
SciPyTutorial Documentation
Release 0.0.1

VG

January 31, 2011

CONTENTS

1 Basics 1
1.1 A Dialog on Python for Scientific Computing . 1
1.2 Introduction . 2
1.3 Installation tips . 3
1.4 First steps in Python . 5
1.5 Basic Tutorial . 37
1.6 IPython tips . 50
1.7 Matplotlib tips . 56
1.8 Mayavi2 tips . 59
1.9 Other noteworthy plot commands . 64
1.10 Examples . 65
1.11 Useful links . 74
1.12 Installing python packages . 75

2 Advanced Stuff 77
2.1 Optimization of Python Code . 77
2.2 Timing Your Code . 78
2.3 Gluing Stand-Alone Applications . 82
2.4 Symbolical calculations . 86
2.5 Making of: animations . 88
2.6 Input / Output of numerical data . 91
2.7 Combining Python with Fortran, C and C++ . 94

3 Indices and tables 99

Index 101

i

ii

CHAPTER

ONE

BASICS

Contents:

1.1 A Dialog on Python for Scientific Computing

Why should I learn Python?

If you consider the possibility that you will work in a different domain than
pure mathematics, then there is a good chance that you will need it at a given
moment of your career.

It is used in the industry?

Yes, it is used in many companies and by research institutions that use
computers as an instrument.

Why? I thought there is Java and C++ and so on...

With Python you can develop and prototype your products much more quickly. If
needed, parts of your production code can later be migrated to
C/C++/Fortran/Java or whatever.

Whatever?

Yes. One of the qualities that qualified Python to large industrial
application is its affinity to many programming languages. This makes it easy
to embed applications in both directions.

Aha, so you glue together tools.

Yes, Python is a perfect scripting language, but here I meant that you can
really mix programming languages in an easy and consistent way.

What is scripting?

Scripting is a way to let very different applications play together to
achieve your aim. This is another quality that makes Python attractive for the
industry.

What about research and scientific work?

As a researcher, you would like to know quite soon if your idea makes
sense. You would like to run simulations as soon as possible, so you want
quickly a correct prototype and not a prototype that runs quickly...

1

SciPyTutorial Documentation, Release 0.0.1

But that was one of the attractions of matlab, so what’s new?

If the idea works and the code gives you correct results, but you want it more
efficiently or you want to scope it to other codes or professional visualization
tools, then it is much simpler to migrate parts of python code than to re-write
the code from scratch, as usually happens with matlab projects.

I see. So with python I can glue applications together and can migrate critical numerical parts to C/Fortran. But if I do
not need to? Isn’t matlab enough?

Enough? This is a good word!
It depends. Earlier I used to say: if you are satisfied with matlab and you do
not feel you need something more, then stay with matlab.

And now?

Now I would be more careful. I noticed that people prefer to use what they
learned first than to learn something new. This means that when people get a
difficult new problem, they make great efforts to solve it with the tools they
know better. This gives complicated solutions after great efforts, where
simple rush solutions were possible with new knowledge. You have to hit the
wall, and the hit must really hurt, in order to be really willing to learn
something new. I am sure that people are more efficient and more likely to
obtain good and rush solutions to hard problems if they learn python (and
scientific tools) first.

You mean that you can solve more difficult problems with python than with matlab?

I mean that with python et al you have better chances, especially for large projects.

Why should we learn or use python for teaching numerical methods? Isn’t it much too complex? Isn’t it simpler to
use matlab for this aim?

When you start from zero, you need the same effort to learn matlab and Python.

matlab is a very good software. It has also its price, which is very high,
if you leave the university. Most of our students will not remain in a
university, so working in a small company would be a clear handicap for
our alumni.

matlab is a good software because it was developed over several years under
very strict guidelines. Hence, it is more stable than the on-going development
versions of python et al.

For the very same reasons that make matlab very stable, matlab is very rigid.
Having to cope with the main ideas of 1970-80 makes improvements very hard
to realize. Object-orientation is the best example in this sense. It had to
be introduced in order to make matlab survive, but apart from its marketing
effect, it is useless, since it rather hampers than facilitates development
and code-reuse. Respecting old guidelines makes matlab strong, but rigid and
rather past-oriented. On the contrary, our students will live in the future,
let us give them a chance to make a better world!

1.2 Introduction

The aim of these pages is to provide enough information in order to help students to start using python’s tools for
computational science, numerical methods and implementation of numerical algorithms.

2 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

Python is not a Matlab clone, but a very flexible and very powerful (be aware!) high-level programming language.
Still, it is so simple to use, that we’ll learn it by doing our own job... We focus on scientific computing now, but
you might use it for very different tasks, from controlling your experimental machines, by making high-performance
visualizations, to sorting your mp3’s on your mobile phone.

While coming with ‘batteries included’ python is only a small kernel that should be completed by modules specialized
for your aims.

We’ll use the following python modules:

• numpy

• scipy

• matplotlib

• ipython

• mayavi2

Please, consult Installation tips before retrieving these modules.

Work flow Personally, I use my preferred editor (emacs) and the improved interactive environ-
ment IPython for the design and test of the scripts; the actual tutorial assumes this working style.
You might consider also one of the following alternatives to (editor+ipython):

• spyder (similar to the Matlab-environment)

• eric (similar to the Eclipse-environment)

The editor scite comes with the pythonxy package for Windows and is well suited for writing python files.

1.3 Installation tips

1.3.1 All at once if you are allowed

The main difficulty in the bottom-up installation is to discover the correct dependences of the modules. You can avoid
this difficulty by using packages:

• Linux package manager: look for enthought distribution (e.g. present on Mandriva Free 2010.0); if this is not
present then look for mayavi2 and scipy, then for ipython, matplotlib and nose (for having testing enabled)

• On Windows 32 bits you can use pyhtonxy that includes apart the main scientific modules and spyder and scite,
too.

• The Enthought Python Distribution (EPD) is available for several operation systems (including Windows and
MacOS) free of charge for academic use (it requires registration).

In case of difficulties or special wishes, consult the web pages of scipy.

A basic installation (without spyder) is available on the computers for the students slab.

This tutorial was tested on fedora core 13 machines of D-MATH and slab which have Python 2.6.4. as well as on a
WinXP-machine with Python(x,y)-2.6.5.3.

1.3.2 Installation of the Spyder IDE as non-root on linux

A short description on how to install the Spyder IDE as non-root on Linux, useful for instance on one of the computers
slab*.ethz.ch.

The Spyder IDE is available for download at http://code.google.com/p/spyderlib/.

1.3. Installation tips 3

http://numpy.scipy.org
http://www.scipy.org
http://matplotlib.sourceforge.net
http://ipython.scipy.org
http://code.enthought.com/projects/mayavi
http://packages.python.org/spyder/
http://eric-ide.python-projects.org/index.html
http://www.scintilla.org/SciTE.html
http://www.pythonxy.com
http://packages.python.org/spyder/
http://www.scintilla.org/SciTE.html
http://www.enthought.com/products/epd.php
http://www.scipy.org
https://www1.ethz.ch/id/services/list/comp_raum_stud/linux/remote
http://code.google.com/p/spyderlib/

SciPyTutorial Documentation, Release 0.0.1

Prerequisites

The program needs the following dependencies which are grouped into required and extension packages.

• Dependencies (required):

– Python 2.x (x>=5)

– PyQt4 4.x (x>=3 ; recommended x>=4)

– QScintilla2 2.x (x>=1) (PyQt4 extension)

• Dependencies (optional):

– pylint (code analysis)

– numpy (N-dimensional arrays)

– scipy (signal/image processing)

– matplotlib (2D plotting)

Of course the last three optional dependencies are important and not really optional for us. However, these packages
are already installed on these computers.

Installation process

Now let’s go through the installation process step by step. We will install the program to the destination:

~/opt/spyder/

Adapt the shell variable pythonpath by executing the following bash command:

export PYTHONPATH="~/opt/spyder/lib/python:$PYTHONPATH"

(Note that if we don’t set the python path before running the installer, it will refuse to work.) Now it’s time to fetch
the source code (you should check for a more recent versions than 2.0 beta 3):

wget http://code.google.com/p/spyderlib/downloads/detail?name=spyder-2.0.0beta3.tar.gz

unpack the source and go to the source directory:

tar -xzvf spyder-2.0.0beta3.tar.gz
cd spyder-2.0.0beta3

and finally run the installer script:

python setup.py install --home=~/opt/spyder

Usage

You can now run the Spyder program with this command:

~/opt/spyder/bin/spyder

1.3.3 Installation of the Spyder IDE on Debian GNU/Linux

A short description on how to install the Spyder IDE on the Debian GNU/Linux operating system.

4 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

The spyder IDE

The Spyder python IDE is contained in the official package repositories of the Debian GNU/Linux distribution. Thus
installing the software is rather trivial. You just have to tell the package manager to install the package and he will
automatically pull and install all required dependent packages too. (This includes other python packages but also more
low level stuff like the BLAS routines if necessary.)

The shell command doing all the magic is as simple as:

apt-get install spyder

(You can use any other package manager frontend like aptitude or synaptic instead of apt-get.) This will
work on Ubuntu Linux too, the most recent version Maverick Meerkat ships with the spyder package. (But
maybe it’s not installed by default.)

Other python packages on Debian

In the following we list some more Debian packages related to python and the tools we are going to use in this tutorial.
Many of these will get installed as dependencies of the spyder package already, others are optional. You may want to
try some of them nevertheless.

• ipython: enhanced interactive Python shell

• mayavi2: A scientific visualization package for 2-D and 3-D data

• winpdb: Platform independent Python debugger

• spe: Stani’s Python Editor (Another python IDE)

• pylint: python code static checker and UML diagram generator

• pyflakes: passive checker of Python programs

• python-numpy: Numerical Python adds a fast array facility to the Python language

• python-numpy-doc: NumPy documentation

• python-scipy: scientific tools for Python

• python-symeig: Symmetrical eigenvalue routines for NumPy

• python-matplotlib: Python based plotting system in a style similar to Matlab

• python-sympy: Computer Algebra System (CAS) in Python

• python-imaging: Python Imaging Library

• python-mpmath: library for arbitrary-precision floating-point arithmetic

• python-enthoughtbase: Core packages for the Enthought Tool Suite

• python-epydoc: tool for documenting Python modules

• python-sphinx: tool for producing documentation for Python projects

1.4 First steps in Python

1.4.1 Fast-track Python

Start an IPython session

1.4. First steps in Python 5

SciPyTutorial Documentation, Release 0.0.1

[gradinar@localhost Learn]$ ipython
Python 2.6.4 (r264:75706, Jul 14 2010, 09:36:06)
Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.
In [1]:

In Python everything is an object and the types are dynamic

In [1]: a = 1.5 # set a to a floating point number

In [2]: type(a)
Out[2]: <type ’float’>

In [3]: a = 1 # redefine a as an integer

In [4]: type(a)
Out[4]: <type ’int’>

In [5]: a = 1e-10 # redefine a as a float with scientific notation

In [6]: type(a)
Out[6]: <type ’float’>

In [7]: a = 1+5j # redefine a as complex

In [8]: type(a)
Out[8]: <type ’complex’>

In [9]: print ’a=’, a
(’a=’, (1+5j))

In [10]: print a
(1+5j)

In [11]: a
Out[11]: (1+5j)

In [12]: print 2**6
64

In [13]: a**8
Out[13]: (-3824-456960j)

In [14]: 2**6
Out[14]: 64

str, unicode - string types:

In [15]: s1 = ’hello’

In [16]: s2 = u’hi’ # prepend u, gives unicode string

In [17]: s1[0]
Out[17]: ’h’

6 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

In [18]: s1[0], s1[1]
Out[18]: (’h’, ’e’)

In [19]: type(s1)
Out[19]: <type ’str’>

In [20]: type(s2)
Out[20]: <type ’unicode’>

list - mutable sequence:

In [21]: ell = [1,2,’three’] # make list

In [22]: type ell[2]
Out[22]: <type ’str’>

In [23]: ell[2] = 3

In [24]: ell.append(4)

In [25]: ell
Out[25]: [1, 2, 3, 4]

tuple - immutable sequence:

In [26]: t = (1,2,’four’)

In [27]: t[2]
Out[27]: ’four’

In [28]: t[2] = 4

TypeError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

TypeError: ’tuple’ object does not support item assignment

python - loop:

In [29]: for element in xrange(1,21,2):
....:: print element
....::
....::
1
3
5
7
9
11
13
15
17
19

In [30]: for element in xrange(1,21,2):
....:: print element,

--
IndentationError: expected an indented block (<ipython console>, line 2)

1.4. First steps in Python 7

SciPyTutorial Documentation, Release 0.0.1

hence indentation is the delimiter for blocks (Here IPython takes care for you. Pressing Enter is enough.):

In [31]: for element in xrange(1,21,2):
....: print element,
....:
....:
1 3 5 7 9 11 13 15 17 19

pythonic way of adding first n numbers

1 def sf(n):
2 k = 0; result = 0
3 while True:
4 print ’current number to add =’, k
5 result += k
6 k += 1
7 if k > n: break
8

9 return result

In the above example note that the indentation delimits the blocks and that no semi-colons are needed to separate
commands written on different lines.

Python files have the extention .py.

Copy the above definition of the function in a file, let us call it sumy.py; then start ipython in the same directory, and
type:

from sumy import sf
sf(5)

Generators:

1 def squares(lastterm):
2 for n in range(lastterm):
3 yield n**2
4

5 for i in squares(4): print i,

List comprehensions:

[sf(k) for k in squares(5)]

is then very slow, because our way of adding first n numbers is very inefficient; look into Basic Tutorial to see how to
do it a bit better. For now, try a simpler function:

[k**2 for k in squares(5)]

Anonymous function (lambda function) is a way to inline code:

In [32]: lambda x,y : x + y - 2
Out[32]: <function <lambda> at 0x7f9d9741d9b0>

In [33]: f = lambda x,y : x + y - 2

In [34]: f(1,1)
Out[34]: 0

8 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

Warning: Arguments are always passed by assignement.
Python’s pass-by-assignment scheme isn’t quite the same as C++’s reference parameters option, but it turns out to
be very similar to the C language’s argument-passing model in practice:

• Immutable arguments are effectively passed “by value.” Objects such as integers and strings are passed by
object reference instead of by copying, but because you can’t change immutable objects in-place anyhow,
the effect is much like making a copy.

• Mutable arguments are effectively passed “by pointer.” Objects such as lists and dictionaries are also passed
by object reference, which is similar to the way C passes arrays as pointers – mutable objects can be changed
in-place in the function, much like C arrays. Of course, if you’ve never used C, Python’s argument-passing
mode will seem simpler still – it involves just the assignment of objects to names, and it works the same
whether the objects are mutable or not.

In [2]: def f(a): # a is assigned to (references) passed object
...: a = 99 # changes local variable a only: here simply resets a to a completely different object
...:
...:

In [3]: b = 88

In [4]: f(b) # a and b both reference same 88 initially

In [5]: print(b) # b not changed
88

Assignment to an argument name inside a function (e.g., a=99) does not magically change a variable like b in the scope
of the function call. Argument names may share passed objects initially (they are essentially pointers to those objects),
but only temporarily, when the function is first called. As soon as an argument name is reassigned, this relationship
ends.

That is the case for assignment to argument names themselves. When arguments are passed mutable objects like lists
and dictionaries, we also need to be aware that inplace changes to such objects may live on after a function exits, and
hence impact callers. Here’s an example that demonstrates this behavior:

In [7]: def changer(a,b): # Arguments assigned references to objects
...: a = 2 # Changes local name’s value only
...: b[0] = ’spam’ # Changes shared object in-place
...:

In [8]: X = 1

In [9]: L = [1, 2] # Caller

In [10]: changer(X,L) # Pass immutable and mutable objects

In [11]: X, L # X is unchanged, L is different!
Out[11]: (1, [’spam’, 2])

If we don’t want in-place changes within functions to impact objects we pass to them, though, we can simply make
explicit copies of mutable objects. For function arguments, we can always copy the list at the point of call:

L = [1, 2]
changer(X, L[:]) # Pass a copy, so our ’L’ does not change

We can also copy within the function itself, if we never want to change passed-in objects, regardless of how the
function is called:

1.4. First steps in Python 9

SciPyTutorial Documentation, Release 0.0.1

def changer(a, b):
b = b[:] # Copy input list so we don’t impact caller
a = 2
b[0] = ’spam’ # Changes our list copy only

Both of these copying schemes don’t stop the function from changing the object – they just prevent those changes
from impacting the caller. To really prevent changes, we can always convert to immutable objects to force the issue.
Tuples, for example, throw an exception when changes are attempted:

L = [1, 2]
changer(X, tuple(L)) # Pass a tuple, so changes are errors

Elements of Python style are on Google Python Style Guide or PythonStyle.

Finally, the Zen of Python (hat you might find useful outside of Pyhton, too):

In [35]: import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let’s do more of those!

1.4.2 More on the language

You can find more on Python in on-line tutorials and books. I enjoyed Learning Python by M. Lutz and Python in a
Nutshell by A. Martelli.

For your convenience, you might consult Raoul Bourquin’s syntheses of the python tutorial at python.org:

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prompts (>>> and ...):
to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in
Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the start
of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just

10 Chapter 1. Basics

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://wiki.python.org/moin/PythonStyle?highlight=%28style%29

SciPyTutorial Documentation, Release 0.0.1

a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted when
typing in examples.

Some examples:

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

Numbers The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.
Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages (for example,
Pascal or C); parentheses can be used for grouping. For example:

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

The equal sign (’=’) is used to assign a value to a variable. Afterwards, no result is displayed before the next
interactive prompt:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

Variables must be “defined” (assigned a value) before they can be used, or an error will occur:

>>> # try to access an undefined variable
... n
Traceback (most recent call last):

1.4. First steps in Python 11

SciPyTutorial Documentation, Release 0.0.1

File "<stdin>", line 1, in <module>
NameError: name ’n’ is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of j or J. Complex numbers with
a nonzero real component are written as (real+imagj), or can be created with the complex(real, imag)
function.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract these
parts from a complex number z, use z.real and z.imag.

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to floating point and integer (float(), int() and long()) don’t work for complex
numbers — there is no one correct way to convert a complex number to a real number. Use abs(z) to get its
magnitude (as a float) or z.real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625

12 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

Strings Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be
enclosed in single quotes or double quotes:

>>> ’spam eggs’
’spam eggs’
>>> ’doesn\’t’
"doesn’t"
>>> "doesn’t"
"doesn’t"
>>> ’"Yes," he said.’
’"Yes," he said.’
>>> "\"Yes,\" he said."
’"Yes," he said.’
>>> ’"Isn\’t," she said.’
’"Isn\’t," she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines still need to be embedded in the string using \n – the newline following the trailing backslash is
discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or ”’. End of lines do not need to be escaped
when using triple-quotes, but they will be included in the string.

print """
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

"""

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

If we make the string literal a “raw” string, \n sequences are not converted to newlines, but the backslash at the end
of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

1.4. First steps in Python 13

SciPyTutorial Documentation, Release 0.0.1

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and with
quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed in double
quotes if the string contains a single quote and no double quotes, else it’s enclosed in single quotes. (The print
statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> word = ’Help’ + ’A’
>>> word
’HelpA’
>>> ’<’ + word*5 + ’>’
’<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been written
word = ’Help’ ’A’; this only works with two literals, not with arbitrary string expressions:

>>> ’str’ ’ing’ # <- This is ok
’string’
>>> ’str’.strip() + ’ing’ # <- This is ok
’string’
>>> ’str’.strip() ’ing’ # <- This is invalid
File "<stdin>", line 1, in ?
’str’.strip() ’ing’

^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with the
slice notation: two indices separated by a colon.

>>> word[4]
’A’
>>> word[0:2]
’He’
>>> word[2:4]
’lp’

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # The first two characters
’He’
>>> word[2:] # Everything except the first two characters
’lpA’

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an error:

>>> word[0] = ’x’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
>>> word[:1] = ’Splat’

14 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: object does not support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> ’x’ + word[1:]
’xelpA’
>>> ’Splat’ + word[4]
’SplatA’

Here’s a useful invariant of slice operations: s[:i] + s[i:] equals s.

>>> word[:2] + word[2:]
’HelpA’
>>> word[:3] + word[3:]
’HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper bound
smaller than the lower bound returns an empty string.

>>> word[1:100]
’elpA’
>>> word[10:]
’’
>>> word[2:1]
’’

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character
’A’
>>> word[-2] # The last-but-one character
’p’
>>> word[-2:] # The last two characters
’pA’
>>> word[:-2] # Everything except the last two characters
’Hel’

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
’H’

Out-of-range negative slice indices are truncated, but don’t try this for single-element (non-slice) indices:

>>> word[-100:]
’HelpA’
>>> word[-10] # error
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: string index out of range

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+

1.4. First steps in Python 15

SciPyTutorial Documentation, Release 0.0.1

0 1 2 3 4 5
-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word[1:3] is 2.

The built-in function len() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

Lists Python knows a number of compound data types, used to group together other values. The most versatile is
the list, which can be written as a list of comma-separated values (items) between square brackets. List items need not
all have the same type.

>>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]
’spam’
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
[’eggs’, 100]
>>> a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
>>> 3*a[:3] + [’Boo!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boo!’]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
shallow copy of the list a:

>>> a[:]
[’spam’, ’eggs’, 100, 1234]

Unlike strings, which are immutable, it is possible to change individual elements of a list:

>>> a
[’spam’, ’eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a
[’spam’, ’eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:

16 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = [’bletch’, ’xyzzy’]
>>> a
[123, ’bletch’, ’xyzzy’, 1234]
>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123, ’bletch’, ’xyzzy’, 1234, 123, ’bletch’, ’xyzzy’, 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[:] = []
>>> a
[]

The built-in function len() also applies to lists:

>>> a = [’a’, ’b’, ’c’, ’d’]
>>> len(a)
4

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append(’xtra’) # See section 5.1
>>> p
[1, [2, 3, ’xtra’], 4]
>>> q
[2, 3, ’xtra’]

Note that in the last example, p[1] and q really refer to the same object! We’ll come back to object semantics later.

First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

1.4. First steps in Python 17

SciPyTutorial Documentation, Release 0.0.1

This example introduces several new features.

• The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the
right.

• The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal to).

• The body of the loop is indented: indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess when you have typed the last line). Note that each line within
a basic block must be indented by the same amount.

• The print statement writes the value of the expression(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between items, so you can format things
nicely, like this:

>>> i = 256*256
>>> print ’The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

Data Structures

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

list.extend(L)
Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.

list.insert(i, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

18 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

list.remove(x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

list.sort()
Sort the items of the list, in place.

list.reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count(’x’)
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

Functional Programming Tools There are three built-in functions that are very useful when used with lists:
filter(), map(), and reduce().

filter(function, sequence) returns a sequence consisting of those items from the sequence for which
function(item) is true. If sequence is a string or tuple, the result will be of the same type; otherwise,
it is always a list. For example, to compute some primes:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

map(function, sequence) calls function(item) for each of the sequence’s items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and
is called with the corresponding item from each sequence (or None if some sequence is shorter than another). For
example:

>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

1.4. First steps in Python 19

SciPyTutorial Documentation, Release 0.0.1

reduce(function, sequence) returns a single value constructed by calling the binary function function on
the first two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum
of the numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the
next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

Don’t use this example’s definition of sum(): since summing numbers is such a common need, a built-in function
sum(sequence) is already provided, and works exactly like this. New in version 2.3.

List Comprehensions List comprehensions provide a concise way to create lists without resorting to use of map(),
filter() and/or lambda. The resulting list definition tends often to be clearer than lists built using those con-
structs. Each list comprehension consists of an expression followed by a for clause, then zero or more for or if
clauses. The result will be a list resulting from evaluating the expression in the context of the for and if clauses
which follow it. If the expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [’ banana’, ’ loganberry ’, ’passion fruit ’]
>>> [weapon.strip() for weapon in freshfruit]
[’banana’, ’loganberry’, ’passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?
[x, x**2 for x in vec]

^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]

20 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

List comprehensions are much more flexible than map() and can be applied to complex expressions and nested
functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[’3.1’, ’3.14’, ’3.142’, ’3.1416’, ’3.14159’]

Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples of sequence data types (see typesseq). Since Python is an evolving language, other sequence data types may
be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of the
same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable objects,
such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For
example:

>>> empty = ()
>>> singleton = ’hello’, # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
(’hello’,)

The statement t = 12345, 54321, ’hello!’ is an example of tuple packing: the values 12345, 54321 and
’hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side. Sequence
unpacking requires the list of variables on the left to have the same number of elements as the length of the sequence.
Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

1.4. First steps in Python 21

SciPyTutorial Documentation, Release 0.0.1

Dictionaries

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries are sometimes found in
other languages as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range
of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be
keys. Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object
either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in place
using index assignments, slice assignments, or methods like append() and extend().

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also
possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

The keys() method of a dictionary object returns a list of all the keys used in the dictionary, in arbitrary order (if you
want it sorted, just apply the sort() method to the list of keys). To check whether a single key is in the dictionary,
use the in keyword.

Here is a small example using a dictionary:

>>> tel = {’jack’: 4098, ’sape’: 4139}
>>> tel[’guido’] = 4127
>>> tel
{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}
>>> tel[’jack’]
4098
>>> del tel[’sape’]
>>> tel[’irv’] = 4127
>>> tel
{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}
>>> tel.keys()
[’guido’, ’irv’, ’jack’]
>>> ’guido’ in tel
True

The dict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}
>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even better suited for the task of supplying
key-values pairs to the dict() constructor.

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

22 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems() method.

>>> knights = {’gallahad’: ’the pure’, ’robin’: ’the brave’}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
the enumerate() function.

>>> for i, v in enumerate([’tic’, ’tac’, ’toe’]):
... print i, v
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

>>> questions = [’name’, ’quest’, ’favorite color’]
>>> answers = [’lancelot’, ’the holy grail’, ’blue’]
>>> for q, a in zip(questions, answers):
... print ’What is your {0}? It is {1}.’.format(q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed()
function.

>>> for i in reversed(xrange(1,10,2)):
... print i
...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted list while leaving the
source unaltered.

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> for f in sorted(set(basket)):
... print f
...
apple
banana
orange
pear

1.4. First steps in Python 23

SciPyTutorial Documentation, Release 0.0.1

More on Conditions

The conditions used in while and if statements can contain any operators, not just comparisons.

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence. The operators
is and is not compare whether two objects are really the same object; this only matters for mutable objects like
lists. All comparison operators have the same priority, which is lower than that of all numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of any
other Boolean expression) may be negated with not. These have lower priorities than comparison operators; between
them, not has the highest priority and or the lowest, so that A and not B or C is equivalent to (A and (not
B)) or C. As always, parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A
and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = ’’, ’Trondheim’, ’Hammer Dance’
>>> non_null = string1 or string2 or string3
>>> non_null
’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this,
but it avoids a common class of problems encountered in C programs: typing = in an expression when ==was intended.

More Control Flow Tools

Besides the while statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print ’Negative changed to zero’
... elif x == 0:
... print ’Zero’
... elif x == 1:
... print ’Single’
... else:
... print ’More’
...
More

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif‘ is short for ‘else if’, and
is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case
statements found in other languages.

24 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in
the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... a = [’cat’, ’window’, ’defenestrate’]
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types,
such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must
iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
[’defenestrate’, ’cat’, ’window’, ’defenestrate’]

The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates lists
containing arithmetic progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range() and len() as follows:

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.

1.4. First steps in Python 25

SciPyTutorial Documentation, Release 0.0.1

break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

The continue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, ’equals’, x, ’*’, n/x
... break
... else:
... # loop fell through without finding a factor
... print n, ’is a prime number’
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
... pass
...

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
... pass # Remember to implement this!
...

Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""

26 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

... a, b = 0, 1

... while a < n:

... print a,

... a, b = b, a+b

...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documenta-
tion string, or docstring. (More about docstrings can be found in the section tut-docstrings.) There are tools which use
docstrings to automatically produce online or printed documentation, or to let the user interactively browse through
code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function
(unless named in a global statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object). 1 When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming mechanism:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is
called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the
only value written. You can see it if you really want to using print:

>>> fib(0)
>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

1.4. First steps in Python 27

SciPyTutorial Documentation, Release 0.0.1

>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

• The statement result.append(a) calls a method of the list object result. A method is a function that
‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an expression),
and methodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (It is possible to
define your own object types and methods, using classes, see Classes) The method append() shown in the
example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to
result = result + [a], but more efficient.

More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

Default Argument Values The most useful form is to specify a default value for one or more arguments. This
creates a function that can be called with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, complaint=’Yes or no, please!’):
while True:

ok = raw_input(prompt)
if ok in (’y’, ’ye’, ’yes’):

return True
if ok in (’n’, ’no’, ’nop’, ’nope’):

return False
retries = retries - 1
if retries < 0:

raise IOError(’refusenik user’)
print complaint

This function can be called in several ways:

• giving only the mandatory argument: ask_ok(’Do you really want to quit?’)

• giving one of the optional arguments: ask_ok(’OK to overwrite the file?’, 2)

• or even giving all arguments: ask_ok(’OK to overwrite the file?’, 2, ’Come on, only
yes or no!’)

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i = 5

def f(arg=i):
print arg

i = 6
f()

28 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

Keyword Arguments Functions can also be called using keyword arguments of the form keyword = value.
For instance, the following function:

def parrot(voltage, state=’a stiff’, action=’voom’, type=’Norwegian Blue’):
print "-- This parrot wouldn’t", action,
print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type
print "-- It’s", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = ’VOOOOOM’, voltage = 1000000)
parrot(’a thousand’, state = ’pushing up the daisies’)
parrot(’a million’, ’bereft of life’, ’jump’)

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, ’dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor=’John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding to
positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction:

>>> def function(a):
... pass
...

1.4. First steps in Python 29

SciPyTutorial Documentation, Release 0.0.1

>>> function(0, a=0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’a’

When a final formal parameter of the form **name is present, it receives a dictionary (see typesmapping) containing
all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which receives a tuple containing the positional
arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we define a
function like this:

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, "?"
print "-- I’m sorry, we’re all out of", kind
for arg in arguments: print arg
print "-" * 40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ":", keywords[kw]

It could be called like this:

cheeseshop("Limburger", "It’s very runny, sir.",
"It’s really very, VERY runny, sir.",
shopkeeper=’Michael Palin’,
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I’m sorry, we’re all out of Limburger
It’s very runny, sir.
It’s really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the sort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

Lambda Forms By popular demand, a few features commonly found in functional programming languages like Lisp
have been added to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function
that returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can be used wherever function
objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic
sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables from
the containing scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

30 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

Classes

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a mixture
of the class mechanisms found in C++ and Modula-3. As is true for modules, classes in Python do not put an absolute
barrier between definition and user, but rather rely on the politeness of the user not to “break into the definition.”
The most important features of classes are retained with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base class or classes, and a method can call the
method of a base class with the same name. Objects can contain an arbitrary amount of data.

In C++ terminology, all class members (including the data members) are public, and all member functions are virtual.
As in Modula-3, there are no shorthands for referencing the object’s members from its methods: the method function
is declared with an explicit first argument representing the object, which is provided implicitly by the call. As in
Smalltalk, classes themselves are objects. This provides semantics for importing and renaming. Unlike C++ and
Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++, most built-in
operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I
expect that few readers have heard of it.)

A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

Class Definition Syntax The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

Class Objects Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

1.4. First steps in Python 31

SciPyTutorial Documentation, Release 0.0.1

class MyClass:
"""A simple example class"""
i = 12345
def f(self):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object, respec-
tively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. __doc__
is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__(),
like this:

def __init__(self):
self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the
newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

Instance Objects Now what can we do with instance objects? The only operations understood by instance objects
are attribute references. There are two kinds of valid attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the
instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print x.counter
del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll
use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.) Valid
method names of an instance object depend on its class. By definition, all attributes of a class that are function objects

32 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

define corresponding methods of its instances. So in our example, x.f is a valid method reference, since MyClass.f
is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f— it is a method
object, not a function object.

Method Objects Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string ’hello world’. However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:

print xf()

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument
above, even though the function definition for f() specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list
that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an
instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute
that is a function object, a method object is created by packing (pointers to) the instance object and the function object
just found together in an abstract object: this is the method object. When the method object is called with an argument
list, a new argument list is constructed from the instance object and the argument list, and the function object is called
with this new argument list.

Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause
hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string
(perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions to
Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when
glancing through a method.

1.4. First steps in Python 33

SciPyTutorial Documentation, Release 0.0.1

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that
relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return ’hello world’
h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes of the self argument:

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing the class definition. (The class itself is never used as a global scope.) While one
rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope:
for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next
section we’ll find some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type). It is stored as object.__class__.

Iterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {’one’:1, ’two’:2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

34 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the
scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines
the method next() which accesses elements in the container one at a time. When there are no more elements,
next() raises a StopIteration exception which tells the for loop to terminate. This example shows how it all
works:

>>> s = ’abc’
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
’a’
>>> it.next()
’b’
>>> it.next()
’c’
>>> it.next()

Traceback (most recent call last):
File "<stdin>", line 1, in ?
it.next()

StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define
an __iter__() method which returns an object with a next() method. If the class defines next(), then
__iter__() can just return self:

class Reverse:
"Iterator for looping over a sequence backwards"
def __init__(self, data):

self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>> rev = Reverse(’spam’)
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print char
...
m
a
p
s

Python Packages

Required, optional or otherwise noteworthy python packages are presented in the following short table. We do not
pretend that this table is in any way exhaustive. For a much more comprehensive list take a look at the Python package
index at: http://pypi.python.org/pypi.

• numpy

1.4. First steps in Python 35

http://pypi.python.org/pypi

SciPyTutorial Documentation, Release 0.0.1

NumPy is the fundamental package needed for scientific computing with Python. It contains among other things
a powerful N-dimensional array object

– URL: http://www.numpy.org/

• scipy

The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical
routines such as routines for optimization, linear algebra, integration, interpolation, special functions, FFT,
signal and image processing, ODE solvers and other tasks common in science and engineering.

– URL: http://www.scipy.org/

• matplotlib

Matplotlib is a python 2D plotting library for the Python programming language which produces publication
quality figures in a variety of formats. You can generate plots, histograms, power spectra, bar charts, errorcharts,
scatterplots, etc, with just a few lines of code.

– URL: http://matplotlib.sourceforge.net/

• sympy

SymPy is a Python library for (limited) symbolic computations inside python programms.

– URL: http://sympy.org/

• PIL

Python Imaging Library is a library for the Python programming language that provides support for opening,
manipulating, and saving many different image file formats.

– URL: http://www.pythonware.com/products/pil/

• mpmath

Mpmath is a Python library for multiprecision floating-point arithmetic. It provides an extensive set of transcen-
dental functions, unlimited exponent sizes, complex numbers, interval arithmetic, numerical integration and
differentiation, root-finding, linear algebra, and much more

– URL: http://code.google.com/p/mpmath/

• MeshPy

MeshPy offers quality triangular and tetrahedral mesh generation for Python. Meshes of this type are chiefly
used in finite-element simulation codes, but also have many other applications ranging from computer graphics
to robotics.

– URL: http://mathema.tician.de/software/meshpy

• PyX

PyX is a Python package for the creation of PostScript and PDF files. It combines an abstraction of the PostScript
drawing model with a TeX/LaTeX interface. This package can be used for two dimensional (geometric) draw-
ings.

– URL: http://pyx.sourceforge.net/

• h5py

The HDF5 library is a versatile, mature library designed for the storage of numerical data. The h5py package
provides a simple, Pythonic interface to HDF5. A straightforward high-level interface allows the manipulation
of HDF5 files, groups and datasets using established Python and NumPy metaphors.

– URL: http://h5py.alfven.org/

36 Chapter 1. Basics

http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org/
http://www.pythonware.com/products/pil/
http://code.google.com/p/mpmath/
http://mathema.tician.de/software/meshpy
http://pyx.sourceforge.net/
http://h5py.alfven.org/

SciPyTutorial Documentation, Release 0.0.1

1.5 Basic Tutorial

1.5.1 NumPy

• N-dimensional homogeneous arrays

• Universal functions (ufunc)

– built-in linear algebra, FFT, random number generators, etc...

• Tools for integration with C/C++/Fortran

• Heavy lifting done by optimized C/Fortran libraries

– ATLAS, UMFPACK, FFTW, etc...

Let us initialize an array with first n natural numbers:

import numpy as np # import the module and use a shorter namespace
x = np.arange(4)
print x

and try the following commands:

1 print np.sum(x)
2 print x**2
3 f = lambda x: np.sum(x)
4 print f(x**2)
5 print [f(t) for t in x**2]
6 print [f(np.arange(t)) for t in x**2]

Need help?

help np.sum
help np.arange
help np

Under ipython you could also try:

In [1]: import numpy as np

In [2]: np.linalg.<TAB>

where <TAB> refers to the TAB-key. You should see:

In [2]: np.linalg.
np.linalg.LinAlgError np.linalg.__path__ np.linalg.eigvalsh
np.linalg.Tester np.linalg.__reduce__ np.linalg.info
np.linalg.__builtins__ np.linalg.__reduce_ex__ np.linalg.inv
np.linalg.__class__ np.linalg.__repr__ np.linalg.lapack_lite
np.linalg.__delattr__ np.linalg.__setattr__ np.linalg.linalg
np.linalg.__dict__ np.linalg.__sizeof__ np.linalg.lstsq
np.linalg.__doc__ np.linalg.__str__ np.linalg.matrix_power
np.linalg.__file__ np.linalg.__subclasshook__ np.linalg.norm
np.linalg.__format__ np.linalg.bench np.linalg.pinv
np.linalg.__getattribute__ np.linalg.cholesky np.linalg.qr
np.linalg.__hash__ np.linalg.cond np.linalg.solve
np.linalg.__init__ np.linalg.det np.linalg.svd
np.linalg.__name__ np.linalg.eig np.linalg.tensorinv
np.linalg.__new__ np.linalg.eigh np.linalg.tensorsolve
np.linalg.__package__ np.linalg.eigvals np.linalg.test

1.5. Basic Tutorial 37

SciPyTutorial Documentation, Release 0.0.1

IPython examined the np.linalg module, and returned all the possible completions. Once you see an interesting
function, you’d like to know how to use it:

In[3]: np.transpose?<ENTER>

In order to view the actual source code, use two question marks instead of one.

Slicing Arrays:

In [1]: import numpy as np

In [2]: a = np.array([[1,2,3,4],[9,8,7,6],[1,6,5,4]])

In [3]: a
Out[3]:
array([[1, 2, 3, 4],

[9, 8, 7, 6],
[1, 6, 5, 4]])

In [4]: arow = a[0,:] # get slice referencing row zero

In [5]: arow
Out[5]: array([1, 2, 3, 4])

In [6]: cols = a[:,[0,2]] # get slice referencing columns 0 and 2

In [7]: cols
Out[7]:
array([[1, 3],

[9, 7],
[1, 5]])

NOTE: slices (as arow & cols) are NOT copies, they point to the original data:

In [8]: arow[:] = 0
In [9]: arow
Out[9]: array([0, 0, 0, 0])

In [10]: a # arow is a reference to elements of a
Out[10]:
array([[0, 0, 0, 0],

[9, 8, 7, 6],
[1, 6, 5, 4]])

In [11]: copyrow = arow.copy() # copying need to be invoked explicitly
In [11]: copyrow = a[0,:].copy() # same result without using arow

NumPy gives the possibility to apply operations to many elements with a single call (broadcasting):

In [14]: a = np.arange(10)

In [15]: a
Out[15]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [16]: a.reshape((2,5))
Out[16]:
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

In [18]: b = a.reshape((2,5))

38 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

In [19]: b+1
Out[19]:
array([[1, 2, 3, 4, 5],

[6, 7, 8, 9, 10]])

In [25]: b + np.array(([1],[10])) # add 1 to 1st row, 10 to 2nd row
Out[25]:
array([[1, 2, 3, 4, 5],

[15, 16, 17, 18, 19]])

In [26]: b + ([1],[10]) # same as above
Out[26]:
array([[1, 2, 3, 4, 5],

[15, 16, 17, 18, 19]])

In [27]: b + [[1],[10]] # same as above
Out[27]:
array([[1, 2, 3, 4, 5],

[15, 16, 17, 18, 19]])

In [28]: a**([2],[3])

Out[28]:
array([[0, 1, 4, 9, 16, 25, 36, 49, 64, 81],

[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]])

In [29]: b**([2],[3]) # raise 1st row to power 2, 2nd to 3
Out[29]:
array([[0, 1, 4, 9, 16],

[125, 216, 343, 512, 729]])

NOTE: be careful with types (especially by inplace operations as +=, *=, etc.):

In [1]: import numpy as np

In [2]: a = np.array([1, 2, 3, 4])

In [3]: a[0] = a[0]+1

In [4]: a
Out[4]: array([2, 2, 3, 4])

In [5]: a[0] = a[0]+1.1

In [6]: a # the result is 3 instead of 3.1
Out[6]: array([3, 2, 3, 4])

In [7]: a += 1 # add 1 to variable a (inplace/register level)

In [8]: a
Out[8]: array([4, 3, 4, 5])

In [9]: a += 1.1 # again the .1 is truncated

In [10]: a
Out[10]: array([5, 4, 5, 6])

In [11]: type(a[0]) # the entries of a are integers

1.5. Basic Tutorial 39

SciPyTutorial Documentation, Release 0.0.1

Out[11]: <type ’numpy.int32’>

In [12]: a = a + 1.1 # this redefines also the type of a

In [13]: a
Out[13]: array([6.1, 5.1, 6.1, 7.1])

In [14]: type(a[0]) # the entries of a are now floats
Out[14]: <type ’numpy.float64’>

In [15]: f = np.array([1.,2.,3.,4.]) # this creates an array of floats

In [16]: type(f[0])
Out[16]: <type ’numpy.float64’>

In [17]: f = np.zeros(4) # this creates an array of floats filled with zeros

In [18]: f
Out[18]: array([0., 0., 0., 0.])

In [19]: type(f[0])
Out[19]: <type ’numpy.float64’>

Experiment this:

In [1]: import math

In [2]: import numpy as np

In [3]: x = np.linspace(0.,np.pi,100) # 100 evenly spaced points in [0.,pi]

In [4]: math.sin(x)

TypeError Traceback (most recent call last)

/home/gradinar/Documents/Bibl/Programming/<ipython console> in <module>()

TypeError: only length-1 arrays can be converted to Python scalars

In [5]: y = np.sin(x)

In [6]: import pylab as plb

In [7]: plb.plot(x,y)
/usr/lib64/python2.6/site-packages/matplotlib/backends/backend_gtk.py:621: DeprecationWarning: Use the new widget gtk.Tooltip
self.tooltips = gtk.Tooltips()
Out[7]: [<matplotlib.lines.Line2D object at 0x7f159cf90890>]

In [8]: plb.show()

NOTE: mathematical functions from module math are very fast, but cannot be applied to vectors; for those, we use
the module numpy.

NOTE: if you need complex numbers, you have to allocate space for them!:

In [9]: x += 1j # remember, x was created with np.linspace(0.,np.pi,100) at In[3]

In [10]: x[0]
Out[10]: 0.0

40 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

In [11]: x[1]
Out[11]: 0.031733259127169629

In [12]: 1j
Out[12]: 1j

In [13]: type(1j)
Out[13]: <type ’complex’>

In [14]: type(x[0])
Out[14]: <type ’numpy.float64’>

for instance via multiplication trick:

In [15]: x = x+1j

In [16]: x
Out[16]:
array([0.00000000+1.j, 0.03173326+1.j, 0.06346652+1.j, 0.09519978+1.j,

0.12693304+1.j, 0.15866630+1.j, 0.19039955+1.j, 0.22213281+1.j,
0.25386607+1.j, 0.28559933+1.j, 0.31733259+1.j, 0.34906585+1.j,
0.38079911+1.j, 0.41253237+1.j, 0.44426563+1.j, 0.47599889+1.j,
0.50773215+1.j, 0.53946541+1.j, 0.57119866+1.j, 0.60293192+1.j,
0.63466518+1.j, 0.66639844+1.j, 0.69813170+1.j, 0.72986496+1.j,
0.76159822+1.j, 0.79333148+1.j, 0.82506474+1.j, 0.85679800+1.j,
0.88853126+1.j, 0.92026451+1.j, 0.95199777+1.j, 0.98373103+1.j,
1.01546429+1.j, 1.04719755+1.j, 1.07893081+1.j, 1.11066407+1.j,
1.14239733+1.j, 1.17413059+1.j, 1.20586385+1.j, 1.23759711+1.j,
1.26933037+1.j, 1.30106362+1.j, 1.33279688+1.j, 1.36453014+1.j,
1.39626340+1.j, 1.42799666+1.j, 1.45972992+1.j, 1.49146318+1.j,
1.52319644+1.j, 1.55492970+1.j, 1.58666296+1.j, 1.61839622+1.j,
1.65012947+1.j, 1.68186273+1.j, 1.71359599+1.j, 1.74532925+1.j,
1.77706251+1.j, 1.80879577+1.j, 1.84052903+1.j, 1.87226229+1.j,
1.90399555+1.j, 1.93572881+1.j, 1.96746207+1.j, 1.99919533+1.j,
2.03092858+1.j, 2.06266184+1.j, 2.09439510+1.j, 2.12612836+1.j,
2.15786162+1.j, 2.18959488+1.j, 2.22132814+1.j, 2.25306140+1.j,
2.28479466+1.j, 2.31652792+1.j, 2.34826118+1.j, 2.37999443+1.j,
2.41172769+1.j, 2.44346095+1.j, 2.47519421+1.j, 2.50692747+1.j,
2.53866073+1.j, 2.57039399+1.j, 2.60212725+1.j, 2.63386051+1.j,
2.66559377+1.j, 2.69732703+1.j, 2.72906028+1.j, 2.76079354+1.j,
2.79252680+1.j, 2.82426006+1.j, 2.85599332+1.j, 2.88772658+1.j,
2.91945984+1.j, 2.95119310+1.j, 2.98292636+1.j, 3.01465962+1.j,
3.04639288+1.j, 3.07812614+1.j, 3.10985939+1.j, 3.14159265+1.j])

In [17]: type(x[0])
Out[17]: <type ’numpy.complex128’>

or via constructor giving the data type:

In [17]: z = np.zeros(100, dtype=complex)

Run this example in order to be aware about possible errors in using python’s pure range command. Avoid
np.arange, that is numerically unstable:

1 from numpy import arange, linspace#, arrayrange
2 #from Numeric import arange#, arrayrange
3

4 nerrors = 0
5 for n in range(1,101):

1.5. Basic Tutorial 41

SciPyTutorial Documentation, Release 0.0.1

6 x1 = arange(0, 1, 1./n)[-1] # should be less than 1
7 print n, x1
8 if abs(x1 - 1.0) < 1e-6: nerrors += 1
9

10 print ’arange leading to ’, nerrors, ’ unexpected cases’
11

12 nerrors = 0
13 for n in range(1,101):
14 x1 = linspace(0, 1, num=n, endpoint=False)[-1] # should be less than 1
15 #print n, x1
16 if abs(x1 - 1.0) < 1e-6: nerrors += 1
17

18 print ’linspace leading to ’, nerrors, ’ unexpected cases’

Use np.linspace to generate equidistant sequences or np.r_, for example:

In [1]: import numpy as np

In [2]: np.r_[:9:10j]
Out[2]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

In [3]: x = np.r_[:9:10j]

In [4]: x[0]
Out[4]: 0.0

In [5]: x[9]
Out[5]: 9.0

In [6]: x[10]

IndexError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

IndexError: index out of bounds

In [4]: np.r_[0:9:3j]
Out[4]: array([0. , 4.5, 9.])

In [5]: np.r_[0:9:3]
Out[5]: array([0, 3, 6])

More in indicies of an array:

In [3]: a = np.linspace(1,8,8)

In [4]: a
Out[4]: array([1., 2., 3., 4., 5., 6., 7., 8.])

In [5]: a[[1,6,7]] = 10

In [6]: a
Out[6]: array([1., 10., 3., 4., 5., 6., 10., 10.])

In [7]: a[range(2,8,3)] = -2

In [8]: a
Out[8]: array([1., 10., -2., 4., 5., -2., 10., 10.])

42 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

In [9]: a[a < 0] # pick out the negative elements of a
Out[9]: array([-2., -2.])

In [10]: a[a < 0] = a.max()

In [11]: a
Out[11]: array([1., 10., 10., 4., 5., 10., 10., 10.])

Other usefull array operations:

1 # a is an array
2 a.clip(min=3, max=12) # clip elements
3 a.mean(); mean(a) # mean value
4 a.var(); var(a) # variance
5 a.std(); std(a) # standard deviation
6 median(a)
7 cov(x,y) # covariance
8 trapz(a) # Trapezoidal integration
9 diff(a) # finite differences (da/dx)

and more Matlab-like functions:: corrcoeff, cumprod, diag, eig, eye, fliplr, flipud, max, min, prod, ptp, rot90,
squeeze, sum, svd, tri, tril, triu

Solving a linear system:

In [1]: import numpy as np

In [2]: A = np.array([
...: [3,2,-1],
...: [2,-1,4],
...: [-1,0.5,-1]
...:])

In [3]: b = np.array([1,-2,0])

In [4]: x = np.solve(A,b)

AttributeError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

AttributeError: ’module’ object has no attribute ’solve’

In [5]: x = np.linalg.solve(A,b)

In [6]: x
Out[6]: array([0.57142857, -0.85714286, -1.])

In [7]: dot(A,x)

NameError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

NameError: name ’dot’ is not defined

In [8]: np.dot(A,x)
Out[8]: array([1.00000000e+00, -2.00000000e+00, -1.11022302e-16])

1.5. Basic Tutorial 43

SciPyTutorial Documentation, Release 0.0.1

In [9]: Ax = np.dot(A,x)

In [10]: np.allclose(Ax,b)
Out[10]: True

Vectorization:

In [1]: import numpy as np

In [2]: def myfunc(x):
...: if x >= 0: return x**2
...: else: return -x
...:
...:

In [3]: myfunc(2)
Out[3]: 4

In [5]: myfunc(np.array([-2,2]))

ValueError Traceback (most recent call last)

/home/gradinar/LaTeX_doc/Numcourses/Numcourses/SciPyTools/Start/<ipython console> in <module>()

/home/gradinar/LaTeX_doc/Numcourses/Numcourses/SciPyTools/Start/<ipython console> in myfunc(x)

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

In [6]: vecfunc = np.vectorize(myfunc, otypes=[float]) # it is important to declare the return type

In [8]: vecfunc(np.array([-2,2]))
Out[8]: array([2., 4.])

In [9]: def myvecfunc(x):
...: return np.where(x<0, -x, x**2)
...:

In [10]: myvecfunc(np.array([-2,2]))
Out[10]: array([2, 4])

NOTE that the hand written vectorization (last version) will run quicker than the automatically vectorized function.

• Simple Input/Output

• Professional I/O with HDF5

1.5.2 SciPy - Scientific tools for Python

SciPy is an Open Source library of scientific tools for Python. It depends on the NumPy library, and it gathers a variety
of high level science and engineering modules together as a single package. SciPy provides modules for

• statistics

• optimization

• numerical integration

• linear algebra

• Fourier transforms

44 Chapter 1. Basics

http://www.scipy.org/Cookbook/InputOutput
http://h5py.alfven.org/

SciPyTutorial Documentation, Release 0.0.1

• signal processing

• image processing

• ODE solvers

• special functions

and more.

Root finding:

In [1]: coeffs = [1, -5, 6]

In [2]: import scipy as sp

In [3]: sp.roots(coeffs)
Out[3]: array([3., 2.])

and now a more complicated function:

In [4]: from scipy.optimize import fsolve

In [5]: fsolve(sin(z)+cos(z)*cos(z),0)

NameError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

NameError: name ’sin’ is not defined

In [6]: fsolve(sp.sin(z)+sp.cos(z)*sp.cos(z),0)

NameError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

NameError: name ’z’ is not defined

In [7]: z = sp.linspace(-sp.i,sp.pi)

TypeError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

TypeError: bad operand type for unary -: ’str’

In [8]: z = sp.linspace(-sp.pi,sp.pi)

In [9]: fsolve(sp.sin(z)+sp.cos(z)*sp.cos(z),0)

TypeError Traceback (most recent call last)

/home/gradinar/Programming/Python/Learn/<ipython console> in <module>()

/usr/lib64/python2.6/site-packages/scipy/optimize/minpack.pyc in fsolve(func, x0, args, fprime, full_output, col_deriv, xtol, maxfev, band, epsfcn, factor, diag, warning)
111 n = len(x0)
112 if type(args) != type(()): args = (args,)

--> 113 check_func(func,x0,args,n,(n,))
114 Dfun = fprime
115 if Dfun is None:

1.5. Basic Tutorial 45

SciPyTutorial Documentation, Release 0.0.1

/usr/lib64/python2.6/site-packages/scipy/optimize/minpack.pyc in check_func(thefunc, x0, args, numinputs, output_shape)
10
11 def check_func(thefunc, x0, args, numinputs, output_shape=None):

---> 12 res = atleast_1d(thefunc(*((x0[:numinputs],)+args)))
13 if (output_shape is not None) and (shape(res) != output_shape):
14 if (output_shape[0] != 1):

TypeError: ’numpy.ndarray’ object is not callable

In [10]: g = lambda z: sp.sin(z)+sp.cos(z)*sp.cos(z)

In [11]: g(0)
Out[11]: 1.0

In [12]: fsolve(g,0)
Out[12]: -0.66623943249251527

In [13]: from matplotlib import pyplot as plt

In [14]: plt.plot(z,g(z))
Out[14]: [<matplotlib.lines.Line2D object at 0x7fd7ce10a9d0>]

In [15]: plt.show()

An example on least squares:

1 import scipy.linalg as splalg
2 import scipy as sp
3 from matplotlib import pyplot as plt
4

5 n = 20 # sample length
6 x = sp.linspace(0.,1.,n)
7 y = -2*x+3 # line
8 z = y + sp.random.normal(0.,0.25,n) # + noise
9 A = sp.array([x, sp.ones(n)])

10 A = A.transpose()
11 r = splalg.lstsq(A,z)
12 # result is a 4-tuple, the solution (a,b) is the 1st entry
13 a, b = r[0]
14 plt.plot(x,z,’o’, x,y,’r’, x, a*x+b, ’b’)
15 plt.legend((’data points’, ’original line’, ’fitted line’))
16 plt.show()

46 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

data points
original line
fitted line

1.5.3 Random number generator

For the interested, the pseudorandom number generator in NumPy implements the Mersenne Twister, which is gen-
erally considered a good generator for many applications, and is also used by the Python standard library’s random
module, as well as R, Maple, Ruby and recent versions of MATLAB.

1.5.4 What is in numpy that isn’t in scipy and vice versa?

NumPy contains core numerical functionality. The main thing it provides is the ndarray object. It also provides things
like a high quality pseudorandom number generator (an implementation of the Mersenne twister, with generators
for several distributions), fast Fourier transforms, scalar types that correspond to underlying C data types and make
their size explicit (e.g. float64, int32, complex128), a variety of ufuncs for things like trigonometric functions and
transcendentals, linear algebra routines (that can use an optimized BLAS such as ATLAS or the Intel Math Kernel
Library if you have them available), and lots of utility functions for working with ndarrays: creating them, merging
them, splitting them, etc. It also provides f2py which is a tool for generating Python wrappers for Fortran code.

SciPy is a much broader package that is best thought of as a set of toolboxes, built on top of NumPy, and also wrapping
suitably licensed packages (including many numerical libraries written in Fortran using f2py). Things like clustering,
signal processing, even more linear algebra routines than NumPy provides, sparse matrix support, numerical optimiza-
tion; all of this stuff falls under SciPy. You’re best looking through the SciPy Reference Guide for more detailed guide
to what is included.

1.5. Basic Tutorial 47

SciPyTutorial Documentation, Release 0.0.1

1.5.5 Why do both numpy.linalg and scipy.linalg exist? What is the difference?

scipy.linalg is a more complete wrapping of Fortran LAPACK using f2py, but both NumPy and SciPy may be using
the underlying LAPACK available on your platform if you have installed it along with the header files (-dev or -devel
packages on most Linux distributions). One of the design goals of NumPy was to make it buildable without a Fortran
compiler, and if you don’t have LAPACK available NumPy will use its own implementation. SciPy requires a Fortran
compiler to be built, and heavily depends on wrapped Fortran code.

You can check the underlying detected implementation for both of these with show_config:

import numpy as np
import scipy as sc
print np.show_config()
print sc.show_config()

The linalg modules in NumPy and SciPy have some common functions but with different help lines. scipy.linalg
contains more, such as functions related to LU decomposition and the Schur decomposition, multiple ways of calcu-
lating the pseudoinverse, and matrix transcendentals like the matrix logarithm. Some functions that exist in both have
augmented functionality in scipy.linalg; for example scipy.linalg.eig() can take a second matrix argument for solving
generalized eigenvalue problems.

Using numpy.linalg (if you can) will likely make your code more portable, since NumPy is easier to install and
necessary for using NumPy arrays in the first place. If numpy.linalg can’t do what you’re looking for, however, try
scipy.linalg.

1.5.6 A LAPACK bug propagated into scipy

Many scipy programms are just simple wrappers around standard Fortran or C packages. As a consequence, bugs are
propagated, as in the folowing example that needs the matrix file

1 import scipy.linalg
2 import scipy.io
3 L = scipy.io.loadmat(’Lmat.mat’)[’L’]
4 # let us compute the first (smallest) 5 eigenvectors
5 d,v= scipy.linalg.eigh(L,eigvals=(0,4))
6 # let us check if the eigenvectors are orthogonal
7 print scipy.multiply(v[:,0],v[:,1]).sum()
8 # answer is zero (to a floating point error). Good!
9 # now let us compute the first (smallest) 2 eigenvectors

10 d,v= scipy.linalg.eigh(L,eigvals=(0,1))
11 # let us check if the eigenvectors are orthogonal
12 print scipy.multiply(v[:,0],v[:,1]).sum()
13 # they are not orthogonal!! the second eigenvector was not calculated correctly!

The bug in LAPACK makes this use of eigh prohibite; independently of this, it is much more efficient to use the
Arnoldi method as implemented by ARPACK:

1 import scipy.linalg
2 import scipy.io
3

4 nev = 6
5

6 L = scipy.io.loadmat(’Lmat.mat’)[’L’]
7 n = L.shape[0]
8

9 d,v= scipy.linalg.eigh(L,eigvals=(n-nev,n-1))
10 # let us check if the eigenvectors are orthogonal

48 Chapter 1. Basics

http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/External/Lmat.mat
http://projects.scipy.org/scipy/ticket/1159

SciPyTutorial Documentation, Release 0.0.1

11 print scipy.multiply(v[:,0],v[:,1]).sum()
12

13 from scipy.sparse.linalg.eigen.arpack import arpack
14 #from scipy.sparse.linalg.eigen.arpack import speigs
15 from scipy.sparse import csr_matrix
16

17 L = csr_matrix(L)
18 #L = scipy.matrix(L)
19 #L = L.tocsr()
20

21

22 #da,va = arpack.eigen(L, k=nev)
23 da,va = arpack.eigen_symmetric(L, k=nev)
24 #da,va = speigs.ARPACK_eigs(L.matvec,n,nev, which=’LM’)
25 va = scipy.matrix(va)
26 print d
27 I = abs(da).argsort()
28 da.sort(); vac = va[:,I]
29 print da
30

31

32

33 print (vac.H*vac-scipy.eye(nev)).max()#scipy.multiply(v[:,0],v[:,1]).sum()
34 #print ’eigh Arpack EV:’, v
35 v = scipy.matrix(v)
36 ve = v - vac
37 #print v.shape, va.shape
38 from scipy.linalg import norm
39 print ve.shape
40 z = scipy.array([norm(ve[:,k]) for k in xrange(nev)])
41 print z
42 #print z.max()
43

44 #from scipy.sparse.linalg.eigen.arpack.arpack import eigen

1.5.7 Partial evaluation of functions

Assume you have a function of multiple arguments and already know some of them but not all. And you want or
need to bind the known parameters now. A common example is plotting of functions. Take the bessel functions, they
require an argument n which is the order (an integer in the most simple case) additionally the argument x. What can
we do now? Assume the plot command can not handle such functions. (In the example below we could just plug in the
order in the plot command, but there are other plot commands that only take the function object expecting something
like f(x).)

An example:

1 # Import bessel_j
2 from scipy.special import jn
3

4 # Evaluate J_n with n=2 at x=1.0
5 jn(2, 1.0)
6 0.11490348493190049
7

8 # The partial evaluation tool
9 from functools import partial

10

11 j = partial(jn, [2])

1.5. Basic Tutorial 49

SciPyTutorial Documentation, Release 0.0.1

12

13 # Evaluate J_2 at x=1.0
14 j(1.0)
15 0.11490348493190049
16

17 # Plot
18 x = linspace(-5, 5, 1000)
19 plot(x, f(x))

1.6 IPython tips

IPython is an interactive computing environment; not only it is an enhanced interactive Python shell, but it is also an
architecture for interactive parallel computing...

In case you use the pythonxy distribution under Windows, it is a good idea to start the IPython with mlab-mode
enabled; you find several modes in the menu-entry “enhanced console” of pythonxy.

Note that the magic commands discussed below didn’t worked in the spyder 1.1.5 version coming with pythonxy
2.6.5.3 under Windows, but in all IPython shells of pythonxy.

We resume here the commands that we use frequently in our work.

In [1]: import numpy as np

In [2]: np.linalg.<TAB>

where <TAB> refers to the TAB-key. You should see:

In [2]: np.linalg.
np.linalg.LinAlgError np.linalg.__path__ np.linalg.eigvalsh
np.linalg.Tester np.linalg.__reduce__ np.linalg.info
np.linalg.__builtins__ np.linalg.__reduce_ex__ np.linalg.inv
np.linalg.__class__ np.linalg.__repr__ np.linalg.lapack_lite
np.linalg.__delattr__ np.linalg.__setattr__ np.linalg.linalg
np.linalg.__dict__ np.linalg.__sizeof__ np.linalg.lstsq
np.linalg.__doc__ np.linalg.__str__ np.linalg.matrix_power
np.linalg.__file__ np.linalg.__subclasshook__ np.linalg.norm
np.linalg.__format__ np.linalg.bench np.linalg.pinv
np.linalg.__getattribute__ np.linalg.cholesky np.linalg.qr
np.linalg.__hash__ np.linalg.cond np.linalg.solve
np.linalg.__init__ np.linalg.det np.linalg.svd
np.linalg.__name__ np.linalg.eig np.linalg.tensorinv
np.linalg.__new__ np.linalg.eigh np.linalg.tensorsolve
np.linalg.__package__ np.linalg.eigvals np.linalg.test

IPython examined the np.linalg module, and returned all the possible completions. Once you see an interesting func-
tion, you’d like to know how to use it:

In[3]: np.transpose?<ENTER>

In order to view the actual source code, use two question marks instead of one.

The magic commands %pdoc, %pdef, %psource and %pfile will respectively print the docstring, function definition
line, full source code and the complete file for any object (when they can be found). If automagic is on (it is by
default), you don’t need to type the ‘%’ explicitly:

np.linalg.svd?
pdoc np.linalg.svd

50 Chapter 1. Basics

http://ipython.scipy.org/moin/

SciPyTutorial Documentation, Release 0.0.1

pdef np.linalg.svd
psource np.linalg.svd

Consider now the files sattelite.py that implements the simplified trajectory of a sattelite:

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 op = 2*np.pi; os = 14.*np.pi
5 R = 4.; r = 0.25
6 t = np.linspace(0, 2, 2000)
7 xp = np.cos(op*t)
8 yp = np.sin(op*t)
9 xs = xp + r*np.cos(os*t)

10 ys = yp + r*np.sin(os*t)
11 plt.plot(xs,ys); plt.show()

Start IPython with the option -pylab:

ipython -pylab
Your PyGtk has set_interactive(), so you can use the
more stable single-threaded Gtk mode.
See https://bugs.launchpad.net/ipython/+bug/270856
Python 2.6.4 (r264:75706, Jul 14 2010, 09:36:06)
Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]:

Now, we can use all functions implemented by pylab without importing them explicitly, a la Matlab. However, the
prefferd style is to use:

from matplotlib import pyplot as plt

Exit by ^D(Ctrl-D)

The %run magic command:

run sattelite.py
run -t sattelite.py
run -p sattelite.py
run -d sattelite.py

%run also has special flags for timing the execution of your scripts (-t) and for executing them under the control
of either Python’s pdb debugger (-d) or profiler (-p). With all of these, %run can be used as the main tool for
efficient interactive development of code which you write in your editor of choice.

All output results are automatically stored in a global dictionary named Out and variables named _1, _2, etc. alias
them. For example, the result of input line 4 is available either as Out[4] or as _4.

Put a ‘;’ at the end of a line to suppress the printing of output. The _* variables and the Out[] list do get updated with
the contents of the output, even if it is not printed. You can thus still access the generated results this way for further

1.6. IPython tips 51

SciPyTutorial Documentation, Release 0.0.1

processing.

The %history command can show you all previous input, without line numbers if desired (option -n) so you can
directly copy and paste code either back in IPython or in a text editor. You can also save all your history by turning on
logging via %logstart; these logs can later be either reloaded as IPython sessions or used as code for your programs.

Related to the history:

• Up and down arrows (Ctrl-p/Ctrl-n)

• Search: Ctrl-r and start typing

• Ctrl-a: go to start of line

• Ctrl-e: end of line

• Ctrl-k: kill to end of line

IPython is a line-oriented program, without full control of the terminal. Therefore, it doesn’t support true multiline
editing. However, it has a number of useful tools to help you in dealing effectively with more complex editing.:

%edit 10-20 24 28 # opens an editor with these lines pre-loaded for modification
%save <filename> # saves the lines directly to a named file on disk

Here comes an example showing the working flow with python.

Suppose we want to plot the tajectory of a sattelite of the earth as seen from the sun. After thinking about the
mathematics of the problem, we might start by trying an implementation interactively in ipython:

[gradinar@localhost TutCodes]$ ipython
Python 2.6.4 (r264:75706, Jul 14 2010, 09:36:06)
Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.

In [1]: import numpy as np

In [2]: op = 2*np.pi; os = 14.*np.pi

In [3]: R = 4.; r = 2

In [4]: t = np.linspace(0, 2, 100)

In [5]: xp = np.cos(op*t)

In [6]: yp = np.sin(op*t)

In [7]: xs = xp + r*np.cos(os*t)

In [8]: ys = yp + r*np.sin(os*t)

In [9]: from matplotlib import pyplot as plt

In [10]: plt.plot(xs,ys); plt.show()
/usr/lib64/python2.6/site-packages/matplotlib/backends/backend_gtk.py:621: DeprecationWarning: Use the new widget gtk.Tooltip
self.tooltips = gtk.Tooltips()
Out[10]: [<matplotlib.lines.Line2D object at 0x7f5d8c822050>]

52 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

The result is far from satisfactory. Something went wrong with the radia:

In [11]: R = 4.; r = 0.25

In [12]: plt.plot(xs,ys); plt.show()
Out[12]: [<matplotlib.lines.Line2D object at 0x7f5d8c853510>]

Nothing changed? Of course, because we haven’t recomputed the trajectories yet! We do not want to retype everything,
so look at the history:

In [13]: hist
1 : import numpy as np
2 : op = 2*np.pi; os = 14.*np.pi
3 : R = 4.; r = 2
4 : t = np.linspace(0, 2, 100)
5 : xp = np.cos(op*t)
6 : yp = np.sin(op*t)
7 : xs = xp + r*np.cos(os*t)
8 : ys = yp + r*np.sin(os*t)
9 : from matplotlib import pyplot as plt
10: plt.plot(xs,ys); plt.show()
11: R = 4.; r = 0.25
12: plt.plot(xs,ys); plt.show()
13: _ip.magic("hist ")

OK, so lines 6 to 10 has to be repeated, but I forgot how it works:

In [14]: rep ?
Type: Magic function
Base Class: <type ’instancemethod’>
String Form: <bound method InteractiveShell.rep_f of <IPython.iplib.InteractiveShell object at 0x7f5da06a2d90>>
Namespace: IPython internal
File: /usr/lib/python2.6/site-packages/IPython/history.py
Definition: rep(self, arg)
Docstring:

Repeat a command, or get command to input line for editing

- %rep (no arguments):

Place a string version of last computation result (stored in the special ’_’
variable) to the next input prompt. Allows you to create elaborate command
lines without using copy-paste::

$ l = ["hei", "vaan"]
$ "".join(l)
==> heivaan
$ %rep
$ heivaan_ <== cursor blinking

%rep 45

Place history line 45 to next input prompt. Use %hist to find out the
number.

Aha!

In [15]: rep 6-10
lines [u’yp = np.sin(op*t)\nxs = xp + r*np.cos(os*t)\nys = yp + r*np.sin(os*t)\nfrom matplotlib import pyplot as plt\nplt.plot(xs,ys); plt.show()\n’]
Out[20]: [<matplotlib.lines.Line2D object at 0x7f5d8c629b90>]

1.6. IPython tips 53

SciPyTutorial Documentation, Release 0.0.1

Hmm, still not good, what if we take more points?

In [21]: t = np.linspace(0, 2, 2000)

In [22]: rep 6-10
lines [u’yp = np.sin(op*t)\nxs = xp + r*np.cos(os*t)\nys = yp + r*np.sin(os*t)\nfrom matplotlib import pyplot as plt\nplt.plot(xs,ys); plt.show()\n’]

ValueError Traceback (most recent call last)

/home/gradinar/LaTeX_doc/Numcourses/Numcourses/SciPyTools/Start/TutCodes/<ipython console> in <module>()

ValueError: shape mismatch: objects cannot be broadcast to a single shape

Upps, one of the variables is longer. What was there?

In [25]: hist
1 : import numpy as np
2 : op = 2*np.pi; os = 14.*np.pi
3 : R = 4.; r = 2
4 : t = np.linspace(0, 2, 100)
5 : xp = np.cos(op*t)
6 : yp = np.sin(op*t)
7 : xs = xp + r*np.cos(os*t)
8 : ys = yp + r*np.sin(os*t)
9 : from matplotlib import pyplot as plt
10: plt.plot(xs,ys); plt.show()
11: R = 4.; r = 0.25
12: plt.plot(xs,ys); plt.show()
13: _ip.magic("hist ")
14: #?rep
15: _ip.magic("rep 6-10")
16: yp = np.sin(op*t)
17: xs = xp + r*np.cos(os*t)
18: ys = yp + r*np.sin(os*t)
19: from matplotlib import pyplot as plt
20: plt.plot(xs,ys); plt.show()
21: t = np.linspace(0, 2, 2000)
22: _ip.magic("rep 6-10")
23: yp = np.sin(op*t)
24: xs = xp + r*np.cos(os*t)
25: _ip.magic("hist ")

Aha, I rerun the wrong lines; let’s do it again:

In [26]: rep 5-10
lines [u’xp = np.cos(op*t)\nyp = np.sin(op*t)\nxs = xp + r*np.cos(os*t)\nys = yp + r*np.sin(os*t)\nfrom matplotlib import pyplot as plt\nplt.plot(xs,ys); plt.show()\n’]
Out[32]: [<matplotlib.lines.Line2D object at 0x7f5d8c556750>]

It looks well; let us save our valuable work in a file. What to save?

In [33]: hist
1 : import numpy as np
2 : op = 2*np.pi; os = 14.*np.pi
3 : R = 4.; r = 2
4 : t = np.linspace(0, 2, 100)
5 : xp = np.cos(op*t)
6 : yp = np.sin(op*t)
7 : xs = xp + r*np.cos(os*t)
8 : ys = yp + r*np.sin(os*t)
9 : from matplotlib import pyplot as plt

54 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

10: plt.plot(xs,ys); plt.show()
11: R = 4.; r = 0.25
12: plt.plot(xs,ys); plt.show()
13: _ip.magic("hist ")
14: #?rep
15: _ip.magic("rep 6-10")
16: yp = np.sin(op*t)
17: xs = xp + r*np.cos(os*t)
18: ys = yp + r*np.sin(os*t)
19: from matplotlib import pyplot as plt
20: plt.plot(xs,ys); plt.show()
21: t = np.linspace(0, 2, 2000)
22: _ip.magic("rep 6-10")
23: yp = np.sin(op*t)
24: xs = xp + r*np.cos(os*t)
25: _ip.magic("hist ")
26: _ip.magic("rep 5-10")
27: xp = np.cos(op*t)
28: yp = np.sin(op*t)
29: xs = xp + r*np.cos(os*t)
30: ys = yp + r*np.sin(os*t)
31: from matplotlib import pyplot as plt
32: plt.plot(xs,ys); plt.show()
33: _ip.magic("hist ")

Aha, let us save the lines 1 31 2 11 21 5-8 10 in this order:

In [34]: save testsat.py 1 31 2 11 21 5-8 10
The following commands were written to file ‘testsat.py‘:
import numpy as np
from matplotlib import pyplot as plt
op = 2*np.pi; os = 14.*np.pi
R = 4.; r = 0.25
t = np.linspace(0, 2, 2000)
xp = np.cos(op*t)
yp = np.sin(op*t)
xs = xp + r*np.cos(os*t)
ys = yp + r*np.sin(os*t)
plt.plot(xs,ys); plt.show()

In [35]:

%who/%whos: These functions give information about identifiers you have defined interactively (not things you
loaded or defined in your configuration files). %who just prints a list of identifiers and %whos prints a table
with some basic details about each identifier.

The point about % with an example on the magic comand %cd:

[gradinar@localhost Start]$ ipython
Python 2.6.4 (r264:75706, Jul 14 2010, 09:36:06)
Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.

1.6. IPython tips 55

SciPyTutorial Documentation, Release 0.0.1

In [1]: cd ..
/home/gradinar/Documents/SciPyTutorial

In [2]: cd = 5

In [3]: cd
Out[3]: 5

In [4]: cd Start
--
File "<ipython console>", line 1

cd Start
^

SyntaxError: invalid syntax

In [5]: %cd Start
/home/gradinar/Documents/SciPyTutorial/Start

In [6]:

More nice documentation on IPython here.

1.7 Matplotlib tips

Matplotlib has a beautiful documentation.

You might start by the tutorial or by screen-shots

For special ploting wishes, look into the gallery, you might get either your ploting program already tipped or good
visualization ideas.

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 # Data of the quadratic form
5 A = np.array([
6 [2., 1.],
7 [1., 2.]
8])
9

10 b = np.array([1., 1.])
11 # mesh
12 Nx = 100; Ny = 100
13 X,Y = np.ogrid[-3.:3:Nx*1j, -3.:3:Ny*1j]
14 z = np.zeros(2)
15 Z = np.zeros(Nx*Ny)
16 # compute values
17 k = 0
18 for x in X[:,0]:
19 z[0] = x
20 for y in Y[0,:]:
21 z[1] = y
22 Z[k] = 0.5*np.dot(z,np.dot(A,z)) - np.dot(z,b)
23 k += 1
24

25 Z = Z.reshape(Nx,Ny)

56 Chapter 1. Basics

http://ipython.scipy.org/doc/manual/html/index.html
http://matplotlib.sourceforge.net/index.html
http://matplotlib.sourceforge.net/contents.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/screenshots.html
http://matplotlib.sourceforge.net/gallery.html

SciPyTutorial Documentation, Release 0.0.1

26

27 ax = plt.subplot(111)
28 im = plt.imshow(Z, cmap=plt.cm.jet)
29 #im.set_interpolation(’nearest’)
30 #im.set_interpolation(’bicubic’)
31 im.set_interpolation(’bilinear’)
32 #ax.set_image_extent(-3, 3, -3, 3)
33

34 levels = np.arange(Z.min(), Z.max()+0.01, 1.) # Boost the upper limit to avoid truncation errors.
35 plt.contourf(Z, levels,
36 cmap=plt.cm.get_cmap(’jet’, len(levels)-1),
37)
38

39 plt.colorbar()
40 plt.show()
41

42 ## fig = plt.figure()
43 ## ax = fig.add_subplot(111, projection=’3d’) # only newer matplotlib
44 ## ax.plot_surface(x, y, Z, rstride=1, cstride=1, cmap=cm.jet)
45 ## plt.show()
46

47

48 #from enthought.mayavi import mlab
49 #mlab.surf(x,y,Z)
50 #mlab.show()

0 20 40 60 80

0

20

40

60

80

0.33333333

3.66666667

7.66666667

11.66666667

15.66666667

19.66666667

23.66666667

27.66666667

31.66666667

1.7. Matplotlib tips 57

SciPyTutorial Documentation, Release 0.0.1

1.7.1 TeX labels

The plotting utilities of matplotlib can use the power of a TeX system if one is installed. We just have to tell matplotlib
that it should generate the labels with the help of TeX. We then can use anything that is a valid TeX expression we
would otherwise write between the dollar signs in a TeX file. The following code presents a small example showing
TeX labels in action.

NOTE: you may have issues with the following usetex-options in case that latex is bad configured on MacOS or
Windows.

1 from numpy import *
2 from pylab import *
3 from matplotlib import rc
4

5 # Enable usage of real TeX for labels and captions
6 rc(’text’, usetex=True)
7

8 # Build a complicated function
9 x = linspace(-8, 8, 5000)

10

11 y = zeros(x.shape)
12 for n in xrange(1,11,2):
13 y += 1.0 / n * sin(n * pi * x / 6.0)
14 y = pi / 4.0 * y
15

16 # Plot and label with full TeX support
17 figure()
18 plot(x, y, label=r"$\frac{4}{\pi} \sum \frac{1}{n} \sin\left(\frac{n \pi x}{L} \right)$")
19 xlabel(r"ξ")
20 ylabel(r"$\mathcal{F}\left(f\left(x\right)\right)\left(\xi\right)$")
21 legend(loc="lower right")
22 title(r"Fourier series of a square wave: $\mathcal{F}\left(f\right) = \frac{4}{\pi} \sum_{n=1,3,5,\ldots} \frac{1}{n} \sin\left(\frac{n \pi x}{L} \right)$")
23 savefig("tex_labels.png")

58 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

−5 0 5 10 15 20
τ

1.35

1.40

1.45

1.50

1.55

λ
=

Λ
(τ

)
A complicated function Λ (τ)

√
sin(τ)+cos(τ)

τ2+4 + 2

Note that we have to use so called raw strings, i.e. strings with the character “r” as a prefix. Additionally we use the
dollar signs inside the strings for delimiting formulas as usual.

1.8 Mayavi2 tips

The enthought.mayavi.mlab module, that we call mlab, provides an easy way to visualize data in a script or from an
interactive prompt with one-liners as done in the matplotlib pylab interface but with an emphasis on 3D visualization
using Mayavi2. This allows users to perform quick 3D visualization while being able to use Mayavi’s powerful
features.

Warning: When using IPython with mlab, as in the following examples, IPython must be invoked with the
-wthread command line option like so:

$ ipython -wthread

If you are using the Enthought Python Distribution, or the latest Python(x,y) distribution, the Pylab menu entry
will start ipython with the right switch. In older releases of Python(x,y) you need to start “Interactive Console
(wxPython)”.

Scripting with mayavi2

Reference manual

Try:

1.8. Mayavi2 tips 59

http://www.enthought.com/products/epd.php
http://www.pythonxy.com
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/mlab.html
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/auto/mlab_reference.html

SciPyTutorial Documentation, Release 0.0.1

In [1]: from enthought.mayavi import mlab

In [2]: mlab.test_[TAB]

In [3]: mlab.test_contour3d ? ?

In [4]: mlab.test_contour3d()
Out[4]: <enthought.mayavi.modules.iso_surface.IsoSurface object at 0x7fb8e8646b30>

In [5]: import numpy as np

In [6]: t = np.linspace(0, 2*np.pi, 50)

In [7]: u = np.cos(t)*np.pi

In [8]: x, y, z = np.sin(u), np.cos(u), np.sin(t)

In [9]: mlab.clf()

In [10]: mlab.points3d(x,y,z)

In [11]: mlab.clf()

In [12]: mlab.points3d(x,y,z,t, scale_mode=’none’)

In [13]: mlab.points3d ?

In [23]: x, y = np.mgrid[-3:3:100j, -3:3:100j]

In [24]: z = np.sin(x*x + y*y)

In [25]: mlab.clf()

In [26]: mlab.surf(x,y,z)

In [28]: mlab.mesh(x,y,z)

A simple example showing a 3D plot done with the help of mayavi2. The following code shows what it takes to
produce such an image. The plotting is essentially only two lines of code!

1 from numpy import mgrid, real, conj, ones, zeros
2 from numpy.fft.fftpack import fft2
3 from numpy.fft.helper import fftshift
4 from enthought.mayavi import mlab
5

6 # A mesh grid
7 X,Y = mgrid[-100:100, -100:100]
8

9 # The initial function: a 2D unit step
10 Z = zeros((200,200))
11 Z[0:6,0:6] = 0.3*ones((6,6))
12

13 # The fourier transform: a 2D sinc(x,y)
14 W = fftshift(fft2(Z))
15 W = real(conj(W)*W)
16

17 # Display the data with mayavi
18 # Plot the original function

60 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

19 #mlab.mesh(X, Y, Z)
20 # Plot the fourier transformed function
21 mlab.mesh(X, Y, W)
22 mlab.savefig("mayavi_fft_plot.png")

An Advanced example

And now an animated example:

1 ’’’Progam menat to test funcyionality of scipy, mayavi2 and matplotlib
2 to be run either with
3 mayavi2 -x testy.py
4 or
5 ipython -pylab -wthread
6 run testy.py
7 ’’’
8 from enthought.mayavi import mlab
9 from scipy import sin, ogrid, array

10 from pylab import plot, show
11 # prepare data, hence test scipy elements
12 x , y = ogrid[-3:3:100j , -3:3:100j]
13 z = sin(x**2 + y**2)
14 # test matplotlib
15 plot(x, sin(x**2)); show()
16 #now mayavi2
17 #mlab.options.offscreen = True
18 obj=mlab.surf(x,y,z)
19 P = mlab.pipeline
20 scalar_cut_plane = P.scalar_cut_plane(obj,

1.8. Mayavi2 tips 61

http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/auto/example_mri.html

SciPyTutorial Documentation, Release 0.0.1

21 plane_orientation=’y_axes’,
22)
23 scalar_cut_plane.enable_contours = True
24 scalar_cut_plane.contour.filled_contours = True
25 scalar_cut_plane.implicit_plane.widget.origin = array([0.00000000e+00, 1.46059210e+00, -2.02655792e-06])
26

27 scalar_cut_plane.warp_scalar.filter.normal = array([0., 1., 0.])
28 scalar_cut_plane.implicit_plane.widget.normal = array([0., 1., 0.])
29 ## mlab.draw()
30 f = mlab.gcf()
31 f.scene.camera.azimuth(10)
32

33 f.scene.show_axes = True
34 f.scene.magnification = 4 # or 4
35 mlab.axes()
36 #engine=mlab.getengine()
37 ## mlab.draw()
38

39

40 # Now animate the data.
41 dt = 0.01; N = 40
42 ms = obj.mlab_source
43 for k in xrange(N):
44 x = x + k*dt
45 scalars = sin(x**2 + y**2)
46 ms.set(x=x, scalars=scalars)

The next example demonstrates how to use scalar cut planes in order to evidence subtle characteristics of a plot. Here,
we would like to show the Gibbs oscillations in the Fourier series approximation of jumps.

The workflow for such a problem is:

• write a simple program (let us call it pl.py) that plots your object

• run mayavi2 -x pl.py (python pl.py works too for just executing the script)

• use the ‘spion’ of mayavi2: click on the red point in the menu: the protocol of everything you do visually
with the mouse is python-scripted in the opened window

• play with the possibilities and variables that mayavi2 offers, till the image that you see satisfies your
exigences

• copy from the ‘spion’-window the relevant information for your result into your pl.py file

• save the picture, if you wish; CAUTION: the pictures that mayavi2 produces became huge, if saved in
vector graphics ... so eps is not recommeded here!

• re-run mayavi2 -x pl.py to see if this is really what you wanted

• iterate the above process, if wished

• improve speed and quality of the plot by avoiding rendering and increasing size

In the following code (that was developped following this receipt) you find hints for your formulations.

1 from numpy import mgrid, zeros, sin, pi, array
2 from enthought.mayavi import mlab
3

4 Lx = 4
5 Ly = 4
6

7 S = 10

62 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

8 dx = 0.05
9 dy = 0.05

10

11 # A mesh grid
12 X,Y = mgrid[-S:S:dx, -S:S:dy]
13

14 # The initial function:
15 #Z = zeros(X.shape)
16 #Z = sin(pi*X/Lx)*sin(pi*Y/Ly)
17 #Z[Z>0] = 1
18 #Z[Z<0] = -1
19

20 # The Fourier series:
21 W = zeros(X.shape)
22 m = 10
23 for i in xrange(1,m,2):
24 for j in xrange(1,m,2):
25 W += 1.0 / (i*j) * sin(i * pi * X / Lx) * sin(j * pi * Y / Ly)
26 W *= pi / 4.0
27

28

29 # prepare scene
30 scene = mlab.gcf()
31 # next two lines came at the very end of the design
32 scene.scene.off_screen_rendering = True # quicker execution because no redenring
33 scene.scene.magnification = 4
34 # plot the object !
35 obj = mlab.mesh(X, Y, W)
36 P = mlab.pipeline
37 # first scalar_cut_plane
38 scalar_cut_plane = P.scalar_cut_plane(obj,
39 plane_orientation=’z_axes’,
40)
41 scalar_cut_plane.enable_contours = True
42 scalar_cut_plane.contour.filled_contours = True
43 # where ?
44 scalar_cut_plane.implicit_plane.widget.origin = array([-0.025, -0.025, 0.48])
45 scalar_cut_plane.warp_scalar.filter.normal = array([0., 0., 1.])
46 scalar_cut_plane.implicit_plane.widget.normal = array([0., 0., 1.])
47 scalar_cut_plane.implicit_plane.widget.enabled = False # do not show the widget
48 # second scalar_cut-plane
49 scalar_cut_plane_2 = P.scalar_cut_plane(obj,
50 plane_orientation=’z_axes’,
51)
52 scalar_cut_plane_2.enable_contours = True
53 scalar_cut_plane_2.contour.filled_contours = True
54 # where ?
55 scalar_cut_plane_2.implicit_plane.widget.origin = array([-0.025, -0.025, -0.48])
56 scalar_cut_plane_2.warp_scalar.filter.normal = array([0., 0., 1.])
57 scalar_cut_plane_2.implicit_plane.widget.normal = array([0., 0., 1.])
58 scalar_cut_plane_2.implicit_plane.widget.enabled = False # do not show the widget
59 # see it from a closer view point
60 scene.scene.camera.position = [-31.339891336951567, 14.405281950904936, -27.156389988308661]
61 scene.scene.camera.focal_point = [-0.025000095367431641, -0.025000095367431641, 0.0]
62 scene.scene.camera.view_angle = 30.0
63 scene.scene.camera.view_up = [0.63072643330371414, -0.083217283169475589, -0.77153033000256477]
64 scene.scene.camera.clipping_range = [4.7116394000124906, 93.313165745624019]
65 scene.scene.camera.compute_view_plane_normal()

1.8. Mayavi2 tips 63

SciPyTutorial Documentation, Release 0.0.1

66 #scene.scene.render() # commented out at the end, we do not want to render anything
67 mlab.savefig("mayavi_fourier_series_plot.png")
68 #mlab.show()

1.9 Other noteworthy plot commands

While you saw several plot command and know how to do different 2D and 3D plots, we will list here some other plot
command that might be interesting.

1.9.1 Plots in the complex plane

Plots of a possibly complex function in the complex plane can be easily done with plot routines from the mpmath
python package.

The example plots the gamma function over the complex plane:

import mpmath as mp

mp.cplot(mp.gamma, re=[-4,4], im=[-4,4], points=10000, file="gamma.png")

64 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

This is all for plotting the gamma function in the rectangle -4 < Re(z) < 4 and -4 < Im(z) < 4. The above call saves the
result to the file “gamma.png” which looks like this:

1.10 Examples

Here we put a few complete examples that should be relevant for the numerics lectures.

1.10.1 First example

Define f(x) = 1√
1−a sin(2πx−1)

.

We want to plot the error made by using the trapezoidal rule when approximating
∫ 1

0
f(x)dx and

∫ 0.5

0
f(x)dx.

.

As exact value we take the value of the integral as produced by the function quad from the sub-package integrate of
scipy. This function is just a wrapper to the Fortran library QUADPACK. Please, use IPython facility to consult the
documentation of it.

The aim of the plots is to put in evidence the exponential convergence of the trapezoidal rule when the smoothness of
the function extends above its periodical domain. The plots should be done for several possible parameters 0 < a < 1.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import integrate
4

5 def trapr(func, a, b, N):
6 #h = (b-a)/N; x = np.arange(a, b + h, h)
7 x = np.linspace(a,b, N+1); h = x[1]-x[0]
8 res = np.sum(func(x[1:-1])) + 0.5*(func(x[0])+func(x[-1]))
9 res *= h

10 return res
11

12 N = 25 #number of quadrature points used
13 res = np.zeros(N) # alocate space for results
14 left = 0.; right = 1. # integration limits
15

16 lista = [0.5, 0.9, 0.95, 0.99]
17 for a in lista:
18 myf = lambda x: 1./np.sqrt(1.- a*np.sin(2*np.pi*x-1))
19 for n in xrange(N):
20 res[n] = trapr(myf, left, right, n+1)
21 exact, aerr = integrate.quad(myf, left, right)
22 #exact = trapr(myf, left, right, 500)
23 print ’a=’,a,’quad:’, exact, ’aerr=’, aerr
24 err = np.abs(res-exact)
25 plt.semilogy(np.arange(1,N+1),err, label=’a=’+str(a))
26

27 plt.legend(loc=0)
28 plt.show()

1.10. Examples 65

SciPyTutorial Documentation, Release 0.0.1

0 5 10 15 20 25
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

a=0.5
a=0.9
a=0.95
a=0.99

At lines 1-3 we import the libraries we are using. At lines 5-10 we define our quadrature rule function. Note that there
are several possibilities to prepare the array of sampling points. The integrand is evaluated once at all points (vectorial)
and the function sum of numpy is used in order to add the necessary values in most efficient way possible.

After preparing the data, we run the loop over the interesting values of the parameter a.

At line 18 we define the function to be integrated as a lambda function, i.e. it will be inlined. Note that if we define it
as a function of two parameters, we’d have difficulties in the later call of the trapr-function.

We would like to have a program that computes both integrals and makes both plots at one. Here’s a possibility:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import integrate
4

5 def trapr(func, a, b, N):
6 """
7 Compute the integral from a to b of func via trap. rule with N points
8 """
9 #h = (b-a)/N; x = np.arange(a, b + h, h)

10 x = np.linspace(a,b, N+1); h = x[1]-x[0]
11 res = np.sum(func(x[1:-1])) + 0.5*(func(x[0])+func(x[-1]))
12 res *= h
13 return res
14

15 def ploterr(left, right, N, lista, pf):
16 res = np.zeros(N) # alocate space for results
17 for a in lista:
18 myf = lambda x: 1./np.sqrt(1.- a*np.sin(2*np.pi*x-1))

66 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

19 for n in xrange(N):
20 res[n] = trapr(myf, left, right, n+1)
21 exact, aerr = integrate.quad(myf, left, right)
22 #exact = trapr(myf, left, right, 500)
23 print ’a=’,a,’quad:’, exact, ’aerr=’, aerr
24 err = np.abs(res-exact)
25 pf(np.arange(1,N+1),err, label=’a=’+str(a))
26

27 plt.legend(loc=0)
28 plt.savefig(’err’+str(right)+’.png’)
29 plt.close()
30

31 # --
32 if __name__ == "__main__": # not really necessary here, but you see how to do modules and test them...
33 lista = [0.5, 0.9, 0.95, 0.99]
34 ploterr(0., 1., 25, lista, pf=plt.semilogy)
35 ploterr(0., 0.5, 100, lista, pf=plt.loglog)

100 101 10210-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

a=0.5
a=0.9
a=0.95
a=0.99
a=0.5
a=0.9
a=0.95
a=0.99

In last code, we incorporated the loop in a function that gets the integration range, the list of wished parameters and
the preferred plot function (semilogy is better for the identification of the exponential convergence). Note that in the
picture generated for the web-tutorial, the images appear together, while the code itself write two figures on the disc
(line 27). The type of the file is decided by the extension of the name of the file. Note also the string concatenation
used in the construction of the file name.

Finally, we would like to rewrite the code such that we avoid the trick based on inlining and locality of the variable a.
We have now the occasion to see a very powerful trait of python: class function.

1.10. Examples 67

SciPyTutorial Documentation, Release 0.0.1

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import integrate
4

5 def trapr(func, a, b, N):
6 """
7 Compute the integral from a to b of func via trap. rule with N points
8 """
9 #h = (b-a)/N; x = np.arange(a, b + h, h)

10 x = np.linspace(a,b, N+1); h = x[1]-x[0]
11 y = func(x)
12 res = np.sum(y[1:-1]) + 0.5*(y[0]+y[-1])
13 res *= h
14 return res
15

16 class Myf:
17 """
18 models a parametric function suited for evidencing
19 exponential convergence of trap. rule
20 """
21 def __init__(self, ina): self.a = ina
22 def __str__(self): return str(self.a)+’\n’
23 def __call__(self,x):
24 res = 1./np.sqrt(1.- self.a*np.sin(2*np.pi*x-1))
25 return res
26

27 def ploterr(f, left, right, N, lista, pf):
28 res = np.zeros(N) # alocate space for results
29 for a in lista:
30 f.a = a; print f
31 for n in xrange(N):
32 res[n] = trapr(f, left, right, n+1)
33 exact, aerr = integrate.quad(f, left, right)
34 print ’a=’,a,’quad:’, exact, ’aerr=’, aerr
35 err = np.abs(res-exact)
36 pf(np.arange(1,N+1),err, label=’a=’+str(a))
37

38 plt.legend(loc=0)
39 plt.savefig(’err’+str(right)+’.png’)
40 plt.close()
41

42 # --
43 if __name__ == "__main__": # not really necessary here, but you see how to do modules and test them...
44 lista = [0.5, 0.9, 0.95, 0.99]
45 myf = Myf(lista[0]) # initialize the function
46 ploterr(myf, 0., 1., 25, lista, pf=plt.semilogy)
47 ploterr(myf, 0., 0.5, 100, lista, pf=plt.loglog)

68 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

100 101 10210-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

a=0.5
a=0.9
a=0.95
a=0.99
a=0.5
a=0.9
a=0.95
a=0.99

The class Myf creates callable objects. On line 43 we create one such object that models our parameter function,
having the parameter set by the first element of the list of interesting parameters. During the loop at line 29, we
modify the parameter of the object, which we use as a function to be integrated by our quadrature routines at lines 32
and 33.

This is a very simple example, but imagine the power at your hands given by the class function when you have to
optimize a very complicated function (e.g. given only implicitly as the result of complicated algorithms) depending
on several parameters.

1.10.2 Second example

Serial and parallel Monte-Carlo integration via IPython. Serial code:

1 """
2 Computes integral
3 I0(1) = (1/pi) int(z=0..pi) exp(-cos(z)) dz by raw MC.
4 Abramowitz and Stegun give I0(1) = 1.266066
5 """
6

7 import numpy as np
8 import time
9

10 t1 = time.time()
11

12 M = 100 # number of times we run our MC inetgration
13 asval = 1.266065878
14 ex = np.zeros(M)

1.10. Examples 69

SciPyTutorial Documentation, Release 0.0.1

15 print ’A and S tables: I0(1) = ’,asval
16 print ’sample variance MC I0 val’
17 print ’------ -------- ---------’
18 k = 5 # how many experiments
19 N = 10**np.arange(1,k+1)
20 v = []; e = []
21 for n in N:
22 for m in xrange(M):
23 x = np.random.rand(n) # sample
24 x = np.exp(np.cos(-np.pi*x))
25 ex[m] = sum(x)/n # quadrature
26 ev = sum(ex)/M
27 vex = np.dot(ex,ex)/M
28 vex -= ev**2
29 v += [vex]; e += [ev]
30 print n, vex, ev
31

32 t2 = time.time()
33 t = t2-t1
34

35 print "Serial calculation completed, time = %s s" % t

Parallel code:

1 import sys
2 import time
3 from IPython.kernel import client
4 import numpy as np
5 from matplotlib import pyplot as plt
6

7

8 def mcquad():
9 k = 5 # how many experiments

10 N = 10**np.arange(1,k+1)
11 ex = []
12 for n in N:
13 x = np.random.rand(n) # sample
14 x = np.exp(np.cos(-np.pi*x))
15 ex += [np.sum(x)/n] # quadrature
16 return ex
17

18 #---
19 # Setup for parallel calculation
20 #---
21

22 # The MultiEngineClient is used to setup the calculation and works with all
23 # engine.
24 mec = client.MultiEngineClient()
25

26 # The TaskClient is an interface to the engines that provides dynamic load
27 # balancing at the expense of not knowing which engine will execute the code.
28 tc = client.TaskClient()
29

30 # Initialize the common code on the engines.
31 mec.execute(’import numpy as np’)
32

33

34 #---

70 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

35 # Perform parallel calculation
36 #---
37

38 print "Running parallel calculation"
39 M = 100 # number of times we run our MC inetgration
40

41 # Submit tasks to the TaskClient for each N as a MapTask.
42 t1 = time.time()
43 taskids = []
44 for m in xrange(M):
45 t = client.MapTask(
46 mcquad
47)
48 taskids.append(tc.run(t))
49

50 print "Submitted tasks: ", len(taskids)
51 sys.stdout.flush()
52

53 # Block until all tasks are completed.
54 tc.barrier(taskids)
55 t2 = time.time()
56 t = t2-t1
57

58 print "Parallel calculation completed, time = %s s" % t
59 print "Collecting results..."
60

61 # Get the results using TaskClient.get_task_result.
62 results = [tc.get_task_result(tid) for tid in taskids]
63 ex = np.array(results)
64 ev = ex.sum(axis=0)/M
65 vex = (ex**2).sum(axis=0)/M
66 vex = vex - ev**2
67 print vex

To use the parallel code, start first an IPython controller with:

gradinar@cmath-2% ipcluster local -n 4

then open a new window on the same machine and start ipython:

gradinar@cmath-2% ipython
Python 2.6.4 (r264:75706, Jun 4 2010, 18:20:31)
Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.

In [1]: run -i par01.py
class FCTaskControllerFromTaskController(Referenceable):
Running parallel calculation
Submitted tasks: 100
Parallel calculation completed, time = 1.54661202431 s
Collecting results...
[6.04508921e-02 6.88178837e-03 7.46274110e-04 6.50926168e-05 5.63334832e-06]

More on Using IPython for parallel computing

1.10. Examples 71

http://ipython.scipy.org/doc/manual/html/parallel/index.html

SciPyTutorial Documentation, Release 0.0.1

1.10.3 Third example

1 """
2 Calculates eigenvalues through direct power method
3

4 Originaly, there were the input parameters d and maxit,
5 but in the skript, d = [1:10]’ and maxit = 30 are used.
6 """
7

8 import numpy as np
9

10 def pm(A,z,sgn,ev,ew,maxit=30):
11 ’’’
12 performs maxit iterations of the power method
13 for the matrix A and the initial vector z
14 and computes the error for the largest eigenvalue ew
15 having the sign sgn and the corresponding eigenvector ev
16 ’’’
17 res = np.zeros((maxit,5))
18 s = 1;
19 for k in xrange(maxit):
20 w = np.dot(A,z)
21 no = np.linalg.norm(w)
22 rq = np.real(np.vdot(w,z))
23 z = w/no
24 err_aew = abs(no-abs(ew))
25 err_ew = abs(sgn*rq-ew)
26 err_ev = np.linalg.norm(s*z-ev)
27 res[k] = np.array([k, no, err_ev, err_aew, err_ew])
28 s = s*sgn
29 return res
30

31 def runpm(d, fname):
32 ’’’
33 performs the analysis of the power iteration starting from
34 the array of eigenvalues d; the picture with the results goes
35 to the file indicate by fname
36 ’’’
37 n = len(d) # size of the matrix
38 S = np.triu(np.diag(np.r_[n:0:-1]) + np.ones((n,n)))
39 A = np.dot(S, np.dot(np.diag(d), np.linalg.inv(S)))
40 # need exact ew and ew for error calculation
41 w, V = np.linalg.eig(A)
42 t = np.where(w == abs(w).max())
43 k = t[0];
44 if len(k) > 1:
45 print ’Error: no single larges EV’
46 raise ValueError
47 ev = V[:,k[0]]; ev /= np.linalg.norm(ev)
48 ew = w[k[0]]
49 ## # another way to do this is:
50 ## t = (w == abs(w).max()) # array of booleans showing where w ==max(|w|)
51 ## if t.sum()>1:
52 ## print ’Error: no single larges EV’
53 ## raise ValueError
54 ## k = t.argmax()
55 ## ev = V[:,k]; ev /= np.linalg.norm(ev)
56 ## ew = w[k]

72 Chapter 1. Basics

SciPyTutorial Documentation, Release 0.0.1

57 sgn = 1
58 if ew<0: sgn = -1
59 print ’ew =’, ew, ’ sgn =’, sgn, ’\n ev =’, ev
60 z = np.random.rand(n); z /= np.linalg.norm(z)
61 res = pm(A,z,sgn,ev,ew)
62 from matplotlib import pyplot as plt
63 plt.semilogy(res[:,0], res[:,2])
64 plt.semilogy(res[:,0], res[:,3])
65 plt.semilogy(res[:,0], res[:,4])
66 plt.xlabel(’iteration step k’)
67 plt.ylabel(’errors’)
68 plt.savefig(fname)
69 plt.show()
70

71

72 # ---------------------------------------
73 if __name__==’__main__’:
74 n = 10 # size of the matrix
75 d = 1.+np.r_[0:n] # eigenvalues
76 print ’d =’, d, ’d[-2]/d[-1] =’, d[-2]/d[-1]
77 runpm(d, ’pm1.eps’)
78 d = np.ones(n); d[-1] = 2. # eigenvalues
79 print ’d =’, d, ’d[-2]/d[-1] =’, d[-2]/d[-1]
80 runpm(d, ’pm2.eps’)
81 d = 1. - 0.5**np.r_[1:5.1:0.5] # eigenvalues
82 print ’d =’, d , ’d[-2]/d[-1] =’, d[-2]/d[-1]
83 runpm(d, ’pm3.eps’)

0 5 10 15 20 25 30
iteration step k

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

e
rr

o
rs

1.10. Examples 73

SciPyTutorial Documentation, Release 0.0.1

1.11 Useful links

1.11.1 Tutorials, Manuals and Books

• Tentative NumPy Tutorial

• NumPy for Matlab Users

• Documentations on NumPy and SciPy

• Additional documentation from SciPy

• Scipy tutorial

• Kittens tutorial

• SciPy FAQ page

• NumPy

• Short NumPy introduction

• IPython documentation.

• SymPy documentation

• h5py project website and h5py user guide

• Ask scipy page

• A very good book on the subject is H. Langtangen, “Python Scripting for Computational Science”, available
electronically on NEBIS, too.

• A very good French overview

1.11.2 Local copies at a given moment:

• Tentative NumPy Tutorial

• NumPy for Matlab Users

• Numpy 1.3 Reference Guide [HTML+zip]

• Scipy 0.7 Reference Guide [HTML+zip]

• French overview

1.11.3 Additional software

• The spyder IDE

• winpdb, a python debugger

• mayavi2, 3D scientific data visualization

• image magic, batch image processing

• mplayer, versatile video player and encoder

• hdfview, HDF file editor

74 Chapter 1. Basics

http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/NumPy_for_Matlab_Users
http://docs.scipy.org/doc/
http://scipy.org/Additional_Documentation?action=show\&redirect=Documentation
http://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://mentat.za.net/numpy/
http://new.scipy.org/faq.html
http://numpy.scipy.org/
http://mentat.za.net/numpy/intro/intro.html
http://ipython.scipy.org/doc/manual/html/index.html
http://docs.sympy.org/index.html
http://h5py.alfven.org/
http://h5py.alfven.org/docs/guide/index.html
http://ask.scipy.org/
http://folk.uio.no/hpl/scripting/
http://www.dakarlug.org/pat/scientifique/html/index.html
http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/External/Tentative_NumPy_Tutorial.html
http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/External/NumPy_for_Matlab_Users.html
http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/External/numpy-html.zip
http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/External/scipy-html.zip
http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/External/python_scientifique/html/index.html
http://code.google.com/p/spyderlib/
http://winpdb.org/
http://code.enthought.com/projects/mayavi/
http://www.imagemagick.org/
http://www.mplayerhq.hu/
http://www.hdfgroup.org/hdf-java-html/hdfview/index.html

SciPyTutorial Documentation, Release 0.0.1

1.12 Installing python packages

There are thousands of python packages available 2 and not all of them can be found in the package repositories of
the common Linux distributions. Even if Debian for example consists of over 30‘000 software packages, there are
python packages that are not part of the Debian distribution. For this reason you need to install python packages by
hand sometimes. This is not a difficult task but you have to obey some constraints.

If you download a python package, it’s usually an archive file in the .zip or .tar.gz format. Within this archive
there is a file called setup.py, this acts as an installer. (For more information about the topis, see the official
documentation on the Distutils python module 3.)

Installing the python package locally on your Linux system is as easy as running the setup.py script with the
argument install. (Uninstalling works similar, but we don’t go into details here.):

python setup.py install

This tries to install the package on a system-wide basis. If you do not have the permissions to do this or you just want
to try a new package quickly, then it’s preferable to install the package only locally. Assume you want to install it in
~/my_python/. Then you first create that directory:

cd ~
mkdir my_python

and then tell the setup script where to install the package:

python setup.py install --home=~/my_python/

that’s it. But you can not import the new module yet.

The installation directory lies outside of the so called python path where python searches for referenced modules.
(This is similar to how the shell searches for binaries in the directories listed in the variable $PATH.) To resolve this
issue you just have to prepend the new directory path to the $PYTHONPATH variable:

export PYTHONPATH="~/my_python/lib/python:$PYTHONPATH"

where the part lib/python/ is the exact path to the python module. You can put this last line of shell code into
your ~/.bashrc file to avoid the need of manually executing it every time you want to use the new python module.

2 Python Package Index http://pypi.python.org/pypi.
3 For more information on how to distribute python software see http://docs.python.org/distutils/index.html.

1.12. Installing python packages 75

http://pypi.python.org/pypi
http://docs.python.org/distutils/index.html

SciPyTutorial Documentation, Release 0.0.1

76 Chapter 1. Basics

CHAPTER

TWO

ADVANCED STUFF

Contents:

2.1 Optimization of Python Code

Good style for speed 1:

1. Avoid explicit loops: use vectorizd numpy expressions instead. If you really need a loop, then try
list comprehensions as they are in general much faster. Example:

1 # Slow:
2 x = []
3 for i in xrange(8):
4 x.append(i**2)
5

6 # Better:
7 x = [0, 0, 0, 0, 0, 0, 0, 0]
8 for i in xrange(len(x)):
9 x[i] = i**2

10

11 # Best:
12 x = [i**2 for i in xrange(8)]

2. Avoid module prefix in frequently called funcions:

import mod
func = mod.func
for x in hugelist:

func(x)

Or even import the function into the global namespace:

from mod import func
for x in hugelist:

func(x)

3. Plain functions are called faster than class methods: trick:

f = myobj.__call__
f(x)

4. Inlining functions speeds-up the code

1 See also http://wiki.python.org/moin/PythonSpeed/PerformanceTips

77

http://wiki.python.org/moin/PythonSpeed/PerformanceTips

SciPyTutorial Documentation, Release 0.0.1

5. Avoid usieng numpy functions with scalar arguments

6. Use xrange instead of range (but be aware that xrange only supports a small part of the interface of
range() and similar containers. 2)

7. if-else is faster than try-except (never use exceptions for program flow!)

8. Avoid resizing of numpy arrays

9. Callbacks to Python from Fortran/C/C++ are expensive

10. Avoid unnecessary allocation of large data structures

11. Be careful with type mactching in mixed Python-Fortran software (e.g. flat/ real*8): if the array entry
types do not match, arrays will be copied!

12. Use asarray with parameter order=’Fortran’ when sending arrays from numpy to Fortran routines!

2.2 Timing Your Code

Timing your code is a more complex task you imagine. If the code to run takes long and you are not fond in very
precise measurements, then the module time is a very simple way to do it. Otherwise you should use the module
timeit. See the two examples below.

from numpy import r_, mat, vstack, eye, ones, zeros
from scipy.linalg import qr
import time
nrEXP = 4
sizes = 2**r_[2:6]
qrtimes = zeros((5,sizes.shape[0]))
k = 0
for n in sizes:

print ’n=’, n
m = n**2
A = mat(1.*r_[1:m+1]).T*mat(1.*r_[1:n+1])
A += vstack((eye(n), ones((m-n,n))))
avqr = 0.
for k in xrange(nrEXP):

t1 = time.clock()
Q, R = qr(A)
t2 = time.clock()-t1
avqr += t2

avqr /= nrEXP
print avqr
qrtimes[0,k] = avqr
avqr = 0.
for k in xrange(nrEXP):

t1 = time.clock()
Q, R = qr(A, econ=True)
t2 = time.clock()-t1
avqr += t2

avqr /= nrEXP
print avqr

2 Objects of type xrange don’t support slicing, concatenation or repetition, xrange objects have very little behavior: they only support indexing,
iteration, and the len() function. The advantage of the xrange type is that an xrange object will always take the same amount of memory, no matter
the size of the range it represents. (This is some kind of lazy evaluation.) http://docs.python.org/library/functions.html#xrange

78 Chapter 2. Advanced Stuff

http://docs.python.org/library/functions.html#xrange

SciPyTutorial Documentation, Release 0.0.1

qrtimes[1,k] = avqr
avqr = 0.
for k in xrange(nrEXP):

t1 = time.clock()
Q, R = qr(A, econ=True, overwrite_a=True)
t2 = time.clock()-t1
avqr += t2

avqr /= nrEXP
print avqr
qrtimes[2,k] = avqr
avqr = 0.
for k in xrange(nrEXP):

t1 = time.clock()
R = qr(A, mode=’r’)
t2 = time.clock()-t1
avqr += t2

avqr /= nrEXP
print avqr
qrtimes[3,k] = avqr
avqr = 0.
for k in xrange(nrEXP):

t1 = time.clock()
R = qr(A, mode=’r’, econ=True)
t2 = time.clock()-t1
avqr += t2

avqr /= nrEXP
print avqr
qrtimes[4,k] = avqr
k += 1

import matplotlib.pyplot as plt
plt.loglog(sizes, qrtimes[0], label=’qr’)
plt.loglog(sizes, qrtimes[1], label="qr(econ=True)")
plt.loglog(sizes, qrtimes[2], label="qr(econ=True, overwrite_a=True)")
plt.loglog(sizes, qrtimes[3], label="qr(mode=’r’)")
plt.loglog(sizes, qrtimes[4], label="qr(mode=’r’, econ=True)")
#plt.legend()
plt.show()

2.2. Timing Your Code 79

SciPyTutorial Documentation, Release 0.0.1

100 101 10210-3

10-2

10-1

100

from numpy import r_, mat, vstack, eye, ones, zeros
from scipy.linalg import qr
import timeit

def qr_full():
global A
Q, R = qr(A)

def qr_econ():
global A
Q, R = qr(A, econ=True)

def qr_ovecon():
global A
Q, R = qr(A, econ=True, overwrite_a=True)

def qr_r():
global A
R = qr(A, mode=’r’)

def qr_recon():
global A
R = qr(A, mode=’r’, econ=True)

nrEXP = 4
sizes = 2**r_[2:6]
qrtimes = zeros((5,sizes.shape[0]))
k = 0

80 Chapter 2. Advanced Stuff

SciPyTutorial Documentation, Release 0.0.1

for n in sizes:
print ’n=’, n
m = n**2#4*n
A = mat(1.*r_[1:m+1]).T*mat(1.*r_[1:n+1])
A += vstack((eye(n), ones((m-n,n))))

t = timeit.Timer(’qr_full()’,’from __main__ import qr_full’)
avqr = t.timeit(number=nrEXP)/nrEXP
print avqr
qrtimes[0,k] = avqr

t = timeit.Timer(’qr_econ()’,’from __main__ import qr_econ’)
avqr = t.timeit(number=nrEXP)/nrEXP
print avqr
qrtimes[1,k] = avqr

t = timeit.Timer(’qr_ovecon()’,’from __main__ import qr_ovecon’)
avqr = t.timeit(number=nrEXP)/nrEXP
print avqr
qrtimes[2,k] = avqr

t = timeit.Timer(’qr_r()’,’from __main__ import qr_r’)
avqr = t.timeit(number=nrEXP)/nrEXP
print avqr
qrtimes[3,k] = avqr

t = timeit.Timer(’qr_recon()’,’from __main__ import qr_recon’)
avqr = t.timeit(number=nrEXP)/nrEXP
print avqr
qrtimes[4,k] = avqr

k += 1

#print qrtimes[3]
import matplotlib.pyplot as plt
plt.loglog(sizes, qrtimes[0], ’s’, label=’qr’)
plt.loglog(sizes, qrtimes[1], ’*’, label="qr(econ=True)")
plt.loglog(sizes, qrtimes[2], ’.’, label="qr(econ=True, overwrite_a=True)")
plt.loglog(sizes, qrtimes[3], ’o’, label="qr(mode=’r’)")
plt.loglog(sizes, qrtimes[4], ’+’, label="qr(mode=’r’, econ=True)")
v4 = qrtimes[1,1]* (sizes/sizes[1])**4
v6 = qrtimes[0,1]* (sizes/sizes[1])**6
plt.loglog(sizes, v4, label=’$O(n^4)$’)
plt.loglog(sizes, v6, ’--’,label=’$O(n^6)$’)
#plt.legend(loc=2)
plt.xlabel(’n’)
plt.ylabel(’time [s]’)
#plt.savefig(’qrtiming.eps’)
plt.show()

2.2. Timing Your Code 81

SciPyTutorial Documentation, Release 0.0.1

100 101 102

n

10-5

10-4

10-3

10-2

10-1

100

101

ti
m

e
 [

s]

2.3 Gluing Stand-Alone Applications

This section follows closely the approach of Langtangen: Python Scripting for Computational Science and Engineer-
ing, chapter 2.3.

2.3.1 Scripting

Suppose you have a stand-alone code for solving the ODE:

md2u
dt2 + bdudt + cf(u) = A cos ωt

and you wish to have simulation results for varoius choices of the parameters. For instance, the provided

oscillator.f inp run

(gfortran -O3 -o oscillator oscillator.f)

reads the following parameters from the standard input, in the listed order: m, b, c, name of f(y) function, A,
ω, y0, tstop, ∆t

The values of the parameters may be placed in a file inp: and the program can be run as

oscillator < inp

The output consists of data points tiu(ti), a suitable format to plot, e.g. with gnuplot.

Under the link you’ll find fortran, C and python versions of this stand-alon code.

82 Chapter 2. Advanced Stuff

http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/oscillator.tar.gz

SciPyTutorial Documentation, Release 0.0.1

Our first goal is to simplify the user’s interaction with the program; with the script simviz1.py it is possible to adjust
the parameters through command-line options:

python simviz1.py -m 3.3 -b 0.9 -dt 0.05

The result should be png-files and an otional plot on the screen. The files for each such experiment should go in a
subdirectory.

1 #!/usr/bin/env python
2 import sys, math
3

4 # default values of input parameters:
5 m = 1.0; b = 0.7; c = 5.0; func = ’y’; A = 5.0; w = 2*math.pi
6 y0 = 0.2; tstop = 30.0; dt = 0.05; case = ’tmp1’; screenplot = 1
7

8 # read variables from the command line, one by one:
9 while len(sys.argv) > 1:

10 option = sys.argv[1]; del sys.argv[1]
11 if option == ’-m’:
12 m = float(sys.argv[1]); del sys.argv[1]
13 elif option == ’-b’:
14 b = float(sys.argv[1]); del sys.argv[1]
15 elif option == ’-c’:
16 c = float(sys.argv[1]); del sys.argv[1]
17 elif option == ’-func’:
18 func = sys.argv[1]; del sys.argv[1]
19 elif option == ’-A’:
20 A = float(sys.argv[1]); del sys.argv[1]
21 elif option == ’-w’:
22 w = float(sys.argv[1]); del sys.argv[1]
23 elif option == ’-y0’:
24 y0 = float(sys.argv[1]); del sys.argv[1]
25 elif option == ’-tstop’:
26 tstop = float(sys.argv[1]); del sys.argv[1]
27 elif option == ’-dt’:
28 dt = float(sys.argv[1]); del sys.argv[1]
29 elif option == ’-noscreenplot’:
30 screenplot = 0
31 elif option == ’-case’:
32 case = sys.argv[1]; del sys.argv[1]
33 else:
34 print sys.argv[0],’: invalid option’,option
35 sys.exit(1)
36

37 # create a subdirectory:
38 d = case # name of subdirectory
39 import os, shutil
40 if os.path.isdir(d): # does d exist?
41 shutil.rmtree(d) # yes, remove old directory
42 os.mkdir(d) # make new directory d
43 os.chdir(d) # move to new directory d
44

45 # make input file to the program:
46 f = open(’%s.i’ % case, ’w’)
47 # write a multi-line (triple-quoted) string with
48 # variable interpolation:
49 f.write("""
50 %(m)g
51 %(b)g

2.3. Gluing Stand-Alone Applications 83

SciPyTutorial Documentation, Release 0.0.1

52 %(c)g
53 %(func)s
54 %(A)g
55 %(w)g
56 %(y0)g
57 %(tstop)g
58 %(dt)g
59 """ % vars())
60 f.close()
61 # run simulator:
62 cmd = ’../oscillator < %s.i’ % case # command to run
63 failure = os.system(cmd)
64 if failure:
65 print ’running the oscillator code failed’; sys.exit(1)
66

67 # make file with gnuplot commands:
68 f = open(case + ’.gnuplot’, ’w’)
69 f.write("""
70 set title ’%s: m=%g b=%g c=%g f(y)=%s A=%g w=%g y0=%g dt=%g’;
71 """ % (case, m, b, c, func, A, w, y0, dt))
72 if screenplot:
73 f.write("plot ’sim.dat’ title ’y(t)’ with lines;\n")
74 f.write("""
75 set size ratio 0.3 1.5, 1.0;
76 # define the postscript output format:
77 set term postscript eps monochrome dashed ’Times-Roman’ 28;
78 # output file containing the plot:
79 set output ’%s.ps’;
80 # basic plot command:
81 plot ’sim.dat’ title ’y(t)’ with lines;
82 # make a plot in PNG format:
83 set term png small;
84 set output ’%s.png’;
85 plot ’sim.dat’ title ’y(t)’ with lines;
86 """ % (case, case))
87 f.close()
88 # make plot:
89 cmd = ’gnuplot -geometry 800x200 -persist ’ + case + ’.gnuplot’
90 failure = os.system(cmd)
91 if failure:
92 print ’running gnuplot failed’; sys.exit(1)

One can easily generate an automatic LaTeX-report or HTML-report containing the values of the parameters and the
corresponding pictures.

2.3.2 Conducting Numerical Experiments

Suppose we want to keep most of the parameters fixed and vary one parameter between a minimum and a maximum
value; the results should be collected in a HTML-report:

python loop4simviz1.py m_min m_max m_increment [simviz1.py options]

1 #!/usr/bin/env python
2 """calls simviz1.py with different m values (in a loop)"""
3 import sys, os
4 usage = ’Usage: %s m_min m_max m_increment [simviz1.py options]’ \
5 % sys.argv[0]

84 Chapter 2. Advanced Stuff

SciPyTutorial Documentation, Release 0.0.1

6

7 try:
8 m_min = float(sys.argv[1])
9 m_max = float(sys.argv[2])

10 dm = float(sys.argv[3])
11 except IndexError:
12 print usage; sys.exit(1)
13

14 simviz1_options = ’ ’.join(sys.argv[4:])
15

16 html = open(’tmp_mruns.html’, ’w’)
17 html.write(’<HTML><BODY BGCOLOR="white">\n’)
18 psfiles = [] # plot files in PostScript format
19

20 m = m_min
21 while m <= m_max:
22 case = ’tmp_m_%g’ % m
23 cmd = ’python simviz1.py %s -m %g -case %s’ % \
24 (simviz1_options, m, case)
25 print ’running’, cmd
26 os.system(cmd)
27 html.write(’<H1>m=%g</H1> \n’ \
28 % (m,os.path.join(case,case+’.png’)))
29 psfiles.append(os.path.join(case,case+’.ps’))
30 m += dm
31 html.write(’</BODY></HTML>\n’)

or let vary any parameter:

loop4simviz2.py parameter min max increment [simviz2.py options]

1 #!/usr/bin/env python
2 """
3 As loop4simviz1.py, but here we call simviz2.py, make movies,
4 and also allow any simviz2.py option to be varied in a loop.
5 """
6 import sys, os
7 usage = ’Usage: %s parameter min max increment ’\
8 ’[simviz2.py options]’ % sys.argv[0]
9 try:

10 option_name = sys.argv[1]
11 min = float(sys.argv[2])
12 max = float(sys.argv[3])
13 incr = float(sys.argv[4])
14 except:
15 print usage; sys.exit(1)
16

17 simviz2_options = ’ ’.join(sys.argv[5:])
18

19 html = open(’tmp_%s_runs.html’ % option_name, ’w’)
20 html.write(’<HTML><BODY BGCOLOR="white">\n’)
21 psfiles = [] # plot files in PostScript format
22 pngfiles = [] # plot files in PNG format
23

24 value = min
25 while value <= max:
26 case = ’tmp_%s_%g’ % (option_name,value)
27 cmd = ’python simviz2.py %s -%s %g -case %s’ % \
28 (simviz2_options, option_name, value, case)

2.3. Gluing Stand-Alone Applications 85

SciPyTutorial Documentation, Release 0.0.1

29 print ’running’, cmd
30 os.system(cmd)
31 psfile = os.path.join(case,case+’.ps’)
32 pngfile = os.path.join(case,case+’.png’)
33 html.write(’<H1>%s=%g</H1> \n’ \
34 % (option_name, value, pngfile))
35 psfiles.append(psfile)
36 pngfiles.append(pngfile)
37 value += incr
38 cmd = ’convert -delay 50 -loop 1000 %s tmp_%s.gif’ \
39 % (’ ’.join(pngfiles), option_name)
40 print ’converting PNG files to animated GIF:\n’, cmd
41 os.system(cmd)
42 html.write(’<H1>Movie</H1> \n’ % option_name)
43 html.write(’</BODY></HTML>\n’)
44 html.close()

2.4 Symbolical calculations

Even if we want to deal with numerical computations mainly, I’d like to give a short introduction into symbolic
calculation. There are several reasons why we want to include some symbolic manipulations in a numerical code. For
example we want to do an error analysis and would like to be able to evaluate the known exact solution on various
different grids. Or we have a closed form solution for some right hand side. Beyond the toy examples there exist also
industrial strength codes that use symbolic computation in a preparation step before going into the numerics 3.

In any case, we could put the symbolic expression literally into the source code. But sometimes it would be useful if
we could do a few more things with the expression beside numerical evaluation, for example we may need the first
derivative. The benefit of symbolic calculation is now that we can compute this derivation without explicitly put it into
the source code or falling back to numerical techniques.

In the following section I’ll show a really simple example of how to use the power of the sympy python module. This
module acts as a library for symbolic calculation and is quite easy to use yet surprisingly powerful for it’s complexity.

1 # Use explicit namespaces to make clear from which package a function comes.
2 import sympy as sp
3 import numpy as np
4 import pylab as pl
5

6 # Define a symbol
7 x = sp.Symbol("x")
8

9 # A symbolic expression
10 expr = sp.sin(x) + x**2
11

12 # We can evaluate it for any value of x:
13 print(expr({x:sp.pi**2}))
14

15

16 # A function for evaluating the expression by symbolic
17 # manipulations. We have to assign the function parameter
18 # y to the symbolic variable x of the expression.
19 fs = lambda y: expr({x:y})
20

21 # Again we can evaluate the expression for any value of x easily:

3 See fore example SyFi which is part of the FEniCS project: http://www.fenicsproject.org/wiki/FEniCS_Project

86 Chapter 2. Advanced Stuff

http://www.fenicsproject.org/wiki/FEniCS_Project

SciPyTutorial Documentation, Release 0.0.1

22 print(fs(2))
23 print(fs(sp.pi))
24

25

26 # But we want the function to work with the arrays from numpy too.
27 # Thus we have to lambdify the expression.
28 fn = sp.lambdify(x, expr, "numpy")
29

30 xvals = np.linspace(-5,5,100)
31 yvals = fn(xvals)
32

33

34 # Compute the derivative of our expression
35 dexpr = sp.diff(expr, x)
36

37 # And again lambdify it
38 fnd = sp.lambdify(x, dexpr, "numpy")
39

40 # Evaluate the derivative on the given grid
41 dyvals = fnd(xvals)
42

43

44 # Compute the second derivative of our expression
45 ddexpr = sp.diff(expr, x, 2)
46

47 # And again lambdify it
48 fndd = sp.lambdify(x, ddexpr, "numpy")
49

50 # Evaluate the derivative on the given grid
51 ddyvals = fndd(xvals)
52

53

54 # And plot the function sampled at the grid points xvals
55 # Note how we reuse the symbolic expressions for generating the plot labels too!
56 pl.figure()
57 pl.plot(xvals, yvals, label=sp.latex(expr))
58 pl.plot(xvals, dyvals, label=sp.latex(dexpr))
59 pl.plot(xvals, ddyvals, label=sp.latex(ddexpr))
60 pl.legend()
61 pl.savefig("symbolics_demo.png")

And this is how the output looks like

2.4. Symbolical calculations 87

SciPyTutorial Documentation, Release 0.0.1

For many other simple examples, please look at the introductory level sympy tutorial 4.

Note that you should use the computationaly expensive symbolical calculations only in the preparation phase of a
numerical simulation program and never in a main computation loop.

2.5 Making of: animations

Plots are nice but sometimes an animation is even better. Thus we take the opportunity and explain in this section how
to generate simple animations. An animation is nothing else than a pile of images which are shown one after the other.

This is also exactly the way we will create animations: in a first step we draw each image (we call this a frame) and
after we got all the frames, we will glue them together.

There is more than one way to make animations. We describe here two possibilities which probably are used most.

• Animated images: use the common .gif image file format (so called animgifs).

• Videos: use some video compression algorithm and are placed inside a data container.

Both of these options have their respective advantages and disadvantages. Animated gif images tend to be larger in
file size, but will yield good results without much technicalities. If you only have a couple of images, say up to 50
frames, then animgifs are probably the easiest way to go. (The file animwave.gif from the example below has a size
of 750 KB)

4 http://docs.sympy.org/tutorial.html#first-steps-with-sympy

88 Chapter 2. Advanced Stuff

http://docs.sympy.org/tutorial.html#first-steps-with-sympy

SciPyTutorial Documentation, Release 0.0.1

For longer animations you should of course use the advantages of modern video compression techniques. But mature
video encoding tools usually have a huge number of options interacting in a complex manner. It’s not easy to find the
parameters which give you the best result. For example the video compression algorithms are tuned for areas and can
introduce bad artefacts if the image has only a bunch sharp lines in front of a uniform background. But this is what
plots look like most of the time! (By the way, the file animwave.flv from the example below has a size of 700 KB.)

2.5.1 External tools

We additionaly need two programs which are not part of the python installation as proposed at the beginning of this
tutorial. But they may be already preinstalled on a common Linux system today.

The first of these tools is called convertwhich is itself part of the well known ImageMagic batch image processor.
We use this tool for creating animated gif images.

• ImageMagic can be found at http://www.imagemagick.org/

(This is not the only tool that can compose gif files, you may also try gifsicle which can be found at
http://www.lcdf.org/gifsicle/. My own experience is that this tool sometimes is faster, uses less memory and the
resulting files are smaller in size. But don’t take this as a given.)

To encode videos we use the famous mplayer / mencoder toolbox. This is one of the most versatile tools for
working with video data. Mplayer can play almost any file format and has a huge set of options. Mencoder is
responsible for encoding videos and does a very good job.

• Mplayer / Mencoder can be found at http://www.mplayerhq.hu/

Describing these tools is far beyond the scope of this document. You should take a look at the documentation available
on the webpages mentioned above. The man pages also provide a clean description of the parameters and show some
useful examples at the very end.

2.5.2 Command lines

For creating the animations we relay on these external tools. We just call them from inside the python scripts. You
may also call them directly at your favourite shell. The commands used in the example below are for animated gifs:

convert -delay 20 filebasename*.png animfilename.gif

where filebasename is a prefix that is common to all files you want to include in the animation. Instead of
filebasename*.png you can plug in any regular expression here. Similar animfilename if the name the
output file will have. The parameter delay specifies the frame rate, a value of 20 means a time delay of 20 ms
between each two frames.

The command for encoding videos is much more complex (note that this is all one single line):

mencoder mf://./ filenamebase*.png -fps 5 -ofps 5 -o animfilename.flv -of lavf
-oac mp3lame -lameopts abr:br=64 -srate 22050 -ovc lavc
-lavcopts vcodec=flv:keyint=50:vbitrate=700:mbd=2:mv0:trell:v4mv:cbp:last_pred=3
-vf yadif -sws 9

where filebasename and animfilename and as above. The resulting video is of file type .flv (flash video) 5.
You should change the other parameters only if you really know what you do. (These values here are passed on since
the early universe.)

5 For more information on this particular video format see http://en.wikipedia.org/wiki/Flv.

2.5. Making of: animations 89

http://www.imagemagick.org/
http://www.lcdf.org/gifsicle/
http://www.mplayerhq.hu/
http://en.wikipedia.org/wiki/Flv

SciPyTutorial Documentation, Release 0.0.1

2.5.3 Example Code

The following example shows a simple wave packet propagating in a one-dimensional space.

The function make_frames() is responsible for plotting the frames. Notice how we start a new figure with the
command figure() in each iteration of the for loop. This is to avoid plotting into the last frame. Also we need
some bits of intelligence while saving the images. Because we use regular expressions for selecting all images that
will be part of the animation, we are subject to the way the shell sorts filenames. To avoid wrong sorting we use a zero
padding here:

"wave_"+(5-len(str(i)))*"0"+str(i)+".png"

results in file names like the following ones:

wave_00000.png wave_00001.png wave_00002.png wave_00003.png ...

and assures the files will be in the correct order. The other two functions:

make_animation_animgif(filebasename, animfilename)

and:

make_animation_video(filenamebase, animfilename)

just compose a string containing the shell commands shown above. Then they will execute this command on the
system’s shell. You can copy these two functions to your own code and use them to generate animations. The rest of
the code should be self-explanatory.

By the way, with code similar to the one shown here you can dynamically compose and execute any command on the
system’s shell! Therefore you should be very careful with this powerful mechanism.

Note: this example do not work on windows (as long as “convert” and “mencoder” are not installed)

1 from numpy import *
2 from pylab import *
3

4 import os
5 import subprocess as sp
6

7

8 def make_frames():
9 """This function generates the images (frames) of the animation.

10 """
11

12 wave = lambda x, f: sin(f*x)
13 envelope = lambda x, l: exp(-(x-l)**2)
14

15 x = linspace(-5,5,2000)
16 positions = linspace(-5,5,50)
17

18 # Plot all the individual frames
19 for i, pos in enumerate(positions):
20 y = wave(x,10) * envelope(x, pos)
21 z = envelope(x, pos)
22

23 # Plot the frame
24 figure()
25 plot(x, z, color=(0.5,0,0))
26 plot(x,-z, color=(0.5,0,0))
27 plot(x, y, color=(0,0,1))

90 Chapter 2. Advanced Stuff

SciPyTutorial Documentation, Release 0.0.1

28 ylim(-1.3, 1.3)
29

30 # Save the with a filename that ensures correct order on the filesystem
31 savefig("wave_"+(5-len(str(i)))*"0"+str(i)+".png")
32

33

34

35 def make_animation_video(filenamebase, animfilename):
36 """A function that takes frames and composes them into a video.
37 """
38

39 # The shell command controlling the ’mencoder’ tool.
40 # Please refer to the man page for the parameters.
41 # Warning: Use of multiline strings with EOL escaping to reduce line length!
42 command = """mencoder mf://./""" + filenamebase + """*.png\
43 -fps 5 -ofps 5 -o """ + animfilename + """.flv\
44 -of lavf -oac mp3lame -lameopts abr:br=64 -srate 22050 -ovc lavc\
45 -lavcopts vcodec=flv:keyint=50:vbitrate=700:mbd=2:mv0:trell:v4mv:cbp:last_pred=3\
46 -vf yadif -sws 9"""
47

48 # Execute the command on the system’s shell
49 proc = sp.Popen(command, shell=True)
50 os.waitpid(proc.pid, 0)
51

52

53

54 def make_animation_animgif(filebasename, animfilename):
55 """Take a couple of images and compose them into an animated gif image.
56 """
57

58 # The shell command controlling the ’convert’ tool.
59 # Please refer to the man page for the parameters.
60 command = "convert -delay 20 " + filebasename + "*.png " + animfilename + ".gif"
61

62 # Execute the command on the system’s shell
63 proc = sp.Popen(command, shell=True)
64 os.waitpid(proc.pid, 0)
65

66

67

68 if __name__ == "__main__":
69 make_frames()
70 make_animation_video("wave_", "animwave")
71 make_animation_animgif("wave_", "animwave")

2.6 Input / Output of numerical data

In this section we would like to focus on a last but very important point once you will do real world numerical
simulations. It’s all about how to store numerical simulation data into files in an efficient and portable way. We will
give a short introduction to a general purpose file format called HDF, the Hierarchical Data Format, which is carefully
designed to store and organize large amounts of numerical data 6.

6 The people responsible for taking care of the HDF standard have their home at http://www.hdfgroup.org/.

2.6. Input / Output of numerical data 91

http://www.hdfgroup.org/

SciPyTutorial Documentation, Release 0.0.1

2.6.1 Introduction into HDF

When we said that HDF is a file format this is not the whole truth. HDF is rather some kind of scheme for creating file
formats. Maybe we can say that in some aspects it’s similar to e.g. html which is not a file format but a language for
describing data.

A HDF file has the following file structure and includes only two major types of objects:

• Datasets, which are multidimensional arrays of a homogenous type

• Groups, which are container structures which can hold datasets and other groups

This results in a truly hierarchical, filesystem-like data format. In fact, resources (for now read: data sets) in an HDF
file are even accessed using the POSIX-like syntax “/path/to/resource”. Metadata is stored in the form of user-defined,
named attributes attached to groups and datasets.

In addition HDF includes an type system for specifying data types (are the numbers here 32 bit real floats or 64 bit
complex floats or ...), and dataspace objects which represent selections over dataset regions. The API is object-oriented
with respect to datasets, groups, attributes, types, dataspaces and property lists.

By the way, currently there exist two major versions of HDF, HDF4 and HDF5, which differ significantly in design
and API. We will only deal with HDF5 here.

2.6.2 Handling HDF files with python

Until now we just talked about the ideas of HDF. Let’s now look how to work with HDF files. The library that handles
HDF files has interfaces to many programing languages and there are python bindings too. Here we will present the
h5py python package. Let’s just cite the official description from the h5py developers:

“The HDF5 library is a versatile, mature library designed for the storage of numerical data. The h5py package provides
a simple, Pythonic interface to HDF5. A straightforward high-level interface allows the manipulation of HDF5 files,
groups and datasets using established Python and NumPy metaphors.”

The h5py project is located at http://h5py.alfven.org/ where you can find the python package as well as a very detailed
user reference manual and many examples of usage.

2.6.3 A first example

Ok, enough theory by now, let’s go to a simple hands-on example. Hopefully the code is self-explanatory with all
these comments in place.

1 import numpy as np
2 import scipy as sp
3 import pylab as pl
4 import h5py as hdf
5

6 # A grid
7 x = np.linspace(-sp.pi,sp.pi,100)
8 X, Y = np.meshgrid(x,x)
9

10 # Some values
11 U = sp.sin(X)
12 V = sp.cos(X)
13

14

15 # Save the data into a hdf5 file
16 filename = "data.hdf5"
17

92 Chapter 2. Advanced Stuff

http://h5py.alfven.org/

SciPyTutorial Documentation, Release 0.0.1

18 # Create and open the file with the given name
19 outfile = hdf.File(filename)
20

21 # Store some data under /axisgrid with direct assignment of the data x
22 outfile.create_dataset("axisgridx", data=x)
23

24 # Create a group for storing further data under /grid/*
25 grp_grid = outfile.create_group("grid")
26

27 # Store some data under /grid/grid* with direct assignment of the data X and Y
28 grp_grid.create_dataset("gridx", data=X)
29 grp_grid.create_dataset("gridy", data=Y)
30

31 # Store the vector field values under another group called /values
32 grp_vals = outfile.create_group("values")
33

34 # Prepare space for storing the values but do not assign values yet
35 grp_vals.create_dataset("valsx", U.shape, np.floating)
36 grp_vals.create_dataset("valsy", V.shape, np.floating)
37

38 # Now assign the data for U and V and show slicing via ":" and ellipsis "..."
39 outfile["/values/valsx"][:] = U
40 outfile["/values/valsy"][...] = V
41

42 # And close the file
43 outfile.close()
44

45

46 # Open the file again, now in read only mode (we don’t want to write data anymore!)
47 infile = hdf.File(filename, "r")
48

49 # Get the data, but omit every second value, just to show off some slicing
50 a = infile["/grid/gridx"][::2,::2]
51 b = infile["/grid/gridy"][::2,::2]
52 c = infile["/values/valsx"][::2,::2]
53 d = infile["/values/valsy"][::2,::2]
54

55 # Plot the data as usual
56 pl.figure()
57 pl.quiver(a,b, c,d)
58 pl.savefig("hdf_example.png")

2.6.4 HDFView

The program HDFView is a tool for browsing and editing HDF files. Using HDFView, you can view the internal
file hierarchy in a tree structure, create new files, add or delete groups and datasets, view and modify the content of a
dataset and much more. There are even some basic plotting facilities which can serve for a first glance at the numerical
data.

You can download hdfview from the URL http://www.hdfgroup.org/hdf-java-html/hdfview/. The installation should
pose no problems, the software is written in the Java language and available for various operating systems.

If we open the file created by the above example with the program hdfview then we will see something like the
following image. On the left there is the structural tree shown with its two groups grid and values‘ and the five
leaves containing the data. On the right the actual values of the data node valsx is shown as a two-dimensional
table (remember that the data array was two-dimensional). And on the bottom we see some information about the data

2.6. Input / Output of numerical data 93

http://www.hdfgroup.org/hdf-java-html/hdfview/

SciPyTutorial Documentation, Release 0.0.1

currently examined node, for example the data type (64 bit floats in this case) and the size of the array (here 100 times
100 entries).

Of course you can do much more with the HDF data format and we can only show the tip of this iceberg. For
example, HDF supports transparent compression of the data, further descriptive attributes for nodes, special sorting
and indexing of data for fast retrieval and many things more. For more information you should read the h5py user
guide http://h5py.alfven.org/docs/guide/index.html.

2.7 Combining Python with Fortran, C and C++

This section follows closely the approach of Langtangen: Python Scripting for Computational Science and Engineer-
ing, chapter 5.

When is integration of Python with Fortran, C, or C++ of interest?

• migration of slow parts of a Python code to Fortran or C/C++

• access to existing numerical code (from Python)

Typically: user interfaces, i/O, report generation and management is in Python, while the computationally intensive
functions are in Fortran/C/C++

A source of troubles: Fortran/C/C++ has strong typing rules, while in Python variables are typeless...

Needs writing wrapper code: each function need a Python wrapper. Automatic generation: SWIG for C/C++, f2py for
Fortran

2.7.1 Scientific Hello World Examples

Pure Python implementation:

1 #!/usr/bin/env python
2 """Pure Python Scientific Hello World module."""
3 import math, sys
4

5 def hw1(r1, r2):
6 s = math.sin(r1 + r2)
7 return s
8

9 def hw2(r1, r2):
10 s = math.sin(r1 + r2)
11 print ’Hello, World! sin(%g+%g)=%g’ % (r1,r2,s)

with application script:

1 #!/usr/bin/env python
2 """Scientific Hello World script using the module hw."""
3 import sys
4 from hw import hw1, hw2
5 try:
6 r1 = float(sys.argv[1]); r2 = float(sys.argv[2])
7 except IndexError:
8 print ’Usage:’, sys.argv[0], ’r1 r2’; sys.exit(1)
9 print ’hw1, result:’, hw1(r1, r2)

10 print ’hw2, result: ’,
11 hw2(r1, r2)

94 Chapter 2. Advanced Stuff

http://h5py.alfven.org/docs/guide/index.html

SciPyTutorial Documentation, Release 0.0.1

We intend to migrate the functions hw1 and hw2 in the hw module to Fortran/C/C++. We eill also onvolve a third
function hw3, which is a version of hw1 where s is an output argument, in call by reference style, and not a return
variable. A pure implementation of hw3 has no meaning.

2.7.2 Combining Python and Fortran

program hwtest
real*8 r1, r2 ,s
r1 = 1.0
r2 = 0.0
s = hw1(r1, r2)
write(*,*) ’hw1, result:’,s
write(*,*) ’hw2, result:’
call hw2(r1, r2)
call hw3(r1, r2, s)
write(*,*) ’hw3, result:’, s
end

real*8 function hw1(r1, r2)
real*8 r1, r2
hw1 = sin(r1 + r2)
return
end

subroutine hw2(r1, r2)
real*8 r1, r2, s
s = sin(r1 + r2)
write(*,1000) ’Hello, World! sin(’,r1+r2,’)=’,s

1000 format(A,F6.3,A,F8.6)
return
end

C special version of hw1 where the result is
C returned as an argument:

subroutine hw3_v1(r1, r2, s)
real*8 r1, r2, s
s = sin(r1 + r2)
return
end

C F2py treats s as input arg. in hw3_v1; fix this:

subroutine hw3(r1, r2, s)
real*8 r1, r2, s

Cf2py intent(out) s
s = sin(r1 + r2)
return
end

C test case sensitivity:

subroutine Hw4(R1, R2, s)
real*8 R1, r2, S

Cf2py intent(out) s
s = SIN(r1 + r2)
ReTuRn

2.7. Combining Python with Fortran, C and C++ 95

SciPyTutorial Documentation, Release 0.0.1

end

C end of F77 file

f2py comes automaticaly with numpy; we make a subdirectory f2py-hw and run f2py in this subdirectory:

f2py -m hw -c ../hw.f

The reuslt is the module hw.so which may be loaded into Python by an ordinary import statement.

• -m option specifies the name of the extension module

• -c indicates that f2py should compile and link the module

• –fcompiler=gfortran specifies the compiler to use (less error messages)

• f2py -c –help-fcompiler to see a list of Fortran compilers installed

• f2py -c –help-compiler to see a list of C compilers installed

Test if everything went fine:

python -c ’import hw’

We can test now the new module with the previous hwa.py program, who does not know if the module hw is written
in Python or Fortran.

When dealing with more complicated libraries, one may want to create Python interfaces to only some of the functions,
e.g.:

f2py -m hw -c --fcompiler=gfortran ../hw.f only: hw1 hw2 :

-h hw.pyf –overwrite-signature options makes f2py to write the module interfaces to a file hw.pyf that you can adjust
to your needs:

f2py -m hw -h hw.pyf --overwrite-signature ../hw.f
f2py -m hw -h hw.pyf --overwrite-signature ../hw.f only: hw1 hw2 :

The function hw3_v1 enables us to see one difficulty of mixing Fortran and Python. The rsult of the computations is
stored in the output variable s. Since Fortran employs the call by reference for all the arguments, any change to an
argument is visible in the calling code. Let us see how the interface looks like:

Bei dfault, f2py treates r1, r2, and s as input argumnets; calling hw3_v1 shows that the value of the Fortran s variable
is not returned to the Python s variable in the call. The remdey is to tell f2py that s is an output parameter. We do this
by replacing in the hw.pyf file

real*8 :: s

with:

real*8 intent(out) :: s

as in subroutine hw3. The directives intent(in) and intent(out) specify input or output variables, while intent(in,out)
are employed for variables for both input and output.

Compiling and linking the hw module with th emodified interface specification in hw.pyf are now performed by:

f2py -c --fcompiler=gfortran hw.pyf ../hw.f

Note thet f2py changes the interface to become more Pythonic, i.e. we write in Python:

s = hw3(r1,r2)

96 Chapter 2. Advanced Stuff

SciPyTutorial Documentation, Release 0.0.1

For a Fortran routine:

subroutine somef(in1, in2, o1, o2, o3, o4, io1)

where in1, in2 are input variables, o1, o2, o3, o4 are output variables and io1 is an input/output variable, the generated
Python interface will have i1, i2, io1 as input arguments and o1, o2, o3, o4, io1 is returend as a tuple:

o1, o2, o3, o4, io1 = somef(i1, i2, io1)

As an alternative to the modification of the .pyf file, we may insert an intent specification as a special Cf2py comment
in the Fortran source code file. The safest way of writing hw3 is to specify the input/output nature of all the function
arguments:

subroutine hw3(r1,r2,s)
real*8 :: r1, r2, s

Cf2py intent(in) r1
Cf2py intent(in) r2
Cf2py intent(out) s

s = sin(r1 + r2)
return
end

2.7.3 Building an Extension Module with Distutils

The standard way for buiilding and installing Python modules uses Python’s Distutils tool which comes with the
standard Python distribution. An enhanced version of Distutils with better support for Fortran code comes with numpy.
We have to create a script setup.py which calls a function steup in Distutils. Then, in order to build the extension
module:

python setup.py build

or to build and install:

python steup.py install

To build in the current working directory:

python setup.py build build_ext --inplace

An example of steup.py file

1 from numpy.distutils.core import Extension, setup
2

3 setup(name=’hw’,
4 ext_modules=[Extension(name=’hw’, sources=[’../hw.f’])],
5)

This document as pdf

2.7. Combining Python with Fortran, C and C++ 97

http://www.sam.math.ethz.ch/~gradinar/Teaching/SciPyTools/SciPyTutorial.pdf

SciPyTutorial Documentation, Release 0.0.1

98 Chapter 2. Advanced Stuff

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

• fenics

99

SciPyTutorial Documentation, Release 0.0.1

100 Chapter 3. Indices and tables

INDEX

D
docstrings, 27
documentation strings, 27

F
for

statement, 25

M
method

object, 32

O
object

method, 32

S
statement

for, 25
strings, documentation, 27

101

	Basics
	A Dialog on Python for Scientific Computing
	Introduction
	Installation tips
	First steps in Python
	Basic Tutorial
	IPython tips
	Matplotlib tips
	Mayavi2 tips
	Other noteworthy plot commands
	Examples
	Useful links
	Installing python packages

	Advanced Stuff
	Optimization of Python Code
	Timing Your Code
	Gluing Stand-Alone Applications
	Symbolical calculations
	Making of: animations
	Input / Output of numerical data
	Combining Python with Fortran, C and C++

	Indices and tables
	Index

