance greater than $d_{\text {min }} / 2$ to its skeleton:

$$
\forall y \in \partial \Omega, \quad \zeta_{-}(y)<-d_{\min } / 2
$$

- Not straightforward to implement!

1. ζ_{-}is not differentiable with respect to the shape
2. How to penalize $y \in \partial \Omega$ violating the minimum thickness is not clear
3. Enforcing the minimum thickness at all iterations would prevent topological changes to occur.

- It is better to rely on a more flexible formulation

Formulation of geometric constraints

Minimum thickness
We define an energy functional which is locally maximized when the minimum thickness requirement is satisfied:

Formulation of geometric constraints

Minimum thickness
We define an energy functional which is locally maximized when the minimum thickness requirement is satisfied:

$$
P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x
$$

Formulation of geometric constraints

Minimum thickness
We define an energy functional which is locally maximized when the minimum thickness requirement is satisfied:

$$
P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x
$$

the integrand is non-zero at $x \in \Omega$ only when $d_{\Omega}(x) \geqslant-d_{\text {min }} / 2$, i.e. on the part of the ray of length $d_{\text {min }} / 2$.

Formulation of geometric constraints

Minimum thickness
We define an energy functional which is locally maximized when the minimum thickness requirement is satisfied:

$$
P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x
$$

the integrand is non-zero at $x \in \Omega$ only when $d_{\Omega}(x) \geqslant-d_{\text {min }} / 2$, i.e. on the part of the ray of length $d_{\text {min }} / 2$.

- Minimizing $P_{\min }(\Omega)$ will therefore tend to increase the thickness of Ω up to $d_{\min }$.

Formulation of geometric constraints

Minimum thickness
We define an energy functional which is locally maximized when the minimum thickness requirement is satisfied:

$$
P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x
$$

- the integrand is non-zero at $x \in \Omega$ only when $d_{\Omega}(x) \geqslant-d_{\min } / 2$, i.e. on the part of the ray of length $d_{\text {min }} / 2$.
- Minimizing $P_{\min }(\Omega)$ will therefore tend to increase the thickness of Ω up to $d_{\text {min }}$.
- In order to find a good compromise between thickness and the original optimization problem, we use the reformulation

$$
\begin{aligned}
\min _{\Omega \subset D} & P_{\min }(\Omega) \\
\text { s.t. } & J(\Omega) \leq \alpha \mathrm{J}_{o p t}
\end{aligned}
$$

where α is the loss of performance we allow on the objective function due to the minimum thickness requirement

Formulation of geometric constraints

We define an energy functional which is locally maximized when the minimum thickness requirement is satisfied:

$$
P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x
$$

- the integrand is non-zero at $x \in \Omega$ only when $d_{\Omega}(x) \geqslant-d_{\min } / 2$, i.e. on the part of the ray of length $d_{\text {min }} / 2$.
- Minimizing $P_{\min }(\Omega)$ will therefore tend to increase the thickness of Ω up to $d_{\text {min }}$.
- In order to find a good compromise between thickness and the original optimization problem, we use the reformulation

$$
\begin{array}{ll}
\min _{\Omega \subset D} & P_{\min }(\Omega) \\
\text { s.t. } & J(\Omega) \leq \alpha \mathrm{J}_{o p t}
\end{array}
$$

where α is the loss of performance we allow on the objective function due to the minimum thickness requirement

- the minimization will find shapes with good performances and which satisfy approximately the minimum thickness constraint.

Formulation of geometric constraints

(a) No minimum thickness constraint.

(b) $d_{\text {min }}=0.1$.

(c) $d_{\text {min }}=0.2$

Figure: Minimum thickness.constraint for 2D cantilever.

Formulation of geometric constraints

Distance constraint:

Formulation of geometric constraints

Minimum distance constraint

An application: heat-exchangers:

Distance constraint:

$$
d\left(\Omega_{f, \text { hot }}, \Omega_{f, \text { cold }}\right) \geqslant d_{\min } .
$$

Figure: Minimum distance constraint for two-fluid heat-exchangers.

Formulation of geometric constraints

Minimum distance constraint

An application: heat-exchangers:

Distance constraint:

$$
d\left(\Omega_{f, \text { hot }}, \Omega_{f, \text { cold }}\right) \geqslant d_{\min }
$$

We enforce it by imposing

$$
\forall x \in \Omega_{f, \text { cold }}, \quad d_{\Omega_{f, \text { hot }}}(x) \geqslant d_{\min }
$$

where $d_{\Omega_{f, \text { hot }}}$ is the signed distance function to the domain $\Omega_{f \text {, hot }}$.

Figure: Minimum distance constraint for two-fluid heat-exchangers.

Formulation of geometric constraints

Minimum distance constraint

$$
\forall x \in \Omega_{f, \text { cold }}, \quad d_{\Omega_{f, \text { hot }}}(x) \geqslant d_{\min }
$$

This constraint can be equivalently formulated as

$$
\left\|\frac{1}{d_{\Omega_{f, \text { hot }}}}\right\|_{L^{\infty}\left(\Omega_{f, \text { cold })}\right.} \leq \frac{1}{d_{\min }} \Leftrightarrow\left\|\frac{1}{d_{\Omega_{f, \text { hot }}}}\right\|_{L^{\infty}\left(\Omega_{f, \text { cold }}\right)}^{-1} \geqslant d_{\min }
$$

Formulation of geometric constraints

Minimum distance constraint

$$
\forall x \in \Omega_{f, \text { cold }}, \quad d_{\Omega_{f, \text { hot }}}(x) \geqslant d_{\min }
$$

This constraint can be equivalently formulated as

$$
\left\|\frac{1}{d_{\Omega_{f, \text { hot }}}}\right\|_{L^{\infty}\left(\Omega_{f, \text { cold })}\right.} \leq \frac{1}{d_{\min }} \Leftrightarrow\left\|\frac{1}{d_{\Omega_{f, \text { hot }}}}\right\|_{L^{\infty}\left(\Omega_{f, \text { cold }}\right)}^{-1} \geqslant d_{\text {min }} .
$$

We can approximate it by

$$
Q_{\text {hot } \rightarrow \text { cold }}\left(\Omega_{f}\right) \geqslant d_{\min }
$$

were

$$
Q_{\text {hot } \rightarrow \text { cold }}\left(\Omega_{f}\right):=\left(\int_{\Omega_{f, \text { cold }}} \frac{1}{\mid d_{\left.\Omega_{f, \text { hot }}\right|^{p}}} \mathrm{~d} x\right)^{-\frac{1}{p}}
$$

Formulation of geometric constraints
Overhang constraint

Formulation of geometric constraints
Overhang constraint

Formulation of geometric constraints

Overhang constraint

Overhang constraint: the angle θ between the tangent plane and the vertical direction must not be too large, e.g.

$$
\theta \leq \beta
$$

where β is the maximum angle allowed (e.g. $\beta=\pi / 4$).

Formulation of geometric constraints

Overhang constraint

Overhang constraint: the angle θ between the tangent plane and the vertical direction must not be too large, e.g.

$$
\theta \leq \beta
$$

where β is the maximum angle allowed (e.g. $\beta=\pi / 4$).
Equivalently:

$$
\forall y \in \partial \Omega, \boldsymbol{n}(y) \cdot \boldsymbol{e}_{y}=\cos (\pi / 2+\theta)=-\sin (\theta) \geqslant-\sin (\beta)
$$

Formulation of geometric constraints

Overhang constraint

$$
\forall y \in \partial \Omega, \boldsymbol{n}(y) \cdot \boldsymbol{e}_{y}=\cos (\pi / 2+\theta)=-\sin (\theta) \geqslant-\sin (\beta)
$$

Formulation of geometric constraints

Overhang constraint

$$
\forall y \in \partial \Omega, \boldsymbol{n}(y) \cdot \boldsymbol{e}_{y}=\cos (\pi / 2+\theta)=-\sin (\theta) \geqslant-\sin (\beta)
$$

Remembering that $\boldsymbol{n}(y)=\nabla d_{\Omega(y)}$, we can formulate this in terms of d_{Ω} :

$$
\forall y \in \partial \Omega, \nabla d_{\Omega}(y) \cdot \boldsymbol{e}_{y} \geqslant-\sin (\beta)
$$

Formulation of geometric constraints

$$
\forall y \in \partial \Omega, \boldsymbol{n}(y) \cdot \boldsymbol{e}_{y}=\cos (\pi / 2+\theta)=-\sin (\theta) \geqslant-\sin (\beta)
$$

Remembering that $\boldsymbol{n}(y)=\nabla d_{\Omega(y)}$, we can formulate this in terms of d_{Ω} :

$$
\forall y \in \partial \Omega, \nabla d_{\Omega}(y) \cdot \boldsymbol{e}_{y} \geqslant-\sin (\beta)
$$

Since ∇d_{Ω} is an extension of the normal along the rays, we can in fact consider

$$
\forall x \in \Omega, \nabla d_{\Omega}(x) \cdot \boldsymbol{e}_{y} \geqslant-\sin (\beta)
$$

Formulation of geometric constraints

$$
\forall y \in \partial \Omega, \boldsymbol{n}(y) \cdot \boldsymbol{e}_{y}=\cos (\pi / 2+\theta)=-\sin (\theta) \geqslant-\sin (\beta)
$$

Remembering that $\boldsymbol{n}(y)=\nabla d_{\Omega(y)}$, we can formulate this in terms of d_{Ω} :

$$
\forall y \in \partial \Omega, \nabla d_{\Omega}(y) \cdot \boldsymbol{e}_{y} \geqslant-\sin (\beta)
$$

Since ∇d_{Ω} is an extension of the normal along the rays, we can in fact consider

$$
\forall x \in \Omega, \nabla d_{\Omega}(x) \cdot \boldsymbol{e}_{y} \geqslant-\sin (\beta)
$$

This is equivalent to

$$
\nabla d_{\Omega} \cdot \boldsymbol{e}_{y}+\sin \beta \geqslant 0
$$

for instance

$$
P_{\beta}(\Omega)=0 \text { with } P_{\beta}(\Omega):=\int_{\Omega} \min \left(\nabla d_{\Omega} \cdot \boldsymbol{e}_{y}+\sin (\beta), 0\right)^{2} \mathrm{~d} x
$$

Formulation of geometric constraints

Recap

- Maximum thickness:

$$
P_{\max }(\Omega) \leq d_{\max } \text { with } P_{\max }(\Omega):=2\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

Formulation of geometric constraints

Recap

- Maximum thickness:

$$
P_{\max }(\Omega) \leq d_{\max } \text { with } P_{\max }(\Omega):=2\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

- Minimum thickness:

$$
\begin{array}{ll}
\min _{\Omega \subset D} & P_{\min }(\Omega) \\
\text { s.t. } & J(\Omega) \leq \alpha \mathrm{J}_{o p t}
\end{array} \text { with } P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x .
$$

Formulation of geometric constraints

Recap

- Maximum thickness:

$$
P_{\max }(\Omega) \leq d_{\max } \text { with } P_{\max }(\Omega):=2\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

- Minimum thickness:

$$
\begin{array}{ll}
\min _{\Omega \subset D} & P_{\min }(\Omega) \\
\text { s.t. } & J(\Omega) \leq \alpha \mathrm{J}_{\text {opt }}
\end{array} \text { with } P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x .
$$

- Minimum distance constraint:

$$
Q_{\text {hot } \rightarrow \text { cold }}\left(\Omega_{f}\right) \geqslant d_{\text {min }} \text { with } Q_{\text {hot } \rightarrow \text { cold }}\left(\Omega_{f}\right):=\left(\int_{\Omega_{f, \text { cold }}} \frac{1}{\mid d_{\left.\Omega_{f, \text { hot }}\right|^{p}}} \mathrm{dx}\right)^{-\frac{1}{p}}
$$

Formulation of geometric constraints

Recap

- Maximum thickness:

$$
P_{\max }(\Omega) \leq d_{\max } \text { with } P_{\max }(\Omega):=2\left(\frac{1}{|\Omega|} \int_{\Omega}\left|d_{\Omega}\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

- Minimum thickness:

$$
\begin{array}{ll}
\min _{\Omega \subset D} & P_{\min }(\Omega) \\
\text { s.t. } & J(\Omega) \leq \alpha \mathrm{J}_{\text {opt }}
\end{array} \text { with } P_{\min }(\Omega):=\int_{\Omega} d_{\Omega}^{2} \max \left(d_{\Omega}+d_{\min } / 2,0\right)^{2} \mathrm{~d} x .
$$

- Minimum distance constraint:

$$
Q_{\text {hot } \rightarrow \operatorname{cold}}\left(\Omega_{f}\right) \geqslant d_{\text {min }} \text { with } Q_{\text {hot } \rightarrow \operatorname{cold}}\left(\Omega_{f}\right):=\left(\int_{\Omega_{f, \text { cold }}} \frac{1}{\mid d_{\left.\Omega_{f, \text { hot }}\right|^{p}}} \mathrm{dx}\right)^{-\frac{1}{p}}
$$

- Maximum overhang:

$$
P_{\beta}(\Omega)=0 \text { with } P_{\beta}(\Omega):=\int_{\Omega} \min \left(\nabla d_{\Omega} \cdot \boldsymbol{e}_{y}+\sin (\beta), 0\right)^{2} \mathrm{~d} x
$$

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Shape derivatives of geometric constraints

All the previous formulations bring into play functionals formulated in terms of the signed distance function d_{Ω}, e.g.

$$
P(\Omega)=\int_{D} j\left(d_{\Omega}\right) \mathrm{d} x
$$

Shape derivatives of geometric constraints

All the previous formulations bring into play functionals formulated in terms of the signed distance function d_{Ω}, e.g.

$$
P(\Omega)=\int_{D} j\left(d_{\Omega}\right) \mathrm{d} x
$$

The shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\theta)=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\theta)(x) \mathrm{d} x
$$

Shape derivatives of geometric constraints

All the previous formulations bring into play functionals formulated in terms of the signed distance function d_{Ω}, e.g.

$$
P(\Omega)=\int_{D} j\left(d_{\Omega}\right) \mathrm{d} x
$$

The shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\theta)=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\theta)(x) \mathrm{d} x
$$

In order to compute the shape derivative of $P(\Omega)$, we need to compute the shape derivative $d_{\Omega}^{\prime}(\boldsymbol{\theta})$.

Shape derivatives of geometric constraints

Proposition 3

For any $x \notin \Sigma$, the map $\boldsymbol{\theta} \mapsto d_{(I+\boldsymbol{\theta}) \Omega}(x)$ is Gâteaux-differentiable at $\boldsymbol{\theta}$ as an application from $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ into R^{d} and its derivative reads

$$
d_{\Omega}^{\prime}(\boldsymbol{\theta})(x)=-\boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right) .
$$

Shape derivatives of geometric constraints

Proposition 3

For any $x \notin \Sigma$, the map $\boldsymbol{\theta} \mapsto d_{(I+\boldsymbol{\theta}) \Omega}(x)$ is Gâteaux-differentiable at $\boldsymbol{\theta}$ as an application from $W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ into R^{d} and its derivative reads

$$
d_{\Omega}^{\prime}(\boldsymbol{\theta})(x)=-\boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right)
$$

Equivalently, $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ is characterized by the boundary value problem

Shape derivatives of geometric constraints

The shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x
$$

Shape derivatives of geometric constraints

The shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) \boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right) \mathrm{d} x .
$$

Shape derivatives of geometric constraints

The shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) \boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right) \mathrm{d} x .
$$

The composition with the projection $p_{\partial \Omega}$ is not very easy to implement.

Shape derivatives of geometric constraints

Proposition 4

For any $\boldsymbol{\theta} \in W^{1, \infty}\left(D, \mathbb{R}^{d}\right)$, we have
$P^{\prime}(\Omega)(\boldsymbol{\theta})=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) \boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right) \mathrm{d} x$

Shape derivatives of geometric constraints

Proposition 4

For any $\boldsymbol{\theta} \in W^{1, \infty}\left(D, \mathbb{R}^{d}\right)$, we have

$$
\begin{aligned}
P^{\prime}(\Omega)(\boldsymbol{\theta}) & =-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) \boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right) \mathrm{d} x \\
& =-\int_{\partial \Omega}\left(\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z\right) \boldsymbol{\theta}(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y)
\end{aligned}
$$

Shape derivatives of geometric constraints

Proposition 4

For any $\boldsymbol{\theta} \in W^{1, \infty}\left(D, \mathbb{R}^{d}\right)$, we have

$$
\begin{aligned}
P^{\prime}(\Omega)(\boldsymbol{\theta})= & -\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) \boldsymbol{\theta}\left(p_{\partial \Omega}(x)\right) \cdot \boldsymbol{n}\left(p_{\partial \Omega}(x)\right) \mathrm{d} x \\
= & -\int_{\partial \Omega}\left(\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z\right) \boldsymbol{\theta}(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y) \\
= & \int_{\partial \Omega} u(y) \boldsymbol{\theta}(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y) \\
& \text { with } u(y)=-\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z .
\end{aligned}
$$

Shape derivatives of geometric constraints

$$
P^{\prime}(\Omega)=\int_{\partial \Omega} u(y) \boldsymbol{\theta}(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y) \text { with } u(y)=-\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z .
$$

Shape derivatives of geometric constraints

$$
P^{\prime}(\Omega)=\int_{\partial \Omega} u(y) \theta(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y) \text { with } u(y)=-\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z .
$$

Computing u requires:

Shape derivatives of geometric constraints

$$
P^{\prime}(\Omega)=\int_{\partial \Omega} u(y) \boldsymbol{\theta}(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y) \text { with } u(y)=-\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z .
$$

Computing u requires:

1. Integrating along rays on the discretization mesh:

Shape derivatives of geometric constraints

$P^{\prime}(\Omega)=\int_{\partial \Omega} u(y) \boldsymbol{\theta}(y) \cdot \boldsymbol{n}(y) \mathrm{d} \sigma(y)$ with $u(y)=-\int_{z \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(z)\right) \prod_{i=1}^{d-1}\left(1+\kappa_{i}(y) d_{\Omega}(z)\right) \mathrm{d} z$.
Computing u requires:

1. Integrating along rays on the discretization mesh:

2. Estimating the principal curvatures $\kappa_{i}(y)$.

These two operations are quite delicate to implement!

Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays:

Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays:

Proposition 5

Let $\hat{u} \in V_{\omega}$ be the solution to the variational problem

$$
\forall v \in V_{\omega}, \int_{\partial \Omega} \hat{u} v \mathrm{~d} s+\int_{D} \omega\left(\nabla d_{\Omega} \cdot \nabla \hat{u}\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D} j^{\prime}\left(d_{\Omega}\right) v \mathrm{~d} x
$$

Then $u(y)=\hat{u}(y)$ for any $y \in \partial \Omega$.

Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays:

Proposition 5

Let $\hat{u} \in V_{\omega}$ be the solution to the variational problem

$$
\forall v \in V_{\omega}, \int_{\partial \Omega} \hat{u} v \mathrm{~d} s+\int_{D} \omega\left(\nabla d_{\Omega} \cdot \nabla \hat{u}\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D} j^{\prime}\left(d_{\Omega}\right) v \mathrm{~d} x
$$

Then $u(y)=\hat{u}(y)$ for any $y \in \partial \Omega$.
$\omega>0$ is a weight that can be chosen rather arbitrarily.

Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays:

Proposition 5

Let $\hat{u} \in V_{\omega}$ be the solution to the variational problem

$$
\forall v \in V_{\omega}, \int_{\partial \Omega} \hat{u} v \mathrm{~d} s+\int_{D} \omega\left(\nabla d_{\Omega} \cdot \nabla \hat{u}\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D} j^{\prime}\left(d_{\Omega}\right) v \mathrm{~d} x
$$

Then $u(y)=\hat{u}(y)$ for any $y \in \partial \Omega$.
This variational problem can easily be solved with FEM in 2D and 3D!

Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays:

Proposition 5

Let $\hat{u} \in V_{\omega}$ be the solution to the variational problem

$$
\forall v \in V_{\omega}, \int_{\partial \Omega} \hat{u} v \mathrm{~d} s+\int_{D} \omega\left(\nabla d_{\Omega} \cdot \nabla \hat{u}\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D} j^{\prime}\left(d_{\Omega}\right) v \mathrm{~d} x
$$

Then $u(y)=\hat{u}(y)$ for any $y \in \partial \Omega$.
This variational problem can easily be solved with FEM in 2D and 3D!
Sketch of the proof.
Take $v=-d_{\Omega}^{\prime}(\boldsymbol{\theta})$. Since $\nabla v \cdot \nabla d_{\Omega}=0$ and $v=\boldsymbol{\theta} \cdot \boldsymbol{n}$ on $\partial \Omega$, one finds

$$
\int_{\partial \Omega} \hat{u} \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} s=\int_{D} j^{\prime}\left(d_{\Omega}\right) d_{\Omega}^{\prime}(\boldsymbol{\theta}) \mathrm{d} x .
$$

whence $\hat{u}=u$ on $\partial \Omega$.

Shape derivatives of geometric constraints

Recap:

- The shape derivative of a geometric constraint of the form

$$
P(\Omega)=\int_{D} j\left(d_{\Omega}(x)\right) \mathrm{d} x
$$

reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D} j^{\prime}\left(d_{\Omega}\right) d_{\Omega}^{\prime}(\theta) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} s
$$

Shape derivatives of geometric constraints

Recap:

- The shape derivative of a geometric constraint of the form

$$
P(\Omega)=\int_{D} j\left(d_{\Omega}(x)\right) \mathrm{d} x
$$

reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D} j^{\prime}\left(d_{\Omega}\right) d_{\Omega}^{\prime}(\theta) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} s
$$

- The function u can be computed efficiently as the trace on $\partial \Omega$ of the solution to the variational problem

$$
\forall v \in V_{\omega}, \int_{\partial \Omega} \hat{u} v \mathrm{~d} s+\int_{D} \omega\left(\nabla d_{\Omega} \cdot \nabla \hat{u}\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D} j^{\prime}\left(d_{\Omega}\right) v \mathrm{~d} x
$$

Shape derivatives of geometric constraints

Recap:

- The shape derivative of a geometric constraint of the form

$$
P(\Omega)=\int_{D} j\left(d_{\Omega}(x)\right) \mathrm{d} x
$$

reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D} j^{\prime}\left(d_{\Omega}\right) d_{\Omega}^{\prime}(\theta) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{~d} s
$$

- The function u can be computed efficiently as the trace on $\partial \Omega$ of the solution to the variational problem

$$
\forall v \in V_{\omega}, \int_{\partial \Omega} \hat{u} v \mathrm{~d} s+\int_{D} \omega\left(\nabla d_{\Omega} \cdot \nabla \hat{u}\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D} j^{\prime}\left(d_{\Omega}\right) v \mathrm{~d} x
$$

Outline

1. The signed distance function
2. Formulation of geometric constraints
3. Shape derivatives of geometric constraints
4. Numerical examples

Numerical examples

Maximum thickness on MBB beam

Numerical examples

Optimized shape without maximum thickness constraint ($\max d_{\Omega}=0.36$).
Figure: MBB beam without thickness constraint

Numerical examples

(c) Optimized shape with maximum thickness constraint.

Figure: MBB beam with maximum thickness constraint

Numerical examples

(a) Optimized shape without minimum thickness constraint.

Figure: MBB beam without minimum thickness constraint

Numerical examples

(b) Optimized shape with minimum thickness constraint $\left(d_{\text {min }}=0.1\right)$.

Figure: MBB beam with thickness constraint

Numerical examples

(c) Optimized shape with minimum thickness constraint $\left(d_{\min }=0.2\right)$.

Figure: MBB beam with minimum thickness constraint

Numerical examples

Minimum distance constraint

Non-penetration constraint:

$$
d\left(\Omega_{f, \text { hot }}, \Omega_{f, \text { cold }}\right) \geqslant d_{\min } .
$$

We enforce it by imposing

$$
\forall x \in \Omega_{f, \text { cold }}, \quad d_{\Omega_{f, \text { hot }}}(x) \geqslant d_{\min }
$$

where $d_{\Omega_{f, \text { hot }}}$ is the signed distance function to the domain $\Omega_{f \text {, hot }}$.

Figure: Settings of the heat exchanger topology optimization problem.

Numerical examples

Minimum distance constraint

Iteration 0

Numerical examples

3D fluid-to-fluid heat exchanger

Figure: Schematic of the 3D setting.

Numerical examples

Figure: Initial distribution of fluid considered for the 3D heat exchanger test case.

Numerical examples

Numerical examples

Numerical examples

Figure: Separate plots of the topologically optimized cold and hot fluid phases in the configuration $d_{\text {min }}=0.04$.

Numerical examples

Figure: Cut of the resulting solid domain

