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Least Squares Estimation

The method of least squares is about estimating
parameters by minimizing the squared discrepancies
between observed data, on the one hand, and their
expected values on the other (see Optimization
Methods). We will study the method in the context
of a regression problem, where the variation in
one variable, called the response variable Y , can
be partly explained by the variation in the other
variables, called covariables X (see Multiple Linear
Regression). For example, variation in exam results
Y are mainly caused by variation in abilities and
diligence X of the students, or variation in survival
times Y (see Survival Analysis) are primarily due to
variations in environmental conditions X. Given the
value of X, the best prediction of Y (in terms of mean
square error – see Estimation) is the mean f (X) of
Y given X. We say that Y is a function of X plus
noise:

Y = f (X) + noise.

The function f is called a regression function. It is to
be estimated from sampling n covariables and their
responses (x1, y1), . . . , (xn, yn).

Suppose f is known up to a finite number p ≤ n

of parameters β = (β1, . . . , βp)
′
, that is, f = fβ . We

estimate β by the value β̂ that gives the best fit to
the data. The least squares estimator, denoted by β̂,
is that value of b that minimizes

n∑
i=1

(yi − fb(xi))
2, (1)

over all possible b.
The least squares criterion is a computationally

convenient measure of fit. It corresponds to maxi-
mum likelihood estimation when the noise is nor-
mally distributed with equal variances. Other mea-
sures of fit are sometimes used, for example, least
absolute deviations, which is more robust against out-
liers. (See Robust Testing Procedures).

Linear Regression. Consider the case where fβ is
a linear function of β, that is,

fβ(X) = X1β1 + · · · + Xpβp. (2)

Here (X1, . . . , Xp) stand for the observed variables
used in fβ(X).

To write down the least squares estimator for the
linear regression model, it will be convenient to use
matrix notation. Let y = (y1, . . . , yn)

′ and let X be
the n × p data matrix of the n observations on the p

variables

X =

 x1,1 · · · x1,p

... · · · ...
xn,1 · · · xn,p


 = ( x1 . . . xp ) , (3)

where xj is the column vector containing the n

observations on variable j , j = 1, . . . , n. Denote
the squared length of an n-dimensional vector v by
‖v‖2 = v′v = ∑n

i=1 v2
i . Then expression (1) can be

written as
‖y − Xb‖2,

which is the squared distance between the vector y
and the linear combination b of the columns of the
matrix X. The distance is minimized by taking the
projection of y on the space spanned by the columns
of X (see Figure 1).

Suppose now that X has full column rank, that
is, no column in X can be written as a linear
combination of the other columns. Then, the least
squares estimator β̂ is given by

β̂ = (X
′
X)−1 X

′
y. (4)

The Variance of the Least Squares Estimator.
In order to construct confidence intervals for the
components of β̂, or linear combinations of these
components, one needs an estimator of the covariance
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Figure 1 The projection of the vector y on the plane
spanned by X
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matrix of β̂. Now, it can be shown that, given X, the
covariance matrix of the estimator β̂ is equal to

(X
′
X)−1σ 2.

where σ 2 is the variance of the noise. As an estimator
of σ 2, we take

σ̂ 2 = 1

n − p
‖y − Xβ̂‖2 = 1

n − p

n∑
i=1

ê2
i , (5)

where the êi are the residuals

êi = yi − xi,1β̂1 − · · · − xi,pβ̂p. (6)

The covariance matrix of β̂ can, therefore, be esti-
mated by

(X
′
X)−1σ̂ 2.

For example, the estimate of the variance of β̂j is

ˆvar(β̂j ) = τ 2
j σ̂ 2,

where τ 2
j is the j th element on the diagonal of

(X
′
X)−1. A confidence interval for βj is now obtained

by taking the least squares estimator β̂j± a margin:

β̂j ± c

√
ˆvar(β̂j ), (7)

where c depends on the chosen confidence level. For
a 95% confidence interval, the value c = 1.96 is a
good approximation when n is large. For smaller
values of n, one usually takes a more conservative
c using the tables for the student distribution with
n − p degrees of freedom.

Numerical Example. Consider a regression with
constant, linear and quadratic terms:

fβ(X) = β1 + Xβ2 + X2β3. (8)

We take n = 100 and xi = i/n, i = 1, . . . , n. The
matrix X is now

X =

 1 x1 x2

1...
...

...
1 xn x2

n


 . (9)

This gives

X
′
X =

( 100 50.5 33.8350
50.5 33.8350 25.5025

33.8350 25.5025 20.5033

)
,

(X
′
X)−1 =

( 0.0937 −0.3729 0.3092
−0.3729 1.9571 −1.8189
0.3092 −1.8189 1.8009

)
.

(10)

We simulated n independent standard normal
random variables e1, . . . , en, and calculated for i =
1, . . . , n,

yi = 1 − 3xi + ei . (11)

Thus, in this example, the parameters are(
β1

β2

β3

)
=

( 1
−3
0

)
. (12)

Moreover, σ 2 = 1. Because this is a simulation, these
values are known.

To calculate the least squares estimator, we need
the values of X

′
y, which, in this case, turn out to be

X
′
y =

(−64.2007
−52.6743
−42.2025

)
. (13)

The least squares estimate is thus

β̂ =
( 0.5778

−2.3856
−0.0446

)
. (14)

From the data, we also calculated the estimated
variance of the noise, and found the value

σ̂ 2 = 0.883. (15)

The data are represented in Figure 2. The dashed
line is the true regression fβ(x). The solid line is the
estimated regression fβ̂(x).

The estimated regression is barely distinguishable
from a straight line. Indeed, the value β̂3 = −0.0446
of the quadratic term is small. The estimated variance
of β̂3 is

ˆvar(β̂3) = 1.8009 × 0.883 = 1.5902. (16)

Using c = 1.96 in (7), we find the confidence interval

β3 ∈ −0.0446 ± 1.96
√

1.5902 = [−2.5162, 2.470].

(17)
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Figure 2 Observed data, true regression (dashed line), and
least squares estimate (solid line)

Thus, β3 is not significantly different from zero at the
5% level, and, hence, we do not reject the hypothesis
H0: β3 = 0.

Below, we will consider general test statistics for
testing hypotheses on β. In this particular case, the
test statistic takes the form

T 2 = β̂2
3

ˆvar(β̂3)
= 0.0012. (18)

Using this test statistic is equivalent to the above
method based on the confidence interval. Indeed,
as T 2 < (1.96)2, we do not reject the hypothesis
H0 : β3 = 0.

Under the hypothesis H0 : β3 = 0, we use the least
squares estimator(

β̂1,0

β̂2,0

)
= (X

′
0X0)

−1X
′
0y =

(
0.5854

−2.4306

)
. (19)

Here,

X0 =

 1 x1...

...
1 xn


 . (20)

It is important to note that setting β3 to zero changes
the values of the least squares estimates of β1 and β2:(

β̂1,0

β̂2,0

)
�=

(
β̂1

β̂2

)
. (21)

This is because β̂3 is correlated with β̂1 and β̂2. One
may verify that the correlation matrix of β̂ is( 1 −0.8708 0.7529

−0.8708 1 −0.9689
0.7529 −0.9689 1

)
.

Testing Linear Hypotheses. The testing problem
considered in the numerical example is a special case
of testing a linear hypothesis H0 : Aβ = 0, where A

is some r × p matrix. As another example of such
a hypothesis, suppose we want to test whether two
coefficients are equal, say H0 : β1 = β2. This means
there is one restriction r = 1, and we can take A as
the 1 × p row vector

A = (1, −1, 0, . . . , 0). (22)

In general, we assume that there are no linear
dependencies in the r restrictions Aβ = 0. To test
the linear hypothesis, we use the statistic

T 2 = ‖Xβ̂0 − Xβ̂‖2/r

σ̂ 2
, (23)

where β̂0 is the least squares estimator under H0 :
Aβ = 0. In the numerical example, this statistic takes
the form given in (18). When the noise is normally
distributed, critical values can be found in a table
for the F distribution with r and n − p degrees of
freedom. For large n, approximate critical values are
in the table of the χ2 distribution with r degrees of
freedom.

Some Extensions

Weighted Least Squares. In many cases, the vari-
ance σ 2

i of the noise at measurement i depends on xi .
Observations where σ 2

i is large are less accurate, and,
hence, should play a smaller role in the estimation of
β. The weighted least squares estimator is that value
of b that minimizes the criterion

n∑
i=1

(yi − fb(xi))
2

σ 2
i

.

overall possible b. In the linear case, this criterion is
numerically of the same form, as we can make the
change of variables ỹi = yi /σi and x̃i,j = xi,j /σi .



4 Least Squares Estimation

The minimum χ2-estimator (see Estimation) is an
example of a weighted least squares estimator in the
context of density estimation.

Nonlinear Regression. When fβ is a nonlinear
function of β, one usually needs iterative algorithms
to find the least squares estimator. The variance can
then be approximated as in the linear case, with
ḟβ̂ (xi) taking the role of the rows of X. Here,
ḟβ(xi) = ∂fβ(xi)/∂β is the row vector of derivatives
of fβ(xi). For more details, see e.g. [4].

Nonparametric Regression. In nonparametric re-
gression, one only assumes a certain amount of
smoothness for f (e.g., as in [1]), or alternatively,
certain qualitative assumptions such as monotonicity
(see [3]). Many nonparametric least squares proce-
dures have been developed and their numerical and
theoretical behavior discussed in literature. Related
developments include estimation methods for models

where the number of parameters p is about as
large as the number of observations n. The curse of
dimensionality in such models is handled by apply-
ing various complexity regularization techniques (see
e.g., [2]).
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