A mathematical treatment of bank monitoring incentives

by Stefan Gerhold 1, Paolo Guasoni2, Johannes Muhle-Karbe3 and Walter Schachermayer4
1 Technische Universität Wien, Institut fü̈r Wirtschaftsmathematik Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
(email: sgerhold@fam.tuwien.ac.at )

2Boston University, Department of Mathematics and Statistics 111 Cummington Street, Boston, MA 02215, USA and Dublin City University, School of Mathematical Sciences Glasnevin, Dublin 9, Ireland
(email: guasoni@bu.edu)

3 ETH Zürich, Departement für Mathematik, and Swiss Finance Institute Rämistrasse 101, CH-8092 Zürich, Switzerland
(email: johannes.muhle-karbe@math.ethz.ch)

4 Universität Wien, Fakultät für Mathematik Nordbergstrasse 15, A-1090 Wien, Austria
(email: walter.schachermayer@univie.ac.at)


Abstract In a market with one safe and one risky asset, an investor with a long horizon, constant investment opportunities, and constant relative risk aversion trades with small proportional transaction costs.We derive explicit formulas for the optimal investment policy, its implied welfare, liquidity premium, and trading volume. At the first order, the liquidity premium equals the spread, times share turnover, times a universal constant. Results are robust to consumption and finite horizons. We exploit the equivalence of the transaction cost market to another frictionless market, with a shadow risky asset, in which investment opportunities are stochastic. The shadow price is also found explicitly.

Key words: transaction costs,  long-run,  portfolio choice,  liquidity premium,  trading volume


JEL Classification:G11, G12
Mathematics Subject Classification (2000):91G10, 91G80