
AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

ETH Lecture 401-4671-00L Advanced Numerical Methods for CSE

Advanced Numerical Methods for
Computational Science and Engineering

Prof. R. Hiptmair, SAM, ETH Zurich

Autumn Term 2023
(C) Seminar für Angewandte Mathematik, ETH Zürich

Link to the current version of this lecture document

Always under construction!

The online version will always be work in progress and subject
to change.

(Nevertheless, structure and main contents can be expected to
be stable)

, 1

https://www.sam.math.ethz.ch/~grsam/ADVNCSE/ADVNCSE.pdf

Contents

0 Introduction 7

0.1 Course Contents . 12
0.1.1 Focus of this Course . 12
0.1.2 Prerequisite Knowledge . 12
0.1.3 Goals . 12
0.1.4 Requests for Student Activity . 13
0.1.5 Literature . 13

0.2 Specific information . 14
0.2.1 Assistants and exercise classes . 14
0.2.2 Assignments . 14
0.2.3 Information on Examinations . 15

1 Boundary Element Methods (BEM) 17

1.0.1 Further Reading for this Chapter . 19
1.1 Elliptic Model Boundary Value Problem: Electrostatics . 19

1.1.1 The Electric Field . 19
1.1.2 Electric Scalar Potential . 21
1.1.3 Continuity of Fields and Boundary Conditions . 24
1.1.4 Equilibrium Conditions . 27
1.1.5 Variational Equations . 29
1.1.6 Boundary Value Problems . 30
1.1.7 Decay conditions on unbounded domains . 33
1.1.8 Supplement: An energy norm for source charge distributions 35

1.2 Boundary Representation Formulas . 36
1.2.1 Green’s Formulas . 36
1.2.2 Fundamental Solutions . 38

1.2.2.1 Potential of a Point Charge . 38
1.2.2.2 Potential of a Line Charge . 39
1.2.2.3 Distributional View: LG = δ0 . 40

1.2.3 Volume Potential Representation . 44
1.2.4 Boundary Potential Representation . 46
1.2.5 Layer Potentials . 48

1.2.5.1 Single Layer Potential . 49
1.2.5.2 Double Layer Potential . 51

1.2.6 Green’s Functions . 52
1.3 Boundary Integral Equations (BIEs) . 55

1.3.1 Trace Operators . 55
1.3.1.1 Dirichlet Trace . 56
1.3.1.2 Neumann Trace . 59

1.3.2 Mapping Properties of Layer Potentials . 63

2

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.3.3 Jump Relations for Layer Potentials . 65
1.3.4 Boundary Integral Operators (BIOs) . 68

1.3.4.1 Formal Definition . 68
1.3.4.2 Integral Representations . 69
1.3.4.3 Variational Form for Hypersingular BIO 71

1.3.5 Direct Boundary Integral Equations . 74
1.3.5.1 First-kind BIEs . 76
1.3.5.2 Second-kind BIEs . 79

1.3.6 Indirect Boundary Integral Equations . 80
1.4 Boundary Element Methods in Two Dimensions . 82

1.4.1 Abstract Galerkin Discretization . 83
1.4.2 Boundary Element Spaces on Curves . 85

1.4.2.1 Curve Partitionings . 86
1.4.2.2 Piecewise Polynomial Functions on Curves 87
1.4.2.3 Shape Functions . 88
1.4.2.4 Solving Boundary Value Problems via Galerkin BEM 91
1.4.2.5 Approximation of Curves . 93

1.4.3 Computation of BEM-Galerkin Matrix in 2D . 95
1.4.3.1 Panel-oriented Assembly . 95
1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas 101
1.4.3.3 Recapitulated [NumCSE Chapter 7]: Aspects of Numerical Quadrature . . 109
1.4.3.4 Matrix Entries by Quadrature . 120

1.5 Boundary Element Methods on Closed Surfaces . 129
1.5.1 Surface Meshes . 129
1.5.2 Boundary Element Spaces on Triangulated Surfaces 131

1.5.2.1 Definitions . 131
1.5.2.2 Shape Functions . 133

1.5.3 Assembly of Galerkin Matrices . 135
1.6 BEM: Various Aspects . 141

1.6.1 Convergence . 141
1.6.1.1 Abstract Galerkin Error Estimate . 141
1.6.1.2 Approximation in Boundary Element spaces 142
1.6.1.3 Variational Crimes . 147
1.6.1.4 Pointwise Recovery of Solutions . 148

1.6.2 Mixed Boundary Value Problems . 148
1.6.3 Transmission Problems . 150

1.6.3.1 Two-Domain Setting . 150
1.6.3.2 Multi-Domain Transmission Problem . 154

1.6.4 BEM for Wave Propagation . 154

2 Local Low-Rank Compression of Non-Local Operators 157

2.1 Examples: Non-Local Operators . 158
2.1.1 (Discretized) Integral Operators . 159
2.1.2 Long-Range Interactions in Discrete Models . 162
2.1.3 Kernel Collocation Matrices . 166

2.2 Approximation of Kernel Collocation Matrices . 167
2.2.1 Separable (= Low-Rank) Kernel Approximation . 169

2.2.1.1 Polynomial Expansions . 171
2.2.1.2 Uni-directional Interpolation . 173
2.2.1.3 Bi-directional interpolation . 177

2.2.2 Error Estimates and Admissibility Condition for Singular Kernels 179

CONTENTS, CONTENTS 3

https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

2.2.2.1 Truncation Error Estimates for Taylor Expansion 180
2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation 182
2.2.2.3 Estimates for Bi-Directional Interpolation 186

2.3 Clustering Techniques . 190
2.3.1 Local Separable Approximation . 190
2.3.2 Cluster Trees . 198
2.3.3 Building Near- and Far-Field Blocks . 207
2.3.4 Storing Block-Partitioned Kernel Collocation Matrix 213
2.3.5 Matrix×Vector: Efficient Implementation . 221
2.3.6 Panel Clustering . 223

2.4 Hierarchical Matrices . 227
2.4.1 Definition . 227
2.4.2 Low-Rank Matrices: Algorithms . 234
2.4.3 H-Addition of Hierarchical Matrices . 240
2.4.4 H-Multiplication of Hierarchical Matrices [Bör21, Sect. 5.6] 241
2.4.5 Hierarchical LU-Decomposition . 253
2.4.6 H2-Matrices . 259

3 Convolution Quadrature 268

3.1 Basic Concepts and Tools . 269
3.1.1 Convolution of Causal Functions . 269
3.1.2 Discrete Convolutions . 273
3.1.3 The Laplace Transform . 276
3.1.4 Diagonalizing Convolutions . 281
3.1.5 Toeplitz Matrix Numerical Linear Algebra . 285

3.2 Convolution Equations: Examples . 291
3.2.1 Tomography: Abel Integral Equation . 291
3.2.2 Impedance Boundary Conditions . 293
3.2.3 Time-Domain Boundary Integral Equations . 296

3.3 Implicit-Euler Convolution Quadrature . 299
3.3.1 Setting and Goal . 299
3.3.2 Derivation of Implicit Euler CQ . 301
3.3.3 Properties of implicit-Euler Convolution Quadrature 307
3.3.4 Convergence . 310

3.4 Multistep Convolution Quadrature (MSCQ) . 313
3.4.1 Linear Multi-Step Numerical Integrators . 314
3.4.2 Multi-Step Convolution Quadrature: Weights . 321
3.4.3 Multi-Step Convolution Quadrature: Algorithms . 329

3.5 Runge-Kutta Convolution Quadrature (RKCQ) . 334
3.5.1 Implicit Runge-Kutta Single-Step Methods . 335
3.5.2 Runge-Kutta CQ weights . 336

3.6 Fast and Oblivious Convolution Quadrature . 339

4 (Algebraic) Multigrid Methods 358

4.1 Solvers for Finite Element Linear Systems . 358
4.1.1 Elliptic Model Boundary Value Problems . 358
4.1.2 Sparse Elimination Solvers . 365
4.1.3 Stationary Linear Iterations (SLIs) . 366
4.1.4 Conjugate Gradient Method (CG) . 371

4.2 Geometric Multigrid Method . 373
4.2.1 Subspace Correction Methods . 375
4.2.2 Convergence of SSC Methods . 378

CONTENTS, CONTENTS 4

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

4.2.3 Coarse-Grid Correction (CGC) . 385
4.2.4 Multigrid Iteration . 389
4.2.5 Multigrid Preconditioning . 393
4.2.6 Full Approximation Storage Multigrid (FAS) . 396

4.3 Algebraic Multigrid (AMG): Matrix-Based Multigrid . 400
4.3.1 AMG Framework . 401
4.3.2 AMG Heuristics . 405
4.3.3 C/F Splitting Algorithm . 407
4.3.4 AMG Prolongation . 410

5 Reduced Bases Methods (RBM) 415

5.1 Parameterized Boundary Value Problems . 415
5.1.1 Coefficients as Parameters . 415
5.1.2 Parameter-Dependent Domains . 415
5.1.3 Abstract Framework . 415

5.2 Reduced Bases Methods: Ideas and Algorithms . 416
5.2.1 Prelude: Polynomial Interpolation . 416
5.2.2 Projected Variational Problem . 416
5.2.3 Generation of Reduced Bases . 416

5.2.3.1 Proper Orthogonal Decomposition (POD) 416
5.2.4 Special Case: Separable Decomposition . 416

5.3 Error Estimation . 416
5.3.1 Residual-Based Estimator . 416
5.3.2 Computation of Residual Norm . 416
5.3.3 Lower Bound for γh(π) . 416

5.4 Separable Approximation . 416
5.4.1 Interpolation on Parameter Space . 416
5.4.2 Adaptive Cross Approximation (ACA) . 416

Index 417

Acronyms . 424
Symbols . 425
Examples . 427
Codes . 430

CONTENTS, CONTENTS 5

Chapter 0

Introduction

0.1 Course Contents

0.1.1 Focus of this Course

This course discusses modern numerical methods involving complex numerical techniques with an em-
phasis on algorithms and intricate data structures that render an efficient implementation non-trivial.

The course comprises various rather independent topics organized in chapters. Usually, not all chapters
contained in this lecture document will be covered in the course.

Classroom instruction will be accompanied by coding projects in C++ assigned as homework.

0.1.2 Prerequisite Knowledge

This course has to take for granted a range of skills MSc students in CSE are expected to have:

✦ “Fluency” in C++,

✦ familiarity with basic numerical methods (as taught in the course “Numerical Methods for CSE”, Link
to lecture documents), and

✦ knowledge about the finite element method for elliptic partial differential equations (as taught in the
course “Numerical Methods for Partial Differential Equations”, Link to lecture documents).

0.1.3 Goals

✦ Appreciation of the interplay of functional analysis, advanced calculus, numerical linear algebra, and
sophisticated data structures in modern computer simulation technology.

✦ Knowledge about the main ideas and mathematical foundations underlying boundary element meth-
ods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods.

✦ Familiarity with the algorithmic challenges arising from these methods and the main ways on how to
tackle them.

✦ Knowledge about the algorithms’ complexity and suitable data structures.

✦ Ability to understand details of given implementations.

✦ Skills concerning the implementation of algorithms and data structures in C++.

6

https://www.sam.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Indispensable: Learning by doing (➔ do exercises consistently)

0.1.4 Requests for Student Activity

The lecturers very much welcome and, putting it even more strongly, rather depend on feedback and
suggestions of the students taking the course for continuous improvement of the course contents and
presentation. Therefore all participants are strongly encouraged to get involved actively and contribute in
the following ways:

§0.1.4.1 (DISCUNA communication platform)

Communication between lecturers and assistants on one side and
students on the other side will rely on the DISCUNA online collaboration

platforms that runs in any browser.

✦ DISCUNA allows to attach various types of annotations to shared PDF documents, see
documentation.

✦ DISCUNA offers communication channels that allow users to post messages (formatted text and
images) and see and comment on other posts, see the documentation.

In the beginning of the teaching period you receive a join link of the form
https://app.discuna.com/invite/<JOIN CODE>. Open the link in a web browser and
it will take you to the DISCUNA community page. y

§0.1.4.2 (Reporting errors) As the documents for this course will always be in a state of flux, they will
inevitably and invariably be afflicted with small errors, mainly typos and omissions.

Error reporrting through DISCUNA

For error reporting we use DISCUNA: Errors should be reported by annotating the PDFs you can
find in the Error Reporting folder on the DISCUNA AdcNumCSE community page.

To report an error,

1. select the corresponding PDF document (chapter of the lecture document of homework problem) in
the left sidebar,

2. press the prominent white-on-blue +-button in the right sidebar,

3. click on the displayed PDF where the error is located,

4. then in the pop-up window choose the “Error” category,

5. and add a title and,

6. if the title does not tell everything, a short description.

In case you cannot or do not want to link an error to a particular point in the PDF, you may just click on the
title page of the respective chapter. Then, please precisely specify the concerned section and the number
of the paragraph, remark, equation etc. Do not give page numbers as they may change with updates to
the documents.

Note that chapter PDFs and homework problem files will gradually be added to the DISCUNA AdvNumCSE
community. Hence, the final chapters will not be accessible in the beginning of the course. y

0. Introduction, 0.1. Course Contents 7

https://discuna.com/
https://discuna.com/
https://discuna.com/
https://support.discuna.com/guides/pdfChannel/
https://discuna.com/
https://support.discuna.com/guides/chatChannel/
https://discuna.com/
https://discuna.com/
https://discuna.com/
https://discuna.com/
https://discuna.com/

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

0.1.5 Literature

Parts of the following monographs may be used as supplementary reading for this course. References to
relevant sections will be provided in the course material.

Studying extra literature is not important for following this course!

✦ Chapter 2 M. BEBENDORF, Hierarchical matrices: A means to efficiently solve elliptic boundary

value problems, Springer, 2008.

✦ Chapter 2 W. HACKBUSCH, Hierarchical Matrices, Springer, 2015.

✦ Chapter 2 S. BOERM, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compres-

sion, Algorithms and Analysis, EMS, 2010.

✦ Chapter 2 S. BOERM, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel, 2017.

✦ Chapter 3: M. HASSELL AND F.-J. SAYAS, Convolution Quadrature for Wave Simulations, Springer,
2016.

✦ Chapter 3: F.-J. SAYAS, Retarded Potentials and Time-Domain Boundary Integral Equations,
Springer, 2016.

✦ Chapter 4: K. STÜBEN, An Introduction to Algebraic Multigrid, Appendix A of U. TROTTENBERG, C.
OSTERLEE, AND A. SCHÜLLER, Multigrid, Academic Press, 2001.

✦ Chapter 4: J. XU AND L. ZIKATANOV, Algebraic multigrid methods, Acta Numerica, 26 (2017),
pp. 591–721.

0.2 Specific information

0.2.1 Assistants and exercise classes

The course comprises both classroom lectures (four hours per week) and tutorial classes (two hours
per week) taught by assistants, who are either PhD students and postdocs at the Seminar for Applied
Mathematics of ETH Zürich or advanced MSc students in the CSE program.

Though the assistants email addresses are provided on the course website, their use should be restricted
to cases of emergency:

In general refrain from sending email messages to the lecturer or the assistants. They will not
be answered!

Questions should be asked in class (in public or during the break in private), during the tutorial
sessions, or through the DISCUNA Q&A communication channels.

0.2.2 Assignments

You should expect to spend 6–10 hours per week on trying to solve the homework problems. Since many
involve small coding projects, the time it will take an individual student to arrive at a solution is hard to
predict.

§0.2.2.1 (Homeworks and tutors’ corrections)

0. Introduction, 0.2. Specific information 8

https://discuna.com/

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ The weekly assignments will be a few problems from the ADVNCSE Problem Collection available
online as PDF. The particular problems to be solved will be communicated on Wednesday every
week.

Please note that this problem collection is being compiled during this semester. Thus, make sure
that you obtain the most current version every week.

✦ Some or all of the problems of an assignment sheet will be discussed in the tutorial classes on
Thursday or Friday several days after the problems have been assigned.

✦ If you want your tutor to examine your solution of the current problem sheet, please hand it in to the
tutor during the following exercise class, or use the dedicated online upload tool. This is voluntary,
but feedback on your performance on homework problems can be important.

✦ Please clearly mark the homework sub-problems that you want your tutor to inspect.

✦ You are encouraged to hand-in incomplete and wrong solutions, because you can receive valuable
feedback even on incomplete attempts.

y

§0.2.2.2 (Git code repository) C++ codes for both the classroom and homework problems are made
available through a git repository also accessible through Gitlab (Link):

The Gitlab toplevel page gives a short introduction into the repository for the course and provides a link to
online sources of information about Git.

Download is possible via Git or as a zip archive. Which method you choose is up to you, but it should be
noted that updating via git is more convenient.

➣ Shell command to download the git repository:

> git clone https://gitlab.math.ethz.ch/AdvNumCSE/Code

Updating the repository to fetch upstream changes is then possible by executing > git pull inside the
Code folder.

Note that by default participants of the course will have read access only. However, if you want to contribute

corrections and enhancements of lecture or homework codes your are invited to submit a merge request.
Beforehand you have to inform your tutor so that a personal Gitlab account can be set up for you.

The Zip-archive download link is here.

For instructions on how to compile assignments or lecture codes see the README file. y

0. Introduction, 0.2. Specific information 9

https://people.math.ethz.ch/~grsam/ADVNCSE/ADVNCSEProblems.pdf
https://gitlab.math.ethz.ch/AdvNumCSE/Code
https://gitlab.math.ethz.ch/AdvNumCSE/Code/repository/archive.zip?ref=master
https://gitlab.math.ethz.ch/AdvNumCSE/Code/blob/master/README.md

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

0.2.3 Information on Examinations

§0.2.3.1 (Examination during the teaching period) From the ETH course directory:

During the teaching period students are expected to give a 10-15-minute oral code review
and answer questions concerning selected homework programming assignments. The code
review is regarded as a mandatory performance element that will contribute 20% of the final
grade.

The oral code review is regarded as a mandatory performance assessment and is graded with an
integer grade, which will contribute 1

5 th of the final grade.
The code review will be held in December.

✦ The code review take 15 to 20 minutes and will center around the discussion of (parts of) codes the
students have written as solutions of homework coding projects.

✦ The relevant homework coding projects will be communicated tow weeks before the first code re-
views and will also be listed on the course web page.

✦ Registration through a Doodle poll is mandatory for taking parts in the code review. The link will be
send by email and will be published on the course web page.

Non-registration or not showing up will incur a grade of 1.0 for the code review.

✦ Candidates for the code review are expected to send their codes until two days before their sched-
uled code review. Please upload all your files as a single .zip archive with different codes in
different sub-directories;

Details on code upload will be published on the course web page and sent by email.

✦ No repetition of code reviews will be offered.

y

§0.2.3.2 (Main examination during the exam session)

✦ 30-minute oral exam in English

✦ Dates will be communicated by the ETH exam office and cannot be negotiated.

✦ Subjects of examination:

All topics, which have been addressed in class or in a homework problem or project

y

§0.2.3.3 (Repeating an exam)

Main exam.

• The main exam can be repeated once, conditional on failure.

• The grade earned in the code review will be taken into account again for the repeated exam.

y

0. Introduction, 0.2. Specific information 10

Chapter 1

Boundary Element Methods (BEM)

Preface

Boundary element methods (BEM) represent a class of numerical methods for the discretization of bound-
ary integral equations (BIE) arising from boundary value problems (BVPs) for linear partial differential
equations (PDEs) with constant coefficients.

In this chapter we focus on the derivation of various boundary integral equations, the study of their prop-
erties and on Galerkin discretization by means of boundary element methods, which can be regarded a
finite element methods for BIE.

Boundary value problem
for linear PDE

fundamental
solutions

Boundary integral
equations (BIE)

BEM

(Linear) system
of equations (LSE)

Boundary element methods play a significant role in computational engineering, in particular in the fields
of computational electromagnetism and acoustics, and for simulations based on linear elasticity.

§1.0.0.1 (BEM in computational electromagnetics)

11

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 1

The plot shows the post-processed re-
sult of an electrostatic field simulation
conducted by Lars Kielhorn for a test
geometry provided by ABB Research,
Baden/Dättwil (The strength of the electric
field is given in units of V

m).

Computations were done by means of a
low-order piecewise polynomials Galerkin
boundary element method based on the
boundary element library BETL [HK12].

The mesh used for the computations is
faintly drawn for the outer casing.

y

§1.0.0.2 (BEM for acoustic wave propagation)

A result from [CHS18]:

Acoustic wave propagation in frequency domain;
scattering of an incident plane acoustic wave Uinc

at a scatterer composed of three different homoge-
neous isotropic parts, of which Ω� is perfectly ab-
sorbing (sound soft). The color scale indicates the
amplitude of the total acoustic pressure field on a sur-
face.

Simulation was based on piecewise constant bound-
ary element applied to a second-kind single trace di-
rect boundary integral equation formulation.

Fig. 2

y

Contents

1.0.1 Further Reading for this Chapter . 19
1.1 Elliptic Model Boundary Value Problem: Electrostatics 19

1.1.1 The Electric Field . 19
1.1.2 Electric Scalar Potential . 21
1.1.3 Continuity of Fields and Boundary Conditions 24
1.1.4 Equilibrium Conditions . 27
1.1.5 Variational Equations . 29
1.1.6 Boundary Value Problems . 30
1.1.7 Decay conditions on unbounded domains 33
1.1.8 Supplement: An energy norm for source charge distributions 35

1.2 Boundary Representation Formulas . 36

1.2.1 Green’s Formulas . 36
1.2.2 Fundamental Solutions . 38
1.2.3 Volume Potential Representation . 44
1.2.4 Boundary Potential Representation . 46
1.2.5 Layer Potentials . 48
1.2.6 Green’s Functions . 52

1.3 Boundary Integral Equations (BIEs) . 55

1.3.1 Trace Operators . 55

1. Boundary Element Methods (BEM), 1. Boundary Element Methods (BEM) 12

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.3.2 Mapping Properties of Layer Potentials . 63
1.3.3 Jump Relations for Layer Potentials . 65
1.3.4 Boundary Integral Operators (BIOs) . 68
1.3.5 Direct Boundary Integral Equations . 74
1.3.6 Indirect Boundary Integral Equations . 80

1.4 Boundary Element Methods in Two Dimensions 82

1.4.1 Abstract Galerkin Discretization . 83
1.4.2 Boundary Element Spaces on Curves . 85
1.4.3 Computation of BEM-Galerkin Matrix in 2D 95

1.5 Boundary Element Methods on Closed Surfaces 129

1.5.1 Surface Meshes . 129
1.5.2 Boundary Element Spaces on Triangulated Surfaces 131
1.5.3 Assembly of Galerkin Matrices . 135

1.6 BEM: Various Aspects . 141

1.6.1 Convergence . 141
1.6.2 Mixed Boundary Value Problems . 148
1.6.3 Transmission Problems . 150
1.6.4 BEM for Wave Propagation . 154

1.0.1 Further Reading for this Chapter

Note that the information given in class and contained in this lecture document is supposed to be self-
contained. Studying additional literature should not be necessary. However, if your are interested in
learning more about boundary element methods you may take a look at

✦ S. SAUTER AND CH. SCHWAB, Boundary Element Methods, Springer, 2010.

✦ O. STEINBACH, Numerical approximation methods for elliptic boundary value problems, Springer,
2008.

1.1 Elliptic Model Boundary Value Problem: Electrostatics

We consider electromagnetism in a stationary setting, that is none of the fields depends on time. In this
case electric and magnetic fields become decoupled. In this section we focus on the electric field as we
did in [NumPDE Section 1.2.2].

1.1.1 The Electric Field

§1.1.1.1 (Domains) We denote by Ω ⊂ R3, called a domain in the sequel, an open subset of 3D
Euclidean space with piecewise smooth Lipschitz boundary. For the intricate mathematical notion of a
Lipschitz boundary we refer to [McL00, pp. 89] and [SS10, Def. 2.2.7]. If Ω is bounded, you may imagine
a polyhedron with some curved faces, see § 1.2.1.4 below.

As a new aspect we will also consider boundary value problems for fields on unbounded domains, more
precisely, the case when Ω is the (open) complement of a bounded Lipschitz domain ⊂ R3.

✎ Notation: Ω′ := Rd \Ω =̂ complement of a domain Ω ⊂ Rd

y

The simplest mathematical model for a stationary electric field is that of a vectorfield E : Ω → R3,
assigning a field vector E(x) ∈ R3 to each point x ∈ Ω.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 13

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✎ Notation: We write a, . . . , x, y, z for small vectors and points in space.
bold typeface for vector-valued quantities: E, u, j, . . .

§1.1.1.2 (Energy (density) of electric field) Any non-zero electric field contains energy, which deter-
mined by both the strength of the electric field and the dielectric medium penetrated by the field. We
restrict ourselves to simple linear media. In this case the we have the following expression for the energy:

Definition 1.1.1.3. Electrostatic field energy [NumPDE Eq. (1.2.2.6)]

The total energy of an electric field E : Ω→ R3 inside Ω is

Jel(E) := 1
2

∫

Ω
(ǫ(x)E(x)) · E(x)dx , (1.1.1.4)

where ǫ : Ω → R3,3 is the symmetric, bounded, uniformly positive definite dielectric tensor field,
see [NumPDE § 1.2.2.7].

We call a tensor field, that is, a matrix-valued function α : Ω → Rd,d, d ∈ N, bounded and uniformly
positive definite [NumPDE Def. 1.2.2.9], if

∃γ−, γ+ > 0: γ−‖z‖2 ≤ z⊤α(x)z ≤ γ+‖z‖2 ∀z ∈ Rd . (1.1.1.5)

ǫ is a macroscopic material parameter taking into account complex microscopic interactions of electric
fields and matter.

Energy norm

E 7→
√

Jel(E) defines a norm (→ [NumPDE Def. 0.3.1.10]) on the vector space of electric fields,
the energy norm, cf. [NumPDE ??].

y

Remark 1.1.1.7 (Scaling of electromagnetic field problems, cf. [NumPDE Rem. 1.2.1.25])

The physical units of electrostatic quanti-
ties are given beside ✄

Quantity units

Electric field E [E] = 1 V
m

Dielectric tensor ǫ [ǫ] = 1 As
Vm

Charge density ρ [ρ] = 1 As
m3

Field energy [Jel] = 1 VAs = 1 J

There are three “free units”, 1V (unit of voltage), 1m (unit of length), and 1As (unit of charge), which can
be fixed arbitrarily. For instance, one may set the unit of length to the diameter of Ω, if Ω is bounded, and
set the units of voltage and charge to the “maximum expected values”.

Thus, one ends up with non-dimensional equations for electrostatics. In this course we will tacitly assume
that equations heve already been converted into non-dimensional form by suitable scaling. y

1.1.2 Electric Scalar Potential

A point charge q in a (continuous) electric field E : Ω → R3 at a point x ∈ Ω experiences a Coulomb

force

f(x) := q E(x) . (1.1.2.1)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 14

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(Note matching physical units [f] = As V
m = J

m = 1 N)

§1.1.2.2 (Vanishing circulation of electric fields) The integration of a force along a directed curve
γ : [0, 1] 7→ γ(t) ∈ Ω yields the work required to move the charge: W = q

∫
γ E · d~s. Thus, in order to

comply with the fundamental principle of energy conservation we have to demand

∫

γ
E · d~s =

∫ 1

0
E(γ(t)) · dγ

dt
(t)dt= 0 ∀ closed curves γ ⊂ Ω , (1.1.2.3)

where the curve γ : [0, 1] → Ω is called closed, if γ(0) = γ(1). The non-local property (1.1.2.3) has an
important local consequence, which can be stated by means of the rotation operator (also knows as curl
operator)

curl v(x) :=

∂v3

∂x2
(x)− ∂v2

∂x3
(x)

∂v1

∂x3
(x)− ∂v3

∂x1
(x)

∂v2

∂x1
(x)− ∂v1

∂x2
(x)

, for v(x) =

v1(x)
v2(x)
v3(x)

 differentiable in x . (1.1.2.4)

Theorem 1.1.2.5. Electric fields are irrotational/curl-free

Every differentiable stationary electric field E : Ω→ R3 satisfies curl E = 0 in Ω.

Proof. We assume 0 ∈ Ω and show curl E(0) = 0. Pick i, j ∈ {1, 2, 3}, i 6= j, and consider the closed
curve describing an axes-aligned square of size h > 0:

γ = {t 7→ htei} ∪ {t 7→ hei + thej} ∪ {t 7→ hei + hej − htei} ∪ {t 7→ (1− t)hej} , 0 ≤ t ≤ 1 ,

with ei standing for the i-th Cartesian basis vector. The path integral evaluates to

∫

γ
E · d~s =

1∫

0

hE(htei) · ei + hE(hei + thej) · ej−
hE(hej + h(1− t) · ei)ei − hE(h(1− t)ej) · ej .

We plug in the first-order Taylor expansion of E around 0:

E(x) = E(0) +DE(0)x + O(‖x‖2) for x→ 0 . (1.1.2.6)

✎ Notation: DE =̂ Jacobian of the (differentiable) vector field E, see [NumPDE Eq. (0.3.2.16)].
∫

γ
E · d~s = h2

(
1
2DE(0)ei · ei +DE(0)ei · ej +

1
2DE(0)ej · ej −DE(0)ej · ei−

1
2DE(0)ei · ei − 1

2DE(0)ej · ej

)
+ O(h3) for h→ 0 .

Note that multiplication with unit vectors selects rows/columns of matrices and that (1.1.2.3) makes the
path integral along γ vanish.

0 =
∫

γ
E · d~s = h2

(
(DE(0))i,j − (DE(0))j,i

)
+ O(h3) for h→ 0 .

This implies (DE(0))i,j = (DE(0))j,i, the Jacobian DE(0) is symmetric: DE(0) = DE(0)⊤. In light of

the definition (1.1.2.4) of the rotation operator we see that this is equivalent to curl E(0) = 0.
✷ y

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 15

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§1.1.2.7 (Introducing the electrostatic potential) As another consequence of (1.1.2.3) we note that for
an open curve κ the integral

∫
κ E ·d~s will depend only on the endpoints of the curve (path-independence);

connect both endpoints of κ by another curve of opposite orientation. Therefore, picking an arbitrary point
z ∈ Ω we can define an electric potential through

u(x) = −
∫

κx

E · d~s for some curve κx : [0, 1]→ Ω, κx(0) = z, κx(1) = x, x ∈ Ω . (1.1.2.8)

Thanks to path-independence of the work integral this is a valid definition.

Now,let us assume 0 ∈ Ω and that Ω is star-shaped with respect to z := 0, that is for every x ∈ Ω we
have [0, x] ⊂ Ω. Then, for every x ∈ Ω we can choose the straight line connecting 0 and x as curve κx

in (1.1.2.8):

κx(t) = tx , ⇒ u(x) := −
∫ 1

0
E(tx) · x dt . (1.1.2.9)

By differentiation under the integral we get by the chain rule and the product rule

grad u(x) :=

∂u
∂x1

(x)
∂u
∂x2

(x)
∂u
∂x3

(x)

 = −

∫ 1

0
tDE(tx)⊤x + E(tx)dt .

Applying the same differentiation rules, we also obtain

d
dτ{τ 7→ τE(τx)}τ=t = tDE(tx)x + E(tx) .

Combining both formulas leads to a recovery of the electric field:

grad u(x) = −
∫ 1

0

d
dτ{τ 7→ τE(τx)}τ=t + t

(
DE(tx)⊤ −DE(tx)

)
· x

︸ ︷︷ ︸
=0 by Thm. 1.1.2.5 !

dt = −τE(τx)|τ=1
τ=0 = −E(x) ,

where we used the fundamental theorem of calculus and that the components of curl E(x) agree with the
off-diagonal entries of DE(tx)⊤ −DE(tx).

Theorem 1.1.2.10. Existence of electrostatic potential

If a continuous vectorfield E : Ω → R3 satisfies (1.1.2.3) (“circulation-free”), then (1.1.2.8) defines

a differentiable function u : Ω→ R such that E = − grad u.

Obviously, if Ω is connected, then a function u : Ω→ R satisfying grad u = −E for given E is unique up
to a constant.

The function u from Thm. 1.1.2.10 is called a scalar potential for E. The − in its definition is a convention.

Assumption 1.1.2.11. Connected domains

The domain Ω is connected

y

Remark 1.1.2.12 (Scalar potentials and work) By virtue of the very definition (1.1.2.8) of the scalar
potential we conclude that

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 16

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

−q(u(x)− u(y)) is the work required to move a charge q from y ∈ Ω to x ∈ Ω against the
force exerted by the electric field − grad u : Ω→ R3.

Note: positive work is “work done by the electric field” (we harvest energy), negative work amounts to
“work done against the electric field” (we spend energy). y

We are still missing two things:

1. A mathematical description of the cause of electromagnetic fields, which are charges,

2. and a criterion for selecting the unique physical electric field induced by charges.

These issues will be tackled next and everything will center around the concept of field energy introduced
in Def. 1.1.1.3.

§1.1.2.13 (Spaces for electric fields and scalar potentials) Physically admissible electric fields E :
Ω→ R3 on Ω ⊂ R3 (either bounded or unbounded) have to satisfy

✦ that their energy content
∫

Ω
ǫ(x)E(x) · E(x)dx is finite, cf. Def. 1.1.1.3,

✦ and that they are gradients of a scalar potential: E = − grad u for a sufficiently smooth function
u : Ω→ R.

Thus we can switch to a characterization by admissible scalar potentials, which form the set
{

u : Ω→ R:
∫

Ω
ǫ(x) grad u(x) · grad u(x)dx < ∞

}
.

Since ǫ : Ω → R3,3 is uniformly positive definite, this set can be endowed with the structure of a Hilbert
space by completion, see [NumPDE § 1.3.3.2] and [NumPDE § 1.3.3.10]. On a bounded domain Ω this
yields the Sobolev space H1(Ω), recall [NumPDE Section 1.3.4].

Definition 1.1.2.14. Sobolev space H1(Ω), [NumPDE Def. 1.3.4.8]

For a bounded domain Ω ⊂ Rd, d ∈ N, we define the Sobolev space

H1(Ω) := {v ∈ L2(Ω):
∫

Ω
| grad v(x)|2 dx < ∞}

as a Hilbert space with norm field energy

‖v‖2
H1(Ω) := ‖v‖2

L2(Ω) + |v|2H1(Ω) , |v|2H1(Ω) :=
∫

Ω
| grad v(x)|2 dx.

The above definition involves the Hilbert space L2(Ω):

Definition 1.1.2.15. Hilbert space of square integrable functions [NumPDE Def. 1.3.2.3]

The function space of square integrable functions on Ω ⊂ Rd is

L2(Ω) := {v : Ω→ R integrable:
∫

Ω
|v(x)|2 dx < ∞} ,

a Hilbert space, when endowed with the norm

‖v‖L2(Ω) :=

(∫

Ω
|v(x)|2 dx

)1/2

.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 17

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
http://en.wikipedia.org/wiki/Sobolev_space
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Space for admissible scalar potentials

Meaningful electrostatic scalar potentials on a bounded domain Ω ⊂ R3 belong to the Sobolev
space H1(Ω).

y

Remark 1.1.2.17 (Potentials on unbounded domains) It will turn out that some physically meaningful
scalar potentials will not belong to L2(Ω), if Ω ⊂ R3 is an exterior domain, that is, the open comple-
ment of a bounded Lipschitz domain. In this case the proper space of admissible potentials is [SS10,
Eq. (2.148)]

H1(Ω) :=

{
u : Ω→ R: ‖u‖2

H1(Ω) :=
∫

Ω
‖grad u(x)‖2 +

|u(x)|2
1 + ‖x‖2

dx < ∞

}
, (1.1.2.18)

which is larger than the space on Ω we would get from Def. 1.1.2.14 When equipped with the norm defined
in (1.1.2.18) also this space becomes a Hilbert space. Note that (??) still guarantees finite energy of the
electric field.

! Many authors, also [SS10], use Def. 1.1.2.14 also for exterior domains and introduce special
notation for the space defined in (1.1.2.18).

y

1.1.3 Continuity of Fields and Boundary Conditions

Maxwell’s equations and their reduced version, the equations of electrostatics are generically posed on all
of R3. Often, one is interested in the behavior of the fields in a region Ω 6= R3 only and the impact of the
complement Ω′ is taken into account by imposing boundary conditions on the boundary Γ := ∂Ω.

The boundary Γ := ∂Ω is a two-dimensional ori-
entable closed (that is, without a boundary itself) sur-
face.
✎ Notation: n : Γ → R3 is the exterior unit normal

vectorfield on Γ.
(Defined only in the interior of faces for polyhe-
dra)

Fig. 3

Ω

Γ
Ω′

n

§1.1.3.1 (Jump conditions for electric field)

Fig. 4

Σ
γ Σ ⊂ R3 =̂ smooth orientable surface (“interface”). Consider

slender closed curve γ aligned with Σ, see Fig. 4. Letting the
Σ-transversal width of γ shrink to zero, (1.1.2.3) [

∫
γ E · d~s = 0]

can be satisfied for any such curve only if the tangential compo-
nents of E agree on both sides of Σ.

Continuity of electric fields

The tangential components of an electric field continuous on both sides of an orientable surface are
continuous across that surface.

y

§1.1.3.3 (Continuity of scalar potentials) If a scalar potential u : Ω→ R was only piecewise continuous
with a jump across an interface, then pushing a charge by an “infinitesimally small” distance across the

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 18

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

interface could always release fixed finite amount of energy. This amounted to an infinitely large force
acting on the charge, which does not make physical sense.

Continuity of scalar potentials

A scalar potential that is continuous on both sides of an orientable surface is also C0-continuous
across it.

This finding very well matches our results about the appropriate function spaces for scalar potentials
[NumPDE Thm. 1.3.4.23].

Theorem 1.1.3.5. Compatibility conditions for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and Ω2. A function u that is continuously differentiable

in both sub-domains and continuous up to their boundary, belongs to H1(Ω), if and only if u is

continuous on Ω.

We also recall from [NumPDE § 1.3.4.25] that continuous and piecewise continuously differentiable func-
tions on Ω belong to H1(Ω):

C1
pw(Ω) ⊂ H1(Ω) . (1.1.3.6)

We have to define C1
pw on the closed domain Ω in (1.1.3.6) to make sure that the functions are continuous

up to the boundary.

Be aware that the gradients of functions in C1
pw(Ω) enjoy continuity of their tangential components across

any interface inside Ω. They satisfy the natural jump conditions for electric fields, cf. § 1.1.3.1. y

§1.1.3.7 (Normal and tangential components of a vectorfield on a surface) If nΣ : Σ → R3 is a unit
normal vector field on the orientable 2-surface Σ and v a vectorfield continuous up to Σ, then

the normal component of v in x ∈ Σ is (Tn,Σv)(x) := v(x) · nΣ(x),
the tangential component of v in x ∈ Σ is (Tt,Σv)(x) := v(x)− (v(x) · nΣ(x))nΣ(x),

✎ Notations: Tn,Σ =̂ normal component (trace) of a vector field on Σ

Tt,Σ =̂ tangential component (trace) of a vector field on Σ.
(Subscript indicating the surface may be omitted when clear from the context.)

The mappings Tn,Σ and Tt,Σ are first examples of trace operators, linear mappings from function spaces
on volume domains to function spaces on interfaces or boundaries. y

§1.1.3.8 (Boundary conditions on the surface of conductors) A conductor is a region Ωc ⊂ R3 filled
with (infinitely many) mobile charge carriers.

The electric field vanishes inside a conductor.

Otherwise the field would cause permanent movement of charges, releasing an infinite amount of energy
in the process.

If u is the electric potential (→ Thm. 1.1.2.10), then E = − grad u = 0 inside the conductor.

The electric potential is constant inside each connected component of Ωc.

In light of the tangential continuity of the electric field E, E = 0 inside Ωc means that

Tt,∂Ωc
E = 0 on boundaries of conductors . (1.1.3.9)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 19

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Engineers refer to the boundary conditions (1.1.3.9) as perfectly electrically conducting (PEC)

In mathematics, these PEC boundary conditions belong to the class of Dirichlet boundary conditions, see
[NumPDE Section 1.7]. y

§1.1.3.10 (Mirror symmetry boundary conditions)

Fig. 5

Ω

Σ

xx′

E(x)E(x′)

nΣ

Assume a situation mirror-symmetric with respect
to a plane Σ (through 0) with unit normal nΣ, see
Fig. 5:

x′ = (I− 2nΣn⊤Σ)x ,

E(x′) = (I− 2nΣn⊤Σ)E(x) .
(1.1.3.11)

Note that the electric field E is completely continu-

ous across Σ, because Σ does not separate different
physical domains (“artificial interface”).

Thus, for x = x′ ∈ Σ we have

E(x) = (I− 2nΣn⊤Σ)E(x) ⇒ Tn,ΣE = E · nΣ = 0 on Σ .

Boundary condition for electric fields as symmetry planes

At symmetry planes electric fields have vanishing normal components.
(= homogeneous Neumann boundary conditions [NumPDE Section 1.7])

y

§1.1.3.13 (Configuration space for electrostatic phenomena) Remember that the configuration space
for a physical system is a subset of a vector space. Each element models a particular state of the system.
In electrostatics states are characterized by functions on spatial domains, the fields.

In § 1.1.2.13 we saw that the configuration space can be a set of scalar potentials and should be a
subspace of H1(Ω). PEC boundary conditions as introduced in § 1.1.3.8 will enter the definition of the
configuration space.

Configuration space for electrostatics

Let Γ1, . . . , Γm ⊂ ∂Ω stand for the connected components of the part of ∂Ω corresponding to
surfaces of conductors. Then the scalar potential is sought in the space

V := {u ∈ H1(Ω): u|Γj
≡ const, j = 1, . . . , m} .

We can further restrict the configuration space, if the scalar potential is imposed on all or some connected
components of the conducting part of ∂Ω: Assume that u|Γj

= Uj ∈ R for j = 1, . . . , k, k ≤ m. Then we

can choose

V := {u ∈ H1(Ω): u|Γj
= Uj, j = 1, . . . , k , u|Γj

≡ const, j = k + 1, . . . , m} . (1.1.3.15)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 20

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This configuration space is an affine space. For any some u0 ∈ V it can be written as V = u0 + V0 with
the Hilbert space

V0 := {u ∈ H1(Ω): u|Cj
= 0, j = 1, . . . , k , u|Cj

≡ const, j = k + 1, . . . , m} . (1.1.3.16)

Terminology: Connected components of the conducting boundary part of Ω where no potential is imposed
are called floating potentals. y

Remark 1.1.3.17 (Fixing the potential) Since the potential is unique only up to constant, one can always
set u|Γ1

= 0 for one connected component of the conducting boundary without changing the outcome for
the electric field. Then Γ1 is called a grounded conductor. y

EXAMPLE 1.1.3.18 (Fixed potential boundary conditions)

Fig. 6 U0

Ω

Γ1

Γ0

u = 0

u = U0

✁ situation with imposed potentials

u = 0 on Γ0 ,

u = U0 on Γ1 .
(1.1.3.19)

(Metal electrode inside a grounded metal box)

configuration space

V =
{

u ∈ H1(Ω): u satisfies (1.1.3.19)
}

.

y

1.1.4 Equilibrium Conditions

As the reader will know, the sources of electric fields are electric charges. Above we have already made
of the construct of a point charge for measuring an electric field through the Coulomb force.

A large number of small “point charges” contained in a volume Ω ⊂ R3 can be modeled by a charge
density ρ : Ω→ R, physical units [ρ] = 1 As

m3 .

Q =
∫

D
ρ(x)dx =̂ total charge in sub-volume D ⊂ Ω . (1.1.4.1)

§1.1.4.2 (Energy of charges in a field) Assume Ω ⊂ R3 to be bounded that the the scalar potential
u : Ω → R satisfies u|∂Ω = 0 (If Ω is the complement of a bounded set, we may just choose a
normalization of the scalar potential that makes it vanish at large distance: lim‖x‖→∞ u(x) = 0 uniformly,
also written as “u(∞) = 0”.). According to Rem. 1.1.2.12 it takes the work −qu(x) to move a charge q to
x ∈ Ω from ∂Ω.

Now think of a charge density ρ : Ω→ R+
0 as composed of many small point charges. The work it takes

to assemble this arrangement of charges is the sum of the work units required for each individual charge,
because we assume a fixed scalar potential not influenced by the presence of the charges. In the limit this
summation becomes integration (→ Riemann integral), and the energy required for setting up the charge
distribution ρ in the presence of a fixed potential is

Jρ(u) = −
∫

Ω
ρ(x) u(x)dx , u ∈ H1(Ω) . (1.1.4.3)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 21

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The notation stresses the dependence of the energy on u, because this will play the role of the unknown.

In the sequel the presence of charges modeled by ρ(x) will engender the fields. Therefore we call ρ as
source charge distribution. y

Remark 1.1.4.4 (Admissible source charge distributions) The energy Jρ(u) of a source charge distri-
bution ρ : Ω → R should be finite for all admissible scalar potentials u. For bounded Ω, applying the
Cauchy-Schwarz inequality in L2(Ω) [NumPDE Eq. (1.3.4.15)] we get

|Jρ(u)| =
∣∣∣∣
∫

Ω
ρ(x) u(x)dx

∣∣∣∣ ≤
(∫

Ω
ρ(x)2 dx

)1/2(∫

Ω
u(x)2 dx

)1/2

= ‖ρ‖L2(Ω)‖u‖L2(Ω) .

Hence, ρ ∈ L2(Ω) is a sufficient condition for a suitable source charge distribution, cf. [NumPDE
Cor. 1.3.4.19].

If Ω is an exterior domain, we demand that ρ has bounded support in addition (“compactly supported”). y

The total energy in a electrostatic situation in a volume Ω is the sum of the energy (1.1.1.4) of the electric
field and the energy content of the charges given by (1.1.4.3):

J(u) := Jel(u) + Jρ(u) =
∫

Ω

1
2 ǫ(x) grad u(x) · grad u(x)− ρ(x)u(x)dx , u ∈ V ⊂ H1(Ω) .

(1.1.4.5)

configuration space, see § 1.1.3.13

The selection of the scalar potential prevailing in a particular situation relies on a fundamental equilibrium
principle also called virtual work principle, compare [NumPDE Eq. (1.2.2.16)]:

Equilibrium condition for electrostatic phenomena

Given a (compactly supported) source charge distribution ρ ∈ L2(Ω) and a configuration space
V ⊂ H1(Ω) encoding boundary conditions, the scalar electrostatic potential u minimizes to total
energy

u = argmin
v∈V

J(v) . (1.1.4.7)

§1.1.4.8 (Total energy as quadratic functional) Let us introduce the following abbreviations:

a(u, v) :=
∫

Ω
ǫ(x) grad u(x) · grad v(x)dx , u, v ∈ H1(Ω) , (1.1.4.9)

ℓ(v) :=
∫

Ω
ρ(x) v(x)dx , v ∈ L2(Ω) . (1.1.4.10)

Here, a : H1(Ω)× H1(Ω) → R is a bilinear form and ℓ : H1(Ω) → R is a linear form, see [NumPDE
Def. 0.3.1.4]. Then the functional J from (1.1.4.5) can be written as

J(u) = 1
2a(u, u)− ℓ(u) . (1.1.4.11)

Hence, J is a quadratic functional, see [NumPDE Def. 1.2.3.2] on V ⊂ H1(Ω) and the scalar potential is
defined as the solution of the quadratic minimization problem (1.1.4.7).

We remark the obvious fact that the bilinear form a)(·, ·) from (1.1.4.9) is positive semi-definite [NumPDE
Def. 1.2.3.27]. This connects to the fact that 1

2a(u, u) tells the energy (norm) (1.1.1.4) of the electric field

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 22

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

E := − grad u.

By the Cauchy-Schwarz inequality both a and ℓ are continuous on H1(Ω) in the sense of [NumPDE
Def. 1.2.3.42]. y

The next result answer the fundamental question about existence and uniqueness of solutions of the above
quadratic minimization problem. Throughout, V ⊂ H1(Ω) is the configuration space as described above.

Theorem 1.1.4.12. Existence and uniqueness of energy minimizing potentials

If

Ω ⊂ R3 is bounded and u is fixed on some part of ∂Ω

or

Ω ⊂ R3 is the complement of a bounded domain

then (1.1.4.7) has a unique solution.

The proof of this theorem requires deep results from the theory of Sobolev spaces (a generalization of the
first Poincaré-Friedrichs inequality [NumPDE Thm. 1.3.4.17]) and functional analysis (Riesz representation
theorem [NumPDE Thm. 1.3.3.6]). If Ω is the complement of a bounded domain, then we have to appeal
to [SS10, Prop. 2.10.8].

1.1.5 Variational Equations

Recall the notion of a linear variational problem from [NumPDE Def. 1.4.1.6]:

Definition 1.1.5.1. Linear variational problem

A variational problem posed on an affine space V and a vector space V0 of the form

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.5.2)

is called a linear variational problem, if
• a : V × V0 7→ R is a bilinear form (BLF), that is, linear in both arguments (→ [NumPDE

Def. 0.3.1.4]),
• and ℓ : V0 → R is a linear form (LF).

We will also need fundamental abstract result from [NumPDE Section 1.4.1].

Theorem 1.1.5.3. Equivalence theorem for quadratic minimization problems

Let V0 be a normed real vector space, V a related affine space and a : V × V → R, ℓ : V →
R a continuous symmetric positive semi-definite (→ [NumPDE Def. 1.2.3.24]) bilinear form and

continuous linear form, respectively. Then u ∈ V is a minimizer of the quadratic functional J(v) :=
1
2a(v, v)− ℓ(v), if and only if u solves the linear variational problem

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 .

The assertion of this theorem can concisely be stated as follows: for u ∈ V holds the equivalence

u = argmin
v∈V

1
2a(v, v)− ℓ(v) ⇐⇒ u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.5.4)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 23

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

if a is symmetric and positive semi-definite.

Proof of Thm. 1.1.5.3. (I) Assume that u ∈ V is a minimizer of J(v) over the affine space V = u + V0.
Then for any v ∈ V0 the smooth auxiliary function

ϕv : R → R , ϕv(t) := J(u + tv) ,

has a global minimum in t = 0, which means

dϕv

dt
(0) = {t 7→ ta(v, v) + a(u, v)− ℓ(v)}|t=0 = a(u, v)− ℓ(v) = 0 .

Since v ∈ V0 was arbitrary, (1.1.5.2) follows.

(II) Let u ∈ V satisfy (1.1.5.2): a(u, v) = ℓ(v) for all v ∈ V0. Then we can rewrite

J(v) = 1
2a(v, v)− a(u, v) = 1

2 a(v− u, v− u)︸ ︷︷ ︸
≥0 !

− 1
2a(u, u) .

Obviously, v = u yields a global minimizer.

Concretely, if the potential u is fixed to agree with a function g : Γ∗ → R on a part ΓD (“Dirichlet part”) of
the boundary ∂Ω, it can be obtained as the solution of the following linear variational problem.✛

✚

✘

✙
u ∈ H1(Ω),

u|ΓD
= g

:
∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀ v ∈ H1(Ω),

v|ΓD
= 0

. (1.1.5.5)

1.1.6 Boundary Value Problems

In [NumPDE Section 1.5] we learned that, under some assumptions on the smoothness of solutions, linear
variational problems like (1.1.5.5) can be recast as boundary value problems for second-order linear partial
differential equations in strong form. The main tool is Green’s first formula that we recall from [NumPDE
Thm. 1.5.2.7].

Theorem 1.1.6.1. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (1.1.6.2)

The divergence of a vector field v(x) = [v1(x), . . . , vd(x)] is

div v(x) =
∂v1

∂x1
+ · · ·+ ∂vd

∂xd
.

As in [NumPDE Ex. 1.5.3.11] the derivation of the boundary value problem induced by (1.1.5.5) proceeds
in two steps. Throughout we assume that u ∈ C2(Ω) so that all manipulations are possible. The source
charge distribution must have compact support in R3.

➊ In (1.1.5.5) test with v ∈ C∞
0 (Ω) =̂ smooth functions with compact support, vanishing on ∂Ω

∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞

0 (Ω)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 24

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

⇓ ← by Thm. 1.1.6.1, v|∂Ω = 0!

−
∫

Ω
div(ǫ(x) grad u(x)) v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞

0 (Ω)

⇓ ← density of smooth functions in L2(Ω)

−div(ǫ(x) grad u(x)) = ρ in Ω . (1.1.6.3)

➋ In (1.1.5.5) test with v ∈ C∞(Ω) with bounded support in R3, vanishing on ΓD

∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞(Ω)

⇓ ← by Thm. 1.1.6.1
∫

Ω
−div(ǫ(x) grad u(x))︸ ︷︷ ︸

=ρ(x) by (1.1.6.3)

v(x)dx +
∫

∂Ω
ǫ(x) grad u · n v(x)dS(x)

=
∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞(Ω)

⇓ ← use (1.1.6.3)
∫

∂Ω
ǫ(x) grad u · n v(x)dS(x) = 0 ∀v ∈ C∞(Ω), v|ΓD

= 0

⇓← density of smooth functions

ǫ(x) grad u · n = 0 on ΓN := ∂Ω \ ΓD . (1.1.6.4)

In fact, the boundary conditions on ΓN agree with the symmetry boundary conditions derived in § 1.1.3.10.

Summing up, the strong form of the boundary value problem related to (1.1.5.5) is

−div(ǫ(x) grad u(x)) = ρ in Ω , (1.1.6.5a)

u = g on ΓD (1.1.6.5b)

ǫ(x) grad u · n = 0 on ΓN . (1.1.6.5c)

The boundary conditions (1.1.6.5b), which generalize the PEC boundary conditions from § 1.1.3.8, are
Dirichlet boundary conditions, whereas (1.1.6.5c) is called (homogeneous) Neumann boundary conditions
[NumPDE Section 1.9].

Remark 1.1.6.6 (Gauss’ law) The partial differential equation −div(ǫ(x) grad u(x)) = ρ is known as
Gauss’ law. It holds beyond the stationary setting in electrodynamics (assuming a “suitable” definition of
charge).

The field D(x) := −ǫ(x) grad u(x) is known as displacement current in electrodynamics (physical units
[D] = 1 As

m2).

As a consequence of Gauss’ law and Gauss’ theorem, which is Green’s first formula (1.1.6.2) with v ≡ 1,
we get

∫

∂D
ǫ(x) grad u(x) · n(x)dS(x) = −

∫

D
ρ(x)dx (1.1.6.7)

for all “control volumes” D ⊂ Ω. y

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 25

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 1.1.6.8 (Electrostatics in homogeneous isotropic media) Homogeneous isotropic media fea-
ture a dielectric tensor that is a constant multiple of the identity matrix ǫ(x) = ǫI for some constant ǫ > 0.
In this case by scaling (→ Rem. 1.1.1.7) we can always obtain the non-dimensional Poisson equation from
(1.1.6.3):

−∆u = ρ , (1.1.6.9)

with the Laplace operator

∆ = div ◦ grad =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

y

§1.1.6.10 (Transmission conditions) From Gauss law we conclude that

div D = div(−ǫ grad u) ∈ L2(Ω) .

Fig. 7

Σ

Ωr

Ωl

n+

n−

D

Let Ω be partitioned Ω = Ωl ∪ Σ ∪Ωr with piecewise smooth
interface Σ, see figure (✁) for cross-section.

Assume that both ǫ and u are smooth both in Ωl and Ωr. Ap-
ply Gauss’ theorem (1.1.6.7) in a small flat cylindrical box with
“bottom” and “top” face locally aligned with Σ.

Let the height and width of the box tend to zero so that it shrinks
to a point x ∈ Σ. There we find

(
ǫ grad u|Ωr(x)− ǫ grad u|Ωl(x)

)
· n−(x) = σ(x) ,

(1.1.6.11)

where σ : Σ→ R is a surface charge, that is, a layer of charge
concentrated on Σ (which does not exist in L2(Ω), however).

Continuity of displacement current

If ρ ∈ L2(Ω) and u solves (1.1.6.5a) and is piecewise smooth, then the normal component of
D := −ǫ grad u is continuous across any interface.

Note that surface charges cannot belong to L2(Ω), because functions in L2(Ω) cannot be restricted to
some surface, cf. [NumPDE Ex. 1.3.2.5]. y

§1.1.6.13 (Electrostatics in two dimensions)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 26

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 8

Ω̃

x3
x2

x1

We say that a situation possesses translational symmetry, when
✦ there is a Cartesian coordinate system with coordinates

(x1, x2, x3) such that no quantity depends on the x3-
coordinate,

✦ and it is posed on a cylindrical spatial domain of the ten-
sor product form Ω = Ω̃×R, Ω̃ ⊂ R2

Then, (1.1.6.5) becomes a boundary value problem for ũ(x1, x2) = u(x1, x2, 0) on Ω̃:

−div(ǫ̃ grad ũ) = ρ in Ω̃ , ũ = g̃ on Γ̃D , ǫ̃ grad ũ · ñ = 0 on Γ̃N , (1.1.6.14)

where, for instance, ǫ̃(x1, x2) = (ǫ(x1, x2, 0))1:2,1:2, grad ũ = [∂ũ
∂x1

, ∂ũ
∂x2

]⊤.

Thus, we naturally arrive at a scalar elliptic boundary value problem in two dimensions. y

1.1.7 Decay conditions on unbounded domains

We are concerned with the electrostatic linear variational problem

u ∈ H1(Ω),

u|ΓD
= g

:
∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀ v ∈ H1(Ω),

v|ΓD
= 0

. (1.1.5.5)

posed on the complement Ω of a bounded domain. We face a so-called exterior BVP. We also assume
that ρ(x) = 0 and ǫ(x) = I for ‖x‖ ≥ R and some R≫ 1.

Far away from ∂Ω and supp ρ we expect the electric field to be “radial”:

E(x) = E(‖x‖)x/‖x‖ with E : R+ → R for ‖x‖ → ∞ .

✎ Notation: Br(x) =̂ ball with center x and radius r > 0.

By Gauss’ law and theorem

4πr2E(r) =
∫

∂Br(0)
E(x) · x/‖x‖dS(x) =

∫

Br(0)
ρ(x)dx = const for r → ∞ ,

E(r) = O(r−2) for r → ∞ .

For large ‖x‖ we also expect u(x) = µ(‖x‖), which means grad u(x) = µ′(‖x‖)x/‖x‖. Thus, from the
aymptotic behavior of E we conclude

|µ(r)| ≈
∣∣∣∣
∫ r

0
E(s)ds

∣∣∣∣ ≤ O(r−1) for r → ∞ ,

|u(x)| = O(‖x‖−1) and ‖grad u(x)‖ = O(‖x‖−2) for ‖x‖ → ∞ . (1.1.7.1)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 27

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

These decay conditions have to be imposed as “boundary conditions at ∞” for the exterior boundary value
problems of 3D electrostatics.

Note that a smooth potential decaying according to (1.1.7.1) belongs to H1(Ω) as defined in (1.1.2.18).
To see this transform the integrals to polar coordinates (→ [NumPDE ??]).

Remark 1.1.7.2 (Necessity of decay conditions) Considering Ω = R3 it is clear that without imposing
decay conditions we cannot expect a unique solution of −∆u = ρ, because we could always add an
unbounded harmonic function like x 7→ x2

1 − x2
2 to u and would get a different solution. y

§1.1.7.3 (Decay conditions in 2D electrostatics)

Fig. 9

0

ρ

x3
x2

x1

We consider an x3-translation-invariant setting in whole space
R3 as in § 1.1.6.13 with a cylindrical source charge distribution
ρ(x) = ρ̃(x1, x2), ρ̃ compactly supported in the x1 − x2 plane
and infinitely extended in x3-direction. ✄

Thought experiment: To compute the electric field in x :=
[x1, x2, 0]⊤ we chop up ρ into many slices and obtain E(x)
by linear superposition of the fields generated by the individual
“charge slices”.

Then send x2
1 + x2

2 → ∞ and take into account the decay con-
dition (1.1.7.1) for the electric field: the field Eξ caused by the
“charge slice” at x3 = ξ ∈ R will behave like

∥∥Eξ(x1, x2, 0)
∥∥ = O((x2

1 + x2
2 + ξ2)−1)

for x1, x2, ξ → ∞ separately .

Now, letting the thickness of the slices tend to zero, summation can be replaced with integration (“Riemann
summation”, see [NumPDE ??]). Writing x̃ := [x1, x2]

⊤ we get with some constant C > 0

‖E(x1, x2, 0)‖ ≤ C
∫ ∞

−∞

1

‖x̃‖2 + ξ2
dξ =

C

‖x̃‖2

∫ ∞

−∞

1

1 + (ξ/‖x̃‖)2
dξ =

C

‖x̃‖
∫ ∞

−∞

1

1 + ζ2
dζ =

Cπ

2‖x̃‖ .

For ‖x̃‖ → ∞ we can again expect a merely radial dependence of the electric field and scalar potential

E(x1, x2, 0) = Ẽ(‖x̃‖) 1

‖x̃‖

[
x1

x2

]
, u(x1, x2, 0) = µ(‖x̃‖) .

By integrating the electric field in radial direction

|µ(r)| ≤ C
∫ r

1

1

s
ds = O(log r) for r → ∞ ,

|ũ(x̃)| = O(log‖x̃‖) ,
∥∥∥Ẽ(x̃)

∥∥∥ = O(‖x̃‖−1) for ‖x̃‖ → ∞ . (1.1.7.4)

y

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 28

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.1.8 Supplement: An energy norm for source charge distributions

In Rem. 1.1.4.4 we have seen that ρ ∈ L2(Ω) makes ρ : Ω→ R a valid source charge distribution on the
domain Ω ⊂ R3. Is L2(Ω) the largest space of possible source charge distributions? In this section we
will identify an even larger space of admissible source charge distributions by introducing a suitable norm
on them.

Definition 1.1.8.1. Dual norm for source charge distributions

For ρ ∈ L2(Ω) let ρ̃ ∈ L2(R3) be its extension by zero to R3 and define

‖ρ‖H̃−1(Ω) := |u|H1(R3) where u solves

{
−∆u = ρ̃ in R3 ,

u satisfies decay conditions (1.1.7.1) .
(1.1.8.2)

The completion of L2(Ω) w.r.t. ‖·‖H̃−1(Ω) yields the Hilbert space H̃−1(Ω).

The norm ‖ρ‖H̃−1(Ω) can be read as the energy of the electric field on R3 engendered by the source

charge distribution ρ (after extension by zero).

The solution u of the “exterior” boundary value problem in (1.1.8.2) can be obtained as the solution of the
linear variational problem

u ∈ H1(R3):
∫

R3
grad u(x) · grad v(x)dx =

∫

R3
ρ̃(x) v(x)dx ∀v ∈ H1(R3) . (1.1.8.3)

Remember that H1(R3) is defined through a weighted L2-norm in (1.1.2.18).

§1.1.8.4 (An embedding of L2(Ω)) From [SS10, Prop. 2.10.8] we learn that

∫

R3

|v(x)|2
1 + ‖x‖2

dx ≤ 4
∫

R3
‖grad v(x)‖2 dx ∀v ∈ H1(R3) . (1.1.8.5)

Thus, setting v = u in (1.1.8.3), we obtain for ρ̃ ∈ L2(Ω) that

‖ρ‖2
H̃−1(Ω)

≤ ‖grad u‖2
L2(R3) ≤ ‖ρ̃‖L2(R3)‖u‖L2(R3) ≤ 4

√
1 + R2 ‖ρ‖L2(Ω)‖grad u‖L2(R3) ,

‖ρ‖H̃−1(Ω) ≤ 4 ‖ρ‖L2(Ω) .

Thus ‖·‖H̃−1(Ω) is a weaker norm than ‖·‖L2(Ω) and H̃−1(Ω) is a larger space than L2(Ω). y

§1.1.8.6 (Duality of H1(Ω) and H̃−1(Ω)) Owing to (1.1.8.3) we can also characterize the space
H̃−1(Ω) and the norm ‖·‖H̃−1(Ω) in an equivalent way

H̃−1(Ω) := {ρ : Ω→ R :

∣∣∣∣
∫

Ω
ρ(x) u(x)dx

∣∣∣∣ < ∞ for all finite-energy potentials u} , (1.1.8.7)

‖ρ‖H̃−1(Ω) = sup
u∈H1(Ω)

∫
Ω

ρ(x) u(x)dx

‖u‖H1(Ω)

, ρ ∈ H̃−1(Ω) . (1.1.8.8)

duality means that the same characterization applies to H1(Ω) and ‖·‖H1(Ω) in a reciprocal fashion:

H1(Ω) := {u ∈ L2(Ω) :

∣∣∣∣
∫

Ω
ρ(x) u(x)dx

∣∣∣∣ < ∞ ∀ρ ∈ H̃−1(Ω)} , (1.1.8.9)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 29

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

‖u‖H1(Ω) = sup
ρ∈H̃−1(Ω)

∫
Ω

ρ(x) u(x)dx

‖ρ‖H̃−1(Ω)

, u ∈ H1(Ω) . (1.1.8.10)

y

1.2 Boundary Representation Formulas

The focus will be on electrostatic problems in homogeneous isotropic dielectric media so that, after rescal-
ing, we face boundary value problems (BVPs) for the Laplacian −∆ in 2D (→ § 1.1.6.13) and 3D, as
explained in Rem. 1.1.6.8.

Most considerations apply to more general linear scalar second-order partial differential operators in di-
vergence form in d ∈ N dimensions and and with constant coefficients

Lu := −div(A grad u) + cu ,
A ∈ Rd,d symmetric positive definite (s.p.d.) ,
c ∈ R .

(1.2.0.1)

1.2.1 Green’s Formulas

Recall Green’s first formula on Ω ⊂ Rdfrom Thm. 1.1.6.1: for a vector field j ∈ (C1
pw(Ω))d and a function

v ∈ C1
pw(Ω),

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (1.1.6.2)

We may set j := grad u for u ∈ C2(Ω) and obtain from ∆ = div grad

∫

Ω
grad u · grad v dx = −

∫

Ω
∆u v dx +

∫

∂Ω
grad u · n v dS . (1.2.1.1)

Applying Green’s first formula to the first integral in (1.2.1.1) yields Green’s second formula [SS10,
Thm. 2.7.4]

Theorem 1.2.1.2. Green’s second formula

For u, v ∈ C2(Ω) holds

∫

Ω
u ∆v− v∆u dx =

∫

∂Ω
u grad v · n− v grad u · n dS(x) . (1.2.1.3)

These formulas are valid on any bounded Lipschitz domain Ω ⊂ Rd. If Ω is an exterior domain, a
sufficiently fast decay of all functions for ‖x‖ → ∞ has to be assumed.

Since ultimately we are interested in discretization, we restrict our shapes to “engineering geometries” that
can be described (in the context of a Bezier or NURBS model) by a few parameter.

§1.2.1.4 (2D: Curved Lipschitz polygons [NumPDE § 1.2.1.14]) Now we examine a relevant class of
planar domains in computational engineering known as curved Lipschitz polygons:

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 30

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Assumption 1.2.1.5.

The boundary Γ of Ω can be partitioned into
finitely many open edges Γ1, . . . , ΓM, M ∈ N,
such that

✦ Γ = Γ1 ∪ · · · ∪ ΓM,
✦ Γi ∩ Γi = ∅ for i 6= j,
✦ for every j ∈ {1, . . . , M} there is a C2-

function γj : [−1, 1] → Γj ⊂ R2 with
d
dt γ 6= 0 (a smooth parameterization).

We can distinguish corners (•) and edges (—) of Γ✄
Fig. 10

Ω
−1 1

γ1

Γ1

y

§1.2.1.6 (Curvilinear Lipschitz polyhedra) Eligible 3D domains Ω ⊂ R3:

Fig. 11

Assumption 1.2.1.7.

The boundary Γ of Ω is Lipschitz and can be partitioned
into finitely many open faces Γ1, . . . , ΓM, M ∈ N, such
that

✦ Γ = Γ1 ∪ · · · ∪ ΓM,
✦ Γi ∩ Γi = ∅ for i 6= j,
✦ for every j ∈ {1, . . . , M} there is an open planar

polygon Πj ⊂ R2 and a bijective C2-function γj :

Πj → Γj ⊂ R3 (a smooth parameterization).

✁ Sphere composed of patches parameterized over squares
(forums.tigsource.com)

y

§1.2.1.8 (Curve and surface integrals) The formulas (1.2.1), (1.2.1.1), (1.2.1.3) involve integrals of
scalar integrands over Γ := ∂Ω. Calculus supplies the following formulas:

• 2D (d = 2): Under Ass. 1.2.1.5 with the notations from there and for a piecewise continuous f :
Γ→ R holds

∫

Γ
f (x)dS(x) =

M

∑
j=1

1∫

−1

f (γj(t))
∥∥∥γ̇j(t)

∥∥∥dt , γ̇j(t) :=
dγj

dt
(t) ∈ R2 , (1.2.1.9)

where ‖·‖ designates the Euclidean norm of a vector.

• 3D (d = 3): With Ass. 1.2.1.7 and its notations and f : Γ → R integrable we have [Str09,
Rem. 8.6.1]

∫

Γ
f (x)dS(x) = ∑

M

j=1

∫

Πj

f (γj(x̂)) gj(x̂)dx̂ , gj(x̂) :=

det

(
Dγ⊤j (x̂)Dγj(x̂)

)

︸ ︷︷ ︸
∈R2,2

1/2

.

(1.2.1.10)

The Jacobians Dγj map Πj 7→ R3.2 and the function gj is the Gram determinant of γj.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 31

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

1.2.2 Fundamental Solutions

1.2.2.1 Potential of a Point Charge

We consider electrostatic in a homogeneous, isotropic, dielectric medium, that is, we assume ǫ ≡ 1
after scaling, recall Rem. 1.1.6.8. Then the repulsive Coulomb force acting between two unit charges (in
rescaled units) located at x, y ∈ R3 is

f =
1

4π

y− x

‖y− x‖3
. (1.2.2.1)

Recalling the link between Coulomb force on a point charge and the electric field expressed in (1.1.2.1),
we conclude that

Ex(y) :=
1

4π

y− x

‖y− x‖3
, y 6= x , (1.2.2.2)

describes is the electric field engendered by a unit charge at x. Now we are looking for the associated
electric scalar potential (→ § 1.1.2.7), denoted by y 7→ Gx(y) and satisfying grad Gx = −Ex(y).

✎ Notation: We write LyF(x, y) to indicated that the differential operator L “acts on y” and x is treated as
a mere parameter; generalizes the concept of a partial derivative.

Gradients of functions depending on ‖x‖ are aligned with the radial direction:

grad{x 7→ ‖x‖} = x

‖x‖ ⇒ grad{x 7→ 1

‖x‖} = −
1

‖x‖2
· x

‖x‖ ,

which reveals that Ex can be expressed as a gradient:

Ex(y) =
1

4π

1

‖y− x‖2

y− x

‖y− x‖ = − grady

{ 1

4π

1

‖y− x‖
}

.

Potential due to a point charge

A point charge at x ∈ R3 generates the potential

y 7→ Gx(y) :=
1

4π

1

‖x− y‖ , y 6= x (1.2.2.4)

Remark 1.2.2.5 (Properties of the potential due to a point charge) From (1.2.2.4) we read off that the
potential Gx x ∈ R3,

✦ is a function of the the distance ‖x− y‖ only,

✦ is smooth away from x: Gx ∈ C∞(R3 \ {x}),
✦ is harmonic: ∆Gx(y) = 0 for all y ∈ R3 \ {x},
✦ satisfies the decay conditions (1.1.7.1)

|Gx(y)| = O(‖y‖−1) , ‖grad Gx(y)‖ = O(‖y‖−2) for ‖y‖ → ∞ , (1.2.2.6)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 32

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ has a singularity at x

|Gx(y)| = O(‖y− x‖−1) , ‖grad Gx(y)‖ = O(‖x− y‖−2) for y→ x , (1.2.2.7)

✦ and, owing to the singularity in x, Gx 6∈ H1(R3) (→ (1.1.2.18)): the field generated by a point
charge fails to have finite energy, “point charge” is a non-physical concept (of great usefulness for
formal considerations, however).

y

1.2.2.2 Potential of a Line Charge

Fig. 12

x3
x2

x1
x̃

We adopt the x3-translation invariant setting under-
lying 2D electrostatics, see § 1.1.6.13: a 2D point
charge becomes a 3D infinite line charge concen-

trated on {x ∈ R3 :
[

x1
x2

]
= x̃}, x̃ ∈ R2

By linear superposition in 3D we determine the elec-
tric field Ẽx̃(x1, x2) ∈ R2 of the line charge in the
x1 − x2-plane.

By symmetry arguments (∗)and suitable substitutions, we compute

Ex̃(ỹ) =
1

4π

∞∫

−∞

[
ỹ
0

]
−
[

x̃
ζ

]

(
‖x̃− ỹ‖2 + ζ2

)3/2
dζ

(∗)
=

1

4π

[
ỹ− x̃

0

] ∞∫

−∞

1
(
‖x̃− ỹ‖2 + ζ2

)3/2
dζ

=
1

4π

[
ỹ− x̃

0

]
1

‖x̃− ỹ‖2

∞∫

−∞

1

(1 + ξ2)
3/2

dξ =
1

2π

[
ỹ−x̃

‖x̃−ỹ‖2

0

]
.

As expected there is no x3-component and we have found

Ẽx̃(ỹ) =
1

2π

ỹ− x̃

‖x̃− ỹ‖2
= − gradỹ

{
− 1

2π
log‖x̃− ỹ‖

}
, ỹ ∈ R2 \ {x̃} . (1.2.2.8)

Thus we have also identified the associated 2D potential.

Potential of a point charge in 2D

the scalar potential of a point charge at x̃ ∈ R2 is

Gx̃(ỹ) := − 1

2π
log‖x̃− ỹ‖ , ỹ ∈ R2 \ {x̃} . (1.2.2.10)

Remark 1.2.2.11 (Properties of the potential of a point charge in 2D) This echos Rem. 1.2.2.11. The
potential Gx̃ is a smooth harmonic function for y 6= x and

✦ satisfies the decay conditions (1.1.7.4)

|Gx̃(ỹ)| = O(log‖ỹ‖) , ‖grad Gx̃(ỹ)‖ = O(‖ỹ‖−1) for ‖ỹ‖ → ∞ , (1.2.2.12)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 33

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ Gx̃ has a logarithmic singularity at x̃

|Gx̃(ỹ)| = O(log‖ỹ− x̃‖) , ‖grad Gx̃(ỹ)‖ = O(‖x̃− ỹ‖−1) for ỹ→ x̃ , (1.2.2.13)

✦ and the energy of the electric field of a 2D point charge is not bounded: Gx̃ 6∈ H1(R3).

y

1.2.2.3 Distributional View: LG = δ0

✎ Notation: For the potentials (1.2.2.4), (1.2.2.10) caused by point charges at x ∈ Rd, d = 2, 3, we now
indiscriminately write G∆(x, y) to emphasize the symmetric roles of both arguments.

In both 2D and 3D
∫

Rd
|G∆(x, y)|dy < ∞ ∀x ∈ Rd ,

so that all the integrals below exist as improper integrals [Str09, Sect. 6.4]. For x ∈ Rd and a smooth
compactly supported function w ∈ C∞

0 (Rd) we find by ∆yG∆(x, y) = 0 for x 6= y and Green’s second
formula from Thm. 1.2.1.2,

∫

Ω
grad u · grad v dx = −

∫

Ω
∆u v dx +

∫

∂Ω
grad u · n v dS , (1.2.1.1)

with v← w and u← {y 7→ G∆(x, y)} that
∫

R3
G∆(x, y)(−∆w)(y)dy = lim

ǫ→0

∫

‖y‖>ǫ
G∆(x, y)(−∆w)(y)dy

= lim
ǫ→0

∫

‖y‖>ǫ
✘
✘

✘
✘
✘
✘

✘
✘✘✿

0
(−∆yG∆)(x, y)w(y)dy−

lim
ǫ→0

∫

‖y‖=ǫ

G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)w(y)dS(y) .

Fig. 13

n

x

y

ǫ

Next, we examine the limit of the surface integral for
d = 3:

In the case d = 3 we have concrete formulas at our
disposal. For y ∈ ∂Bǫ(x) we find

n(y) = ǫ−1(x− y) ,

G∆(x, y) =
1

4π‖x− y‖ =
1

4πǫ
,

grady G∆(x, y) =
1

4π

x− y

‖x− y‖3
=

x− y

4πǫ3
.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 34

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We plug this into the surface integral over the ǫ-sphere:

∫

R3
G∆(x, y)(−∆w)(y)dy = lim

ǫ→0

∫

‖y‖=ǫ

− 1

4πǫ
grad w(y) · n(y) + 1

4πǫ2
w(y)dS(y) .

Since w ∈ C∞
0 (R3) is smooth and the area of the sphere shrinks like O(ǫ2) for ǫ→ 0, the contribution of

the first term vanishes in the limit.
∫

R3
G∆(x, y)(−∆w)(y)dy = lim

ǫ→0

∫

‖y‖=ǫ

1

4πǫ2
w(y)dS(y) = w(x) . (1.2.2.14)

The same result holds for d = 2.

Definition 1.2.2.15. Fundamental solution

A function GL : Rd × Rd → R is a fundamental solution (FS) for a second-order scalar linear
differential operator L, if

(i) GL is C∞-smooth on {(x, y)Rd ×Rd : x 6= y},
(ii) for all x ∈ Rd: LyGL(x, y) = 0 on Rd \ {x}
(iii) y 7→ GL(x, y) satisfies the appropriate decay conditions (1.1.7.1)/(1.1.7.4),
(iv) y 7→ GL(x, y) is integrable on Rd,
(v) for every x ∈ Rd, w ∈ C∞

0 (Rd)

∫

Rd
GL(x, y)(L∗w)(y)dy = w(x) . (1.2.2.16)

Here L∗ is the (formal) adjoint differential operator of L defined by
∫

Ω
(Lw)(x) v(x)dx =

∫

Ω
w(x) (L∗v)(x)dx ∀w, v ∈ C∞

0 (Rd) . (1.2.2.17)

For all differential operators of the form Lu := −div(A grad u) + cu with A = A⊤ ∈ Rd,d, c ∈ R, in
particular L = −∆, we easily see from Green’s formulas that L∗ = L.

Remark 1.2.2.18 (“LyGL = δx”) “Testing equalities with smooth functions” is the idea underlying the

calculus of distributions [RR04, Ch. 5]. Sloppily speaking, a distribution is a linear functional on C∞
0 (Rd),

continuous in a particular topology. In distributional calculus we can concisely rephrase

∫
Rd GL(x, y)(L∗w)(y)dy = w(x) ∀w, x ⇐⇒ LyGL(x, y) = δx in D(Rd)′ ∀x ∈ Rd ,

where δx is the so-called δ-distribution supported in x ∈ Rd, that is, the point-evaluation functional:

∀w ∈ C∞
0 (Rd), x ∈ Rd:

∫

Rd
δx(y)w(y)dy = w(x) . (1.2.2.19)

✎ Notation: If an equation is supposed to hold in distributional sense, one often writes “in D(Ω)′”.

y

A mathematical discussion of fundamental solutions can be found in [McL00, pp. 191-197]. Existence and
uniqueness are discussed there.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 35

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 1.2.2.20. Uniqueness of fundamental solutions

Fundamental solutions according to Def. 1.2.2.15 for differential operators (1.2.0.1) are unique.

§1.2.2.21 (Symmetries of fundamental solutions) If a differential operator L

• is symmetric in the sense that L = L∗, then GL(x, y) = GL(y, x) for all x, y ∈ Rd, x 6= y.

• has constant coefficients (L is translation-invariant in this case), then its fundamental solution de-
pends only on x− y: GL(x, y) = GL(x− y), x 6= y.

• has constant coefficients and is rotation-invariant, then GL(x, y) = GL(‖x− y‖).
Above, “abusing notations”, we used the same symbol GL for different functions.

Definition 1.2.2.22. Rotation invariance

An operator D : C∞(Rd)→ C∞(Rd) is rotation-invariant, if it “commutes with rotations”

(Dw)(Qx) = (D{x 7→ w(Qx)})(x) ∀w ∈ C∞(Rd) , (1.2.2.23)

and for all orthogonal matrices Q ∈ Rd,d.

y

EXAMPLE 1.2.2.24 (Computing G∆ in 3D) The rules from § 1.2.2.21 pave the way for easy computation
of fundamental solutions for rotionally symmetric differential operators with constant coefficients by means
of separation of variables.

We demonstrate the computation of the fundamental solution G∆ for the Laplacian L := −∆ in 3D using
spherical coordinates

x1

x2

x3

 =

r cos φ sin θ
r sin φ sin θ

r cos θ

 , r ≥ 0, 0 ≤ φ < 2π, 0 ≤ θ < π . (1.2.2.25)

Also recall the formula for the Laplacian in spherical coordinates

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2 θ

∂2u

∂φ2
+

1

r2

∂2u

∂θ2
+

1

r2
cot θ

∂u

∂θ
. (1.2.2.26)

The Laplacian −∆ is the most prominent example of a linear differential operator that is both translation-
and rotation-invariant. Thius, from § 1.2.2.21 we know that G∆(x, y) = G∆(‖x− y‖). So we can set
G∆(x, y) = f (‖x− y‖) and the requirement ∆yG∆(x, y) = 0 leads to the linear second-order ordinary
differential equation

∂2 f

∂r2
+

2

r

∂ f

∂r
= f ′′(r) +

2

r
f ′(r) = 0 .

It has the family of solutions

f (r) = A + Br−1 r 6= 0 , A, B ∈ R .

By the decay conditions for fundamental solutions we know that f (r) = O(r−1) for r → ∞ has to be
satisfied, which entails A = 0. The constant B must be chosen to satisfy (1.2.2.16). Eventually,

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 36

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

we recover the potential (1.2.2.4) of a point charge as fundamental solution.

y

EXAMPLE 1.2.2.27 (Fundamental solution for 2nd-order partial differential operator) We consider
the symmetric second-order scalar differential operator

Lu = −div(A grad u) , A = A⊤ ∈ Rd s.p.d. . (1.2.2.28)

Its associate fundamental solution GL will be symmetic and of the form GL(x, y) = GL(x− y), and must
fulfill

∫

Rd
GL(x− y)(Lw)(y)dy = w(x) ∀w ∈ C∞

0 (Rd), x ∈ Rd . (1.2.2.29)

Idea: Try to express GL in terms of the fundamental solution for −∆.

To begin with recall the formulas

div j = Tr(Dj) for j : Rd → Rd , (1.2.2.30a)

∆w = Tr(D grad w︸ ︷︷ ︸
Hessian of w

) for w : Rd → R , (1.2.2.30b)

where Tr : Rd,d → R is the trace operator for matrices,

Tr M =
d

∑
j=1

(M)j,j for M ∈ Cd,d , (1.2.2.31)

that satisfies Tr(XY) = Tr(YX).

We decompose A = CC⊤, which can be achieved by means of a Cholesky-decomposition [NumCSE
§ 2.8.0.13]. For a function f : Rd → R we define its pullback under the linear mapping induced by C
according to

f̂ (ŷ) := f (Cŷ) ŷ ∈ Rd .

Using the chain rule and (1.2.2.30b), we obtain for x ∈ Rd

∆û(x) = Tr(D grad{x 7→ u(Cx)}) = TrD{x 7→ C⊤(grad u)(Cx)}
= Tr

(
C⊤(D grad u)(Cx)C

)
= Tr

(
CC⊤(D grad u)(Cx)

)
= Tr

(
D(CC⊤ grad u)

)
(Cx)

= (div(CC⊤ grad u))(Cx) = (div(A grad u))(Cx) = (Lu)(Cx) .

We plug this identity into (1.2.2.29) and use the transformation formula for multi-dimensional integrals with
ŷ = C−1y.

ŵ(x̂) = w(Cx̂) =
∫

Rd
GL(Cx̂− y)(Lw)(y)dy

=
∫

Rd
GL(Cx̂− Cŷ)(Lw)(Cŷ) |det C|dŷ

=
∫

Rd

√
det A GL(C(x̂− ŷ))︸ ︷︷ ︸

=G∆(x,y)

(−∆ŵ)(ŷ)dŷ ,

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 37

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for any w ∈ C∞
0 (Rd). By the uniqueness of the fundamental solution we conclude

GL(x, y) =
1√

det A
G∆(C−1(x− y)) , x 6= y , (1.2.2.32)

where G∆ is the fundamental solution for −∆

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 .
(1.2.2.33)

Eventually, as
∥∥∥C−1(x− y)

∥∥∥
2
= (x− y)⊤C−⊤C−1(x− y) = (x− y)⊤A−1(x− y) ,

we get

GL(x, y) =
1√

det A
·

− 1

2π log
√
(x− y)⊤A−1(x− y) , if d = 2 ,

1

4π

1√
(x− y)A−1(x− y)

, if d = 3 .
(1.2.2.34)

y

1.2.3 Volume Potential Representation

We return to L = −∆ (electrostatics in a homogeneous, isotropic medium with ǫ = I), where we have the
fundamental solutions

G∆(x, y) = G∆(x− y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 .
(1.2.2.33)

Since ∆∗ = ∆, by the very property
∫

Rd
G∆(x, y)(−∆w)(y)dy = w(x) ∀x ∈ Rd, ∀w ∈ C∞

0 (Rd) , (1.2.2.16)

of the fundamental solution, we conclude that for every smooth compactly supported source charge dis-
tribution ρ ∈ C∞

0 (Rd), if u solves

−∆u = ρ in Rd , u satisfies decay conditions for ‖x‖ → ∞,

then we have the volume potential representation

u(x) =
∫

Rd G∆(x, y)ρ(y)dy , x ∈ R3 . (1.2.3.1)

The operator on the right-hand side (rhs) of (1.2.3.1) is a volume integral operator with kernel G∆. Is has
been given a special name:

Definition 1.2.3.2. Newton potential

The linear operator

N∆ :

{
C∞

0 (Rd) → C∞
0 (Rd)

ρ 7→
∫

Rd G∆(x− y)ρ(y)dy
(1.2.3.3)

is the Newton potential for −∆.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 38

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Supplement 1.2.3.4. The Newton potential on Rd is a volume integral operator of convolution type.

Definition 1.2.3.5. Convolution of functions in Rd

The convolution of two functions f , g ∈ L1(Rd) is the function

(f ∗g)(x) :=
∫

Rd
f (x− y)g(y)dy =

∫

Rd
f (y)g(x− y)dy .

Using this notation, obviously,

N∆(ρ) = G∆ ∗ ρ , (1.2.3.6)

becausem by the structure of the fundamental solution,
∫

Rd
G∆(x, y)ρ(y)dy =

∫

Rd
G∆(x− y)ρ(y)dy =

∫

Rd
G∆(y)ρ(x− y)dy .

This last expression also reveals that for ρ ∈ C∞
0 (Rd) also u ∈ C∞(Rd), since y 7→ G∆(y) is integrable

on Rd.
y

Theorem 1.2.3.7. Decay of Newton potential

For compactly supported ρ the function N∆(ρ) complies with the decay conditions (1.1.7.1),

|N∆(ρ)(x)| = O(‖x‖−1) and ‖gradN∆(ρ)‖ = O(‖x‖−2) for ‖x‖ → ∞ ,

for d = 3 and (1.1.7.4)

|N∆(ρ)(x)| = O(log‖x‖) , ‖gradN∆(ρ)(x)‖ = O(‖x‖−1) for ‖x‖ → ∞ ,

for d = 2, respectively.

We can immediately conclude this from the decay properties of the fundamental solutions. The next
assertion is clear from the definition of the norm of H̃−1(Rd) given in Def. 1.1.8.1.

Corollary 1.2.3.8. Mapping properties of the Newton potential

The Newton potential N∆ as defined in (1.2.3.3) can be extended to a continuous mapping

H̃−1(Rd)→ H1(Rd) (→ 1.1.8).

The relationship (1.2.3.1) tells us that the Newton potential provides a solution operator for the Poisson
problem −∆u = ρ (+ decay conditions) in the whole space Rd.

∆(N∆ρ) = ρ ∀ρ ∈ H̃−1(Rd) . (1.2.3.9)

Remark 1.2.3.10 (The Newton potential from a physics perspective) We can imagine a source charge
distribution ρ as being composed of (infinitely) many small point charges:

ρ =
N

∑
j=1

qjδxj
, xj ∈ Rd, qj ∈ R .

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 39

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The potentials generated by all these point charges can be added up and yield the potential

u(x) =
N

∑
j=1

qjG
∆(x− xj) .

Sending N → ∞ and appealing to “intuitive Riemann integration” yields the Newton potential solution of
−∆u = ρ on Rd. y

1.2.4 Boundary Potential Representation

The manipulations in Section 1.2.2.3 that led to (1.2.2.14) and, in the sequel, to the volume potential
representation for solutions of −∆u = ρ on Rd,

u(x) =
∫

Rd
G∆(x, y)ρ(y)dy , x ∈ R3 , (1.2.3.1)

were carried out on the entire space. Now we move them to a bounded Lipschitz domain Ω ⊂ Rd,
d = 2, 3.

Pick x ∈ Ω and w ∈ C2(Ω). Appealing to Green’s second formula

∫

∂Ω
u ∆v− v∆u dx =

∫

∂Ω
u grad v · n− v grad u · n dS(x) . (1.2.1.3)

from Thm. 1.2.1.2 with u← w and v← G∆ we get

∫

Ω
G∆(x, y)(−∆w)dy = lim

ǫ→0

∫

‖y−x‖>ǫ
G∆(x, y)(−∆w)(y)dy

= − lim
ǫ→0

∫

‖y−x‖=ǫ

G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)w(y)dS(y)

−
∫

∂Ω
G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)w(y)dS(y)

= w(x)−
∫

∂Ω
G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)dS(y)w(y) ,

and, based on the same limit arguments that yielded (1.2.2.14), we arrive at:

w(x) =
∫

Ω
G∆(x, y)(−∆w)(y)dy +

∫

∂Ω
G∆(x, y) grad w(y) · n(y)dS(y)−

∫

∂Ω
grady G∆(x, y) · n(y)w(y)dS(y) , x ∈ Ω .

(1.2.4.1)

The derivation was carried out for −∆ for the sake of simplicity, but all arguments carry over to the
more general scalar linear differential operator Lu = −div(A grad u) + cu from (1.2.0.1), starting from
Green’s first formula with (1.1.6.2) with j := A grad u. Eventually this yields the following generalization
of (1.2.4.1) [SS10, Thm. 3.1.6].

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 40

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 1.2.4.2. Integral representation formula

A solution u ∈ C2(Ω) of Lu := −div(A grad u)− cu = ρ in Ω, A, c as in (1.2.0.1), satisfies

u(x) =
∫

Ω
GL(x, y)ρ(y)dy +

∫

∂Ω
GL(x, y)A grad u(y) · n(y)dS(y)−

∫

∂Ω
A grady GL(x, y) · n(y) u(y)dS(y) , x ∈ Ω ,

(1.2.4.3)

where GL is the fundamental solution for L, see Def. 1.2.2.15.

Note that the first term in (1.2.4.3) is the Newton potential from Def. 1.2.3.2.

Remark 1.2.4.4 (Integral representation formula for exterior domains)

Fig. 14

Ω

0

n
n

R

Again, we elaborate the arguments for the Laplacian
L = −∆.

If Ω is an exterior domain, that is, the open comple-
ment of a bounded Lipschitz domain, then we first
apply Thm. 1.2.4.2 to Ω̂ := Ω ∩ BR(0) with R > 0
large enough such that ∂Ω ⊂ BR(0), see Fig. 14.

Note that ∂Ω̂ = ∂Ω ∪ ∂BR(0), so that (1.2.4.1) becomes

w(x) =
∫

Ω̂
G∆(x, y)ρ(y)dy+

∫

∂Ω
G∆(x, y) grad w(y) · n(y)dS(y)−

∫

∂Ω
grady G∆(x, y) · n(y)w(y)dS(y)+

∫

‖x‖=R
G∆(x, y) grad w(y) · n(y)dS(y)−

∫

‖x‖=R
grady G∆(x, y) · n(y)w(y)dS(y) .

Consider d = 3 and assume that w satisfies the decay conditions (1.1.7.1):

|w(x)| = O(‖x‖−1) and ‖grad w(x)‖ = O(‖x‖−2) for ‖x‖ → ∞ .

In this case we have the following behavior of the integrands on ∂BR(0)

G∆(x, y) grad w(y) · n(y) = O(‖y‖−3) ,

grady G∆(x, y) · n(y)w(y) = O(‖y‖−3)
for ‖y‖ → ∞, ‖x‖ = R .

Hence, in the limit R→ ∞, the contributions of ∂BR(0) vanish.

Theorem 1.2.4.5. Integral representation formula for 3D exterior domains

If u ∈ C2(Ω) satisfies −∆u = ρ in an exterior domain Ω plus the decay conditions (1.1.7.1), then

for all x ∈ Ω

u(x) =
∫

Ω
G∆(x, y)ρ(y)dy +

∫

∂Ω
G∆(x, y) grad u(y) · n(y)dS(y)−

∫

∂Ω
grady G∆(x, y) · n(y) u(y)dS(y) ,

(1.2.4.6)

where G∆ is the fundamental solution for −∆, see (1.2.2.33).

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 41

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

For d = 2 a faster decay of u than stipulated by (1.1.7.4) has to be assumed in order to make (1.2.4.6)
hold. y

1.2.5 Layer Potentials

Now we take a closer look at the building blocks of the integral representation formulas (1.2.4.3)/(1.2.4.6),
in particular those terms mapping trace data (→ Notion 1.2.5.1) on the boundary ∂Ω back to the domain
Ω.

Notion 1.2.5.1. Trace operator

A trace operator is a linear mapping from a function space on the volume domain Ω to a function
space on (parts of) the boundary ∂Ω.

The simplest trace operator is the plain restriction C0(Ω) → C0(∂Ω). We have also seen the tangential
and normal component traces for vector fields in § 1.1.3.7.

Notion 1.2.5.2. (Layer) potentials

A (layer) potential is a linear mapping from a function space on ∂Ω into a function space on the
volume domain Ω.

Remark 1.2.5.3 (Layer potentials and traces)

Obviously, (Layer) potentials (→ Notion 1.2.5.2) and
trace operators (→ Notion 1.2.5.1) map into “oppo-
site directions”

The integral representation formulas (1.2.4.3) con-
tain two layer potentials acting on the traces

✦ u|∂Ω =̂ point-wise restriction of the potential u
to the boundary, and

✦ grad u · n|∂Ω the normal component trace of
the displacement current.

Next, we examine the two layer potentials more
closely.

Fig. 15

Ω

trace

potential

y

1.2.5.1 Single Layer Potential

The first layer potential occurring in (1.2.4.3), Thm. 1.2.4.2, involves the fundamental solution as kernel.
Here, we call kernel a function k : D1 × D2 → R that defines an integral operator of the form

f 7→ {x 7→
∫

D2

k(x, y) f (y)dy x ∈ D1} , (1.2.5.4)

mapping functions on D2 to functions on D1. In this an in the next section we restrict ourselves to the
differential operator −∆, but emphasize that all results carry over to operators L in general divergence
form (1.2.0.1).

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 42

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 1.2.5.5. Single layer potential

The single layer potential for the Laplacian −∆ on ∂Ω is the mapping

ϕ 7→ {x 7→ Ψ∆
SL(ϕ)(x) :=

∫

∂Ω
G∆(x, y)ϕ(y)dS(y), x 6∈ ∂Ω} (1.2.5.6)

We collect a few classical properties of ΨSL, see [Hac95, Sect. 8.1] for proofs using elementary calculus.

Theorem 1.2.5.7. Continuity of the single layer potential [Hac95, Sect. 8.1.2]

If ϕ ∈ L∞(∂Ω), then Ψ∆
SL ∈ C0(Rd).

Proof. We recall the asymptotic behavior

G∆(x, y) =

{
O(log‖x− y‖) , if d = 2 ,

O(‖x− y‖−1) , if d = 3 ,
for y→ x .

Note that x 7→ log |x| is integrable on [−1, 1] and x 7→ ‖x‖−1 on B1(0) ⊂ R2. By means of piecewise
smooth parameterizations we can reduce

∫
∂Ω
· · ·dS(y) to integrals over domains in Rd−1 and the type

of the singularities of the integrands will not change. Hence {y 7→ G∆(x, y)ϕ(y)} ∈ L1(∂Ω) with con-
tinuous dependence on x (as mapping Rd → L1(∂Ω)). We conclude by appealing to general theorems
about improper parameter dependent (Lebesgue) integrals.

✷

✎ Notation: L∞(D) =̂ space of (essentially) bounded functions on D, C0
pw(D) ⊂ L∞(D)

L1(D) =̂ space of (improperly) integrable (in Lebesgue sense) functions on D

As a consequence, if Ψ∆
SL is evaluated for a piecewise polynomial function ϕ : ∂Ω → R, it results in a

globally continuous function.

Lemma 1.2.5.8. Smoothness of single layer potential

If ϕ ∈ L∞(∂Ω) we have for every compact D ⊂ Ω or D ⊂ Ω′ := Rd \Ω that

(i) Ψ∆
SL(ϕ) ∈ C∞(D) (Ψ∆

SL is smooth away from ∂Ω),

(ii) ∆Ψ∆
SL(ϕ) = 0 on D (Ψ∆

SL is harmonic away from ∂Ω).

Proof. This is a consequence that for any x 6∈ ∂Ω every derivative (w.r.t. x) of the integrand is integrable
on ∂Ω (as a function of y). Thus, on D we can pull any derivative operator under the integral and the
result will be a continuous function on D.

✷

Finally, observe that Ψ∆
SL satisfies the decay conditions (1.1.7.1) and (1.1.7.4), respectively, e.g.,

Ψ∆
SL(ϕ)(x) =

{
O(log‖x‖) , if d = 2 ,

O(‖x‖−1) , if d = 3 .
for ‖x‖ → ∞ . (1.2.5.9)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 43

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 1.2.5.10 (Electrostatic interpretation of ΨSL) Comparing (1.2.5.6) and the formula (1.2.3.3) for
the Newton potential

(ΨSLϕ)(x) =
∫

∂Ω
G∆(x, y) ϕ(y)dS(y) ←→ (N∆ρ)(x) =

∫

Ω
G∆(x, y) ρ(y)dy ,

we deduce that

the single layer potential is the Newton potential applied to a surface charge on ∂Ω.

Recall the physical interpretation of the Newton potential N∆ρ as electrostatic scalar potential caused
by the source charge distribution ρ : Ω → R on Rd, This immediately suggests the following physical
meaning of Ψ∆

SLϕ.

Ψ∆
SLϕ is the electrostatic scalar potential induced by the surface charge ϕ on ∂Ω.

y

1.2.5.2 Double Layer Potential

Now we study the second potential (→ Notion 1.2.5.2) occurring in (1.2.4.3) and (1.2.4.6) (for the case of
L = −∆). Refer to [Hac95, Sect. 8.2] for detailed proofs.

Definition 1.2.5.11. Double layer potential

For u : Γ→ R we define the double layer potential operator for the Laplacian −∆ by

{x 7→ Ψ∆
DL(u)(x) :=

∫

∂Ω
grady G∆(x, y) · n(y) u(y)dS(y), x 6∈ ∂Ω} (1.2.5.12)

For the kernel we can compute explicit formulas

d = 2: G∆(x, y) = − 1
2π log‖x− y‖ ⇒ grady G∆(x, y) =

1

2π

x− y

‖x− y‖2
, (1.2.5.13a)

Ψ∆
DL(u)(x) =

∫

∂Ω

1

2π

(x− y) · n(y)
‖x− y‖2

u(y)dS(y), x 6∈ ∂Ω ,

d = 3: G∆(x, y) =
1

4π‖x− y‖ ⇒ grady G∆(x, y) =
1

4π

x− y

‖x− y‖3
, (1.2.5.13b)

Ψ∆
DL(u)(x) =

∫

∂Ω

1

4π

(x− y) · n(y)
‖x− y‖3

u(y)dS(y), x 6∈ ∂Ω .

§1.2.5.14 (Continuity of double layer potential) Since grady G∆(x, y) = O(‖x− y‖−d+1) for y→ x,

which is a non-integrable singularity in dimension d− 1, the mapping x 7→ {y 7→ grady G∆(x, y) · n(y)}
fails to be a continuous mapping into L1(∂Ω). So we cannot conclude global continuity of Ψ∆

DLu regardless
of the smoothness of u.

In fact, if Ω is bounded, for u ≡ 1, the constant function 1 := {y ∈ ∂Ω→ 1}, from Gauss theorem

∫

∂Ω
grad w(x) · n(x)dx =

∫

Ω
div grad w(x)dx , w ∈ C1

pw(Ω) ,

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 44

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(Ψ∆
DL1)(x) =

∫

∂Ω
grady G∆(x, y) · n(y)dS(y) =

∫

Ω
∆yG∆(x, y)dx

=

{
0 , if x 6∈ Ω ,

“ −
∫

Ω
δx dx ” = −1 , if x ∈ Ω .

Ψ∆
DL1 =

{
0 in Ω′ := Rd \Ω ,

−1 in Ω
is piecewise constant with a jump across ∂Ω. y

Concerning smoothness away from ∂Ω, the double layer potentials enjoy properties similar to those of the
single layer potentials, with analogous proofs.

Lemma 1.2.5.15. Smoothness of double layer potential

If ϕ ∈ L1(∂Ω) we have for every compact D ⊂ Ω or D ⊂ Ω′ that

(i) Ψ∆
DL(ϕ) ∈ C∞(D) (Ψ∆

DL is smooth away from ∂Ω),

(ii) ∆Ψ∆
DL(ϕ) = 0 on D (Ψ∆

DL is harmonic away from ∂Ω).

Remark 1.2.5.16 (Electrostatic meaning of Ψ∆
DL) Assume that Γ := ∂Ω is smooth with exterior unit

normal vector field n. Then, formally, for y ∈ Γ

grady G∆(x, y) · n(y) = lim
ǫ→0

G∆x, y + ǫn(y)− G∆(x, y− ǫn(y))

2ǫ
.

Hence, the double layer kernel models the potential of two unit charges of opposite sign at an infinitesimally
small distance, an arrangement known as electric dipole. The double layer potential could also be called
a dipole layer. y

1.2.6 Green’s Functions

We consider a bounded domain and a general scalar linear second-order differential operator L as in
(1.2.0.1). We study generalized fundamental solutions that also satisfy boundary conditions.

Definition 1.2.6.1. Green’s function

A function GL
Ω : Ω × Ω → R is a Green’s function for a second-order scalar linear differential

operator L on a bounded domain Ω ⊂ Rd, if
(i) GL

Ω is C∞-smooth on {(x, y) ∈ Ω×Ω : x 6= y},
(ii) for all x ∈ Ω: LyGL

Ω(x, y) = 0 on Ω \ {x}
(iii) GL

Ω satisfies homogeneous Dirichlet boundary conditions:

GL
Ω(x, y) = 0 for all y ∈ ∂Ω , x ∈ Ω , (1.2.6.2)

(iv) y 7→ GL
Ω(x, y) is integrable on Ω for all x ∈ Ω,

(v) for every x ∈ Ω, w ∈ C∞(Ω)

∫

Ω
GL

Ω(x, y)(L∗w)(y)dy = w(x) . (1.2.6.3)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 45

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We can rewrite Item (v) by means of distributional calculus as

LyGL
Ω(x, y) = δx in D(Ω)′ , (1.2.6.4)

see Rem. 1.2.2.18.

Now we can pursue the same manipulations as in Section 1.2.4 for the model case of L = −∆. We
choose any x ∈ Ω and w ∈ C2(Ω). Appealing to Green’s first formula from Thm. 1.1.6.1 we get

∫

Ω
G∆

Ω(x, y)(−∆w)dy = lim
ǫ→0

∫

‖y‖>ǫ
G∆

Ω(x, y)(−∆w)(y)dy

= − lim
ǫ→0

∫

‖y−x‖=ǫ

G∆
Ω(x, y) grad w(y) · n(y)− w(y) grady G∆

Ω(x, y) · n(y)dS(y)+

−
∫

∂Ω
G∆

Ω(x, y) grad w(y) · n(y)− w(y) grady G∆
Ω(x, y) · n(y)dS(y)

= w(x)−
∫

∂Ω
✘
✘

✘
✘
✘

✘
✘
✘
✘

✘
✘
✘

✘
✘✘✿

0

G∆
Ω(x, y) grad w(y) · n(y)− w(y) grady G∆

Ω(x, y) · n(y)dS(y) ,

thanks to Item (iii). This yields a simplified integral representation formula compared to Thm. 1.2.4.2. For
w ∈ C2(Ω)

w(x) =
∫

Ω
G∆

Ω(x, y)(−∆w)(y)dy−
∫

∂Ω
grady G∆

Ω(x, y) · n(y)w(y)dS(y) . (1.2.6.5)

Corollary 1.2.6.6. Green’s function integral representations

✦ If u ∈ C2(Ω) solves the boundary value problem

−∆u = ρ ∈ C0(Ω) in Ω , u = 0 on ∂Ω ,

u(x) =
∫

Ω
G∆

Ω(x, y) ρ(y)dy , x ∈ Ω . (1.2.6.7)

✦ If u ∈ C2(Ω) solves the Dirichlet boundary value problem

−∆u = 0 in Ω , u = g ∈ C0(∂Ω) on ∂Ω ,

u(x) = −
∫

∂Ω
grady G∆

Ω(x, y) · n(y) g(y)dS(y) , x ∈ Ω . (1.2.6.8)

Comparing with (1.2.3.9), we notice that the integral operator

ρ 7→
{

x 7→
∫

Ω

G∆
Ω(x, y)ρ(y)dy

}

is the solution operator for the Dirichlet boundary value problem −∆u = ρ in Ω, u = 0 on ∂Ω.

Green’s functions remain elusive for general domains Ω. Only for very special geometries and simple
operators like −∆ they can be computed in closed form. Next we give an example.

EXAMPLE 1.2.6.9 (Green’s function for −∆ on a disk) We compute the Green’s function (→
Def. 1.2.6.1) for −∆, d = 2, and the unit disk domain Ω = D := {x ∈ R2 : ‖x‖ < 1}.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 46

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 16

-10

-5

1

0

5

10

0.5

15

20

0

-0.5
1

0.5
0

-1 -0.5
-1

The derivation is based on the mirror charge ap-
proach and reflection at the unit circle. For x ∈ R2

write x∗ := x/‖x‖2, that is ‖x∗‖ = 1
‖x‖ and x∗ 6∈ D

for x ∈ D. We fix x ∈ D and place a unit charge
at x and a compensating charge at x∗ 6∈ D, which
yields the total potential, cf (1.2.2.10),

G∆
D(x, y) = − 1

2π log‖x− y‖+
1

2π log‖x∗ − y‖ − 1
2π log‖x∗‖ . (1.2.6.10)

✁ Plot of y 7→ G∆
D, x =

[
0.5
0

]

For x ∈ D, thanks to x∗ 6∈ D, the properties Item (i), Item (ii), Item (iv), and Item (v) are all inherited from
the first term, which is the fundamental solution for −∆ in 2D, see (1.2.2.10), and the only term with a
singularity in D. To see Item (iii) note that for ‖y‖ = 1, we have for all x ∈ D

G∆
D(x, y) = 1

4π log

(
‖y− x∗‖2

‖y− x‖2‖x∗‖2

)
= 1

4π log

(
‖x‖2‖y− x∗‖2

‖y− x‖2

)

= − 1
4π log

 1− 2x · y + ‖x‖2

‖x‖2(1− 2 1

‖x‖2 x · y + 1

‖x‖2)

 = − 1

4π log(1) = 0 .

y

Remark 1.2.6.11 (Poisson integral formula [Hac92, Thm. 2.20]) The Green’s function (1.2.6.10) com-
bined with Cor. 1.2.6.6, Section 1.2.6, we get an explicit integral representation for solutions of

−∆u = 0 in D , u = g on ∂D := {x ∈ R2 : ‖x‖ < 1} ,

u(x) =
1− ‖x‖2

2π

∫

‖y‖=1

1

‖x− y‖2
g(y)dS(y) , x ∈ D. (1.2.6.12)

y

EXAMPLE 1.2.6.13 (Green’s function for a half space)

Fig. 17

x2

x

x∗

Ω
In Def. 1.2.6.1 we assumed a bounded Ω, but
Green’s functions can easily be generalized to non-
bounded domains by simply keeping all the require-
ments Item (i)–Item (v), demanding compact support
of w in the latter. For instance, relying on another mir-
ror charge approach for the half space Ω := {x ∈
R2 : x2 > 0} we find

G∆
Ω(x, y) = − 1

2π
log‖x− y‖+ 1

2π
log‖x∗ − y‖ , x∗ =

[
x1

−x2

]
, x, y ∈ Ω . (1.2.6.14)

y

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 47

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.3 Boundary Integral Equations (BIEs)

Throughout this section we consider a Lipschitz domain Ω ⊂ Rd satisfying Ass. 1.2.1.5 for d = 2 or
Ass. 1.2.1.7 for d = 3. We write Γ := ∂Ω for its (compact) boundary and n for the exterior unit normal
vector field on Γ.

§1.3.0.1 (Outline) Trace operators (→ Notion 1.2.5.1) when applied potentials (→ Notion 1.2.5.2) yield
linear mappings taking functions on Γ to other functions on Γ:

Layer potentials

+
Trace operators

✞
✝

☎
✆Boundary integral operators (BIOs)

In particular, we may apply trace operators to layer potential representations formulas for solutions of
second-order scalar PDEs with vanishing source terms, like those given in Thm. 1.2.4.2 and Thm. 1.2.4.5
for ρ = 0 (crucial traces of u highlighted, cf. Rem. 1.2.5.3):

u(x) =
∫

Γ
GL(x, y)A grad u(y) · n(y)dS(y)−

∫

Γ
A grady GL(x, y) · n(y) u(y)dS(y) , (1.3.0.2)

for x ∈ Ω, where u ∈ C2(Ω) solves Lu := −div(A grad u)− cu = 0 in Ω, A, c as in (1.2.0.1), and
GL is the fundamental solution for L, see Def. 1.2.2.15. We point out that using our notations for the layer
potentials, a compact way to write (1.2.4.3) is

u(x) = ΨL
SL(A grad u(y) · n(y)|Γ)(x)−ΨL

DL(u|Γ)(x) , x ∈ Ω . (1.3.0.2)

Applying trace operators we should end up with equations linking the traces u|Γ and
A grad u(y) · n(y)|Γ. One of these must be known in the case of well-defined boundary value prob-
lems, and we hope to determine the other through the obtained equations.

Representation formula (1.3.0.2)

+
Trace operators

✞
✝

☎
✆Boundary integral equations (BIEs)

However, we have to ensure that trace operators can be applied to layer potentials. Adhering to an
“energy-centric” approach, we investigate the continuity of the operators in energy norms. y

1.3.1 Trace Operators

Notion 1.2.5.1 tells us that trace operators map functions on the volume domain Ω to functions on the
boundary Γ. Now examine the continuity properties in energy norms of the two trace operators relevant
for boundary value problems for the Laplacian −∆.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 48

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.3.1.1 Dirichlet Trace

Definition 1.3.1.1. Dirichlet trace operator

The Dirichlet trace (operator) TD boils down to pointwise restriction for smooth functions:

(TDw)(x) := w(x) ∀x ∈ Γ , w ∈ C∞(Ω) .

Though obvious, we stress the fact that TD maps functions Ω 7→ R to functions Γ 7→ R. Also not that, if
Γ is merely piecewise smooth, even w ∈ C∞(Ω) does imply only TDw ∈ C0(Γ)!

§1.3.1.2 (An energy space for point traces of scalar potentials) Our goal is to extend the Dirichlet
trace TD to the energy space H1(Ω) and to identify the strongest norm on C0(Γ) that will still render
TD continuous. Completion (→ [NumPDE § 1.3.3.10]) with respect to this norm will yield a suitable trace
space, serving range space of TD|H1(Ω).

Let ‖·‖X stand for a norm on C0(Γ). Recall that TD is continuous with respect to this norm, if

∃C > 0: ‖TDu‖X ≤ C‖u‖H1(Ω) ∀u ∈ C∞(Ω) . (1.3.1.3)

A norm is dubbed “stronger” than another norm on the same space, if (up to a constant) it assigns larger
norm values to every element of the space than this other norm. The strongest possible norm ‖·‖X on
C0(Γ) for which we can still expect the continuity (1.3.1.3) can formally be defined as follows

‖u‖X := inf
{
‖v‖H1(Ω): v ∈ C∞(Ω), TDv = u

}
, u ∈ C∞(Ω)

∣∣
Γ

. (1.3.1.4)

The reader is encouraged to verify the norm axioms from [NumPDE Def. 0.3.1.10] for this ‖·‖X.

Remark 1.3.1.5 (Density argument) A fundamental result in the theory of Sobolev spaces [McL00,
Thm. 3.25] ensures the density of C∞(Ω) in H1(Ω). Therefore, when studying TD on H1(Ω), it is
sufficient to consider TD|C∞(Ω). Recall the advice [NumPDE Section 1.3.4] that one should focus on
norms in the study of Sobolev spaces and not worry about the smoothness of the functions too much. y

It is easy to establish that (1.3.1.4) defines a norm. In fact, ‖·‖X is derived from an inner product. Com-
pletion then yields the right trace space.

Definition 1.3.1.6. Dirichlet trace space

The Dirichlet trace space H
1
2 (Γ) is the Hilbert space obtained by completion of C∞(Ω)

∣∣
Γ

with
respect to the energy norm

‖u‖
H

1
2 (Γ)

:= inf
{
‖v‖H1(Ω): v ∈ C∞(Ω), TDv = u

}
, u ∈ C∞(Ω)

∣∣
Γ

. (1.3.1.7)

✎ Notation: We write u, v,w for functions in H
1
2 (Γ).

For mathematicians familiar with functional analysis the next result is an immediate consequence of
Def. 1.3.1.6, thus labelled a corollary. A reader not well versed in functional analysis may just accept
it as a fact.

Corollary 1.3.1.8. Mapping properties of Dirichlet trace [SS10, Sect. 2.6]

The Dirichlet trace TD according to Def. 1.3.1.1 can be extended to a continuous and surjective

linear operator TD : H1(Ω)→ H
1
2 (Γ).

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 49

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In the title of this §H
1
2 (Γ) was said to be an “energy space”. To see the connection look up the equilibrium

condition (1.1.4.7)again to understand that the minimizer w ∈ H1(Ω) of the expression in (1.3.1.7) agrees
with the weak solution of the Dirichlet boundary value problem

−∆w = 0 in Ω , w = u on Γ .

In an electrostatic context this is the potential arising in the volume when imposing the potential values u

on Γ. Hence, we arrive a the following “physical interpretation” of ‖·‖
H

1
2 (Γ)

‖u‖
H

1
2 (Γ)

is the electric field energy in Ω due to imposing the potential values u on Γ.

y

§1.3.1.10 (Smoothness (“regularity”) of functions in H
1
2 (Γ)) Def. 1.3.1.6 does not yield much insight

into H
1
2 (Γ). To understand properties of functions in H

1
2 (Γ) we recall a first result on continuity properties

of TD [NumPDE Thm. 1.9.0.10].

Theorem 1.3.1.11. Multiplicative trace inequality [BS08, Thm. 1.6.6]

∃C = C(Ω) > 0: ‖u‖2
L2(Γ) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

Proof.

We demonstrate the proof only for domains Ω with
diam Ω = 1 that are star-shaped w.r.t. a ball Br(0),
0 < r < 1, that is,

∀y ∈ Br(0), x ∈ Ω: [y, x] ⊂ Ω .

In this case

n(x) · x ≥ CΩ , (1.3.1.12)

for a constant CΩ > 0.

Fig. 18

0

r

x
n

Gauss’ theorem and the product rule show for u ∈ C2(Ω)
∫

Γ
|u(x)|2 dS(x) ≤ C−1

Ω

∫

Γ
n · x |u(x)|2 dS(x) = C−1

Ω

∫

Ω
div(x|u(x)|2)dx

= C−1
Ω

∫

Ω
d|u(x)|2 + 2ux · grad u dx

≤ C−1
Ω

(
d‖u‖2

L2(Ω) + 4‖u‖L2(Ω)|u|2H1(Ω)

)
,

where we used ‖x‖ ≤ 2. A density argument (→ Rem. 1.3.1.5) as in the proof of [NumPDE Thm. 1.3.4.17]
establishes the claim.

✷

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 50

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The next statement is labelled a corollary, that is, considered “obvious”. The reader should be able to
conclude it from Def. 1.3.1.6 and Thm. 1.3.1.11 instantly.

Corollary 1.3.1.13. Embedding of H
1
2 (Γ)

The space H
1
2 (Γ) is continuously embedded in L2(Γ): ‖u‖L2(Γ) ≤ C‖u‖

H
1
2 (Γ)

for all u ∈ H
1
2 (Γ)

and some C > 0 independent of u.

EXAMPLE 1.3.1.14 (“Continuity” of functions in H
1
2 (Γ)) How smooth are functions in H

1
2 (Γ)? For the

Sobolev space H1(Ω) we already asked this question in [NumPDE § 1.3.4.25].

We consider the unit disk domain Ω = D := {x ∈ R2 : ‖x‖ < 1} and, in polar coordinates (r, ϕ), the
Fourier sums

gn(ϕ) := 4
π

n

∑
k=1

1

2k− 1
sin((2k− 1)ϕ) ∈ L2(Γ) , n ∈ N .

The solutions of

−∆un = 0 in D , TDun = gn on Γ ,

are

un(r, ϕ) = 4
π

n

∑
k=1

1

2k− 1
r2k−1 sin((2k− 1)ϕ) , 0 ≤ r < 1, 0 ≤ ϕ < 2π .

This is a consequence of the fact that ∆{(r varphi) 7→ rℓ sin(ℓϕ)} = 0.

By (1.3.1.7) the energy norm of un is equivalent to the trace norm of gn:

|un|H1(Ω) ≈ ‖gn‖
H

1
2 (Γ)

with “universal constants”.

From the theory of Fourier series we know

lim
n→∞

gn = g in L2(Γ) , g(ϕ) =

{
−1 for − π ≤ ϕ ≤ 0 ,

1 for 0,< ϕ ≤ π ,

that is the limit of the sequence (gn)n∈N is a piecewise constant, discontinuous function.

Termwise differentiation gives

grad un(r, ϕ) =
n

∑
k=1

r2k−2
(
sin((2k− 1)ϕ)er(r, ϕ) + cos((2k− 1)ϕ)eϕ(r, ϕ)

)
,

where {er, eϕ} is the polar coordinate orthonormal basis, see [NumPDE ??].

‖grad un‖2
L2(Ω) =

n

∑
k=1

1∫

0

2π∫

0

r4k−4 sin2((2k− 1)ϕ) + cos2((2k− 1)ϕ)dϕ rdr

=
n

∑
k=1

2π

4k− 3
→ ∞ for n→ ∞ .

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 51

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://en.wikipedia.org/wiki/Fourier_series
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

As a consequence, “‖g‖
H

1
2 (Γ)

= ∞”, g 6∈ H
1
2 (Γ).

C0
pw(Γ) 6⊂ H

1
2 (Γ) !

y

EXAMPLE 1.3.1.15 (Unbounded functions in H
1
2 (Γ)) According to [NumPDE Cor. 1.3.4.7] the point

evalution functional u 7→ u(y), y ∈ Ω, is not bounded on H1(Ω) for d ≥ 2; there are unbounded
functions in H1(Ω) and in [NumPDE Ex. 1.2.3.45] we found an example in 2D

v(x) = log | log‖x‖| , ‖x‖ < 1
2 , v ∈ H1(B1

2
(0)) . (1.3.1.16)

If 0 ∈ Γ, TDv ∈ H
1
2 (Γ) will not be bounded! y

As a positive result we note that continous, piecewise smooth functions belong to H
1
2 (Γ), ecause they are

already contained in H1(Γ). Compare with Ex. 1.3.1.14.

Corollary 1.3.1.17. Continuous, piecewise-C1 functions in H
1
2 (Γ)

C1
pw(Γ) ⊂ H

1
2 (Γ).

In words, piecewise smooth bounded functions Γ 7→ R belong to H
1
2 (Γ), if and only if they are contin-

uous: for them belonging to H
1
2 (Γ) entails the same compatibility conditions as for H1(Γ), remember

Thm. 1.1.3.5. y

Remark 1.3.1.18 (Intrinsic norm of H
1
2 (Γ)) As a consequence of extension theorems for H1(Ω)

[McL00, Appendix A], Def. 1.3.1.6 yields equivalent norms for H
1
2 (Γ), no matter whether we base the

definition of ‖·‖
H

1
2 (Γ)

on Ω or Ω′.

In fact, from [SS10, Def. 2.4.1] we learn, that there is an equivalent Γ-intrinsic definition

‖u‖2

H
1
2 (Γ)
≈ ‖u‖2

L2(Γ) +
∫

Γ

∫

Γ

|u(x)− u(y)|2
‖x− y‖d

dS(y)dS(x) , u ∈ H
1
2 (Γ) . (1.3.1.19)

This expression known as the Sobolev-Slobodeckii norm. y

1.3.1.2 Neumann Trace

Now we take a closer look at the normal component trace of the displacement current, in non-dimensional
form grad u · n|Γ.

Definition 1.3.1.20. Neumann trace operator

For smooth functions the Neumann trace (operator) TN is defined by

(TNw)(x) := grad w · n(x) ∀x ∈ Γ ,w ∈ C∞(Ω) .

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 52

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 1.3.1.21 (The Neumann trace is not defined on H1(Ω)) We consider d = 2, Ω = D := {x ∈
R2 : ‖x‖ < 1}, and (in polar coordinates (r, ϕ), see [NumPDE ??]) the functions

un(r, ϕ) := n−1rn , n ∈ N .

Then grad un(r, ϕ) = rn−1er and we find by simply computing the norms in polar coordinates

‖un‖H1(Ω) → 0 for n→ ∞ whereas TNun = 1 on ∂D .

The message sent by this example is similar to the insight gained in [NumPDE Ex. 1.3.2.5]:

The Neumann trace TN is not bounded on H1(Ω).

In other words, Neumann boundary conditions cannot be imposed in H1(Ω), analogous to the situation
with the Dirichlet trace and L2(Ω) as discussed in [NumPDE Ex. 1.3.2.5]. y

Remark 1.3.1.22 (Pairing of traces [SS10, Thm. 2.7.7]) It is a straightforward consequence of Green’s
first formula from Thm. 1.1.6.1 (with j := grad u) that

∫

Γ
(TNu)(x) (TDv)(x)dS(x) =

∫

Ω
∆u(x) v(x) + grad u(x) · grad v(x)dx , (1.3.1.23)

for all u, v ∈ C∞(Ω). If u is harmonic, that is ∆u = 0, then
∫

Γ
(TNu)(x) (TDv)(x)dS(x) =

∫

Ω
grad u(x) · grad v(x)dx . (1.3.1.24)

In particular, we conclude that for any harmonic function u ∈ H1(Ω) (solving ∆u = 0), the paired Dirichlet
and Neumann traces yield the function’s energy:

∫

Γ
(TNu)(x) (TDu)(x)dS(x) =

∫

Ω
‖grad u(x)‖2 dx . (1.3.1.25)

y

§1.3.1.26 (An energy norm for Neumann traces) From electrostatic theory we know that the normal
component trace of the displacement current at a PEC boundary part corresponds to a surface charge
distribution.

The range space of the Neumann trace operator TN, the Neumann trace space is a space of surface
charge distributions.

Define a norm on the Neumann trace space through the energy of the field induced by
surface charge distribution.

Definition 1.3.1.27. Neumann trace space

The Neumann trace space H−
1
2 (Γ) is the Hilbert space obtained by the completion of C0(Γ) with

respect to the norm

‖φ‖
H−

1
2 (Γ)

:=
∥∥φ̃
∥∥

H̃−1(Ω) , (1.3.1.28)

where ‖·‖H̃−1(Ω) is the norm on source charge distributions introduced in Def. 1.1.8.1 and φ̃ is the

“extension by zero to Rd” of φ.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 53

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Temporarily, we restrict ourselves to d = 3. Given φ ∈ C0(Γ) we define uφ ∈ H1(R3) through

∫

R3
grad uφ · grad v dx =

∫

Γ
φ(x) (TDv)(x)dS(x) ∀v ∈ H1(R3) . (1.3.1.29)

By virtue of (1.1.8.5) [SS10, Prop 2.10.8], the bilinear form of this variational problem is H1(R3)-elliptic
and, thus, unique solvability is guaranteed. Then, from the definition of ‖·‖H̃−1(Ω) is immediate that

‖φ‖
H−

1
2 (Γ)

=
∥∥φ̃
∥∥

H̃−1(Ω) =
∥∥grad uφ

∥∥
L2(R3)

. (1.3.1.30)

With this in mind, in perfect analogy to § 1.3.1.2 we can also link the norm on H−
1
2 (Γ) to the energy norm

of fields/potentials:

‖φ‖
H−

1
2 (Γ)

is the energy of the electric field engendered by the surface charge distribution φ.

y

§1.3.1.31 (Continuity of Neumann trace) We have seen in Rem. 1.3.1.21 that the Neumann trace TN is
not defined on H1(Ω); we need a function space with a stronger norm, on which we can then define TN

as a continuous linear operator.

Definition 1.3.1.32. Space of function with square-integrable Laplacian

We introduce the Hilbert space

H(∆, Ω) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)} ,

with norm

‖u‖2
H(∆,Ω) := ‖u‖2

H1(Ω) + ‖∆u‖2
L2(Ω) , u ∈ H(∆, Ω) .

Theorem 1.3.1.33. Continuity of the Neumann trace on H(∆, Ω)

The Neumann trace TN from Def. 1.3.1.20 can be extended to a continuous mapping

TN : H(∆, Ω)→ H−
1
2 (Γ).

Proof. Given w ∈ C∞(Ω) define uw ∈ H1(Ω) through

∫

R3
grad uw · grad v dx =

∫

Γ
(TNw)(x) (TDv)(x)dS(x) ∀v ∈ H1(R3) . (1.3.1.34)

Recall from § 1.3.1.26 that ‖TNw‖
H−

1
2 (Γ)

= ‖grad uw‖L2(R3). Then use the pairing identity

∫

Γ
(TNu)(x) (TDv)(x)dS(x) =

∫

Ω
∆u(x) v(x) + grad u(x) · grad v(x)dx , (1.3.1.23)

and obtain
∫

Γ
(TNw)(x) (TDuw)(x)dS(x) =

∫

Ω
∆w(x) uw(x) + grad w(x) · grad uw(x)dx . (1.3.1.35)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 54

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Combine (1.3.1.34) (with v := uw) and (1.3.1.35) and conclude by means of the Cauchy-Schwarz inequal-
ity in L2(Ω) [NumPDE Eq. (1.3.4.15)]

‖uw‖2
H1(R3) =

∫

Ω
∆w(x) uw(x) + grad w(x) · grad uw(x)dx ≤ ‖w‖H(∆,Ω)‖uw‖H1(R3) .

We cancel ‖uw‖H1(R3) in this inequality and the observation

‖TNw‖
H−

1
2 (Γ)

= ‖grad uw‖L2(R3) ≤ ‖uw‖H1(R3) ≤ ‖w‖H(∆,Ω) ,

clinches the proof.
✷ y

By Thm. 1.3.1.11 the Dirichlet trace TD is continuous as a mapping H1(Ω) → L2(Γ). Then from
(1.3.1.30) and (1.1.8.5) the following embedding can be inferred:

Theorem 1.3.1.36. Embedding of H−
1
2 (Γ)

L2(Γ) is continuously embedded in H−
1
2 (Γ): L2(Γ) ⊂ H−

1
2 (Γ)

§1.3.1.37 (Duality) For φ ∈ H−
1
2 (Γ) we also conclude from

∫

R3
grad uφ · grad v dx =

∫

Γ
φ(x) (TDv)(x)dS(x) ∀v ∈ H1(R3) , (1.3.1.29)

using the function uφ defined thus, that

∫

Γ
φ(x) (TDuφ)(x)dS(x) =

∥∥grad uφ

∥∥2

L2(R3)
=
∥∥grad uφ

∥∥
L2(R3)‖φ‖H−

1
2 (Γ)

, (1.3.1.38a)
∫

Γ
φ(x) v(x)dS(x) =

∫

R3
grad uφ · grad ṽ dx ≤ ‖φ‖

H−
1
2 (Γ)
‖v‖

H
1
2 (Γ)

(1.3.1.38b)

for all v ∈ H
1
2 (Γ), where ṽ ∈ H1(R3) is that extension of v ∈ H

1
2 (Γ) for which |ṽ|H1(Ω) = ‖v‖H

1
2 (Γ)

.

The estimates (1.3.1.38) can be translated into the following deep mathematical statement that holds for
both d = 2, 3. The reader be reassured that grasping the full scope of the theorem is not necessary for
applying it.

Theorem 1.3.1.39. L2(Γ)-duality between H
1
2 (Γ) and H−

1
2 (Γ)

The bilinear form (ψ, v) 7→
∫

Γ
ψ(x) v(x)dS(x), ψ, v ∈ L2(Γ) induces isomorphisms between

H
1
2 (Γ) and the dual space (H−

1
2 (Γ))′, and between H−

1
2 (Γ) and the dual space (H

1
2 (Γ))′. In

particular,

∫

Γ
ψ(x) v(x)dS(x) ≤ ‖ψ‖

H−
1
2 (Γ)
· ‖v‖

H
1
2 (Γ)

∀ψ ∈ H−
1
2 (Γ), v ∈ H

1
2 (Γ) . (1.3.1.40)

In fact, the duality asserted in Thm. 1.3.1.39 can be used to define H−
1
2 (Γ). Here, without further com-

menting on the theorem, we state an important consequence:

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 55

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

u, v ∈ H
1
2 (Γ): u = v ⇔

∫

Γ
(u− v)(x) φ(x)dS(x) = 0 ∀φ ∈ H−

1
2 (Γ) , (1.3.1.41a)

φ, ψ ∈ H−
1
2 (Γ): ψ = φ ⇔

∫

Γ
(ψ− φ)(x) v(x)dS(x) = 0 ∀v ∈ H

1
2 (Γ) . (1.3.1.41b)

We will see several applications of these relationships below. y

Remark 1.3.1.42 (Co-normal trace) If we deal with a general differential operator according to (1.2.0.1),
Lu := −div(A grad u) + cu, A ∈ Rd,d s.p.d., c ∈ R, then the Neumann trace TN has to be replaced
with the co-normal trace u 7→ TL

N := A grad u · n|Γ. By and large, the results of this section carry over
to TL

N, see [SS10, Sect. 2.7]. y

1.3.2 Mapping Properties of Layer Potentials

We recall the two layer potentials: the single layer potential ΨSL defined in Def. 1.2.5.5 and the double
layer potential ΨDL defined in Def. 1.2.5.11. Above considered them for “sufficiently smooth” argument
functions. Now we aim to study them as mappings between energy (trace) spaces, similar to what we
have already done for the Newton potential in Cor. 1.2.3.8.

§1.3.2.1 (Single layer potential) We can relate the single layer potential operator for −∆ (→
Def. 1.2.5.5)

Ψ∆
SL(φ)(x) :=

∫

Γ
G∆(x− y)φ(y)dS(x), x 6∈ Γ; , (1.2.5.6)

to the Newton potential (→ Def. 1.2.3.2)

(N∆ρ)(x) :=
∫

Ω
G∆(x, y)ρ(y)dy . (1.2.3.3)

For smooth φ ∈ C∞(Ω)
∣∣
Γ
, ρ ∈ C∞(Ω), interchanging integrals (Fubini’s theorem), we get

∫

Ω
(Ψ∆

SLφ)(x) ρ(x)dx =
∫

Ω

∫

Γ
G∆(x, y) φ(y)dS(y) ρ(x)dx

=
∫

Γ

∫

Ω
G∆(x, y) φ(y) ρ(x)dx dS(y)

=
∫

Γ
(TDN∆ρ)(y) φ(y)dS(y)

(1.3.1.40)
≤ ‖TDN∆ρ‖

H
1
2 (Γ)
‖φ‖

H−
1
2 (Γ)

≤ |N∆ρ|H1(R3) ‖φ‖H−
1
2 (Γ)
≤ ‖ρ‖H̃−1(Ω) ‖φ‖H−

1
2 (Γ)

.

We find that, if ‖φ‖
H−

1
2 (Γ)

< ∞⇔ φ ∈ H−
1
2 (Γ), then

∣∣∣∣
∫

Ω
(Ψ∆

SLφ)(x) ρ(x)dx

∣∣∣∣ < ∞

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 56

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for every admissible (‖ρ‖H̃−1(Ω) < ∞!) source charge distribution ρ. Next, use the characterization

(1.1.8.10).

Theorem 1.3.2.2. Continuity of single layer potential in energy (trace) spaces

The single layer potential operator Ψ∆
SL (→ Def. 1.2.5.5) can be extended to a continuous mapping

Ψ∆
SL : H−

1
2 (Γ)→ H1(Rd) ∩ H(∆, Rd \ Γ) .

The message of this theorem is that we can find a constant C > 0 depending only on Ω such that
∥∥∥Ψ∆

SLφ
∥∥∥

H1(Rd)
+
∥∥∥Ψ∆

SLφ
∥∥∥

H(∆,Ω)
+
∥∥∥Ψ∆

SLφ
∥∥∥

H(∆,Ω′)
≤ C‖φ‖

H−
1
2 (Γ)

.

y

§1.3.2.3 (Double layer potential) To establish the continuity of the double layer potential operator Ψ∆
DL

from Def. 1.2.5.11, we rely on the representation formulas (1.2.4.3) (for L = −∆) or (1.2.4.6). These can
be written in a compact way as

u = N∆(−∆u) + Ψ∆
SL(TNu)−Ψ∆

DL(TDu) ∀u ∈ C2(Ω) .

Pick v ∈ C∞(Ω)
∣∣
Γ

and define u ∈ H1(Ω) as the solution of

−∆u = 0 in Ω , TDu = v on Γ .

By the continuity result for Ψ∆
SL from Thm. 1.3.2.2 we can plug this u into the representation formula

u = Ψ∆
SL(TNu)−Ψ∆

DL(v) in Ω . (1.3.2.4)

Then, by Thm. 1.3.2.2 and Thm. 1.3.1.33 (∆u = 0!)
∥∥∥Ψ∆

SL(TNu)
∥∥∥

H1(Ω)
≤ C‖TNu‖

H−
1
2 (Γ)
≤ C‖u‖H(∆,Ω) ≤ C‖u‖H1(Ω) ≤ C‖v‖

H
1
2 (Γ)

,

with positive constants with different values at each stage but all independent of v. The △-inequality
combined with (1.3.2.4) yields

∥∥∥Ψ∆
DL(v)

∥∥∥
H1(Ω)

≤ ‖u‖H1(Ω) +
∥∥∥Ψ∆

SL(TNu)
∥∥∥

H1(Ω)
≤ C‖v‖

H
1
2 (Γ)

.

This argument can also be employed on the complement domain Ω′.

Theorem 1.3.2.5. Continuity of the double layer potential in energy trace spaces

The double layer potential operator Ψ∆
DL (→ Def. 1.2.5.11) can be extended to a continuous map-

ping

Ψ∆
DL : H

1
2 (Γ)→ H(∆, Rd \ Γ) .

y

Remark 1.3.2.6 (General layer potentials) All the above arguments and results remain valid for layer
potentials derived from fundamental solutions for general scalar second-order differential operators L in
divergence form (1.2.0.1). y

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 57

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.3.3 Jump Relations for Layer Potentials

In § 1.2.5.14 we saw that the double layer potential may have a discontinuity, a jump, across Γ. In this
section we will glean detailed information about jumps and kinks (ie, jumps of derivatives) of potentials.

§1.3.3.1 (Jumps and averages) Let u ∈ L2(Rd) be smooth on both sides of Γ := ∂Ω: u|Ω ∈ C∞(Ω)

and u|Ω′ ∈ C∞(Ω′), Ω′ = Rd \Ω. Then we can apply some trace operator T on both sides and take
the difference of the resulting functions, what we call a jump of Tu.

Concretely, for the jumps of Dirichlet and Neumann traces introduced in Def. 1.3.1.1 and Def. 1.3.1.20,
respectively, we write

Jumps: JTDuKΓ := TD(u|Ω′)− TD(u|Ω) ,

JTNuKΓ := TN(u|Ω′)− TN(u|Ω) ,

where in the second difference TN is based on the exterior unit normal for Ω throughout. Jumps adhere
to the convention “outside − inside” and they are functions on Γ. Note that the exterior unit normal for Ω

enters the Neumann jump:

JTNuKΓ(x) = ((gradu|Ω′)(x)− (gradu|Ω)(x)) · n(x) , x ∈ Γ .

Similarly we can define averages of traces:

Averages: {TDu}Γ := 1
2(TD(u|Ω′) + TD(u|Ω)) ,

{TNu}Γ := 1
2(TN(u|Ω′) + TN(u|Ω)) .

y

§1.3.3.2 (Jump representation formula) Pick u ∈ C∞(Ω)), ∆u = 0 in Ω, and x 6∈ Ω , that is, x is

located in the interior of the complement domain Ω′. Then, by property (ii) of a fundamental solution (→
Def. 1.2.2.15), y 7→ G∆(x, y) is harmonic in Ω: ∆yG∆(x, y) = 0. As a consequence of Green’s second
formula (1.2.1.3)

Ψ∆
SL(TNu)(x)−Ψ∆

DL(TDu)(x)

=
∫

Γ
G∆(x, y)(TNu)(y)− grady G∆(x, y) · n(y) (TDu)(y)dS(y)

=
∫

Ω
G∆(x, y)

✘
✘
✘
✘
✘✿0

(∆u)(y)−
✘

✘
✘
✘

✘
✘
✘✘✿

0
(∆yG∆)(x, y) u(y)dy = 0 .

For bounded Ω combining this finding with the “interior” integral representation formula of Thm. 1.2.4.2 in
the form (1.3.0.2), we get

Ψ∆
SL(TNu)−Ψ∆

DL(TDu) =

{
u(x) , if x ∈ Ω ,

0 , if x ∈ Ω′ .
(1.3.3.3)

The same reasoning can be pursued for the “exterior” complement domain Ω′ based on Thm. 1.2.4.5.
Merging the resulting formulas gives a new version of the representation formula on Rd \ Γ.

Theorem 1.3.3.4. Jump representation formula [SS10, Thm. 3.1.8]

For u ∈ H(∆, Rd \ Γ), ∆u = 0 in Ω ∪Ω′, holds

u = −Ψ∆
SL(JTNuKΓ) + Ψ∆

DL(JTDuKΓ) in H(∆, Rd \ Γ) . (1.3.3.5)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 58

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We could state this theorem in terms of energy spaces, since from 1.3.2 we know that all traces and layer
potentials are well defined. y

§1.3.3.6 (Jumps of single layer potential) According to Thm. 1.3.2.2, for φ ∈ H−
1
2 (Γ) we know Ψ∆

SLφ ∈
H1(Rd). Appealing to the fact that “functions in H1 must not have discontinuities”, see Thm. 1.1.3.5, we
conclude that

r
TD(Ψ

∆
SLφ)

z
Γ
= 0 ∀φ ∈ H−

1
2 (Γ) . (1.3.3.7)

We rely on “electrostatic heuristics” to elaborate the Neumann jump of Ψ∆
SLφ, recalling Rem. 1.2.5.10.

From (1.2.3.9) we know that the Newton potential

(N∆ρ)(x) :=
∫

Ω
G∆(x, y)ρ(y)dy , x ∈ Rd ,

generates the potential produced by the source charge distribution ρ ∈ H̃−1(R3). It solves the variational
problem

N∆ρ ∈ H1(Rd):
∫

Ω
(gradN∆ρ)(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx , (1.3.3.8)

for all v ∈ H1(Rd). Match this with the formula

(Ψ∆
SLφ)(x) =

∫

Γ
G∆(x, y) φ(y)dS(y) , x ∈ Rd ,

defining the single layer potential, which gives the electrostatic potential due to the surface charge φ ∈
H−

1
2 (Γ). Adapting (1.3.3.8), we find that

∫

Ω
(grad Ψ∆

SLφ)(x) · grad v(x)dx =
∫

Γ
φ(x) v(x)dS(x) ∀v ∈ H1(R3) (1.3.3.9)

The policy demonstrated in 1.1.6 can be used to find the PDE form of the transmission problem encoded
by (1.3.3.9). First test with smooth v compactly supported inside either Ω or Ω′, which shows

∆Ψ∆
SL(φ) = 0 in Ω ∪Ω′ . (1.3.3.10)

Then test with v ∈ C∞
0 (Rd), perform integration by parts (Green’s first formula (1.1.6.2)) both in Ω and

Ω′ and use (1.3.3.10) to remove all volume integrals. The remaining boundary terms on Γ lead to
r
TNΨ∆

SL(φ)
z

Γ
= −φ . (1.3.3.11)

y

§1.3.3.12 (Jumps of double layer potential)

For arbitrary u ∈ H(∆, Rd \ Γ) apply the jump operators JTD·KΓ and JTN ·KΓ to the jump
representation formula (→ Thm. 1.3.3.4)

u = −Ψ∆
SL(JTNuKΓ) + Ψ∆

DL(JTDuKΓ) in H(∆, Rd \ Γ) . (1.3.3.5)

✦ Apply JTD·KΓ: In light of
q

Ψ∆
SL

y
Γ
= 0, see (1.3.3.7), we infer

JTDuKΓ =
r
TDΨ∆

DL(JTDuKΓ)
z

Γ
⇔ JTDΨDLvKΓ = v ∀v ∈ H

1
2 (Γ) , (1.3.3.13)

because any jump JTDuKΓ can be realized by choosing an appropriate u.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 59

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ Apply JTN ·KΓ: By virtue of (1.3.3.11) we obtain from (1.3.3.5)

JTNuKΓ = −
r
TNΨ∆

SL(JTNuKΓ)
z

Γ︸ ︷︷ ︸
=−JTNuKΓ

+
r
TNΨ∆

DL(JTDuKΓ)
z

Γ

mr
TNΨ∆

DLv
z

Γ
= 0 ∀v ∈ H

1
2 (Γ) . (1.3.3.14)

y

The following theorem summarizes our finding (1.3.3.7), (1.3.3.11), (1.3.3.13), (1.3.3.14).

Theorem 1.3.3.15. Jump relations for layer potentials [SS10, Thm. 3.3.1]

The single and double layer potentials Ψ∆
SL and Ψ∆

DL satisfy for all φ ∈ H−
1
2 (Γ) and v ∈ H

1
2 (Γ)

the jump relations

r
TDΨ∆

SLφ
z

Γ
= 0 ,

r
TDΨ∆

DLv
z

Γ
= v in H

1
2 (Γ) ,

r
TNΨ∆

SLφ
z

Γ
= −φ ,

r
TNΨ∆

DLv
z

Γ
= 0 in H−

1
2 (Γ) .

(1.3.3.16)

1.3.4 Boundary Integral Operators (BIOs)

Boundary integral operators (BIOs) arise from applying traces to layer potentials. By the results of Sec-
tion 1.3.2 this is possible and the continuity properties in energy trace spaces are immediately clear. The
challenge is to establish concrete integral formulas for the BIOs.

We exclusively focus on the Laplace operator, but point out that analogous considerations applyu to all
scalar second-order differential operators with constant coefficients.

1.3.4.1 Formal Definition

As explained in § 1.3.0.1:

Two traces

{
TD

TN

}
+ two layer potentials

{
Ψ∆

SL
Ψ∆

DL

}
four BIOs !

Layer potentials are defined everywhere in Rd \ Γ. The jump relations of Thm. 1.3.3.15 teach that traces of
layer potentials may jump. Thus it makes a difference whether we take the trace from inside or outside Ω.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 60

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The convention adopted in the literature resorts to the average {T·}Γ of traces to resolve this ambiguity.

Definition 1.3.4.1. Boundary integral operators for −∆

The four boundary integral operators associated with the Laplacian −∆ are defined as follows:

single layer BIO: V(φ) :=
{
TDΨ∆

SL(φ)
}

Γ
, φ ∈ H−

1
2 (Γ) ,

double layer BIO: K(v) :=
{
TDΨ∆

DL(v)
}

Γ
, v ∈ H

1
2 (Γ) ,

adjoint double layer BIO: K′(φ) :=
{
TNΨ∆

SL(φ)
}

Γ
, φ ∈ H−

1
2 (Γ) ,

hypersingular BIO: W(v) := −
{
TNΨ∆

DL(v)
}

Γ
, v ∈ H

1
2 (Γ) .

The mapping properties of BIOs in trace spaces follow immediately from what we know:

Continuity of
trace operators

(Cor. 1.3.1.8, Thm. 1.3.1.33)
+

Continuity of
layer potentials

(Thm. 1.3.2.2, Thm. 1.3.2.5)

Continuity
of BIOs

The next theorem gives summary.

Theorem 1.3.4.2. Continuity of boundary integral operators

The following linear operators are continuous:

single layer BIO: V : H−
1
2 (Γ)→ H

1
2 (Γ) ,

double layer BIO: K : H
1
2 (Γ)→ H

1
2 (Γ) ,

adjoint double layer BIO: K′ : H−
1
2 (Γ)→ H−

1
2 (Γ) ,

hypersingular BIO: W : H
1
2 (Γ)→ H−

1
2 (Γ) .

Supplement 1.3.4.3 (Adjointness of double layer potentials) The reason, why K′ is called the adjoint
double layer boundary integral operator is the formula

∫

Γ
(Ku)(x) φ(x)dS(x) =

∫

Γ
u(x) (K′φ)(x)dS(y) , (1.3.4.4)

which has to be seen from the perspective of the definition (1.2.2.17) of an adjoint operator. The proof of
the formula makes use of the fact that, if u and v are harmonic in Ω, then

∫

Γ
(TDu)(x) (TNv)(x)dS(x) =

∫

Γ
(TNu)(x) (TDv)(x)dS(x) ,

which is a consequence of (1.3.1.24).
y

§1.3.4.5 (Continuity of BIOs in spaces of higher smoothness) Through Lipschitz parameterization of
Γ we can define Sobolev spaces on Γ, see [SS10, Sect 2.4]: A function f ∈ L2(Γ) belongs to H1(Γ), if
its pullback under the parameterization belongs to H1 on the parameter domain.

As explained in [SS10, Sect. 3.1.2], the trace operators and the layer potentials also enjoy continu-
ity in higher order Sobolev spaces. Hence, this is inherited by the boundary integral operators [SS10,
Rem. 3.1.18], [Ste08, Sect. 6.6.5].

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 61

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 1.3.4.6. “Higher” continuity of BIOs

The boundary integral operators from Def. 1.3.4.1 are continuous as operators mapping between

the following spaces:

single layer BIO: V : L2(Γ)→ H1(Γ) ,

double layer BIO: K : L2(Γ)→ L2(Γ) ,

adjoint double layer BIO: K′ : L2(Γ)→ L2(Γ) ,

hypersingular BIO: W : H1(Γ)→ L2(Γ) .

y

1.3.4.2 Integral Representations

“Integral representations” mean the possibility to write a boundary integral operator applied to a sufficiently

smooth function f : Γ→ R in the form

f 7→ {x 7→
∫

Γ
k(x, y) f (y)dS(y) x ∈ Γ} , (1.3.4.7)

with a kernel k : Γ × Γ → R. From Def. 1.3.4.1 it is not immediately clear that this is possible for the
four BIOs. However, for numerical purposes it is essential that such integral representations are at our
disposal.

§1.3.4.8 (Integral representation for single layer BIO) We have already noted

G∆(x, y) =

− 1

2π
log‖x− y‖ , if d = 2 ,

1

4π

1

‖x− y‖ , if d = 3 .
(1.2.2.33)

This implies that y 7→ G∆(x, y) is integrable even on Γ: {y 7→ G∆(x, y)} ∈ L1(Γ) for any x ∈ Rd.
Hence, for φ ∈ L∞(Γ) we have the integral representation as an improper (due to “G∆(x, x) = ∞”)
integral

(Vφ)(x) =
∫

Γ
G∆(x, y) φ(y)dS(y) . (1.3.4.9)

y

The situation is more involved for the remaining BIOs, because their kernels feature stronger singularities
and fail to be integrable on Γ.

§1.3.4.10 (Integral representation for double layer BIOs) The kernel of the double layer potential for
−∆

(Ψ∆
DLv)(x) =

∫

Γ

x− y

ωd‖x− y‖d
· n(y) v(y)dS(y) , ωd :=

{
2π for d = 2 ,

4π for d = 3 ,
(1.3.4.11)

is not integrable a priori. On smooth parts of Γ, however, we make the following observation:

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 62

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 19

x y

n(y)

Γ

Lemma 1.3.4.12.

If Γ is C2-smooth in a neighborhood of x ∈ Γ, then

|(x− y) · n(y)| = O(‖x− y‖2) (1.3.4.13)

for y ∈ Γ→ x.

✁ As y → x on Γ the normal n(y) becomes “more and more
orthogonal” to x− y, see [SS10, Lemma 2.2.14] for a rigor-
ous proof.

Under Ass. 1.2.1.5/Ass. 1.2.1.7 (Γ is a curved polygon/polyhedron with smooth faces) the kernel of
the double layer potential behaves like

k(x, y) =
x− y

ωd‖x− y‖d
· n(y) = O(‖x− y‖2−d) for y ∈ Γ→ x ,

for almost all x ∈ Γ.

Hence, for almost all x ∈ Γ we can take for granted the integral representation formulas

K(v)(x) =
∫

Γ

x− y

ωd‖x− y‖d
· n(y) v(y)dS(y) , x ∈ smooth part of Γ , (1.3.4.14)

K′(φ)(x) =
∫

Γ

y− x

ωd‖x− y‖d
· n(x) φ(y)dS(y) , x ∈ smooth part of Γ . (1.3.4.15)

A rigorous treatment and a discussion of what happens at edges and corners can be found in [Hac95,
Sect. 8.2] and [SS10, Sect. 3.3.3]. y

§1.3.4.16 (No integral representation for hypersingular BIO) Formally applying the Neumann trace
TN to the double layer potential ΨDL yields

(TNΨDLv)(x) =
∫

Γ

(
n(y) · n(x)

‖x− y‖d
− d

(n(y) · (x− y))(n(x) · (x− y))

‖x− y‖d+2

)
v(y)dS(y)

non-integrable for x ∈ Γ integrable by Lemma 1.3.4.12

There is no useful surface integral representation for then hypersingular integral operator.

y

1.3.4.3 Variational Form for Hypersingular BIO

Fortunately, it has been discovered that the hypersingular operator W in weak form is amenable to a
reformulation by integration by parts that curbs the strength of the singularity of the kernel.

Let us first examine that weak form: By Thm. 1.3.4.2 the hypersingular operator maps continuously W :

H
1
2 (Γ)→ H−

1
2 (Γ). Therefore, owing to Thm. 1.3.1.39, it gives rise to a continuous bilinear form

aW :

{
H

1
2 (Γ)× H

1
2 (Γ) → R

(u, v) 7→
∫

Γ
(Wu)(x) v(x)dS(x)

. (1.3.4.17)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 63

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

provided that u, v are “sufficiently smooth”, by “technical manipulations” equivalent expressions for
aW(u, v) can be derived that merely involve improper integrals on Γ.

§1.3.4.18 (Integration by parts on curves) Let γ : [0, 1] → R2 be a C2-parameterization of a curve Σ

with endpoints a, b. The arclength derivative of a function f ∈ C1(Σ) in y ∈ Σ is (̇ tags the derivative of
an univariate function)

d f

ds
(y) = Ḟ(t∗) ‖γ̇(t∗)‖−1 , y =: γ(t∗), F(t) := f (γ(t)) , 0 ≤ t, t∗ ≤ 1 . (1.3.4.19)

As a consequence of the chain rule, the arclength derivative is independent of the parameterization.

Given another function g ∈ C1(Σ), G := g ◦ γ, we find the integration by parts formula for the arclength
derivative:

∫

Σ

d f

ds
(y) g(y)dS(y) =

1∫

0

Ḟ(t)

‖γ̇(t)‖ G(t) ‖γ̇(t)‖dt =

1∫

0

Ḟ(t) G(t)dt

= F(1)G(1)− F(0)G(0)−
1∫

0

F(t) Ġ(t)dt

= f (b)g(b)− f (a)g(b)−
∫

Σ
f (y)

dg

ds
(y)dS(y) .

Let Γ be a closed curved Lipschitz polygon according to Ass. 1.2.1.5:

Γ = Γ1 ∪ · · · ∪ ΓM , C2-parameterizations γj : [0, 1]→ Γj ,
γj−1(1) = γj(1) ,

γM(1) = γ1(0) .

Then we apply the integration by parts formula for the arclength derivative on each segment and observe
that the endpoint contributions cancel:

Lemma 1.3.4.20. Arclength integration by parts

With Γ a closed Lipschitz curve satisfying Ass. 1.2.1.5 for f , g ∈ C1(Γ) we have

∫

Γ

d f

ds
(y) g(y)dS(y) = −

∫

Γ
f (y)

dg

ds
(y)dS(y) . (1.3.4.21)

y

§1.3.4.22 (Arclength derivative of restrictions) With the notations of the previous §, if f = f̃
∣∣∣
Σ

, where

f̃ is a C1-function defined in a neighborhood of Σ, then, by the chain rule,

d f

ds
(y) = grad f̃ (y) · t(y) , y ∈ Σ , (1.3.4.23)

with t standing for the unit tangent vector field at Σ:

Fig. 20

y

t(y)

n(y)

Σ

t(y) = n(y)⊥ :=

[−n2(y)
n1(y)

]
,

n(y) =

[
n1(y)
n2(y)

]
=̂ unit normal vector at Σ .

y

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 64

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§1.3.4.24 (Integration by parts of aW in 2D) We start from the formula for the double layer potential

(Ψ∆
DLu)(x) =

∫

Γ
grady G∆(x, y) · n(y) u(y)dS(y) ,

for u ∈ C1
pw(Γ) smooth on all segments of Γ. By elementary computations

∂G∆

∂xi
(x, y) = − 1

2π

∂

∂xi
{log‖x− y‖} = − 1

2π

yi − xi

‖x− y‖2
=

1

2π

xi − yi

‖x− y‖2
= −∂G∆

∂yi
(x, y) , x 6= y .

Hence, for y ∈ Γ,

∂

∂xi

(
grady G∆(x, y) · n(y)

)
= − grady

∂

∂yi
G∆(x, y) · n(y) , x 6= y .

d

ds

(
∂G∆

∂y1
(x, y)

)
= n1(y)

∂2G∆

∂y1∂y2
(x, y)− n2(y)

∂2G∆

∂y1
2
(x, y)

(∗)
= n1(y)

∂2G∆

∂y1∂y2
(x, y) + n2(y)

∂2G∆

∂y2
2
(x, y)

= n(y) · grady

(
∂G∆

∂y2
(x, y)

)
,

d

ds

(
∂G∆

∂y2
(x, y)

)
= −n(y) · grady

(
∂G∆

∂y1
(x, y)

)
.

In step (∗) we used that

∆yG∆(x, y) =
∂2G∆

∂y1
2
(x, y) +

∂2G∆

∂y2
2
(x, y) = 0 .

Using all these auxiliary results, we obtain for the partial derivatives of the double layer potential

∂Ψ∆
DL(u)

∂x1
(x) =

∫

Γ

∂

∂x1

(
grady G∆(x, y) · n(y)

)
u(y), dS(y)

= −
∫

Γ
grady

{
∂G∆

∂y1
(x, y)

}
· n(y)dS(y)

=
∫

Γ

d

ds

{
∂G∆

∂y2
(x, y)

}
u(y)dS(y)

= −
∫

Γ

∂G∆

∂y2
(x, y)

du

ds
(y)dS(y) ,

∂Ψ∆
DL(u)

∂x2
(x) =

∫

Γ

∂G∆

∂y1
(x, y)

du

ds
(y)dS(y) .

Now we attack the Neumann trace of the double layer potential in x ∈ Γ. We dodge issues of integrability
and and rely on formal manipulations (that can all be justified rigorously, of course). Using the above
expressions for grad Ψ∆

DL(u) we recover another arclength derivative:

(grad Ψ∆
DLu)(x) · n(x) =

∫

Γ

{
−n1(x)

∂G∆

∂y2
(x, y) + n2(x)

∂G∆

∂y1
(x, y)

}
du

ds
(y)dS(y)

∫

Γ

{
n1(x)

∂G∆

∂x2
(x, y)− n2(x)

∂G∆

∂x1
(x, y)

}
du

ds
(y)dS(y)

∫

Γ

d

ds(x)

{
G∆(x, y)

du

ds
(y)

}
dS(y) .

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 65

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This arclength derivative can be moved onto the second argument of the bilinear form aW:

aW(u, v) = −
∫

Γ
(grad ΨDLu)(x) · n(x) v(x)dS(x)

= −
∫

Γ

∫

Γ

d

ds(x)

{
G∆(x, y)

du

ds
(y)

}
dS(y) v(x)dS(x)

=
∫

Γ

∫

Γ
G∆(x, y)

du

ds
(y)

dv

ds
(x)dS(y)dS(x) .

Finally, we have arrived at an integral operator with the same integrable kernel as V. We traded this
reduction of the singularity of the kernel for the need to differentiate the argument functions.

Theorem 1.3.4.25. Integral representation of aW in 2D

If d = 2, u, v ∈ C1
pw(Γ), then the bilinear form aW from (1.3.4.17) induced by the hypersingular

operator W : H
1
2 (Γ)→ H−

1
2 (Γ) can be expressed as

aW(u, v) = − 1
2π

∫

Γ

∫

Γ
log‖x− y‖ du

ds
(y)

dv

ds
(x)dS(y)dS(x) , (1.3.4.26)

where d
ds designates the arclength derivative, see (1.3.4.19).

y

§1.3.4.27 (Surface gradient) For the statement of the 3D counterpart of Thm. 1.3.4.25 we need another
tool: Let Σ be an orientable surface with a C1-parameterization γ : Π ⊂ R2 → R3. For f ∈ C1(Σ) its
surface gradient gradΓ f is a tangential vector field defined as

(gradΓ f)(γ(x̂)) = Dγ(x̂)(grad F)(x̂) , x̂ ∈ Π , F := f ◦ γ . (1.3.4.28)

The surface gradient does not depend on the parameterization. y

§1.3.4.29 (Integration by parts of aW in 3D) Also the hypersingular operator in 3D is amenable to
manipulations similar to those in § 1.3.4.24. Yet, technicalities are formidable and we refer to [Ste08,
pp. 131-136] for the case of W, and to [SS10, Sect. 3.3.4] for the case of a general scalar second-order
differential operator. [Ste08, Thm. 6.17] reads as follows:

Theorem 1.3.4.30. Integral representation of aW in 3D

If d = 2, u, v ∈ C1
pw(Γ), then the bilinear form aW from (1.3.4.17) induced by the hypersingular

operator W : H
1
2 (Γ)→ H−

1
2 (Γ) can be expressed as

aW(u, v) =
1

4π

∫

Γ

∫

Γ

1

‖x− y‖
(
gradΓ u(y)× n(y)

)
·
(
gradΓ v(x)× n(x)

)
dS(y)dS(x) ,

(1.3.4.31)

where gradΓ designates the surface gradient, see (1.3.4.28), and × stands for the vector product.

y

1.3.5 Direct Boundary Integral Equations

Now we have all the building blocks ready to devise boundary integral equations that permit us to solve
boundary value problems.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 66

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The road to boundary integral equations (BIE):

Representation formula (1.3.0.2)

+
Trace operators TD & TN (→ Def. 1.3.1.1, Def. 1.3.1.20)

+
Jump relations, Thm. 1.3.3.15

✞
✝

☎
✆Boundary integral equations (BIEs)

In Def. 1.3.4.1 we defined boundary integral operators on Γ := ∂Ω by taking the average Dirichlet- and
Neumann traces of the two layer potentials. To facilitate notations we now tag traces from outside Ω with
“+”: generically T+, specifically T+

N, T+
D. For traces from inside Ω we keep the notations TD, TN, and

only occasionally write T−D, T−N to contrast them with exterior traces. For both T−N/TN and T+
N the normal

vector n points from Ω into Ω′ (exterior unit normal vector for Ω).

Using this new notation we can rewrite the definition of the boundary integral operators:

single layer BIO: V(φ) := 1
2

(
T+

D(Ψ
∆
SL(φ)) + T−D(Ψ

∆
SL(φ))

)
, φ ∈ H−

1
2 (Γ) ,

double layer BIO: K(v) := 1
2

(
T+

D(Ψ
∆
DL(v)) + T−D(Ψ

∆
DL(v))

)
, v ∈ H

1
2 (Γ) ,

adjoint double layer BIO: K′(φ) := 1
2

(
T+

N(Ψ
∆
SL(φ)) + T−N(Ψ

∆
SL(φ))

)
, φ ∈ H−

1
2 (Γ) ,

hypersingular BIO: W(v) := − 1
2

(
T+

N(Ψ
∆
DL(v)) + T−N(Ψ

∆
DL(v))

)
, v ∈ H

1
2 (Γ) .

We combine this with the jump relations of Thm. 1.3.3.15

T+
D(Ψ

∆
SL(φ))− T−D(Ψ

∆
SL(φ)) = 0 , T+

D(Ψ
∆
DL(v))− T−D(Ψ

∆
DL(v)) = v .

T+
N(Ψ

∆
SL(φ))− T−N(Ψ

∆
SL(φ)) = −φ , T+

N(Ψ
∆
DL(v))− T−N(Ψ

∆
DL(v)) = 0 .

Thus we can easily isolate interior and exterior traces of layer potentials:

T−D(Ψ
∆
SL(φ)) = V(φ) , T+

D(Ψ
∆
SL(φ)) = V(φ) , (1.3.5.1a)

T−D(Ψ
∆
DL(v)) = − 1

2v+ K(v) , T+
D(Ψ

∆
DL(φ)) =

1
2v+ K(v) , (1.3.5.1b)

T−N(Ψ
∆
SL(φ)) =

1
2 φ + K′(φ) , T+

N(Ψ
∆
SL(φ)) = − 1

2 φ + K′(φ) , (1.3.5.1c)

T−N(Ψ
∆
DL(v)) = −W(v) , T+

N(Ψ
∆
DL(φ)) = −W(v) . (1.3.5.1d)

Thus, when applying the trace operators to the representation formula for harmonic (∆u = 0) functions in
Ω

u(x) = Ψ∆
SL(TNu)−Ψ∆

DL(TDu) , u ∈ H1(Ω), ∆u = 0 , (1.3.5.2)

we obtain two boundary integral equations

Fundamental BIEs

[apply TD:] TDu = V(TNu)− (− 1
2 Id+ K)(TDu) , (1.3.5.4a)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 67

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

[apply TN:] TNu = (1
2 Id+ K′)(TNu) +W(TDu) . (1.3.5.4b)

The boundary integral equations can be written in various block operator forms using the conventions of
matrix×vector multiplication for operators on function spaces:

[
1
2 Id− K V

W 1
2 Id+ K′

][
TDu
TNu

]
=

[
TDu
TNu

]
⇔

[
1
2 Id+ K −V
−W 1

2 Id− K′

][
TDu
TNu

]
= 0 . (1.3.5.5)

The next result is the foundation of numerical methods relying on direct boundary integral equations,
because it tells us that solutions of boundary integral equations are in one-to-one relationship to solutions
of boundary value problems.

Theorem 1.3.5.6. Characterization of Cauchy data

A pair of functions (u, ψ) ∈ H
1
2 (Γ)× H−

1
2 (Γ) solves the boundary integral equations

[
1
2 Id− K V

W 1
2 Id+ K′

][
u

ψ

]
=

[
u

ψ

]
⇔

[
1
2 Id+ K −V
−W 1

2 Id− K′

][
u

ψ

]
= 0 , (1.3.5.7)

if and only if there is a function u ∈ H1(Ω) with ∆u = 0 in Ω such that

u = TDu , ψ = TNu . (1.3.5.8)

Proof. “⇒”: If (u, ψ) ∈ H
1
2 (Γ)× H−

1
2 (Γ) provide a solution of (1.3.5.7), then choose u according to

u(x) = Ψ∆
SL(ψ)(x)−Ψ∆

DL(u)(x) , x ∈ Ω ,

cf. (1.3.5.2). Lemma 1.2.5.8 and Lemma 1.2.5.15 confirm that we obtain a harmonic function. The trace
matching is a direct consequence of the BIEs (1.3.5.7) and (1.3.5.1).

“⇐”: The BIE (1.3.5.7) are a direct consequence of the representation theorem Thm. 1.3.3.4 and (1.3.5.1).

✷

Remark 1.3.5.9 (BIEs for general second-order scalar differential operators) All of the above devel-
opments and results for −∆ carry over to scalar second-order differential operators with constant coeffi-
cients, cf. (1.2.0.1), with suitable fundamental solutions and an altered definition of TN, of course, see
Rem. 1.3.1.42. y

1.3.5.1 First-kind BIEs

§1.3.5.10 (Model boundary value problems) Our goal is to solve either of the following two “canonical”
boundary value problems (BVPs) for the Laplacian −∆, which we give in strong form, though we usually
consider weak (variational) solutions.

✦ Dirichlet BVP: given g ∈ H
1
2 (Γ) find u ∈ H1(Ω) such that

−∆u = 0 in Ω , TDu = g on Γ . (1.3.5.11)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 68

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ Neumann BVP: given η ∈ H
− 1

2∗ (Γ) determine u ∈ H1
∗(Ω) such that

−∆u = 0 in Ω , TNu = η on Γ . (1.3.5.12)

The “∗-spaces” are defined as spaces of functions with vanishing average:

H
− 1

2∗ (Γ) := {φ ∈ H−
1
2 (Γ) :

∫

Γ
φ(x)dS(x) = 0} ,

H1
∗(Ω) := {v ∈ H1(Ω) :

∫

Ω
v dx = 0} .

This choice reflects

➣ the failure of the pure Neumann problem (1.3.5.12) to possess a unique solution
(adding an arbitrary constant yields another solution),

➣ the corresponding compatibility condition on the Neumann data η [NumPDE Ex. 1.8.0.10].

y

Now we formulate BIEs related to these boundary value problems for −∆. Of course, we cannot solve
for the function u ∈ H1(Ω), because BIEs are set in trace spaces. Rather, we consider a BVP solved in
the sense of BIEs, if both the Dirichlet trace TDu and the Neumann trace TNu of the solution have been
found. Then u can be recovered in a post-processing step based on evaluating the representation formula
(1.3.5.2).

§1.3.5.13 (First-kind BIEs for the Dirichlet problem) In the case of (1.3.5.11) we have to find the un-

known Neumann trace TNu ∈ H−
1
2 (Γ). Since TDu = g is know, we can get it from the BIE (1.3.5.4a)

V(TNu) = (1
2 Id+ K)g in H

1
2 (Γ) . (1.3.5.14)

Due to the mapping property V : H−
1
2 (Γ) → H

1
2 (Γ) and by the L2-duality of H

1
2 (Γ) and H−

1
2 (Γ), see

Thm. 1.3.1.39 and (1.3.1.41a),

u, v ∈ H
1
2 (Γ): u = v ⇔

∫

Γ
(u− v)(x) φ(x)dS(x) = 0 ∀φ ∈ H−

1
2 (Γ) , (1.3.1.41a)

this operator equation has a natural equivalent variational form (VF):

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id+ K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.5.15)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) . (1.3.5.16)

The bilinear form aV : H−
1
2 (Γ) × H−

1
2 (Γ) → R is clearly symmetric and bounded by Thm. 1.3.4.2

and Thm. 1.3.1.39. If we can show that it defines an equivalent inner product on H−
1
2 (Γ), also called

H−
1
2 (Γ)-elliptic, then the Riesz representation theorem will guarantee unique solvability of (1.3.5.15). In

3D the next theorem confirms this. An in-depth discussion is given in [Ste08, Sect. 6.6.1].

Theorem 1.3.5.17. Ellipticity of aV in 3D

For d = 3 the bilinear for aV is H−
1
2 (Γ)-elliptic:

∃C > 0: |aV(φ, φ)| ≥ C‖φ‖2

H−
1
2 (Γ)

∀φ ∈ H−
1
2 (Γ) . (1.3.5.18)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 69

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Proof. For d = 3 the decay conditions (1.1.7.1) satisfied by the single layer potential Ψ∆
SL ensure that

the pairing identity (1.3.1.35) holds for both domains Ω and Ω′, no matter whether they are bounded or
unbounded:

∫

Γ
(TNΨ∆

SL(φ))(x)(TDΨ∆
SL(φ))(x)dS(x) =

∫

Ω
‖grad ΨSL(φ)(x)‖2 dx . (1.3.5.19)

Based on the jump relations for Ψ∆
SL(φ) we deduce from (1.3.5.19)

∫

Γ
V(φ) φ(x)dS(x) = −

∫

Γ
TD(Ψ

∆
SL(φ))(x)

r
TNΨ∆

SL(φ)
z

Γ
(x)dS(x)

= 1
2

∫

Γ
TD(Ψ

∆
SL(φ))(x)TN(Ψ

∆
SL(φ))(x)− T+

D(Ψ
∆
SL(φ))(x)T+

N(Ψ
∆
SL(φ))(x)dS(x)

= 1
2

(∣∣∣Ψ∆
SL(φ)

∣∣∣
2

H1(Ω)
+
∣∣∣Ψ∆

SL(φ)
∣∣∣
2

H1(Ω′)

)
= ‖φ‖2

H−
1
2 (Γ)

,

thanks to Def. 1.3.1.27, which means

∣∣∣Ψ∆
SL(φ)

∣∣∣
2

H1(Ω)
+
∣∣∣Ψ∆

SL(φ)
∣∣∣
2

H1(Ω′)
=
∥∥φ̃
∥∥2

H̃−1(Ω) = ‖φ‖
2

H−
1
2 (Γ)

. (1.3.5.20)

Note that T+
N employs a normal vector field oriented opposite to the exterior normal vector field of Ω′. This

explains the flipping of signs in the above manipulations.
✷

The poor decay properties of Ψ∆
SL(φ) in 2D thwart (1.3.5.19). Nevertheless, the following result is avail-

able.

Theorem 1.3.5.21. Ellipticity of aV in 2D

For d = 2 the bilinear for aV is only H
− 1

2∗ (Γ)-elliptic.

If diam Ω < 1 then aV is H−
1
2 (Γ)-elliptic also for d = 2.

The variational problem

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id− K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.5.15)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) .

has a unique solution ψ for any g ∈ H
1
2 (Γ), provided that for d = 2 we have diam Ω < 1, because

in this case aV provides an inner product for H−
1
2 (Γ).

y

§1.3.5.22 (First-kind BIEs for the Neumann problem) In (1.3.5.12) the Neumann trace η ∈ H
− 1

2∗ (Γ) is
given and we seek the unknown Dirichlet trace TDu of the solution u. From (1.3.5.4b) we get

W(TDu) = (1
2 Id− K′)η in H−

1
2 (∆) . (1.3.5.23)

Invoking the duality relationship

φ, ψ ∈ H−
1
2 (Γ): ψ = φ ⇔

∫

Γ
(ψ− φ)(x) v(x)dS(x) = 0 ∀v ∈ H

1
2 (Γ) , (1.3.1.41b)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 70

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

an equivalent variational formulation (VF) of (1.3.5.23) is

u ∈ H
1
2∗ (Γ): aW(u, v) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2∗ (Γ) , (1.3.5.24)

aW(u, v) :=
∫

Γ
W(u)(x) v(x)dS(x) ,

where H
1
2∗ (Γ) :=

{
v ∈ H

1
2 (Γ) :

∫
Γ

v(x)dS(x) = 0
}

.

The need to restrict trial and test functions to the space H
1
2∗ (Γ) of functions with vanishing mean is clear

from the representations (1.3.4.26) and (1.3.4.31). They imply

aW(u, v) = 0 ∀v ∈ H
1
2 (Γ) ⇔ u ≡ const. . (1.3.5.25)

On the complement of its kernel aW enjoys ellipticity, see [Ste08, Sect. 6.6.2] for details.

Theorem 1.3.5.26. Ellipticity of aW

The bilinear form aW induced by the hypersingular boundary integral operator W : H
1
2 (Γ) →

H−
1
2 (Γ) is H

1
2∗ (Γ)-elliptic

∃C > 0: |aW(v, v)| ≥ C‖v‖2

H
1
2 (Γ)

∀v ∈ H
1
2∗ (Γ) . (1.3.5.27)

The variational problem (1.3.5.24) has a unique solution u ∈ H
1
2∗ (Γ) for any η ∈ H

− 1
2∗ (Γ).

y

Remark 1.3.5.28 (“First-kind”) Boundary integral equations are of the first kind if the mapping properties
of the boundary integral operator on the left-hand side support a natural variational formulation in energy
trace spaces via duality. Examples are (1.3.5.14) and (1.3.5.23). y

1.3.5.2 Second-kind BIEs

You might have been wondering why we simply ignored the second equation of (1.3.5.4) when treating the
Dirichlet problem in § 1.3.5.13, and why we skipped the first equation in the case of the Neumann problem
in § 1.3.5.22. The reason was that using these other equations will not result in a first-kind BIE. Now we
study what we get from them.

§1.3.5.29 (Second-kind BIE for the Dirichlet problem) We consider the boundary value problem
1.3.5.11. Knowing g = TDu we have to determine ψ := TNu. From (1.3.5.4b) we extract the BIE

(1
2 Id− K′)ψ = W(g) in H−

1
2 (Γ) . (1.3.5.30)

In light of the duality of Thm. 1.3.1.39, (1.3.1.41), a natural variational formulation of 1.3.5.30 is

ψ ∈ H−
1
2 (Γ):

∫

Γ
((1

2 Id− K′)ψ)(x) v(x)dS(x) =
∫

Γ
(Wg)(x) v(x)dS(x)[= aW(g, v)] ∀v ∈ H

1
2 (Γ) .

(1.3.5.31)

y

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 71

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§1.3.5.32 (Second-kind BIE for the Neumann problem) We want to solve the Neumann boundary value
problem (1.3.5.12) by finding the unknown Dirichlet data u := TDu. We use (1.3.5.4a) and end up with
the BIE

(1
2 Id+ K)u = Vη in H

1
2 (Γ) . (1.3.5.33)

The duality (1.3.1.41a) yields the equivalent variational equation:

u ∈ H
1
2∗ (Γ):

∫

Γ
((1

2 Id+ K)u)(x) φ(x)dS(x) =
∫

Γ
(Vη)(x) φ(x)dS(x)[aV(η, φ)] ∀φ ∈ H

− 1
2∗ (Λ) .

(1.3.5.34)

Note the different trial and test spaces both in (??) and (1.3.5.34). y

§1.3.5.35 (Variational formulations in L2(Γ)) Unfortunately the variational formulations (1.3.5.31) and
(1.3.5.34) share the undesirable (from the point of view of Galerkin discretization) feature that trial and test

spaces do no coincide.

This can be remedied by switching to variational formulations in L2(Γ). We multiply the BIEs (1.3.5.30)
and (1.3.5.33) with a test function w ∈ L2(Γ) and integrate over Γ. When also using L2(Γ) as trial space,
we end up with

ψ ∈ L2(Γ):
∫

Γ
((1

2 Id− K′)ψ)(x)w(x)dS(x) =
∫

Γ
(Wg)(x)w(x)dS(x) ∀w ∈ L2(Γ) , (1.3.5.36)

u ∈ L2
∗(Γ):

∫

Γ
((1

2 Id+ K)u)(x)w(x)dS(x) =
∫

Γ
(Vη)(x)w(x)dS(x) ∀w ∈ L2

∗(Γ) , (1.3.5.37)

with L2
∗(Γ) := {v ∈ L2(Γ) :

∫
Γ

v(x)dS(x) = 0}. Note that assuming g ∈ H1(Γ), thanks to Thm. 1.3.4.6

these variational equations are meaningful (right-hand and left-hand sides are continuous on L2(Γ)). Yet
the bilinear forms occurring in (1.3.5.36) and (1.3.5.37) are neither symmetric nor elliptic. Results on
existence and uniqueness of solutions of the BIEs (1.3.5.30) and (1.3.5.33), and the variational equations
(1.3.5.36) and (1.3.5.37) required profound mathematical tools [Ste08, Sect. 6.6.4]. y

Remark 1.3.5.38 (“Second-kind”) Boundary integral equations of the second kind are distinguished by a
left-hand side operator of the form cId+ T, where c 6= 0 and T is a continuous operator in L2. Obviously,
the BIEs (1.3.5.33) and (1.3.5.34) are of this type. y

1.3.6 Indirect Boundary Integral Equations

In the previous sections we used the fundamental result of Thm. 1.3.5.6 to obtain (variational) boundary
integral equations. Now we boldly “guess” a formula for the solutions of Dirichlet and Neumann boundary
value problems (1.3.5.11) and (1.3.5.12) and justify it a posteriori.

We start by recalling from Lemma 1.2.5.8 and Lemma 1.2.5.15 that

✔ ∆Ψ∆
SL = ∆Ψ∆

DL = 0 in Rd \ Γ ,

✔ Ψ∆
SL and Ψ∆

DL satisfy “decay conditions at ∞”.
(1.3.6.1)

Idea: Use trial expressions based on layer potentials:

u = Ψ∆
SL(φ) or u = Ψ∆

DL(f) (1.3.6.2)

with unknown functions φ, f : Γ → R for the solution u of the boundary value prob-
lems (1.3.5.11) and (1.3.5.12).

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 72

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Be aware that at this point we have no guarantee that the weak solution u ∈ H1(Ω) of the boundary value
problems allows any of the representations from (1.3.6.2). Strictly speaking, once we have proposed a way
how to determine φ or f we have to proof that the trial expression really satisfies the boundary conditions.

§1.3.6.3 (Indirect first-kind BIE for the Dirichlet problem) For the Dirichlet problem: given g ∈ H
1
2 (Γ)

find u ∈ H1(Ω) such that

−∆u = 0 in Ω , TDu = g on Γ , (1.3.5.11)

we try u = Ψ∆
SL(φ) .

We impose the prescribed trace by applying TD and use (1.3.5.1a), TDΨ∆
SL(φ) = V(φ):

BIE: V(φ) = g in H
1
2 (Γ) . (1.3.6.4)

By duality we obtain the natural variational formulation of this BIE in energy trace space:

φ ∈ H−
1
2 (Γ): aV(φ, ψ) =

∫

Γ
g(x)ψ(x)dS(x) ∀ψ ∈ H−

1
2 (Γ) . (1.3.6.5)

Notice that this variational problem is based on the same bilinear form aV as the first-kind variational
formulation (1.3.5.15).

Theorem 1.3.6.6. Validity of 1st-kind indirect BIE for Dirichlet problem

In the case d = 2 assume diam(Ω) < 1. Then u = Ψ∆
SL(φ) solves (1.3.5.11) for the unique

solution φ ∈ H−
1
2 (Γ) of (1.3.6.5).

Proof. Existence and uniqueness of a solution φ ∈ H−
1
2 (Γ) of (1.3.6.5) follows from Thm. 1.3.5.17 and

Thm. 1.3.5.21. That u complies with the boundary conditions is built into the BIE (1.3.6.4).
✷ y

§1.3.6.7 (Indirect first-kind BIE for the Neumann problem) We consider the Neumann problem: given

η ∈ H
− 1

2∗ (Γ) determine u ∈ H1
∗(Ω) such that

−∆u = 0 in Ω , TNu = η on Γ , (1.3.5.12)

we try u = Ψ∆
DL(f) .

To enforce the prescribed Neumann trace on u apply TN and use (1.3.5.1d):

BIE: W(f) = η in H−
1
2 (Γ) . (1.3.6.8)

Duality yields the natural variational formulation in energy trace spaces

f ∈ H
1
2∗ (Γ): aW(f, v) =

∫

Γ
η(x) v(x)dS(x) ∀v ∈ H

1
2∗ (Γ) . (1.3.6.9)

Again, we have arrived at a variational formulation involving the same bilinear form aW and trace spaces
as the first-kind variational problem (1.3.5.24).

Theorem 1.3.6.10. Validity of 1st-kind indirect BIE for Neumann problem

If f ∈ H
1
2∗ (Γ) is the unique solution of (1.3.6.9), then u := Ψ∆

DL(f) solves the Neumann problem

(1.3.5.12).

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 73

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Proof. The assertion is immediate from Thm. 1.3.5.26 and the construction of the BIE (1.3.6.8).
✷ y

Remark 1.3.6.11 (Meaning of “density unknowns” φ and v) The unknown functions φ ∈ H−
1
2 (Γ) in

(1.3.6.4) and v ∈ H
1
2∗ (Γ) in (1.3.6.8) do not agree with any trace of the solution u of the related BVP; they

are called densities.

However, there is a relationship with traces that we elaborate for (1.3.6.4). By the jump relations of
Thm. 1.3.3.15 we have for u = Ψ∆

SL(φ).

➊ JTNuKΓ =
r
TNΨ∆

SL(φ)
z

Γ
= −φ on Γ ,

➋ T−Du = T+
Du = V(φ) = g on Γ .

The solution φ ∈ H−
1
2 (Γ) of the indirect 1st-kind BIE (1.3.6.4) coincides with the jump across Γ of

the Neumann trace of the solutions of the Dirichlet BPVs (with data g) on Ω and Ω′.

The solution f ∈ H
1
2∗ (Γ) of the indirect 1st-kind BIE (1.3.6.8) coincides with the jump across Γ of the

Dirichlet trace of the solutions of the Neumann BPVs (with data η) on Ω and Ω′.

y

1.4 Boundary Element Methods in Two Dimensions

§1.4.0.1 (A C++ 2D BEM code ➺GITLAB) To demonstrate principles of implementation of 2D BEM
we rely on a C++ port by C. Urzua (formerly, SAM, ETH Zurich, now University of Graz, Austria) of the
MATLAB BEM code HILBERT [Aur+14] developed in the group of D. Praetorius at TU Wien.

The C++ library provides functions for the assembly of boundary element Galerkin matrices that will be
used for homework coding projects. Meshes (→ Def. 1.4.2.5) of a closed connected curve Γ := ∂Ω,
Ω ⊂ R2 are stored in BoundaryMesh objects, see Code 1.4.2.57. In the sequel let nV ∈ N and nE

denote the number of vertices and panels of the current mesh G.

• void computeV(Eigen::MatrixXd& V,const BoundaryMesh& mesh,double eta)

This function constructs the Galerking matrix V ∈ RnE,nE for the bilinear form aV induced by the
single layer BIO V, using S−1

0 (G) as test and trial space, equipped with the characteristic functions

βi
N ∈ S−1

0 (G), i = 1, . . . , nE, of panels as basis, see Ex. 1.4.2.17.

(V)ij = aV(β
j
N, βi

N) = −
1

2π

∫

πi

∫

π j

log‖x− y‖dS(y)dS(x) , i, j = 1, . . . , nE . (1.4.0.2)

Here and below, the input argument eta is the so-called admissibility parameter and defines which
entries are to be computed analytically (as in Section 1.4.3.2) or semi-analytically using numerical
quadrature for some of the integrals. Specifying eta=0.0 selects analytic formulas throughout.

• void computeW(Eigen::MatrixXd& W,const BoundaryMesh& mesh,double eta)

This function builds the Galerking matrix W ∈ RnV ,nV of the bilinear form aW induced by the hy-

persingular BIO W, using S0
1 (G) as test and trial spaces, endowed with the “tent function” basis

{b1
N, . . . , bnV

N }, see Ex. 1.4.2.19. The matrix entries are

(W)ij = aW(b
j
N, bi

N) = −
1

2π

∫

Γ

∫

Γ
log‖x− y‖db

j
N

ds
(y)

dbi
N

ds
(x)dS(y)dS(x) , (1.4.0.3)

for i, j = 1, . . . , nV .

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 74

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert
http://www.asc.tuwien.ac.at/abem/?open=hilbert
http://www.asc.tuwien.ac.at/abem/?open=praetorius

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• void computeK(Eigen::MatrixXd& K, const BoundaryMesh& mesh, double

eta)

This function assembles the Galerking matrix K ∈ RnE,nV of the bilinear form induced by the double

layer BIO K, using S−1
0 (G) and S0

1 (G) as test and trial spaces, respectively. The standard nodal
bases from Ex. 1.4.2.17 and Ex. 1.4.2.19 are employed and we get for the matrix entries

(K)ij = aK(b
j
N, βi

N) = −
1

2π

∫

πi

∫

supp b
j
N

x− y

‖x− y‖2
· n(y)bj

N(y)dS(y)dS(x) , (1.4.0.4)

for i ∈ {1, . . . , nE}, j ∈ {1, . . . , nV}.
• void computeK00(Eigen::MatrixXd& K, const BoundaryMesh& mesh, double

eta)

This function assembles the Galerking matrix K ∈ RnE,nE of the bilinear form induced by the double

layer BIO K, using S−1
0 (G) as test and trial space, equipped with the characteristic functions of

panels as basis.

(K0)ij = aK(β
j
N, βi

N) = −
1

2π

∫

πi

∫

π j

x− y

‖x− y‖2
· n(y)dS(y)dS(x) , (1.4.0.5)

for i, j = 1, . . . , nE.

• void computeM01(Eigen::SparseMatrix<double> &M, const BoundaryMesh&

mesh)

This function creates the so-called mass matrix M ∈ RnE,nV as defined in (1.4.2.39c). (Note that
for this case you need to initialize the matrix passed in M with its size before calling this function).
Please consult [NumCSE Section 2.7.2] to learn about data structures for sparse matrices in EIGEN.

• void computeM00(Eigen::SparseMatrix<double> &M, const BoundaryMesh&

mesh)

This function creates another mass matrix M0 ∈ RnE,nE , a Galerkin matrix for the L2(Γ)-inner prod-
uct using S−1

0 (G) as trial and test space (with the standard nodal basis consisting of characteristic
functions of panels). As before, you must initialize the matrix M with its size nE × nE.

We refer to the Doxygen documentation of the library for further details on the implementation of these
methods. y

1.4.1 Abstract Galerkin Discretization

Regardless of whether we tackle the first-kind variational boundary integral equations (1.3.5.15)/(1.3.5.24)
set in energy trace space or the second-kind versions (1.3.5.36)/(1.3.5.37), we face linear variational
problems (→ Def. 1.1.5.1)

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.5.2)

posed on function spaces V = V0 on Γ in each case. In this section we recall from [NumPDE Sec-
tion 2.2] the policy of Galerkin discretization as an abstract approach for the approximate solution of linear
variational problems on infinite-dimensional spaces.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 75

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Galerkin approximation

Idea of Galerkin approximation:
Replace V0 in (1.1.5.2) with a finite dimensional subspace VN.
(VN ⊂ V0 called Galerkin (or discrete) trial space/test space)

Notation: Twofold nature of symbol “N”, cf. [NumPDE ??]:

✦ N = formal index, tagging “discrete entities” (→ “finite amount of information”)
✦ N = dim VN ∈ N =̂ dimension of Galerkin trial/test space

Discrete variational problem (DVP), cf. [NumPDE ??],

uN ∈ VN : a(uN, vN) = ℓ(vN) ∀vN ∈ VN . (1.4.1.2)

Galerkin solution

The discrete variational problem is “discrete” in the sense that it involves only a finite number N of degrees
of freedom, but it is still not amenable to direct implementation. To that end, it has to be recast as a linear
system of equations (LSE), which can be accomplished as follows:

Second step of Galerkin discretization

Recall from [NumPDE ??]: 2nd step of Galerkin discretization:

Introduce (ordered) basis BN of VN:

BN := {b1
N, . . . , bN

N} ⊂ VN , VN = Span{BN} , N := dim(VN) .

Unique basis expansions:

uN = µ1b1
N + · · ·+ µNbN

N , µi ∈ R

vN = ν1b1
N + · · ·+ νNbN

N , νi ∈ R
: plug into (1.4.1.2).

Remark 1.4.1.4 (Affine space V) In Section 1.1.5 we saw the use of an affine space V = g + V0 with a
so-called offset function g (→ [NumPDE Def. 5.2.2.20]) in order to impose essential boundary conditions
in (1.1.5.5). Since the boundary integral equations that we have encountered so far do not involve any
“essential conditions” to be taken into account in the trial trace, we will have V = V0 in the sequel. y

The derivation of a linear system of equations equivalent to (1.4.1.2) boils down to inserting the unique
basis expansions into (1.4.1.2) and exploiting the linearity of both a and ℓ.

uN ∈ V0,N : a(uN, vN) = ℓ(vN) ∀vN ∈ VN . (1.4.1.2)

m [
uN = µ1b1

N + · · ·+ µNbN
N ,µi ∈ R

vN = ν1b1
N + · · ·+ νNbN

N ,νi ∈ R
]

N

∑
k=1

N

∑
j=1

µkνja(b
k
N, b

j
N) =

N

∑
j=1

νjℓ(b
j
N) ∀ν1, . . . , νN ∈ R ,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 76

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

m
N

∑
j=1

νj

(
N

∑
k=1

µka(b
k
N, b

j
N)− ℓ(b

j
N)

)
= 0 ∀ν1, . . . , νN ∈ R ,

m(∗)
N

∑
k=1

µka(b
k
N, b

j
N) = ℓ(b

j
N) for j = 1, . . . , N .

m [~µ = (µ1, . . . , µN)
⊤ ∈ RN]

A linear system of equations

A~µ = ~ϕ , with

A =
(
a(bk

N, b
j
N)
)N

j,k=1
∈ RN,N ,

~ϕ =
(
ℓ(b

j
N)
)N

j=1
.

Summary: notions connected with Galerkin discretization

Linear discrete variational problem
uN ∈ VN : a(uN, vN) = ℓ(vN) ∀vN ∈ VN

Choosing basis BN−−−−−−−−−−→
Linear system

of equations
A~µ = ~ϕ

Galerkin matrix (GalM): A =
(
a(bk

N, b
j
N)
)N

j,k=1
∈ RN,N ,

Right hand side vector: ~ϕ =
(
ℓ(b

j
N)
)N

j=1
∈ RN ,

Coefficient vector: ~µ = (µ1, . . . , µN)
⊤ ∈ RN ,

Recovery of solution: uN = ∑
N

k=1
µk bk

N .

Assuming exact arithmetic, the second step of Galerkin discretization is a “mere aspect of implementation”
and will not affect the quality of the Galerkin solution.

Theorem 1.4.1.6. Independence of Galerkin solution of choice of basis [NumPDE

Thm. 2.2.2.6]

The choice of the basis B has no impact on the (set of) Galerkin solutions uN of (1.4.1.2).

1.4.2 Boundary Element Spaces on Curves

Now we are concerned with defining suitable trial and test spaces for the Galerkin discretization of the

variational BIEs We seek “simple” finite-dimensional subspaces of the energy trace spaces H
1
2 (Γ) (→

Def. 1.3.1.6), H−
1
2 (Γ) (→ Def. 1.3.1.27) for the first-kind BIEs (1.3.5.15) and (1.3.5.24), and of L2(Γ) for

the second-kind BIEs (1.3.5.36) and (1.3.5.37).

The new Galerkin trial and test spaces will be called boundary element (BE) spaces and will be of a “piece-
wise polynomial type”. The construction of these spaces will rely on many of the principles underlying the
design of finite element spaces in 1D, see [NumPDE ??]. This reflects a rather general relationship.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 77

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Boundary element methods (BEM)
= Finite element methods (FEM) for variational BIEs on curves and surfaces

§1.4.2.1 (Main ingredients of FEM) In light of the above relationships it is useful to recall the building
blocks of FEM from [NumPDE Section 2.5]:

✦ A mesh/triangulation of the computational domain, see [NumPDE Section 2.5.1], in particular
[NumPDE Def. 2.5.1.1],

✦ local polynomial spaces defined on the cells of the mesh, see [NumPDE Section 2.5.2],

✦ and local and global shape functions (→ [NumPDE Section 2.5.3], [NumPDE Def. 2.5.3.4]) providing
bases BN of the finite element space VN.

Another fundamental paradigm in the field of finite element methods is the parametric construction of
finite element spaces based on the pullback under suitable transformations of shape functions defined on
reference elements, see [NumPDE Section 2.8], [NumPDE Def. 2.8.3.1], and § 1.4.2.24 below. y

1.4.2.1 Curve Partitionings

Now we introduce the counterparts of the building blocks of finite element methods for boundary element
methods on closed curves Γ := ∂Ω, Ω ⊂ R2.

§1.4.2.2 (Curved closed polygons) We assume that Γ is a connected curved closed Lipschitz polygon
according to Ass. 1.2.1.5. There is a (small) number M ∈ N

Γ = Γ1 ∪ · · · ∪ ΓM , Γi ∩ Γj = ∅ , (1.4.2.3)

where the Γj, j = 1, . . . , M, are the edges of Γ with C2 parameterizations

γ : [−1, 1]→ Γj , j = 1, . . . , M ,

γj(1) = γj+1(−1) , j = 1, . . . , M− 1 , γ1(−1) = γM(1)︸ ︷︷ ︸
⇒ close curve

. (1.4.2.4)

We assume that point evaluations of γ and its derivative γ̇ are cheap and, inside a code, provided by
simple function calls. y

Definition 1.4.2.5. Mesh/partitioning of a curve

A mesh/partitioning of a closed curved polygon according to Ass. 1.2.1.5 is a decomposition

Γ =
M⋃

j=1

Nj⋃

i=1

π
(j)
i , π

(j)
i = γj(]ξ

(j)
i−1, ξ

(j)
i [) , i = 1, . . . , Nj, Nj ∈ N, j = 1, . . . , M , (1.4.2.6)

induced by grids of the parameter intervals [−1, 1]:

−1 =: ξ
(j)
0 < ξ

(j)
1 < · · · < ξ

(j)
Nj−1 < ξ

(j)
Nj

:= 1 . (1.4.2.7)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 78

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Mesh/partition of Γ induced by partitions of parame-
ter intervals ✄

Terminology:

• vertices: x
(j)
i = γ(ξ

(j)
i), i = 0, . . . , Nj,

• panels: π
(j)
i = γj(]ξ

(j)
i−1, ξ

(j)
i [),

i = 1, . . . , Nj .
(In the context of FE methods we use the terms
“cells” or “elements” instead of “panels” to denote the
(open) sets forming the mesh partition.)

Fig. 21

Ω

−1 1ξ1

γ1

Γ1

x
(1)
0

x
(1)
1

x
(1)
2

✎ Notation: We write GΓ (or simply G if Γ is clear from the context) to denote a mesh/partitioning of Γ and
also the set of its panels.

We define the size hπ of the panel π ∈ G as its diameter: hπ := diam π = ‖a− b‖, where a, b
are the endpoints of π. Since the parameterizations γj are fixed C2-diffeomorphisms (twice continuously

differentiable, invertible, with also γ−1 twice continuously differentiable), for any mesh GΓ of a given closed
curved polygon Γ we have bi-Lipschitz continuity

∃c, c > 0: c|ξ − η| ≤
∥∥∥γj(ξ)− γj(η)

∥∥∥ ≤ length(γ(]ξ, η[)) ≤ c|ξ − η| ∀ξ, η ∈ [−1, 1] ,

for some constants 0 < c < c. So the size of a panel is “about the same” as the length of its associated
parameter interval.

1.4.2.2 Piecewise Polynomial Functions on Curves

We write Pp = Pp(R1) for the space of univariate polynomials of degree ≤ p, p ∈ N. This is a vector
space of dimension p + 1.

The construction of boundary element spaces will be parametric from the beginning, relying on the lo-
cal parameterization of Γ. The reader is advised to refresh his knowledge of parametric finite elements
[NumPDE Section 2.8].

Definition 1.4.2.8. Pullback from a curve

The pullback γ∗j f of a function f : Γj → R, Γj on an edge of the parameterized curved polygon Γ

according to Ass. 1.2.1.5, is defined as

γ∗j f :]−1, 1[→ R , γ∗j f (ξ) := f (γj(ξ)) , −1 < ξ < 1 . (1.4.2.9)

Adapting the notations for Lagrangian finite element spaces from [NumPDE Section 2.6] we write:

S0
p(G) :=

{
v ∈ C0(Γ) : γ∗j (v|π) ∈ Pp, ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M

}
, p ≥ 1 , (1.4.2.10)

S−1
p (G) :=

{
v ∈ L2(Γ) : γ∗j (v|π) ∈ Pp, ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M

}
, p ≥ 0 . (1.4.2.11)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 79

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Notations explained: S0
p(G)

continuous functions, cf. C0(Ω)

locally polynomials of degree p , e.g. Pp(Rd)

S−1
p (G) discontinuous functions

locally polynomials of degree p , e.g. Pp(Rd)

[S stands for “scalar-valued”.]

As a consequence of Cor. 1.3.1.17 and Thm. 1.3.1.36 we conclude the following embeddings:

Corollary 1.4.2.12. Embeddings of boundary element spaces

The boundary element spaces defined in (1.4.2.10) and (1.4.2.11) satisfy

S0
p(G) ⊂ C1

pw(Γ) ⊂ H
1
2 (Γ),

S−1
p (G) ⊂ C0

pw(Γ) ⊂ L2(Γ) ⊂ H−
1
2 (Γ),

where “pw” refers to the mesh G.

However note that S−1
p (G) 6⊂ H

1
2 (Γ), as we saw in Ex. 1.3.1.14.

§1.4.2.13 (Dimensions of boundary element spaces on curves) From dimPp = p + 1 and the fact

that the condition S0
p(G) ⊂ C0(Γ) “removes one degree of freedom per vertex of G”, we deduce the

dimensions of boundary element spaces by a counting argument.

Theorem 1.4.2.14. Dimensions of BE spaces on curves

dimS0
p(G) = p · ♯G, p ≥ 1 and dimS−1

p (G) = (p + 1) · ♯G, p ≥ 0.

✎ Notation: ♯G =̂ no. of panels contained in G
y

1.4.2.3 Shape Functions

Following the terminology for finite element methods from [NumPDE Section 2.5.3], the elements of an
(ordered) basis BN := {b1

N, . . . , bN
N} of a boundary element space are called (global) shape functions

(GSF).

✎ Notation: We write BN := {b1
N, . . . , bN

N} for some basis of the boundary element space VN, N :=
dim VN.

The shape functions for boundary element methods have to meet the same requirements as those for
finite element methods:

Properties of global shape functions (GSF)

Basis functions b1
N, . . . , bN

N for a boundary element trial/test space VN built on a mesh G must

satisfy:
(a) BN := {b1

N, . . . , bN
N} is a basis of VN ➣ N = dim VN,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 80

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(b) each bi
N is associated with a single geometric entity (panel/edge/vertex) of G,

(c) supp(bi
N) =

⋃
{π: π ∈ G, p ∈ π}, if bi

N is associated with the panel/edge/vertex p.

§1.4.2.16 (Local supports of global shape functions) Condition 1.4.2.15 means that global shape
functions have small local supports. Concretely, for a mesh of a closed curve (→ Def. 1.4.2.5), which
comprises the geometric entities “vertices” and “panels”, we have that

✦ if bi
N is associated with a vertex x, its support supp bi

N is the union of the panels adjacent to x,

✦ if bi
N is associated with a panel π, then supp bi

N = π.

y

EXAMPLE 1.4.2.17 (A basis for S−1
0 (G)) S−1

0 (G) is the space of piecewise constant (pwc) functions on
the mesh G. As natural global shape functions we choose the characteristic functions of the panels

βπ
N(x) :=

{
1 , if x ∈ π ,

0 elsewhere on Γ .

which results in the basis (a “nodal basis”)

BN = {βπ
N, π ∈ G} ⊂ S−1

0 (G) , (1.4.2.18)

with ♯BN = ♯G, matching Thm. 1.4.2.14. y

EXAMPLE 1.4.2.19 (Nodal basis for S0
1 (G))

For a mesh G of a closed curve with vertices
V(G) := {x1, . . . , xN}, N ∈ N, we define the
tent function (hat function) associated with a vertex
p ∈ V(G), cf. 1.4.2.15, as in [NumPDE § 2.3.1.4] by

b
p
N ∈ S0

1 (G) ,

b
p
N(x) =

{
1 , if x = p ,

0 . if x ∈ V(G) \ {p} .

(1.4.2.20)

supp b
p
N =

⋃
{π ∈ G : p ∈ π} .

Two tent functions drawn over a surface mesh ✄

Fig. 22

Ω

x

y

bx
N

b
y
N

1

1

y

§1.4.2.21 (Local shape functions (LSF)) Local shape functions for boundary element spaces are de-
fined in exactly the same way as for finite element spaces [NumPDE Def. 2.5.3.4]. Given a panel G of
a mesh G of Γ and a boundary element space VN with basis BN =

{
b1

N, . . . , bN
N

}
, N := dim VN, we

define the set of local shape functions (LSF) of VN associated with the panel π as

{b1
π , . . . , bQ

π} = {bN|π : bN ∈ BN} \ {0} for some Q = Q(π) ∈ N . (1.4.2.22)

In words, the set of local shape functions for a panel π is the set of non-zero restrictions of global shape
functions to that element. By the very definition of S0

p(G) and S−1
p (G) through pullback, see (1.4.2.10)

and (1.4.2.11), we have

∀π ∈ G , π ⊂ Γj: γ∗j (Span{b1
π , . . . , bQ

π}) = Pp , (1.4.2.23)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 81

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

if {b1
π , . . . , bQ

π} is the set of local shape functions for S0
p(G) or S−1

p (G) on π. The local shape functions
span full polynomial spaces in this case. y

§1.4.2.24 (Parametric construction of local shape functions) For every panel π := γj(]η1, η2[) ⊂ Γj,
−1 ≤ η1, η2 ≤ 1, of the mesh G of a closed curve Γ we denote by

γπ(ξ) := γ
(

1
2((1− ξ)η1 + (ξ + 1)η2

)
, ξ ∈]−1, 1[, (1.4.2.25)

a parameterization of π over the reference interval Î :=]−1, 1[: π = γπ(Î). For instance, if the panel
is a straight oriented line segment

π = [a, b] , a, b ∈ R2 γπ(ξ) =
1
2(1− ξ)a + 1

2(ξ + 1)b , −1 ≤ ξ ≤ 1 . (1.4.2.26)

In the parametric approach the set of local shape functions {b1
π , . . . , bQ

π} on π is defined through a given

set of reference shape functions {b̂1, . . . , b̂Q} ⊂ C0(Î) on Î according to [NumPDE Eq. (2.8.2.4)]

b̂j = γ∗π(b
j
π) , j = 1, . . . Q . (1.4.2.27)

Be aware that the choice of b̂j has to make sure that the resulting local shape functions can be “glued”
into global shape functions satisfying potential continuity constraints [NumPDE § 2.8.2.6]. Of course, the
b̂j may depend on π, which was ignored in (1.4.2.27).

For the boundary element spaces S0
p(G) and S−1

p (G) the reference shape functions do not depend on
the panel and are of the form

S−1
p (G): {β̂1, . . . , β̂p+1}= any basis of Pp , p ≥ 0 , (1.4.2.28)

S0
p(G): b̂1(ξ) = 1

2(1− ξ) , b̂2(ξ) = 1
2(ξ + 1) , (1.4.2.29)

b̂j(ξ) = (1− ξ2)qj−3(ξ) , j = 3, . . . , p + 1 , {q0, . . . , qp−2} a basis of Pp−2 . (1.4.2.30)

In (1.4.2.29) the choice of b̂1 and b̂2 and the fact that b̂j(−1) = b̂j(1) = 0, j = 3, . . . , p + 1, makes
possible a gluing that respects the constraint bi

N ∈ C0(Γ). y

Supplement 1.4.2.31 (Stability of local shape functions) For larger values of the polynomial degree p

stability of the reference shape functions b̂1, . . . , b̂Q becomes an issue. Following the recommendation of
[NumPDE Rem. 4.3.0.5] a good choice is basis functions derived from orthogonal polynomials:

for S−1
p (G): β̂j = Pj−1 , j = 1, . . . , p + 1 , (1.4.2.32)

for S0
p(G): b̂1(ξ) = 1

2(1− ξ) , b̂2(ξ) = 1
2(ξ + 1) , (1.4.2.33)

b̂j(ξ) =
∫ ξ

−1
Pj−2(τ)dτ , j = 3, . . . , p + 1 .

Here, Pn is the n-th Legendre polynomial [NumPDE Def. 4.3.0.9]. The higher degree reference shape
functions for S0

p(G) are called integrated Legendre polynomials; b̂j(±1) = 0 for j ≥ 3 follows from the

L2(Î)-orthogonality of the Legendre polynomials.
y

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 82

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.4.2.4 Solving Boundary Value Problems via Galerkin BEM

This section discusses the use of Galerkin boundary element methods to solve the boundary value prob-
lems introduced in § 1.3.5.10, the

✦ Dirichlet BVP: given g ∈ H
1
2 (Γ) find u ∈ H1(Ω) such that

−∆u = 0 in Ω , TDu = g on Γ , (1.3.5.11)

✦ and the Neumann BVP: given η ∈ H
− 1

2∗ (Γ) determine u ∈ H1
∗(Ω) such that

−∆u = 0 in Ω , TNu = η on Γ . (1.3.5.12)

For standard Galerkin discretization we need finite dimensional subspaces of the trace space on which
the variational BIEs are posed:

function space Eligible BE space(s)

H−
1
2 (Γ) S−1

p (G), p ≥ 0 and S0
p(G), p ≥ 1

L2(Γ) S−1
p (G), p ≥ 0 and S0

p(G), p ≥ 1

H
1
2 (Γ) S0

p(G), p ≥ 1, only

G =̂ mesh of Γ

§1.4.2.34 (Approximation of data) For implementation we also need a discrete representation of the

data, of g ∈ H
1
2 (Γ) for (1.3.5.11), and of η ∈ H−

1
2 (Γ) for (1.3.5.12).

Assumption 1.4.2.35. Data in procedural form

The data functions y 7→ g(y) and y 7→ η(y) can be evaluated at any point y ∈ Γ.

For instance, the data functions may be supplied through a function of the signature ➣ CppRef

std::function<double(double)> .

Then we can replace

g with gN ∈ S0
q (G), q ∈ N, obtained by G-piecewise polynomial interpolation of g (always including the

vertices of the mesh into the sets of interpolation nodes),

η with ηN ∈ S−1
q (G), q ∈ N0, obtained by G-piecewise local polynomial interpolation of g on each panel.

y

§1.4.2.36 (Galerkin BEM for 1st-kind direct BIE for Dirichlet BVP) As explained in § 1.3.5.13, the
Dirichlet BVP (1.3.5.11) can be solved through the variational BIE

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id+ K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.5.15)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) .

Using S−1
p (G) ⊂ H−

1
2 (Γ) as Galerkin trial and test space we arrive at the discrete variational problem

ψN ∈ S−1
p (G): aV(ψN, φN) =

∫

Γ
(1

2 Id+ K)gN(x) φN(x)dS(x) ∀φN ∈ S−1
0 (Γ) , (1.4.2.37)

where the data g have already been approximated by gN ∈ S0
q (G), q ≥ 1. In order to balance accuracy,

the choice q = p + 1 is recommended.

Choosing bases

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 83

http://en.cppreference.com/w/cpp/utility/functional/function

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

B−1 = {β1
N, . . . , βN

N}, N := dimS−1
p (G), for S−1

p (G), and

B0 = {b1
N, . . . , bK

N}, K := dimS0
q (G), for S0

q (G),
and writing

~γ ∈ RK, K = dimS0
q (G), for the coefficient vector of gN with respect to B0, and

~ψ ∈ RN, N := dimS−1
p (G), for the coefficient vector of ψN with respect to B−1,

we obtain the linear systems of equations

V~ψ = (1
2 M + K)~γ , (1.4.2.38)

with the Galerkin matrices

V =
(
aV(β

j
N, βi

N)
)N

i,j=1

=

(
− 1

2π

∫

Γ

∫

Γ
log‖x− y‖ β

j
N(y) βi

N(x)dS(y)dS(x)

)N

i,j=1

∈ RN,N , (1.4.2.39a)

K =

(∫

Γ
(Kb

j
N)(x) βi

N(x)dS(x)

)

i=1,...,N
j=1,...,K

∈ RN,K , (1.4.2.39b)

M =

(∫

Γ
βi

N(x) b
j
N(x)dS(x)

)

i=1,...,N
j=1,...,K

∈ RN,K . (1.4.2.39c)

y

§1.4.2.40 (Galerkin BEM for 1st-kind direct BIE for Neumann BVP) To solve the Neumann BVP
(1.3.5.12) by Galerkin BEM we can start from the variational BIE

u ∈ H
1
2∗ (Γ): aW(u, v) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2∗ (Γ) , (1.3.5.24)

aW(u, v) :=
∫

Γ
W(u)(x) v(x)dS(x) ,

posed on spaces of functions with vanishing mean. Unfortunately, there is no way to reconcile the zero
mean condition and the advantages of locally supported bases for boundary element spaces. Therefore,
we switch to an augmented variational formulation by explicitly adding the zero mean constraint: We seek

the Dirichlet trace u ∈ H
1
2 (Γ), α ∈ R, such that

aW(u, v) + α
∫

Γ
v(x)dS(x) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2 (Γ) ,

∫

Γ
u(x)dS(x) = 0 .

(1.4.2.41)

Obviously, a vanishing mean value for the solution u is enforced through the second equation. The un-
known α is a so-called Lagrangian multiplier for the scalar zero mean constraint imposed in the second
line of the augmented variational formulation.

As Galerkin trial and test we must use S0
p(G) ⊂ H

1
2 (Γ). After replacing η with an approximation ηN ∈

S−1
q (G) (→ § 1.4.2.34), we thus get the discrete variational problem: Seek uN ∈ S0

p(G), α ∈ R:

aW(uN, vN) + α
∫

Γ
vN(x)dS(x) =

∫

Γ
(1

2 Id− K′)ηN(x) vN(x)dS(x) ∀vN ∈ S0
p(G) ,

∫

Γ
uN(x)dS(x) = 0 .

(1.4.2.42)

As above choosing bases

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 84

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

B0 = {b1
N, . . . , bN

N}, N := dimS0
p(G), for S0

p(G), and

B−1 = {β1
N, . . . , βK

N}, K := dimS−1
p (G), for S−1

p (G),
and writing

~η ∈ RK, K = dimS−1
q (G), for the coefficient vector of ηN with respect to B−1, and

~µ ∈ RN, N = dimS0
p(G), for the coefficient vector of uN with respect to B0,

we end up with the linear systems of equations

[
W c

c⊤ 0

][
~µ
α

]
=

[(
1
2 M⊤ + K⊤

)
~η

0

]
, (1.4.2.43)

with the Galerkin matrices M and K from (1.4.2.39), and

W =
(
aW(b

j
N, bi

N)
)N

i,j=1
=

(
− 1

2π

∫

Γ

∫

Γ
log‖x− y‖ db

j
N

ds
(y)

dbi
N

ds
(x)dS(y)dS(x)

)N

i,j=1

, (1.4.2.44)

c =

(∫

Γ
b

j
N(x)dS(x)

)N

j=1

∈ RN . (1.4.2.45)

Note that we also used that the double layer BIOs are adjoint to each other, see Suppl. 1.3.4.3,
∫

Γ
(Ku)(x) φ(x)dS(x) =

∫

Γ
u(x) (K′φ)(x)dS(y) , ∀u ∈ H

1
2 (Γ), φ ∈ H−

1
2 (Γ) . (1.4.2.46)

Therefore, we can reuse the Galerkin matrix K of the double layer boundary integral operator and simply
transpose it to discretize K′. y

1.4.2.5 Approximation of Curves

In most BEM codes the curve Φ is represented by a piecewise polynomials model: Instead of relying on
the “exact” parameterization γj of the edge Γj, one uses a piecewise polynomial approximate parameteri-
zation. Here, “piecewise” refers to the partitioning

[−1, 1] = [ξ
(j)
0 , ξ

(j)
1] ∪ [ξ

(j)
1 , ξ

(j)
2] ∪ · · · ∪ [ξ

(j)
Nj−1, ξ

(j)
Nj
] , (1.4.2.47)

of the parameter interval [−1, 1] induced by the grid

−1 =: ξ
(j)
0 < ξ

(j)
1 < · · · < ξ

(j)
Nj−1 = ξ

(j)
Nj

:= 1 . (1.4.2.7)

On each parameter grid interval one considers the vector-valued polynomial

γ̃
(j)
i : [ξ

(j)
i−1, ξ

(j)
i]→ R2 , γ̃

(j)
i ∈

(
Pp

)2
p ∈ N , (1.4.2.48)

interpolating γ at the endpoints

γ̃
(j)
i (ξ

(j)
k) = γ(ξ

(j)
k) for k = i− 1, i . (1.4.2.49)

§1.4.2.50 (Approximation by a polygon)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 85

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 23

Ω

x1

x2

x3

x4
x5

xN

xN−1

The simplest case p = 1 amounts to an approxima-
tion of Γ by a polygon.

✁ polygon interpolating a closed curve descibed by
a single paramterization γ1

Setting x
(j)
i := γ(ξ

(j)
i), we get the affine formula

γ̃
(j)
i (ξ) = x

(j)
i−1

ξ
(j)
i − ξ

ξ
(j)
i − ξ

(j)
i−1

+ x
(j)
i

ξ − ξ
(j)
i−1

ξ
(j)
i − ξ

(j)
i−1

,

(1.4.2.51)

ξi−1 ≤ ξ ≤ ξi , i = 1, . . . , Nj .

The derivative with respect to the parameter is

d

dξ
γ̃
(j)
i (ξ) = x

(j)
i − x

(j)
i−1 . (1.4.2.52)

y

§1.4.2.53 (Curve approximation by interpolation) The approximate polynomial parameterizations

γ̃
(j)
i ∈ (Pp)2 can be constructed by means of polynomial interpolation of γ on [ξ

(j)
i−1ξ

j
i]: fixing p + 1

interpolation nodes

ξ
(j)
i−1 ≤ ν0 < ν1 < · · · < νp ≤ ξ

(j)
i

by [NumCSE Thm. 5.2.2.7] we can find a unique interpolating polynomial γ̃
(j)
i ∈ (Pp)2 satisfying the

interpolation conditions

γ̃
(j)
i (νk) = γ(νk) , k = 0, . . . , p . (1.4.2.54)

Stability of the interpolation procedure is a major concern, cf. [NumCSE Section 5.2.4], and the
use of Chebychev interpolation is recommended, see [NumCSE Section 6.2.3], in particular [NumCSE
Rem. 6.2.3.19]. It is based on the nodes [NumCSE Eq. (6.2.3.12)]

νk = ξ
(j)
i−1 +

1
2(ξ

(j)
i − ξ

(j)
i−1)

(
cos

(
2k + 1

2(p + 1)
π

)
+ 1

)
, k = 0, . . . , p . (1.4.2.55)

We remark that interpolation need not be carried out on the grid intervals (1.4.2.47) of the parameter
domain. Instead global polynomial interpolation of γj on [−1, 1] is another option. y

§1.4.2.56 (Data structure for closed polygon) In the C++ code presented in § 1.4.0.1 a closed polygon
with N vertices is represented by

• a N × 2-matrix whose rows store the coordinates of the corners.

• another N × 2-matrix containing the indices of the endpoints of the panels.

C++11 code 1.4.2.57: Class for closed polygon (incomplete listing) ➺GITLAB

1 class BoundaryMesh

2 {
3 private :
4 /// The two coordinates for vertices are stored in the rows of a

matrix
5 typedef Eigen : : Matrix <double , Eigen : : Dynamic , 2> coord_matrix_t ;

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 86

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/BoundaryMesh.cpp

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

6 /// The indices of endpoints of flat panels are stored in the rows of
a matrix

7 typedef Eigen : : Matrix < int , Eigen : : Dynamic , 2> elem_matrix_t ;
8

9 /// data container for geometric and topological information

10 coord_matrix_t coord inates_ ;
11 elem_matrix_t elements_ ;
12 bool i s I n i t i a l i z e d _ ;
13

14 public :
15 // Constructor from raw data

16 BoundaryMesh (const coord_matrix_t& coords ,
17 const elem_matrix_t& elems) ;
18 // Constructor reading the data from file

19 BoundaryMesh (const std : : s t r i n g& f i lename) ;
20 // Straightforward access methods

21 i n t numVertices () const ; // No. of vertices

22 i n t numElements () const ; // No. of panels

23 const coord_matrix_t &getMeshVert ices () const ;
24 const elem_matrix_t &getMeshElements () const ;
25 // Coordinates if i-th vertex

26 Eigen : : Vector2d getVer tex (i n t i) const ;
27 // Coordinates of vertices of i-th element

28 std : : pair <Eigen : : Vector2d , Eigen : : Vector2d> getElementVer t ices (i n t i) const ;
29 // Coordinates of j-th vertex, j = 0, 1 of i-th element

30 i n t getElementVertex (i n t i , i n t j) const ;
31 } ;

Fig. 24

π

n

a

b

The code adopts the following convention about the orientation of the nor-
mal vector

π = [a, b] , a =

[
a1

a2

]
, b =

[
b1

b2

]

⇒ n(x) = (b− a)⊥ =

[
b2 − a2

−(b1 − a1)

]
, x ∈ π .

y

1.4.3 Computation of BEM-Galerkin Matrix in 2D

1.4.3.1 Panel-oriented Assembly

As setting we consider a boundary element discretization of a linear variational problem (→ Def. 1.1.5.1)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.5.2)

that arises from a variational formulation of a first-kind or second kind variational boundary integral equa-
tion like

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id+ K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.5.15)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) , (1.3.5.16)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 87

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for which V0 = H−
1
2 (Γ)), or

u ∈ H
1
2∗ (Γ): aW(u, v) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2∗ (Γ) , (1.3.5.24)

aW(u, v) :=
∫

Γ
W(u)(x) v(x)dS(x) ,

where V0 = H
1
2 (Γ). We remark that we could also start from the 2nd-kind variational BIE (1.3.5.31) and

(1.3.5.34), for which V0 = L2(Γ).

We equip the curve Γ with a mesh G as in Section 1.4.2.1. For Galerkin discretization (→ Section 1.4.1)
we employ a boundary element space VN ⊂ V0, dim VN = N, concretely

• VN = S−1
p (G) for V0 = H−

1
2 (Γ) and V0 = L2(Γ),

• and VN = S0
p(G) for V0 = H

1
2 (Γ) (→ Section 1.4.2.2).

We endow VN with a basis BN = {b1
N, . . . , bN

N} as in Section 1.4.2.3. As elaborated in Section 1.4.2.3 the
basis functions, also called global shape functions (GSF), are locally supported and parametric piecewise
polynomials composed of contributions of local shape functions (LSF), see § 1.4.2.21. The standard
choice of global shape functions for S−1

0 (G) and S0
1 (G) is presented in Ex. 1.4.2.17 and Ex. 1.4.2.19.

We end up with a linear system of equations

A~µ = ~ϕ , A =
(
a(b

j
N, bi

N)
)N

i,j=1
∈ RN,N , ~ϕ :=

(
ℓ(bi

N)
)N

i=1
∈ RN . (1.4.3.1)

As in the field of finite element methods [NumPDE Section 2.7.4], also for boundary element methods
assembly means the initialization of the Galerkin matrix A ∈ RN,N, and right hand side vector ~ϕ ∈ Rn.
We start by writing a(u, v) as a sum of contributions of pairs of panels, e.g., in the case of the bilinear form
induced by the single layer boundary integral operator

aV(ψ, φ) =
♯G
∑
i=1

♯G
∑
j=1

∫

πi

∫

π j

G∆(x, y)ψ(y) φ(x)dS(y)dS(x) . (1.4.3.2)

This is also possible for all other BIE-related bilinear forms occurring in the variational problems of Sec-
tion 1.3.5:

∫

Γ
(Kv)(x) φ(x)dS(x) =

♯G
∑
i=1

♯G
∑
j=1

∫

πi

∫

π j

grady G∆(x, y) · n(y) v(y) φ(x)dS(y)dS(x) , (1.4.3.3)

∫

Γ
(K′φ)(x) v(x)dS(x) =

♯G
∑
i=1

♯G
∑
j=1

∫

πi

∫

π j

gradx G∆(x, y) · n(x) φ(y) v(x)dS(y)dS(x) , (1.4.3.4)

∫

Γ
(Wu)(x) v(x)dS(x) =

♯G
∑
i=1

♯G
∑
j=1

∫

πi

∫

π j

G∆(x, y)
du

ds
(y)

dv

ds
(x)dS(y)dS(x) , (1.4.3.5)

where d
ds denotes the arclength derivative (1.3.4.19). More explicit formulas for the integrands are given

in § 1.3.4.8 and § 1.3.4.10.

§1.4.3.6 (Non-locality of variational BIEs) The bilinear forms b occurring in variational formulations of
partial differential equations (PDEs), for instance in (1.1.5.5), are local in the sense that

[for PDEs]: vold(supp(u) ∩ supp(v)) = 0 =⇒ b(u, v) = 0 . (1.4.3.7)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 88

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This usually makes it possible to evaluate b(uN, vN) for finite element trial and test functions uN, vN

by summing once over the elements of the finite element mesh, see [NumPDE Section 2.7.4.1]. The
property (1.4.3.8) also makes locally supported basis functions spawn sparse Galerkin matrices in the
finite element method see [NumPDE Section 2.4.4].

The situation is fundamentally different in the case of the bilinear forms spawned by boundary integral
operators. The presence of globally supported kernels thwarts any locality of the kind (1.4.3.8):

[for BIEs]: vold−1(supp(u) ∩ supp(v)) = 0 6=⇒ b(u, v) = 0 . (1.4.3.8)

This has profound consequences for boundary element methods, particular for data structures and
algorithms:

• boundary element Galerkin matrices will be densely populated,
• the bilinear forms arising from BIE require a double summation of local contributions as in

(1.4.3.2).

y

§1.4.3.9 (Local → global index mapping) The formulas (1.4.3.2)–(1.4.3.5) are the starting point for
developing algorithms for the assembly of the Galerkin matrix A and the right-hand side vector ~ϕ from
(1.4.3.1). A key issue will be the algorithmic representation of the relationship between global shape
functions (GSF) and local shape functions (LSF, → § 1.4.2.21). To see why, note that, with βi

N, i =

1, . . . , N, denoting the global and βk
π , k = 1, . . . , Q, the local shape functions of a boundary element

space ⊂ H−
1
2 (Γ), for every pair (j, i) ∈∈ {1, . . . , N}2

aV(β
j
N, βi

N) = ∑
π∈G

∑
π′∈G

∫

π

∫

π′
G∆(x, y) βk

π′(y) βℓ
π(x)dS(y)dS(x) ,

for uniquely defined ℓ, k ∈ {1, . . . , Q}. Now we formalize these considerations.

➊ The global shape functions of the basis BN = {b1
N, . . . , bN

N} of a boundary element space VN

are supposed to be ordered and, thus, can be identified through a unique index ∈ {1, . . . , N} (as
already insinuated by the notation bi

N).

➋ We also assume an ordering of the local shape functions bi
π for every panel π ∈ G, also indicated

by indices ∈ {1, . . . , Q}.
➌ Observe that for each π ∈ G and its local shape function bi

π , i = 1, . . . , Q, there is a unique global

shape function b
j
N, j ∈ {1, . . . , N} such that b

j
N

∣∣∣
π
= bi

π

We can define a local→global index map (“d.o.f. mapper”) as [NumPDE Eq. (2.7.4.8)]

locglobmap : G ×N → N ,

locglobmap(π, i) = j , if b
j
N

∣∣∣
π
= bi

π , i ∈ {1, . . . , Q(π)} .
(1.4.3.10)

global shape function local shape function
y

EXAMPLE 1.4.3.11 (local→global index map)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 89

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We assume that the curve Γ := ∂Ω is connected and
oriented counterclockwise ✄

Vertices (blue) and panels (red) of the mesh G of Γ

are numbered consecutively as in Fig. 25: the i-th
panel, i = 1, . . . , N− 1, has vertices i and i + 1, the
N-th panel vertices N and 1.

We comsider VN = S0
1 (G), tent function basis as in

Ex. 1.4.2.19, and assume that the i-th basis function
is associated with the i-th vertex, i = 1, . . . , N. Then
the local→global index map from (1.4.3.10) reads:

locglobmap(k, i) =

{
k , if i = 1 ,

k + 1 , if i = 2 .

(1.4.3.12)
Fig. 25 1

2
3

4
5

6

7

8

9

10
1213

14

15
16

17

18

19

20

1
2

3
4
5

6

7

8

9
1011

12

13
14

15
16

17

18

19

Ω

y

Using the local→global index mapping, we can now write in a rigorous way

aV(β
j
N, βi

N) = ∑
π∈G

locglobmap(π,k)=j

∑
π′∈G

locglobmap(π′ ,ℓ)=i

∫

π

∫

π′
G∆(x, y) βk

π′(y) βℓ
π(x)dS(y)dS(x) . (1.4.3.13)

An efficient implementation of this formula takes into account the constraints locglobmap(π, k) = j and
locglobmap(π′, ℓ) = i by inverting them, thus distributing the numbers obtained from evaluating the
double integrals to suitable entries of the Galerkin matrix. This leads to panel-oriented assembly.

The following pseudocode demonstrates the implementation of panel-oriented assembly by means of two
nested loops over all panels.

Pseudocode 1.4.3.14: Outline of panel-oriented assembly of BE matrices for BIOs (same trial

and test space)

Matrix A(N,N); A = 0; {Initialize dense matrix with zero}

forall panels π ∈ G do {outer loop}

Q := no_of_loc_shape_fns(π);

forall panels π′ ∈ G do {inner loop}

Q’ := no_of_loc_shape_fns(π′);
Matrix Al := get_interaction_matrix(π,π′); {get “local” matrix}

for k=1 to Q do

i = locglobmap(π,k);

for l=1 to Q’ do

j = locglobmap(π′,l);
A(i,j) += Al(k,l); {update of Galerkin matrix}

endfor

endfor

endfor

endfor

As auxiliary functions we need

(I) the local→global index mapping function locglobmap as introduced in § 1.4.3.9,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 90

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(II) a function get_interaction_matrix computing the contribution of a pair of panels π, π′ to
the Galerkin matrix. If Q, Q′ are the number of local shape functions (→ § 1.4.2.21) on π and π′,
respectively, then this function returns a Q×Q′-matrix Aloc:

(Aloc)kl =
∫

π

∫

π′
k(x, y)bk

π(y) bl
π′(x)dS(y)dS(x) , (1.4.3.15)

which we wrote for a general boundary integral operator with kernel k. For instance, in the case of
a = aV, we face the singular kernel k(x, y) = G∆(x, y).

EXAMPLE 1.4.3.16 (Assembly of Galerkin matrix for double layer BIO K) We consider the Galerkin
discretization of the bilinear form induced by the double layer boundary integral operator K

(v, φ) 7→
∫

Γ
(K(v))(x) φ(x)dS(x) , v ∈ H

1
2 (Γ), φ ∈ H−

1
2 (Γ) .

We rely on lowest order/degree piecewise polynomial boundary element spaces

H
1
2 (Γ) → S0

1 (G) ⊂ H
1
2 (Γ) , H−

1
2 (Γ) → S−1

0 (G) ⊂ H−
1
2 (Γ) ,

where G is a mesh of the closed polygon Γ, see Def. 1.4.2.5.

As bases we use

for S0
1 (G): tent function basis B0 := {b1

N, . . . , bN
N} see (1.4.2.19) ,

for S−1
0 (G): characteristic function basis B−1 := {β1

N, . . . , βN
N} see (1.4.2.17) .

supp bi
N is the union of two adjacent panels, supp β

j
N covers only a single panel.

For S0
1 (G), Q = 2, for S−1

0 (G), Q = 1, where Q designates the number of local shape functions
per panel, see § 1.4.2.21

⇒ Aloc ∈ R1,2 (see (1.4.3.15) for the definition of Aloc).

Since a fully populated matrix has to be initialized we face the following computational cost of assembly:

Cost of assembling a BIO Galerkin matrix

The asymptotic computational effort for assembling the Galerkin matrix discretizing a BIO based on
trial and test spaces with dimensions N and M, respectively, is at least O(MN) for M, n→ ∞.

The following C++ function performs the assembly of the Galerkin matrix for K. Refer to Code 1.4.2.57 for
explanations on the class BoundaryMesh.

C++11 code 1.4.3.18: Assembly of Galerkin matrix for double layer BIO K ➺GITLAB

2 void computeK (Eigen : : MatrixXd &K, const BoundaryMesh &mesh , double eta) {
3 i n t nE = mesh . numElements () ;
4 i n t nC = mesh . numVertices () ;
5 // Matrix returned through reference: resize and initialize matrix

6 K. resize (nE , nC) ;
7 K. setZero () ;
8 double I0 = 0 .0 , I1 = 0 . 0 ;
9

10 // outer loop: traverse the panels

11 for (i n t j = 0 ; j < nE ; ++ j) {

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 91

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/buildK.cpp

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

12 // get vertices indices and coordinates for panel π j = [a, b]
13 i n t aidx = mesh . getElementVertex (j , 0) ;
14 i n t bidx = mesh . getElementVertex (j , 1) ;
15 const Eigen : : Vector2d &a = mesh . getVer tex (a idx) ;
16 const Eigen : : Vector2d &b = mesh . getVer tex (b idx) ;
17

18 // inner loop: traverse the panels

19 for (i n t i = 0 ; i < nE ; ++ i) {
20 // get vertices indices and coordinates for panel πi = [c, d]
21 i n t c idx = mesh . getElementVertex (i , 0) ;
22 i n t didx = mesh . getElementVertex (i , 1) ;
23 const Eigen : : Vector2d &c = mesh . getVer tex (c idx) ;
24 const Eigen : : Vector2d &d = mesh . getVer tex (d idx) ;
25 // Zero contribution for parallel panels !

26 double l i ndep1 = fabs ((a − c) [0] * (b − a) [1] − (a − c) [1] * (b − a) [0]) ;
27 double l i ndep2 = fabs ((a − d) [0] * (b − a) [1] − (a − d) [1] * (b − a) [0]) ;
28

29 i f (l i ndep1 > EPS * (a − c) . norm () | |
30 l i ndep2 > EPS * (a − d) . norm ()) //

31 {
32 // compute entries of 1× 2 interaction matrix

33 // double I0=0.0, I1=0.0;

34 computeKij (& I0 , &I1 , eta , a , b , c , d) ;
35 // distribute values to matrix entries

36 K(j , c idx) += I0 − I1 ; //

37 K(j , d idx) += I0 + I1 ; //

38 } // endif

39 } // endfor

40 } // endfor

41 }

Remarks on Code 1.4.3.18

• The function computeKij adopts an unusual convention for the reference shape functions
(1.4.2.27) for the S0

1 (G):

b̂1(ξ̂) = 1
2 , b̂2(ξ̂) = 1

2 ξ , ξ ∈ Î :=]−1, 1[.

This accounts for the linear combinations used in Line 36 and Line 37.

• Note that, if π ‖ π′ (parallel panels), then

∫

π
(K(v|π′))(x) φ(x)dS(x) =

∫

π

∫

π′

(y− x) · n(y)
‖y− x‖2

v(y) φ(x)dS(y)dS(x) = 0 ∀v, φ ,

because of the orthogonality (y − x) · n(y) = 0. This is tested in a numerically sound way in
Line 30.

y

1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas

We consider the case that Γ is or is approximated by a closed connected polygon (with straight edges!),
see § 1.4.2.50. In this case all panels of a mesh G are line segments.

G = {π1, . . . , πN} , Γ = π1 ∪ · · · ∪πN , πi = [pi, qi] , pi, qi ∈ R2 .

A data structure modeling such meshes is presented in Code 1.4.2.57.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 92

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We restrict ourselves to Galerkin discretization based on lowest degree boundary element spaces S0
1 (G)

and S−1
0 (G), which are implemented in the 2D BEM C++ code introduced in § 1.4.0.1. We use the stan-

dard bases of “tent functions” and characteristic functions, respectively, for these spaces, see Ex. 1.4.2.17
and Ex. 1.4.2.19.

§1.4.3.19 (Panel interaction matrix for the single layer BIO) The bilinear form

aV(ψ, φ) = − 1

2π

∫

Γ

∫

Γ
log‖x− y‖ψ(y) φ(x)dS(y)dS(x) , ψ, φ ∈ H−

1
2 (Γ) ,

is discretized on S−1
0 (G)× S−1

0 (G), the local shape functions have constant value = 1 on each panel.
Therefore, we just have to compute 1× 1 interaction matrices for pairs of panels:

I := aV(βπ
N, βπ′

N) = − 1

2π

∫

π

∫

π′
log‖x− y‖ βπ

N(y) βπ′
N (x)dS(y)dS(x) , π, π′ ∈ G . (1.4.3.20)

➊ If π = [p1, q1], π′ = [p2, q2], then we can transform the line integrals to the reference interval

Î := [−1, 1] through the parameterizations

[for π]: γ(t) := p1 + (t + 1)1
2(q1 − p1) =

1
2(p1 + q1) +

1
2 t(q1 − p1) ,

[for π′]: γ′(t) := p2 + (t + 1)1
2(q2 − p2) =

1
2(p2 + q2) +

1
2 t(q2 − p2) ,

− 1 ≤ t ≤ 1 ,

which, by the defining formula (1.2.1.9) for curve integrals

∫

π
f (x)dS(x) =

∫ 1

−1
f (γ(t))‖γ̇(t)‖dt , γ̇ :=

dγ

dt
,

results in

I = − 1

2π

1∫

−1

1∫

−1

log‖su− tv + z‖1
2‖q1 − p1‖1

2‖q2 − p2‖dtds . (1.4.3.21)

with u = 1
2(q1 − p1), v = 1

2(q2 − p2), z := 1
2(p1 + q1 − p2 − q2) . (1.4.3.22)

The following manipulations mainly rely on the identity

(x̂− c) · gradx̂(log‖M(x̂− c)‖) = (x̂− c) ·M⊤ M(x̂− c)

‖M(x̂− c)‖2
= 1 . (1.4.3.23)

The reader is encouraged to derive this formula by applying the chain rule twice.

➋ By Green’s first formula Thm. 1.1.6.1 we conclude for any domain D ⊂ R2

∫

D
log‖M(x̂− c)‖dx̂ =

∫

D

1
2 divx̂{x̂ 7→ (x̂− c)} log‖M(x̂− c)‖dx̂

= − 1
2

∫

D
(x̂− c) · gradx̂ log‖M(x̂− c)‖dx̂

︸ ︷︷ ︸
=vol2(D) by (1.4.3.23)

+ 1
2

∫

∂D
(x̂− c) · n(x̂) log‖M(x̂− c)‖dS(x̂) .

The boundary integral
∫

∂D is a one-dimensional line integral. Moreover, if D is a polygon the exterior unit
normal n(x̂) is piecewise constant and x̂ 7→ (x̂− c) · n(x̂) will be constant on all edges, cf. Hesse normal
form of a line in R2.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 93

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➌ In concrete terms we apply this trick to the integral (1.4.3.21) with x̂ =
[s

t

]
, M = [u,−v], c =

[
α
−β

]
.

Then, for any α, β ∈ R, u, v ∈ R2 (1.4.3.23) implies

{
(s + α)

∂

∂s
+ (t− β)

∂

∂t

}
log‖u(s + α)− v(t− β)‖ = 1 . (1.4.3.24)

4 =

1∫

−1

1∫

−1

(s + α)
∂

∂s
log‖u(s + α)− v(t− β)‖dtds+

1∫

−1

1∫

−1

(t− β)
∂

∂t
log‖u(s + α)− v(t− β)‖dtds

=

1∫

−1

[(s + α) log‖. . .‖]s=1

s=−1 −
1∫

−1

log‖. . .‖ds

dt+

1∫

−1

[(t− β) log‖. . .‖]s=1

s=−1 −
1∫

−1

log‖. . .‖dt

ds ,

where ‖. . .‖ = ‖u(s + α)− v(t− β)‖ and one-dimensional integration by parts has been employed in
a straightforward way. This reduces the integral over log‖. . .‖ to four one-dimensional integrals

1∫

−1

1∫

−1

log‖. . .‖dtds =− 2 +
∫ 1

−1
(1 + α) log‖(1 + α)u− (t− β)v‖dt (I1)

+
∫ 1

−1
(1− α) log‖(−1 + α)u− (t− β)v‖dt (I2)

+
∫ 1

−1
(1− β) log‖(s + α)u− (1− β)v‖ds (I3)

+
∫ 1

−1
(1 + β) log‖(s + α)u− (−1− β)v‖ds . (I4)

➍ Now we return to the computation of

1∫

−1

1∫

−1

log‖su− tv + z‖dtds , (1.4.3.25)

where we have to distinguish two cases:

Case I: u, v from (1.4.3.22) are linearly independent. Then there are α, β ∈ R such that z = αu + βv.

1∫

−1

1∫

−1

log‖su− tv + z‖dtds =

1∫

−1

1∫

−1

log‖u(s + α)− v(t− β)‖dtds ,

and we can apply the above formulas, see Code 1.4.3.30, Line 29–Line 37.

Case II: v = ζu for some ζ 6= 0 (parallel panels). The previous formulas cannot be used, but we can
resort to the identity

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 94

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

ζ
∂

∂s
log‖su− tv + z‖ = ζ

(su− tv + z) · u
‖su− tv + z‖2

= − ∂

∂t
log‖su− tv + z‖ . (1.4.3.26)

Straightforward integration by parts gives

1∫

−1

1∫

−1

log‖su− tv + z‖dtds

=

1∫

−1

{
[t log‖su− tv + z‖]t=1

t=−1 −
1∫

−1

t
∂

∂t
log‖su− tv + z‖dt

}
ds

=

1∫

−1

{
log‖su− v + z‖+ log‖su + v + z‖+

1∫

−1

ζt
∂

∂s
log‖su− tv + z‖

}
ds

=

1∫

−1

log‖su− v + z‖+ log‖su + v + z‖ds + ζ

1∫

−1

[log‖su− tv + z‖]s=1
s=−1 dt

=

1∫

−1

log‖su− v + z‖ds +

1∫

−1

log‖su + v + z‖ds+

ζ

1∫

−1

t log‖u− tv + z‖dt + ζ

1∫

−1

t log‖−u− tv + z‖dt .

(1.4.3.27)

These formulas are implemented in Code 1.4.3.30, Line 20-Line 28.

➎ Thus, the computations are reduced to evaluating integrals of the form

1∫

−1

tk log‖tu + v‖dt u, v ∈ R2 , t = 0, 1 . (1.4.3.28)

We elaborate the expressions for k = 0 and point out that the case k > 0 can be reduced to k = 0 by
repeated integration by parts. With

‖tu + v‖2 = αt2 + βt + γ , α := ‖u‖2 , β := 2u · v , γ := ‖v‖2 .

L :=

1∫

−1

log‖tu + v‖dt = 1
2

1∫

−1

log‖tu + v‖2 dt = 1
2

1∫

−1

log(αt2 + βt + γ)dt .

We have to proceed differently, depending on whether the argument of the logarithm has a zero or not.
For the quadratic polynomial in t we examine the discriminant.

Case I: 4αγ− β2 = 0 ⇐⇒ β = 2
√

αγ: argument of logarithm can vanish

L =

1∫

−1

log
(
(
√

αt +
√

γ)2
)

dt = 2

1∫

−1

log
∣∣√αt +

√
γ
∣∣dt ,

then distinguish cases, α ≥ γ (split interval) and α < γ, and use explicit principal, see Code 1.4.3.29,
Line 26-Line 33.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 95

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Case I: 4αγ − β2 > 0: t 7→ αt2 + βt + γ has no real zero and an explicit principal can be used,
Code 1.4.3.29, Line 34-Line 41.

C++11 code 1.4.3.29: Evaluating integrals of the form (1.4.3.28) ➺GITLAB, [Mai08, Sect. 2]

2 Eigen : : VectorXd s l p I t e r a t i v e (i n t k , const Eigen : : Vector2d& u ,
3 const Eigen : : Vector2d& v)
4 {

5 double a = u . squaredNorm () ; // α = ‖u‖2

6 double b = 2. * u . dot (v) ; // β = 2u · v
7 double c = v . squaredNorm () ; // γ = ‖v‖2

8 double D = 0 . ; // discriminant

9 Eigen : : VectorXd val (k+1) ; // return values

10

11 // Ensure one non-zero argument vector

12 double tmp = 4*a* c − b*b ;
13 assert (fabs (u [0]) > EPS | | fabs (u [1]) > EPS
14 | | fabs (v [0]) > EPS | | fabs (v [1]) > EPS) ;
15 // By Cauchy-Schwarz inequality tmp >= 0

16 assert (tmp >= −fabs (EPS*4*a* c)) ;
17

18 // Numerically sound way of testing if discriminant = 0

19 i f (tmp > EPS*4*a* c) D = s q r t (tmp) ;
20 else D = 0 . ;
21

22 // The case k=0: pure logarithmic integrand

23 i f (fabs (u [0]) < EPS && fabs (u [1]) < EPS) { // constant integrand

24 val [0] = 2* log (c) ;
25 }
26 else i f (D == 0 .) { // Integrand is logarithm of a pure square

27 tmp = b + 2*a ;
28 i f (fabs (tmp) > EPS*a) val [0] = tmp * log (0.25* tmp * tmp / a) ;
29 else val [0] = 0 ;
30 tmp = b − 2*a ;
31 i f (fabs (tmp) > EPS*a) val [0] −= tmp * log (0.25* tmp * tmp / a) ;
32 val [0] = 0 .5* val [0] / a − 4 . 0 ;
33 } //

34 else { // case D > 0: argument of logarithm has no zeros

35 tmp = c − a ;
36 i f (fabs (tmp) < EPS* c) val [0] = 0 .5* M_PI ;
37 else i f (a < c) val [0] = atan (D / tmp) ;
38 else val [0] = atan (D / tmp) + M_PI ;
39

40 val [0] = (0 . 5 * ((b+2*a) * log (a+b+c) −(b−2*a) * log (a−b+c)) + D* val [0]) / a −4 .0 ;
41 } //

42 i f (k == 0) return val ;

C++11 code 1.4.3.30: Evaluating integrals of the form (1.4.3.21) ➺GITLAB, [Mai08, Sect. 3]

2 double computeWi jAnaly t ic (const Eigen : : Vector2d& a ,
3 const Eigen : : Vector2d& b ,
4 const Eigen : : Vector2d& c ,
5 const Eigen : : Vector2d& d)
6 {

7 double h i = (b−a) . squaredNorm () ; // length2 of first panel [a, b]
8 double h j = (d−c) . squaredNorm () ; // lendth2 of second panel [c, d]
9 double va l = 0 . ;

10 double lambda , mu;
11 // Vectors defined in (1.4.3.22)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 96

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

12 Eigen : : Vector2d x = (b−a) / 2 . ;
13 Eigen : : Vector2d y = (c−d) / 2 . ;
14 Eigen : : Vector2d z = (a+b−c−d) / 2 . ;
15

16 // There hold different recursion formulae when the panels

17 // are parallel (det = 0) or not

18 double det = CrossProd2d (x , y) ;
19

20 i f (fabs (det) <= EPS* s q r t (h i * h j)) { // parallel panels, Case II

21 i f (fabs (x [0]) < fabs (x [1]))
22 lambda = y [1] / x [1] ;
23 else

24 lambda = y [0] / x [0] ;
25 // Evaluate the four integrals from (1.4.3.27)
26 va l = 0 . 5 * (lambda * (slp (1 , y , z−x) − slp (1 , y , z+x))
27 + slp (0 , x , z+y) + slp (0 , x , z−y)) ;
28 } //

29 else { // x and y linearly independent, Case I

30 lambda = (z [0] * y [1] − z [1] * y [0]) / det ;
31 mu = (x [0] * z [1] − x [1] * z [0]) / det ;
32 // Integrals (I1)-(I4)
33 va l = 0.25 * (−8 + (lambda+1) * slp (0 , y , z+x) −
34 (lambda −1) * slp (0 , y , z−x) +
35 (mu+1) * slp (0 , x , z+y) −
36 (mu−1) * slp (0 , x , z−y)) ;
37 } //

38 return −0.125* va l / M_PI ; // = − 1
8π ∗ val

39 }

Note that the test whether x and y are parallel in Line 20 takes into account the presence of roundoff
errors. y

§1.4.3.31 (Local analytic formulas for double layer BIO) We consider the bilinear form

(v, φ) 7→ 1

2π

∫

Γ

∫

Γ

(x− y) · n(y)
‖x− y‖2

v(y) φ(x)dS(y)dS(x) , v ∈ H
1
2 (Γ), φ ∈ H−

1
2 (Γ) ,

and its Galerkin discretization based on S0
1 (G) × S−1

0 (G), that is v is G-piecewise linear and φ G-
piecewise constant. For a pair (π, π′) ∈ G × G of panels the entries of the 2 × 1 interaction matrix
can be computed from the two integrals

I0 :=
1

2π

∫

π

∫

π′

(x− y) · n(y)
‖x− y‖2

dS(y)dS(x) , (1.4.3.32)

I1 :=
1

2π

∫

π

∫

π′

(x− y) · n(y)
‖x− y‖2

ℓ(y)dS(y)dS(x) , (1.4.3.33)

where ℓ is (parametric) linear on π with vanishing mean. In the case of line segments π = [p1, q1],
π′ = [p2, q2], the unit normal vector field n(y) is constant on π′ and a transformation to the reference

interval Î =]−1, 1[yields (n =̂ normal to π′)

I0 =
1

8π
‖q1 − p1‖‖q2 − p2‖

1∫

−1

(su− tv + z) · n
‖su− tv + z‖2

dtds , (1.4.3.34)

I1 =
1

8π
‖q1 − p1‖‖q2 − p2‖

1∫

−1

(su− tv + z) · n
‖su− tv + z‖2

t dtds , (1.4.3.35)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 97

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with u = 1
2(q1 − p1), v = 1

2(q2 − p2), z := 1
2(p1 + q1 − p2 − q2) . (1.4.3.22)

Also note that both integrals vanish in the case π = π′.

We exploit an identity similar to (1.4.3.23). For M ∈ R2,2, c ∈ R2, n ∈ R2,

F(x) :=
M(x− c) · n
‖M(x− c)‖2

⇒ (grad F)(x) = −2(M(x− c) · n)M⊤M(x− c)

‖M(x− c)‖4
+

M⊤n

‖M(x− c)‖2
,

(x− c) · grad F(x) = −F(x) . (1.4.3.36)

As above we apply Green’s formula from Thm. 1.1.6.1 on a domain D ⊂ R2

∫

D
G(x)F(x)dx = −

∫

D
G(x) (x− c) · grad F(x)dx

=
∫

D
div(G(x)(x− c)) F(x)dx−

∫

∂D
G(x) (x− c) · n(x) F(x)dS(x) ,

∫

D
(G(x) + grad G(x) · (x− c)) F(x)dx =

∫

∂D
G(x) (x− c) · n(x) F(x)dS(x) . (1.4.3.37)

for any smooth function G ∈ C1(D). In particular, if G is linear, G(x) = d · x for some d ∈ R2, then the
computation of

∫
D G(x)F(x)dx can be reduced to the case G ≡ 1 up to integrals on ∂D. Note that for

regular M the term under the integral
∫

∂D in (1.4.3.37) is bounded, since in this case

∃c−, c+ > 0: c−‖x− c‖ ≤ ‖M(x− c)‖ ≤ c+‖x− c‖ ∀x, c ∈ R2 .

As before we observe that if D is a polygon x 7→ (x− c) · n(x) will be constant on all edges of D.

This formula can be applied, if u and v are linearly independent, compare (1.4.3.24). Conversely, if u ‖ v,
v = ζu for ζ 6= 0, we can use

ζ
∂

∂s
f (s, t) = − ∂

∂t
f (s, t) , f (s, t) :=

(su− tv + z) · n
‖su− tv + z‖2

,

analogously to (1.4.3.26), e.g. [Mai08, p. 7],

1∫

−1

1∫

−1

t f (s, t)dtds=

1∫

−1

{[
t2 f (s, t)

]t=1

t=−1
−

1∫

−1

t2 ∂

∂t
f (s, t)dt

}
ds

=

1∫

−1

{[
t2 f (s, t)

]t=1

t=−1
−

1∫

−1

ζ t2 ∂

∂s
f (s, t)dt

}
ds

=

1∫

−1

(f (s, 1)− f (s,−1))ds + ζ

1∫

−1

t2(f (1, t)− f (−1, t))dt

All these formulas are implemented in Code 1.4.3.40

Eventually, all two-dimensional integrals are reduced to integrals of rational functions of the form

1∫

−1

tk

‖tp + q2‖ dt , p, q ∈ R2 , (1.4.3.38)

whose evaluation is done in Code 1.4.3.39 based on [Mai08, Lemma 2.1].

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 98

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

C++11 code 1.4.3.39: Evaluating integrals of the form (1.4.3.38) ➺GITLAB, [Mai08, Sect. 2]

2 double dlp (i n t k , const Eigen : : Vector2d& p , const Eigen : : Vector2d& q)
3 {
4 // The full recursion is not implemented

5 assert (k<=2 && (k>=0)) ;
6

7 double a = p . squaredNorm () ; // a = <p,p>

8 double b = 2 * p . dot (q) ; // b = 2 <p,q>

9 double c = q . squaredNorm () ; // c = <q,q>

10 double D = 4*a* c−b*b ; // Discriminant

11 double root_D = 0 . ;
12 double G0 = 0 . , G1 = 0 . ;
13

14 assert (D>=−EPS*4*a* c) ; // In exact arithmetic, D >= 0

15 i f (D > EPS*4*a* c) { root_D = s q r t (D) ; } else { D = 0 . 0 ; }
16 i f (D == 0 .0) { G0 = 2 . / (c−a) ; } // linearly dependent vectors, [Mai08, (5)]

17 else // Denominator cannot vanish, integrate rational function

18 {
19 i f (fabs (c−a) < EPS* fabs (c)) { G0 = M_PI / root_D ; }
20 else i f (a < c) { G0 = 2 . * atan (root_D / (c−a)) / root_D ; }
21 else { G0 = 2 . * (atan (root_D / (c−a)) +M_PI) / root_D ; }
22 }
23

24 i f (k >= 1) // First step of recursion for k=1

25 {

26 // g−1
1 in [Mai08, Lemma 2.1]

27 G1 = −b*G0 ;
28 i f (a+b+c > EPS*a) { G1 += log (a+b+c) ; }
29 i f (a−b+c > EPS*a) { G1 −= log (a−b+c) ; }
30 G1 /= (2 . * a) ;
31

32 // g−1
2 in [Mai08, Lemma 2.1]

33 i f (k == 2) { return (2. −b*G1−c *G0) / a ; }
34

35 return G1 ;
36 }
37 return G0 ;
38 }

C++11 code 1.4.3.40: Evaluating integrals (1.4.3.34) and (1.4.3.35) ➺GITLAB

2 void computeK i jAna ly t i c (double * I0 , double * I1 ,
3 const Eigen : : Vector2d& a , const Eigen : : Vector2d& b ,
4 const Eigen : : Vector2d& c , const Eigen : : Vector2d& d)
5 {
6 double h i = (b−a) . squaredNorm () ; // hi = norm(b-a) squared

7 double h j = (d−c) . squaredNorm () ; // hj = norm(d-c) squared

8 Eigen : : Vector2d n = uni tNormal (c , d) ; // normal vector

9

10 Eigen : : Vector2d u = a−b , v = d−c , w = c+d−a−b ;
11 Eigen : : Vector2d wpu = w+u , wmu = w−u ;
12 Eigen : : Vector2d wpv = w+v , wmv = w−v ;
13

14 double dot_u_n = u . dot (n) , dot_w_n = w. dot (n) ;
15 double dot_wpu_n = wpu . dot (n) , dot_wmu_n = wmu. dot (n) ;
16 double det = CrossProd2d (u , v) ;
17

18 double lambda =0.0 , mu=0.0 ;

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 99

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/doubleLayerPotential.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

19 i f (fabs (det) <= EPS* s q r t (h i * h j)) { // u,v linearly dependent

20 i f (fabs (u [0]) > fabs (u [1])) mu = v [0] / u [0] ;
21 else mu = v [1] / u [1] ;
22

23 * I0 = dot_w_n * (dlp (0 , u , wpv) +dlp (0 , u ,wmv) + mu* (dlp (1 , v ,wmu) −dlp (1 , v , wpu))) ;
24 * I1 = dot_w_n * (dlp (0 , u , wpv) −dlp (0 , u ,wmv) + mu* (dlp (2 , v ,wmu) −dlp (2 , v , wpu))) * 0 . 5 ;
25 }
26 else { // u,v linearly independent

27 i f (a [0] == d [0] && a [1] == d [1]) {
28 * I0 = 2* (dot_wpu_n * dlp (0 , v , wpu) +dot_u_n * dlp (1 , u ,wmv) +dot_w_n * dlp (0 , u ,wmv)) ;
29 * I1 = dot_wpu_n * dlp (1 , v , wpu) −dot_u_n * dlp (1 , u ,wmv) −dot_w_n * dlp (0 , u ,wmv)
30 + 0 . 5 * (* I0) ;
31 }
32 else i f (b [0] == c [0] && b [1] == c [1]) {
33 * I0 = 2* (dot_wmu_n* dlp (0 , v ,wmu) +dot_u_n * dlp (1 , u , wpv) +dot_w_n * dlp (0 , u , wpv)) ;
34 * I1 = dot_wmu_n* dlp (1 , v ,wmu) +dot_u_n * dlp (1 , u , wpv) +dot_w_n * dlp (0 , u , wpv)
35 − 0 . 5 * (* I0) ;
36 }
37 else {
38 mu = CrossProd2d (w, v) / det ;
39 lambda = CrossProd2d (u ,w) / det ;
40

41 * I0 = (mu+1) * dot_wpu_n * dlp (0 , v , wpu) − (mu−1) *dot_wmu_n* dlp (0 , v ,wmu)
42 + (lambda+1) * (dot_u_n * dlp (1 , u , wpv) + dot_w_n * dlp (0 , u , wpv))
43 − (lambda −1) * (dot_u_n * dlp (1 , u ,wmv) + dot_w_n * dlp (0 , u ,wmv)) ;
44 * I1 = 0 . 5 * ((mu+1) * dot_wpu_n * dlp (1 , v , wpu) − (mu−1) *dot_wmu_n* dlp (1 , v ,wmu)
45 + (lambda+1) * (dot_u_n * dlp (1 , u , wpv) + dot_w_n * dlp (0 , u , wpv))
46 + (lambda −1) * (dot_u_n * dlp (1 , u ,wmv) + dot_w_n * dlp (0 , u ,wmv))
47 − lambda * (* I0)) ;
48 }
49 }
50 * I0 *= −0.125* s q r t (h i * h j) / M_PI ;
51 * I1 *= −0.125* s q r t (h i * h j) / M_PI ;
52 }

y

1.4.3.3 Recapitulated [NumCSE Chapter 7]: Aspects of Numerical Quadrature

Numerical quadrature studies the approximate evaluation of integrals
∫

D f (x)dx for a given domain D ⊂
Rd, d ∈ N, and a function f : D → R, for which at least a routine for point evaluation must be available
(ensured, if f given in procedural form [NumCSE § 7.1.0.2]).

The simplest approach is the approximation of a one-dimensional integral by a weighted sum of function
values.

Definition 1.4.3.41. 1D Quadrature formula (QF)/quadrature rule (QR)[NumCSE Def. 7.2.0.1]

An n-point (one-dimensional) quadrature formula (QF)/quadrature rule (QR) on [a, b] provides an
approximation of the value of an integral through a weighted sum of point values of the integrand:

for f : [a, b]→ R:
∫ b

a
f (t)dt ≈ Qn(f) :=

n

∑
j=1

wn
j f (cn

j) . (1.4.3.42)

Terminology:
wn

j =̂ quadrature weights ∈ R

cn
j =̂ quadrature nodes ∈ [a, b]

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 100

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 1.4.3.43. Order of a quadrature rule [NumCSE Def. 7.4.1.1]

The order of quadrature rule Qn : C0([a, b])→ R is defined as

order(Qn) := max{m ∈ N0: Qn(p) =
∫ b

a
p(t)dt ∀p ∈ Pm}+1 , (1.4.3.44)

that is, as the maximal degree +1 of polynomials for which the quadrature rule is guaranteed to be
exact.

Given a quadrature formula
(
ĉj, ŵj

)n

j=1
on, e.g., the reference interval [−1, 1], a quadrature formula of the

same order on [a, b] is spawned by affine transformation:

b∫

a

f (t)dt ≈ 1
2(b− a)

n

∑
j=1

ŵj f̂ (ĉj) =
n

∑
j=1

wj f (cj) .

with
quadrature nodes cj =

1
2(1− ĉj)a + 1

2(1 + ĉj)b ,

quadrature weights wj =
1
2(b− a)ŵj .

(1.4.3.45)

In words, the nodes are just mapped through the affine transformation cj = Φ(ĉj), Φ(τ) := 1
2(1− τ)a +

1
2(τ + 1)b, the weights are scaled by the ratio of lengths of [a, b] and [−1, 1].

EXAMPLE 1.4.3.46 (Trapezoidal rule [NumCSE Ex. 7.5.0.3]) A simple composite quadrature formula of
(low) order 2 is the equidistant trapezoidal rule:

b∫

a

f (t)dt ≈ 1

2n
f (a) +

1

n

n−1

∑
k=1

(
a +

b− a

n
k
)
+

1

2n
f (b) , n ∈ N . (1.4.3.47)

However, in the context of boundary element methods it is mainly global quadrature rules of high order
that are relevant. y

§1.4.3.48 (Gauss(-Legendre) quadrature rules [NumCSE Section 7.4])

Theorem 1.4.3.49. Gauss(-Legendre) quadrature

For every n ∈ N there is a unique n-point quadrature rule on [−1, 1] of maximal order 2n, the

Gauss(-Legendre) quadrature rule.

It has positive weights and its nodes coincide with the zeros of the n-th Legendre polynomial Pn ∈
Pn.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 101

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 26
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

16

18

20

Zeros of Legendre polynomials in [−1,1]

t

 N
um

be
r

n
of

 q
ua

dr
at

ur
e

no
de

s

Nodes of Gauss quadrature formulas on [−1, 1]

Fig. 27

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 Gauss−Legendre weights for [−1,1]

t
j

 w
j

n=2

n=4

n=6

n=8

n=10

n=12

n=14

Weights of Gauss quadrature formulas on [−1, 1]

Nodes and weights of n-point Gauss(-Legendre) quadrature rules on [−1, 1] can be computed efficiently
by

✦ solving an n× n dense eigenvalue problem: Golub-Welsch algorithm [NumCSE Rem. 7.4.2.23],

✦ using Newton’s method for finding the zeros of the Legendre polynomials (with initial guesses from
asymptotic closed-form formulas) and then solving an n× n linear system to determine the weights
[NumCSE Rem. 7.4.1.7].

In codes nodes and weights are often accessed by simple table look-up. y

§1.4.3.50 (“Practical” Clenshaw-Curtis quadrature rules [Tre08]) This is a family of quadrature rules
on [−1, 1] based on the quadrature nodes

cn
j := cos(

(j− 1)π

n− 1
) , j = 1, . . . , n . (1.4.3.51)

These nodes form a set of dilated Chebychev nodes (1.4.2.55), which are known to be “optimal” for global
polynomial interpolation [NumCSE Section 6.2.3]. T he so-called Clenshaw-Curtis quadrature rules use
the nodes (1.4.3.51) also for numerical quadrature and fix the weights in order to achieve order ≥ n for
the corresponding n-point quadrature formula.

Theorem 1.4.3.52. Positivity of Clenshaw-Curtis weights

For all n ∈ N the weights of the n-point Clenshaw-Curtis are positive.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 102

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
http://en.wikipedia.org/wiki/Clenshaw-Curtis_quadrature
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 28
-1 -0.5 0 0.5 1

t

2

4

6

8

10

12

14

16

18

20

 N
um

be
r

n
of

 q
ua

dr
at

ur
e

no
de

s
Clenshaw-Curtis nodes in [-1,1]

Clenshaw-Curtis nodes (1.4.2.55) on [−1, 1]

Fig. 29

-1 -0.5 0 0.5 1

t
j

0

0.2

0.4

0.6

0.8

1

 w
j

 Clenshaw-Curtis weights for [-1,1]

n=2

n=4

n=6

n=8

n=10

n=12

n=14

Weights for Clenshaw-Curtis rule on [−1, 1]

The weights of any n-point Clenshaw-Curtis rule can be computed with a computational effort of
O(n log n) using FFT. y

§1.4.3.53 (Generalized Gauss quadrature rules) The theory for Gauss(-Legendre) quadrature devel-
oped in [NumCSE Section 7.4] heavily relies on orthogonality with respect to the L2([−1, 1]) inner product

(u, v) 7→
∫ 1
−1 u(t)v(t)dt. A closer scrutiny reveals that the considerations remain valid for a large class

of weighted L2-inner products.

We fix a weight function w ∈ C0(]−1, 1[) satisfying

w(t) > 0 ∀t ∈]−1, 1[and
∫ 1

−1
w(t)dt < ∞ . (1.4.3.54)

The weight function w defines an inner product on C0([−1, 1]) through (u, v) 7→∫ 1
−1 w(t)u(t)v(t)dt.

Thus we can orthogonalize the monomials {t 7→ tk}, k ∈ N0, by means of the Gram-Schmidt algorithm
as in [NumCSE Rem. 7.4.2.8].

Lemma 1.4.3.55. Generalized orthogonal polynomials [Han02, Sect. 33]

There exists a unique sequence of polynomials (Un)n∈N0
that fulfills

(i) Un is a polynomial of degree ≤ n: Un ∈ Pn,

(ii) Un has leading coefficient 1: Un(t) = tn + · · · ,
(iii) Un is “w-orthogonal” to all polynomials of smaller degree

∫ 1

−1
w(t)Un(t)p(t)dt = 0 ∀p ∈ Pn−1 .

We used the Legendre polynomials to define the nodes for the Gauss-Legendre quadrature rules, and in
the same vein we can harness the polynomials Un, thus generalizing Thm. 1.4.3.49.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 103

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 1.4.3.56. Generalized Gauss quadrature

For every n ∈ N there exists an n-point (generalized) Gauss quadrature formula with

nodes/weights cn
j /wn

j , j = 1, . . . , n, such that

n

∑
j=1

wn
j p(cn

j) =
∫ 1

−1
w(t)p(t)dt ∀p ∈ P2n−1 .

The nodes cn
j are the zeros of the generalized orthogonal polynomials Un and the weights are

positive.

The generalized orthogonal polynomials satisfy a 3-term recurrence

Un+1(t) = (t + αn)Un(t) + βnUn−1(t) , αn, βn ∈ R .

Explicit formulas for αn and βn are known only for very few special weight functions w, of course for w ≡ 1
(Legendre polynomials, see [NumCSE Eq. (7.4.2.21)]). The accurate and stable computation of these
recursion coefficients for general w is a challenging numerical problem [Gau18; Gau04]. y

§1.4.3.57 (Quadrature error [NumCSE § 7.2.0.12]) A natural concept for a quadrature rule Qn is the

quadrature error En(f) :=

∣∣∣∣
∫ b

a
f (t) dt−Qn(f)

∣∣∣∣

It is all but impossible to estimate the quadrature error for complicated integrands that may be given only
implicitly. Therefore we have to be content with understanding the asymptotic behavior of the quadrature
error for large numbers of quadrature nodes.

Definition 1.4.3.58. Asymptotic convergence of quadrature rules, cf. [NumCSE Def. 6.2.2.7]

Let (Qn)n∈N be a family of n-point quadrature rules for approximating
∫ b

a f (t)dt. For a given
function f : [a, b]→ R the quadrature errors En(f) are said to

• converge algebraically with rate p, if En(f) = O(n−p) for some p ∈ N,
• converge exponentially, if En(f) = O(qn) for some 0 ≤ q < 1,

for n→ ∞.

Asymptotically, exponential convergence always beats algebraic convergence

We refer to [NumCSE § 6.2.2.9] on how to glean qualitative and quantitative information about the asymp-
totic behavior of the quadrature error from errors measured in numerical experiments. We may examine
plots of the quadrature error versus the number of quadrature points:

• Exponential convergence manifests itself through points tracing out lines in semi-logarithmic plots.

• Algebraic convergence leads to points approximately lying on lines in a doubly logarithmic plot.

y

EXPERIMENT 1.4.3.59 (Behavior of quadrature errors for global quadrature rules) We monitor the
error of global n-point quadrature rules on [0, 1], n ∈ N

• Newton-Cotes rule with equidistant nodes cn
k = k−1

n−1 , k− 1, . . . , n,

• n-point Gauss(-Legendre) rules according to Thm. 1.4.3.49,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 104

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• n-point Clenshaw-Curtis rule, nodes according to (1.4.3.51).

We apply these rules to different integrands f ∈ C0([0, 1]) and plot the quadrature errors for n =
1, . . . , 20.

➊ Smooth functions:

f (t) = log(t + 1/10)

Fig. 30

0 5 10 15 20

 Number of quadrature nodes

10
-15

10
-10

10
-5

10
0

 |q
ua

dr
at

ur
e

er
ro

r|

Numerical quadrature of function log(t+0.1)

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

f (t) =
1

1 + (5t)2

Fig. 31

0 5 10 15 20

 Number of quadrature nodes

10
-15

10
-10

10
-5

10
0

 |q
ua

dr
at

ur
e

er
ro

r|

Numerical quadrature of function log(t+0.1)

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

Observation: Exponential convergence for all quadrature rule, Gauss-Legendre rule fastests.

➋ functions with a (higher order) singularity:

Root f (t) =
√

t

Fig. 32

10
0

10
1

 Number of quadrature nodes

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 |q
ua

dr
at

ur
e

er
ro

r|

Numerical quadrature of function sqrt(t)

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

f (t) = t log t

Fig. 33

10
0

10
1

10
2

 Number of quadrature nodes

10
-8

10
-6

10
-4

10
-2

10
0

 |q
ua

dr
at

ur
e

er
ro

r|

Numerical quadrature of function t*log t

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

Observation: Merely algebraic convergence for all quadrature rules, Gauss-Legendre rule again fastests.

➌ functions with (higher-order) kinks:

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 105

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

bump f (t) =

{
cos2(4t− 2) for |t− 1

2 | < 1
4 ,

0 elsewhere.

Fig. 34

10
0

10
1

10
2

 Number of quadrature nodes

10
-4

10
-3

10
-2

10
-1

10
0

 |q
ua

dr
at

ur
e

er
ro

r|

Numerical quadrature of bump function

Clenshaw-Curtis quadrature

Gauss quadrature

tent f (t) =

{
1− |4t− 2| for |t− 1

2 | < 1
4 ,

0 elsewhere.

Fig. 35

10
0

10
1

10
2

 Number of quadrature nodes

10
-4

10
-3

10
-2

10
-1

10
0

 |q
ua

dr
at

ur
e

er
ro

r|

Numerical quadrature of tent function

Clenshaw-Curtis quadrature

Gauss quadrature

Observation: We vaguely see algebraic convergence, big impact of presence of kinks.

y

§1.4.3.60 (Finite smoothness quadrature error estimates) If a quadrature rule is of order q, then the
quadrature error does not change when adding a polynomial of degree < q to the integrand:

En(f) = En(f − q) ∀q ∈ Pq−1 .

In addition, the weights of a quadrature rule have to add up to the length of the interval. These two ideas
plus the△-inequality yield the following result.

Lemma 1.4.3.61. Quadrature error and best-approximation error [NumCSE Thm. 7.4.3.3]

If Q is a quadrature formula on [a, b] of order q ∈ N with positive weights, then the quadrature error

can be estimated by

∣∣∣∣
∫ b

a
f (t)dt−Q(f)

∣∣∣∣ ≤ 2|b− a| inf{‖ f − p‖L∞(]a,b[), p ∈ Pq−1} . (1.4.3.62)

The quadrature error can be estimated by error (in maximum norm) of the polynomial best approxi-
mation.

Therefore polynomial best approximation estimates like [NumCSE Thm. 6.2.1.11] immediately translate
into quadrature error estimates:

Theorem 1.4.3.63. Quadrature error estimate for integrands with finite smoothness

If f ∈ Cm([a, b]), m ∈ N0, and the quadrature rule Q is of order q > m with positive weights,

then

∣∣∣∣
∫ b

a
f (t)dt−Q(f)

∣∣∣∣ ≤ (4 + 2π2)

∣∣∣∣
b− a

2

∣∣∣∣
m+1 (q− 1−m)!

(q− 1)!

∥∥∥ f (m)
∥∥∥

L∞(]a,b[)

≤ C(m)|b− a|m+1 1

(q− 1)m

∥∥∥ f (m)
∥∥∥

L∞(]a,b[)
,

(1.4.3.64)

with an increasing function C : N → R+.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 106

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Let
(
Qq

)
q∈N

be a family of quadrature rules on [a, b] with positive weights and Qq have order q. If

f ∈ Cm([a, b]) at most, then we expect asymptotic algebraic convergence of the quadrature error
with rate m for q→ ∞:

∣∣∣∣
∫ b

a
f (t)dt−Qq(f)

∣∣∣∣ = O(q−m) for q→ ∞ . (1.4.3.65)

y

§1.4.3.66 (Quadrature error estimate for analytic integrands) What does Thm. 1.4.3.63 mean for
f ∈ C∞([a, b])? If its derivatives do not grow “too fast” a very fast decay of the quadratur error can be
predicted as the quadrature order q→ ∞.

Now we meet functions whose derivatives do not grow “too fast” and we call them analytic. Analytic
functions are locally “polynomials of infinite degree”, the class of general functions closest to polynomials:

Definition 1.4.3.67. Real analytic functions

A function f ∈ C∞([a, b]) is analytic, if for every t ∈ [a, b] its Taylor series converges in a neighbor-
hood of t:

∀t ∈ [a, b]: ∃rt > 0: f (τ) =
∞

∑
k=0

(τ − t)k

k!
f (k)(t) ∀τ : |τ − t| < rt .

Since power series make perfect sense for complex arguments, we can replace t ∈ R with z ∈ C and
obtain a complex-valued function defined on a neighborhood of [a, b] in the complex plane C, an analytic
extension of f .

Fig. 36

R

Im
C

a b

Taylor series for f converge inside disks

Fig. 37

R

Im
C

a b

natural extension of f to C

The analytic extension of f will also have locally convergent Taylor series:

Definition 1.4.3.68. Analyticity of a function in C

Let D ⊂ C be an open set in the complex plane. A function f : D → C is called ana-

lytic/holomorphic in D, if f has a representation as a convergent power series in a neighborhood
of every z ∈ D:

∀z ∈ D: : ∃rz > 0, (ak)k∈N0
, ak ∈ C : f (w) =

∞

∑
k=0

ak(w− z)k ∀w : |z− w| < rz .

Functions f ∈ [a, b] that possess an analytic extension into a sufficiently large C-neighborhood of [a, b]
allow excellent approximation by polynomials, for instance, by their Chebychev interpolants, see [NumCSE
Rem. 6.2.3.26].

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 107

https://en.wikipedia.org/wiki/Analytic_function
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

For the reference interval [−1, 1] these particular C-
neighborhoods can be identified as ellipses with foci
−1 and 1:

Eρ := {z ∈ C : |z− 1|+ |z + 1| = ρ + ρ−1}

=

z = 1
2(ρ + ρ−1) cos θ+

ı 1
2(ρ− ρ−1) sin θ ,

0 ≤ θ ≤ 2π

 ,

(1.4.3.69)

with a parameter ρ > 0 controlling the size of the
ellipse. ✄

Eρ is often called Bernstein ellipse. Fig. 38
−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

ρ=1

ρ=1.2

ρ=1.4

ρ=1.6

ρ=1.8

ρ=2

Theorem 1.4.3.70. Polynomial approximation of analytic functions, [NumCSE Eq. (6.2.3.28)]

If f : [−1, 1]→ C possesses an analytic extension f̃ to C beyond the ellipse Eρ for a ρ > 0, then

inf
p∈Pm

‖ f − p‖L∞([−1,1]) ≤
2|Eρ|

π

1

(ρm+1 − 1)(ρ + ρ−1 − 2)
·max

z∈Eρ

| f (z)| , (1.4.3.71)

for all polynomial degrees m ∈ N0.

Obviously, the bound in (1.4.3.71) decays exponentially like O(ρm) for m → ∞. By virtue of

Lemma 1.4.3.61 the same bound holds for the quadrature error of a quadrature rule with positive weights
and order q = m + 1.

Asymptotics of quadrature error for analytic functions

If f : [a, b] → R has an analytic extension to a neighborhood of an ellipse in C with foci a and b,
then the quadrature errors for both Gauss(-Legendre) quadrature and Clenshaw-Curtis quadrature
will decrease exponentially in the number of quadrature points.

y

EXPERIMENT 1.4.3.73 (Global quadrature of analytic integrand) We use Gauss-Legendre quadrature
(→ Thm. 1.4.3.49) and Clenshaw-Curtis rules for the numerical quadrature of

t 7→ log(t + α) , α ∈ {1.05, 1.01, 1.2, 1.4} on [−1, 1] .

Fig. 39

0 5 10 15 20

 Number of quadrature nodes

10 -20

10 -15

10 -10

10 -5

10 0

 |q
ua

dr
at

ur
e

er
ro

r|

Gauss quadrature of t->log(t+) on [-1,1]

=1.4

=1.2

=1.1

=1.05

Fig. 40

0 5 10 15 20

 Number of quadrature nodes

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

 |q
ua

dr
at

ur
e

er
ro

r|

CC quadrature of t->log(t+) on [-1,1]

=1.4

=1.2

=1.1

=1.05

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 108

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Observation: The smaller α− 1, the slower the exponential convergence of the quadrature error

The (main branch of the) logarithm z 7→ log(z) is analytic on C \R−0 . Hence the domain of analyticity
of z 7→ log(z + α) is Dα := C\]−∞,−α] and the range of ρ for which the ellipse Eρ ⊂ Dα shrinks for
α→ 1. The bound O(ρ−n) from (1.4.3.71) will predict “flatter” exponential convergence as α→ 1. y

Summary: Significance of smoothness of integrand

The maximal smoothness of the integrand determines the quantitative asymptotic behavior of
quadrature errors for increasing quadrature order :

➜ Integrand of class Cm only ✄ algebraic convergence.
➜ Integrand has analytic extension ✄ exponential convergence.

§1.4.3.75 (Adaptive global quadrature) The numerical quadrature of analytic integrands by means of
Clenshaw-Curtis rules usually results in (slightly) larger errors than the use of Gauss(-Legendre) quadra-
ture with the same number of nodes. Nevertheless, the Clenshaw-Curtis nodes (1.4.3.51) feature an
obvious, but interesting nesting property:

for cn
j from (1.4.3.51): c2n

2j = cn
j , j = 1 . . . , n .

Thus, successively, using Clenshaw-Curtis rules with n = 2, 4, 8, 16, . . . , sL nodes, L ∈ N, to approximate∫ b
a f (t)dt requires only 2L point evaluations of the integrand.

The following pseudo-code implements an adaptive Clenshaw-Curtis quadrature. It assumes that the cor-
responding nodes and weights (cn

j , wn
j) are available already in a table. The quadrature error is estimated

by comparing results obtained for different numbers of quadrature points. Refer to [NumCSE Section 7.6]
for a detailed discussion of ideas underlying adaptive quadrature controlled by specifying a relative toler-
ance rtol > 0 and and absolute tolerance atol > 0.

Pseudocode 1.4.3.76: Adaptive Clenshaw-Curtis quadrature

n := 3; {Start with 3 nodes}
y[1] = f (c3

1); y[2] = f (c3
2); y[3] = f (c3

3);
I := w3

1y[1] + w3
2y[2] + w3

3y[3]; {evaluate quadrature formula}
repeat {main adaptive loop}

Iold := I;
n := 2 ∗ (n− 1) + 1; {next number of nodes}
y[n] := y[(n− 1)/2 + 1];
for j := (n− 1)/2 downto 1 do

y[2 ∗ j− 1] = y[j]; {reuse previous function values}
y[2 ∗ j] = f (cn

2j); {additional f -evaluations}

endfor

I := ∑
n
k=1 wn

k y[k]; {evaluate quadrature formula}
ǫ := |I − Iold|; {estimate for quadrature error}

{Check termination criterion based on absolute and relative tolerance}
until (ǫ < rtol · I or ǫ < atol or n ≥ nmax);
return(I);

y

EXPERIMENT 1.4.3.77 (Adaptive Clenshaw-Curtis quadrature) We test the algorithm of ?? for a family

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 109

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

of quadrature problems with a “nearly singular” integrand:

∫ 1

−1
f (t)dt , f (t) = log(t + α) on [−1, 1] , α > 1 .

Fig. 41
1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60

70

n
o
.
o
f
f-

e
v
a
lu

a
ti
o
n
s
 (

*)

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

q
u
a
d
ra

tu
re

 e
rr

o
r

(+
)

Adaptive C.-C. quadrature of log(t+)

✁ For rtol = 10−2, rtol = 10−6, total
number of f -evaluations using the algorithm of
Code 1.4.3.76.

The adaptive strategy triggers the use of a
higher-order quadrature rule, whenever the
proximity of the singularity might affect accu-
racy.

y

§1.4.3.78 (Tensor-product quadrature, cf. [NumPDE Ex. 2.7.5.38]) Nested quadrature formulas can
be used to integrate bi-variate functions over tensor-product domains. Given a quadrature formula

Qn(f) :=
n

∑
j=1

wn
j f (cn

j) ≈
∫ 1

−1
f (t)dt , f ∈ C0([−1, 1]) ,

we can use it to approximate integrals over [−1, 1]2: for F ∈ C0([−1, 1]2)

∫ 1

−1

∫ 1

−1
F(s, t)dtds ≈

n

∑
j=1

wn
j

∫ 1

−1
F(cn

j , t)dt ≈
n

∑
j=1

wn
j

n

∑
k=1

wn
k F(cn

j , cn
k) .

Thus we have found the derived two-dimensional tensor-product quadrature formula

∫ 1

−1

∫ 1

−1
F(s, t)dtds ≈

n

∑
j=1

n

∑
k=1

wn
j wn

k F(cn
j , cn

k) =: Qn×n(F) , (1.4.3.79)

with nodes (cn
j , cn

k) ∈ R2, and weights wn
j wn

k , j, k = 1, . . . , n.

This approach can easily be generalized to even higher dimensions and the combination of different
quadrature formulas with different numbers of points in different directions.

If the underlying one-dimensional quadrature rule has order q, then Qn×n will be exact for tensor product
polynomials of degree ≤ q− 1.

Definition 1.4.3.80. Tensor-product polynomials

The space of tensor product polynomials of (separate) degree p ∈ N in d dimensions is

T Pp(R
d) := {x 7→ q1(x1) · · · · · qd(xd), qi ∈ Pp, i = 1, . . . , d} .

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 110

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

For tensor-product quadrature formulas we define their order relying on exactness on spaces of tensor-
product polynomials:

order of Qn = m =⇒ Qn×n(q) =
∫ 1

−1

∫ 1

−1
q(s, t)dtds ∀q ∈ T Pm−1(R

2) .

As in one dimension, see Lemma 1.4.3.61, quadrature error and best approximation error in T Pm(R2)
are closely related: If the one-dimensional quadrature rule Qn is of order m, then

Qn×n(F)−
∫ 1

−1

∫ 1

−1
F(s, t)dtds

≤
(

1 +
(n

∑
k=1

|wn
j |
)2

)
inf{‖F− P‖L∞([−1,1]2), P ∈ T Pm−1(R

2)}

≤ 5 inf{‖F− P‖L∞([−1,1]2), P ∈ T Pm−1(R
2)} , (1.4.3.81)

if Qn has positive weights.

Without going into details we point out that nested interpolation and approximation estimates make it
possible to exploit Thm. 1.4.3.70 also in higher dimensions:

If both {t 7→ F(s, t)} and {s 7→ F(s, t)} allow an analytic extension to an ellipse neighborhood
of [−1, 1] in C independent of the other variable, then the quadrature error of Qn×n(F) will decay
exponentially for n→ ∞, provided that Qn has positive weights and order ≈ n.

y

1.4.3.4 Matrix Entries by Quadrature

We admit a general closed connected curve complying with Ass. 1.2.1.5: It can be split into M ∈ N edges
Γj, j = 1, . . . , M, each available through a parameterization γj : [−1, 1] → Γj, see also (1.4.2.4). Every
parameterization fulfills

∃c > 0:
∥∥∥γ̇j(t)

∥∥∥ ≥ c ∀t ∈ [−1, 1], j = 1, . . . , M . (1.4.3.82)

§1.4.3.83 (Data structure for general parameterization) When the use of a parameterization of an
edge or of a single panel in a code is mentioned, one should read this as the availability of an object of the
following type.

C++11 code 1.4.3.84: Model class representing a smooth parameterization (incomplete list-

ing), ➺GITLAB

1 class CurveParam

2 {
3 public :

4 //
...

5 // Querying the parameter interval

6 std : : pair <double , double> ParameterRange (void) const ;
7 // Accessing a point γ(t) on the edge/panel

8 Eigen : : Vector2d operator () (double t) const ;
9 // Retrieving the derivative γ̇(t), a tangent vector

10 Eigen : : Vector2d D e r i v a t i v e (double t) const ;

11 //
...

12 } ;

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 111

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/2DParametricBEM/Library/src/abstract_parametrized_curve.hpp

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

The parameterizations of edges are supposed to be “maximally smooth”:

Assumption 1.4.3.85. Analytic parameterization

All parameterizations γj possess an analytic extension (→ § 1.4.3.66) beyond [−1, 1].

Parlance: When, in the sequel, using the term “analytic” for a function of one or two variables on a bounded
interval, we actually mean the possibility of analytic extension to an ellipse neighborhood of that
interval, cf. Thm. 1.4.3.70.

Ass. 1.4.3.85 is obviously satisfied, if γ is a polynomial and for many function systems (NURBS) used in
CAD modeling.

We endow Γ with a mesh G = {π1, . . . , πN} according to Def. 1.4.2.5. For each panel π ∈ G the
relevant parameterization induces a local parameterization γπ : [−1, 1]→ π as defined in (1.4.2.25).

Writing k(x, y) for the kernel of some boundary integral operator (single layer BIO V or double layer BIO
K,K′), this section is devoted to the approximate computation of the entries of the interaction matrix

∫

π

∫

π′
k(x, y)b

j
π′(y) bi

π(x)dS(y)dS(x) , i, j ∈ {1, . . . , Q} , (1.4.3.86)

where b1
π , . . . , bQ

π are the local shape functions (→ § 1.4.2.21) associated with the panel π.

§1.4.3.87 (Transformation to reference interval) The first step in the computation of (1.4.3.86) employs
transformation to the reference interval Î =]−1, 1[.
∫

π

∫

π′

k(x, y)b
j
π′(y) bi

π(x)dS(y)dS(x)

=

1∫

−1

1∫

−1

k(γπ(s), γπ′(t)) b̂′
j
(t) b̂i(s) ‖γ̇π′(t)‖ ‖γ̇π(s)‖dtds , (1.4.3.88)

with reference shape functions b̂′
j
, b̂i as defined in (1.4.2.27).

We have assumed that γπ and γπ′ are analytic with , ‖γ̇π‖ and ‖γ̇π′‖ bounded away from zero on
[−1, 1]. Moreover, for customary boundary element spaces like S0

p(G) or S−1
p (G) the reference shape

functions are simple polynomials, cf. (1.4.2.28) and (1.4.2.29). Thus the task amounts to computing
integrals

1∫
−1

1∫
−1

k̂(s, t) F(t) G(s)dtds , k̂(s, t) := k(γπ(s), γπ′(t)) , (1.4.3.89)

for analytic functions F, G : [−1, 1] → R. Note that the kernel k̂ might inherit the singularities of k, if
π ∩π′ 6= ∅ (touching/overlapping panels). y

§1.4.3.90 (Single layer BIO: Identical panels) We consider k = G∆ and π = π′, in which case
(1.4.3.89) becomes

I :=

1∫

−1

1∫

−1

log ‖γπ(s)− γπ(t)‖ F(t)G(s)dtds . (1.4.3.91)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 112

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Using calculus for log we rewrite the kernel:

2 log ‖γπ(s)− γπ(t)‖ = log

(
‖γπ(s)− γπ(t)‖2

(s− t)2

)
+ 2 log |s− t| . (1.4.3.92)

We examine the first term and, in particular, the “difference quotient” in the argument of the logarithm,

S(s, t) :=

‖γπ(s)− γπ(t)‖2

(s− t)2
for s 6= t ,

‖γ̇π(t)‖2 for s = t .

(1.4.3.93)

In this formula we have already filled the gap at s = t with the norm of the derivative γ̇.

Fig. 42

✁ Plot of S(s, t) for the semi-circle

γ(t) =

[
cos(π t

2)
sin(π t

2)

]
, −1 ≤ t ≤ 1 .

The plot shows a perfectly smooth function nicely
bounded away from zero.

Actually, we find by means of Taylor expansion that for the analytic function γπ the difference quotient
S(s, t) is still analytic in both variables s, t ∈ [−1, 1]. Hence, since ‖γ̇π(t)‖ ≥ c > 0 on [−1, 1], also
(s, t) 7→ log D(s, t) is analytic, and

I =

1∫

−1

1∫

−1

1
2 log(S(s, t)) F(t)G(s)︸ ︷︷ ︸

analytic

dtds +

1∫

−1

1∫

−1

log |t− s| F(t)G(s)︸ ︷︷ ︸
singular

dtds =: I1 + I2 , (1.4.3.94)

splits into an integral with an analytic integrand and one with a singular. Thus,

an exponentially convergent approximation of I1 is provided by tensor-product Gaussian quadrature
(→ § 1.4.3.78).

Idea: Move location of singularities of integrands to a coordinate axis by an affine transfor-
mation of the integration domain.

In the second integral in (1.4.3.94) the singularities of the integrand are located at the diagonal {s = t} of
the square. In the spirit of the policy just described, we tackle I2 by the linear transformation

[z

w

]
:= Φ

−1
[s

t

]
=

[
1 −1
1 1

][
s
t

]
⇔

[s

t

]
= Φ

[z

w

]
=

1

2

[
1 1
−1 1

][
z
w

]
. (1.4.3.95)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 113

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 43

z s

t

w

−1

−1

−1

−1

1

1

1

1

Φ

Π

Then apply the transformation formula for integrals over D ⊂ R2 [Str09, Sect. 8.5]
∫

D
f (x)dx =

∫

Φ
−1(D)

f (Φ(x̂)) |detDΦ(x̂)|dx̂ , f integrable on D . (1.4.3.96)

I2 = 2
∫

Φ
−1([−1,1]2)

log |z| F(1
2(w− z))G(1

2(w + z))dzdw (1.4.3.97)

The integral over the square Π := Φ
−1([−1, 1]2) (left in Fig. 43) is split into the left and right half and

then we add the contributions

I2 = 2

2∫

0

log(z)

2−z∫

−2+z

analytic in (z, w)︷ ︸︸ ︷
F(1

2(w− z))G(1
2(w + z))− F(1

2(w + z))G(1
2(w− z)) dw

︸ ︷︷ ︸
analytic as a function of z

dz . (1.4.3.98)

The inner integral is amenable to standard Gaussian quadrature. Then we face an integral of the form∫ 2
0 log z f (z)dz with an analytic function f : [0, 2]→ R.

Generalized Gaussian quadrature (→ § 1.4.3.53) with weight log(z) can approximate I2 with ex-
ponential accuracy.

y

§1.4.3.99 (Single layer BIO: Adjacent panels) We assume π, π′ ∈ G, π 6= π′, π ∩ π′ = {p}.
Writing |π|, |π′| for the length of π and π′, respectively, in this § we will make use of a local arclength
parameterization

[for π]: κ : [0, |π|]→ π , ‖κ̇(t)‖ = 1 ∀t ∈ [0, |π|] ,

[for π′]: κ′ : [0, |π′|]→ π′ ,
∥∥κ̇′(t)

∥∥ = 1 ∀t ∈ [0, |π′|] .
(1.4.3.100)

Thus, after transformation to the parameter domain, the entries of the interaction matrix for (π, π′) are
given by integrals

J :=

|π|∫

0

|π′|∫

0

log
∥∥κ(s)− κ′(t)

∥∥ F(t)G(s)dtds , (1.4.3.101)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 114

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with suitable univariate analytic functions F and G.

Fig. 44

π π′

p

−κ̇′(0) −κ̇(0)

Uniform cone condition:

Lipschitz property of Γ entails lower bound on angle enclosed
by π and π′:

κ̇(0) · κ̇′(0) ≤ c∠ < 1 . (1.4.3.102)

✁ The panels cannot invade the yellow cone.

Taking the cue from (1.4.3.92) we split the kernel according to

log
∥∥κ(s)− κ′(t)

∥∥ =
1

2

(
log
‖κ(s)− κ′(t)‖2

s2 + t2
+ log(s2 + t2)

)
. (1.4.3.103)

By Taylor expansion around s = t = 0:

κ(s)− κ′(t) = κ̇(0)s− κ̇′(0)t + O(s2 + t2) for s, t ≈ 0 , (1.4.3.104)
∥∥κ(s)− κ′(t)

∥∥2
= s2 + t2 − 2stκ̇(0) · κ̇′(0) + O(s4 + t4) for s, t ≈ 0 . (1.4.3.105)

The prominent presence of s2 + t2 suggests that we introduce polar coordinates (r, ϕ), see
[NumPDE ??], according to

s = r cos ϕ , t = r sin ϕ ,

with r, ϕ in a suitable range that makes (s, t) cover D := [0, |π|]× [0, |π′|].
In polar coordinates the result of the above Taylor expansion reads

∥∥κ(s)− κ′(t)
∥∥2

= r2(1− sin(2ϕ)κ̇(0) · κ̇′(0) + O(r2)) for r → 0 .

Due to (1.4.3.102) we can take for granted that the logarithm of

D(r, ϕ) :=

‖κ(r cos ϕ)− κ′(r sin ϕ)‖2

r2
, if (s, t) 6= (0, 0) ,

1− sin(2ϕ)κ̇(0) · κ̇′(0) ≥ 1− c∠ , if r = 0 ,
(1.4.3.106)

is analytic on D := [0, |π|]× [0, |π′|].

Fig. 45

✁ Plot of D(r, ϕ) for the

κ(s) =

[
cos(t)
sin(t)

]
, 0 ≤ t ≤ π

2 ,

κ′(t) =
[

1− t
0

]
, 0 ≤ t ≤ 1 .

The graph looks perfectly smooth, hinting at a benign
dependence of D on the polar coordinates (r, ϕ).

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 115

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Analogously to (1.4.3.94) the integral can be split into two summands with “nice” and “nasty” integrands,
respectively.

J = 1
2

∫

D

r log(D(r, ϕ)) F(t cos ϕ)G(r sin ϕ)︸ ︷︷ ︸
analytic

drdϕ +
∫

D

r log r F(s)G(t)︸ ︷︷ ︸
singular

drdϕ (1.4.3.107)

The first summand is amenable to tensor-product Gauss quadrature The domain D of integration has to
be decomposed in two triangles for integration in polar coordinates.

Fig. 46

s

t

|π|

|π′|

α

β

ϕ

tan α = |π′|/|π|, tan β = |π|/|π′|

|π|∫

0

|π′|∫

0

log
√

s2 + t2 F(s)G(t)︸ ︷︷ ︸
singular

dtds = +

=

α∫

0

|π|/ cos(ϕ)∫

0

r log r

analytic in (r, ϕ)︷ ︸︸ ︷
F(r sin ϕ)G(r cos ϕ) drdϕ

︸ ︷︷ ︸
analytic in ϕ

+

π/2∫

α

|π′|/ sin(ϕ)∫

0

r log r

analytic in (t, ϕ)︷ ︸︸ ︷
F(r sin ϕ)G(r cos ϕ) drdϕ

︸ ︷︷ ︸
analytic in ϕ

.

This suggest that we use

✦ generalized Gaussian quadrature formulas (→ § 1.4.3.53) with weight r → r log r for the
inner integral,

✦ standard Gaussian quadrature for the outer integral.

y

§1.4.3.108 (Double layer BIO: Coinciding panels) In the case π = π′ (local analytic parameterization
γπ : [−1, 1]→ π), for the double layer BIO K we have to approximate integrals of the form

K :=

1∫

−1

1∫

−1

(
γπ(s)− γπ(t)

)
· n(γπ(t))

‖γπ(s)− γπ(t)‖2
F(t)G(s)dtds , (1.4.3.109)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 116

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 47

✁ plot of

(s, t) 7→
(
γπ(s)− γπ(t)

)
· n(γπ(t))

‖γπ(s)− γπ(t)‖2

for π a semi-circle of radius 1.

We see the graph of a perfectly smooth function!

To understand, why the integrand in (1.4.3.109) is smooth, note that n(γπ(t)) · γ̇π(t) = 0 for all −1 ≤
t ≤ 1, because γ̇π(t) is tangential to Γ in the point γπ(t). Thus, by power series expansion of the
analytic function γπ for |s− t| sufficiently small

(
γπ(s)− γπ(t)

)
· n(γπ(t)) =

(∞

∑
j=1

(s− t)j

j!
γ
(j)
π (t)

)
· n(γπ(t))

= (s− t)2 ·
∞

∑
j=0

(s− t)j

(j + 2)!
γ
(j)
π · n(γπ(t))

︸ ︷︷ ︸
analytic function of (s, t)

.

By the same arguments

‖γπ(s)− γπ(t)‖2 = (s− t)2 · { smooth function > 0 of (s, t) } .

(s, t) 7→
(
γπ(s)− γπ(t)

)
· n(γπ(t))

‖γπ(s)− γπ(t)‖2
is analytic in (s, t) !

Hence, the integrand in (1.4.3.109) is analytic and we can achieve

exponential convergence of the quadrature error by standard tensor-product Gaussian (→
§ 1.4.3.78) quadrature of (1.4.3.109).

y

§1.4.3.110 (Double layer BIO: Abutting panels) We discuss the situation of § 1.4.3.99 for the double
layer boundary integral operator K. As earlier, we assume that the panels π, π′ ∈ G have in common
exactly one point π ∩π′ = {p} and we make use of the arclength parameterization (1.4.3.100).

[for π]: κ : [0, |π|]→ π , ‖κ̇(t)‖ = 1 ∀t ∈ [0, |π|] ,

[for π′]: κ′ : [0, |π′|]→ π′ ,
∥∥κ̇′(t)

∥∥ = 1 ∀t ∈ [0, |π′|] .
(1.4.3.100)

We are concerned with the numerical evaluation of integrals in the parameter domain of the form

J :=

|π|∫

0

|π′|∫

0

(κ(s)− κ′(t)) · n(κ′(t))
‖κ(s)− κ′(t)‖2

F(t)G(s) dtds . (1.4.3.111)

We can no longer count on the regularizing effect of orthogonality as in § 1.4.3.108.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 117

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Inspired by the success in § 1.4.3.99, we switch to polar coordinates (r, ϕ) for the domain
in integration: s = r cos ϕ, t = r sin ϕ.

Then, since κ(0) = κ′(0) = p, Taylor expansion around s = t = 0 yields for 0 ≤ s, t sufficiently small

κ(s)− κ′(t) = r ·
∞

∑
j=0

rj

(j + 1)!

(
κ(j+1)(0) cosj+1 ϕ− κ′(j+1)(0) sinj+1 ϕ

)
= rb(r, ϕ) , (1.4.3.112)

with a (componentwise) analytic function b : R+
0 × [0, 2π]→ R2 that satisfies b(0, ϕ) 6= 0 on the domain

of integration, compare (1.4.3.105). Thus, in polar coordinates

(κ(s)− κ′(t)) · n(κ′(t))
‖κ(s)− κ′(t)‖2

=
1

r
· b(r, ϕ) · n(κ′(r sin ϕ))

‖b(r, ϕ)‖2

︸ ︷︷ ︸
analytic in (r, ϕ)

. (1.4.3.113)

Thus we can achieve a cancellation of the singular term r 7→ r−1 by the metric factor (dtds → rdrds)
when integrating in polar coordinates, see Fig. 46 for the meaning of α, β,

|π|∫

0

|π′|∫

0

(κ(s)− κ′(t)) · n(κ′(t))
‖κ(s)− κ′(t)‖2

F(t)G(s) dtds =

α∫

0

|π|/ cos(ϕ)∫

0

b(r, ϕ) · n(κ′(r sin ϕ))

‖b(r, ϕ)‖2
drdϕ+

π/2∫

α

|π′|/ sin(ϕ)∫

0

b(r, ϕ) · n(κ′(r sin ϕ))

‖b(r, ϕ)‖2
drdϕ .

For the resulting two integrals

standard tensor-product Gaussian quadrature yields an exponentially convergent numerical approx-
imation.

y

Remark 1.4.3.114 (Stable evaluation of integrands) The functions (s, t) 7→ S(s, t)/D(s, t) introduced
in (1.4.3.93)/(1.4.3.106) and (r, ϕ) 7→ b(r, ϕ) are defined as

S(s, t) =
‖γπ(s)− γπ(t)‖2

(s− t)2
for s 6= t , (1.4.3.115)

D(s, t) =
‖κ(s)− κ′(t)‖2

s2 + t2
for s2 + t2 > 0 , (1.4.3.116)

b(r, ϕ) =
κ(r cos ϕ)− κ′(r sin ϕ)

r
for r > 0 . (1.4.3.117)

! Evaluating these expressions for s ≈ t, s2 + t2 ≈ 0, or r ≈ 0, respectively, incurs cancella-
tion.

As explained in [NumCSE Section 1.5.4], cancellation is a massive amplification of roundoff errors due
to subtracting numbers of almost the same value. We have to follow the recommendation of [NumCSE
Ex. 1.5.4.26] and

use truncated Taylor expansions of κ, κ′ to avoid cancellation !

γπ(s)− γπ(t) ≈ (s− t)γ̇π(
1
2(s + t)) for |s− t| <

√
EPS ,

κ(s)− κ′(t) ≈ κ̇(0)s− κ̇′(0)t for r2 = s2 + t2 ≤ EPS .

(EPS =̂ machine precision, see [NumCSE Ass. 1.5.3.11])

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 118

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Stable evaluation by means of the expressions

S(s, t) ≈
∥∥∥γ̇π(

1
2(s + t))

∥∥∥
2

for |s− t| <
√

EPS , (1.4.3.118)

D(s, t) ≈ 1− κ̇(0) · κ̇′(0) 2st

s2 + t2
for s2 + t2 ≤ EPS , (1.4.3.119)

b(r, ϕ) ≈ κ̇(0) cos ϕ− κ̇′(0) sin ϕ for r <
√

EPS . (1.4.3.120)

y

§1.4.3.121 (Treatment of disjoint panels) Now we discuss the situation π ∩π′ = ∅. We use the stan-
dard local parameterizations of π, π′ over]−1, 1[from (1.4.2.25). In principle we face only integrals

1∫

−1

1∫

−1

k̂(s, t) F(t) G(s)dtds , k̂(s, t) := k(γπ(s), γπ′(t)) , (1.4.3.89)

with analytic integrands, because the singularity of the fundamental solution is avoided. However, if π and
π′ are very close,

the proximity of a singularity will be “felt” by Gaussian quadrature and (exponential) convergence (in
terms of the number of quadrature points) will deteriorate, see Exp. 1.4.3.73.

Thus we have to link the number of quadrature points to the inverse relative distance of panels

ρ(π, π′) :=
max{|π|, |π′|}

dist(π; π′)
, dist(π; π′) := inf{‖x− y‖, x ∈ π, y ∈ π′} . (1.4.3.122)

The following heuristic (supported by the analysis of [SS10, Sect. 5.3.2]) may be implemented:

For (1.4.3.89) use n× n-point tensor-product Gaussian quadrature on [−1, 1]2with

n = n0 ·max
{

1, 1 + C log

(
ρ(π, π′)

η

)}
, (1.4.3.123)

where n0 is a small fixed number, n0 ∈ {3, 4, 5}, and C, η > 0 are constants, 1
2 ≤ η < 1,

C ≈??.

Thus, in particular,

if η dist(π; π′) ≥ max{|π|, |π′|} then use fixed n0 × n0-point quadrature .

y

1.5 Boundary Element Methods on Closed Surfaces

The first-kind and second-kind boundary integral equations stated in variational form in Sec-
tion 1.3.5.1/Section 1.3.5.2 and Section 1.3.6 hold for both d = 2, 3, if based on the respective fundamen-
tal solutions. The previous section gave a detailed introduction into the building blocks and algorithmic
details of Galerkin boundary element methods in 2D. It is not surprising that for d = 3 similar principles,
constructions and algorithms will apply. of course, the paradigm of Galerkin discretization elaborated in
§ 1.4.1.1 remains unchanged.

Also the other ingredients of boundary element methods remain relevant for surfaces, with slight adapta-
tions to the additional dimension:

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 119

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ meshes, see Section 1.4.2.1 for the 2D case, attain much greater flexibility and will be discussed in
Section 1.5.1,

✦ boundary element spaces, for 2D introduced in Section 1.4.2.2 will again turn out to be “2D finite
element spaces on surfaces”, see Section 1.5.2 below,

✦ shape functions, both global and local will become more complicated than those presented in Sec-
tion 1.4.2.3, but still comply with the same design pattern, see Section 1.5.2.2,

✦ parametric construction as presented in § 1.4.2.24 will remain a crucial tool for defining and handling
shape functions.

✦ panel-oriented assembly will exactly agree with its 2D counterpart from Section 1.4.3.1.

Because of the similarities some aspects of boundary element methods in 3D will be treated only briefly
with reference to further explanation given in Section 1.4. Also many concepts will be borrowed from
Lagrangian finite element methods in 2D, see [NumPDE Section 2.5] and [NumPDE Section 2.6].

1.5.1 Surface Meshes

If Ω ⊂ R3, then Γ is an orientable two-dimensional manifold, a surface embedded into three-dimensional
Euclidean space R3.

§1.5.1.1 (Γ with smooth faces) Ass. 1.2.1.7 should still apply: Γ is a curved Lipschitz polyhedron and
can be partitioned into M ∈ N faces

Γ = Γ1 ∪ · · · ∪ ΓM , Γi ∩ Γj = ∅ for i 6= j ,

of which each has a C2-parameterization

γj : Πj → Γj , Πj ⊂ R2 a planar polygon .

Fig. 48
x̂1

x̂2

Πj

Γj

γj

y

§1.5.1.2 (Planar triangulations [NumPDE Section 2.5.1])

Definition 1.5.1.3. Triangular planar mesh/triangulation, cf. [NumPDE Def. 2.5.1.1]

A triangular mesh/triangulationM of a polygon Π ⊂ R2 is a finite collection {Ki}N
i=1, N ∈ N, of

open non-degenerate triangles
(A) Π =

⋃
{Ki, i = 1, . . . , M} (covering property),

(B) Ki ∩ Kj = ∅ ⇔ i 6= j (partition property)

(C) for all i, j ∈ {1, . . . , M}, i 6= j, the intersection Ki ∩ K j is either empty or a vertex or edge of
both Ki and Kj.

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 120

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 49

Π

A triangular mesh/triangulation

Fig. 50

Π

Inadmissible “hanging nodes”

For the notions of triangles, edges, and vertices as basic constituent parts of a triangulation we appeal to
geometric intuition. The triangles of a mesh may also be called cells. y

Putting it simply, surface mesh is the image of compatible triangulations of the paramter domains Πj ⊂
R2under the parameterizations γj.

Definition 1.5.1.4. Triangular surface mesh/surface triangulation

A triangular surface mesh/surface triangulation G is a partitioning

Γ = π1 ∪ · · · ∪πN , πi ∩π j = ∅ for i 6= j ,

such that
(i) every panel πi is contained in exactly one face,
(ii) the pre-images of the panels contained in Γj under the parameterization γj form a triangula-

tionMj of Πj according to Def. 1.5.1.3,
(iii) for all πi, π j ∈ G the intersections πi ∩ π j are either empty, a common vertex, or a face of

both panels.

As usual, we identify a surface triangulation G with its set of panels. It should be evident what is meant by
edges and vertices of a surface mesh. The vertices may also be called the nodes of the mesh.

✎ Notation: V(G) =̂ set of vertices (nodes) of G
E(G) =̂ set of edges of G

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 121

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 51

Item (iii) ensures that the surface triangulation G is
compatible across the edges separating the faces of
Γ: also there hanging nodes cannot occur.

✁ Surface triangulation covering a polyhedron

Remark 1.5.1.5 (Surface meshes as traces of volume meshes) We could also have introduced surface
meshes as restrictions of tetrahedral finite element meshes of the volume domain Ω to the boundary Γ.

Conversely, we may assume that for every surface mesh G there is a generalized tetrahedral meshM of
Ω according to [NumPDE Def. 2.5.1.1], possibly with curved faces and edges, such that G = M|Γ. y

Remark 1.5.1.6 (More general surface meshes) Of course, we could have also relied on more general
meshes of the parameter domains in our definition of surface meshes, like quadrilateral meshes or hybrid
meshes, see [NumPDE § 2.5.1.3]. We restrict ourselves to triangular surface meshes just to simplify the
presentation. y

1.5.2 Boundary Element Spaces on Triangulated Surfaces

1.5.2.1 Definitions

§1.5.2.1 (Polynomials in R2) Polynomials on Γ are again defined via their pullbacks γ∗ to parameter
domains Πj ⊂. The definition of the pullback Def. 1.4.2.8 carries over and what is a polynomial on Πj is
clear from the following definition for d = 2:

Definition 1.5.2.2. Multivariate polynomials

The space of d-variate polynomials of (total) degree p ∈ N0 is

Pp(R
d) := {x ∈ Rd 7→∑α∈Nd

0 , |α|≤p
cαxα , cα ∈ R} .

d = 2: Pp(R
2) =

 ∑

α1,α2≥0
α1+α2≤p

cα1,α2 xα1
1 xα2

2 , cα1,α2 ∈ R

,,

for instance P2(R
2) = Span{1, x1, x2, x2

1, x2
2, x1x2}.

From [NumPDE Lemma 2.5.2.5] we learn that

dimPp(R
d) =

(
d + p

p

)
dimPp(R

2) = 1
2(p + 2)(p + 1) . (1.5.2.3)

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 122

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

§1.5.2.4 (Piecewise polynomials on triangulated surfaces) A function f : Γj → R is called a polyno-

mial of degree ≤ p on the face Γj, if its pullback γ∗j f is a 2-variate polynomial of degree ≤ p on Πj ⊂ R2.
Thus, the definitions of piecewise polynomial spaces for Section 1.4.2.2 remain unchanged.

S0
p(G) :=

{
v ∈ C0(Γ) : γ∗j (v|π) ∈ Pp(R

2), ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M
}

, p ≥ 1 ,

(1.5.2.5)

S−1
p (G) :=

{
v ∈ L2(Γ) : γ∗j (v|π) ∈ Pp(R

2), ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M
}

, p ≥ 0 .

(1.5.2.6)

The embeddings S0
p(G) ⊂ C1

pw(Γ) ⊂ H
1
2 (Γ), S−1

p (G) ⊂ C0
pw(Γ) ⊂ L2(Γ) ⊂ H−

1
2 (Γ), stated in

Cor. 1.4.2.12 remain true. y

Theorem 1.5.2.7. Dimensions of BE spaces on triangulated surfaces

✦ dimS0
p(G) = ♯V(G) + (p− 1) · ♯E(G) + 1

2(p− 1)(p− 2) · ♯G, p ≥ 1,

✦ dimS−1
p (G) = ♯G 1

2(p + 1)(p + 2), p ≥ 0.

(negative terms to be set to zero!)

BE spaces from FE spaces

LetMj be the triangular mesh of Πj inducing G|Γj
. Then

S0
p(Mj) = γ∗j S0

p(G)
∣∣∣
Γj

,

S−1
p (Mj) = γ∗j S−1

p (G)
∣∣∣
Γj

,
j = 1, . . . , M , (1.5.2.9)

where S0
p(Mj) is the p-th degree Lagrangian finite element space onMj as defined in [NumPDE

Def. 2.6.1.1], and S−1
p (M) the space ofMj-piecewise polynomials of degree ≤ p.

The relationship (1.5.2.9) permits us to transfer most concepts from finite element spaces in 2D to surface

boundary element spaces. In particular, this will be done in the next section.

Remark 1.5.2.10 (Nodal interpolation operators) The relationship expressed in (1.5.2.9) permits us to
transfer most tools from the world of finite elements to boundary elements.

Let Mj be the preimage of G|Γj
under γj. For the Lagrangian finite element space S0

p(Mj) there are

nodal interpolation operators I
0,j
p : C0(Πj) → S0

p(Mj) defined through interpolation in special interpola-
tion points. Their locations for different p in 2D are described in [NumPDE Ex. 2.6.1.2] and [NumPDE ??].
Then nodal interpolation operators I0p : C0(Γ)→ S0

p(G) can be defined by

I0p

∣∣∣
Γj

:=
(
γ−1

j

)∗ ◦ I0,j
p ◦ γ∗j . (1.5.2.11)

This amounts to “piecewise polynomial interpolation in the mapped interpolation nodes”. For p = 1 the
interpolation nodes coincide with the vertices of G. y

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 123

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 1.5.2.12 (Approximation of surfaces) 3D boundary element codes often resort to piecewise
polynomial approximation of Γ, analogous to what was done for curves in Section 1.4.2.5.

Given a triangular surface mesh according to Def. 1.5.1.4, we define approximate piecewise polynomial
parameterizations by

γ̃j := I
0,j
p ◦ γj : Πj → R3 , (1.5.2.13)

where the nodal interpolation operator I
0,j
p acts on the three components of γj. Then we obtain the ap-

proximate surface

Γ̃ = Γ̃1 ∪ · · · ∪ Γ̃M , Γ̃j := γj(Πj) .

y

1.5.2.2 Shape Functions

§1.5.2.14 (Global shape functions) Everything from Section 1.4.2.3 can be adapted to triangulated sur-
faces and the associated boundary element spaces S0

p(G) of continuous, and S−1
p (G) of discontinuous

piecewise polynomials. Again, we can find bases of the boundary element spaces consisting of locally
supported basis functions associated with geometric entities of the surface mesh G; they satisfy the prop-
erties § 1.4.2.15, § 1.4.2.15, and § 1.4.2.15 from 89 and are called global shape functions (GSF). From
[NumPDE Ex. 2.5.3.2] we recall

Fig. 52

Support of vertex-associated
basis function

Fig. 53

Support of edge-associated basis
function

Fig. 54

Support of panel-associated basis
functiony

§1.5.2.15 (Local shape functions) Restricting global shape functions to individual panels we obtain local
shape functions (LSF):

{b1
π , . . . , bQ

π} = {bN|π : bN ∈ BN} \ {0} for some Q = Q(π) ∈ N . (1.4.2.22)

Also (1.4.2.23) remains true: If {b1
π , . . . , bQ

π} is the set of local shape functions of S0
p(G) or S−1

p (G) for a
panel π ⊂ Γj then

∀π ∈ G, π ⊂ Γj: γ∗j (Span{b1
π , . . . , bQ

π}) = Pp(R
2) . (1.4.2.23)

y

§1.5.2.16 (Reference shape functions) The role of the reference interval Î :=]−1, 1[in 2D is now played

by the “unit triangle” K̂ :=
〈[

0
0

]
,
[

1
0

]
.
[

0
1

]〉
, see [NumPDE ??].

For a panel π ⊂ Γj the local parameterization γπ is built by a two-stage procedure:

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 124

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➊ Find the unique affine mapping from K̂ to the triangle K := γ−1
j (π):

“Unit triangle”: K̂ =
〈[

0
0

]
,
[

1
0

]
,
[

0
1

]〉

For K =
〈

a1, a2, a3
〉
:

FK =

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
, τK = a1 .

Fig. 55 1

1

K

K̂

ΦK(x̂) = FK x̂ + τK

x̂1

x̂2

a1

a2

a3

➊ ➋

➌

➋ Map from K to π through the paramterization γj

∣∣∣
K

.

These two mappings can be concatenated into a local parameterization of the panel π:

[K̂
ΦK−−−→ K

γj−−−→ π] , γπ := γj ◦ΦK : K̂ → π . (1.5.2.17)

The pullback of shape functions to K̂ yields reference shape functions:

b̂j = γ∗π(b
j
π) , j = 1, . . . Q . (1.4.2.27)

For the standard boundary element spaces S0
p(G) and S−1

p (G) on a triangulated surface the reference
shape functions can be chosen independent of the panel π:

• For S−1
p (G), p ≥ 0:

Any basis of Pp(R2) can supply valid reference shape functions.

• For S0
p(G), p ≥ 1:

Reference shape functions ∈ Pp(R2) as Lagrange polynomials for suitable interpolation

nodes on K̂, see [NumPDE Ex. 2.6.1.2] and [NumPDE Ex. 2.6.1.7].

In both cases Q = dimPp(R2) = 1
2(p + 1)(p + 2). y

The reference shape functions in the lowest-degree cases are straightforward:

EXAMPLE 1.5.2.18 (Reference shape functions for S−1
0 (G)) The space P0(R

2) spanned by the ref-

erence shape functions has dimension 1 and, therefore, for S−1
0 (G)

β̂1 ≡ 1 on K̂ .

y

EXAMPLE 1.5.2.19 (Reference shape functions for S0
1 (G)) The reference shape functions space the

space P1(R
2) of dimension 3. The reference shape functions are the barycentric coordinate functions

λ1, λ2, λ3 on K̂

b̂1(t) = λ1(t) := 1− t1 − t2 [associated with vertex

[
0

0

]
],

b̂2(t) = λ2(t) := t1 [associated with vertex

[
1

0

]
],

b̂3(t) = λ3(t) := t2 [associated with vertex

[
0

0

]
], .

y

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 125

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.5.3 Assembly of Galerkin Matrices

The entire discussion in Section 1.4.3.1 including Code 1.4.3.14 carries over to surface boundary ele-
ments. Therefore we completely focus on the computation of entries of the interaction matrices of two
panels π, π′ ∈ G by means of quadrature-based techniques, that is, we present the subject of Sec-
tion 1.4.3.4 for d = 3. As in Section 1.4.3.4 we assume maximally smooth parameterizations, compare
Ass. 1.4.3.85.

Assumption 1.5.3.1. Analyticity of local parameterizations

We assume that the local parameterizations γπ according to (1.5.2.17) can be extended analytically
(→ Def. 1.4.3.68) to an ellipse neighborhood of [0, 1] in both variables and independently of the
panel π ∈ G.

Also due to the different nature of singularities in the fundamental solutions

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 ,
(1.2.2.33)

the technical details of the computations will be very different for the different dimensions. In this section
we exclusively focus on the single layer BIO V, that is, the evaluation of integrals of the form

I :=
∫

π

∫

π′

1

‖x− y‖ b
j
π′(y) bi

π(x)dS(y)dS(x) ,

for pairs of panels π, π′ ∈ G, where b
j
π are local shape functions, see § 1.5.2.15.

§1.5.3.2 (Transformation to reference triangle, cf. § 1.4.3.87) By pullback to the reference triangle

K̂ :=
〈[

0
0

]
,
[

1
0

]
,
[

0
1

]〉
we obtain

I =
∫

K̂

∫

K̂

1

‖γπ(s)− γπ′(t)‖
F(t) G(s)dtds , (1.5.3.3)

with smooth functions F, G ∈ C∞(K̂) that possess an analytic extension beyond K̂ in each variable.
The domain of integration in (1.5.3.3) is four-dimensional, a tensor-product of two triangles, the convex
polyhedron.

K̂× K̂ =
{
[s1, s2, t1, t2]

⊤ ∈ R4 : t1.t2, s1, ss > 0, t1 + t2 < 1, s1 + s2 < 1
}

.

y

§1.5.3.4 (Coinciding panels, compare § 1.4.3.90, [SS10, Sect. 5.2.1]) We deal with the situation π =
π′, γπ = γπ′ =: γ : K̂ → π.

We observe that in (1.5.3.3) the integrand has a singularity for s = t, which suggests the
following change of coordinates [SS10, Sect. 5.2.1].

[
ŝ
ẑ

]
=

[
s

s− t

]
⇔

[
s
t

]
=

[
ŝ

ŝ− ẑ

]
. (1.5.3.5)

This is a volume preserving (det = 1) linear transformation and it converts (1.5.3.3) into

I =
∫ ∫

D

1

‖γ(ŝ)− γ(ŝ− ẑ)‖ F(ŝ− ẑ) G(ŝ)︸ ︷︷ ︸
analytic in (ŝ, ẑ)

dẑdŝ , (1.5.3.6)

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 126

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

where D ⊂ R4 is the transformed convex polyhedron

D =

{
[ŝ1, ŝ2, ẑ1, ẑ2]

⊤ ∈ R4 :
ŝ1, ŝ2 > 0, ŝ1 − ẑ1 > 0, ŝ2 − ẑ2 > 0,
ŝ1 + ŝ2 − (ẑ1 + ẑ2) < 1

}
. (1.5.3.7)

Now the singularity has been isolated at ẑ = 0, where the integrand behaves like O(‖ẑ‖1) for ẑ→ 0.

As in § 1.4.3.110 for the treatment of O(‖ẑ‖−1)-type singularities switch to polar coordi-
nates: ẑ1 = r cos ϕ, ẑ2 = r sin ϕ, r ≥ 0.

To understand the behavior of the integrand we perform two-dimensional Taylor expansion around ẑ =
0:

γ(ŝ)− γ(ŝ− ẑ) = −Dγ(ŝ)ẑ +
∞

∑
k=1

1

k! ∑
ℓ1+ℓ2=k

Dℓγ(ŝ)(−ẑ)ℓ .

Then we plug in polar coordinates and get

B(ŝ, ẑ) :=
‖γ(ŝ)− γ(ŝ− ẑ)‖2

‖z‖2
=

[
cos ϕ
sin ϕ

]⊤
Dγ(ŝ)⊤Dγ(ŝ)

[
cos ϕ
sin ϕ

]
+ r · {analytic in (ŝ, r, ϕ)} .

Since γ is a parameterization, the smallest eigenvalue of the Gram matrix Dγ⊤Dγ must be uniformly

positive on K̂. Therefore, for sufficiently small r := ‖ẑ‖, B(ŝ, ẑ) will be positive, and

(ŝ, ẑ) ∈ D 7→
√

B(ŝ, ẑ) ∈ R+

will possess an analytic extension beyond D. Hence, we have

I =
∫ ∫

D

1

‖ẑ‖
F(ŝ− ẑ) G(ŝ)√

B(ŝ, ẑ)︸ ︷︷ ︸
analytic in D

dẑdŝ =
∫ ∫

D

F(ŝ− ẑ) G(ŝ)√
B(ŝ, ẑ)

dŝdrdϕ , (1.5.3.8)

because the volume element dẑdŝ = rdrdϕ cancels the denominator r = ‖ẑ‖. We have achieved an
integral with an analytic integrand, on a complicated domain, however.

Split D into six four-dimensional simplices with a vertex in 0 [SS10, p. 309]!

D = {−1 < ẑ1 < 0, −1 < ẑ2 < ẑ1, −ẑ2 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1}
⋃

{−1 < ẑ1 < 0, ẑ1 < ẑ2 < 0, ẑ1 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{−1 < ẑ1 < 0, 0 < ẑ2 < 1 + ẑ1, ẑ2 − ẑ1 < ŝ1 < 1, 0 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{0 < ẑ1 < 1, −1 + ẑ1 < ẑ2 < 0, −ẑ2 < ŝ1 < 1− ẑ1, −ẑ2 < ŝ2 < ŝ1}
⋃

{0 < ẑ1 < 1, 0 < ẑ2 < ẑ1, 0 < ŝ1 < 1− ẑ1, 0 < ŝ2 < ŝ1}
⋃

{0 < ẑ1 < 1, ẑ1 < ẑ2 < 1, ẑ2 − ẑ1 < ŝ2 < 1− ẑ1, 0, ŝ2 < ẑ1 − ẑ2 + ŝ1}
=: D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 ∪ D6 .

(1.5.3.9)

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 127

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We have arranged the inequalities defining the sets Di in a way that removes the dependence of the
ẑ-coordinate from ŝ. So we can rewrite

D = {ẑ ∈ △1, −ẑ2 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1}
⋃

{ẑ ∈ △2, ẑ1 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{ẑ ∈ △3, ẑ2 − ẑ1 < ŝ1 < 1, 0 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{ẑ ∈ △4, −ẑ2 < ŝ1 < 1− ẑ1, −ẑ2 < ŝ2 < ŝ1}
⋃

{ẑ ∈ △5, 0 < ŝ1 < 1− ẑ1, 0 < ŝ2 < ŝ1}
⋃

{ẑ ∈ △6, ẑ2 − ẑ1 < ŝ2 < 1− ẑ1, 0, ŝ2 < ẑ1 − ẑ2 + ŝ1} ,

(1.5.3.10)

Fig. 56

1

1

−1

−1

△1

△2

△3

△4

△5

△6

ẑ1

ẑ2

✁ with suitably defined triangles △i in the ẑ1 − ẑ2-
plane.

Refer to Fig. 46 for the representation of triangles in
polar coordinates.

Thus we can express the integral through contributions from simpler domains:

∫ ∫

D
. . . dŝdrdϕ =

∫

△1

1∫

−ẑ2

ŝ1∫

−ẑ2

. . . dŝ2dŝ1drdϕ +
∫

△2

1∫

−ẑ1

ŝ1+ẑ1−ẑ2∫

−ẑ2

. . . dŝ2dŝ1drdϕ+

∫

△3

1∫

ẑ2−ẑ1

ŝ1+ẑ1−ẑ2∫

0

. . . dŝ2dŝ1drdϕ +
∫

△4

1−ẑ1∫

−ẑ2

ŝ1∫

−ẑ2

. . . dŝ2dŝ1drdϕ

∫

△5

1−ẑ1∫

0

ŝ1∫

0

. . . dŝ2dŝ1drdϕ +
∫

△6

1−ẑ1∫

ẑ2−ẑ1

ẑ1−ẑ2+ŝ1∫

0

. . . dŝ2dŝ1drdϕ .

(1.5.3.11)

For the triangles it is easy to determine the corresponding integration bounds in the (r, ϕ)-domain: make
the radius dependent of the angle as we did in § 1.4.3.99.

Four-nested Gauss(-Legendre) quadrature rules applied to every integral in (1.5.3.11) yield an ex-
ponentially convergent quadrature approximation.

!
Remeber Rem. 1.4.3.114 and be wary of cancellation that may affect the evaluation of
B(ŝ, ẑ).

y

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 128

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 1.5.3.12 (Precomputing complex quadrature formula) The domain of integration in (1.5.3.8)
does not depend on π, only the smooth integrand does. Hence, for a fixed order of the four-nested
Gauss-Legendre rule used to evaluate the integrals in (1.5.3.11), all points at which we have to evaluate
the integrand are known in advance and will be independent of π. Thus we can simply precompute the
resulting family of complex quadrature formula on D (in polar coordinates) and tabulate them. y

§1.5.3.13 (Adjacent panels [SS10, Sect. 5.2.2], cf. § 1.4.3.99) We face the situation π 6= π′, π ∩π′ =
E, E an edge of G. Given local parameterizations γ := γπ : K̂ → π and γ′ := γπ′ : K̂ → π′ we assume
that they agree for E:

E = γ([0, 1]× {0}) = γ′([0, 1]× {0}) , γ

([
t

0

])
= γ′

([
t

0

])
, 0 ≤ t ≤ 1 . (1.5.3.14)

Thus, the integrand in the transformed integral

I =
∫

K̂

∫

K̂

1

‖γπ(s)− γπ′(t)‖
F(t) G(s)dtds , (1.5.3.3)

has a singularity for t1 = s1!

To deal with the singularity at t1 = s1 we employ the following change of integration vari-
ables [SS10, p. 313]

ŝ1

ẑ
ŝ2

t̂2

 =

s1

s1 − t1

s2

t2

 ⇔

s1

s2

t1

t2

 =

ŝ1

ŝ2

ŝ1 − ẑ

t̂2

 . (1.5.3.15)

This yields the transformed integral over the pre-image D of K̂× K̂ under this transformation:

I =
∫ ∫

D

1∥∥∥γ(
[

ŝ1
ŝ2

]
)− γ′(

[
ŝ1−ẑ

t̂2

]
)
∥∥∥

F

([
ŝ1 − ẑ

t̂2

])
G

([
ŝ1

ŝ2

])
dŝ1dẑdŝ2dt̂2 , (1.5.3.16)

with the four-dimensional convex polyhedron

D :=

ŝ1

ẑ
ŝ2

t̂2

 ∈ R4 :

0 < ŝ1 < 1, ŝ1 − 1 < ẑ < ŝ1,

0 < ŝ2 < 1− ŝ1, 0 < t̂2 < 1− ŝ1 + ẑ

. (1.5.3.17)

To motivate the next transformation, we temporarily focus on the case that both π and π′ are flat trian-

gles:

π = 〈a, b, c〉 , π′ =
〈

a, b, c′
〉

, a, b, c, c′ ∈ R3 ,

that is E = [a, b].

Fig. 57

1

1

0 s1/t1

s2/t2

γ′

γ

a

b
c

c′

π
π′

E

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 129

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In this special case the local parameterizations can be chosen as, see Fig. 57:

γ(s) = a + s1u + s2v , γ′(t) = a + t1u + t2v′ ,
u := b− a,
v := c− a,
v′ := c′ − a .

(1.5.3.18)

We point out the geometric minimal angle conditions for triangles of the mesh and at edges of Γ: with α0

independent of π, π′

∢(v, v′),∢(u, v),∢(u, v′) > α0 . (1.5.3.19)

Then we find
∥∥γ(s)− γ′(t)

∥∥2
=
∥∥ŝ1u + ŝ2v− (ŝ1 − ẑ)u + t̂2v′

∥∥2

=
∥∥ŝ2v− ẑu + t̂2v′

∥∥2

= ŝ2
2‖v‖2 + ẑ2‖u‖2 + t̂2

2

∥∥v′
∥∥2 − 2ŝ2ẑ(u · v)− 2t̂2ẑ(u · v′) + 2ŝ2 t̂2(v · v′) .

This suggests that we use spherical coordinates (r, θ, ϕ) in ẑ− ŝ2 − t̂2-space:

ẑ = r sin θ cos ϕ , ŝ2 = r sin θ sin ϕ , t̂2 = r cos θ , (1.5.3.20)

r ≥ 0, 0 ≤ ϕ < 2π, 0 < θ < π, for which the volume element is dẑdŝ2dt̂ =
r2 sin θdθdϕdr.

In these new coordinates we obviously have for flat panels
∥∥γ(s)− γ′(t)

∥∥2
= r2 · p(θ, ϕ) ,

where p is a polynomial in sin θ, sin ϕ, cos θ, cos ϕ, uniformly positive in [0, π]× [0, 2π] due to the angle
condition (1.5.3.19).

In the general case Taylor expansion arguments confirm that for small r ≥ 0

(ŝ1, r, θ, ϕ) 7→ r∥∥∥γ
([

ŝ1
r sin θ sin ϕ

])
− γ′

([
ŝ1−r sin θ cos ϕ

r cos θ

])∥∥∥

is analytic on the pre-image D◦ of D under the spherical coordinate transformation. To write I as nested
integrals

∫ ∫ ∫ ∫
. . . dŝ1drdθdϕ, in analogy to (1.5.3.9), we split D into five simplices with a single vertex

in 0 each. For details refer to [SS10, pp. 313].

Four-nested Gaus(-Legendre) quadrature applied (pieces of) to the (ŝ1, r, θ, ϕ)-transformed integral
I converges exponentially in the number of quadrature nodes.

Pre-computation of the corresponding complex quadrature rule is possible, of course. y

§1.5.3.21 (Common vertex [SS10, Sect. 5.2.3]) To deal with the case π ∩ π′ = {p}, p ∈ R3 a
point, we assume local parameterizations γ := γπ : K̂ → π and γ′ := γπ′ : K̂ → π′ that satisfy
γ(0) = γ′(0) = p. Thus the integrand of the transformed integral

I =
∫

K̂

∫

K̂

1

‖γπ(s)− γπ′(t)‖
F(t) G(s)dtds , (1.5.3.3)

has a singularity in s = t = 0 only. This can be removed by switching to
four-dimensional spherical coordinates. The arguments are similar to thos elaborated in § 1.5.3.13.
y

§1.5.3.22 (Panels at a positive distance) We follow heuristic rules put forth in § 1.4.3.121 and use
Gauss quadrature formulas on K̂× K̂ with orders adjusted to the relative distance of the panels according
to (1.4.3.123). y

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 130

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.6 BEM: Various Aspects

1.6.1 Convergence

As in convergence theory for finite elements we can make statements only about asymptotic convergence
considering families of boundary element trial/test spaces. The reason is that it is usually impossible to
predict the size of the discretization error for general boundary value problems. So we have to settle for
results merely telling the behavior of discretization error under variation of discretization parameters, read
[NumPDE ??], [NumPDE § 3.3.5.12].

The focus will be on h-refinement, increasing the resolution of the boundary element spaces by using finer
meshes, see [NumPDE Ex. 3.1.4.3].

1.6.1.1 Abstract Galerkin Error Estimate

We recall a fundamental result of [NumPDE Section 3.1] for the Galerkin discretization of linear variational
problems (→ Def. 1.1.5.1)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.5.2)

where V0 is a Hilbert space with norm ‖·‖V . Galerkin discretization based on the trial and test space
VN ⊂ V0, N := dim VN < ∞, leads to the discrete variational problem

uN ∈ VN : a(uN, vN) = ℓ(vN) ∀vN ∈ VN , (1.4.1.2)

with Galerkin solution uN ∈ VN.

Theorem 1.6.1.1. Cea’s lemma [NumPDE Thm. 3.1.3.7]

Assume that the bilinear form a : V0 ×V0 → R is continuous and elliptic, that is

∃Ca > 0: |a(u, v)| ≤ Ca ‖u‖V‖v‖V ∀u, v ∈ V0 , (1.6.1.2)

∃c > 0: |a(v, v)| ≥ c‖v‖2
V ∀v ∈ V0 . (1.6.1.3)

Then both (1.1.5.2) and (1.4.1.2) have unique solutions u ∈ V0 and uN ∈ VN, respectively, that

satisfy

‖u− uN‖V ≤
Ca

c
inf

vN∈VN

‖u− vN‖V . (1.6.1.4)

The theorem tells us that the norm of the Galerkin discretization error u − uN is bounded by the best-
approximation error times a constant that is independent of VN.

Elliptic first-kind variational BIEs

The assumptions of Thm. 1.6.1.1 are satisfied for most first-kind variational BIEs

✦ for (1.3.5.15) with a = aV, V0 = H−
1
2 (Γ) by Thm. 1.3.5.17/Thm. 1.3.5.21

(when diam(Ω) < 1 for d = 2),

✦ for (1.3.5.24) with aW, V0 = H
1
2∗ (Γ) by Thm. 1.3.5.26.

Remark 1.6.1.6 (Galerkin error estimates for 2nd-kind BIE) Estimates for the Galerkin discretization
error for the second-kind variational BIEs (1.3.5.36) and (1.3.5.37) on general curved polyhedra have
remained elusive up to date. y

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 131

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.6.1.2 Approximation in Boundary Element spaces

Thanks to Thm. 1.6.1.1 we can obtain full information about (“energy” trace norms of) the Galerkin dis-
cretization error for direct first-kind BIEs by studying how well traces of solutions of boundary value prob-
lems can be approximated (in “energy” trace space norms) in boundary element spaces.

§1.6.1.7 (Spaces for functions of higher smoothness on Γ) Aapproximation error estimates require
smoothness of the traces, and this smoothness is conveniently measured in a Sobolev scale, recall
[NumPDE Section 3.3.3]. Sobolev spaces of functions on smooth faces of Γ are defined via pullback
(→ Def. 1.4.2.8).

As before we make Ass. 1.2.1.5 (d = 2) or Ass. 1.2.1.7 (d = 3), that is Γ consists of (smooth) faces Γj,

j = 1, . . . , M, with individual parameterizations γj : Πj ⊂ Rd−1 → Γj.

Definition 1.6.1.8. Piecewise Sobolev spaces on Γ

For m ∈ N0 and assuming Cm-parameterizations γj we define the piecewise Sobolev space of
order m ∈ N on Γ as

Hm
pw(Γ) := {v ∈ L2(Γ), γ∗j (v|Γj

) ∈ Hm(Πj)} ,

with (Sobolev) norm

‖v‖2
Hm

pw(Γ) :=
M

∑
j=1

∥∥∥γ∗j (v|Γj
)
∥∥∥

2

Hm(Πj)
=

M

∑
j=1

∫

Πj

∑
α∈Nd−1

0
|α|≤m

|Dα γ∗j (v|Γj
)(x)|2 dx , v ∈ Hm

pw(Γ) .

The definition of Hm(D) for domains D ⊂ Rd is also given in [NumPDE Def. 3.3.3.1]. y

§1.6.1.9 (Mesh parameters) Approximation estimates for the boundary element spaces S0
p(G) and

S−1
p (G) will hinge on properties of the mesh expressed through fundamental mesh parameters.

Definition 1.6.1.10. Meshwidth

The meshwidth of G is the size of its largest panel

hG := max
π∈G

diam(π) .

Definition 1.6.1.11. Minimal angle

For d = 3 we call the minimal angle αmin(G) of G the minimal angle occuring in all triangles of the
2D meshesMj in Def. 1.5.1.4.

For planar triangulations the minimal angle measures the shape regularity of a mesh [NumPDE § 3.3.2.19].

§1.6.1.12 (Summary: approximation estimates) The following results from [SS10, Sects. 4.3.4 & 4.3.5]
mirror [NumPDE Thm. 3.3.5.6]. In fact, via the pullbacks γ∗j they can immediately be inferred from inter-

polation error estimates for finite element spaces in dimension d− 1.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 132

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 1.6.1.13. Main approximation theorem for S−1
p (G)

With a constant C > 0. depending only on m ∈ N0, the Cm-parameterizations γj, and the minimal

angle αmin(G), for any p ∈ N0 we have the best-approximation estimate

inf
ϕN∈S−1

p (G)
‖u− ϕN‖

H−
1
2 (Γ)
≤ C

(
hG

p + 1

)min{p + 1, m}+ 1
2
‖u‖Hm

pw(Γ) ∀u ∈ Hm
pw(Γ) .

(1.6.1.14)

rate of alg. cvg. smoothness requirement

Theorem 1.6.1.15. Main approximation theorem for S0
p(G)

With a constant C > 0 depending only on m ≥ 2, the Cm-parameterizations γj, and the minimal

angle αmin(G), for any p ∈ N we have the best-approximation estimate

inf
vN∈S0

p(G)
‖u− vN‖

H
1
2 (Γ)
≤ C

(
hG
p

)min{p + 1, m} − 1
2
‖u‖Hm

pw(Γ) ∀u ∈ Hm
pw(Γ) ∩ C0(Γ) .

(1.6.1.16)

rate of alg. cvg. smoothness requirement

Algebraic convergence of best approximation errors

The energy norm of the best approximation error for S−1
p (G), S0

p(G) for fixed polynomial degree
p converges algebraically (→ Def. 1.4.3.58) for hG → 0, if a uniform minimal angle condition is
satisfied for d = 3.

We can even read off the rates of algebraic convergence in hG → 0:

• S−1
p (G), p ∈ N0 for u ∈ Hm

pw(Γ), m ∈ N0 ➣ rate min{p + 1, m}+ 1
2 in H−

1
2 (Γ)-norm,

• S0
p(G), p ∈ N for u ∈ Hm

pw(Γ), m ≥ 2 ➣ rate min{p + 1, m} − 1
2 in H

1
2 (Γ)-norm.

y

Combined with Thm. 1.6.1.1 we immediately conclude asymptotic algebraic convergence of Galerkin
boundary element solutions of variational first-kind BIEs in terms of the meshwidth hG → 0. y

§1.6.1.18 (Smoothness of solution traces) The smoothness of the unknown trace of the solution of the
related boundary value problem imposes a limit on the achievable rate of algebraic convergence in the
meshwidht hG . In turns, this smoothness is determined by the smoothness of the solution of the boundary
value problem.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 133

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 1.6.1.19. Higher order trace theorem

Let Γ := ∂Ω satisfy Ass. 1.2.1.5 (d = 2) or Ass. 1.2.1.7 (d = 3) with C∞-parameterizations γj.

Then,

u ∈ Hm(Ω) for m ≥ 1 ⇒ TD(u) ∈ Hm−1
pw (Γ) ∩ C0(Γ) , (1.6.1.20)

u ∈ Hm(Ω) for m ≥ 2 ⇒ TN(u) ∈ Hm−2
pw (Γ) . (1.6.1.21)

So, when one uses manufactured solutions u ∈ C∞(Rd) to test a boundary element code, the maximal
rate of convergence as limited by the polynomial degree p should be observed.

However, in actual computations, the inevitable emergence of singularities of the solutions of BVPs on Ω

at corners/edges of Γ will curtail their smoothness, see [NumPDE Section 3.4]. Thus, for non-smooth Γ

only reduced rates of hG -convergence of fixed-degree BEM will be observed. y

§1.6.1.22 (Validation of BEM Galerkin matrices for BIOs) If u ∈ H(∆, Ω) satisfies ∆u = 0 in Ω, then
Thm. 1.3.5.6 provides the fundamental relationships beetween Dirichlet trace TDu and Neumann trace
TNu of u:

[
1
2 Id− K V

W 1
2 Id+ K′

][
TDu
TNu

]
=

[
TDu
TNu

]
⇔

[
1
2 Id+ K −V
−W 1

2 Id− K′

][
TDu
TNu

]
= 0 . (1.6.1.23)

Let us assume that we have a code, allegedly capable of computing the Galerkin matrices

• V ∈ RK,K, K := dimS−1
p−1(G), of aV on S−1

p−1(G)× S−1
p−1(G) ⊂ H−

1
2 (Γ)× H−

1
2 (Γ),

(single layer BIO)

• W ∈ RN,N, N := dimS0
p(G), of aW on S0

p(G)× S0
p(G) ⊂ H

1
2 (Γ)× H

1
2 (Γ),

(hypersingular BIO)

• K ∈ RK,N of (v, ψ) 7→
∫

Γ
(Kv)(x)ψ(x)dS(x) on S0

p(G)× S−1
p−1(G) ⊂ H

1
2 (Γ)× H−

1
2 (Γ),

(double layer BIO)

for some fixed degree p ∈ N. We want to exploit on (1.6.1.23) to validate the implementation.

Use smooth “manufactured” solution u ∈ C∞(Ω) of ∆u = 0 and check, if its BE inter-
polants satisfy (1.6.1.23) “up to higher order errors”.

We consider a sequence of meshes (Gh)h∈H, H := {h0, h1, h2, . . .}, where h is the meshwidth of Gh and
Ghk

arises from Ghk−1
by means of uniform dyadic refinement (in the parameter domain), which implies

hk ≈ 1
2 hk−1 and that αmin(Gh) ≥ α0 for all h ∈ H, see Def. 1.6.1.11. Uniform dyadic refinement amounts

to

• splitting each grid cell]ζ
(j)
i−1, ζ

(j)
i [(→ Def. 1.4.2.5) into two equal intervals for d = 2,

• subdividing each triangle ofMj (→ Def. 1.5.1.4) into four congruent ones [NumPDE Fig. 173] for
d = 3.

To define “boundary element interpolants” we use

✦ for S0
p(G) the nodal interpolation operators I0p : C0(Γ)→ S0

p(G) from Rem. 1.5.2.10,

✦ for S−1
p−1(G) the local L2-projections Q−1

p−1 : L2(Γ)→ S−1
p−1(G) defined by

∫

Γ
(Q−1

p−1 f)(x)ψN(x)dS(x) =
∫

Γ
f (x)ψN(x)dS(x) ∀ψN ∈ S−1

p−1(G) . (1.6.1.24)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 134

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Of course, the actual implementation of Q−1
p−1 has to rely on numerical quadrature on the panels

using high-order quadrature formulas.

For smooth u we have TDu,TNu ∈ Hm
pw(Γ) for every m ∈ N. Then we can use the following interpola-

tion error estimates.

Theorem 1.6.1.25. Asymptotic interpolation/projection error estimates

With constants depending only on m > p, p ∈ N, the Cm-parameterizations γ (and the minimal

angle α0 for d = 3)

∥∥∥u− I0pu
∥∥∥

H
1
2 (Γ)
≤ C h

p+ 1
2

G ‖u‖Hm
pw(Γ) ∀u ∈ Hm

pw(Γ) , (1.6.1.26)

∥∥∥u−Q−1
p−1u

∥∥∥
H−

1
2 (Γ)
≤ C h

p+ 1
2

G ‖u‖Hm
pw(Γ) ∀u ∈ Hm

pw(Γ) . (1.6.1.27)

Appealing to (1.6.1.23) we expect the residual functionals (they depend on p and the mesh Gh)

rD(ψ) :=
∫

Γ

(
(1

2 Id+ K)Ip(TDu)− V(Q−1
p−1TNu)

)
(x)ψ(x)dS(x)

=
∫

Γ

(
(1

2 Id+ K)(Ip − Id)(TDu)− V((Q−1
p−1 − Id)TNu)

)
(x)ψ(x)dS(x) , ψ ∈ H−

1
2 (Γ) ,

rN(v) :=
∫

Γ

(
−WIp(TDu) + (1

2 Id− K′)Q−1
p−1TNu

)
(x) v(x)dS(x)

=
∫

Γ

(
−W(Ip − Id)(TDu) + (1

2 Id− K′)(Q−1
p−1 − Id)TNu

)
(x) v(x)dS(x) , v ∈ H

1
2 (Γ) ,

to become “small” as h→ 0. To quantify this, observe that owing to the continuity of the boundary integral
operators (→ Def. 1.3.4.1) we can conclude from Thm. 1.6.1.25 that on the mesh Gh

|rD(ψ)| ≤ C hp+ 1
2 · ‖ψ‖

H−
1
2 (Γ)

, ψ ∈ H−
1
2 (Γ) , (1.6.1.28)

|rN(v)| ≤ C hp+ 1
2 · ‖v‖

H
1
2 (Γ)

, v ∈ H
1
2 (Γ) , (1.6.1.29)

with constants independent of h. We still have to deal with the presence of the general functions ψ and v.

Replace them with nodal basis functions bi
N, i = 1, . . . , N, and β

j
N, j = 1, . . . , K of S0

p(G)
and S−1

p−1(G), respectively (→ § 1.4.2.24, § 1.5.2.16), for which we have rather precise

information about their energy trace norms.

We elaborate this for d = 3, resorting to a heuristic scaling argument. If π is a panel of diameter h and
βi

N a global shape function associated with it, we get from Thm. 1.3.5.17

∥∥∥βi
N

∥∥∥
2

H−
1
2 (Γ)
≈ aV(βi

N, βi
N) ≈

∫

π

∫

π

1

4π‖x− y‖ βi
N(y) βi

N(x)dS(x)dS(x)

≈ h2·2
∫

K̂

∫

K̂

1

4πh‖s− t‖ β̂(s) β̂(t)dtds ,

for some fixed reference shape functions β̂, see (1.4.2.27). The last step is justified by thinking of the

transformation K̂ → π, K̂ the reference triangle, as simply a scaling by h. Then the powers of h arise
from the transformation formula for d − 1-dimensional integrals. We conclude the asymptotic two-sided
estimate (similar arguments for d = 2)

∥∥∥βi
N

∥∥∥
H−

1
2 (Γ)
≈ h

d/2 on Gh , (1.6.1.30)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 135

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with constants independent of h.

To determine
∥∥bi

N

∥∥
H

1
2 (Γ)

recall from Thm. 1.3.4.30 and Thm. 1.3.5.26

∥∥∥bi
N

∥∥∥
2

H
1
2 (Γ)
≈ aW(bi

N, bi
N) = aV(gradΓ bi

N × n, gradΓ bi
N × n) .

Under scaling pullback to K̂ the surface gradient behaves like ∼ h, Then the same argument as above
confirms

∥∥∥bi
N

∥∥∥
H

1
2 (Γ)
≈ h

d/2−1 on Gh , (1.6.1.31)

with constants independent of h.

Thus, setting ψ := βi
N in (1.6.1.28) and v := b

j
N in (1.6.1.29), the estimates (1.6.1.30) and (1.6.1.31)

imply

|rD(βi
N)| ≤ C hp+ 1

2+d/2 , |rD(b
j
N)| ≤ C hp− 1

2+d/2 ,
i = 1, . . . , K ,
j = 1, . . . , N .

(1.6.1.32)

Thus, defining the residual coefficient vectors

~ρD :=
[
rD(βi

N)
]K

i=1
= (1

2 M + K)~δ−V~ν ∈ RK ,

~ρN :=
[
rN(b

j
N)
]N

j=1
= −W~δ + (1

2 M⊤ −K⊤)~ν ∈ RN ,
(1.6.1.33)

based on the basis expansions

~δ ∈ RN ↔ I0p(TDu) ∈ S0
p(G) , ~ν ∈ RK ↔ Q−1

p−1(TNu) ∈ S−1
p−1(G) , ,

we can predict the algebraic decay of the components:

‖~ρD‖∞
= O(hp+ 1

2+d/2) , ‖~ρN‖∞
= O(hp− 1

2+d/2) . (1.6.1.34)

As we learn from (1.6.1.33), the vectors ~ρD and ~ρN can be computed. Then tabulate the norms in
(1.6.1.34) for sequences of dyadically refined meshes and check whether they exhibit a decay as h → 0
matching (1.6.1.34). If this is observed, the Galerkin matrices have passed the test. y

1.6.1.3 Variational Crimes

As in the context of finite element methods [NumPDE Section 3.5], also for boundary element methods
the term variational crime also for boundary element methods means that Galerkin discretization is based
on a perturbed variational problem or even a trial/test space not contained in the function space, on which
the orginal variational problem is posed.

We can distinguish three main categories of vatiational crimes in BEM:

Variational crimes in BEM

➊ Approximation of Γ

(Section 1.4.2.5,
Rem. 1.5.2.12)

➋ Numerical quadrature
(Section 1.4.3.4, Section 1.5.3)

➌ Data approximation
(§ 1.4.2.34)

We recall from [NumPDE Section 3.5]:

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 136

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Guideline for acceptable variational crimes

Variational crimes must not interfere with (type and rate) of asymptotic convergence!

For Galerkin boundary element methods based on the piecewise polynomial boundary element

spaces S−1
p−1(G) ⊂ L2(Γ) ⊂ H−

1
2 (Γ), S0

p(G) ⊂ H
1
2 (Γ), p ∈ N,

✦ the degree of polynomial boundary approximation must be linked to p,

✦ the boundary element spaces for data approximation must depend on p,

✦ the order of numerical quadrature must be larger for larger p.

§1.6.1.36 (Quantitative recipes) A very detailed quantitative analysis of variational crimes of type ➊ is
conducted in [SS10, Ch. 8] and of type ➋ in [SS10, Sect. 5.3]. These results and practical experience
inspire the following rules of thumb:

If the following trial/test spaces are used for variational BIE in energy trace space

S−1
p−1(G) ⊂ L2(Γ) ⊂ H−

1
2 (Γ) , S0

p(G) ⊂ H
1
2 (Γ) , p ∈ N ,

then do the following:

➊ for the approximation of Γ:

use piecewise polynomial interpolants of degree p,

➋ for computation of entries of Galerkin matrices by means of numerical quadrature

follow (1.4.3.123), but no clear rule for selecting order of Gauss quadrature rules in gen-
eral,

➌ for data approximation:

interpolate Dirichlet in S0
p(G), Neumann data in S−1

p−1(G).
y

1.6.1.4 Pointwise Recovery of Solutions

1.6.2 Mixed Boundary Value Problems

In mixed second-order elliptic boundary value problems both Dirichlet and Neumann boundary conditions
are imposed on different parts ΓD and ΓN of the boundary Γ := ∂Ω of the computational domain Ω ⊂ Rd

[NumPDE Section 1.7], which satisfy

Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ , vold−1(ΓN), vold−1(ΓD) > 0 . (1.6.2.1)

The associated mixed BVP for −∆ reads

−∆u = 0 in Ω ,
TDu = g on ΓD ,
TNu = η on ΓN ,1

(1.6.2.2)

where g : ΓD → R and η : ΓN → R are given data. If Ω is an exterior unbounded domain, we have to
impose additional decay conditions (1.1.7.1)/(1.1.7.4).

§1.6.2.3 (Offset technique for BIE) By Thm. 1.3.5.6 the traces of the solution u satisfy the fundamental
boundary integral equations

TDu = V(TNu)− (− 1
2 Id+ K)(TDu) in H

1
2 (Γ) , (1.6.2.4)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 137

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

TNu = (1
2 Id+ K′)(TNu) +W(TDu) in H−

1
2 (Γ) . (1.6.2.5)

To take into account the fact that both traces are known on some parts of the boundary we introduce
extensions of the data to all of Γ:

g̃ ∈ H
1
2 (Γ): g̃|ΓD

= g ,

η̃ ∈ H−
1
2 (Γ): η̃|ΓN

= η .
(1.6.2.6)

Offset function technique: We seek the unknown traces as additive corrections of these
extended data, the corrections of course supported on either ΓD or ΓN [SS10, Sect. 3.5.2].

TDu = g̃+ u , u ∈ H
1
2
ΓD
(Γ) := {v ∈ H

1
2 (Γ) : v|ΓD

= 0} ,

TNu = η̃ + ψ , ψ ∈ H
− 1

2
ΓN

(Γ) := {φ ∈ H−
1
2 (Γ) : φ|ΓN

= 0} .
(1.6.2.7)

The functions g̃ and η̃ serve as offset functions in a context similar to the use of offset functions for
imposing essential boundary conditions in variational formulations of boundary values problems for PDEs
as discussed in [NumPDE § 1.2.3.12].

Next, we insert (1.6.2.7) into (1.6.2.4) and 1.6.2.5 and get

0 = V(η̃ + ψ)− (1
2 Id+ K)(g̃+ u) in H

1
2 (Γ) , (1.6.2.8)

0 = (− 1
2 Id+ K′)(η̃ + ψ) +W(g̃+ u) in H−

1
2 (Γ) . (1.6.2.9)

The unknowns are u ∈ H
1
2
ΓD
(Γ), ψ ∈ H

− 1
2

ΓN
(Γ). y

§1.6.2.10 (Variational BIE for correction trace functions) Collecting known and unknown quantities in
1.6.2.8 and 1.6.2.9 leads to

−V(ψ) + (1
2 Id+ K)(u) = V(η̃)− (1

2 Id+ K)(g̃) in H
1
2 (Γ) , (1.6.2.11)

(1
2 Id− K′)(ψ)−W(u) = (− 1

2 Id+ K′)(η̃) +W(g̃) in H−
1
2 (Γ) . (1.6.2.12)

As usual, a variational formulation arises from invoking duality (1.3.1.41). Yet, we have to ensure that trial
and test spaces are the same. The trial spaces are the trace spaces for the unknowns u and ψ and those

have to be chosen from H
1
2
ΓD
(Γ) and H

− 1
2

ΓN
(Γ), respectively. Thus, we

• do not test (1.6.2.8) with H−
1
2 (Γ), but with ν ∈ H

− 1
2

ΓN
(Γ),

(“Test (1.6.2.8) only where TNu is not known”)

• do not test 1.6.2.9 with H
1
2 (Γ), but with v ∈ H

1
2
ΓD
(Γ).

(“Test 1.6.2.9 only where TDu is not known”)

This leads to a linear variational problem in H
− 1

2
ΓN

(Γ)× H
1
2
ΓD
(Γ):

ψ ∈ H
− 1

2
ΓN

(Γ): − aV(ψ, ν) +
∫

Γ

(
(1

2 Id+ K)(u)
)
(x) ν(x)dS(x) (1.6.2.13a)

= aV(η̃, ν)−
∫

Γ

(
(1

2 Id+ K)(g̃)
)
(x) ν(x)dS(x) ∀ν ∈ H

− 1
2

ΓN
(Γ) ,

u ∈ H
1
2
ΓD
(Γ):

∫

Γ

(
(1

2 Id− K′)(ψ)
)
(x) v(x)dS(x)− aW(u, v) (1.6.2.13b)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 138

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

=
∫

Γ

(
(− 1

2 Id+ K′)(η̃)
)
(x) v(x)dS(x) + aW(g̃, v) ∀v ∈ H

1
2
ΓD
(Γ) .

§1.6.2.14 (Boundary element discretization of variational BIE for mixed BVP) We suppose that we
are given a mesh G of Γ according to Def. 1.4.2.5 (d = 2) or Def. 1.5.1.4 (d = 3) that resolves the parts
ΓD and ΓN of the boundary in the following sense.

Assumption 1.6.2.15. Mesh compatible with partition

Both ΓD and ΓN are the union of closed panels of the mesh G.

We have to adapt the boundary element spaces S0
p(G) ⊂ H

1
2 (Γ) and S−1

p−1(G) ⊂ H−
1
2 (Γ), degree

p ∈ N, in order to obtain subspaces of H
1
2
ΓD
(Γ) and H

− 1
2

ΓN
(Γ). On the formal level this is straightforward

S0
p,ΓD

(G) := H
1
2
ΓD
(Γ) ∩ S0

p(G) , S−1
p−1,ΓN

(G) := H
− 1

2
ΓN

(Γ) ∩ S−1
p−1(G) . (1.6.2.16)

In practice,

S0
p,ΓD

(G) and S−1
p−1,ΓN

(G) are obtained by dropping all global shape functions of S0
p(G)/S−1

p−1(G)
whose suppports intersect ΓD or ΓN, respectively.

The construction runs utterly parallel to that of finite element subspaces of H1
0(Ω) from finite element

subspaces of H1(Ω), see [NumPDE § 2.4.3.7].

Note that the Galerkin matrices for the variational boundary integral operators arising from using the
boundary element spaces S0

p,ΓD
(G) and S−1

p−1,ΓN
(G) are sub-matrices of the Galerkin matrices we get

when using the unconstrained boundary element spaces.

As explained in § 1.4.2.34, in boundary element computations the data g and η are usually replaced with
approximations. In the case of (1.6.2.13) this approximation also takes care of extension of the data to all
of Γ:

✦ g̃ is replaced with gN ∈ S0
p(G) obtained by

1. interpolating g in S0
p(G)

∣∣∣
ΓD

(e.g., piecewise linear interpolation in the case of p = 1),

2. and then setting the contribution of all shape function supported outside ΓD to zero.

✦ η̃ is replaced with ηN ∈ S−1
p−1(G), obtained by

1. interpolating η in S−1
p−1(G)

∣∣∣
ΓN

(e.g., midpoint interpolation onto piecewise constants for p = 1),

2. and then setting the contribution of all shape function supported outside ΓN to zero.

y

1.6.3 Transmission Problems

So far we have discussed BEM for scalar elliptic boundary value problems with constant coefficients. This
section will present boundary integral equations related to problems with piecewise constant coefficients
posed on Rd, so-called transmission problems.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 139

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

1.6.3.1 Two-Domain Setting

Fig. 58

Ω0

Ω1

Γn0

n1

✁ We consider a partition

Rd = Ω0 ∪ Γ ∪Ω1 ,

Γ = ∂Ω0 = ∂Ω1 ,
(1.6.3.1)

where Γ is a curved Lipschitz polygon (d = 2) or
polyhedron (d = 3), Ω1 is bounded.

Note the opposite orientation of the two normals n0

and n1.

We seek a solution of

−div(A(x) grad u) = 0 in R3 , (1.6.3.2a)

with A(x) =

{
A1 ∈ Rd,d s.p.d. for x ∈ Ω1 ,

I for x ∈ Ω0 ,
(1.6.3.2b)

u− uinc satisfies decay conditions (1.1.7.1)/(1.1.7.4). (1.6.3.2c)

Here uinc is a given exciting incident field satisfying ∆uinc = 0 in Rd. For instance, it may represent an
applied external electric field; uinc(x) = E0 · x.

§1.6.3.3 (Reformulation as transmission problem) We can restrict solution u of (1.6.3.2) to both do-
mains and define

u0 := u|Ω0
−uinc ∈ H(∆, Ω0) , u1 := u|Ω1

∈ H(∆, Ω1) , (1.6.3.4)

where H(∆, Ω)D has been introduced in Def. 1.3.1.32. These functions solve

−∆(A1 grad u1) = 0 in Ω1 , − ∆u1 = 0 in Ω0 . (1.6.3.5)

In § 1.1.6.10 we learned that u0 and u1 are connected by transmission conditions reflecting the continuity
of scalar potentials and the normal continuity of displacement currents. We can state them concisely by
means of Dirichlet and Neumann traces:

T0
Du0 + T0

Duinc = T1
Du1 , T0

Nu0 + T0
Nuinc = −T1

Nu1 , (1.6.3.6)

where we remind that the coefficients and the normal vectors (responsible for the −-sign) enter the defini-
tion of the Neumann trace

(T0
Nu)(x) = grad u|Ω0

(x) · n0(x) , (T1
Nu)(x) = A1 grad u|Ω1

(x) · n1(x) , x ∈ Γ . (1.6.3.7)

The partial differential equations (1.6.3.5) together with the transmission conditions (1.6.3.6) and decay
conditions for u0 represent a transmission problem. y

§1.6.3.8 (First-kind boundary integral equations) In Ex. 1.2.2.27, (1.2.2.34) we found the funda-
mental solution for the general linear, translation-invariant second-order differential operator Lu :=
−∆(A grad u) with symmetric positive definite (s.p.d.) matrix A ∈ Rd,d. Drawing on (1.2.2.34) we
set

G0(x, y) =

− 1

2π log‖x− y‖ , if d = 2 ,
1

4π

1

‖x− y‖ , if d = 3 ,
x 6= y ,

G1(x, y) =
1√

det A1

·

− 1
4π log

(
(x− y)⊤A−1

1 (x− y)
)

, if d = 2 ,

1

4π

1√
(x− y)A−1

1 (x− y)
, if d = 3 , x 6= y .

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 140

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for the fundamental solutions associated with the PDE in Ω0 and Ω1, respectively. Based on these the
fundamental solutions G0 and G1 we can introduce boundary integral operators V0, K0, K′0, and W0,
and V1, K1, K′1, and W1. The subscript indicates, which fundamental solution and which Neumann trace
operator is used in their definition, for instance, cf. (1.3.4.14),

(K0v)(x) =
∫

Γ
grady G0(x, y) · n0(y) v(y)dS(y) ,

(K1v)(x) =
∫

Γ
(A1 grady G1(x, y)) · n1(y) v(y)dS(y) ,

x ∈ Γ .

Idea: ➊ Use the fundamental boundary integral identities of Thm. 1.3.5.6
both in Ω0 and Ω1.

➋ Combine them with the transmission conditions (1.6.3.6).

➋: (1.3.5.7) gives us

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Du0

T0
Nu0

]
= 0 , (1.6.3.9a)

[
1
2 Id+ K1 −V1

−W1
1
2 Id− K′1

][
T1

Du1

T1
Nu1

]
= 0 , (1.6.3.9b)

➋: Eliminate

[
T0

Du0

T0
Nu0

]
by means of the transmission conditions (1.6.3.6):

[
T0

Du0

T0
Nu0

]
=

[
T1

Du1

−T1
Nu1

]
−
[
T0

Duinc

T0
Nuinc

]
.

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T1

Du1

−T1
Nu1

]
=

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Duinc

T0
Nuinc

]
=:

[
f

ϕ

]
. (1.6.3.10)

Then subtract the two boundary integral equations:

(1.6.3.9b) ➣

[
1
2 Id+ K1 −V1

−W1
1
2 Id− K′1

][
T1

Du1

T1
Nu1

]
= 0 ,

(1.6.3.10) ➣

[
1
2 Id+ K0 V0

W0
1
2 Id− K′0

][
T1

Du1

T1
Nu1

]
=

[
f

−ϕ

]

−
[

K1 − K0 −V1 − V0

−W1 −W0 −K′1 + K′0

][
T1

Du1

T1
Nu1

]
=

[−f
ϕ

]
.

Writing u := T1
Du1 and ψ := T1

Nu1 for the unknown traces we get the following boundary integral equa-
tions for the transmission problem

[
K1 − K0 −V1 − V0

−W1 −W0 −K′1 + K′0

][
u

ψ

]
=

[−f
ϕ

]
. (1.6.3.11)

If this system of boundary integral equations has a unique solution, then u and ψ will furnish traces on Γ of
the solution u of (1.6.3.2), see Cor. 1.6.3.22 below . Thus, (1.6.3.11) qualifies as a direct BIE formulation.

y

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 141

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 1.6.3.12 (Simplification of right-hand side) As in Section 1.3.4.1 let V, K, K′, and W denote
the four fundamental boundary integral operators for −∆ on Ω1. Since we have assumed ∆uinc = 0 on
Rd, we know that uinc is harmonic in Ω1. Hence, Thm. 1.3.5.6 yields the identity

[
1
2 Id− K V

W 1
2 Id+ K′

][
TDuinc

TNuinc

]
=

[
TDuinc

TNuinc

]
. (1.6.3.13)

Here TN is the “standard” Neumann trace (→ Def. 1.3.1.20) from within Ω1: TNuinc := grad uinc · n1.
Also note that V, K, K′, and W are based on the same fundamental solution G0 as V0, K0, K′0, and W0,
but on a normal vector with opposite orientation. Therefore, a scrutiny of Def. 1.3.4.1 reveals that

V = V0 , K = −K0 , K′ = −K′ , W = W0 . (1.6.3.14)

in addition TDuinc = T0
Duinc and TNuinc = −T0

Nuinc (change of the orientation of normals!), so that we
can rewrite (1.6.3.13) as

[
1
2 Id+ K0 V0

W0
1
2 Id− K′0

][
T0

Duinc

−T0
Nuinc

]
=

[
T0

Duinc

−T0
Nuinc

]

m
[

1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Duinc

T0
Nuinc

]
=

[
T0

Duinc

T0
Nuinc

]
.

(1.6.3.15)

Compare this with the definition

[
f

ϕ

]
:=

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Duinc

T0
Nuinc

] [
f

ϕ

]
=

[
T0

Duinc

T0
Nuinc

]
.

The right hand side of (1.6.3.11) boils down to simple Dirichlet and Neumann traces of the exciting har-
monic function uinc! y

§1.6.3.16 (Variational BIE for transmission problem) We can rewrite (1.6.3.11) as

(K1 − K0)u − (V1 + V0)ψ = −f in H
1
2 (Γ) ,

−(W1 +W0)u + (−K′1 + K′0)ψ = ϕ in H−
1
2 (Γ) .

The customary approach via duality (1.3.1.41) gives us an equivalent variational first-kind (→
Rem. 1.3.5.28) BIE:

u ∈ H
1
2 (Γ) ,

ψ ∈ H−
1
2 (Γ)

:

aK,1(u, η)− aK,0(u, η) − aV,1(ψ, η) + aV,0(ψ, η) =

−
∫

Γ
f(x) η(x)dS(x) ∀η ∈ H−

1
2 (Γ) ,

−aW,1(u, v)− aW,0(u, v) − aK,1(v, ψ) + aK,0(v, ψ) =∫
Γ

ϕ(x) v(x)dS(x) ∀v ∈ H
1
2 (Γ) ,

(1.6.3.17)

where we have used the “adjointness” (1.4.2.46) of Ki and K′i, i = 0, 1. The bilinear forms in (1.6.3.17)
are defined as, i = 0, 1,

aV,i(ψ, η) :=
∫

Γ
(Viψ)(x) η(x)dS(x), ψ η ∈ H−

1
2 (Γ) , cf. (1.3.5.15)

aW,i(u, v) :=
∫

Γ
(Wiu)(x) v(x)dS(x), u, v ∈ H

1
2 (Γ) , cf. (1.3.5.24)

aK,i(v, η) :=
∫

Γ
(Kiv)(x) η(x)dS(x), v ∈ H

1
2 (Γ), η ∈ H−

1
2 (Γ) .

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 142

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The variational problem (1.6.3.17) is posed on H
1
2 (Γ)× H−

1
2 (Γ) and can be expressed as

[
u

ψ

]
∈ H

1
2 (Γ)× H−

1
2 (Γ) :

c

([
u

ψ

]
,

[
v

η

])
=
∫

Γ
ϕ(x) v(x)− f(x) η(x)dS(x)

∀
[
v

η

]
∈ H

1
2 (Γ)× H−

1
2 (Γ) . (1.6.3.18)

with the bilinear form

c

([
u

ψ

]
,

[
v

η

])
:= aK,1(u, η)− aK,0(u, η)− aV,1(ψ, η)− aV,0(ψ, η)−

aW,1(u, v)− aW,0(u, v)− aK,1(v, ψ) + aK,0(v, ψ) .

(1.6.3.19)

Lemma 1.6.3.20. Ellipticity of c

(Assuming diam(Ω1) < 1 for d = 2,) the bilinear form c from (1.6.3.19) of the first-kind variational

boundary integral equations for the transmission problem is H
1
2 (Γ)× H−

1
2 (Γ)-elliptic:

∣∣∣∣c
([

v

η

]
,

[
v

η

])∣∣∣∣ ≥ c
(
‖v‖2

H
1
2 (Γ)

+ ‖η‖2

H−
1
2 (Γ)

)
∀v ∈ H

1
2 (Γ), η ∈ H−

1
2 (Γ) , (1.6.3.21)

with c > 0 depending on Γ and A0.

Proof. Observing the cancellation of all terms contributed by double layer BIOs, the result is an immediate
consequence of Thm. 1.3.5.17, Thm. 1.3.5.21, and Thm. 1.3.5.26.

✷

We immediately conclude uniqueness and existence of a solution
[
u
ψ

]
of (1.6.3.18). By its derivation these

are the traces of the solution of the transmission problem on Γ.

Corollary 1.6.3.22. Direct 1st-kind variational BIE for transmission problem

If u solves the transmission problem (1.6.3.2) and

[
u
ψ

]
solves (1.6.3.18), then

u = T1
Du , ψ = T1

Nu .

y

§1.6.3.23 (Direct BEM for transmission two-domain problem) Galerkin boundary element discretiza-
tion of (1.6.3.18) is straightforward: Given a standard mesh G of Γ we opt for the natural trial/test spaces
from Section 1.4.2/Section 1.5.2

S−1
p−1(G) for H−

1
2 (Γ) , S0

p(G) for H
1
2 (Γ) . (1.6.3.24)

The resulting discrete version of (1.6.3.18) will also enjoy existence and uniqueness of solutions. Based
on nodal bases we arrive at the following linear system of equations written in block form

[
W0 + W1 K⊤1 −K⊤0
−K1 + K0 V0 + V1

][
~µ
~ψ

]
=

[−M⊤~κ
M~φ

]
. (1.6.3.25)

with boundary element Galerkin matrices

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 143

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• Wi ∈ RN,N, N := dimS0
p(G) for aW,i on S0

p(G)× S0
p(G),

• Vi ∈ RK,K, K := dimS−1
p−1(G) for aV,i on S−1

p−1(G)× S−1
p−1(G),

• Ki ∈ RK,N for aK,i on S0
p(G)× S−1

p−1(G),

• M ∈ RK,N for (v, η) 7→
∫

Γ
v(x) η(x)dS(x) on S0

p(G)× S−1
p−1(G),

and right hand side vectors~κ and ~φ containing the basis expansion coefficients of interpolants (→ “data
approximation”, § 1.4.2.34) of ϕ and f in S−1

p−1(G) and S0
p(G), respectively.

BEM for direct first-kind BIE for two-domain transmission problems requires only the assembly of
the usual boundary element Galerkin matrices.

y

1.6.3.2 Multi-Domain Transmission Problem

1.6.4 BEM for Wave Propagation

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 144

Bibliography

[Aur+14] Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-Leite, Thomas Führer, Pe-
tra Goldenits, Michael Karkulik, Markus Mayr, and Dirk Praetorius. “HILBERT—a MATLAB
implementation of adaptive 2D-BEM”. In: Numer. Algorithms 67.1 (2014), pp. 1–32. DOI:
10.1007/s11075-013-9771-2 (cit. on p. 82).

[BS08] S. Brenner and R. Scott. Mathematical theory of finite element methods. 3rd. Texts in Applied
Mathematics. Springer–Verlag, New York, 2008 (cit. on p. 57).

[CHS18] X. Claeys, R. Hiptmair, and E. Spindler. “Second-Kind Boundary Integral Equations for Scatter-
ing at Composite Partly Impenetrable Objects”. In: Comm. Computational Physics 23.1 (2018),
pp. 264–295. DOI: doi:10.4208/cicp.OA-2016-0171 (cit. on p. 18).

[Gau18] W. Gautschi. A Software Repository for Orthogonal Polynomials. Philadelphia: SIAM, 2018
(cit. on p. 112).

[Gau04] Walter Gautschi. Orthogonal polynomials: computation and approximation. Numerical Mathe-
matics and Scientific Computation. Oxford University Press, New York, 2004, pp. x+301 (cit. on
p. 112).

[Hac92] W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment. Vol. 18.
Springer Series in Computational Mathematics. Berlin: Springer, 1992 (cit. on p. 54).

[Hac95] W. Hackbusch. Integral equations. Theory and numerical treatment. Vol. 120. International
Series of Numerical Mathematics. Basel: Birkhäuser, 1995 (cit. on pp. 49, 51, 70).

[Han02] M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen

Rechnens. Mathematische Leitfäden. Stuttgart: B.G. Teubner, 2002 (cit. on p. 112).
[HK12] R. Hiptmair and L. Kielhorn. BETL – A generic boundary element template library. Report

2012-36. Switzerland: SAM, ETH Zürich, 2012 (cit. on p. 18).
[Mai08] M. Maischak. The analytical computation of the Galerkin elements for the Laplace, Lamé and

Helmholtz equation in 2D-BEM. Preprint. Germany: IFAM, Universität Hannover, 2008 (cit. on
pp. 104, 105, 107, 108).

[McL00] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge, UK: Cam-
bridge University Press, 2000 (cit. on pp. 19, 42, 56, 59).

[Rei18] M. T. Homer Reid. “Taylor–Duffy Method for Singular Tetrahedron-Product Integrals:
Efficient Evaluation of Galerkin Integrals for VIE Solvers”. In: IEEE Journal on

Multiscale and Multiphysics Computational Techniques 3 (2018), pp. 121–128. DOI:
10.1109/JMMCT.2018.2833873 (cit. on p. 135).

[RR04] Michael Renardy and Robert C. Rogers. An introduction to partial differential equations. Sec-
ond. Vol. 13. Texts in Applied Mathematics. Springer-Verlag, New York, 2004, pp. xiv+434 (cit.
on p. 42).

[SS10] S. Sauter and C. Schwab. Boundary Element Methods. Vol. 39. Springer Series in Computa-
tional Mathematics. Heidelberg: Springer, 2010 (cit. on pp. 19, 24, 29, 35, 36, 47, 57, 59–61,
63, 66, 67, 69, 70, 74, 128, 136–140, 142, 147, 148).

[Ste08] Olaf Steinbach. Numerical approximation methods for elliptic boundary value problems. New
York: Springer, 2008, pp. xii+386. DOI: 10.1007/978-0-387-68805-3 (cit. on pp. 69,
74, 77, 79, 80).

[Str09] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich. 2009 (cit. on pp. 38, 40, 123).

145

https://doi.org/10.1007/s11075-013-9771-2
https://doi.org/doi: 10.4208/cicp.OA-2016-0171
https://doi.org/10.1109/JMMCT.2018.2833873
https://doi.org/10.1007/978-0-387-68805-3

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

[Tre08] Lloyd N. Trefethen. “Is Gauss quadrature better than Clenshaw-Curtis?” In: SIAM Rev. 50.1
(2008), pp. 67–87. DOI: 10.1137/060659831 (cit. on p. 111).

BIBLIOGRAPHY, BIBLIOGRAPHY 146

https://doi.org/10.1137/060659831

Chapter 2

Local Low-Rank Compression of Non-Local

Operators

Contents

2.1 Examples: Non-Local Operators . 158

2.1.1 (Discretized) Integral Operators . 159
2.1.2 Long-Range Interactions in Discrete Models 162
2.1.3 Kernel Collocation Matrices . 166

2.2 Approximation of Kernel Collocation Matrices . 167

2.2.1 Separable (= Low-Rank) Kernel Approximation 169
2.2.2 Error Estimates and Admissibility Condition for Singular Kernels 179

2.3 Clustering Techniques . 190

2.3.1 Local Separable Approximation . 190
2.3.2 Cluster Trees . 198
2.3.3 Building Near- and Far-Field Blocks . 207
2.3.4 Storing Block-Partitioned Kernel Collocation Matrix 213
2.3.5 Matrix×Vector: Efficient Implementation . 221
2.3.6 Panel Clustering . 223

2.4 Hierarchical Matrices . 227

2.4.1 Definition . 227
2.4.2 Low-Rank Matrices: Algorithms . 234
2.4.3 H-Addition of Hierarchical Matrices . 240
2.4.4 H-Multiplication of Hierarchical Matrices [Bör21, Sect. 5.6] 241
2.4.5 Hierarchical LU-Decomposition . 253
2.4.6 H2-Matrices . 259

§2.0.0.1 (The need for matrix compression for BEM) The boundary element Galerkin discretizations
of boundary integral operators presented in Chapter 1 lead to densely populated matrices as explained in
§ 1.4.3.6.

We consider an (interior) boundary value problem on a bounded domain Ω ⊂ Rd, d = 2, 3, equipped
with a “uniform” finite element meshM with a global meshwidth h.

We assume that a low-order finite element Galerkin discretization onM provides a solution
with an accuracy similar to that achieved by a low-order boundary element Galerkin discretiza-
tion on G := M|Γ, Γ := ∂Ω.

147

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Finite element method (FEM) ←→ Boundary element method (BEM)
No. of degrees of freedom (unknowns):

h−d
M ←→ h−d+1

G
No. of nonzero entries of Galerkin matrices:

h−d
M ←→ h−2d+2

G

Hence, asymptotically for hM, hG → 0 and d = 3, the BEM will require much more memory for storing
the linear system of equations than FEM, O(h−4

G) vs. O(h−3
M). The lower number of unknowns for BEM

becomes irrelevant!

Without matrix compression BEM cannot compete with FEM!

y

Further Reading on Local Low-Rank Compression

If you want to obtain information beyond what is covered in the course, please refer to

✦ M. BEBENDORF, Hierarchical matrices: A means to efficiently solve elliptic boundary value prob-

lems, Springer, 2008.

✦ W. HACKBUSCH, Hierarchical Matrices, Springer, 2015.

✦ S. BOERM, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression, Algo-

rithms and Analysis, EMS Publishing House, 2010.

✦ S. BOERM, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel, 2021.

2.1 Examples: Non-Local Operators

To understand the title of this section first Recall the notion of the support of a function:

Definition [NumPDE Def. 2.3.2.5]. Support of a function

The support of a function f : D 7→ R is defined as

supp(f) := {x ∈ D: f (x) 6= 0} .

Notion 2.1.0.1. Non-local operators on function spaces

An operator L defined on a space of functions on the domain D ⊂ Rd is said to be non-local, if for
any two subsets A, B ⊂ D there is a function f with supp(f) ⊂ A such that supp(L(f)) ∩ B 6= ∅.

EXAMPLE 2.1.0.2 (Differential operators are strictly local) It is instructive to recall a class of linear
operators for D = R that are certainly not non-local . It is differential operators of form

L f :=
m

∑
k=0

αk
dk f

dxk
, αk ∈ R , (2.1.0.3)

acting on Cm([a, b]), a < b. In fact, these operators can be classified as strictly local in the sense that
supp(L f) ⊂ supp(f). y

Locality of operators can also be given meaning in finite dimensions.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 148

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Notion 2.1.0.4. Non-local operators on RN

A mapping L : RN → RN, N ∈ N, is said to be non-local, if for any two subsets
A, B ⊂ {1, . . . , N} there is a vector ~µ ∈ RN with j 6∈ A ⇒ (~µ)j = 0 such that (L~µ)ℓ 6= 0 for

some ℓ ∈ B.

Linear non-local operators in RN can usually be represented only by fully populated matrices.

In mathematical models of physical phenomena, non-locality of operators is often caused by long-range
interactions of spatial components.

2.1.1 (Discretized) Integral Operators

EXAMPLE 2.1.1.1 (Nyström-discretized boundary integral equations of the second kind) Given a
bounded domain Ω ⊂ Rd, d = 2, 3, with C1-smooth boundary Γ := ∂Ω, and Dirichlet data g ∈ C0(Γ),
we want compute an (approximate) solution u of the exterior Dirichlet problem (EDP), cf. Section 1.1.7,

−∆u = 0 in D := Rd \Ω , u = g on Γ := ∂Ω , (2.1.1.2a)

+ decay condition |u(x)| = O(‖x‖−1) uniformly for ‖x‖ → ∞ . (2.1.1.2b)

This is a model for an electrostatic potential in the exterior of an object, cf. Rem. 1.1.6.8 and § 1.1.6.13.

We borrow an idea from potential theory and write u as a double layer potential:

u(x) =
∫

Γ
grady G∆(x, y) · n(y)ρ(y)dS(y) , x ∈ D , (2.1.1.3)

where

• G∆ is the fundamental solution (→ Def. 1.2.2.15) for the Laplacian,

G∆(x, y) =

− 1

2π log‖x− y‖ , if d = 2 ,

1
4π

1

‖x− y‖ , if d = 3 ,
x, y ∈ Rd, x 6= y , (1.2.2.33)

• n : Γ→ Rd is the unit normal vectorfield pointing from Ω to D,

• and ρ ∈ C0(Γ) is an unknown density .

We can regard (2.1.1.3) as an “infinite superposition” of singular potentials generated by dipoles in direc-
tion n(x) located at x ∈ Γ,

y ∈ Rd \ {x} 7→ grady G∆(x, y) · n(y) =

− 1
2π

(x− y) · n(y)
‖x− y‖2

, if d = 2 ,

− 1
4π

(x− y) · n(y)
‖x− y‖3

, if d = 3 ,
(2.1.1.4)

each of which solves −∆u = 0 away from x and satisfies the decay condition (2.1.1.2b). A rigorous
justification for the trial expression (2.1.1.3) can be drawn fromThm. 1.2.4.5.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 149

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We write TD : H1(D)→ H
1
2 (∂Ω) for the exterior Dirichlet trace operator (→ Section 1.3.1.1) and apply

it to both sides of (2.1.1.3), that is, we let x ∈ D tend to x∗ ∈ Γ. Why not simply plug x ∈ Γ into on both
sides of (2.1.1.3). This may not be possible, because G∆ and its derivatives are not defined for x = y.
Yet, closer scrutiny reveals that the double layer integral still makes sense as an improper integral, the
singularity of the integrand is integrable, the integral has a finite value though the integrand = ∞ at a
point.

However, another unforeseen complication arises: The double layer formula (2.1.1.3) is clearly well-
defined for x 6∈ Γ, but that extended function u : Rd \ Γ→ R has a jump across Γ.

Fig. 59

D

Ω

Γ

x

Fig. 60 DΩ Γ

u
Let us consider d = 2 and study
the behavior of x 7→ u(x) along a
line −→.

• =̂ limit value from D
• =̂ integral value
• =̂ limit value from Ω

l =̂ 1
2 ρ(x)

Tedious computations, some of which are discussed in Section 1.2.5.2, § 1.3.3.12, and § 1.3.4.10, reveal
that

• the height of the jump of x→ u(x) at x ∈ Γ is equal to ρ(x), and that

• the integral value is half-way between the limits from “inside” (Ω) and “outside” (D):

So for x ∈ Γ:

lim
x′∈D→x∗

u(x′)
︸ ︷︷ ︸

outside limit

− 1
2 ρ(x) =

∫

Γ
grady G∆(x, y) · n(y)ρ(y)dS(y) = lim

x′∈Ω→x∗
u(x′)

︸ ︷︷ ︸
inside limit

+ 1
2 ρ(x) . (2.1.1.5)

In other symbols, this jump relation gives for x ∈ Γ

(TDu)(x) = 1
2 ρ(x) +

∫

Γ
grady G∆(x, y) · n(y)ρ(y)dS(y) . (2.1.1.6)

The reader my simply accept this formula. Taking it for granted and taking into account the Dirichlet
boundary condition u = g on Γ we end up with the boundary integral equation (BIE)

1

2
ρ(x) +

∫

Γ
grady G∆(x, y) · n(y)ρ(y)dS(y) = g(x) x ∈ Γ , (2.1.1.7)

for the unknown density ρ ∈ C0(Γ). The behavior of the integrand for y→ x is discussed in § 1.3.4.10,
but it need not worry us any further, because next we regularize the integral. We start from the so-called
solid-angle formula1

∫

Γ
grady G∆(x, y) · n(y)dS(y) =

−1 for x ∈ Ω ,

− 1
2 for x ∈ Γ ,

0 for x ∈ D .

(2.1.1.8)

This converts (2.1.1.7) into the equivalent BIE

∫

Γ
k(x, y)(ρ(y)− ρ(x))dS(y) = g(x) x ∈ Γ , (2.1.1.9)

1The solid-angle formula can be proved using the techniques of Section 1.2.2.3.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 150

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with kernel (function)

k(x, y) := grady G∆(x, y) · n(y) =

− 1
2π

(x− y) · n(y)
‖x− y‖2

, if d = 2 ,

− 1
4π

(x− y) · n(y)
‖x− y‖3

, if d = 3 ,
x, y ∈ Rd, x 6= y .

(2.1.1.10)

If ρ is Lipschitz continuous, the singularity of the integrand for y = x will cancel even for d = 3, a fact that
accounts for the term “regularization”.

The Nyström discretization of (2.1.1.9) consists of two steps

➊ We approximate the integral by means of an n-point quadrature formula Def. 1.4.3.41, n ∈ N:

∫

Γ
ϕ(y)dS(y) ≈

n

∑
j=1

wj ϕ(cj) (2.1.1.11)

with weights wj ∈ R and nodes cj ∈ Γ, j = 1, . . . , n. This results in the approximate boundary
integral equation

n

∑
j=1

wjk(x, cj)(ρ(cj)− ρ(x)) = g(x) , x ∈ Γ . (2.1.1.12)

➋ We apply collocation to (2.1.1.12). We demand that the equation only holds in the n quadrature
nodes ci and arrive at

n

∑
j=1
j 6=i

wjk(ci, cj)(ρ(cj)− ρ(ci)) = g(ci) , i = 1, . . . , n . (2.1.1.13)

This is an n× n linear system of equations (LSE) for the unknown point values ρ(xi), i = 1, . . . , n. Col-
lecting the unknowns in the vector~ρ := (ρ(ci))

n
i=1 ∈ Rn it can be written as

(D + M)~ρ = ~γ :=
(

g(cj)
)n

j=1
, (2.1.1.14)

with the matrices

M ∈ Rn,n , (M)i,j :=

{
wjk(ci, cj) for i 6= j ,

0 else,
i, j ∈ {1, . . . , n} , (2.1.1.15)

D ∈ Rn,n , (D)i,j :=

−
n

∑
j=1
j 6=i

wjk(ci, cj) for i = j ,

0 else,

i, j ∈ {1, . . . , n} . (2.1.1.16)

y

The key constituent part of the boundary integral equation (2.1.1.9) is an integral operator on the left-hand
side. In general an integral operator on a space X(D) of functions D → R, D ⊂ Rd a domain of
integration (which can also be a lower-dimensional manifold like a boundary), is a linear mapping L :
X(D)→ Y(D), Y(D) another function space, defined by

(T f)(x) :=
∫

D
k(x, y) f (y)dy , x ∈ D , f ∈ X(D) , (2.1.1.17)

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 151

https://en.wikipedia.org/wiki/Nyström_method

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with a kernel function k : D×D → R. If the support of k is global , then T will be a archetypical non-local
operator according to Notion 2.1.0.1.

EXAMPLE 2.1.1.18 (Boundary integral equations related to scalar 2nd-order elliptic BVPs) This
topic is presented in Chapter 1. That part of the lecture derives and discussed a host of non-local inte-
gral operators, which occur in integral equation reformulations of 2nd-order scalar elliptic boundary value
problems with constant coefficients. Important specimens of those non-local integral operators are

• the Newton potential (→ Def. 1.2.3.2)

(Nρ)(x) :=
∫

Ω
G∆(x, y) ρ(y)dy , ρ ∈ H̃−1(Rd) , (2.1.1.19)

with the fundamental solution (→ Def. 1.2.2.15) for the Laplacian

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 ,
x 6= y , (1.2.2.33)

whose support is Rd ×Rd and obviously unbounded.

• and the fundamental boundary integral operators of Def. 1.3.4.1, for instance the single layer bound-
ary integral operator on Γ := ∂Ω for the Laplacian −∆ (→ § 1.3.4.8)

(Vφ)(x) =
∫

Γ
G∆(x, y) φ(y)dS(y) , φ ∈ H−

1
2 (∂Ω) . (1.3.4.9)

The Galerkin discretization (→ Section 1.4.1) of an integral operator of the form (2.1.1.17) based on a
basis {b1

N, . . . , bN
N} ⊂ X(Ω) leads to Galerkin matrices T ∈ RN,N with entries

T =

[∫

D

∫

D
k(x, y) b

j
N(y) bi

N(x)dy dx

]N

i,j=1

. (2.1.1.20)

If T is non-local then the matrix T will be densely populated even if the basis functions are locally sup-
ported, recall § 1.4.3.6. y

2.1.2 Long-Range Interactions in Discrete Models

In computational physics interactions are classified as short-range, if for each component of a system
(star, particle, molecule, etc.) only the interaction with a fixed small number of “neighbors” matters.

§2.1.2.1 (Gravitational forces in astrophysics)

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 152

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The goal is to simulate the dynamics of the n stars in
a galaxy; usually n ≈ 109. This can be done by treat-
ing the stars as “point masses” and solving Newton’s
equations of motion by numerical integration, which
entails computing the gravitational attraction between
every of the 1018 pairs of stars.

Let xi = [xi
1, . . . , xi

d]
⊤ ∈ Rd, i = 1, . . . , n, d = 2, 3,

stand for the position of the i-th star with mass mi >
0. Then the force on the j-th star is

f j =
g

4π

n

∑
i=1
i 6=j

xi − xj

∥∥xj − xi
∥∥3

mimj , j = 1, . . . , n ,

(2.1.2.2)

where g is the gravitational constant,

g = 6.674 · 10−11m3kg−1s−2.

Fig. 61

In terms of vector components (2.1.2.2) reads

f
j
ℓ =

g

4π

n

∑
i=1
i 6=j

xi
ℓ − x

j
ℓ∥∥xj − xi
∥∥3

mimj , ℓ = 1, 2, 3 , j = 1, . . . , n . (2.1.2.3)

Collecting all force components in long vectors Fℓ :=
[

f 1
ℓ , . . . , f n

ℓ

]⊤
permits us to express (2.1.2.3) as

matrix×vector-product: for ℓ = 1, 2, 3

Fℓ :=

f 1
ℓ
...
...

f n
ℓ

 =

g

4π

m1
. . .

. . .
mn

Mℓ

m1
...
...

mn

 , (2.1.2.4)

with (Mℓ)j,i =

xi
ℓ − x

j
ℓ∥∥xj − xi
∥∥3

for i 6= j ,

0 for i = j ,

i, j = 1, . . . , n .

Thus the complete vector of force components Fℓ in every timestep can be obtained from multiplying
the vector of masses with the matrix Mℓ. However, the evaluation of the force components Fℓ for many
timesteps is way beyond the capabilities of even the largest supercomputers, because M is a fully popu-
lated matrix with ≈ 1018 entries!

Fortunately, the matrices Mℓ possess a very special structure, they are so-called kernel collocation
matrices (→ Def. 2.1.3.1 below) associated with a singular, asymptotically smooth kernel function (→
Rem. 2.2.2.1 below). In this chapter you will learn how to realize an approximate matrix×vector product
with a computational effort way smaller than the number of non-zero matrix entries. y

§2.1.2.5 (Forces on parallel wires)

We consider n long straight parallel wires in a plane,
with the j-th wire at location ξ j ∈ R carrying the cur-
rent cj ∈ R. Fig. 62

ξ1 ξ2ξ3 ξ4ξ5 ξ6 ξ7

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 153

https://en.wikipedia.org/wiki/Gravitational_constant

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The (scaled) magnetic force on the j-th wire is

f j =
n

∑
i=1
i 6=j

cicj

|ξi − ξ j|
, j = 1, . . . , n . (2.1.2.6)

Again, we can collect all forces in one long vector F :=
[

f 1, . . . , f n
]⊤

and rewrite (2.1.2.6) as a
matrix×vector-product:

F =

c1
. . .

. . .
cn

M

c1
...
...

cn

 , with (M)i,j =

1

|ξ j − ξi|
for i 6= j ,

0 for i = j

, i, j = 1, . . . , n .

(2.1.2.7)

In a sense, comparing (2.1.2.7) and (2.1.2.4), the task to compute the magnetic force on the wires can be
regarded as a one-dimensional counterpart of the challenge to compute gravitational forces in galaxies. y

§2.1.2.8 (A glimpse of clustering approximation) We continue § 2.1.2.1 and describe a heuristic for the
efficient approximate evaluation of gravitational interactions. We assume xi ∈ [0, 1]d for all star positions
xi ∈ Rd, d = 2, 3.

To evaluate the force f j replace “remote” clusters of stars with a single “equivalent” massive
star in the center of gravity.

Define clusters through quadtree (d = 2)/ octree (d = 3) decomposition of the spatial box
containing the galaxy.
(Choose depth L ∈ N of octree such that a leaf contains a single star at most)

Example in 2D (d = 2): quadtree decomposition of [0, 1]2, · =̂ stars, * =̂ equivalent stars.

Fig. 63
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster boxes at level 1

Fig. 64
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster boxes at level 2

Fig. 65
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster boxes at level 3

The clusters on level ℓ ∈ {0, . . . , L} are (α = (α1, α2))

{
i ∈ {1, . . . , n} : xi ∈ Cℓ

α := hℓ ·
(
[α1, α1 + 1[×[α2, α2 + 1[

)
, αi ∈ {0, . . . , 2ℓ − 1}

}
,

hℓ := 2−ℓ. Each cluster of stars is uniquely characterized by its bounding box Cℓ
α.

In the case of a given threshold for the approximation error it is clear that lumping together
stars will introduce smaller errors, if those stars are farther away from xj:

Heuristics: The larger the distance of a cluster from xj,
the larger can be the size of the bounding box of the cluster.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 154

https://en.wikipedia.org/wiki/Octree

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In quantitative terms this can be expressed by requiring that the admissibility condition

dist(Cℓ
α; xj) ≥ η diam(Cℓ

α) , α ∈ {0, . . . , 2ℓ − 1}2 , η > 0 , (2.1.2.9)

where dist(Cℓ
α; xj) := min{

∥∥∥z− xj
∥∥∥ : z ∈ Cℓ

α} , diam(Cℓ
α) = 2−ℓ ,

has to be satisfied for the cluster Cℓ
α, if its stars are to be replaced with a single equivalent star. Here,

η > 0 is a control parameter, for whom suitable values have to be found by numerical tests.

Assumption 2.1.2.10. Uniform distribution

The stars are uniformly distributed in [0, 1[2 (Constant asmptotic density of stars).

➊ The algorithm start s with a Preprocessing step: For each cluster (stars in a box of the quadtree/octree
decomposition) with associated bounding box Cℓ

α determine the center of gravity cℓα and total mass mℓ
α,

that is, find an “equivalent star”.

cost = O(n log n), for no. n of stars→ ∞

Then we want to compute the force on the star located at xj,

f
j
ℓ =

g

4π

n

∑
i=1
i 6=j

xi
ℓ − x

j
ℓ∥∥xj − xi
∥∥3

mimj , ℓ = 1, 2, 3 , j = 1, . . . , n . (2.1.2.3)

➋ Find a set A of bounding boxes Cℓ
α (corresponding to star clusters) such that (for d = 2)

(I) The bounding boxes cover]0, 1[:]0, 1[2⊂ ⋃
C∈A

C.

(II) Differnt bounding boxes are disjoint: C, C′ ∈ A ⇒ C ∩ C′ = ∅.

(III) C ∈ A either satisfies the admissibility condition (2.1.2.9) with respect to xj or belongs to the finest
level L of the quadtree (C is leaf).

(IV) If C ∈ A, then no bounding box/cluster on a lower level ℓ that contains C is in A.

The requirements of Item (I) and Item (II) mean that the bounding boxes in A form a partition of]0, 1[,
whereas Item (IV) ensures that the admissible bounding boxes in A are as large as possible.

Fig. 66

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Admissible clusters for a single star

Example in 2D (d = 2):

“Stars” randomly and uniformly distributed in]0, 1[2.

Admissibility condition (2.1.2.9) with η ≈ 0.6

* =̂ “equivalent stars”

✁ Admissible clusters w.r.t. star •, level ℓ ≥ 3.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 155

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 67

xj

✁ Star at xj is surrounded by at most 9 inadmissible
clusters on level ℓ (magenta lines)

At most 9 clusters on level ℓ+ 1 (blue lines) will be
inadmissible.

■ =̂ admissible clusters on level ℓ+ 1.

There are at most 36 relevant admissible clus-
ters on level ℓ+ 1.

The number of contributing clusters on each
level is bounded: O(1) for n → ∞, of course,
dependent on η.

➌ Approximate f
j
ℓ as

f
j
ℓ ≈

gmj

4π ∑
C∈A

mC
x

j
ℓ − cC

ℓ∥∥xj − cC
∥∥3

, (2.1.2.11)

where cC and mC are the position and mass of the equivalent star for a cluster/bounding box.

cost = O(log n) for computing f j in the limit n→ ∞

However, except for choosing different parameters η > 0 in the admissibility condition (2.1.2.9), there is
no way to control the accuracy of the approximation inherent in this approach. y

2.1.3 Kernel Collocation Matrices

As a model problem for the treatment of non-local operators we study the approximation of densely popu-
lated matrices of a particular form.

Definition 2.1.3.1. Kernel collocation matrix

We are given
• two bounded domains Dx, Dy ⊂ Rd, d ∈ N,
• a kernel function G : Dx × Dy → R,

• and collocation points xi ∈ Dx, yj ∈ Dy. The matrix M ∈ Rn,m with entries

(M)i,j := G(xi, yj) , i ∈ {1, . . . , n} j ∈ {1, . . . , m} , (2.1.3.2)

is a kernel collocation matrix.

✎ Notation: If d = 1, we write ξi, i = 1, . . . , n, and ηj, j = 1, . . . , m, for the collocation points and
assume that they are sorted :

ξ1 < ξ2 < · · · < ξn , ξi ∈ Dx ⊂ R , η1 < η2 < · · · < ηm , ηj ∈ Dy ⊂ R , m, n ∈ N .

EXAMPLE 2.1.3.3 (Globally supported singular kernel functions) We are mainly interested in globally
supported kernels (x, y) 7→ G(x, y), x ∈ Dx, y ∈ Dy that are singular for x = y.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 156

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Examples are kernels related to fundamental solutions (→ Def. 1.2.2.15) of scalar linear partial differential
operators with constant coefficients.

G(x, y) =

{
log‖x− y‖ , if x 6= y ,

0 else,
or G(x, y) =

{
1

‖x−y‖ , if x 6= y ,

0 else.
(2.1.3.4)

Note that these kernel functions are C∞-smooth even analytic (Def. 1.4.3.67) in every variable on Dx×Dy,

provided that Dx ∩ Dy = ∅.

We also saw another relevant class of kernel functions in § 2.1.2.1, see (2.1.2.3):

G(x, y) ∼ xℓ − yℓ

‖x− y‖3
, x, y ∈ Rd, d = 2, 3 , x 6= y . (2.1.3.5)

y

Review question(s) 2.1.3.6 (Non-local operators)

(Q2.1.3.6.A) Given a sequence
(
cj

)
j∈Z
∈ ℓ1(Z), when is the convolution operator

L : ℓ∞ → ℓ∞ , (L(xk))k := ∑
j∈Z

ck−jxj , k ∈ Z ,

a non-local operator?

(Q2.1.3.6.B) [Gauss kernel] One of the most important functions in mathematical modeling is the
Gaussian (normal distribution)

t 7→ f (t) :=
1

σ
√

2π
e−

1
2(

t
σ)

2

, t ∈ R .

Do kernel collocation matrices based on the kernel function

G : Rd ×Rd → R , G(x, y) = f (‖x− y‖2) , x, y ∈ Rd ,

have any special properties?

△

2.2 Approximation of Kernel Collocation Matrices

§2.2.0.1 (Data-sparse approximate representation) Obviously, kernel collocation matrices M ∈ Rn,m

(→ Def. 2.1.3.1) based on kernel functions like those in (2.1.3.4) are densely populated .

O(nm) memory/effort for straightforward storage/initialization,

O(nm) computational cost for M×vector

for n, m→ ∞.

Goal: Given a tolerance ǫ > 0, find an approximation M̃ ∈ Rn,m of M such that we can guarantee a
prescribed accuracy

∥∥∥M− M̃
∥∥∥ ≤ ǫ [‖·‖ some matrix norm] , (2.2.0.2)

with both

cost of storage/initialization of M̃

cost(M̃× vector)
= O((m + n) logq(m + n)| logp ǫ| for m, n→ ∞, ǫ→ 0,

for some exponents p, q ∈ N0.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 157

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Alluding to the efficiency of algorithms for large sparse matrices, data structures with which we can achieve
the above goal are called data sparse. y

Remark 2.2.0.3 (Families of sparse matrices) The name is telling: families of sparse matrices with a
fixed maximal number of non-zero entries per column or row, as they arise, for instance, from the finite-
element discretization of boundary-value problems for partial differential equations on shape-regular fami-
lies of meshes, allow data-sparse representation without any approximation, see [NumCSE Section 2.7.1].

y

§2.2.0.4 (Recalled: Matrix norms [NumCSE § 1.5.5.3]) The ‖·‖ in (2.2.0.2) denotes a matrix norm.
Remember that matrix norms can be induced by vector norms as norms of the linear mapping described
by the matrix. If ‖·‖1 is a norm on Rm and ‖·‖2 a norm on Rn, then the associated matrix norm ‖·‖ is
[NumCSE Def. 1.5.5.10]

M ∈ Rn,m: ‖M‖ := sup
~ξ∈Rm\{0}

∥∥∥M~ξ
∥∥∥

1∥∥∥~ξ
∥∥∥

2

. (2.2.0.5)

✎ Notation: Matrix norms for quadratic matrices associated with standard vector norms:

‖x‖2 → ‖M‖2 , ‖x‖1 → ‖M‖1 , ‖x‖∞ → ‖M‖∞

For the matrix norms ‖·‖1 and ‖·‖2 there are simple formulas [NumCSE Ex. 1.5.5.12]:

➢ matrix norm↔ ‖·‖∞ = row sum norm ‖M‖∞ := max
i=1,...,n

m

∑
j=1

|(M)ij| , (2.2.0.6)

➢ matrix norm↔ ‖·‖1 = column sum norm ‖M‖1 := max
j=1,...,m

n

∑
i=1

|(M)ij| . (2.2.0.7)

There is no corresponding simple formula for the Euclidean matrix norm ‖·‖2, see [NumCSE
Lemma 1.5.5.15], [NumCSE Cor. 1.5.5.16].

Not induced by a vector norm is the Frobeniusnorm [NumCSE Def. 3.4.4.17]

‖M‖2
F :=

n

∑
i=1

m

∑
j=1

(M)2
i,j , M ∈ Rn,m . (2.2.0.8)

Note that ‖·‖F provides an upper bound for ‖·‖2. y

2.2.1 Separable (= Low-Rank) Kernel Approximation

§2.2.1.1 (Low-rank matrices) There is an important class of fully populated matrices for which exact
data-sparse representation is possible. These are matrices whose rank is much lower than their maximal
rank.

Definition 2.2.1.2. Rank of a matrix [NS02, Sect. 2.4]

The rank of matrix M ∈ Rn,m is the dimension of its image space:

rank(M) := dimR(M) .

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 158

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We have rank(M) ≤ min{m, n} for every M ∈ Rn,m. A matrix is called low-rank, if rank(M) ≪
min{m, n}.

Lemma 2.2.1.3. Representation of low-rank matrices

If M ∈ Rn,m satisfies rank(M) = q, then there are matrices U ∈ Rn,q and V ∈ Rm,q such that

M = UV⊤.

Proof. The lemma is an immediate consequence of the singular value decomposition theorem [NumCSE
Thm. 3.4.1.1] and the fact that rank(M) is equal to the number of non-zero singular values.

The message of Lemma 2.2.1.3 can be visualized as follows:

 M

 =

 U

[

V⊤
]

.

storage(M) = O(q(n + m)) for n, m→ ∞ (2.2.1.4)

Recall from [NumCSE Ex. 1.4.3.1] the possibilities offered by associative multiplication:

rank(M) = q =⇒ Cost(M× vector) = O(q(n + m)) for n, m→ ∞ . (2.2.1.5)

 M

~ζ

 =

 U

[

V⊤
]

~ζ

︸ ︷︷ ︸
q scalar products of length m

, ~ζ ∈ Rm . (2.2.1.6)

Of course, the promise of (2.2.1.5) can only be realized, if the low-rank matrix M is available in factorized
form M = UV⊤ according to Lemma 2.2.1.3. y

§2.2.1.7 (Separable kernel functions) Let us consider a kernel collocation matrix M ∈ Rn,m (→
Def. 2.1.3.1) based on a separable kernel function G(x, y), that is, a kernel function that can be writ-
ten as a product of a function of the first argument x and another function of the second argument y:

G : Dx × Dy → R , G(x, y) := g(x)h(y) with
g : Dx → R ,
h : Dy → R .

(2.2.1.8)

Writing xi ∈ Dx, yj ∈ Dy, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, for the collocation points and using the nota-
tions of Def. 2.1.3.1 we observe that M can be written as the tensor-product [NumCSE Section 1.3.1] of
two vectors of length n and m, respectively:

M =
[
G(xi, yj)

]
i,j
=
[
g(xi)

]
i=1,...,n

[
h(yj)

]⊤
j=1,...,m

rank(M) = 1 . (2.2.1.9)

Hence, M is a rank-1 matrix whose factorized form according to Lemma 2.2.1.3 is immediately available:
According to § 2.2.1.1, M needs O(m + n) storage and the evaluation of M~ζ,~ζ ∈ Rm incurs computa-
tional cost O(m + n) for m, n→ ∞. y

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 159

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§2.2.1.10 (More general separable kernel functions) The considerations of § 2.2.1.7 can be generalized
to so-called rank-q separable kernel functions, which are the sum of q separable functions, q ∈ N:

G : Dx × Dy → R , G(x, y) :=
q

∑
ℓ=1

gℓ(x)hℓ(y) ,
gℓ : Dx → R ,
hℓ : Dy → R .

, ℓ = 1, . . . , q . (2.2.1.11)

In this case we end up with a rank-q kernel collocation matrix (based on collocation points xi ∈ Dx,
yj ∈ Dy, i ∈ {1, . . . , n}, j ∈ {1, . . . , m})

M =
[
G(xi, yj)

]
i,j
=

g1(x1)
...

g1(xn)

[
h1(y

1), . . . , h1(y
m)
]
+ · · ·+

gq(x1)
...

gq(xn)

[
hq(y1), . . . , hq(ym)

]
,

whose factorized form according to Lemma 2.2.1.3 is

M = AB⊤ ,
A ∈ Rn,q , (A)i,ℓ := gℓ(xi) , i = 1, . . . , n ,

B ∈ Rm,q , (B)j,ℓ := hℓ(y
j) , j = 1, . . . , m ,

ℓ = 1, . . . , q . (2.2.1.12)

Evidently, the asymptotic computational effort for computing M~ζ,~ζ ∈ Rm, is O(q(m + n)) for m, n→ ∞,
q fixed. y

Idea: Obtain a data-sparse approximation of a kernel collocation matrix
M =

[
G(xi, yj)

]
i=1,...,n
j=1,...,m

(→ Def. 2.1.3.1) by a separable approximation of G:

G(x, y) ≈ G̃(x, y) :=
q

∑
ℓ=1

gℓ(x)hℓ(y) M̃ =
[
G̃(xi, yj)

]
i=1,...,n
j=1,...,m

, rank(M̃) = q .

The challenge is to find a minimal q ∈ N and construct suitable functions gℓ, hℓ so that M̃ is an acceptable
approximation of M.

Remark 2.2.1.13 (Impact of kernel approximation on kernel matrix) Replacing the kernel function G
with an approximation G̃ amounts to perturbing the kernel collocation matrix M. This can be quantified by

estimating
∥∥∥M− M̃

∥∥∥, ‖·‖ a relevant matrix norm as introduced in § 2.2.0.4.

Let M be a kernel collocation matrix according to Def. 2.1.3.1 based on the kernel function G : Dx×Dy →
R and collocation points xi ∈ Dx, i = 1, . . . , n, yj ∈ Dy, j = 1, . . . , m. From the definition of the matrix

norms we (immediately) conclude how a bound on the pointwise deviation of G̃ from G implies estimates

for
∥∥∥M− M̃

∥∥∥:

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
≤ δ

⇓∥∥∥M− M̃
∥∥∥

∞
≤ mδ ,

∥∥∥M− M̃
∥∥∥

1
≤ nδ ,

∥∥∥M− M̃
∥∥∥

F
,
∥∥∥M− M̃

∥∥∥
2
≤
√

mnδ .

(2.2.1.14)

Only the bound for
∥∥∥M− M̃

∥∥∥
2

is not straightforward. In fact it is a consequence of the so-called

Riesz-Thorin theorem for linear operators Rm → Rn. y

The next three sections present different ways how to obtain promising separable approximations with
rather explicit formulas for gℓ and hℓ.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 160

https://en.wikipedia.org/wiki/Riesz-Thorin_theorem

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

2.2.1.1 Polynomial Expansions

For the sake of clarity we restrict ourselves to one dimension d = 1, Dx, Dy ⊂ R. To understand the

following, recall the Taylor formula in 1D for f ∈ Cm+1([a, b]), a < b, and expansion point x∗ ∈ [a, b]:

f (x) = f (x∗) + (x− x∗) f ′(x∗) + 1
2(x− x∗)2 f ′′(x∗) + . . .

· · ·+ 1

(q− 1)!
(x− x∗)q−1 f (q−1)(x∗) +

∫ x

x∗

1

(q− 1)!
(x− τ)q−1 f (q)(τ)dτ . (2.2.1.15)

Dropping the remainder term
∫ x

x∗ . . . dτ we obtain an approximation of f in a neighborhood of x∗ by its
Taylor polynomial of degree q− 1,

f (x) ≈
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ f (ℓ)(x∗) . (2.2.1.16)

We can apply this approximation to the “1D function” x 7→ G(x, y) and simply regard y as a parameter.

Idea: Approximate G(x, y) by a truncated Taylor expansion in the x-variable:

G̃(x, y) ≈
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ

︸ ︷︷ ︸
=:gℓ(x)

∂ℓG

∂xℓ
(x∗, y)

︸ ︷︷ ︸
=:hℓ(y)

, x, x∗ ∈ Dx, y ∈ Dy , (2.2.1.17)

for a “sufficiently” large truncation parameter q ∈ N.

As indicated in (2.2.1.17), this provides a rank-q separable approximation of G. The number q of terms in

the polynomial expansion can be used to control the accuracy, because we expect G̃ → G for q → ∞.
This will be examined in Section 2.2.2.1 below.

EXAMPLE 2.2.1.18 (Separable approximation by truncated power series) We consider the globally
C∞-smooth kernel function

G(x, y) =
1

1 + (x− y)2
on I × I , I := [−a, a], a ∈ R+ .

We want to approximate it globally by truncated power series expansions around x∗ = 0, which is a
natural choice for symmetry reasons.

The geometric series summation formula (1 + ξ)−1 =
∞

∑
k=0

(−ξ)k gives the Taylor series expansion at

x∗ = 0, valid for |x− y| < 1:

G(x, y) =
∞

∑
k=0

(
−(x− y)2

)k
=

∞

∑
k=0

(−1)k(x− y)2k =
∞

∑
k=0

(−1)k
2k

∑
ℓ=0

(
2k

ℓ

)
xℓ(−y)2k−ℓ

=
∞

∑
ℓ=0

xℓ ·
∞

∑
k=⌈ℓ/2⌉

(−1)k

(
2k

ℓ

)
(−y)2k−ℓ ,

where we also used the binomial formula. However, this is a double series. We truncate the geometric
sum to the first q summands to obtain a rank-2q separable approximation:

G̃(x, y) =
q−1

∑
k=0

(−1)k
2k

∑
ℓ=0

(
2k

ℓ

)
xℓ(−y)2k−ℓ =

2(q−1)

∑
ℓ=0

xℓ︸︷︷︸
=:gℓ(x)

·
q−1

∑
k=⌈ℓ/2⌉

(−1)k

(
2k

ℓ

)
(−y)2k−ℓ

︸ ︷︷ ︸
=:hℓ(y)

.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 161

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In a numerical experiment we monitor
∥∥∥G− G̃

∥∥∥
L∞(I×I)

, approximated on a very find grid on I × I, as a

function of the interval size a and expansion degree q.

Fig. 68

0 5 10 15 20

q

10 -15

10 -10

10 -5

10 0

10 5

er
ro

r(
m

ax
im

um
 n

or
m

)

Kernel approximation by truncated power series

[-0.3,0.3] 2

[-0.4,0.4] 2

[-0.5,0.5] 2

[-0.6,0.6] 2

✁

∥∥∥G− G̃
∥∥∥

L∞(I×I)
for different values of truncation

parameter q and on different intervals I.

Exponential convergence in q for small intervals.

“Exponential divergence” on large intervals.

Global separable kernel approximation based on Taylor expansion/power series is usually possible
only locally (on small domains).

y

EXPERIMENT 2.2.1.19 (Logarithmic kernel in 1D: Separable approximation by Taylor expansion)

We consider the singular kernel function

G(x, y) = − log |x− y| , x ∈ Dx, y ∈ Dy , Dx, Dy ⊂ R intervals, Dx ∩ Dy = ∅ .

The condition Dx ∩ Dy = ∅ avoids the singularity of the kernel. Thus, on Dx × Dy the kernel function G
is C∞-smooth and amenable to Taylor expansion.

Without loss of generality we assume y > x on Dx × Dy (Dx to the left of Dy).

∂ℓG

∂xℓ
(x, y) = (ℓ− 1)!(y− x)−ℓ for (x, y) ∈ Dx × Dy , ℓ ≥ 1 . (2.2.1.20)

This yields the Taylor polynomial with expansion point x∗ ∈ Dx:

− log(y− x) ≈ G̃(x, y) =
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ

∂ℓG

∂xℓ
(x∗, y)

= − log(y− x∗) +
q−1

∑
ℓ=1

1

ℓ
(x− x∗)ℓ

︸ ︷︷ ︸
=:gℓ(x)

(y− x∗)−ℓ︸ ︷︷ ︸
=:hℓ(y)

.
(2.2.1.21)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 162

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

DY := [2, 3]
∥∥∥G− G̃

∥∥∥
L∞(Dx×Dy)

, G̃ as in (2.2.1.21), sampling ap-

proximation on fine grid ✄

We observe exponential convergence in truncation
parameter q.

(Would observe “exponential divergence” on larger
intervals)

Fig. 69

0 5 10 15 20

no. of summands q

10 -15

10 -10

10 -5

10 0

er
ro

r(
m

ax
im

um
 n

or
m

)

Log kernel approximation by Taylor poynomial

D
x

 = [0.7,1.3]

D
x

 = [0.4,1.6]

D
x

 = [0.2,1.8]

D
x

 = [0.1,1.9]

Same bottom line as in Ex. 2.2.1.18 applies.

y

2.2.1.2 Uni-directional Interpolation

Since the Taylor expansion of the kernel function G is fixed, we have little options to remedy poten-
tially small domains of convergence. Moreover, the Taylor expansion and power series techniques from
Section 2.2.1.1 require knowledge of higher-order partial derivatives of G. Conversely, the interpolation
techniques presented in this section are more flexible and rely on point evaluations of G alone.

§2.2.1.22 ((Abstract) Linear interpolation operators) Let D ⊂ Rd be a closed bounded domain and
V ⊂ C0(D) a q-dimensional space of continuous functions.

Given are q distinct interpolation nodes t j ∈ D, j = 1, . . . , q.

Assumption 2.2.1.23. Unisolvence of interpolation nodes

We assume that for any numbers ϕ1, . . . , ϕq ∈ R there is a unique f ∈ V satisfying the interpola-

tion conditions

f (t j) = ϕj for all j = 1, . . . , q . (2.2.1.24)

In approximation theory this particular property of the space V and the set
{

t j
}

j
of interpolation nodes is

known as unisolvence.

Definition 2.2.1.25. Linear interpolation operator

For a unisolvent set of interpolation nodes
{

t j
}q

j=1
, q ∈ N, w.r.t. V ⊂ C0(D), dim V = q, define

the associated linear interpolation operator by

I : C0(D)→ V , I f ∈ V: (I f)(t j) = f (t j) ∀j = 1, . . . , q . (2.2.1.26)

Lemma 2.2.1.27. Properties of I

The mapping I according to (2.2.1.26) is linear, continuous, and surjective.

We can write

I f =
q

∑
ℓ=1

f (tℓ)bℓ ∀ f ∈ C0(D) , (2.2.1.28)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 163

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

where the cardinal functions bℓ ∈ V, ℓ = 1, . . . , q, are defined (possible thanks to Ass. 2.2.1.23!) by

bℓ(t
j) = δℓ,j :=

{
1 for ℓ = j ,

0 else,
ℓ, j ∈ {1, . . . , q} . (2.2.1.29)

y

§2.2.1.30 (Separable approximation by interpolation) We examine the following setting: we are given

✦ a continuous kernel function G : Dx × Dy → R, G ∈ C0(Dx × Dy),

✦ and a linear interpolation operator I : C0(Dx) → V according to Def. 2.2.1.25, based on interpo-

lation nodes
{

t j
}q

j=1
and a q-dimensional function space V ⊂ C0(Dx) (satisfying the unisolvence

Assumption 2.2.1.23, of course)

Performing interpolation in the x-variable, we build a rank-q separable “approximation” of the kernel func-
tion G:

G̃(x, y) :=
q

∑
ℓ=1

bℓ(x)︸ ︷︷ ︸
=:gℓ(x)

G(tℓ, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ Dx × Dy , (2.2.1.31)

where the bℓ are the cardinal functions for the interpolation into V with nodes t j as defined by the property
(2.2.1.29). The variable y is treated as a mere parameter. Appealing to the considerations of § 2.2.1.10
we immediately get a special version of the factorization (2.2.1.12) of the kernel collocation matrix based
on G̃:

M̃ :=
[
G̃(xi, yj)

]
i=1,...,n
j=1,...,m

= A · B⊤ ,

A =
[
bℓ(xi)

]
i=1,...,n
ℓ=1,...,q

∈ Rn,q ,

B =
[
G(tℓ, yj)

]
j=1,...,m
ℓ=1,...,q

∈ Rm,q .
(2.2.1.32)

y

§2.2.1.33 (Polynomial interpolation in 1D [NumCSE Section 5.2]) The most important class of inter-
polation schemes is global polynomial interpolation. For d = 1 and if D ⊂ R is an interval, it relies on
the space of uni-variate polynomials

V := Pq := Span{x 7→ xℓ, ℓ = 0, . . . , q− 1} , q ∈ N ,

of degree ≤ q− 1. By [NumCSE Thm. 5.2.2.7], any set of q distinct points tj ∈ D enjoys unisolvence with
respect to V, which guarantees Ass. 2.2.1.23.

As explained in [NumCSE § 5.2.2.3], the cardinal functions of uni-variate polynomial interpolation in the
nodes t1, . . . , tq are the Lagrange polynomials [NumCSE Eq. (5.2.2.4)]

Lℓ(x) :=
q

∏
j=1
j 6=ℓ

x− tj

tℓ − tj
, x ∈ R , ℓ = 1, . . . , q ⇒ Lℓ(t

j) = δℓ,j . (2.2.1.34)

Then for G : Dx × Dy → R, Dx, Dy ⊂ R, the separable approximation according to (2.2.1.31) reads

G̃(x, y) :=
q

∑
ℓ=1

Lℓ(x)︸ ︷︷ ︸
=:gℓ(x)

G(tℓ, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ Dx × Dy . (2.2.1.35)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 164

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

How to chose the tj? From [NumCSE Rem. 5.2.4.13] we know that equidistant interpolation nodes may
lead to massive oscillations in the interpolants for larger polynomial degree. As a remedy we learned
that “optimal” nodes for polynomial interpolation are the Chebychev nodes, see [NumCSE Section 6.2.3],
[NumCSE Eq. (6.2.3.12)]. If Dx = [a, b] those are defined as

tj := a + 1
2(b− a)

(
cos

(
2j− 1

2q
π

)
+ 1

)
, j = 1, . . . q . (2.2.1.36)

Below: Chebychev nodes on [−1, 1]; they conspicuously cluster close to the endpoints of the interval.

Fig. 70
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

16

18

20

t

n

Fig. 71

y

§2.2.1.37 (Tensor-product polynomial interpolation) The generic case we study is kernel functions de-
fined on subsets of Rd ×Rd. Therefore we have to extend polynomial interpolation to higher dimensions,
which can be done by means of a tensor-product construction.

If D ⊂ Rd is a tensor-product domain

D = [a1, b1]× · · · × [ad, bd] , ai < bi , i = 1, . . . , d ,

then we can define a d-dimensional polynomial interpolation into the space of tensor-product polynomi-

als (→ Def. 1.4.3.80 or [NumPDE Def. 2.5.2.7])

T Pq(R
d) := {x 7→ p1(x1) · · · · · pd(xd), pi ∈ Pq, i = 1, . . . , d} , dim T Pq(R

d) = qd .

Of course, the scheme is based on uni-variate polynomial interpolation as introduced in § 2.2.1.33.

Let t1
i , . . . , t

q
i be nodes for uni-variate polynomial interpolation on [ai, bi] into Pq. Denote by Li,ℓ,

ℓ = 1, . . . , q, the associated Lagrange polynomials. Then we can define the d-variate tensor-product

polynomial interpolation operator

ID : C0(D)→ T Pq(R
d) ,

(ID f)(x) =
q

∑
k1=1

· · ·
q

∑
kd=1

f

([
tk1
1 , . . . , t

kd
d

]⊤)
L1,k1

(x1) · · · · · Ld,kd
(xd) , x ∈ Rd , f ∈ C0(D) .

(2.2.1.38)

Hence, we have to evaluate f on a grid of qd points, which matches dim T Pq−1(R
d) = qd.

Note that
{

x 7→ L1,k1
(x1) · · · · · Ld,kd

(xd) : ki = 1, . . . , q , i = 1, . . . , d
}
⊂ T Pq(R

d) (2.2.1.39)

is an (ordered) cardinal basis of T Pq(Rd) with respect to the (ordered) set of interpolation nodes
{[

tk1
1 , . . . , t

kd
d

]⊤
: ki = 1, . . . , q , i = 1, . . . , d

}
. (2.2.1.40)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 165

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We may call this set a “tensor-product grid of interpolation nodes”. y

§2.2.1.41 (Low-rank kernel matrix approximation by tensor-product polynomial interpolation) Now
let us fit degree-p tensor-product uni-directional polynomial interpolation into the framework laid out in
§ 2.2.1.30 and § 2.2.1.37. We do this for d = 2 and one-dimensional interpolation nodes t0

1, . . . , t
p
1 (first

coordinate) and t0
2, . . . , t

p
2 (second coordinate). In this case we have q = (p + 1)2 and the interpolation

nodes are

[
t0
1

t0
2

]

︸ ︷︷ ︸
=:t1

, . . . ,

[
t

p
1

t0
2

]

︸ ︷︷ ︸
=:tp+1

,

[
t0
1

t1
2

]

︸ ︷︷ ︸
=:tp+2

, . . . ,

[
t0
1

t
p
2

]

︸ ︷︷ ︸
=:tp(p+1)

, . . . ,

[
t

p
1

t
p
2

]

︸ ︷︷ ︸
=:t(p+1)2

. (2.2.1.42)

Their ordering is arbitrary. The corresponding cardinal basis functions are products of 1D Lagrange poly-

nomials (x 7→ L1,j(x), x 7→ L2,j(x) for the node sets {tj
1}, {t

j
2} ⊂ R, respectively, j ∈ {1, . . . , q}) follow-

ing the same ordering

b1(x) := L1,0(x1)L2,0(x2) , . . . , bp+1(x) := L1,p(x1)L2,0(x2) ,

...
...

bp(p+1)(x) := L1,0(x1)L2,p(x2) , . . . , b(p+1)2(x) := L1,p(x1)L2,p(x2) ,
x ∈ R2 . (2.2.1.43)

Then the general formula

G̃(x, y) :=
q

∑
ℓ=1

bℓ(x)︸ ︷︷ ︸
=:gℓ(x)

G(tℓ, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ Dx × Dy , (2.2.1.31)

combined with

M̃ :=
[
G̃(xi, yj)

]
i=1,...,n
j=1,...,m

= A · B⊤ ,

A =
[
bℓ(xi)

]
i=1,...,n
ℓ=1,...,q

∈ Rn,q ,

B =
[
G(tℓ, yj)

]
j=1,...,m
ℓ=1,...,q

∈ Rm,q .
(2.2.1.32)

leads to

[
G(xi, yj)

]
i=1,...,n
j=1,...,m

≈ M̃ :=

b1(x1) . . . b(p+1)2(x1)
...

...
...

...
b1(xn) . . . b(p+1)2(xn)

G(t1, y1) G(t1, ym)
...

...

G(t(p+1)2
, y1) G(t(p+1)2

, ym)

Obviously, rank M̃ ≤ (p + 1)2. y

2.2.1.3 Bi-directional interpolation

Many kernel functions (x, y) 7→ G(x, y) are symmetric in their two arguments. However, separable kernel
approximation by means of uni-directional interpolation as introduced in Section 2.2.1.2 treats the x- and
y-coordinates rather differently. Another interpolation approach preserves symmetry.

§2.2.1.44 (General “two-dimensional” interpolation) We assume that we are given

✦ a continuous kernel function G : Dx × Dy → R, G ∈ C0(Dx × Dy),

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 166

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ a linear interpolation operator Ix : C0(Dx) → Vx according to Def. 2.2.1.25 based on interpolation
nodes t1

x, . . . , t
qx
x ∈ Dx, qx ∈ R, and a qx-dimensional function space Vx ⊂ C0(Dx),

✦ another linear interpolation operator Iy : C0(Dy) → Vy into a qy-dimensional space Vy ⊂ C0(Dy)

with interpolation nodes t1
y, . . . , t

qy
y ∈ Dy.

We write bx
k , k = 1, . . . , qx, and b

y
j , j = 1, . . . , qy, for the cardinal functions associated with the respective

spaces and sets of interpolation nodes on Dx, Dy.

Then, in the spirit of tensor-product polynomial interpolation from § 2.2.1.37, we can introduce the tensor-
product interpolation operator

Ix ⊗ Iy : C0(Dx × Dy)→ Vx ⊗Vy ,

(
(Ix ⊗ Iy) f

)
(x, y) :=

qx

∑
k=1

qy

∑
j=1

f (tk
x, t

j
y) bx

k (x) b
y
j (y) , f ∈ C0(Dx × Dy) .

(2.2.1.45)

y

Obviously, the tensor-product interpolant is separable. Hence, applying it to G provides a separable
“approximation” (its quality depending on k, Ix, and Iy, of course):

G̃(x, y) :=
(
(Ix ⊗ Iy)G

)
(x, y) =

qx

∑
k=1

qy

∑
ℓ=1

G(tk
x, tℓy) bx

k (x)
︸ ︷︷ ︸

=:gk,ℓ(x)

b
y
ℓ (y)︸ ︷︷ ︸

=:hk,ℓ(y)

. (2.2.1.46)

Note that in order to obtain G̃ we need only evaluate G at qx · qy pairs of interpolation nodes to obtain

the values G(tk
x, t

j
y) ∈ R. Another advantage of (2.2.1.46) is that it inherits the possible simplicity of the

cardinal functions.

For given collocation points x1, . . . , xn ∈ Dx, y1, . . . , ym ∈ Dy, the approximate kernel collocation matrix

M̃ ∈ Rn,m spawned by G̃ has the special triple-factor form

(
M̃
)

i,j
=

qx

∑
k=1

qy

∑
ℓ=1

G(tk
x, tℓy)b

x
k (xi)b

y
ℓ (y

j) , i = 1, . . . , n , j = 1, . . . , m

M̃ = U C V⊤ ,

U :=
[
bx

k (xi)
]

i=1,...,n
k=1,...,qx

∈ Rn,qx ,

C :=
[

G(tk
x, tℓy)

]
k=1,...,qx
ℓ=1,...,qy

∈ Rqx,qy ,

V :=
[
b

y
ℓ (y

j)
]

j=1,...,m
ℓ=1,...,qy

∈ Rm,qy .

(2.2.1.47)

 M̃

 =

 U

[

C
] [

V⊤
]

.

This implies that rank(M̃) ≤ min{qx, qy}.

Of course the most widely used interpolation operators Ix and Iy are polynomial interpolations, in particular,
Chebychev interpolation [NumCSE Section 6.2.3]. Then the bx

k /b
y
j will also be polynomials, for which

efficient algorithms for evaluation are available, see [NumCSE Section 5.2.3].

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 167

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

EXPERIMENT 2.2.1.48 (Bi-directional interpolation of smooth kernel function) For d = 1 we consider
the globally smooth kernel function

G(x, y) =
1

1 + (x− y)2
on [0, 1]2 ,

- and collocation points ξi = ηi =
i−1

n , i = 1, . . . , n, n ∈ N.

A rank-q2 separable approximation of G on [0, 1]2 is obtained by bi-directional Chebychev interpolation
into tensor-product polynomials T Pq−1(R

2):

G̃ ∈ T Pq−1(R
2): G̃(ti, tj) = G(ti, tj) , i, j ∈ {1, . . . , q} , (2.2.1.49)

with Chebychev nodes tk as defined in (2.2.1.36).

Plot of the scaled Frobenius norm of the approxima-
tion error of the kernel collocation matrix,

err :=
1

n

(

∑
i,j

(
G(ξi, ηj)− G̃(ξi, ηj

)2
) 1

2

,

as a function of the degree q − 1 and for n ∈
{100, 500, 1000}.

Fig. 72

0 2 4 6 8 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Degree

E
rr

o
r

Error in Frobenius Norm

 n = 100

 n = 500

 n = 1000

Observation: Evidence of exponential convergence of the approximation error for q→ ∞.

The observation matches theoretical interpolation error estimates for Chebychev interpolation: the kernel
(x, y) 7→ G(x, y) is analytic on [0, 1] (→ Def. 1.4.3.67) both as a function x 7→ G(x, y) and y 7→ G(x, y),
uniformly in the other argument. Thus, the results reported in [NumCSE Rem. 6.2.3.26] predict exponential

convergence of
∥∥∥G− G̃

∥∥∥
L∞([0,1]2)

, refer to Thm. 1.4.3.70 for quantitative formulas. Details will be given in

Section 2.2.2.2. y

EXPERIMENT 2.2.1.50 (Global bi-directional interpolation of singular kernel) For d = 1 we apply
bi-directional Chebychev interpolation into T Pq−1(R

2) to the singular kernel function

G(x, y) =

{
1
|x−y| , if x 6= y ,

0 , if x = y ,
0 ≤ x, y ≤ 1 ,

in order to obtain a separable approximation G̃.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 168

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We use the same collocation points as in
Exp. 2.2.1.48.

Plot of
∥∥∥M− M̃

∥∥∥
F

as a function of the degree q− 1

for n ∈ {100, 500, 1000}. ✄

We observe no convergence at all.

Fig. 73

0 2 4 6 8 10
10

2

10
3

10
4

Degree

E
rr

o
r

Error in Frobenius Norm

 n = 100

 n = 500

 n = 1000

y

2.2.2 Error Estimates and Admissibility Condition for Singular Kernels

We embark on an analysis of separable approximation of singular kernels like those introduced in
Ex. 2.1.3.3, with focus on d = 1, the logarithmic kernel

G(x, y) =

{
− log |x− y| , if x 6= y ,

0 else,
x, y ∈ [0, 1] .

and Chebychev polynomial interpolation. We have seen in Exp. 2.2.1.50 that applying polynomial across
the singularity at x = y is pointless. Conversely, Exp. 2.2.1.19 sends the message that singular kernels
for d = 1 allow exponentially convergent separable approximations on “boxes” Dx × Dy ⊂ R2 away from

the “diagonal” {(x, y) ∈ R2 : x = y}. Now we estimate truncation and interpolation errors to glean
quantitative information.

Remark 2.2.2.1 (Asymptotically smooth kernels [Beb08, Sect. 3.2]) The analysis of this section carries
over to d > 1 and a larger class of singular kernels, which are asymptotically smooth.

A kernel function G : (Rd ×Rd) \ {(x, y) ∈ Rd ×Rd : x = y} → R is called asymptotically smooth,
if

(i) G ∈ C∞((Rd ×Rd) \ {(x, y) ∈ Rd ×Rd : x = y}),
(ii) and its derivatives satisfy the decay conditions

∣∣Dα
y G(x, y)

∣∣ ≤ C |α|! γ|α|
|G(x, y)|
‖x− y‖|α|

∀α ∈ Nd
0 ,

∀(x, y) ∈ R×R \ {(x, y) ∈ Rd ×Rd : x = y} ,

(2.2.2.2)

with constants C > 0, γ > 0 (|α| = |α1|+ · · ·+ |αd|).
Straightforward differentiation, cf. (2.2.1.20), confirms that the kernels from Ex. 2.1.3.3 are asymptotically
smooth. y

2.2.2.1 Truncation Error Estimates for Taylor Expansion

We focus on the asymptotically smooth logarithmic kernel G(x, y) = − log |x − y| in one dimension,
d = 1.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 169

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 74

x

y

“diagonal” {x = y}
Dy

Dx

B

As in Exp. 2.2.1.19 we consider its rank-q separable
approximation by means of truncated Taylor expan-
sion on Dx × Dy, where Dx, Dy ⊂ R are disjoint

intervals: Dx ∩ Dy = ∅.

✁ Approximation on a “box” B := Dx × Dy away
from the diagonal.

(Assume that B is above the diagonal: y > x for all
(x, y) ∈ B.)

Using that for y > x

∂ℓG

∂xℓ
(x, y) = (ℓ− 1)!(y− x)−ℓ for (x, y) ∈ Dx × Dy , ℓ ≥ 1 , (2.2.1.20)

the formula (2.2.1.17) for the rank-q separable approximation by Taylor expansion takes the concrete
form

G̃(x, y) = − log(y− x∗) +
q−1

∑
ℓ=1

1

ℓ
(x− x∗)ℓ

︸ ︷︷ ︸
=:gℓ(x)

(y− x∗)−ℓ︸ ︷︷ ︸
=:hℓ(y)

, (2.2.2.3)

We choose x∗ ∈ Dx as the midpoint of Dx: if Dx = [a, b], then x∗ = 1
2(a + b).

§2.2.2.4 (Heuristics based on maximal analytic extension) Appealing to the arguments of [NumCSE
Rem. 6.2.2.67] we find that the domain of analyticity of z 7→ − log(y− z), y ∈ R, is C \ [y, ∞[, because
the complex logarithm is analytic everywhere except R−0 .

Then apply the “rule of thumb” that predicts that

the Taylor series of an analytic function f : D → C, D ⊂ C open (“domain of analyticity”),
around z∗ ∈ D converges inside every disk centered at z∗ that lies completely inside D.

Thus the Taylor series of x 7→ − log(y− x) in x∗ < y

G(x, y) = − log(y− x) =
∞

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ

∂ℓG

∂ℓx
(x∗, y)

=:
∞

∑
ℓ=0

γℓ(x− x∗)ℓ for γℓ :=
1

ℓ!

∂ℓG

∂ℓx
(x∗, y) ,

(2.2.2.5)

has a radius of convergence ρ = y− x∗. Assume that for |x− x∗| = ρ the terms of the series are still
bounded:

γℓρ
ℓ ≤ C ∀ℓ ∈ N0 . (2.2.2.6)

Therefore, if |x− x∗| < ρ, we get

|(G− G̃)(x, y)| =
∣∣∣∣∣

∞

∑
ℓ=q

γℓ(x− x∗)ℓ
∣∣∣∣∣ ≤

∞

∑
ℓ=q

∣∣∣∣
x− x∗

ρ

∣∣∣∣
ℓ

γℓρ
ℓ

(2.2.2.5)
≤ C

∞

∑
ℓ=q

∣∣∣∣
x− x∗

ρ

∣∣∣∣
ℓ

= C

∣∣∣∣
x− x∗

ρ

∣∣∣∣
q ρ

ρ− |x− x∗|

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 170

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Note that by simple geometric arguments

|x∗ − y| ≥ 1
2 diam(Dx) + dist(Dx; Dy) , |x− x∗| ≤ 1

2 diam(Dx) .∣∣∣∣
x− x∗

ρ

∣∣∣∣ ≤
η

1 + η
,

with the admissibility measure of the box B := Dx × Dy

η = η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.2.7)

Hence, for x ∈ Dx we expect exponential convergence (in terms of q→ ∞) of the q-term Taylor expansion
in x with error bounds

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
≤ C

(
η

1 + η

)q

∀q ∈ N . (2.2.2.8)

§2.2.2.9 (Remainder estimates for Taylor expansion of logarithmic kernel) Now we make rigorous
the heuristic arguments of § 2.2.2.4. Recall the remainder formula for one-dimensional Taylor expansion
of f ∈ Cm+1([a, b]) around x∗ ∈ [a, b] [Str09, Sect. 5.5],

f (x)−
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ f (ℓ)(x∗) = (x− x∗)q

1∫

0

1

(q− 1)!
(1− τ)q−1 f (q)(x∗ + τ(x− x∗))dτ .

(2.2.2.10)

Apply this formula to G(x, y) in x-direction only, regarding y as a parameter. The remainder term for
expansion length q ≥ 1 and x∗ chosen as midpoint of Dx reads

G(x, y)− G̃(x, y) =
(x− x∗)q

(q− 1)!

1∫

0

(1− τ)q−1 ∂qG

∂xq (x∗ + τ(x− x∗), y)dτ

=
(x− x∗)q

(q− 1)!

1∫

0

(1− τ)q−1(q− 1)!|x∗ + τ(x− x∗)− y|−q dτ

=

1∫

0

(1− τ)q−1

(
x− x∗

|x∗ − y + τ(x− x∗)|

)q

dτ .

We estimate the remainder in terms of geometric quantities

|x∗ − y| ≥ 1
2 diam(Dx) + dist(Dx; Dy) ,

|x− x∗| ≤ 1
2 diam(Dx) .

where

dist(Dx; Dy) := max{|x− y| : x ∈ Dx, y ∈ Dy} > 0 .

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 171

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Hence, for all (x, y) ∈ Dx × Dy,

|G(x, y)− G̃(x, y)| ≤
1∫

0

(1− τ)q−1

(
x− x∗

|x∗ − y| − |τ(x− x∗)|

)q

dτ

≤
1∫

0

(1− τ)q−1

(
1
2 diam(Dx)

dist(Dx; Dy) +
1
2(1− τ)diam(Dx)

)q

dτ

≤
1∫

0

(1− τ)q−1

(η−1 + 1− τ)q
dτ =

1∫

0

σq−1

(η−1 + σ)q
dσ ≤

(
η

1 + η

)q−1 1∫

0

η

1 + ησ
dσ

=

(
η

1 + η

)q−1

log(1 + η) = O(ηq) for q→ ∞ .

(2.2.2.11)

Again the admissibility measure η of the box B := Dx × Dy as defined in (2.2.2.7) crucially enters the
bound for the truncation error and determines the “rate” of exponential convergence for q→ ∞.

On boxes away from the diagonal {x = y} rank-q separable approximation of asymptotically
smooth singular kernels by means of truncated Taylor expansion converges uniformly exponentially
for q→ ∞.

The speed of convergence is determined by the admissibility measure η = η(B).

2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation

We conduct a rigorous analysis for separable approximation by uni-directional interpolation as presented
in Section 2.2.1.2, see (2.2.1.31). We restrict ourselves to d = 1 and Chebychev interpolation [NumCSE
Section 6.2.3.2].

Specializing (2.2.1.31), the approximate rank-q separable kernel function is given by

G̃(x, y) = Iq,Dx{x 7→ G(x, y)} =
q

∑
ℓ=1

Lℓ(x)G(tℓ, y) , (2.2.2.12)

where Iq,Dx : C0(Dx)→ Pq−1 is the q-node Chebychev interpolation operator,

tℓ, ℓ = 1, . . . , q, are the Chebychev nodes in Dx := [a, b] given by

tj := a + 1
2(b− a)

(
cos

(
2j− 1

2q
π

)
+ 1

)
, j = 1, . . . q . (2.2.1.36)

and the functions Lℓ are the Lagrange polynomials (2.2.1.34) for these nodes, that is, the cardinal
basis functions for Chebychev interpolation in

{
tj
}q

j=1

§2.2.2.13 (Simple 1D Chebychev interpolation error estimates) Write IT for the well-defined polyno-
mial interpolation operator into Pq−1 based on the node set T := {t1, . . . , tq} ⊂ [−1, 1] ⊂ R. The
fundamental error respresentation from [NumCSE Thm. 6.2.2.15] for f ∈ Cq([−1, 1])

(f − IT f)(x) =
f (q)(τ(x))

q!
·

q

∏
k=1

(x− tk) for some τ(x) ∈ [−1, 1] , (2.2.2.14)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 172

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

yields the bound of [NumCSE Eq. (6.2.2.22)]:

‖ f − IT f ‖L∞([−1,1]) ≤
1

q!

∥∥∥ f (q)
∥∥∥

L∞([−1,1])
max

t∈[−1,1]
|(t− t1) · · · · · (t− tq)| . (2.2.2.15)

For the special Chebychev nodes

tj := cos

(
2j− 1

2q
π

)
, j = 1, . . . q , (2.2.1.36)

which are zeros of the Chebychev polynomial Tq [NumCSE Def. 6.2.3.3] we know

|(t− t1) · · · · · (t− tq)| = |21−qTq(t)| ≤ 21−q ∀ − 1 ≤ t ≤ 1 . (2.2.2.16)

Plugging this into (2.2.2.15), we get

∥∥∥ f − Îq f
∥∥∥

L∞([−1,1])
≤ 21−q

q!

∥∥∥ f (q)
∥∥∥

L∞([−1,1])
, (2.2.2.17)

where we wrote Îq for the Chebychev interpolation operator on the reference interval [−1, 1] based on q
interpolation nodes.

Affine transformation to a general interval [a, b], a < b, [NumCSE § 6.2.1.26] finally leads to an error
estimate for the q-node Chebychev interpolation.

Lemma 2.2.2.18. Chebychev interpolation error estimate

For any f ∈ Cq([a, b]) the q-node polynomial Chebychev interpolation operator Iq,[a,b] on the interval

[a, b], a < b admits the error estimate

∥∥∥ f − Iq,[a,b] f
∥∥∥

L∞([a,b])
≤ 21−2q(b− a)q 1

q!

∥∥∥ f (q)
∥∥∥

L∞([a,b])
. (2.2.2.19)

y

Now we consider the singular logarithmic kernel G(x, y) = − log |x − y| on a box B := Dx × Dy,
Dx, Dy ⊂ R, Dx ∩ Dy = ∅, Dx := [a, b], see Fig. 74. There we approximate it by Chebychev interpola-
tion in x-direction, cf. (2.2.1.31)

G̃(x, y) := Iq,[a,b]{x 7→ − log |x− y|}(x, y) , (x, y) ∈ B . (2.2.2.20)

Next we apply the estimate of Lemma 2.2.2.18 to x 7→ − log |x − y|. More precisely, we use
Lemma 2.2.2.18 for abritrary, but fixed y ∈ Dy and

f (x) := G(x, y)
(2.2.1.20)

| f (q)(x)| =
∣∣∣∣
∂qG

∂xq (x, y)

∣∣∣∣ =
(q− 1)!

|y− x|q , x 6= y .

Plugging this into (2.2.2.19) and observing that |x − y| ≥ dist(Dx; Dy) and diam(Dx) = b− a yields
the final estimate

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
≤ 2

q

(
diam(Dx)

4 dist(Dx; Dy)

)q

≤ 2

q

(
η(B)

2

)q

, (2.2.2.21)

where,again, we expressed the bound through the admissibility measure of the box B

η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.2.7)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 173

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Unlike (2.2.2.7), for large η the above estimate (2.2.2.21) does not predict exponential convergence. This
can be remedied by stronger estimates that we outline next.

§2.2.2.22 (Interpolation error estimates based on analytic extension) We start with a deep result
of approximation theory already given in Thm. 1.4.3.70. Recall the concept of “analyticity” of a function
D ⊂ C → C from Def. 1.4.3.68:

Definition 1.4.3.68. Analyticity of a function in C

Let D ⊂ C be an open set in the complex plane. A function f : D → C is called ana-

lytic/holomorphic in D, if f has a representation as a convergent power series in a neighborhood
of every z ∈ D:

∀z ∈ D: : ∃rz > 0, (ak)k∈N0
, ak ∈ C : f (w) =

∞

∑
k=0

ak(w− z)k ∀w : |z− w| < rz .

Also remember the special closed curves in the com-
plex plane called Bernstein ellipses:

Eρ := {z ∈ C : |z− 1|+ |z + 1| = ρ + ρ−1}

=

z = 1
2(ρ + ρ−1) cos θ+

ı 1
2(ρ− ρ−1) sin θ ,

0 ≤ θ ≤ 2π

 ,

(1.4.3.69)

with a parameter ρ > 0 controlling the size of the
ellipse. ✄

Fig. 75
−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

ρ=1

ρ=1.2

ρ=1.4

ρ=1.6

ρ=1.8

ρ=2

They wrap around the reference interval [−1, 1], have ±1 as their focal points, and ρ + ρ−1 and ρ− ρ−1

as lengths of their long and short axes, respectively.

Theorem 2.2.2.23. Chebychev interpolation of analytic functions [NumCSE Eq. (6.2.3.28)]

If f : D ⊂ C → C is analytic in the interior of the Bernstein ellipse Eρ, ρ > 1, and bounded on Eρ,

then

inf
p∈Pm

∥∥∥ f − Îm f
∥∥∥

L∞([−1,1])
≤ 8

π

1

(ρm − ρ−1)(ρ + ρ−1 − 2)
max
z∈Eρ

| f (z)| for all m ∈ N ,

(2.2.2.24)

where Îm : C0([−1, 1])→ Pm stands for the Chebychev interpolation operators on [−1, 1].

Again, we point out exponential convergence of the maximum norm of the minimal approximation error
over Pm as the degree m→ ∞.

To apply Thm. 2.2.2.23 to the Chebychev interpolation of x 7→ − log(y− x) on Dx := [a, b], a < b < y,
we first employ an affine pullback to the reference interval [NumCSE § 6.2.1.14] and obtain

f (x̂) := − log
(

y− (1
2(b− a)x̂ + 1

2(b + a))
)

, −1 ≤ x̂ ≤ 1 . (2.2.2.25)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 174

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

f is analytic on C \ [xs, ∞[with

xs :=
2

b− a
(y− 1

2(b + a)) ≥ 2

diam(Dx)
(dist(Dx; Dy) +

1
2 diam(Dx))

=
2 dist(Dx; Dy)

diam(Dx)
+ 1 ≥ 1

η
+ 1 > 1 ,

where η is the admissibility measure of the box Dx × Dy,

η = η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.2.7)

Fig. 76

R1−1

xs ✁ domain of analyticity of f .
— =̂ a Bernstein ellipse

The range of possible size parameters ρ for the Bernstein ellipses Eρ is

ρ > 1: ρ + ρ−1 < 2xs , satisfied for 1 < ρ <
1 + η +

√
1 + η

η
. (2.2.2.26)

This confirms exponential convergence of Chebychev interpolation of x 7→ − log(y − x) on Dx with
respect to the polynomial degree, for any y 6∈ Dx, with a rate governed by the admissibility measure η.

For asymptotically smooth singular kernels the admissibility measure η governs the speed of
asymptotic exponential convergence of rank-q separable approximations by uni-directional Cheby-
chev interpolation.

y

2.2.2.3 Estimates for Bi-Directional Interpolation

For separable approximation by bi-directional interpolation as elaborated in Section 2.2.1.3 we have to
study the interpolation error

G(x, y)− G̃(x, y) = (Id− Ix ⊗ Iy){(x, y) 7→ G(x, y)} .

§2.2.2.27 (Error estimates for bi-directional interpolation) We revisit the setting of § 2.2.1.44 for
bi-directional interpolation based on two linear interpolation operators Ix : C0(Dx) → Vx and Iy :

C0(Dy) → Vy with interpolation nodes t1
x, . . . , t

qx
x , qx := dim Vx, t1

y, . . . , t
qy
y , qy := dim Vy. Writing

bx
k , k = 1, . . . , qx, and b

y
j , j = 1, . . . , qy for the associated cardinal functions we can express, compare

(2.2.1.28),

(Ixg)(x) =
qx

∑
k=1

g(tk
x) bx

k (x) , g ∈ C0(Dx) ,

(Iyh)(y) =
qx

∑
j=1

h(t
j
y) b

y
j (y) , h ∈ C0(Dy) .

(2.2.2.28)

Interpolation error estimates are closely linked to the stability of the interpolation operators, which is mea-
sured by their operator norm(s). The operator norm associated with the maximum norm on function space
has a special name.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 175

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 2.2.2.29. Lebesgue constant [NumCSE Lemma 5.2.4.10]

The Lebesgue constant of a linear interpolation operator I : C0(D) → Vx according to
Def. 2.2.1.25 with associated cardinal functions bℓ, ℓ = 1, . . . , q, is the number

λ(I) :=
q

∑
ℓ=1

‖bℓ‖L∞(D) .

As an immediate consequence of the definition and△-inequality we mention

‖I f ‖L∞(D) ≤ λ(I)‖ f ‖L∞(D) ∀ f ∈ C0(D) . (2.2.2.30)

Next we rewrite the tensor-product interpolation operator as a composition of unidirectional interpolation
operators I∗2D : C0(Dx × Dy)→ C0(Dx × Dy), ∗ = x, y. We introduce

(Ix2D f)(x, y) =
qx

∑
k=1

f (tk
x, y) bx

k (x) ,

(I
y
2D f)(x, y) =

qx

∑
k=1

f (x, tk
y) b

y
k(y) ,

f ∈ C0(Dx × Dy) .

(2.2.1.45) Ix ⊗ Iy = Ix2D ◦ I
y
2D on C0(Dx × Dy) . (2.2.2.31)

By the very definition of the Lebesgue constant in Def. 2.2.2.29 we conclude

‖Ix2D f ‖L∞(D) ≤ max
x∈Dx

max
y∈Dy

qx

∑
k=1

∣∣∣ f (tk
x, y) bx

k (x)
∣∣∣

≤
qx

∑
k=1

‖ f ‖L∞(Dx×Dy)
‖bx

k‖L∞(Dx)
= λ(Ix) ‖ f ‖L∞(Dx×Dy)

.

(2.2.2.32)

This means that λ(I∗) provides a bound for the (operator) norm of I∗2D.

Owing to (2.2.2.31) we can separate interpolation directions:

Ix ⊗ Iy − Id = Ix2D ◦ I
y
2D − Ix2D ◦ Id+ Ix2D ◦ Id− Id = Ix2D

(
I
y
2D − Id

)
+ (Ix2D − Id) ◦ Id ,

and the△-inequality gives the following estimate for f ∈ C0(Dx × Dy):

‖(Ix ⊗ Iy − Id) f ‖L∞(Dx×Dy)
≤
∥∥Ix2D

(
I
y
2D − Id

)
f
∥∥

L∞(Dx×Dy)
+ ‖(Ix2D − Id) f ‖L∞(Dx×Dy)

≤ λ(Ix)
∥∥(Iy2D − Id

)
f
∥∥

L∞(Dx×Dy)
+ ‖(Ix2D − Id) f ‖L∞(Dx×Dy)

.

Let us elucidate the contribution of uni-directional interpolation errors (highlighted with color)

‖(Ix ⊗ Iy − Id) f ‖L∞(Dx×Dy)
≤ λ(Ix)max

x∈Dx

{
max
y∈Dy

∣∣∣ f (x, y)−
qy

∑
j=1

f (x, t
j
y)b

y
j (y)

∣∣∣
}
+

max
y∈Dy

{
max
x∈Dx

∣∣∣ f (x, y)−
qx

∑
k=1

f (tk
x, y)bx

k (x)
∣∣∣
}

.

(2.2.2.33)

Hence, estimates of the interpolation error of Ix and Iy when applied to the functions x 7→ f (x, y) and
y 7→ f (x, y), respectively, permit us to estimate the interpolation error for Ix ⊗ Iy, if they are uniform in
the other argument. y

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 176

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Let us apply the estimate (2.2.2.33) for d = 1 to G(x, y) = log(y − x), x ∈ Dx, y ∈ Dy, y > x,
in the situation of Fig. 74 with well separated intervals Dx and Dy. We rely on one-dimensional q-node
Chebychev interpolation Iq on both Dx and Dy. From [NumCSE Rem. 6.2.3.19] we recall the deep result
that in the case of Chebychev interpolation the Lebesgue constant is bounded as

λ(Iq) ≤
2

π
log(2 + q) + 1 ∀q ∈ N . (2.2.2.34)

The function x 7→ G(x, y) has an analytic extension to the interior of the Bernstein ellipse Eρ for all

y ∈ Dy, if ρ > 1 is chosen according to (2.2.2.26). Thus, invoking Thm. 2.2.2.23, we get exponential
convergence of the interpolation error

∥∥∥{x 7→ ((Id− Ixq)G)(x, y)}
∥∥∥

L∞(Dx)
for q→ ∞ ,

whose speed will be determined by ρ and, indirectly, by the admissibility measure of the box Dx ×Dy. Up

to a logarithmic factor in q this will also hold for the total approximation error
∥∥∥G− G̃

∥∥∥
L∞(Dx×Dy)

.

EXPERIMENT 2.2.2.35 (Tensor-product Chebychev interpolation of singular kernel) For d = 1 we
consider the singular asymptotically smooth kernel function

G(x, y) :=
1

|x− y| , x 6= y .

We employ tensor-product Chebychev interpolation of degree q − 1 with q2 interpolation nodes on the
rectangular boxes

Bk := [0.55 + k · 0.05, 0.75 + k · 0.05]× [0.25− k · 0.05, 0.45− k · 0.05] , k ∈ {0, . . . , 5} .

These boxes are shown in Fig. 77 and their admissibility measures η(Bk) according to (2.2.2.7) are given
in the following table:

k 0 1 2 3 4 5
η(Bk) 2.0 1.0 0.66 0.5 0.4 0.33

Fig. 77

x

y

1

1

Fig. 78

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Degree d

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
in

 t
h

e
 L

∞
 −

 N
o

rm

k=1

k=2

k=3

k=4

k=5

In Fig. 78 we observe exponential convergence of
∥∥∥G− G̃

∥∥∥
L∞(Bk)

in the degree, the faster the larger k,

which also corresponds to smaller admissibility measure of the box.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 177

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The previous experiment is repeated with the boxes

Bξ := [1
2(
√

2− 1)ξ + 1
2 , 1

2(
√

2 + 1)ξ + 1
2]× [− 1

2(
√

2− 1)ξ + 1
2 ,− 1

2(
√

2 + 1)ξ + 1
2] ,

ξ ∈ {0.05, 0.09, 0.13, . . . , 0.41} ,

whose size increases with increasing distance from the diagonal, keeping their admissibility measures
η(Bξ) at the constant value

√
2.

Fig. 79
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 x

 y

Fig. 80

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Parameter ξ

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
in

 t
h

e
 L

∞
 −

 N
o

rm

d = 2

d = 4

d = 6

d = 8

d = 10

We observe that the interpolation error
∥∥∥G− G̃

∥∥∥
L∞(Bξ)

is almost constant for a family of rectangles with

about the same admissibility measure. Exponential convergence in the degree is well preserved. y

Inspired by the findings of our investigations into the separable approximation of asymptotically smooth
singular kernels we will make a general assumption:

Assumption 2.2.2.36. Rank-q separable approximation on admissible boxes

For the kernel function G : Rd × Rd → R under consideration there is an increasing function
δ : R+ → [0, 1[such that for any disjoint closed sets Dx, Dy ⊂ Rd, Dx ∩Dy = ∅, there is a family{

G̃q

}
q∈N

of rank-q separable approximations such that

∥∥∥G− G̃q

∥∥∥
L∞(Dx×Dy)

≤ δ(η(Dx × Dy))
q ∀q ∈ N , (2.2.2.37)

where η is the admissibility measure from (2.2.2.7).

Review question(s) 2.2.2.38 (Approximation of kernel collocation matrices)

(Q2.2.2.38.A) [Sparse matrices] Consider a family of sparse square matrices with a most K ∈ N

non-zero entries per column. Let M ∈ Rn,n belong to that family and let M̃ a suitable data-sparse ap-

proximation satisfying
∥∥∥M− M̃

∥∥∥
F
< ǫ. What are the exponents p ∈ N0 and q ∈ N0 in the asymptotic

bounds

cost of storage/initialization of M̃

cost(M̃× vector)
= O((m + n) logq(m + n)| logp ǫ| for m, n→ ∞, ǫ→ 0 ?

(Q2.2.2.38.B) [Power series expansions] We consider the kernel function G(x, y) = 1
x−y , x, y ∈ R,

x 6= y. For every x ∈ R (y ∈ R) determine the interval of convergence of the power series expansion
of y 7→ G(x, y) (x 7→ G(x, y)).

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 178

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(Q2.2.2.38.C) [Basis polynomials] Let bℓ, ℓ = 1, . . . , p, a basis of the space Pp of uni-variate polyno-
mials of degree < p. Show that the set

{(x, y) 7→ bℓ(x)bk(y)}p
ℓ,k=1 ⊂ C0(R2)

is linearly independent .

(Q2.2.2.38.D) [Helmholtz kernel] Remember the notion of asymptotic smoothness of a kernel function:

A kernel function G : (Rd ×Rd) \ {(x, y) ∈ Rd ×Rd : x = y} → R is called asymptotically

smooth, if
(i) G ∈ C∞((Rd ×Rd) \ {(x, y) ∈ Rd ×Rd : x = y}),
(ii) and its derivatives satisfy the decay conditions

∣∣Dα
y G(x, y)

∣∣ ≤ C |α|! γ|α|
|G(x, y)|
‖x− y‖|α|

∀α ∈ Nd
0 ,

∀(x, y) ∈ R×R \ {(x, y) ∈ Rd ×Rd : x = y} ,

(2.2.2.2)

with constants C > 0, γ > 0 (|α| = |α1|+ · · ·+ |αd|).

Now consider the singular kernel function

G(x, y) =
exp(ıω|x− y|)
|x− y| , x, y ∈ R, x 6= y , ω ∈ C .

For which ω is it asymptotically smooth, for which will it fail to have this property?

△

2.3 Clustering Techniques

In this section we develop an algorithm that paves the way for data-sparse approximations in the sense of
§ 2.2.0.1 of kernel collocation matrices associated with asymptotically smooth (→ Rem. 2.2.2.1) singular
kernel functions, see Ex. 2.1.3.3 for examples.

Throughout this section we assume that we are given, cf. Def. 2.1.3.1,

✦ an asymptotically smooth singular kernel function

G = G(x, y) , G ∈ C∞([0, 1]d × [0, 1]d \ {x = y}) ,

allowing point evaluation for any admissible pair of arguments,

✦ collocation points xi ∈ [0, 1]d, i = 1, . . . , n, and yj ∈ [0, 1]d, j = 1, . . . , m, m, n ∈ N.

The kernel function may be available only in procedural form as subroutine providing point evaluations.

2.3.1 Local Separable Approximation

Recall the admissibility measure of a box B := Dx × Dy, Dx, Dy ⊂ [0, 1]d, defined in (2.2.2.7):

η = η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.2.7)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 179

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The bottom line of Section 2.2.2.1 and Section 2.2.2.2 for d = 1 was that rank-q separable approximation
of asymptotically smooth singular kernel functions is possible with fast asymptotic exponential conver-

gence for q→ ∞ on boxes B := Dx × Dy with small admissibility measure η(B).

Idea: Partition [0, 1]d × [0, 1]d into boxes B1, . . . , BK, K ∈ N, Bk = Dk
x × Dk

y, Dx, Dy ⊂
[0, 1]d (also called a tiling)

[0, 1]d × [0, 1]d = B1 ∪ · · · ∪ BK , Bℓ ∩ Bm = ∅ , if ℓ 6= m ,

such that
only O(m + n) pairs (xi, yj) of collocation points are contained in boxes
with an admissibility measure η > η0, for prescribed η0 > 0.

§2.3.1.1 (Near-field and far-field boxes) Formally we split the set B := {B1, . . . , BK} of boxes into
η0-admissible boxes (“far-field” boxes) and remainder (“near-field” boxes):

B = Bfar ∪ Bnear ,
Bfar := {B ∈ B : η(B) ≤ η0} ,

Bnear := {B ∈ B : η(B) > η0} .

Qualitative visualization of near-field↔ far-field split-
ting of [0, 1]2 for d = 1 ✄

Far-field boxes with admissibility measure
≤ η0.

Boxes abutting or close to the diagonal {x = y} form
the set of near-field boxes (not marked).

Fig. 81

Bk

x

y

Dk
x

Dk
y

What we have learned in Section 2.2, refer to Ass. 2.2.2.36:

Separable approximation in the far field

Rank-q separable approximation of G by expansion (→ Section 2.2.1.1) or interpolation (→ Sec-
tion 2.2.1.2/Section 2.2.1.3) is possible on far-field boxes with exponentially decreasing error for
q→ ∞.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 180

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 82 0

0

1

1

Poo
r App

ro
xim

at
ion

Reg
ion ✁ A picture helping you to remember the location of

near-field and far-field boxes in d = 1

Near field: No exponentially convergent
separable approximation possible

Far field: Expansion or interpolation pro-
vide exponentially convergent separable
approximation.

Meaning of η(B) ≤ η0 for size of far-field boxes:

• Accurate separable approximation possible
– only on small rectangles near the diago-

nal
– also on large rectangles far from the diag-

onal

Aiming for η(B) ≈ η0 fixes size of far-field boxes.

Fig. 83 0

0

1

1

G
(n

ea
rly

) sin
gu

lar

G smoother

G smoother

§2.3.1.3 (Block partitioning of the kernel collocation matrix) Assume a partitioning of [0, 1]d × [0, 1]d

into boxes Bk := Dk
x × Dk

y ⊂ [0, 1]d × [0, 1]d, k = 1, . . . , K, Dk
x, Dk

y ⊂ [0, 1]d:

[0, 1]d × [0, 1]d = B1 ∪ · · · ∪ BK , Bℓ ∩ Bm = ∅ , if ℓ 6= m .

Based on the given collocation points xi ∈ [0, 1]d, i = 1, . . . , n, yj ∈ [0, 1]d, j = 1, . . . , m, this induces a
block-partitioning of the kernel collocation matrix M =

[
G(xi, yj)

]
i,j
∈ Rn,m. Set

Ik :=
{

i ∈ {1, . . . , n} : xi ∈ Dk
x

}
,

Jk :=
{

j ∈ {1, . . . , m} : yi ∈ Dk
y

}
,

(2.3.1.4)

D := {1, . . . , n} × {1, . . . , m} =
K⋃

k=1

Ik × Jk ,

(Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m ,

(2.3.1.5)

and define the matrix blocks by

Mk :=
[

G(xi, yj)
]

i∈Ik
j∈Jk

∈ R♯Ik,♯Jk , k = 1, . . . , K . (2.3.1.6)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 181

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 84

0

0

1

1ξ1 ξn

η1

ηm

x

y

For d = 1 and assuming sorted collocation points

0 ≤ ξ1 < ξ2 < · · · < ξn ≤ 1 ,

0 ≤ η1 < η2 < · · · < ηm ≤ 1 ,

the geometric boxes Bk directly correspond to matrix
blocks.

✁ • point (ξ i, η j) ∈ Rd ×Rd ↔ entry of M

However, block partitionings of M (rearrangement of indices allowed) induced by a partitioning (2.3.1.5)
of the set D := {1, . . . , n} × {1, . . . , m} of index pairs are more general than geometric partitionings of
[0, 1]d × [0, 1]d. Therefore, we can now formulate the following objective (in not entirely rigorous terms).

Goal: admissible and efficient block partitioning

Find a partitioning of D = {1, . . . , n} × {1, . . . , m}

D =
K⋃

k=1

Ik × Jk ,
Ik ⊂ {1, . . . , n} ,
Jk ⊂ {1, , . . . , m} ,

(Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m , (2.3.1.8)

such that, with a near-field – far-field splitting of the index set {1, . . . , K}

Fnear ∩ Ffar = ∅ , Fnear ∪ Ffar = {1, . . . , K} , (2.3.1.9)

the cardinalities of the index sets satisfy for some p ∈ N0

∑
k∈Ffar

♯Ik + ♯Jk = O((m + n) logp(m + n)) , (2.3.1.10)

∑
k∈Fnear

♯Ik · ♯Jk = O((m + n) logp(m + n)) , (2.3.1.11)

asymptotically “for n, m→ ∞” and some fixed p ∈ N.

Remember our bid for data-sparse approximation (→ § 2.2.0.1) by low-rank approximation of far-field
blocks to appreciate (2.3.1.10) and (2.3.1.11).

To characterize the sets Fnear (“near-field” blocks of index pairs) and Ffar (“far-field” block of index pairs),
we define mutual admissibility of two sets of indices. To prepare its statement, we introduce the concept
of bounding boxes.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 182

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 2.3.1.12. Bounding box of an index set

The x/y-bounding boxes of index sets are

I ⊂ {1, . . . , n}: boxx(I) :=
d⊗

ℓ=1

[min{xi
ℓ}i∈I , max{xi

ℓ}i∈I] ⊂ Rd ,

J ⊂ {1, . . . , m}: boxy(J) :=
d⊗

ℓ=1

[min{yj
ℓ}j∈J , max{yj

ℓ}j∈J] ⊂ Rd .

This makes it possible to link an index set with a geometric box.

Fig. 85

x1

x2

✁ Axiparallel bounding box of a set {xi} ⊂ R2 of
points • in the plane (d = 2).

Bounding boxes are needed to invoke geometric admissibility measure η, which is an essential ingredient
of Ass. 2.2.2.36.

Definition 2.3.1.13. Admissibility of index sets

Given η0 > 0 we call the product I × J of two index sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , m}
η0-admissible, if

η(boxx(I)× boxy(J)) :=
max{diam(boxx(I)), diam(boxy(J))}

2 dist(boxx(I); boxy(J))
≤ η0 ,

where η is the admissibility measure from (2.2.2.7).

Here the distance of two sets ⊂ Rd has the natural meaning

dist(X; Y) := max{‖x− y‖ : x ∈ X, y ∈ Y} , X, Y ⊂ Rd . (2.3.1.14)

This gives a rigorous criterion to be met by the far field:

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 183

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 2.3.1.15. Far-field blocks of index pairs

Given η0 > 0 and a partitioning of D := {1, . . . , n} × {1, . . . , m}

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m , (2.3.1.8)

a corresponding η0-admissible far-field set of products of index sets has to satisfy

Ffar := {k ∈ {1, . . . , K} : Ik × Jk η0-admissible} . (2.3.1.16)

y

§2.3.1.17 (From block partitioning to local low-rank compression) We assume that we are given a
partitioning of D := {1, . . . , n} × {1, . . . , m}

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m , (2.3.1.8)

and a near-field – far-field splitting Fnear ∩ Ffar = ∅, Fnear ∪ Ffar = {1, . . . , K}, with an η0-admissible
far field Ffar according to Def. 2.3.1.15.

Appealing to Ass. 2.2.2.36 , for every Ik× Jk ∈ Ffar and q ∈ N, we can find a q-separable approximation

G̃k
q of G (depending on k, of course) such that

∥∥∥G− G̃k
q

∥∥∥
L∞(Bk)

≤ δ(η0)
q , Bk := boxx(Ik)× boxy(Jk) , (2.3.1.18)

where δ : R+ → [0, 1[is the function introduced in Ass. 2.2.2.36.

Based on G̃ we approximate the matrix blocks associated with Ik × Jk ∈ Ffar by rank-q matrices repre-
sented by their factors according to Lemma 2.2.1.3

(M) i∈Ik
j∈Jk

≈
(

M̃q

)
i∈Ik
j∈Jk

:=
[

G̃k
q(xi, yj)

]
i∈Ik
j∈Jk

= Uk ·V⊤k , Uk ∈ R♯Ik,q , Vk ∈ R♯Jk,q . (2.3.1.19)

If Ik × Jk ∈ Fnear, then the corresponding block of M is stored without any approximation:

Ik × Jk ∈ Fnear ⇒
(

M̃q

)
i∈Ik
j∈Jk

:= (M) i∈Ik
j∈Jk

=
[

G(xi, yj)
]

i∈Ik
j∈Jk

. (2.3.1.20)

From (2.2.1.4) we conclude

Ik × Jk ∈ Ffar ⇒ storage(
(

M̃
)

i∈Ik
j∈Jk

) = q(♯Ik + ♯Jk) ,

Ik × Jk ∈ Fnear ⇒ storage(
(

M̃
)

i∈Ik
j∈Jk

) = ♯Ik · ♯Jk .

This is the rationale behind the goals (2.3.1.10) and (2.3.1.11) stated above.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 184

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Storage requirements: Local low-rank compresssion

The approximate kernel collocation matrix M̃ defined by (2.3.1.19) and (2.3.1.20) satisfies

storage(M̃) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.1.22)

(Short notation: k ∈ F∗ ⇔ Ik × Jk ∈ F∗)

The following two code snippets present a possible internal representation of M̃ in C++ code based on
EIGEN (using namespace Eigen; assumed).

C++ code 2.3.1.23: Data structures for blocks of a local low-rank compressed matrix

2 // Rank-q matrix block in factorized form

3 template < i n t q>
4 struct FarFieldBlock {
5 const std : : vector < int > i_ idx , j _ i d x ; // contained indices

6 Eigen : : Matrix <double , Eigen : : Dynamic , q> U, V ; // low-rank factors

7 } ;
8

9 // Submatrix; no special structure assumed

10 struct NearFieldBlock {
11 const std : : vector < int > i_ idx , j _ i d x ; // contained indices

12 Eigen : : MatrixXd Mloc ; // matrix block

13 } ;

C++ code 2.3.1.24: Data structures for low-rank compressed matrix

2 template < i n t q>
3 class Par tMa t r i x {
4 public :
5 Par tMa t r i x (size_t _n , size_t _m) ;
6 // Matrix×vector operation

7 Eigen : : VectorXd operator * (const Eigen : : VectorXd &v) const ;
8

9 private :
10 size_t m, n ; // dimensions of matrix

11 std : : vector <FarFieldBlock <q>> fa rF ie ld ;
12 std : : vector <NearFieldBlock > nearField ;
13 } ;

We are not only interested in economical use of memory, but also in fast execution of matrix×vector
multiplications. For local low-rank compressed matrices like M̃ we get the crucial hint from

rank(M) = q =⇒ Cost(M× vector) = O(q(n + m)) for n, m→ ∞ , (2.2.1.5)

which, again, relies on the factorized form of rank-q matrices. This is available in the data structures of

Code 2.3.1.23 and, thus, an efficient implementation of M̃×vector is straightforward:

C++ code 2.3.1.25: Matrix×vector multiplication for low-rank compressed matrix

2 // Partitioned n×m-matrix split in near-field and

3 // far-field blocks, the latter of rank q

4 template < i n t q>
5 Eigen : : VectorXd Par tMat r i x <q > : : operator * (const Eigen : : VectorXd &v) const {
6 i f (v . size () != m) throw (std : : run t ime_er ro r (" Size mismatch in * ")) ;

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 185

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

7 Eigen : : VectorXd y (n) ;
8 y . setZero () ; // std::vector for returning result

9 // Traverse far field boxes

10 for (const FarFieldBlock <q> &B : fa rF ie ld) {
11 // Get no. of x and y collocation points in box

12 const size_t nB = B. i _ i d x . size () ;
13 const size_t mB = B. j _ i d x . size () ;
14 // Obtain values of argument std::vector corresponding to y-points

15 Eigen : : VectorXd tmp (mB) ;
16 for (i n t j = 0 ; j < mB; j ++) tmp (j) = v (B . j _ i d x [j]) ;
17 // Multiply std::vector with low-rank matrix: Effort ♯Ik + ♯Jk
18 Eigen : : VectorXd res (nB) ;
19 res = B.U * (B .V . transpose () * tmp) ;
20 // Accumlate result into components of result std::vector

21 for (i n t i = 0 ; i < nB ; i ++) y (B . i _ i d x [i]) += res (i) ;
22 }
23 // Traverse near field boxes

24 for (const NearFieldBlock &B : nearField) {
25 // Get no. of x and y collocation points in box

26 const size_t nB = B. i _ i d x . size () ;
27 const size_t mB = B. j _ i d x . size () ;
28 // Obtain values of argument std::vector corresponding to y-points

29 Eigen : : VectorXd tmp (mB) ;
30 for (i n t j = 0 ; j < mB; j ++) tmp (j) = v (B . j _ i d x [j]) ;
31 // Multiply std::vector with local collocation matrix

32 Eigen : : VectorXd res (nB) ;
33 res = B. Mloc * tmp ;
34 // Accumlate result into components of result std::vector

35 for (i n t i = 0 ; i < nB ; i ++) y (B . i _ i d x [i]) += res (i) ;
36 }
37 return (y) ; // (Move) return result vector

38 }

Local low-rank compresssion: Cost of Matrix×vector

The approximate kernel collocation matrix M̃ defined by (2.3.1.19) and (2.3.1.20) can be multiplied
with a vector at a cost of

cost(M̃× vector) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.1.27)

Under Ass. 2.2.2.36 we can easily estimate the deviation of M̃ according to (2.3.1.19) and (2.3.1.20)
from the exact kernel collocation matrix M:

(2.2.2.37) ⇒
∥∥∥M− M̃q

∥∥∥
F
≤
√

mn δ(η0)
q ∀q ∈ N , (2.3.1.28)

where we also used (2.2.1.14). Hence we can achieve

∀1≫ ǫ > 0: q ≥
⌈

log ǫ− 1
2 log(mn)

log δ(η0)

⌉ ∥∥∥M− M̃q

∥∥∥
F
≤ ǫ . (2.3.1.29)

If for families of larger and larger sets of collocation points we find partitionings of D according to

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 186

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(2.3.1.8) satisfying (2.3.1.10) and (2.3.1.11),

∑
k∈Ffar

♯Ik + ♯Jk = O((m + n) logp(m + n)) ,

∑
k∈Fnear

♯Ik · ♯Jk = O((m + n) logp(m + n)) ,

then local low-rank compression offers a data-sparse approximate representation of the kernel col-
location matrices meeting the requirements of § 2.2.0.1.

y

Now the key issue is to find a partitioning (2.3.1.8) of D into far-field (→ Def. 2.3.1.15) and near-field
product index sets, such that (2.3.1.10) and (2.3.1.11) are satisfied.

2.3.2 Cluster Trees

As has become clear in the previous section, the challenge is to find a partition of the set D :=
{1, . . . , n} × {1, . . . , m} of index pairs (corresponding to the set of matrix entries) into products Ik × Jk

of index sets Ik ⊂ {1, . . . , n} and Jk ⊂ {1, . . . , m} such that {Ik × Jk}k=1,...,K permits an economical

decomposition

{Ik × Jk}k=1,...,K = Ffar ∪ Fnear , Ffar ∩ Fnear = ∅ ,

where, in the context of approximating a kernel collocation matrix (→ Def. 2.1.3.1) Ffar is a valid η0-
admissible far field according to Def. 2.3.1.15. By “economical” we subsume the requirements of § 2.2.0.1,

∑
k∈Ffar

♯Ik + ♯Jk = O((m + n) logp(m + n)) , (2.3.1.10)

∑
k∈Fnear

♯Ik · ♯Jk = O((m + n) logp(m + n)) , (2.3.1.11)

considered in the limit n, m→ ∞ for families of collocation points.

Idea: (inspired by “tree code” algorithm presented in § 2.1.2.8)

Use tree based decomposition of D

EXAMPLE 2.3.2.1 (Quadtree-based admissible tiling of unit square [Bör21, Sect. 2.4]) We recall
from § 4.1.1.9 that a partition of D can be induced by a tiling (a geometric partition) of the tensor-product
domain Dx × Dy. In this example we consider Dx = Dy = [0, 1], Dx × DY is the unit square [0, 1]2. We

also restrict ourselves to m = n = 2L−1, L ∈ N, and

equidistant collocation points: ξi :=
i− 1/2

n
, ηj :=

j− 1/2

n
, i, j ∈ {1, . . . , n} . (2.3.2.2)

Taking the cue from the clustering of stars in § 2.1.2.8, we propose the following recursive construction of
a box tiling of [0, 1]× [0, 1].

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 187

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pseudocode 2.3.2.3: Geometric tiling

split(B := [a, b]× [c, d]) {
if |b− a|+ |d− c| < δ then return;
if η(B) ≤ η0 then

Ffar ← Ffar ∪ B // Add to far field
else {

split([a, 1
2(a + b)]× [1

2(c + d), d]);
split([1

2(a + b), b]× [1
2(c + d), d]);

split([a, 1
2(a + b)]× [c, 1

2(c + d)]);
split([1

2(a + b), b]× [c, 1
2(c + d)]);

}
}

✁ Recursive construction of far-field/near-
field tiling of box ⊂ R2. Invoke with
split([0, 1]2).

η(B) is the admissibility measure of the
box B = Dx × Dy

η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
.

(2.2.2.7)

δ > 0 controls termination of subdivision.

The following figures display 1
2 -admissible boxes (shaded) as identified by the recursive algorithm on [0, 1]

with δ = 1
16 .

Fig. 86 x

y

Level 1

Fig. 87 x

y

Level 2

Fig. 88 x

y

Level 3

Fig. 89 x

y

Level 4

We discuss the asymptotic cost of the induced block partitioning of the kernel collocation matrix for the
admissibility parameter η0 = 1

2 (see Fig. 86–Fig. 89). For the chosen equidistant collocation points it is
immediate that

♯{i : ξi ∈ [a, b]}, ♯{j : ηj ∈ [a, b]} ∼ |b− a| . (2.3.2.4)

Hence, the “cost” of a box [a, b]× [c, d] ∈ Ffar, that is the amount of memory to store the rank-q approxi-
mation of the associated block of the kernel collocation matrix is

cost([a, b]× [c, d]) = qn · (|b− a|+|d− c|) for [a, b]× [c, d] ∈ Ffar . (2.3.2.5)

We stop the recursion when there is only a single pair of collocation points left in a box and set δ =
2−(L−1). This implies that we will do L− 1 = log2 n levels of recursive calls of split.

We also observe that, cf. Fig. 86–Fig. 89, on recursion level ℓ

♯{boxes cut by diagonal} = 2ℓ , (2.3.2.6a)

♯{boxes touching the diagonal} = 2 · (2ℓ − 1) , (2.3.2.6b)

♯{new boxes ∈ Ffar} = 6(2ℓ−1 − 1) , (2.3.2.6c)

because each box cut by the diagonal spawns two of the same kind and two touching the diagonal on the
next level, while each box touching the diagonal produces three far-field boxes.

The new far-field boxes on level ℓ contribute a total cost (proportional to their circumference by (2.3.2.5))
of qn 2−ℓ · 6(2ℓ−1 − 1), q ∈ N the rank of the approximating matrix blocks, so that, by summing, for
n→ ∞,

cost(B ∈ Ffar) = qn ·
L

∑
ℓ=1

6(1− 2−ℓ) = O(qnL) , L = O(log n) . (2.3.2.7)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 188

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

By our stopping criterion the cost of the near field boxes on the last level L is fixed “O(1)”, which, by
(2.3.2.6a) and (2.3.2.6b), yields the total cost O(2L) = O(n) for dealing with the near field. Evidently
from (2.3.2.7), the storage required for the low-rank matrix blocks corresponding to far-field boxes is the
dominant contribution.

By the reasoning of § 2.3.1.17 we conclude that for the chosen n equidistant collocation points

storage(M̃), cost(M×vector) = O(qn log n) for n→ ∞ . (2.3.2.8)

y

Ex. 2.3.2.1 relied on a geometric quadtree to define a tiling. This leads to an economical partitioning of
D, provided that the collocation points are equi-distributed. If this assumption is not satisfied, geometric
tiling may fail. Therefore we aim for a direct construction of block-partitionings

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ , if ℓ 6= m , (2.3.1.8)

The algorithm will rely on tree data structures defining partitionings of the index sets {1, . . . , n} and
{1, . . . , m}.
§2.3.2.9 (Trees) From graph theory we recall the definition of a tree as a cycle-free directed graph.

Definition 2.3.2.10. Tree

Let V be a finite node/vertex set and E ⊂ V × V an edge set. For some r ∈ V we call T :=
(V , r, E) a tree with root r, if for each v ∈ V there is exactly one sequence v0, v1, . . . , vℓ ∈ V ,
l ∈ N0 such that

v0 = r , vℓ = v , (vi−1, vi) ∈ E ∀i = 1, . . . , ℓ .

✎ Notation: We write root(T) for the root of a tree T . Regularly, we will use the same symbol, e.g. T ,
for a tree and its node set.

We also refresh the rich terminology connected with trees:

Definition 2.3.2.11. Concepts connected with trees

Let T := (V , r, E) be a tree. For each v ∈ V we call

sons(v) := {w ∈ V : (v, w) ∈ E}

the set of sons of the node v. If sons(v) = ∅, then v is called a leaf.
If, for v ∈ V , there is a w ∈ V such that (w, v) ∈ E , that w is unique and called the father of v.

Fig. 90

v

r

✁ Visualization of a tree
: root r = root(T) of T
: nodes/vertices of T
: leaves of tree
: sons of v: sons(v)

Obviously, only the root of a tree has no father.

A special kind of trees are binary trees, for which each node is either a leaf or has two sons:

♯ sons(v) ∈ {0, 2} ∀v ∈ T .

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 189

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

A tree has a natural multilevel structure based on the distance of vertices from the root.

Definition 2.3.2.12. Level of nodes of tree

For a tree T := (V , r, E) we can inductively define the function

level : V → N0 ,

level(v) :=

{
0 , if v = r(root) ,

level(w) + 1 , if w is the father of v ,
∀v ∈ V .

This is valid definition, since, except for the root, every node has a unique father.

Fig. 91 r Level 0

Level 1

Level 2

Level 3

The depth of a tree T = (V , r, E) is the maximal level of its nodes

depth(T) := max{level(v) : v ∈ V} .

Hence, Fig. 91 displays a tree of depth 3.

A tree is an intrinsically recursive data structure with each node carrying a sub-tree.

Definition 2.3.2.13. Sub-trees

Let T := (V , r, E) be a tree and w ∈ V . Set set

Vw :=
{

v ∈ V : ∃v0, v1, . . . , vℓ ∈ V , ℓ ∈ N0 : v0 = w, vℓ = v, (vi−1, vi) ∈ E ∀i ∈ {1, . . . , ℓ} }

is the set of descendants of w and (Vw, w, E ∩ (Vw × Vw)) is a tree, called sub-tree of T with
root w.
For w ∈ V the ancestors of w form the set

{
v ∈ V : ∃v0, v1, . . . , vℓ ∈ V , ℓ ∈ N0 : v0 = v, vℓ = w, (vi−1, vi) ∈ E ∀i ∈ {1, . . . , ℓ} } .

Sub-tree Tw attached to a node w of a tree. ✄

: nodes/vertices of sub-tree Tw

w is the root of the subtree.

Fig. 92

w

r
y

Now we introduce a key concept that defines a sequence of nested partitions of index sets by means of a
tree.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 190

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 2.3.2.14. Cluster tree

Let I ⊂ N be an index set, T := (V , r, E) a tree, and I : V → 2I a mapping that assigns a subset
of I to every node of T . We call TI := (V , r, E , I, I) a cluster tree for I, if

(i) the subset corresponding to the root is I: I(r) = I,
(ii) the subset associated with each non-leaf node is the union of the subsets of its sons

I(w) =
⋃
{I(v) : v ∈ sons(w)} ∀w ∈ V , sons(w) 6= ∅ , (2.3.2.15)

(iii) the sets belonging to different sons of a node are disjoint

∀w ∈ V : v1, v2 ∈ sons(w) ⇒ I(v1) ∩ I(v2) = ∅ . (2.3.2.16)

Terminology: The nodes of a cluster tree are also called clusters.

✎ Notation: If TI is a cluster tree, we write LI for the set of its leaves

EXAMPLE 2.3.2.17 (General cluster tree) We visualize a simple cluster tree by overlaying a subset of
the index set to every node of a tree:

{1} {2} {3} {4} {5} {6} {7} {8} ← leaves

{1, 2} {3, 4, 5} {6, 7, 8} ← sons

{1, 2, 3, 4, 5, 6, 7, 8} ← root

Index set I := {1, . . . , 8}.
✁ Cluster three with 3 levels.

Obviously this is not a binary cluster tree. y

§2.3.2.18 (Bounding boxes of clusters) In the context of approximating kernel collocation matrices we
know the collocation points xi ∈ Rd, i ∈ I := {1, . . . , n}, and yj ∈ Rd, j ∈ J := {1, . . . , m}. Thus every
subset I ⊂ I or J ⊂ J of indices also describes a “cloud”/set of points

{
xi
}

i∈I
,
{

yj
}

j∈J
. For instance , if

TI := (V , r, E , I, I) is a cluster tree associated with the x-direction, then the

node v ∈ TI holds the points
{

xi
}

i∈I(v).

The smallest axi-parallel box containing all the collocation points held by a cluster is called its bounding

box, cf. Def. 2.3.1.12.

Definition 2.3.2.19. Bounding boxes of clusters

Let TL := (V , r, E , L, I) be a cluster tree (→ Def. 2.3.2.14) for the index set L ⊂ N and{
zk
}

k∈L
⊂ Rd a set of points. Then for every node v ∈ TL we define its bounding box as

the bounding box of contained points:

box(v) :=
d

∏
ℓ=1

[min
{

zi
ℓ

}
i∈I(v)

, max
{

zi
ℓ

}
i∈I(v)

] ⊂ Rd .

§2.3.2.20 (Construction of cluster trees) Matching the recursive nature of the tree data structure, a
natural way to construct a cluster tree is by recursion. We demonstrate this by means of a simple C++
code building a d-dimensional binary cluster tree.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 191

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

C++ code 2.3.2.21: Data structures for a collocation points and bounding boxes ➺GITLAB

2 template < i n t DIM> // dimension d as template argument

3 struct Point {
4 constexpr s t a t i c std : : size_t dim = DIM ;
5 std : : size_t i dx ; // number of collocation point

6 Eigen : : Matrix <double , DIM , 1> x ; // coordinate vector

7 } ;

2 template < i n t DIM> // dimension d as template argument

3 struct BBox {
4 constexpr s t a t i c std : : size_t dim = DIM ;
5 // Bounding box from sequence of points

6 e x p l i c i t BBox(const std : : vector <Point <DIM>> pts) ;
7 // Size diam(B) of a bounding box

8 [[nodiscard]] double diam () const {
9 return (maxc − minc) . cwiseAbs () . maxCoeff () ;

10 }
11 // Coordinate vectors of Corner points of bounding box

12 Eigen : : Matrix <double , DIM , 1> minc ; // Lower-left corner

13 Eigen : : Matrix <double , DIM , 1> maxc ; // Upper-right corner

14 } ;

The directed edges of the cluster tree are represented by pointers to other nodes. Moreover a node holds
information about its associated collocation points.

C++ code 2.3.2.22: Data type for a node of the binary cluster tree ➺GITLAB

2 template < i n t DIM>
3 class CtNode {
4 public :
5 constexpr s t a t i c std : : size_t dim = DIM ;
6 // Constructors taking a sequence of points

7 e x p l i c i t CtNode (const std : : vector <Point <DIM>> _pts , i n t _ d i r = 0)
8 : pts (std : : move(_pts)) ,
9 sons { nul lpt r , nu l lp t r } ,

10 d i r (_ d i r) ,
11 c lus t_sec t_vec (_pts . size ()) { }
12 // Destructor (also attempts to destroy sons!)

13 v i r t u a l ~CtNode () {
14 i f (sons [0]) {
15 delete sons [0] ;
16 }
17 i f (sons [1]) {
18 delete sons [1] ;
19 }
20 }
21 // Number of indices owned by the cluster

22 [[nodiscard]] std : : size_t noIdx () const { return pts . size () ; }
23 // Function I: access to owned indices

24 [[nodiscard]] std : : vector <std : : size_t > I () const ;
25 // Access to bounding box (computed on the fly)

26 [[nodiscard]] BBox<DIM> getBBox () const { return BBox<DIM>(pts) ; }
27 // Is the node a leaf node ?

28 [[nodiscard]] v i r t u a l bool i sLea f () const {
29 return (! (sons [0]) and ! (sons [1])) ;
30 }
31 // Output operator or recursive output

32 template < i n t dim>

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 192

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/clustering.h
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/clustertree.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

33 f r iend std : : ostream &operator <<(std : : ostream &o , const CtNode<dim> &node) ;
34 // Public data member: Pointers to two (binary tree!) sons

35 std : : array <CtNode * , 2> sons ;
36 // Public data member: Points contained in the cluster

37 std : : vector <Point <DIM>> pts ;
38 // Temporary storage for cluster-associated vector sections

39 Eigen : : VectorXd c lus t_sec t_vec ;
40 // Direction for sorting, passed by the constructor

41 i n t d i r ;
42 } ;

A cluster tree object essentially holds a pointer to the root of the cluster tree.

C++ code 2.3.2.23: “Envelope” data structure for cluster tree ➺GITLAB

2 template <class NODE>
3 class ClusterTree {
4 public :
5 using node_t = NODE;
6 constexpr s t a t i c std : : size_t dim = NODE: : dim ; // space dimension d

7 // Idle constructor

8 ClusterTree () : r oo t (nu l lp t r) { }
9 // Effective Constructor taking a sequence of points

10 // (needed, because polynorphism not supported in constructor)

11 void i n i t (const std : : vector <Point <dim>> &pts , std : : size_t minpts = 1) ;
12 // Recursive destruction

13 v i r t u a l ~ClusterTree () {
14 i f (r oo t) delete r oo t ;
15 }
16 // Output of tree

17 template <class Nd>
18 f r iend std : : ostream &operator <<(std : : ostream &o , const ClusterTree <Nd> &T) ;
19

20 protected :
21 // Recursive construction

22 v i r t u a l void buildRec (NODE * npt r , std : : size_t minpts) ;
23 // Node factory

24 v i r t u a l NODE * createNode (const std : : vector <Point <dim>> pts , i n t d i r) {
25 return new NODE(pts , d i r) ;
26 }
27

28 public :
29 NODE * roo t ; // pointer to root node

30 } ;

The argument minpts to the constructor specifies the minimial number −1 of indices contained in a
non-leaf cluster.

In order to cope with non-uniform distributions of collocation points, the recursive construction of the
binary cluster tree does not merely split the bounding boxes of clusters in half. Instead, in order to obtain
a balanced cluster tree the splitting of collocation point sets is done according to the rule:

Balanced nodal index sets

Rule: the cardinalities of the index sets of the sons of a node must not differ by more than 1.

The goal just stated is achieved by alternating directional splitting: Let us assume that the collocation

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 193

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/clustertree.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

points
{

xi
}

i∈I(w) owned by a node w ∈ TI are sorted according to their ℓ-th component:

i, k ∈ I(w), i < k ⇒ xi
ℓ ≤ xk

ℓ , for some ℓ ∈ {1, . . . , d} . (2.3.2.25)

Then we assign the following index subsets to the sons of w

I(1st son of w) :=

{
1, . . . ,

⌊
♯I(w)

2

⌋}
,

I(2nd son of w) :=

{⌊
♯I(w)

2

⌋
+ 1, . . . , ♯I(w)

}
.

(2.3.2.26)

The direction ℓ cycles through {1, . . . , d} as we advanced towards the leaves of the cluster tree.

C++ code 2.3.2.27: Construction of a cluster tree from collocation points ➺GITLAB

2 template <class NODE>
3 void ClusterTree <NODE> : : i n i t (const std : : vector <Point <dim>> &pts ,
4 std : : size_t minpts) {
5 i f (! (root = createNode (pts , 0))) {
6 throw (std : : run t ime_er ro r ("Cannot al locate root ")) ;
7 }
8 i f (minpts < 1) {
9 throw (std : : run t ime_er ro r (" minpts must be at least 1")) ;

10 }
11 buildRec (root , minpts) ;
12 }

2 template <class NODE>
3 void ClusterTree <NODE> : : buildRec (NODE * npt r , std : : size_t minpts) {
4 const std : : size_t n = npt r −>pts . size () ; // Number of held indices

5 // Leaf, if minimal number of indices reached

6 i f (n > minpts) { //

7 // Points have to be copied and sorted according to direction dir

8 std : : vector <Point <dim>> t p t s (npt r −>pts) ;
9 // next sorting direction

10 const i n t d i r = (npt r −> d i r + 1) % dim ;
11 // call sort function from standard library

12 std : : sort (t p t s . begin () , t p t s . end () ,
13 [d i r] (const Point <dim> &p1 , const Point <dim> &p2) −> bool {
14 return (bool) (p1 . x [d i r] < p2 . x [d i r]) ;
15 }) ;
16 // Split point sequence and construct sons

17 const std : : size_t m = n / 2 ; // integer arithmeric, m>0 ensured

18 const std : : vector <Point <dim>> low_pts (t p t s . cbegin () , t p t s . cbegin () + m) ;
19 // First son gets “lower half” of sorted points

20 i f (! (npt r −>sons [0] = createNode (low_pts , d i r))) {
21 throw (std : : run t ime_er ro r ("Cannot al locate f i r s t son")) ;
22 }
23 buildRec (npt r −>sons [0] , minpts) ; // recurse into first son

24 // Second son get “upper half” of sorted points

25 const std : : vector <Point <dim>> up_pts (t p t s . cbegin () + m, t p t s . cend ()) ;
26 i f (! (npt r −>sons [1] = createNode (up_pts , d i r))) {
27 throw (std : : run t ime_er ro r ("Cannot al locate second son")) ;
28 }
29 buildRec (npt r −>sons [1] , minpts) ; // recurse into 2nd son

30 }
31 }

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 194

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/clustertree.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Taking into account sorting the total computational effort for BuildRec in the case of n := ♯I = 2L is

L

∑
k=0

(k + 1)(L− k)2L−k = O(n log2 n) .

y

EXAMPLE 2.3.2.28 (Binary cluster tree for d = 1)

Fig. 93
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

7

8

x

le
v
e
l

For d = 1 with collocation points

ξi :=
√

i−1
n , i = 1, . . . n, n = 64 .

These points are not evenly distributed in [0, 1].

✁ Balanced binary cluster tree
(center of bounding box drawn for each cluster)

y

EXAMPLE 2.3.2.29 (Unbalanced cluster tree) The construction of a binary cluster tree could also be
based on a purely geometry-based distribution of the indices to the sons. For instance, for d = 1, w ∈ TI

a cluster owning the collocation points {ξi}i∈I(w), we could set

I(1st son of w) = {i ∈ I(w) : ξi ≤ γw} ,

I(2nd son of w) = {i ∈ I(w) : ξi > γw} ,

where γw := 1
2(max{ξi}i∈I(w) + min{ξi}i∈I(w)) is the “midpoint” of the cluster w.

Fig. 94

{ξ1}

{ξ2}

{ξ3}

{ξ4}

{ξ5}

{ξ6}

{ξ7} {ξ8}

✁ Geometry-based cluster tree for n = 8 and the
non-uniformly distributed collocation points

ξi = 2−i+1 , i = 1, . . . , n

At each level exactly one point will be split off, leading
to a highly imbalanced cluster tree.

y

2.3.3 Building Near- and Far-Field Blocks

Cluster trees of {1, . . . , n} or {1, . . . , m} provide a hierarchy of partitions of these index sets. However,
what we are aiming for is a partition of the product set D := {1, . . . , n} × {1, . . . , m}. We construct it

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 195

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

based on cluster trees.

EXAMPLE 2.3.3.1 (Quadtree partition from cluster trees) We reconsider the quadtree-based tiling
of [0, 1]2 from Ex. 2.3.2.1 and the induced partition of a kernel collocation matrix based on equidistant
collocation points in 1D.

{1} {2} {3} {4} {5} {6} {7} {8} ← leaves

{1, 2} {3, 4} {5, 6} {7, 8}

{1, 2, 3, 4} {5, 6, 7, 8}

{1, 2, 3, 4, 5, 6, 7, 8} ← root

✁ Natural binary cluster tree for
the index set {1, . . . , 23} (4
levels).

The nodes of the balanced binary cluster tree (→ Def. 2.3.2.14) for the index set {1, . . . , 2L} on level
ℓ = 1, . . . , L are associated with the index sets:

Iℓ,k := {(k− 1) · 2L−ℓ + 1, . . . , k · 2L−ℓ} , ℓ = 1, . . . , 2ℓ .

The square matrix blocks arising from quadtree tiling are submatrices belonging to products of such index

sets (from the same level):
(

M̃
)

Iℓ,k,Iℓ,m

∈ R2L−ℓ,2L−ℓ
. This is displayed in the following figure for L = 5:

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 196

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 95

x

y

I2,1 × I2,4
I2,2 × I2,4

I2,1 × I2,3

I3,6 × I3,8

I3,5 × I3,7

I3,5 × I3,8

I3,3 × I3,6I3,4 × I3,6

I3,3 × I3,5

I3,1 × I3,4I3,2 × I3,4

I3,3 × I3,3

y

Now we take the cue from the algorithm in Ex. 2.3.2.1 to devise a recursive algorithm that builds a near-
field/far-field matrix partition from binary cluster trees of the index sets {1, . . . , n} and {1, . . . , m}. It will
be based on an abstract admissibility condition:

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 197

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Definition 2.3.3.2. Abstract admissibility condition

Let TI and TJ be cluster trees (→ Def. 2.3.2.14) for index sets I := {1, . . . , n} and J := {1, . . . , m},
A mapping

adm : TI × TJ → {true, false}

is called an admissibility condition for TI and TJ, if “admissibility is inherited by the sons”:

adm(τ, σ) ⇒ adm(τ′, σ) ∀τ ∈ TI, σ ∈ TJ, τ′ ∈ sons(τ) ,

adm(τ, σ) ⇒ adm(τ, σ′) ∀τ ∈ TI, σ ∈ TJ, σ′ ∈ sons(σ) .

The next code snippet contains the definition a class that can construct and represent the partition of a
matrix into two kinds of blocks: near-field blocks and far-field blocks. Node must be a type compliant
with CtNode from Code 2.3.2.22. The template argument type FFB and NFB stand for data structures
describing far-field and near-field blocks of a kernel collocation matrix.

C++ code 2.3.3.3: Class describing a far-field/near-field matrix partition ➺GITLAB

2 template <class NODE, typename FFB , typename NFB>
3 class BlockPart i t ion {
4 public :
5 using node_t = NODE;
6 using f a r f i e l d b l o c k _ t = FFB ;
7 using n e a r f i e l d b l o c k _ t = NFB ;
8 // Idle constructor

9 BlockPart i t ion (std : : shared_ptr <ClusterTree <NODE>> _rowT ,
10 std : : shared_ptr <ClusterTree <NODE>> _colT)
11 : rowT (_rowT) , colT (_colT) {
12 assertm ((rowT != nu l lp t r) , "No val id x−tree ! ") ;
13 assertm ((colT != nu l lp t r) , "No val id y−tree ! ") ;
14 }
15 // Trigger recursive construction of partition

16 // (Needed, because polymorphic functions not available in
constructor)

17 void i n i t (double eta0 = 0 .5) ;
18 v i r t u a l ~BlockPart i t ion () = defaul t ;
19 // Size of the matrix

20 [[nodiscard]] size_t cols () const { return ((colT −> roo t) −>pts) . size () ; }
21 [[nodiscard]] size_t rows () const { return ((rowT−> roo t) −>pts) . size () ; }
22 // Admissibility condition adm, see Def. 2.3.3.2

23 [[nodiscard]] v i r t u a l bool adm(const NODE * nx , const NODE * ny ,
24 double eta0) const ;
25

26 protected :
27 // Recursive construction from cluster pair

28 v i r t u a l void bui ldRec (NODE * nx , NODE * ny , double eta0) ;
29 // Construct an instance of far-field block type

30 v i r t u a l FFB makeFarFieldBlock (NODE &nx , NODE &ny) { return FFB(nx , ny) ; }
31 // Construct an instance of near-field block type

32 v i r t u a l NFB makeNearFieldBlock (NODE &nx , NODE &ny) { return NFB(nx , ny) ; }
33

34 public :
35 std : : shared_ptr <ClusterTree <NODE>> rowT ; // row cluster tree

36 std : : shared_ptr <ClusterTree <NODE>> colT ; // column cluster tree

37 std : : vector <FFB> fa rF ie ld ; // index blocks in the far field

38 std : : vector <NFB> nearField ; // index blocks in the near field

39 s t a t i c bool dbg ; // Debugging flag

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 198

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/matrixpartition.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

40 } ;

The vectors farField and nearField contain objects that store two index sets each. A suitable data
type for both FFB and FFB may be defined as follows.

C++ code 2.3.3.4: Data structure for matrix block ➺GITLAB

2 template <class NODE>
3 struct IndexBlock {
4 using node_t = NODE;
5 constexpr s t a t i c std : : size_t dim = NODE: : dim ;
6 // Constructors extracts indices from clusters

7 IndexBlock (NODE &_nx , NODE &_ny)
8 : nx (_nx) , ny (_ny) , i_ idx (_nx . I ()) , j_ idx (ny . I ()) { }
9 v i r t u a l ~IndexBlock () = defaul t ;

10 NODE &nx , &ny ; // contributing clusters

11 const std : : vector <size_t > i_idx , j_ idx ; // contained indices

12 } ;

Other suitable data type are the two classes FarFieldBlock and NearFieldBlock from Code 2.3.1.23.

The partitioning of D := I × J is built recursively by climbing up both cluster trees in tandem identifying
admissible pairs of clusters on the way:

✦ If one of the clusters is a leaf , then put the pair in the near field ,

✦ else if the pair of clusters is admissible, then assign it to the far field

✦ else continue recursion with all pairs of sons.

This is implemented in the following functions:

C++ code 2.3.3.5: Recursive construction of matrix partition ➺GITLAB

2 template <class NODE, typename FFB, typename NFB>
3 void BlockPartit ion <NODE, FFB, NFB> : : i n i t (double eta0) {
4 buildRec (rowT−>root , colT −>root , eta0) ;
5 }

2 template <class NODE, typename FFB , typename NFB>
3 void BlockPartit ion <NODE, FFB , NFB> : : buildRec (NODE * nx , NODE * ny , double eta0) {
4 i f (nx && ny) {
5 // Add admissible pair to far field

6 i f (adm(nx , ny , eta0)) { //

7 fa rF ie ld . push_back (makeFarFieldBlock (* nx , * ny)) ;
8 } else {
9 bool rec = fa lse ;

10 for (i n t i s x = 0 ; i s x <= 1; i s x ++) {
11 for (i n t i s y = 0 ; i s y <= 1; i s y ++) {
12 i f (nx−>sons [i s x] && ny−>sons [i s y]) {
13 // Next level of recursion for non-leaves

14 rec = true ;
15 buildRec (nx−>sons [i s x] , ny−>sons [i s y] , eta0) ;
16 }
17 }
18 }
19 // At least one leaf cluster:

20 // Add cluster pair to near field

21 i f (! rec) //

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 199

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/matrixpartition.h
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/matrixpartition.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

22 nearField . push_back (makeNearFieldBlock (* nx , * ny)) ;
23 }
24 } else

25 throw (std : : run t ime_er ro r (" Inva l id node pointers ")) ;
26 }

In compliance with Def. 2.3.1.13 and Def. 2.3.1.15, the implementation of the adm() method will rely on
a geometric admissibility condition invoking the admissibility measure η(B) from Eq. (2.2.2.7), where B is
the product of the bounding boxes of the two clusters. More precisely, a pair of clusters (v, w) ∈ TI × TJ

qualifies as η0-admissible, η0 > 0, if

adm(v, w) = true ⇔

η(box(v), box(w)) ≤ η0 ,
and

v and w is not a leaf
(2.3.3.6)

The following implementation of the adm()-method realizes (2.3.3.6). The implementations of dist()
and diam() for bounding boxes are given in Code 2.3.2.21.

C++ code 2.3.3.7: Geometric admissibility condition adm ➺GITLAB

2 template <class NODE, typename FFB, typename NFB>
3 bool BlockPartit ion <NODE, FFB, NFB> : :adm(const NODE * nx , const NODE * ny ,
4 double eta0) const {
5 // In an admissible pair neither node must be a leaf.

6 i f (nx−> i sLea f () | | ny−> i sLea f ()) return fa lse ;
7 // Geometric admissibility condition, see Eq. (2.2.2.7).

8 const BBox<NODE: : dim> Bx = nx−>getBBox () , By = ny−>getBBox () ;
9 const double bb_d is t = d i s t (Bx , By) ;

10 i f (bb_d is t == 0 .0) return fa lse ;
11 const double eta = std : : max(Bx . diam () , By . diam ()) / (2 * bb_d is t) ;
12 return (eta < eta0) ;
13 }

The following pictures illustrate what is happening during first few calls of buildRec; to be continued by
the reader by supplementing Fig. 101.

Fig. 96

x

y

Fig. 97

x

y

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 200

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/matrixpartition.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 98

x

y

Fig. 99

x

y

Fig. 100

x

y

Fig. 101

x

y

EXAMPLE 2.3.3.8 (Near- and far-field boxes constructed from cluster trees in 1D) We apply the
algorithm of Code 2.3.3.5 with η0 = 1

2 for equispaced and non-equispaced sets of points and visualize
the resulting block partition: ∗ =̂ near field point pair, � =̂ product of bounding boxes for far-field cluster
pairs.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 201

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 102
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

η = 0.500000

ξi = ηi =
i

64 , i = 0, . . . 64

Fig. 103
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

η = 0.500000

ξi = ηi =
√

i
64 , i = 0, . . . 64

y

2.3.4 Storing Block-Partitioned Kernel Collocation Matrix

We aim for economically storing the local low-rank approximation M̃ ∈ Rn,m of a kernel collocation matrix
(→ Def. 2.1.3.1) M =

[
G(xi, yj)

]
i∈I
j∈J

, I := {1, . . . , n}, J := {1, . . . , m}, xi, yj ∈ [0, 1]d. We assume that

we are given

✦ two binary cluster trees (→ Def. 2.3.2.14) TI (“x-tree”/row tree) and TJ (“y-tree”/column tree) for the
index sets I and J. Both are available as instances of ClusterTree, see Code 2.3.2.23.

✎ Notation: We use the symbol v for clusters ∈ TI, and w for clusters ∈ TJ

✦ a far-field/near-field block partition of D := I× J built from the cluster trees TI and TJ by “admissi-
ble” recursive subdivision as done by buildRec in Code 2.3.3.5. The block partition is represented
as an instance of type BlockPartition as defined in Code 2.3.3.3.

As in § 4.1.1.9 we write Ffar and Fnear for the near field and far field, which are sets of pairs of
clusters, corresponding to sets of sets of pairs of indices (!).

Recall that each cluster carries an index set accessible through the function I , e.g. I : TI → 2I, see
Def. 2.3.2.14. We adopt the following shorthand notation for blocks of the matrix M associated with pairs
of clusters:

v ∈ TI, I(v) = {i1, . . . , ik} ,
w ∈ TJ, I(w) = {j1, . . . , jℓ} ,

: M|v×w :=
[
(M)i,j

]
i=i1,...,ik
j=j1,...,jℓ

∈ Rk,ℓ , (2.3.4.1)

We remind of the gist of local low-rank approximation of kernel matrices:

If (v, w) ∈ Ffar the sub-matrix M|v×w is approximated by a rank-q matrix arising from a rank-q

separable approximation (2.2.1.8) G̃ of G|box(v)×box(w) with q≪ min{♯I(v), ♯I(w)}.

The bounding box of a cluster is defined in Def. 2.3.2.19.

§2.3.4.2 (G̃ from uni-directional interpolation → Section 2.2.1.2) As explained in § 2.2.1.30, in the

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 202

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

case of uni-directional interpolation we rely on the rank-q separable approximation

G(x, y) ≈ G̃(x, y) :=
q

∑
ℓ=1

bv
ℓ (x)︸ ︷︷ ︸

=:gℓ(x)

G(tℓv, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ box(v)× box(w) , (2.3.4.3)

for any far-field cluster pair (v, w) ∈ TI × TJ. Here bv
ℓ : box(v) → R, ℓ = 1, . . . , q, are the cardi-

nal functions associated with the interpolation operator in x-direction, see (2.2.1.29), and tℓv denote the
interpolation nodes.

This leads to the rank-q approximation in factorized form

M|v×w ≈ M̃
∣∣∣
v×w

:= U ·V⊤ ,

U :=
[
bv
ℓ (xi)

]
i∈I(v)
ℓ=1,...,q

∈ R♯I(v),q ,

V :=
[

G(tℓv, yj)
]

j∈I(w)
ℓ=1,...,q

∈ R♯I(w),q .
(2.3.4.4)

To indicate the dependence of the interpolation nodes and of the cardinal functions on the cluster v in
(2.3.4.4) we wrote tℓv and bv

ℓ .

Dependence of local low-rank factors in the case of uni-directional interpolation

For (v, w) ∈ Ffar

✦ the low-rank factor U according to (2.3.4.4) depends on v only,
✦ whereas V depends on both clusters and the kernel function G.

Store all information about the low-rank factor U in “its” cluster v (=̂ node of cluster tree).
This enables the reuse for several far-field cluster pairs sharing the same x-cluster.

Required total storage for U-factors = O(q n log n) for n→ ∞ .

§2.3.4.6 (G̃ from bi-directional interpolation → Section 2.2.1.3) From (2.2.1.46) we learned how
to build a rank-q separable kernel resulting from interpolation in both x- and y-direction, here given
for the same number q of interpolation points in both directions and applied on the cluster pair
(v, w) ∈ TI × TJ:

G(x, y) ≈ G̃(x, y) :=
q

∑
k=1

q

∑
ℓ=1

G(tk
v, tℓw) bv

k(x)︸ ︷︷ ︸
=:gk,ℓ(x)

bw
ℓ (y)︸ ︷︷ ︸

=:hk,ℓ(y)

, (x, y) ∈ box(v)× box(w) . (2.3.4.7)

As above, we write
{

tk
v

}
k=1,...,q

and
{

tℓw
}
ℓ=1,...,q

for the sets of interpolation nodes on the tensor-product

domains box(v) and box(w), respectively. Again, bv
k : box v→ R and bw

ℓ : box(w)→ R designate the
associated cardinal functions for the underlying interpolation operators.

As in (2.2.1.47) we obtain a rank-q approximation of the block of the kernel collocation matrix in triple-factor
form:

M|v×w ≈ M̃
∣∣∣
v×w

:= UvCv×wV⊤w ,

Uv :=
[
bv

k(xi)
]

i∈I(v)
ℓ=1,...,q

∈ R♯I(v),q ,

Cv×w :=
[

G(tk
v, tℓw)

]
k,ℓ=1,...,1

∈ Rq,q ,

Vw :=
[
bw
ℓ (y

j)
]

j∈I(w)
ℓ=1,...,q

∈ R♯I(w),q .

(2.3.4.8)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 203

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Dependence of local matrix factors or bi-directional interpolation

For (v, w) ∈ Ffar

✦ the matrix factor Uv solely depends on the cluster v,
✦ the matrix factor Vw solely on the cluster w,
✦ while both clusters and the kernel function G contribute to Cv×w.

The matrices Uv and Vw can be computed and stored in the clusters before even without
knowing the kernel function.

Required total storage for U-/V-factors = O(q n log n)/O(q m log m) for n, m→ ∞ .

y

§2.3.4.10 (Bi-directional interpolastion: Data structures for cluster pairs) We take the cue from
(2.3.4.8) and the observation that the matrix factors Uv and Vw actually “belong to” a single cluster. This
suggests that we extend the data structure for clusters through a derived class type.

C++ code 2.3.4.11: Extended cluster data structure for interpolatory kernel approximation

➺GITLAB

2 template < i n t DIM>
3 class CtNode {
4 public :
5 constexpr s t a t i c std : : size_t dim = DIM ;
6 // Constructors taking a sequence of points

7 e x p l i c i t CtNode (const std : : vector <Point <DIM>> _pts , i n t _ d i r = 0)
8 : p ts (std : : move(_pts)) ,
9 sons { nul lpt r , nu l lp t r } ,

10 d i r (_ d i r) ,
11 c lus t_sec t_vec (_pts . size ()) { }
12 // Destructor (also attempts to destroy sons!)

13 v i r t u a l ~CtNode () {
14 i f (sons [0]) {
15 delete sons [0] ;
16 }
17 i f (sons [1]) {
18 delete sons [1] ;
19 }
20 }
21 // Number of indices owned by the cluster

22 [[nodiscard]] std : : size_t noIdx () const { return pts . size () ; }
23 // Function I: access to owned indices

24 [[nodiscard]] std : : vector <std : : size_t > I () const ;
25 // Access to bounding box (computed on the fly)

26 [[nodiscard]] BBox<DIM> getBBox () const { return BBox<DIM>(pts) ; }
27 // Is the node a leaf node ?

28 [[nodiscard]] v i r t u a l bool i sLea f () const {
29 return (! (sons [0]) and ! (sons [1])) ;
30 }
31 // Output operator or recursive output

32 template < i n t dim>
33 f r iend std : : ostream &operator <<(std : : ostream &o , const CtNode<dim> &node) ;
34 // Public data member: Pointers to two (binary tree!) sons

35 std : : array <CtNode * , 2> sons ;
36 // Public data member: Points contained in the cluster

37 std : : vector <Point <DIM>> pts ;

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 204

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/clustertree.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

38 // Temporary storage for cluster-associated vector sections

39 Eigen : : VectorXd c lus t_sec t_vec ;
40 // Direction for sorting, passed by the constructor

41 i n t d i r ;
42 } ;

To accommodate the extended argment list of the constructor, also the data structure for ClusterTree

needs to be extended:

C++ code 2.3.4.12: Extended cluster tree data type built for InterpNode from Code 2.3.4.11

➺GITLAB

2 template <class NODE>
3 class LLRClusterTree : public ClusterTree <NODE> {
4 public :
5 // Idle constructor just setting rank argument q

6 e x p l i c i t LLRClusterTree (size_t _q) : q (_q) { }
7 // Actual constructor taking a sequence of points

8 void i n i t (const std : : vector <Point <NODE : : dim>> pts , std : : size_t minpts = 1) ;
9 v i r t u a l ~LLRClusterTree () = defaul t ;

10

11 protected :
12 // factory method for relevant type of node taking rank argument

13 v i r t u a l NODE * createNode (const std : : vector <Point <NODE : : dim>> pts , i n t d i r) {
14 return new NODE(pts , q , d i r) ;
15 }
16

17 public :
18 const std : : size_t q ; // rank of separable approximation on cluster boxes

19 } ;
20

21 template <class NODE>
22 void LLRClusterTree<NODE> : : i n i t (const std : : vector <Point <NODE : : dim>> pts ,
23 std : : size_t minpts) {
24 ClusterTree <NODE> : : i n i t (pts , minpts) ;
25 }

In (2.3.4.8) the matrix factor C ∈ Rq,q “belongs to” the cluster pair (v, w). Therefore this matrix should be
stored in the object representing the far-field cluster pair.

C++ code 2.3.4.13: Data type for a far-field cluster pair & bidirectional interpolation ➺GITLAB

2 template <class NODE, typename KERNEL>
3 class BiDirChebInterpBlock : public IndexBlock<NODE> {
4 public :
5 using ke rne l_ t = KERNEL ;
6 BiDirChebInterpBlock (const NODE &_nx , const NODE &_ny , KERNEL _Gfun ,
7 std : : size_t _q) ;
8 // Constructor that should not be called, needed to avoid compilation

errors
9 BiDirChebInterpBlock (const NODE &_nx , const NODE &_ny)

10 : IndexBlock<NODE>(_nx , _ny) , q (0) {
11 throw std : : run t ime_er ro r (" Inva l id constructor ") ;
12 }
13 v i r t u a l ~BiDirChebInterpBlock () = defaul t ;
14

15 KERNEL G; // kernel function G
16 const i n t q ; // No of interpolation nodes

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 205

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/locallowrank.h
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/locallowrank.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

17 Eigen : : MatrixXd C ; // C ∈ Rq,q

18 } ;

y

Remark 2.3.4.14 (Bi-directional polynomial interpolation) The low-rank triple-factor approximation of a
kernel collocation matrix as introduced in Section 2.2.1.3 involves the two matrix factors

U :=
[
bx
ℓ (xi)

]
i=1,...,n
ℓ=1,...,q

∈ Rn.q , V :=
[
b

y
ℓ (y

j)
]

j=1,...,m
ℓ=1,...,q

∈ Rm.q , (2.3.4.15)

see (2.2.1.47). Here, xi ∈ Rd, i = 1, . . . , n, and yj ∈ Rd, j = 1, . . . , m, are collocation points (→
Def. 2.1.3.1), and the function bx

ℓ , b
y
ℓ , ℓ = 1, . . . , q, are cardinal basis functions (→ (2.2.1.29)) for the

underlying interpolation operator and for interpolation nodes tℓx, tℓy ∈ Rd, ℓ = 1, . . . , q.

We employ tensor-product polynomial interpolation of degree q− 1 in each direction, cf. § 2.2.1.33 and
§ 2.2.1.37. From [NumCSE § 5.2.3.2] we recall the barycentric interpolation formula in 1D: Given the
set {t1, . . . , tq} ⊂ R of interpolation nodes on the real line the unique polynomial p ∈ Pq satisfying the

interpolation conditions p(tj) = yj for given y1, . . . , yq ∈ R, can be written as

p(x) =
q

∑
i=1

λi

x− ti
yi ·

(
q

∑
i=1

λi

x− ti

)−1

, (2.3.4.16)

with weights λi =
1

(ti − t1) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tq)
, i = 1, . . . , q . (2.3.4.17)

The cardinal basis functions for polynomial interpolation are the Lagrange polynomials

Lℓ(x) :=
q

∏
j=1
j 6=ℓ

x− tj

tℓ − tj
, x ∈ R , ℓ = 1, . . . , q ⇒ Lℓ(t

k) = δℓ,k , ℓ, k = 1, . . . , q . (2.2.1.34)

For them we get the barycentric formula

Lℓ(x) =

λℓ

x− tℓ
·
(

q

∑
i=1

λi

x− ti

)−1

, x 6= tk , k = 1, . . . , q ,

1 , x = tℓ ,

0 , x = tk , k 6= ℓ ,

(2.3.4.18)

to be supplemented with Lℓ(t
ℓ) = 1.

Now we discuss the case d = 2 and the computation of U =
[
bx
ℓ (xj)

]
. We assume a tensor-product grid

of interpolation points with lexikographic ordering

t
j
x =

[
tk
1

tm
2

]
, k, m ∈ {1, . . . , q} , j = (k− 1)q + m ,

based on sets of one-dimensional interpolation points {t1
1, . . . , t

q
1} and {t1

2, . . . , t
q
2}. As explained in

§ 2.2.1.37, cf. (2.2.1.38), in this case the cardinal functions are given by products of 1D Lagrange polyno-
mials

bx
j (x) = L1

k(x1) · L2
m(x2) , x =

[
x1

x2

]
, k, m ∈ {1, . . . , q} , j = (k− 1)q + m . (2.3.4.19)

This suggests the following algorithm for the computations of U:

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 206

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➊ For ∗ = 1, 2 precompute the weights

λi =
1

(ti∗ − t1∗) . . . (ti∗ − ti−1∗)(ti∗ − ti+1∗) . . . (ti∗ − t
q
∗)

, i = 1, . . . , q .

➋ For all collocation points xj =

[
x

j
1

x
j
2

]
do:

(i) Compute L∗ℓ (x
j
∗), ∗ = 1, 2, using the formula (2.3.4.18).

(ii) Form the tensor product matrix Lj :=
[

L1
k(x

j
1) · L2

m(x
j
2)
]q

k,m=1
∈ Rq,q.

(iii) Reshape Kj as a row vector of length q2 and insert it into U as j-th row.

y

§2.3.4.20 (Storage requirements) A general expression for the amount of storage required by an in-
stance of BlockPartition (→ Code 2.3.3.3) has already been given in (2.3.1.22):

storage(M̃) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.1.22)

Now we are going to refine this expression for the partition generated by the clustering algorithm of
Code 2.3.3.5 based on the binary cluster tree recursively built as in Code 2.3.2.27 and with the admissi-
bility condition (2.3.3.6). To obtain the rank-q far-field blocks we employ bi-directional interpolation, which
results in a matrix factorization as in (2.3.4.8)

M̃
∣∣∣
v×w

= Uv · Cv×w ·V⊤w , (2.3.4.21)

Uv ∈ R♯I(v),q , Cv×w ∈ Rq,q , V⊤w ∈ R♯I(w),q . (2.3.4.22)

The factors Uv and Vw are stored in the respective nodes.

The if-statement in Line 6 of ClusterTree<Node>::buildRec() ensures that there is a small num-
ber rL ∈ N that bounds the number of indices held by the leaves of the cluster trees:

∀u ∈ T∗: u is leaf ⇒ ♯I(u) ≤ rL , ∗ = I, J . (2.3.4.23)

On the one hand, in BlockPartition<>::buildRec() from Code 2.3.3.5 the admissibility check
of Line 6 rules out that a cluster pair containing one leaf cluster is added to the far field set. On the other
hand, the if-statement of Line 21 has such a cluster pair invariably added to the near field set:

(v, w) ∈ Fnear ⇒ v is leaf of TI or w is leaf of TJ . (2.3.4.24)

These insights combined lead to the estimate

(v, w) ∈ Fnear ⇒ ♯I(v) · ♯I(w) ≤ rL(♯I(v) + ♯I(w)) . (2.3.4.25)

Thus, the amount of memory required by an instance of BlockPartition is bounded by

storage(M̃) ≤ ∑
(v,w)∈Ffar

q2 + ∑
v∈TI

q · ♯I(v) + ∑
w∈TJ

q · ♯I(w) + ∑
(v,w)∈Fnear

rL

(
♯I(v) + ♯I(w)

)
.

For the last three terms in this sum the cluster tree structure immediately gives the estimates

∑
v∈TI

·♯I(v) ≤ depth(TI) · n , ∑
w∈TJ

·♯I(w) ≤ depth(TJ) ·m . (2.3.4.26)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 207

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

To tackle the sum over the far-field pairs we have to make an assumption on the sparsity of the block
partition [GH03]:

Definition 2.3.4.27. Sparsity measure of block partition

Let F := {Ik × Jk}k be a block partition of D := I× J based on the cluster trees TI and TJ. Then
the sparsity measure of F bounds the number of occurrences of a cluster in cluster pairs

spm(F) := max

{
max
v∈TI

♯{w ∈ TJ : (v, w) ∈ F}, max
w∈TJ

♯{v ∈ TI : (v, w) ∈ F}
}

. (2.3.4.28)

Thus, the sparsity measure spm(Ffar) counts the maximal number of far-field blocks to which a single
cluster can contribute.

Fig. 104

x

y

✁

Nodes occurring together with
node • in block partition are
marked as • :

{
•
}

=
{

v ∈ TI : (v, •) ∈ F
}

.

They define a set whose car-
dinality is taken into account
in the definition of the sparsity
measure.

The next estimates are immediate from the definition of the sparsity measure:

∑
(v,w)∈Ffar

1 = ∑
v∈TI

♯{w ∈ TJ : (v, w) ∈ Ffar} = ∑
w∈TJ

♯{v ∈ TJ : (v, w) ∈ Ffar}

≤ spm(F) ·min{♯TI, ♯TJ} ,

∑
(v,w)∈Fnear

♯I(v) + ♯I(w) ≤ spm(F) ·

 ∑

v∈TI

·♯I(v) + ∑
w∈TJ

·♯I(w)

≤ spm(F) · (n depth(TI) + m depth(TJ)) .

For the cluster trees TI and TJ the total number of clusters is smaller than depth(TI) · ♯I or depth(TI) · ♯J,

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 208

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

respectively. Thus we conclude

∑
(v,w)∈Ffar

q2 ≤ q2 spm(F) ·min{depth(TI) · n, depth(TI) ·m} , (2.3.4.29)

which highlights the key role of the sparsity measure when gauging the efficiency of clustering algorithms.
For balanced binary cluster trees as built by buildRec() we obtain

storage(M̃) ≤
(
(rL + q2)spm(F) + q

)
· (n⌈log2 n⌉+ m⌈log2 m⌉) . (2.3.4.30)

y

Remark 2.3.4.31 (Bounding the sparsity measure) Our policy of using balanced trees as basis for block
partitions as implemented in the buildRec() functions of Code 2.3.2.27 and Code 2.3.3.5 does not
permit us to bound the sparsity measure of the resulting F := Ffar ∪Fnear, unless some uniformity of the
distribution of collocation points is assumed.

An alternative geometric clustering policy similar to the quadtree-based approach of Ex. 2.3.2.1 [GH03]
makes possible rigorous bounds on spm(F), but for general locations of collocation points the depth of
the cluster trees may grow linearly with ♯I/♯J. y

EXPERIMENT 2.3.4.32 (Sparsity measure for clustering in 1D) We revisit the setting of Ex. 2.3.3.8;
based balanced binary cluster tree and he algorithm of Code 2.3.3.5 with admissibility parameter η0 = 1

2
(→ (2.3.3.6)) we carry out the far-field/near-field partitioning of {1, . . . , n} × {1, . . . , n}, n ≥ 2, for the
following two distributions of collocation points ∈ [0, 1]

(I) ξi = ηi =
i

n− 1
and (I I) ξi = ηi =

√
i

n− 1
, i = 0, . . . , n− 1 .

For the resulting block partitionings we compute the sparsity measure (→ Def. 2.3.4.27) of Ffar and Fnear

as a function of the number n of collocation points in one direction.

Fig. 105

0 100 200 300 400 500
2

3

4

5

6

7

8

9

10

Number of Points

N
u

m
b

e
r

o
f

O
c
c
u

re
n

c
e

s

Maximum occurences of Cluster Linear for Admissibility Coefficient: 0.5

Near Field

Far Field

ξi = ηi =
i

n−1 , i = 0, . . . , n

Fig. 106

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Number of Points

N
u

m
b

e
r

o
f

O
c
c
u

re
n

c
e

s

Maximum occurences of Cluster Linear for Admissibility Coefficient: 0.5

Near Field

Far Field

ξi = ηi =
√

i
n−1 , i = 0, . . . , n

y

2.3.5 Matrix×Vector: Efficient Implementation

We discuss the implementation of M̃ ·~µ,~µ ∈ Rm in the setting of the previous section and for separable
kernel approximation by bi-directional interpolation, see § 2.3.4.6, in particular (2.3.4.8): For a cluster pair
(v, w) ∈ Ffar, v ∈ TI (“x-cluster tree”), w ∈ TJ (“y-cluster tree”) we have

M̃
∣∣∣
v×w

= UvCv×wVw
⊤ =

[
bv

k(xi)
]

i∈I(v)
k=1,...,q︸ ︷︷ ︸

∈R♯I(v),q

[
G(tk

v, tℓw)
]

k,ℓ=1,...,q︸ ︷︷ ︸
∈Rq,q

[
bw
ℓ (y

j)
]

j∈I(w)
ℓ=1,...,q︸ ︷︷ ︸

∈Rq,♯I(w)

.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 209

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We adapt the general algorithm given in Code 2.3.1.25 to this situation. To elucidate the ideas we introduce
two essential operations and their matrix representations:

➊ Restrict-to-cluster: For w ∈ TJ we define the extraction of a sub-vector defined by the cluster’s
index set

Rw : Rm → R♯I(w) , Rw(~µ) :=

µj1
...

µjℓ

 , with I(w) = {j1, . . . , jℓ}, ℓ := ♯I(w) . (2.3.5.1)

This is a linear mapping and can be described by a “fat” matrix Rw ∈ {0, 1}♯I(w),m.

➋ Expand-from-cluster: For v ∈ TI we introduce the embedding of cluster-associated sub-vector into
a full vector,

Ev : R♯I(v) → Rn , (Ev~ν)i :=

{
νℓ , if iℓ = i ,

0 , if k 6∈ I(v) ,
with I(v) = {i1, . . . , ik}, k := ♯I(v) .

(2.3.5.2)

The matrix associated with Ev will be denoted by Ev ∈ {0, 1}n,♯I(v).

Remark 2.3.5.3 (Expand and restrict as adjoint operations) If I = J and TI = TJ (m− n and same

cluster tree for both directions), then we have Ev = R⊤v . y

§2.3.5.4 (Matrix×vector: three-pass algorithm) The reduction/expansion operations make it possible to
write the multiplication of M̃ with a vector in a concise way:

M̃~µ = ∑
(v,w)∈Ffar∪Fnear

Ev · M̃
∣∣∣
v×w
· Rw~µ

= ∑
(v,w)∈Fnear

Ev · M|v×w · Rw~µ + ∑
(v,w)∈Fnear

(EvUv)Cv×w(V
⊤
w Rw)~µ .

(2.3.5.5)

This suggests a 3-pass approach:

(I) For each w ∈ TJ compute ~ωw := V⊤w Rw~µ ∈ Rq.

Total effort = ∑w∈TJ
q♯I(w) = O(q m log m) for m→ ∞.

(II) In parallel carry out the following operations:

• For each cluster pair (v, w) ∈ Ffar update ~ζv ←~ζv + Cv×w~ωw,~ζv ∈ R♯I(v).

• For each cluster pair (v, w) ∈ Fnear update ~φv ← ~φv + M|v×wRw~µ, ~φv ∈ R♯I(v).

Total effort = ?
(III) For each v ∈ TI do ~ρ← ~ρ + Ev(Uv

~ζv + ~φv),~ρ ∈ Rn.

Total effort = ∑v∈TI
♯I(w) = O(n log n)

Of course, all vectors into which we accumulate results have to be initialized with zero. y

§2.3.5.6 (Complexity Estimates) We adopt the setting and notations of § 2.3.4.20. In Section 2.3.1 we
have derived a general estimate for the effort of matrix×vector multiplication with M̃:

cost(M̃× vector) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.1.27)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 210

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Since this bound is the same that for the storage requirements in (2.3.1.22), we can appeal to the derivation
of (2.3.4.30) and get

cost(M̃× vector) ≤ (rL + q2) spm(F) · (n⌈log2 n⌉+ m⌈log2 m⌉) . (2.3.5.7)

y

2.3.6 Panel Clustering

We discuss the application of clustering techniques for the local low-rank compression of boundary el-
ement Galerkin matrices as they have been introduced in Section 1.4 and Section 1.5. We recall the
general setting

✦ The domain Ω ⊂ Rd, d = 2, 3, is a bounded curved Lipschitz polygon/polyhedron with boundary
Γ := ∂Ω.

✦ The boundary Γ is equipped with a mesh G = {πk}K
k=1 according to Def. 1.4.2.5 (d = 2) or

Def. 1.5.1.4 (d = 3).

✦ Based on G we build a boundary element space VN, either S−1
p−1(G) or S0

p(G), p ∈ N, see

(1.4.2.10)/(1.5.2.5) and (1.4.2.11)/(1.5.2.6), piecewise polynomial under edge/face-wise pullback to
the parameter domain.

✦ The boundary element space is spanned by locally supported nodal basis functions:

VN = Span{b1
N, . . . , bN

N} , N := dim VN .

Refer to Ex. 1.4.2.17, Ex. 1.4.2.19, Ex. 1.5.2.18, and Ex. 1.5.2.19 for concrete examples.

Then the entries of the Galerkin matrix associated with the single layer boundary integral operator V for
−∆ read

V :=
[∫

Γ

∫
Γ

G∆(x, y) b
j
N(y) bi

N(x)dS(y)dS(x)
]N

i,j=1
∈ RN,N , (2.3.6.1)

with the fundamental solution

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 .
(1.2.2.33)

Note that G∆ provides an asymptotically smooth singular kernel function, see Rem. 2.2.2.1. As such it
allows rank-q separable approximation on “admissible” boxes ⊂ Rd ×Rd, exponentially accurate in q, in
the spirit of Ass. 2.2.2.36.

In order to transfer the clustering techniques from kernel collocation matrices to V we have to answer two
questions:

Q1 What will play the role of the collocation points xi and yj?

Q2 How to obtain low-rank approximations of “admissible” blocks of V?

§2.3.6.2 (Answer to Q1) The index sets will be I = J = {1, . . . , N}, that is n, m = N, and instead of
collocation points we consider the basis functions bi

N, i = 1, . . . , N. Recall that each basis function has a

small support supp(bi
N) ⊂ Γ. These will be used to define bounding boxes for sets of basis functions, cf.

Def. 2.3.2.19. For I ⊂ I we define

box
{

bi
N

}
i∈I

=
d

∏
ℓ=1

[
min{xℓ : x ∈

⋃

i∈I

supp(bi
N)}, max{xℓ : x ∈

⋃

i∈I

supp(bi
N)},

]
. (2.3.6.3)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 211

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This also defines the bounding box box(v) of each node v of a cluster tree (→ Def. 2.3.2.14) for I,
because v can be identified with a unique subset of indices/basis functions. Given bounding boxes we can
compute the diameter of a cluster and the distance of two clusters in the usual way, see Code 2.3.2.21.

The following could be a replacement of the Point class from Code 2.3.2.21.

C++ code 2.3.6.4: Data type boundary element basis function ➺GITLAB

2 template < i n t d> // dimension d as template argument

3 struct BasisFn {
4 std : : size_t i dx ; // Index of basis function

5 Eigen : : Matrix <double , d , 1> xmin , xmax ; // Corners of bounding box

6 } ;

y

§2.3.6.5 (Answer to Q2) Assume that we have run the clustering algorithm and constructed far-field/near-
field block partition. Consider a cluster (v, w) ∈ Ffar. Hence (i, j) ∈ I(v)× I(w) means that

supp(bi
N)× supp(b

j
N) ⊂ B := box(v)× box(w) , η(B) ≤ η0 , (2.3.6.6)

η(B) the admissibility measure from (2.2.2.7) and η0 > 0 the admissibility threshold.

Thanks to Ass. 2.2.2.36, on B we can get a rank-q separable approximation of G∆ by means of bi-
directional interpolation, see (2.2.1.46),

G∆
∣∣∣
B
(x, y) ≈

q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy) cx

k (x) c
y
ℓ(y) , (x, y) ∈ B . (2.3.6.7)

with interpolation nodes tk
x for box(v), tℓy for box(w), and associated cardinal basis functions cx

k and c
y
ℓ .

We plug this approximation into the double integrals defining the entries of the Galerkin matrix V from
(2.3.6.1):

V|v×w ≈
[q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy)

∫
Γ

c
y
ℓ(y)b

j
N(y)dS(y) ·

∫
Γ

cx
k (x)bi

N(x)dS(x)

]

i∈I(v)
j∈I(w)

=

[∫
Γ

cx
k (x)bi

N(x)dS(x)
]

i∈I(v)
k=1,...,q

·
[

G∆(tk
x, tℓy)

]
k,ℓ=1,...,q

[∫
Γ

c
y
ℓ(y)b

j
N(y)dS(y)

]⊤
j∈I(w)
ℓ=1,...,q

= Uv · C ·V⊤w ∈ R♯I(v),♯I(w) ,

(2.3.6.8)

which gives us a rank-q matrix already in triple-factor form, cf. (2.2.1.47).

If we rely on tensor-product polynomial interpolation, the cardinal functions cx
k and c

y
ℓ will be product of

Lagrange polynomials. As a consequence, the integrands of the integrals defining the matrices U and
V will be analytic after local analytic pullback to the parameter domain/reference element. For instance,
the contribution of a single panel π with associated local parameterization γπ : K̂ → π (→ § 1.4.2.24,
§ 1.5.2.15) is

∫

π
cx

k (x)bi
N(x)dS(x) =

∫

K̂
cx

k (γπ(x̂))b̂j(x̂)
√

det(Dγπ(x̂)⊤Dγπ(x̂))dx̂ , (2.3.6.9)

where b̂j : K̂ → R is the polynomial (!) reference shape function spawning bi
N: b̂j = γ∗π bi

N

∣∣
π

, see
(1.4.2.27). The integrand in (2.3.6.9) will inherit analyticity from γ and can be evaluated accurately by
(expoentially converging) families of high-order numerical quadrature rules on K̂. y

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 212

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/locallowrank.h

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 2.3.6.10 (Compressing discrete BIEs with double layer kernels) The entries of boundary ele-
ment Galerkin matrices for the double layer boundary integral operator K with the integral representation
formula

K(v)(x) =
∫

Γ

x− y

ωd‖x− y‖d
· n(y) v(y)dS(y) , x ∈ smooth part of Γ , (1.3.4.14)

are given by the singular integrals

(K)i,j =
∫

Γ

∫

Γ

x− y

ωd‖x− y‖d
· n(y) b

j
N(y) βi

N(x)dS(y)dS(x) , (2.3.6.11)

where
{

b
j
N

}N

j=1
is a nodal basis of S0

p(G), p ∈ N, and
{

βi
N

}K

i=1
a nodal basis of S−1

p−1(G), see Sec-

tion 1.4.2.3 and Section 1.5.2.2.

Following the policy of § 2.3.6.5 and interpolating the singular, asymptotically smooth kernel kK(x, y) :=
x−y

ωd‖x−y‖d · n(y) on far-field boxes encounters difficulties, because it requires its evaluation also off the

boundary Γ, where the normal vector field n is not defined!

We remember that

kK(x, y) :=
x− y

ωd‖x− y‖d
· n(y) = grady G∆(x, y) · n(y) , x, y ∈ Γ , x 6= y . (2.3.6.12)

Idea: Obtain a separable approximation of the double layer kernel kK by applying the dif-
ferential operator n(y) · grady to a birectional interpolant of G∆!

Recalling (2.3.6.7), this leads to the rank-q separable approximation

kK(x, y) ≈
q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy) cx

k (x) (grad c
y
ℓ)(y) · n(y) , (x, y) ∈ B ∩ Γ , (2.3.6.13)

where B ⊂ Rd×Rd is a far-field box as in (2.3.6.6), associated to the cluster pair (v, w). We end up with
the rank-q matrix block

K|v×w ≈
[q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy)

∫
Γ

(
grad c

y
ℓ(y) · n(y)

)
b

j
N(y)dS(y) ·

∫
Γ

cx
k (x)bi

N(x)dS(x)

]

i∈I(v)
j∈I(w)

=

[∫
Γ

cx
k (x)bi

N(x)dS(x)
]

i∈I(v)
k=1,...,q

·
[

G∆(tk
x, tℓy)

]
k,ℓ=1,...,q

[∫
Γ

(
grad c

y
ℓ(y) · n(y)

)
b

j
N(y)dS(y)

]⊤
j∈I(w)
ℓ=1,...,q

= Uv · C ·V⊤w ∈ R♯I(v),♯I(w) .

(2.3.6.14)

y

Remark 2.3.6.15 (Iterative solution methods for linear systems of equations → [NumCSE Chap-

ter 10]) After local low-rank compression the boundary element Galerkin matrices are available only in
a special data format like PartMatrix from Code 2.3.1.24. However, direct solution algorithms for dense
linear systems of equations like Gaussian elimination [NumCSE Section 2.3] usually operate on matrices
stored in contiguous memory.

Direct elimination-based solution methods for linear systems of equations cannot be applied to
system matrices compressed with clustering techniques.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 213

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fortunately, the matrix data formats arising from local low-rank compression support fast matrix×vector
operations, see Code 2.3.1.25 and Section 2.3.5. Thus, they well mesh with iterative solution methods for
linear systems of equations that can compute approximate solutions with a prescribed tolerance based on
system matrix×vector operations alone.

The typical generic interface to these methods reads:

template <typename MatrixType, typename Rhs, typename Dest, typename

Preconditioner>

void iterative_solver(const MatrixType& mat, const Rhs& rhs, Dest& x,

const Preconditioner& precond, s i z e _ t maxit,

typename Dest::RealScalar& tol_error);

• Rhs, Dest have to be vector types, for instance, Eigen::VectorXd. The argument rhs holds the
right-hand side vector and x contains the initial guess and is also used to return the approximate
solution after the iteration has terminated.

• MatrixType has to provide a method Rhs operator * (const Dest &)const that implements
the matrix×vector product. The argument mat of this type passes the system matrix, more pre-
cisely, the linear operator described by the system matrix.

• The argument maxit specifies the maximal number of iterations and tol_error a relative toler-
ance for termination.

• Preconditioner is a type for a linear operator providing a method Dest solve(const Rhs

&)const that is supposed to emulate an approximate inverse of the system matrix. It is meant to
accelerate convergence, see [NumCSE Section 10.3]. Default is the identity mapping.

The following iterative solution methods are widely used. They all belong to the class of Krylov subspace
methods.

• Conjugate Gradient Method (CG) [NumCSE Section 10.2]:

Applicable to linear systems of equations with symmetric positive definite (s.p.d.) system matrices,
like those arising from the Galerkin boundary element discretization of first-kind direct or indirect
BIEs for boundary value problems for −∆, see Section 1.3.5.1, § 1.3.6.3 and § 1.3.6.7.

A single step of the iteration involves one evaluation A×vector, one evaluation P×vector, three dot
products and 3 elementary vector (SAXPY) operations.

Speed of convergence (measured in the energy norm induced by the system matrix) is governed by
the spectral condition number κ(PA), where A is the system matrix and P the matrix representation
of the preconditioner, see [NumCSE Thm. 10.2.3.5].

Note that for boundary element Galerkin matrices A on families of uniformly shape-regular curve/-
surface meshes we observe κ(A) = o(h−1

min), hmin =̂ minimal size of panels of the mesh. There-
fore, without preconditioner, the CG will converge more slowly on finer meshes.

• Bi-Conjugate Gradient Stabilized Method (BiCGStab) [NumCSE Section 10.4.2]:

This iterative method can be applied to general linear systems of equations. Unfortunately, no rigor-
ous convergence theory is available. One step, beside a few dot products and SAXPY operations,
one step executes two A×vector and P×vector evaluations.

• Generalized Mimimal Residual Method (GMRES) [NumCSE Section 10.4.1]:

This is another iterative solution method for general linear systems of equations. It enjoys robust
convergence, but in the ℓ-th step ℓ dot products and SAXPY operations have to be carried out,
beside a single A×vector and P×vector product.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 214

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

2.4 Hierarchical Matrices

2.4.1 Definition

§2.4.1.1 (Recap of local low-rank approximation based on cluster trees) The clustering algorithm as
presented in Section 2.3 yielded a data-sparse approximate representation M̃ ∈ Rn,m of kernel colloca-
tion matrices M ∈ Rn,m for asymptotically smooth singular kernels like

(x, y) 7→ − log‖x− y‖ ,
1

‖x− y‖ ,
(x− y) · f(y)
‖x− y‖d

, x, y ∈ Rd, x 6= y ,

see Rem. 2.2.2.1 for the definition. Key elements of the data structure are

✦ cluster trees (→ Def. 2.3.2.14) TI and TJ defining subsets (clusters) and partitions of the index
sets I := {1, . . . , n}, J := {1, . . . , m},

✦ a far-field/near-field block partition F = Ffar ∪ Fnear of the product index set D := I × J recur-
sively built by the algorithm implemented in the method buildRec() of Code 2.3.3.5 based on an
admissibility condition according to Def. 2.3.3.2.

✦ a low-rank factorized representation of the sub-matrices of M̃ corresponding to the far-field blocks.

Recall that each cluster v ∈ TI and w ∈ TJ can be identified with a subset of indices I(v) ⊂ I, I(w) ⊂ J.
This endows Ffar, Fnear, and F := Ffar ∪ Fnear with two meanings

1. as sets of subsets of the product index set I× J,

2. as set of cluster pairs (v, w), v ∈ TI, w ∈ TJ.

We also remind of the notation X|v×w :=
(

X̃
)
I(v),I(w)

for sub-matrices of a matrix X ∈ Rn,m. y

A special name has been introduced for the data structure built by the clustering algorithm:

Definition 2.4.1.2. Hierarchical matrix

Given n, m ∈ N, q ∈ N, a matrix H ∈ Rn,m is called a hierarchical matrix or H-matrix of local
rank q, if there exist

• cluster trees TI (row tree) and TJ (column tree) for I := {1, . . . , n} and J := {1, . . . , m},
• and an abstract admissibility condition admH : TI × TJ → {true, false}

such that

rank(H|v×w) ≤ q ∀(v, w) ∈ F := Ffar ∪ Fnear ⊂ TI × TJ ,

where

{I(v)× I(w)}(v,w)∈F = {I(v)× I(w)}(v,w)∈Ffar
∪ {I(v)× I(w)}(v,w)∈Fnear

is a partition of I × J generated by the algorithm implemented in the method buildRec() of
Code 2.3.3.5 based on adm().

EXAMPLE 2.4.1.3 (The prototypical simple H-matrix)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 215

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 107

J
I

The essence of the hierarchical matrix data structure
for binary trees TI and TJ is captured in the figure
beside:

✁ � =̂ matrix blocks in the far field ∈ Ffar

✷ =̂ matrix blocks in the near field ∈ Fnear

!
Note that Fig. 107 illustrates the rather
special case of n = m, TI = TJ and
that Fnear contains only products of
leaves of TI.

y

✎ Notation: Bold greek letters σ, τ, ρ will be used for elements of TI × TJ, so-called blocks.

Given X ∈ Rn,m, a block σ = (v, w) singles out the sub-matrix X|σ := X|v×w := (X) i∈I(v)
j∈I(w)

.

The algorithm of buildRec() for the construction of a hierarchical matrix ensures

(v, w) ∈ Ffar ⇒ adm(v, w) = true , (2.4.1.4)

(v, w) ∈ Fnear ⇒ v is a leaf of TI or w is a leaf of TJ. (2.4.1.5)

Lemma 2.2.1.3 guarantees that for a hierarchical matrix H ∈ Rn,m with local rank q (as in Def. 2.4.1.2)
holds

∀σ = (v, w) ∈ Ffar: ∃Aσ ∈ R♯I(v),q , Bσ ∈ R♯I(w),q: H|σ = Aσ · B⊤σ . (2.4.1.6)

Assumption 2.4.1.7. Availability of low-rank factor matrices

Whenever we regard a hierarchical matrix H (→ Def. 2.4.1.2) as given, we assume that for each
block σ = (v, w) ∈ Ffar all entries of the dense matrices Aσ and Bσ as in (2.4.1.6) can be ac-
cessed with small constant effort.

Our implementation of buildRec() in Code 2.3.2.27 always creates binary cluster trees. This matches
the following assumption, which is made for the sake of simplicity and by no means essential for hierarchi-
cal matrices and their handling.

Assumption 2.4.1.8. Binary cluster trees

Below we assume that all cluster trees underlying hierarchical matrices are binary trees (but not
necessarily balanced).

§2.4.1.9 (Block tree)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 216

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 108

I

J

We return to the H-matrix of Ex. 2.4.1.3.
We assume I := {1, . . . , n}, J := {1, . . . , m}.
The “tiling” of the n×m-matrix depicted in Fig. 108
is obviously one that can be described by a two-
dimensional tree of quadtree type, for which a node
can have up to four sons.
More generally, the block partition of every hierarchi-
cal matrix H induced by F := Ffar ∪ Fnear is related
to a “quadtree-type” tree, whose leaves are in one-to-
one correspondence to product index sets (↔ sub-
matrices of H) in F.

The following figures illustrate levels 1–4 of the two-
dimensional tree underlying the matrix partition show
beside.

Below, each node of the tree has four sons, unless it is a leaf: geometrically, each square is split into four
smaller squares.

Fig. 109

I

J

Level 1

Fig. 110

I

J

Level 2

Fig. 111

I

J

Level 3

Fig. 112

I

J

Level 4

Now we formalize what we have just observed. Recall that F := Ffar ∪ Fnear is the set of all matrix blocks
occurring in the hierarchical matrix, cf. Def. 2.4.1.2.

Definition 2.4.1.10. Block tree underlying a hierarchical matrix

The block tree BI×J for a hierarchical matrix based on the row tree TI and column tree TJ is a tree
(V , r,E) (→ Def. 2.3.2.10)

✦ with pairs of clusters as vertices

V ⊂ {(v, w) ∈ TI × TJ : I(v)× I(v) is the union of product index sets in F} ,

✦ with root r := rI × rJ, where r∗ is the root of T∗, ∗ = I, J,
✦ and with the son-father relation defined as

sons(σ) =

{
(sons(v)× sons(w)) ∩V , if sons(v) 6= ∅ and sons(w) 6= ∅ ,

∅ otherwise ,

(2.4.1.11)

for all σ = (v, w) ∈ V .

The algorithm implemented in buildRec() ensures that Def. 2.4.1.10 defines a tree in the sense of
Def. 2.3.2.10.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 217

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The set of leaf nodes of a block tree BI×J for a hierarchical matrix can be identified with the set F

of matrix blocks:

F := {(v, w) ∈ TI × TJ: (v, w) is a leaf of BI×J} . (2.4.1.12)

§2.4.1.13 (Recursive algorithm for building a block tree) The description of the algorithm relies on two
abstract data types.

(I) A data type for the node of a binary cluster tree Def. 2.3.2.14:

Pseudocode 2.4.1.14: (Incomplete) data type for the node of a binary cluster tree

1 struct Cluster { Cluster * sons [2] = { n i l , n i l } ; } ;

(II) A type providing the bare-bones data for the node of a block tree:

Pseudocode 2.4.1.15: Data type for the node of a block tree

1 struct BlockNode {
2 BlockNode (C lus te r * cr , C lus te r * cc) ;
3 Clus te r * c lus te r_ row ;
4 Clus te r * c l u s t e r _ c o l ;
5 BlockClus te r * sons [4] = { n i l , n i l , n i l , n i l } ;
6 enum { FARFIELD , NEARFIELD, NOLEAF} f l a g ;
7 } ;

The constructor only initializes the Cluster * data members. Obviously, this data type lacks matrix-
related data members, but will be sufficient to explain the gist of the construction.

The recursive construction is inspired by builrRec() from Code 2.3.3.5. It ensures that any node of
the block tree containing a leaf node of one of the underlying cluster trees is itself a leaf node of the block
tree.

Pseudocode 2.4.1.16: Recursive construction of a block tree

1 void buildBlockTree (BlockNode *σ) {
2 Cluster * s [2] = σ−>c lus te r_ row . sons ;
3 Cluster * t [2] = σ−> c l u s t e r _ c o l . sons ;
4 i f ((s [0] = n i l) or (s [1] = n i l] or (t [0] = n i l) or (t [1] = n i l)) {
5 // near-field leaf block

6 f l a g = NEARFIELD ;
7 }
8 else {
9 i f (adm (σ−>clus ter_row , σ−> c l u s t e r _ c o l)) {

10 // far-field leaf block

11 f l a g = FARFIELD ;
12 }
13 else {
14 // recursion

15 f l a g = NOLEAF;

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 218

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

16 sons = { BlockNode (s [0] , t [0]) , BlockNode (s [0] , t [1]) ,
17 BlockNode (s [1] , t [0]) , BlockNode (s [1] , t [1]) } ;
18 foreach (τ ∈ sons) buildBlockTree (τ) ;
19 } } }

The function assumes that the Cluster * data members of its argument have already been initialized
properly. Note that every non-leaf node of a block tree built by buildBlockTree() will have four
children. y

§2.4.1.17 (Hierarchical matrices – a recursive data structure)

Fig. 113 TJ

TI

J
I

Let H ∈ Rn,m be a hierarchical matrix with local rank
q based on the cluster trees TI and TJ. For v ∈ TI

and w ∈ TJ such that (v, w) belongs to the block
tree BI×J (→ Def. 2.4.1.10), (v, w) ∈ BI×J, denote
by Tv and Tw the sub-trees (→ Def. 2.3.2.13) of TI

and TJ with roots v and w, respectively.

Then H|v×w ∈ R♯I(v),♯I(w) is another hierarchical
matrix of local rank q based on Tv and Tw. The ad-
missibility condition remains the same.

✁ hierarchical sub-matrix belonging to a pair of clus-
ters (�).

In other words, every sub-tree of the block tree BI×J defines, through its root, a sub-matrix of H,
which is a valid hierarchical matrix of the same local rank and with the same admissibility condition.

y

§2.4.1.18 (Recursive algorithm for H-matrix×vector) Hierarchical matrices may not be stored in a
linear fashion in a data structure similar to that given in Code 2.3.1.24, but in a recursive fashion through
a block tree data structure. Of course, also in this case the multiplication of a hierarchical matrix with a
vector can be done by the algorithm implemented in Code 2.3.1.25, but loops have to be replaced with
tree traversal.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 219

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pseudocode 2.4.1.19: Recursive~ζ =~ζ + H~µ

1 void hmv(H ∈ Rn,m , re f ~ζ ∈ Rn ,~µ ∈ Rm) {
2 σ := root of block tree for H ;
3 i f (sons(σ) = ∅) { // a leaf ∈ F

4 i f (σ ∈ Ffar) {

5 ~ζ := ~ζ + Aσ · (Bσ~µ) ; // → (2.2.1.6)

6 }

7 else { ~ζ := ~ζ + H ·~µ ; }
8 else foreach (τ = (v, w) ∈ sons(σ)) {

9 hmv(H|τ ,~ζ
∣∣∣
v

, µ|w) ;

10 }
11 }

✁ The argument H should be a hierarchi-
cal matrix in recursive block-tree-based
format. Then this argument need only
pass a node of the block tree, cf. Line 2.

Line 8: see (2.4.1.11).

The cost of hmv() remains the same
as the estimate (2.3.5.7) found in
§ 2.3.5.6:

cost(hmv) = O((n + m) log(n + m))

for n, m→ ∞, where the constants will
depend on the sparsity measure spm(F),
see Def. 2.3.4.27.

In Code 2.4.1.19 the argument~ζ is passed through a reference, which means that this argument can be
modified during the execution of the function. In C++ this can be done by passing function parameters as
reference: f(X &x). y

Our goal in this section is to find an algorithm that can be used to approximately solve linear systems of
equations whose coefficient matrix is provided in hierarchical matrix (H-matrix) format, refer to Def. 2.4.1.2
and Ass. 2.4.1.7. This will turn out to be a highly complex algorithm with many components. Those are
provided in the following sections.

Remark 2.4.1.20 (H-matrix × dense matrix) The multiplication of a H-matrix H ∈ Rn,m with a dense
matrix D ∈ Rm,k can be carried out by feeding all the columns of D to hmv(H, ...). y

EXAMPLE 2.4.1.21 (Preview: multiplication of hierarchical matrices)

Fig. 114

I

J

The setting is rather special for the sake of lucidity:

We consider two square hierarchical matrices
Y, Z ∈ Rn,n with local rank q based on the same
binary balanced row and column cluster tree TI,
I :=∈ {1, . . . , n}. We used

adm(v, w) = true ⇔ I(v) ∩ I(w) = ∅ .

✁ block structure of simple hierarchical matrices in
this example

(The rank-q far-field blocks are colored green.)

Goal: Approximate the product Y · Z by an n× n-hierarchical matrix based on row/column tree TI and
the same admissibility condition, that is, the same block structure, the same Fnear, Ffar.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 220

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The following situations are encountered when forming the matrix product:

X = Y · Z

I

J

=
I

J

·
I

J

,

I

J

=
I

J

·
I

J

.

Top row of (2.4.1.21): To compute the upper left block of the matrix product we face

← · + · .

To accomplish this we have to

• compute the product of two smaller hierarchical matrices ➤ recursion,

• add a rank-q matrix, namely the product of two rank-q blocks, to a hierarchical matrix.

Bottom row of (2.4.1.21): The evaluation of the upper right block boils down to

← · + · .

To accomplish this we have to

• compute the product of a hierarchical matrix with a rank-q matrix in any order,

• incorporate the sum of two rank-q matrices into a rank-q block.

y

2.4.2 Low-Rank Matrices: Algorithms

Now we repeat fundamental concepts and algorithms from numerical linear algebra.

§2.4.2.1 ((Economical/thin) Singular value decomposition→ [NumCSE Section 3.4])

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 221

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 2.4.2.2. Singular Value Decomposition (SVD)

For any X ∈ Rn,m, n, m ∈ N, r := min{n, m} there are matrices U ∈ Rn,r and V ∈ Rm,r with

orthonormal columns and a diagonal matrix Σ ∈ Rr,r with non-negative entries such

X = U · Σ ·V⊤ . (2.4.2.3)

Recall that a matrix Y ∈ Rk,m, k, m ∈ N, has orthonormal columns, if Y⊤Y = Im, Im =̂ m×m-identity
matrix.

The matrix factorization (2.4.2.3) is called the economical/thin singular value decomposition (SVD) of
X. For k > l is can be visualized as follows.

X

=

U

Σ

VH

The diagonal entries of Σ ∈ Rr,r are called the (non-zero) singular values of X, denoted by σ1, σ2, . . . , σr

and assumed to be ordered

0 ≤ σr ≤ σr−1 ≤ · · · ≤ σ1 .

The computation of the singular value decomposition of a matrix relies on a sophisticated algorithm [GV13,
Sect. 8.6]. This algorithm is perfectly stable and returns the results with relative error of the same size as
the machine precision eps. The effort for computing the SVD of a densely populated matrix is substan-
tial:

cost(economical/thin SVD of X ∈ Rn,m) = O(min{n, m}nm) for n, m→ ∞ . (2.4.2.4)

The following C++ function computes the factors of the singular value decomposition of a matrix in EIGEN,
see also [NumCSE Code 3.4.2.1]. Note that EIGEN has to be instructed to compute the economical/thin
version instead of the full SVD with square orthogonal factors. Of course, one usually does not build the
matrix Σ as a dense matrix.

C++ code 2.4.2.5: Computing the economical/thin SVD in EIGEN

1 std : : tuple <MatrixXd , MatrixXd , MatrixXd> svd_eco (const MatrixXd& X) {
2 Eigen : : JacobiSVD<MatrixXd> svd (X, Eigen : : ComputeThinU | Eigen : : ComputeThinV) ;
3 MatrixXd U = svd . matrixU () ; // get unitary (square) matrix U
4 MatrixXd V = svd . matrixV () ; // get unitary (square) matrix V
5 VectorXd sv = svd . singularValues () ; // get singular values as vector

6 MatrixXd Sigma = sv . asDiagonal () ; // build diagonal matrix Σ

7 return std : : tuple <MatrixXd , MatrixXd , MatrixXd >(U, Sigma ,V) ;

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 222

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

8 }

The SVD owes its key role in numerical algorithms to the fact that it paves the way for computing the rank-q
best approximation of a given matrix.

Theorem 2.4.2.6. Best low rank approximation → [NumCSE Thm. 3.4.4.19]

Let X = UΣV⊤ be the SVD of X ∈ Rn,m (→ Thm. 2.4.2.2). For 1 ≤ q ≤ rank(X) set Uq :=
(U):,q ∈ Rn,q, Vq := (V):,q ∈ Rm,q, Σq := diag(σ1, . . . , σq) ∈ Rq,q. Then, for ‖·‖ = ‖·‖F and

‖·‖ = ‖·‖2, holds true

∥∥∥X−UqΣqV⊤q
∥∥∥ ≤ ‖X− F‖ ∀F ∈ Rn,m, rank(F) = q ,

that is, the truncated SVD realizes the rank-q best approximation of X with respect to both the

Frobenius norm (2.2.0.8) and the Euclidean matrix norm.

Norms of approximation error can be computed easily: Writing Xq := UqΣqV⊤q we have rank(Xq) ≤ q
and

∥∥X− Xq

∥∥ =
∥∥Σ− Σq

∥∥ =

{
σq+1 for ‖·‖ = ‖·‖2 ,√

σ2
q+1 + · · ·+ σ2

r for ‖·‖ = ‖·‖F .
(2.4.2.7)

This is a straightforward consequence of the fact that both norms satisfy

‖UX‖F = ‖X‖F , ‖UX‖2 = ‖X‖2 ∀X ∈ Rk,l, U ∈ Rk,k, U⊤U = Ik . (2.4.2.8)

§2.4.2.9 (QR-decomposition → [NumCSE Section 3.3.3]) Appealing to the Gram-Schmidt orthonor-
malization algorithm we derived the following theorem about a special matrix factorization:

Theorem 2.4.2.10. Economical QR-decomposition

For any matrix X ∈ Rk,l, k, l ∈ N, k ≥ l, with rank(X) = l there exists a unique matrix Q ∈ Rk,l

with orthonormal columns Q⊤Q = Il and a unique upper triangular matrix R ∈ Rl,l with (R)i,i > 0,

1 ≤ i ≤ l, such that

X = Q · R . (2.4.2.11)

The factorization (2.4.2.11) of X is called QR-decomposition. It can be visualized in the following way for
k ≥ l:

X = Q · R , Q ∈ Kk,l , R ∈ Kl,l upper triangular ,

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 223

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

X

=

Q

R

. (2.4.2.12)

A stable algorithm for computing the QR-decomposition of a dense matrix relies on successive House-
holder transformations, see [NumCSE § 3.3.3.11]. The asymptotic effort required for finding a QR-
decomposition are the same as for computing the SVD:

cost(economical QR-decomposition of X ∈ Rk,l) = O(min{k, l}kl) for k, l → ∞ . (2.4.2.13)

y

§2.4.2.14 (Low-rank approximation of low-rank matrices) Assume that the matrix X ∈ Rk,l with
rank(X) = p ≤ min{k, l} is given in factorized form

X = A · B⊤ , A ∈ Rk,p , B ∈ Rl,p ,

according to Lemma 2.2.1.3. In order to obtain further compression we want to determine the rank-q best
approximation Y of X for some q < p

Y ∈ Rk,l , rank(Y) = q: ‖X− Y‖F ≤ ‖X− F‖F ∀F ∈ Rk,l , rank(F) = q .

Of course, we want to find the low-rank factors Ã ∈ Rk,q, B̃ ∈ Rl,q of Y such that Y = Ã · B̃⊤.

We start with an (economical/thin) QR-decomposition of A according to Thm. 2.4.2.10:

A = QR , Q ∈ Rk,p , Q⊤Q = Ip , R ∈ Rp,p upper triangular. (2.4.2.15)

Then we compute the (economical/thin) SVD of RB⊤ ∈ Rp,l:

RB⊤ = UΣV⊤ , U ∈ Rp,p , Σ ∈ Rp,p , V ∈ Rp,l ,

where U and V have orthonormal columns and Σ is a diagonal matrix with non-negative entries. Combin-
ing the two factorizations yields

X = AB⊤ = QRB⊤ = QUΣV⊤ = ŨΣV⊤
︸ ︷︷ ︸
SVD of X !

, Ũ := QU , Ũ⊤Ũ =U⊤Q⊤QU= Ip . (2.4.2.16)

Thus, invoking Thm. 2.4.2.6 and adopting its notations, we have found

Y = Uq︸︷︷︸
=:Ã

ΣqV⊤q︸ ︷︷ ︸
=:B̃⊤

, Uq :=
(

Ũ
)

:,q
, Σq := (Σ)1:q,1:q , Vq := (V):,q . (2.4.2.17)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 224

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pseudocode 2.4.2.18: Low-rank “recompression”

1 [Matrix , Matrix] ← low_rank_recompress (
2 Matrix A , Matrix B , i n t q) {
3 k := A . rows () ; l := B . rows () ;
4 i f (q > min (k , l)) { return (A, B) ; }
5 [Q ,R] = qr (A) ;
6 [U ,Σ ,V] = svd (R · B⊤) ;
7 Ũ := Q ·U ; // see (2.4.2.16)

8 Ã := (U):,q ; // first q columns of U

9 B̃ := VqΣq ; // see (2.4.2.17)

10 return (Ã, B̃) ;
11 }

The asymptotic computational effort
of low_rank_recompress is de-
termined by the calls to qr() and
svd().
If A ∈ Rk,p, B ∈ Rl,p, then from
(2.4.2.4) and (2.4.2.13) we conclude

cost(low_rank_recompress)

= O(p2(k + l)) for k, l → ∞ .
(2.4.2.19)

y

Remark 2.4.2.20 (Adaptive low-rank recompression) According to (2.4.2.7) the discarded singular val-
ues provide information about the error committed during low-rank compression of a matrix. Thus, writing
σ1 ≥ σ2 ≥ · · · ≥ σp for the singular values of X available as diagonal entries of Σ in (2.4.2.16), we may
set (σp+1 := 0)

q ∈ {1, . . . , p}: σq+1 ≤ rtol · σ1 , (2.4.2.21)

for some prescribed relative tolerance rtol > 0. This gives control of the recompression error. y

§2.4.2.22 (Recompression of sums of low-rank matrices) We are given two rank-q matrices

Xi = AiB
⊤
i , Ai ∈ Rk,q , Bi ∈ Rl,q , i = 1, 2 ,

and want to compute the rank-q best approximation of X1 + X2. This can be done with a single call to
low_rank_recompress from Code 2.4.2.18, because, thanks to

X1 + X2 =
[
A1 A2

]
·
[

B⊤1
B⊤2

]
, (2.4.2.23)

we immediately have a rank-2q factorization of X1 + X2 at our disposal.

Pseudocode 2.4.2.24: Approximation of sum of low-rank matrices

1 [Matrix , Matrix] ← low_rank_sum (Matrix A1 , MatrixB1 ,
2 Matrix A2 , mat r i x B2) {
3 q := A . co ls () ; // target rank for compression

4 A∗ :=
[
A1 A2

]
; B∗ :=

[
B1 B2

]
;

5 return low_rank_recompress (A∗ ,B∗ , q) ;
6 }

The asymptotic cost is O(q2(l + k)) for k, l → ∞. y

§2.4.2.25 (Compressing stacked low-rank matrices) We arrange s ∈ N rank-q matrices

Xi = AiB
⊤
i ∈ Rk,li , Ai ∈ Rk,q , Bi ∈ Rli,q , li ∈ N , i = 1, . . . , s ,

next to each other, an operation also called horizontal concatenation,

Z :=
[
X1 X2 . . . Xs

]
∈ Rk,l , l := l1 + · · ·+ ls .

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 225

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

and aim to determine a rank-q best approximation Y = Ã · B̃⊤, Ã ∈ Rk,q, B̃ ∈ Rl,q, of Z in factorized
form:

 A1 · B⊤1 , . . . , As · B⊤s

︸ ︷︷ ︸
l columns

compress−−−−→ Ã · B̃⊤
︸ ︷︷ ︸

l columns

Of course, as in § 2.4.2.14 we use Thm. 2.4.2.6 but, again, we cannot afford to compute the SVD of
Z directly. As in § 2.4.2.14 it can be obtained efficiently via QR-decompositions (→ Thm. 2.4.2.10) of
low-rank factors:

Bi = QiRi , Q⊤i Qi = Iq , Ri upper triangular .

This yields as factorization of Z

Z =
[
A1R⊤1 . . . AsR

⊤
s

]
︸ ︷︷ ︸

=:Ẑ∈Rk,sq

·

Q⊤1
Q⊤2

. . .

Q⊤s

 .

Obviously, the transpose of the second factor features orthogonal columns. Then compute the (economi-
cal/thin) SVD of the first factor according to Thm. 2.4.2.2

Ẑ = U · Σ ·V⊤ , U ∈ Rk,sq , Σ =

σ1

σ2
. . .

σqs

 ∈ Rqs,qs , V ∈ Rl,qs ,

U⊤U = V⊤V = Iqs, gives the SVD of Z:

Z = U · Σ ·

V⊤ ·

Q⊤1
Q⊤2

. . .

Q⊤s

︸ ︷︷ ︸
=:Ṽ⊤∈Rqs,ls

. (2.4.2.26)

Thus, the low-rank factors of the rank=q best approximation are

Ã := Uq · Σq , Uq := (U):,1,...,q , Σq :=

σ1

σ2
. . .

σq

 ∈ Rq,q , (2.4.2.27a)

B̃ :=
(

Ṽ
)

:,1,...,q
∈ Rl,q . (2.4.2.27b)

The total asymptotic computational effort is dominated by the cost of computing SVD and QR-
decomposition. For sq ≤ k it amounts to

cost = O((sq)2(k + l)) for k, l → ∞ . (2.4.2.28)

A similar algorithm can be applied for the low-rank compression of a matrix arising from stacking low-rank
matrices on top of each other (vertical concatenation). y

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 226

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

2.4.3 H-Addition of Hierarchical Matrices

Armed with the algorithm of Code 2.4.2.24 we can efficiently add and recompress two hierarchical matrices
X, Y ∈ Rn,m provided that

✦ they are based on the same row and column cluster trees,

✦ their far-field/near-field block partitions coincide (which will follow, if the same admissibility condition

is used for their construction).

This means that bothH-matrices are based on the same block trees; their partitionings into near-field and
far-field blocks coincide.

Due to recompression H-addition differs from the exact addition of the matrices. Therefore we designate
it with a special symbol.

✎ Notation: We write ⊕ for the addition with recompression of hierarchical matrices.

The following pseudocode performs the operation H← H⊕H′ for two hierarchical matrices of the same
local rank q, whose far-field blocks are provided in factorized form H|σ = AσB⊤σ and H′|σ = A′σ(B

′
σ)
⊤,

σ ∈ Ffar, according to (2.4.1.6). Note that the block trees of H and H′ agree.

Pseudocode 2.4.3.1: In-situ summation and recompression of hierarchical matrices

1 void hmat_add (re f H−mat r i x H ∈ Rn,m , const H−mat r i x H′ ∈ Rn,m) {
2 σ := root of block tree for H ;
3 i f (sons(σ) = ∅) { // leaf of block tree

4 i f (σ ∈ Ffar) { // sum and truncate

5 [Aσ ,Bσ] := low_rank_sum (Aσ ,Bσ ,A′σ ,B′σ) ;
6 }
7 else { // dense near-field block

8 H := H + H′ ;
9 }

10 }
11 else { // recursion

12 foreach (τ = (v, w) ∈ sons(σ)) {
13 hmat_add (H|τ , H′|τ) ;
14 }
15 }
16 }

§2.4.3.2 (Low-Rank Modification of a Hierarchical Matrix) Let a row tree TI for I := {1, . . . , n} and
a column tree TJ :=∈ {1, . . . , m}, n, m ∈ N, be given (and some admissibilty condition according to
Def. 2.3.3.2). Since the rank of a sub-matrix is at least as big as the rank of the matrix itself, it is clear that
any rank-q matrix Y = UV⊤ ∈ Rn,m, U ∈ Rn,q, V ∈ Rm,q, can be treated as a hierarchical matrix based
on TI and TJ.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 227

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pseudocode 2.4.3.3: Recursive low-rank update of H-matrix: H← H⊕UV⊤

1 void low_rank_update (re f H−mat r i x H ∈ Rn,m ,
2 Matrix U ∈ Rn,q , Matrix V ∈ Rm,q) {
3 σ := root of block tree for H ;
4 i f (sons(σ) = ∅) { // leaf of block tree

5 i f (σ ∈ Ffar) {
6 [Aσ ,Bσ] := low_rank_sum (Aσ ,Bσ ,U ,V) ;
7 }
8 else { // near-field block

9 H := H + U ·V ;
10 }
11 else {
12 foreach (τ = (v, w) ∈ sons(σ)) {
13 low_rank_update (H|τ ,(U)I(v),: ,(V)I(w),:) ;
14 }
15 }
16 }

Given a hierarchical matrix H ∈ Rn,m with local rank q stored in a block tree compatible format
Code 2.4.3.3 computes recursively H⊕UV⊤ for U ∈ Rn,q and V ∈ Rm,q, and stores the result in H
again. Refer to Code 2.4.1.19 for a related algorithm. y

2.4.4 H-Multiplication of Hierarchical Matrices [Bör21, Sect. 5.6]

We are given two hierarchical matrices Y ∈ Rn,k, Z ∈ Rk,m, n, k, m ∈ N with local ranks qY and qZ,
respectively, according to Def. 2.4.1.2. Our goal is to compute an approximation X ≈ Y · Z, which is itself
a hierarchical matrix.

We assume that

✦ Y ∈ Rn,k is based on the binary cluster trees TI of I := {1, . . . , n} and TK of K := {1, . . . , k},
✦ Z ∈ Rk,m is based on the binary cluster trees TK of K := {1, . . . , k}, and TJ of J := {1, . . . , m}.
✦ X ∈ Rn,m is based on the binary cluster trees TI of I := {1, . . . , n} and TJ of J := {1, . . . , m}.

! Note that the column tree of Y and the row tree of Z have to agree. Otherwise TI, TJ, and
TK may be unrelated.

✎ notation: We write
BX := BI×J ⊂ TI × TJ,
BY := BI×K ⊂ TI × TK,
BZ := BK×J ⊂ TK × TJ,

for the block trees of
X,
Y,
Z.

The sets of matrix blocks of X, Y and Z, which correspond to the leaves of BX, BY, and BZ, will be
denoted by F∗, ∗ = X, Y, Z. Superscripts X, Y, Z will also tag the corresponding far-field and near field
blocks: F∗far, F∗near, ∗ = X, Y, Z. We take for granted that far-field matrix block are available in factorized
form (2.4.1.6):

∀σ = (v, w) ∈ FX
far: ∃AX

σ ∈ R♯I(v),q , BX
σ ∈ R♯I(w),q: X|σ = AX

σ ·
(
BX

σ

)⊤
,

∀τ = (v, u) ∈ FY
far: ∃AY

τ ∈ R♯I(v),q , BY
τ ∈ R♯I(u),q: Y|τ = AY

τ ·
(
BY

τ

)⊤
,

∀κ = (u, w) ∈ FZ
far: ∃AZ

κ ∈ R♯I(u),q , BZ
κ ∈ R♯I(w),q: Z|κ = AZ

κ ·
(
BZ

κ

)⊤
.

(2.4.4.1)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 228

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We also point out that the matrix blocks corresponding to near-field cluster pairs are stored as dense
matrices, e.g.

κ := (u, w) ∈ FZ
near ⇒ dense matrix NZ

τ := Z|u×w ∈ R♯I(u),♯I(w) is directly accessible.

Note that the admissibility condition admX : TI × TJ → {true, false} used for X need not have any-
thing to do with the admissibility conditions underlying Y and Z. For ease of presentation we assume
q := qX = qY = qZ and that every leaf cluster contains ≤ q indices:

v ∈ TI , sons(v) = ∅ ⇒ ♯I(v) ≤ q ,

w ∈ TJ , sons(w) = ∅ ⇒ ♯I(w) ≤ q ,

u ∈ TK , sons(u) = ∅ ⇒ ♯I(u) ≤ q .

(2.4.4.2)

Thus, matrix blocks defined by leaves are small, need not be stored in low-rank factorized form, and will
invariably be assigned to the near field:

(x.y) ∈ F∗ , sons(x) = ∅ or sons(y) = ∅ ⇒ (x, y) ∈ F∗near . (2.4.4.3)

We remind of the constraint that near-field cluster pairs contain at least one leaf

(v, w) ∈ FX
near ⇒ sons(v) = ∅ or sons(w) = ∅ ,

(v, u) ∈ FY
near ⇒ sons(v) = ∅ or sons(u) = ∅ ,

(u, w) ∈ FZ
near ⇒ sons(u) = ∅ or sons(w) = ∅ .

(2.4.4.4)

As a consequence of (2.4.4.2) and (2.4.4.4), near-field matrix blocks will be small in one dimension and,
in particular, have rank ≤ q.

All these constraints are satisfied by partitions generated by the algorithm implemented in
buildBlockTree() in Code 2.4.1.16 provided that the admissibility condition from (2.3.3.6) is used.

Assumption 2.4.4.5. Structure of result matrix

The matrix product Y · Z ∈ Rn,m allows an approximate representation by a hierarchical matrix X
with local rank qX ∈ N, based on the cluster trees TI and TJ, and a given block tree BX.

Thus, similar to the case of adding hierarchical matrices we will resort to low-rank truncation while carrying
out the operations of matrix multiplication.

§2.4.4.6 (Matrix multiplication: recursive perspective) Inspired by Ex. 2.4.1.21 we aim for a recur-
sive algorithm, which exploits the recursive structure of block-oriented matrix multiplication, remember
[NumCSE § 1.3.1.13]. Let us look at theH-matrices X, Y, and Z from the roots (v, w) := σ := root(BX),
(v, u) := τ := root(BY), (u, w) := κ := root(BZ) of their respective block trees.

If neither v nor w nor u is a leaf, their two son clusters induce a 2× 2 block partitioning of X, Y, and Z.
The root nodes of the block trees have four sons each.

Fig. 115

X11 X12

X21 X22

Y11

Y21 Y22

Y12

Z21 Z22

TITI

Z11 Z12

TJTJ TK

s1s1

s2s2

t1t1 t2t2 r1 r2

= ·

u

vv

ww

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 229

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

sons(v) = {s1, s2} ,
sons(w) = {t1, t2} ,
sons(u) = {r1, r2}

X|s1×t1
= Y|s1×r1

· Z|r1×t1
+ Y|s1×r2

· Z|r2×t1
,

X|s1×t2
= Y|s1×r1

· Z|r1×t2
+ Y|s1×r2

· Z|r2×t2
,

X|s2×t1
= Y|s2×r1

· Z|r1×t1
+ Y|s2×r2

· Z|r2×t1
,

X|s2×t2
= Y|s2×r1

· Z|r1×t2
+ Y|s2×r2

· Z|r2×t2
.

(2.4.4.7)

Note that all the sub-matrices occurring in (2.4.4.7) are themselves hierarchical matrices based on sub-
trees of the cluster trees, see § 2.4.1.17.

y

§2.4.4.8 (Visualization: Block view ofH-matrix multiplication) In Ex. 2.4.1.21 we could already catch a
glimpse of the substantial additional complications compared to addition. The following drawing illustrates
that blocks of various kinds and levels contribute to a single block of the matrix product. The setting, which
is borrowed from Ex. 2.4.1.3, is rather simple in that all involved H-matrices are square and are based on
the same cluster tree and block tree.

X = Y · Z

=

·

The marked block of X belongs to FX
far and it is formed by summing contributions from all kinds of blocks

of Y and Z,

• contributions from blocks that are genuine H-matrices,

• contributions from blocks ∈ FY
far, FZ

far, and

• contributions from parts of far-field blocks of Y and Z.

y

§2.4.4.9 (H-matrix multiplication: Basic block update operation) We consider an arbitrary node
σ := (v, w) ∈ BX, v ∈ TI, w ∈ TJ, of the block tree BX of X, which need not be a leaf. In particular,
σ can be the root of BX. That node defines a matrix block X|σ = X|v×w = (X) i∈I(v)

j∈I(w)

.

Our goal is to devise a recursive algorithm for approximating the following basic update operation:

X|σ = X|v×w←X|v×w + Y|v×u · Z|u×w , (v, u) ∈ BY, (u, w) ∈ BZ . (2.4.4.10)

It is important to keep in mind that u ∈ TK cannot be any cluster, but has to be chosen such that (v, u)
and (u, w) are nodes of the block trees BX and BY, respectively. We implement the algorithm in the
function

void hmat_mult_add (re f H−mat r i x X , const H−mat r i x Y , const H−mat r i x Z)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 230

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

so that

hmat_mult_add(X|v×w, Y|v×u, Z|u×w)

approximately realizes the update operation (2.4.4.10). y

Remark 2.4.4.11. If v = root(TI), w = root(TJ), u = root(TK), and X = O, then (2.4.4.10) yields the
matrix product Y · Z. y

§2.4.4.12 (Update operation (2.4.4.10) for low-rank target matrix) A rather special case is σ ∈ FX
far,

that is, X|v×w has to be a rank-q block stored in factorized form (2.4.4.1): X|v×w = AX
σ (B

X
σ)
⊤. Then the

approximate execution of the update operation (2.4.4.10) must boil down to an update of the two low-rank
factors AX

σ ∈ R♯I(v),q and BX
σ ∈ R♯I(w),q. This special case will repeatedly be addressed in the following

discussion and is marked as “➙ LRT” (low-rank target block).

For this case we provide a special variant of hmat_mult_add():

1 void lrt_mult_add (
2 re f mat r i x A , re f mat r i x B , const H−mat r i x Y , const H−mat r i x Z)

When invoked as (A ∈ R♯I(v),q, B ∈ R♯I(w),q)

lrt_mult_add(A, B, Y|v×u, Z|u×w),

in its first two arguments it is supposed to return the rank-q factors of an approximation of
AB⊤ + Y|v×u · Z|u×w. y

§2.4.4.13 (Recursive approximate H-matrix block multiplication: cases) Depending on the nature of
the clusters v ∈ TI, w ∈ TJ, and u ∈ TK, and of the blocks σ := (v, w) ∈ BX, τ := (v, u) ∈ BY, and
κ := (u, w) ∈ BZ, the evaluation of

X|σ = X|v×w←X|v×w + Y|v×u · Z|u×w , (v, u) ∈ BY, (u, w) ∈ BZ . (2.4.4.10)

has to distinguish between several cases.

The order of the cases matters; only the first matching case is executed. Recursive calls will be made, if a
particular case involves other update operations of the kind (2.4.4.10).

➊ Case: u ∈ TK is a leaf of the cluster tree TK (containing ≤ q indices).

In this case, owing to (2.4.4.3) both nodes τ := (v, u) ∈ BY and κ := (u, w) ∈ BZ of the block
trees are leaves, belong to F∗near, ∗ = Y, Z. and we have immediate access to the small dense
near-field blocks

NY
τ = Y|v×u ∈ R♯I(v),q and NZ

κ = Z|u×w ∈ Rq,♯I(w) . (2.4.4.14)

w

v H + =

u

v
·

w

u
.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 231

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Hence, the update operation (2.4.4.10) boils down to the rank-q update of the generic H-matrix
X|v×w:

X|v×w←X|v×w + NY
τ NZ

κ . (2.4.4.15)

Here, X|v×w can be treated as a generic H-matrix and (2.4.4.15) can be implemented as

low_rank_update(X|v×w, NY
τ , (NZ

κ)
⊤) ,

using the function from Code 2.4.3.3.

➙ LRT: To update the rank-q factorized format of X|σ we can invoke

[AX
σ , BX

σ] = low_rank_sum(AX
σ , BX

σ , NY
τ , (NZ

κ)
⊤) .

➋ Case: v ∈ TI is a leaf of the cluster tree TI (holding q indices).

In this case (2.4.4.3) ensures that

σ := v× w ∈ FX
near , X|v×w = NX

σ ∈ Rq,♯I(w) , (2.4.4.16a)

τ := v× u ∈ FY
near , Y|v×u = NY

τ ∈ Rq,♯I(u) . (2.4.4.16b)

As a consequence, the update formula (2.4.4.10) becomes

NX
σ←NX

σ + D̂⊤ , D := Z|⊤u×w · (NY
τ)
⊤ . (2.4.4.17)

The dense matrix D̂ ∈ R♯I(w),q can be computed by multiplying the q columns of (NY
τ)
⊤ with

the generic H-matrix Z|⊤u×w using an algorithm similar to the one implemented in hmv() from
Code 2.4.1.19.

➌ Case: w ∈ TJ is a leaf of the cluster tree TJ (holding ≤ q indices).

From (2.4.4.3) we conclude that

σ := v× w ∈ FX
near , X|v×w = NX

σ ∈ R♯I(v),q , (2.4.4.18a)

κ := u× w ∈ FZ
near , Z|u×w = NZ

κ ∈ R♯I(u),q . (2.4.4.18b)

Similar to the previous case the update formula (2.4.4.10) becomes

NX
σ←NX

σ + D̂ , D̂ := Y|v×u ·NZ
κ . (2.4.4.19)

As proposed in Rem. 2.4.1.20, the matrix product D̂ ∈ R♯I(v),q involving the generic H-matrix

Y|v×u can be computed based on hmv() from Code 2.4.1.19.

At this point, none of the clusters v ∈ TI, w ∈ TJ, and u ∈ TK is a leaf of the respective cluster tree and,
by virtue of

(v, w) ∈ FX
near ⇒ sons(v) = ∅ or sons(w) = ∅ ,

(v, u) ∈ FY
near ⇒ sons(v) = ∅ or sons(u) = ∅ ,

(u, w) ∈ FZ
near ⇒ sons(u) = ∅ or sons(w) = ∅ .

(2.4.4.4)

none of the blocks σ := (v, w) ∈ BX, τ := (v, u) ∈ BY, and κ := (u, w) ∈ BZ can belong to F∗near,
∗ = X, Y, Z.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 232

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➍ Case: τ := (v, u) ∈ FY
far.

As expressed in (2.4.4.1), Y|v×u is given in rank-q factorized form

Y|τ = Y|v×u = AY
τ (B

Y
τ)
⊤ , AY

τ ∈ R♯I(v),q , BY
τ ∈ R♯I(u),q , (2.4.4.20)

which makes it possible to convert the update operation

X|σ = X|v×w←X|v×w + Y|v×u · Z|u×w (2.4.4.10)

to

X|σ = X|v×w←X|v×w + AY
τ V̂⊤ , V̂ := Z|⊤u×w · BY

τ ∈ R♯I(w),q . (2.4.4.21)

(I) We first compute the dense ♯I(w)× q-matrix V̂ using a variant of hmv() from Code 2.4.1.19.

(II) Then we perform a rank-q update for the generic H-matrix X|v×w calling

low_rank_update(X|v×w, AY
τ , V̂) .

➙ LRT: When X|v×w = AX
σ (B

X
σ)
⊤ we simply update these low-rank factors by

[AX
σ , BX

σ] = low_rank_sum(AX
σ , BX

σ , AY
τ , V̂) .

➎ Case: κ := u× w ∈ FZ
far.

Hardly surprising, the considerations are fairly similar to the previous case. Owing to (2.4.4.1), a
rank-q factorization of Z|u×w is available:

Z|κ = Z|u×w = AZ
κ (B

Z
κ)
⊤ , AZ

κ ∈ R♯I(u),q , BZ
κ ∈ R♯I(w),q . (2.4.4.22)

Thus, the concrete update operation becomes

X|σ = X|v×w←X|v×w + Û · (BZ
κ)
⊤ , Û := Y|v×u ·AZ

κ ∈ R♯I(v),q . (2.4.4.23)

It can be broken down into the following two evaluations:

(I) Compute the dense ♯I(v)× q-matrix Û based on hmv() from Code 2.4.1.19.

(II) Carry out a rank-q update of the generic H-matrix X|v×w by means of

low_rank_update(X|v×w, Û, BZ
κ) .

➙ LRT: Again, we invoke the function low_rank_sum() from Code 2.4.2.24 and pass the low-rank
factors of X|v×w, Û, and BZ

κ as arguments.

At this point we know that

τ := (v, u) ∈ BY \ FY and κ := (u, w) ∈ BZ \ FZ :

neither of these nodes of the block trees is a leaf and both will have four sons, as is guaranteed by the
construction algorithm implemented in build_block_tree() from Code 2.4.1.16.

Concretely, if

sons(u) = {r1, r2} , sons(v) = {s1, s2} , sons(w) = {t1, t2} ,

then

sons(v× u) = {s1 × r1, s1 × r2, s2 × r1, s2 × r2} ⊂ BY , (2.4.4.24a)

sons(u× w) = {r1 × t1, r1 × t2, r2 × t1, r2 × t2} ⊂ BZ . (2.4.4.24b)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 233

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➏ Case: σ := (v, w) ∈ BX \ FX (no leaf of block tree).

As a non-leaf node of BX, σ has four sons:

sons(v× w) = {s1 × t1, s1 × t2, s2 × t1, s2 × t2} ⊂ BX .

At this point we rely on the recursive application of the algorithm approximately implementing the
update operation

X|σ = X|v×w←X|v×w + Y|v×u · Z|u×w , (v, u) ∈ BY, (u, w) ∈ BZ . (2.4.4.10)

Since all involved blocks have four sons, see (2.4.4.24), the rules of matrix multiplication imply that,
ignoring approximation errors, (2.4.4.10) is equivalent to

X|s1×t1
← X|s1×t1

+ Y|s1×r1
· Z|r1×t1

& X|s1×t1
← X|s1×t1

+ Y|s1×r2
· Z|r2×t1

,

X|s1×t2
← X|s1×t2

+ Y|s1×r1
· Z|r1×t2

& X|s1×t2
← X|s1×t2

+ Y|s1×r2
· Z|r2×t2

,

X|s2×t1
← X|s2×t1

+ Y|s2×r1
· Z|r1×t1

& X|s2×t1
← X|s2×t1

+ Y|s2×r2
· Z|r2×t1

,

X|s2×t2
← X|s2×t2

+ Y|s2×r1
· Z|r1×t2

& X|s2×t2
← X|s2×t2

+ Y|s2×r2
· Z|r2×t2

.

(2.4.4.25)

A visualization of these formulas is given in § 2.4.4.6, Fig. 115. All occurring matrices should be
viewed as generic H-matrices!

➐ Case ➙ LRT: σ := (v, w) ∈ FX
far (far-field leaf of BX)

From (2.4.4.1) we learn that X|v×w is a rank-q matrix to be stored in factorized form

X|v×w = AX
σ (B

X
σ)
⊤ , AX

σ ∈ R♯I(v),q , BX
σ ∈ R♯I(w),q ,

and this format must be preserved after the update. Conversely, both Y|v×u and Z|u×w should be
regarded as generic H-matrices.

w

v

s1

s2

t1 t2

+ =

u

v

s1

s2

r1 r2

·

w

u

r1

r2

t1 t2

.

Using the notation for the sons of the clusters v ∈ TI and w ∈ TJ from above, we introduce four
temporary rank-q matrices to be stored in factorized form

Tj,ℓ ∈ R♯I(sj),♯I(tℓ) , Tj,ℓ = Aj,ℓ(Bj,ℓ)
⊤ , Aj,ℓ ∈ R♯I(sj),q, Bj,ℓ ∈ R♯I(tℓ),q , j, ℓ ∈ {1, 2} .

(2.4.4.26)

The temporary matrices are supposed to represent the sub-blocks X|sj×tℓ
of X|v×w. Therefore,

they are initialized through selecting a subset of the rows of AX
σ and BX

σ , respectively,

Aj,ℓ :=
(

AX
σ

)
I(sj),:

, Bj,ℓ :=
(

BX
σ

)
I(tℓ),:

, j, ℓ ∈ {1, 2} . (2.4.4.27)

After initialization, in analogy to (2.4.4.25), we update the temporary matrices according to

T1,1
r← T1,1 + Y|s1×r1

· Z|r1×t1
& T1,1

r← T1,1 + Y|s1×r2
· Z|r2×t1

,

T1,2
r← T1,2 + Y|s1×r1

· Z|r1×t2
& T1,2

r← T1,2 + Y|s1×r2
· Z|r2×t2

,

T2,1
r← T2,1 + Y|s2×r1

· Z|r1×t1
& T2,1

r← T2,1 + Y|s2×r2
· Z|r2×t1

,

T2,2
r← T2,2 + Y|s2×r1

· Z|r1×t2
& T2,2

r← T2,2 + Y|s2×r2
· Z|r2×t2

.

(2.4.4.28)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 234

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We wrote
r← for “assignment after compression to rank-q format”. In terms of recursive calls to

lrt_mult_add() the operations of (2.4.4.28) can be realized through

(i) Initialize factors of temporary rank-q matrices as in (2.4.4.27).

(ii) lrt_mult_add(Aj,ℓ, Bj,ℓ, Y|sj×r1
, Z|r1×tℓ

); j, ℓ ∈ {1, 2} recursion.

(iii) lrt_mult_add(Aj,ℓ, Bj,ℓ, Y|sj×r2
, Z|r2×tℓ

); j, ℓ ∈ {1, 2} recursion.

Then we have to resort to the techniques presented in § 2.4.2.25 to merge the temporary matrices
into a rank-q matrix:

AX
σ (B

X
σ)
⊤ r←

[
A1,1(B1,1)

⊤ A1,2(B1,2)
⊤

A2,1(B2,1)
⊤ A2,2(B2,2)

⊤

]
. (2.4.4.29)

y

§2.4.4.30 (H-matrix multiplication: Summary of algorithm) We recast the scheme outlined above into
a pseudocode. Beside functions introduced in Section 2.4.2, we need two more functions

The first is a function that computes the matrix×matrix product of a H-matrix (argument X) and a regular
(dense) matrix (argument M) returning another dense matrix:

mat r i x hmat_mult_dense (const H−mat r i x X, const mat r i x M) ;

The second function returns the X⊤ ·M as a dense matrix, where X is a H-matrix (argument X) and M
is a regular (dense) matrix:

mat r i x hmat_transpose_mult_dense (const H−mat r i x X, const mat r i x M) ;

Compatible sizes of the matrix arguments are taken for granted. Both functions can easily be implemented
using the function hmv() from Code 2.4.1.19.

Pseudocode 2.4.4.31: Recursive H-multiplication

1 void hmat_mult_add (re f H−mat r i x X ∈ Rn,m ,
2 H−mat r i x Y ∈ Rn,k , H−mat r i x Z ∈ Rk,m) {
3 σ := (v, w) ∈ BX := TI × TJ := root of block tree associated with X
4 τ := (v, u) ∈ BY := TI × TK := root of block tree associated with Y
5 κ := (u, w) ∈ BZ := TK × TJ := root of block tree associated with Z

6 i f (σ ∈ FX
far) // Case LRT

7 lrt_mult_add (AX
σ , BX

σ , Y , Z) ;
8 else {
9 switch {

10 case (sons(u) = ∅) { // Case ➊

11 low_rank_update (X ,NY
τ , NZ

κ) ; // (2.4.4.15), Code 2.4.3.3

12 break ;
13 }
14 case (sons(v) = ∅) { // Case ➋

15 mat r i x D = hmat_transpose_mult_dense (Z , (NY
τ)
⊤) // (2.4.4.17)

16 NX
σ := NX

σ + D. tranpose () ; // (2.4.4.17)

17 break ;
18 }
19 case (sons(w) = ∅) { // Case ➌

20 mat r i x D = hmat_mult_dense (Y , NZ
κ) ; // (2.4.4.19)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 235

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

21 NX
σ := NX

σ + D; // (2.4.4.19)

22 break ;
23 }
24 case ((v, u) ∈ FY

far) { // Case ➍

25 mat r i x V = hmat_transpose_mult_dense (Z , BY
τ) ; // (2.4.4.21)

26 low_rank_update (X , AY
τ , V) ; // (2.4.4.21), Code 2.4.3.3

27 break ;
28 }
29 case ((u, w) ∈ FZ

far) { // Case ➎

30 mat r i x U = hmat_mult_dense (Y , AZ
κ) ; // (2.4.4.23)

31 low_rank_update (X , U, BZ
κ) ; // (2.4.4.23), Code 2.4.3.3

32 break ;
33 }
34 d e f a u l t : { // Case ➏: recursion

35 foreach s ∈ sons(v) {
36 foreach t ∈ sons(w) {
37 foreach r ∈ sons(u) {
38 hmat_mult_add (X|s×t , Y|s×t , Z|r×t) ; // (2.4.4.25)

39 } } } } } }
40 }

Pseudocode 2.4.4.32: Recursive H-multiplication

1 void lrt_mult_add (re f mat r i x A∈ Rn,q , re f mat r i x B∈ Rm,q ,
2 const H−mat r i x Y∈ Rn,k , const H−mat r i x Z∈ Rk,m) {
3 τ := (v, u) ∈ BY := TI × TK := root of block tree associated with Y
4 κ := (u, w) ∈ BZ := TK × TJ := root of block tree associated with Z
5 switch {
6 case (sons(u) = ∅) { // Case ➊

7 [A , B] = low_rank_sum (A, B, NY
τ , NZ

κ) ; // low-rank version of

(2.4.4.15), Code 2.4.2.24

8 break ;
9 }

10 case (τ ∈ FY
far) { // Case ➍

11 mat r i x V = hmat_tranpose_mult_dense (Z , BY
τ) ; // (2.4.4.21)

12 [A , B] = low_rank_sum (A, B, AY
τ , V) ;

13 break ;
14 }
15 case (κ ∈ FZ

far) { // Case ➎

16 mat r i x U = hmat_mult_dense (Y , AZ
κ) ; // (2.4.4.23)

17 low_rank_sum (A, B, U, BZ
κ) ; // Code 2.4.2.24

18 break ;
19 }
20 d e f a u l t : { // Case ➐

21 for i =0 ,1 {
22 Clus te r s = v . sons [i] ; // Type defined in Code 2.4.1.14

23 for j =0 ,1 {
24 Clus te r t = w. sons [j]
25 mat r i x At [i] [j] = A(I(s) , :) ; // Initialization (2.4.4.27)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 236

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

26 mat r i x Bt [i] [j] = B(I(t) , :) ; // Initialization (2.4.4.27)

27 foreach r ∈ sons(u) {
28 lrt_mult_add (At [i] [j] , Bt [i] [j] , Y|s×r , Z|r×t) ; // (2.4.4.28)

29 }
30 }
31 }
32 [A , B] = vert_horiz_merge (At , Bt) ;
33 } } }

The function vert_horiz_merge() takes one 2× 2-array
(

A1,1 A1,2

A2,1 A2,2

)
of matrices of size n1 × q (for

A1,1 and A1,2) and n2 × q (for A2,1 and A22), and another 2 × 2-array
(

B1,1 B1,2

B2,1 B2,2

)
of matrices with

B1,1, B2,1 ∈ Rm1,q, B1,2, B2,2 ∈ Rm2,q and returns the rank-q factors of a rank-q best approximation of
the block matrix

[
A1,1B⊤1,1 A2,1B⊤2,1

A1,2B⊤1,2 A2,2B⊤2,2

]
∈ Rn,m , n := n1 + n2 , m := m1 + m2 .

Remark 2.4.4.33 (Partial blocks contributing to target block) In § 2.4.4.8 we saw that when multiplying
H-matrices parts of far-field blocks of a factor matrix may contribute to a block of the result matrix. Where
is this case handled in Code 2.4.4.31?

We study a simple situation, where the matrix Z consists of a single far-field block, whereas X and Y are
split into four blocks of any type.

Fig. 116

X11 X12

X21 X22

Y11

Y21 Y22

Y12

TITI

TJTJ TK

s1s1

s2s2

t1t1 t2t2 r1 r2

= ·

u

vv

ww

Evidently, parts of the far-field block of Z will have to be accessed when computing X11-block.

Running the algorithm of Code 2.4.4.31 we will hit Case ➎, where the low-rank update of the generic
H-matrix X will distribute the information contained in the far-field block of z to all blocks of X! Thus, a
special treatment of “partial blocks” is not necessary. y

EXAMPLE 2.4.4.34 (Multiplication of “simple” H-matrices)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 237

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 117

We return to the “simple” square 2L × 2L H-matrix
that we have already seen in Ex. 2.4.1.3 and
§ 2.4.1.9.
It is based on two identical balanced binary cluster
trees. We restrict ourselves to the case L = 4 de-
picted in ??.

We examine the algorithm for the multiplication ofH
matrices when all involved matrices have this partic-
ular structure.

The reader is encouraged to play out the recursion
with “pen and paper” using the provided graphical
rendering of the H-matrices.

X = Y · Z

←

·

On the first level of the recursion only Case ➐ is relevant, because no leaves of the block trees are visited:

X = Y · Z

←

·

On the next level of the recursion we encounter the first leaves of the block tree, all belonging to F∗far. This
will trigger the Cases ➍ and ➎, whenever far-field blocks of Y and Z are involved. Calls to lrt_mult_add()

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 238

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

will be caused by far-field leaves of X

X = Y · Z

←

·

y

Remark 2.4.4.35 (Asymptotic complexity of H-multiplication) Estimating the complexity of the algo-
rithm hmat_mult_add from Code 2.4.4.31 is a formidable task and can only be done under some re-
strictive assumptions, see [Hac15, Sect. 7.8.3], [Bör21, Sect. 5.7]. For balanced binary cluster trees, we
obtain

cost(hmat_mult_add) = O(q2(n + m + k)) for n, m, k→ ∞ . (2.4.4.36)

y

Remark 2.4.4.37 (Error incurred in multiplication of H-matrices) During the execution of
hmat_mult_add() errors are inevitably introduced in the various recompression steps where matrices
of higher rank are projected onto rank-q matrices. This happens in Cases ➊, ➍ and ➎ when invoking
low_rank_update(). It also happens in lrt_mult_add() during calls to low_rank_sum().

However, the most severe approximation errors are usually introduced in lrt_mult_add() in the recom-
pression step hidden in vert_horiz_merge(), which rely on vertical and horizontal recompression in
turns, see § 2.4.2.25. To make matters worse, several invocations of vert_horiz_merge() may be
nested during the recursion.

All this means that so far little progress has been made in quantifying the error incurred when multiplying
two H-matrices by means of hmat_mult_add(). This lack of error estimates is reflected by Ass. 2.4.4.5,
which makes using hmat_mult_add() a matter of faith or optimism.

Fortunately, for H-matrices arising from the compression of kernel matrices with asymptotically smooth
kernels (→ Rem. 2.2.2.1) this crucial assumption seems to be satisfied. y

2.4.5 Hierarchical LU-Decomposition

§2.4.5.1 (LU-decomposition: definition and existence) In [NumCSE Section 2.3.2] the LU-
decomposition of square matrices was introduced as a matrix factorization leading to an algorithm for
implementing Gaussian elimination in a two-stage way.

Definition 2.4.5.2. LU-dcomposition [NumCSE Def. 2.3.2.3]

Given a square matrix A ∈ Rn.n, an upper triangular matrix U ∈ Rn,n and a normalized lower

triangular matrix L ∈ Rn,n provide an LU-decomposition of A, if A = L ·U.

Refer to [NumCSE Def. 1.1.2.3] to learn the defintion of a (normalized) triangular matrix, that is, a triangular

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 239

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

matrix with all diagonal entries = 1.

=

0

1
1

1
1

1
1

1
1

1
1

1
1

·

 0

.

Without reordering an LU-decomposition of a square matrix may not exists, see [NumCSE
Lemma 2.3.3.14]. [NumCSE Lemma 2.8.0.9] and [NumCSE Thm. 2.8.0.11] give us matrix properties
ensuring the existence of an LU-decomposition, for instance the following:

Theorem 2.4.5.3. LU-decomposition of s.p.d. matrices

If A ∈ Rn,n is symmetric positive definite (s.p.d., [NumCSE Def. 1.1.2.6]), then it has a unique

LU-decomposition A = L ·U according to Def. 2.4.5.2.

y

Remark 2.4.5.4 (S.p.d. boundary element Galerkin matrices) S.p.d. Galerkin matrices usually arise
from the boundary element discretization of the single layer and hypersingular boundary integral operators
associated with Lu := −div(A grad u), A s.p.d., see Thm. 1.3.5.17, Thm. 1.3.5.21, and Thm. 1.3.5.26
for details. y

From now we consider a symmetric positive definite (s.p.d.) square hierarchical matrix H ∈ Rn,n with fixed
local rank q based on the same binary cluster tree TI of I :=∈ {1, . . . , n} for both rows and columns.
Ex. 2.4.1.3 presents such a class of H-matrices.

§2.4.5.5 (Compatible ordering) Obviously, the property of a matrix to be triangular will be destroyed by
reordering its rows and columns. To make sense of a “triangular hierarchical matrix” the ordering of the
index set has to match the structure of the cluster trees. To that end we assume a so-called compatible

ordering of the indices, namely

1. that the sons of non-leaf clusters are ordered; we write sons(v) = (s1, s2) ∀v ∈ TI.

2. that

sons(v) = (s1, s2) ⇒
{

i ∈ I(s1) , j ∈ I(s2) ⇒ i < j
}

. (2.4.5.6)

A compatible ordering can easily be achieved by an index re-mapping based on
depth-first pre-order tree traversal.

Assumption 2.4.5.7.

For any square hierarchical matrix based on a binary row/column cluster tree and designated as
triangular a compatible ordering of the index set is assumed.

y

Goal: Find (lower/upper) triangular square hierarchical matrices LH and UH of local rank q based on
the same row and column cluster trees as H and with the same block partition as H such that
H ≈ LH ·UH with a small error in a relevant matrix norm.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 240

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://en.wikipedia.org/wiki/Tree_traversal

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§2.4.5.8 (Triangular linear systems of equations) The rationale for trying to find H-LU factors LH and
UH is the same as for the computation of an exact LU-decomposition, see [NumCSE § 2.3.2.15]. With
LU-factors LH and UH of H at our disposal we can (approximately) solve the linear system of equations
by successive forward and backward substitution

Solve H~µ = ~ϕ ⇔
{

➊ Solve LH~ζ = ~ϕ ,

➊ Solve UH~µ = ~ζ .
(2.4.5.9)

Thus we need efficient algorithms for solving linear systems of equations with triangular hierarchical coef-
ficient matrices.

Let LH ∈ Rn,n be a square invertible lower triangular hierarchical matrix based on the row and column
cluster tree TI. Wee seek

~ζ ∈ Rn,n: LH~ζ = ~ϕ , ~ϕ ∈ Rn . (2.4.5.10)

For LH to be invertible its diagonal blocks must be regular and cannot have low rank (compared to their
size). They should all be near-field blocks:

Assumption 2.4.5.11. Near-field diagonal blocks

adm(v, v) = false ∀v ∈ TI

In particular, for all leaves v ∈ TI the matrix blocks LH|v×v are densely populated, invertible, lower trian-
gular matrices directly available in the data structure.

Idea: Employ a recursion for solving (2.4.5.10): If

sons(root(TI)) = (s1, s2) ,

LH~ζ = ~ϕ ⇔

LH|s1×s1
O

LH|s2×s1
LH|s2×s2

~ζ|s1

~ζ|s2

 =

~ϕ|s1

~ϕ|s2

 ,

~ζ
∣∣∣
s1

= (LH|s1×s1
)−1~ϕ|s1

, ~ζ
∣∣∣
s2

= (LH|s2×s2
)−1

(
~ϕ|s2
− LH|s2×s1

~ζ
∣∣∣
s1

)
,

(2.4.5.12)

with • regular square lower triangular H-matrices LH|s1×s1
, LH|s2×s2

,

• general rectangular H-matrix LH|s2×s1
.

Apart from recursive calls, all we need is a code for the multiplication of the H-matrix LH|s2×s1
with a

vector. This is supplied by the function hmv() from Code 2.4.1.19.

Pseudocode 2.4.5.13: Solving a triangular linear system with H-coefficient matrix

1 vec to r hmat_forw_elim (const H−mat r i x LH , const vec to r ~ϕ) {
2 v := root of cluster tree TI, on which LH is based
3 i f (sons(v) = ∅) return L−1~ϕ ; // standard forward elimination

4 else { // recursion according to (2.4.5.12)

5 (s1, s2) := sons(v) ;
6 ~µ1 := hmat_forw_elim (LH|s1×s1

, ~ϕ|s1
) ;

7 vec to r ~ζ := 0 ; hmv(LH|s2×s1
, ~ζ , ~µ1) ;

8 ~τ := ~ϕ|s2
− ~ζ ;

9 return hmat_forw_elim (LH|s2×s2
, ~τ) ;

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 241

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

10 }
11 }

We emphasize that hmat_forw_elim() returns the exact solution of the triangular linear system LH~ζ = ~ϕ.
No approximation is done at any stage. y

§2.4.5.14 (Recursive tiling algorithm for LU-decomposition → [NumCSE Rem. 2.3.2.12])

The recursive computation of the LU-decomposition of an s.p.d. matrix H ∈ Rn,n is immediate from the
following block matrix product:

L ·U = H ⇔
[

L11 O

L21 L22

]
·
[

U11 U12

O U22

]
=

[
H11 H12

H21 H22

]
. (2.4.5.15)

Equating matching matrix blocks leads to the following steps for finding the unknown blocks of the normal-
ized lower triangular matrix L and the upper triangular matrix U (l + k = n)

➊ Find L11, U11 ∈ Rk,k: L11 ·U11 = H11 =̂ LU-decomposition ➣ recursion,
➋ Find U12 ∈ Rk,l: L11U12 = H12 =̂ forward elimination,

Find L21 ∈ Rl,k: L21U11 = H21 =̂ forward elimination,
➌ Find L22, U22 ∈ Rl,l: L22 ·U22 = H22 − L21U12 =̂ LU-decomposition ➣ recursion.

The same scheme can be applied to an s.p.d. hierarchical matrix H ∈ Rn,n seeking triangular hierarchical
matrices LH, UH ∈ Rn,n based on the same row/column cluster tree TI, with one new twist however:

In the set of hierarchical matrices we cannot solve the matrix equations exactly, but only approxi-
mately.

➊ Find triangular H-matrices L11, U11 ∈ Rk,k: L11 ·U11≈H11 =̂ H-LU-decomposition,
➣ recursion.

➋ Find H-matrix U12 ∈ Rk,l: L11U12≈H12 =̂ forward elimination,
Find H-matrix L21 ∈ Rl,k: L21U11≈H21 =̂ forward elimination,

➌ Find triangular H-matrices L22, U22 ∈ Rl,l: L22 ·U22≈H22⊖L21⊙U12 =̂ LU-decomposition,
➣ recursion.

Note that the matrix operation H22⊖L21⊙U12 has to be conducted in H-arithmetic, because storage of
any intermediate dense matrix will exceed the memory constraints of the data-sparse approach. Fortu-
nately, this operation can be delivered by the H-arithmetic routine hmat_mult_add() from Code 2.4.4.31.

y

§2.4.5.16 (Staggered matrix equations inH-arithmetic) A key component of the recursive computation
of an H-LU-decomposition is the approximate solution of the linear system of equations

LHXH = YH ,

where

✦ LH ∈ Rn,n is a lower triangular hierarchical matrix based on row/column cluster tree TI, with
an admissibility condition satisfying Ass. 2.4.5.11 and a compatible ordering of the index set, cf.

Ass. 2.4.5.7.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 242

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ Y ∈ Rn,m is a general hierarchical matrix based on the row cluster tree TI and column cluster tree
TJ,

✦ XH ∈ Rn,m is the unknown general H-matrix based on the row cluster tree TI and column cluster
tree TJ.

In order to motivate the recursive algorithm we single out two clusters: v ∈ TI , w ∈ TJ.

If I(v) = {1, . . . , n1}, n1 ≤ n, and the indices in I(w) are assumed to be contiguous, then the matrix
equations can be block-partitioned as follows

LH|v×v O

∗ ∗

·

∗ XH|v×w ∗

∗ ∗ ∗

=

∗ YH|v×w ∗

∗ ∗ ∗

LH|v×v · XH|v×w = YH|v×w . (2.4.5.17)

Depending on the cluster pair (v, w) ∈ TI × TJ, which corresponds to a block of both XH and YH, we
distinguish several cases:

➊: (v, w) ∈ FX
near = FY

near (XH|v×w, XH|v×w =̂ near-field blocks)

In this case, while LH|v×v has to be regarded as a general lower triangular invertible hierarchical
matrix, both XH|v×w and XH|v×w are stored as densely populated small matrices and we can apply
hmat_forw_elim() from Code 2.4.5.13 to find the columns of XH|v×w, because

LH|v×v

(
XH|v×w

)
:,k

=
(

YH|v×w

)
:,k

, k ∈ I(w) .

➋: σ := (v, w) ∈ FX
far = FY

far (XH|v×w, XH|v×w =̂ far-field blocks)

Both XH|v×w and XH|v×w are rank-q matrices stored in factorized form, e.g.

YH|v×w = AY
σ · (BY

σ)
⊤ , AY

σ ∈ R♯I(v),q, Bσ ∈ R♯(I(w)),q . (2.4.5.18)

We have to find the corresponding low-rank factors AX
σ and BX

σ for XH. This can be done exactly,
because, very generally, for a regular matrix M ∈ Rn,n, A, B ∈ Rn,q, the matrix equation has a rank-q
solution

MX = AB⊤ X =
(

M−1A
)

B⊤ . (2.4.5.19)

The matrix M−1A is the solution Â ∈ Rn,1 of MÂ = A.

Thus, we resort to hmat_forw_elim() from Code 2.4.5.13 to determine the columns of AX
σ and just

copy BY
σ

LH|v×v

(
AX

σ

)
:,k

=
(

AY
σ

)
:,k

, k = 1, . . . , q , BX
σ = BY

σ , (2.4.5.20)

which ensures LH|v×v · XH|v×w = YH|v×w.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 243

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➌: (v, w) 6∈ FX = FY: ➣ recursion

In this case neither v is a leaf of TI nor w is a leaf of TJ and both will have two sons:

sons(v) =: (s1, s2) [ordered] , sons(w) =: {t1, t2} .

The block-wise matrix product yields recursive formulas analogous to those derived from (2.4.5.12) and
implemented in Code 2.4.5.13. deduced from

LH|s1×s1
O

LH|s2×s1
LH|s2×s2

·

XH|s1×t1
XH|s1×t2

XH|s2×t1
XH|s2×t2

=

YH|s1×t1
YH|s1×t2

YH|s2×t1
YH|s2×t2

.

LH|s1×s2
XH|s1×t1

= YH|s1×t1
,

LH|s1×s1
XH|s1×t2

= YH|s1×t2
,

LH|s2×s2
XH|s2×t1

= YH|s2×t1
⊖ LH|s2×s1

⊙ XH|s1×t1
,

LH|s2×s2
XH|s2×t2

= YH|s2×t2
⊖ LH|s2×s1

⊙ XH|s1×t2
,

where the operations ⊙ and ⊖ indicate that some right-hand side matrices have to be computed using
H-arithmetic, more precisely the function hmat_mult_add() from (2.4.4.31).

Pseudocode 2.4.5.21: Approximately solving a triangular matrix equation in H-arithmetic

1 H−mat r i x ← hmat_triag_solve (H−mat r i x LH , H−mat r i x YH) {
2 XH := H-matrix with block structure of YH
3 (v, w) := root of block tree of XH/YH
4 (v, v) := root of block tree of LH
5 switch {
6 case ((v, w) ∈ FY

near) : { // Case ➊: dense near-field block

7 foreach k ∈ I(w) {
8 (X):.k := hmat_forw_elim (LH ,

(
YH|v×w

)
:,k

) ;

9 }
10 break ;
11 }
12 case ((v, w) ∈ FY

far) : { // Case ➋: far-field cluster pair

13 // In this case low-rank factorized representation: XH = AX(BX)⊤

14 for k := 1 to q { // column-by-column triangular solve

15

(
AX
)

:,k
:= hmat_forw_elim (LH ,

(
AY
)

:,k
) ;

16 }
17 BX := BY ; break ;
18 }
19 d e f a u l t : { // Case ➌: recursion

20 (s1, s2) := sons(v) ; (t1, t2) := sons(v) ;
21 XH|s1×t1

:= hmat_triag_solve (LH|s1×s1
, YH|s1×t1

) ;

22 XH|s1×t2
:= hmat_triag_solve (LH|s1×s1

, YH|s1×t2
) ;

23 hmat_mult_add (YH|s2×t1
, LH|s2×s1

, XH|s1×t1
) ;

24 hmat_mult_add (YH|s2×t2
, LH|s2×s1

, XH|s1×t2
) ;

25 XH|s2×t1
:= hmat_triag_solve (LH|s2×s2

, YH|s2×t1
) ;

26 XH|s2×t2
:= hmat_triag_solve (LH|s2×s2

, YH|s2×t2
) ;

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 244

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

27 }
28 }
29 return XH ;
30 }

We point out that it is only the use of the function hmat_mult_add() that renders the triangular solve
by hmat_triag_solve() inexact. y

§2.4.5.22 (Recursive LU-decomposition in H-arithmetic → § 2.4.5.14) Armed with the function
hmat_triag_solve() from Code 2.4.5.21 we can implement the recursive algorithm outlined in § 2.4.5.14.

Pseudocode 2.4.5.23: Recursive H-LU decomposition

1 [H−mat r i x H−mat r i x] ← hmat_lu_dec (H−mat r i x HH) {
2 r := root of cluster three TI, on which HH is based ;
3 i f (sons(r) == ∅) { // leaf block

4 return lu_dec (HH) ; // standard LU-decomposition

5 }
6 else {
7 (s1, s2) := sons(v) ;
8 LH, UH := H-matrices with the same block structure as HH
9 [LH|s1×s1

, UH|s1×s1
] := hmat_lu_dec (HH|s1×s1

) ;

10 U|s1×s2
:= hmat_triag_solve (L|s1×s1

, HH|s1×s2
) ;

11 LH|⊤s2×s1
:= hmat_triag_solve (U|⊤s1×s1

, HH|⊤s2×s1
) ;

12 hmat_mult_add (H|s2×s2
,−LH|s2×s1

, UH|s1×s2
) ;

13 [LH|s2×s2
, U|H|s2×s2

] := hmat_lu_dec (HH|s2×s2
) ;

14 return [LH, UH] ;
15 }

y

Remark 2.4.5.24 (H-LU decomposition as preconditioner) On the one hand, thanks to powerful er-
ror estimates for the local separable approximation of singular asymptotically smooth kernels (→ Sec-
tion 2.2.2), we have a rather good control of error committed when approximating a kernel collocation
matrix or a boundary element Galerkin matrix by means of clustering techniques with geometric admissi-
bility conditions.

!
On the other hand, the errors introduced by H-arithmetic, which offers only an approxima-
tion of linear algebra operations, are very difficult to estimate. Therefore, the use of H-LU
decompositions HH = LH ·UH together with hmat_forw_elim() as an approximate solver
for the linear system of equations HH~µ = ~ϕ is not recommended.

Fortunately, preconditioners for iterative Krylov subspace solvers (→ Rem. 2.3.6.15) need supply only
approximate solvers. If the approximation is bad, convergence of the iterative solver will usually suffer, but
it will not break down. Poor approximation afflicting H-arithmetic can thus be offset.

Preconditioners based on H-arithmetic

Inverses and LU-decompositions computed by H-arithmetic should be used for preconditioning
iterative solvers.

y

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 245

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

2.4.6 H2-Matrices

In § 2.3.4.6 we observed that in the case of local low-rank compression of a kernel matrix based on
bi-directional interpolation information about the underlying cardinal basis functions can be stored in the
nodes of the cluster trees instead in the nodes of the block tree. This unlocks possibilities for more efficient
implementation. This idea also forms the foundation for an enhanced H-matrix format.

§2.4.6.1 (Triple-factor low-rank factorization) Let us return to the local rank-q separable approxima-
tion by bi-directional interpolation as introduced and analyzed in Section 2.2.1.3. Recall that on a box
B ⊂ Dx × Dy ⊂ Rd ×Rd the kernel function G : Dx × Dy → R is replaced with

G̃(x, y) :=
q

∑
k=1

q

∑
ℓ=1

G(tk
x, tℓy) bx

k (x)
︸ ︷︷ ︸

=:gk,ℓ(x)

b
y
ℓ (y)︸ ︷︷ ︸

=:hk,ℓ(y)

, (2.4.6.2)

where ✦ tk
x ∈ Dx, k = 1, . . . , q, and tℓy ∈ Dy, k = 1, . . . , q are interpolation nodes, and

✦ bx
k : Dx → R and b

y
ℓ : Dy → R are the cardinal functions of the underlying interpolation

operator, see § 2.2.1.22.

Thus, given collocation points x1, . . . , xn ∈ Dx y1, . . . , ym ∈ Dy, the approximate kernel collocation ma-

trix M̃ ∈ Rn,m is based on G̃, has rank q, and can be represented in a special triple-factor form

(
M̃
)

i,j
=

q

∑
k=1

q

∑
ℓ=1

G(tk
x, tℓy)b

x
k (xi)b

y
ℓ (y

j) , i = 1, . . . , n , j = 1, . . . , m

M̃ = U C V⊤ ,

U′ :=
[
bx

k (xi)
]

i=1,...,n
k=1,...,q

∈ Rn.q ,

C :=
[

G(tk
x, tℓy)

]
k=1,...,qx
ℓ=1,...,q

∈ Rq,q ,

V :=
[
b

y
ℓ (y

j)
]

j=1,...,m
ℓ=1,...,q

∈ Rm.q .

(2.2.1.47)

 M̃

 =

 U

[

C
] [

V⊤
]

.

A very similar triple-factor low-rank representation arises from bi-directional interpolation combined with
clustering local low-rank compression applied to boundary element Galerkin matrices, see (2.3.6.8) in
Section 2.3.6. y

Assume we use clustering with local rank-q separable approximation of a singular asymptotically smooth
kernel obtained by bi-directional interpolation to build a hierarchical matrix representation MH ∈ Rn,m

(→ Def. 2.4.1.2) of a kernel collocation matrix M ∈ Rn,m based on cluster trees TI (row cluster tree)
and TJ (column cluster tree). Then, using the notations of Def. 2.4.1.2 and, for a far-field cluster pair

σ = (v, w) ∈ Ffar, writing Aσ ∈ R♯I(v),q and Bσ ∈ R♯I(w),q for the low-rank factors of H|v×w according
to (2.4.1.6), we can choose

A = U C , B = V or A = U , B = VC⊤ .

Do we really have to break the beautiful symmetry inherent in bi-directional interpolation in this way? Of
course not, because we can simply retain the three matrix factors as we have already seen in § 2.3.4.10.

EXAMPLE 2.4.6.3 (Storage requirements of double-factor and triple-factor representations) In this
example we revisit Ex. 2.3.2.1, which discussed clustering for d = 1 applied to a kernel collocation matrix

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 246

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

M =
[
G(ξi, ηj)

]n

i,j=1
∈ Rn,n, n = 2L−1, and equidistant collocation points

ξi :=
i− 1/2

n
, ηj :=

j− 1/2

n
, i, j ∈ {1, . . . , n} . (2.3.2.2)

We use the geometric admissibility condition η(B) ≤ 1
2 based on the admissibility measure η as defined

in (2.2.2.7). Here we adopt the convention that a single collocation point has a centered square bounding
box of width 1

2n . We use the same row and column balanced binary cluster tree, whose leaves contain a
single collocation point, see Fig. 107. Far-field cluster pairs must not comprise leaves.

Fig. 118 I

I
✁ Visualization of hierarchical matrix structure for

L = 6.

Each • corresponds to a matrix entry.

✷ =̂ far-field blocks

Counting as in Ex. 2.3.2.1, see (2.3.2.6), we find

♯{near-field blocks} = 3 · 2L − 8 ,

♯{far-field blocks on level ℓ} = 6(2ℓ − 1) , ℓ = 1, . . . , L− 3 .

Each near field block contains a single matrix entry, each far-field block on level ℓ ∈ {1, . . . , L− 3} holds
2L−ℓ−2 indices. Hence the total floating-point storage requirements for the standard hierarchical matrix
data structure with local rank q are

storage(H-matrix) = 3 · 2L − 8 +
L−3

∑
ℓ=1

6(2ℓ − 1) · 2q · 2L−ℓ−2 = O(Ln) for L→ ∞ . (2.4.6.4)

near-field blocks no. of far-field blocks low-rank factors

In § 2.3.4.6 we learned that once a triple-factor representation of far-field blocks σ = (v, w) ∈ TI × TI is
available, the matrices Uσ and Vσ depend only on the clusters v and w, respectively, see (2.3.4.8). Thus
they can be stored in the nodes of the cluster trees (except for the leaf level in this example). Only the
coupling matrices Cσ remain to be stored in the far-field blocks. This leads to total floating point storage
requirements

storage(“§ 2.3.4.6”) = 3 · 2L − 8 +
L−3

∑
ℓ=1

q26(2ℓ − 1) + 2 ·
L−1

∑
ℓ=0

2ℓ · 2L−ℓ = O(Ln) for L→ ∞ .

(2.4.6.5)

near-field blocks = O(n) storage for Cσ = O(n) storage for Uv, Vw

We observe that the asymptotic storage requirements are determined by the last term! y

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 247

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§2.4.6.6 (Transfer matrices) Let us assume that in Eq. (2.2.1.47) we use a bi-directional interpolation
scheme based on tensor-product polynomial interpolation of degree p ∈ N, as explained in § 2.2.1.37.
This means, q = (p + 1)d. The space, in which we approximate the kernel (x, y) 7→ G(x, y) on every
far-field cluster box box(v)× box(w), (v, w) ∈ Ffar, will be the same for all far-field clusters, namely the
tensor-product polynomial space T Pp(R2d) (→ Def. 1.4.3.80). Moreover, for all clusters v ∈ TI, w ∈ TJ,
the spaced spanned by the cardinal functions (aka tensor-product Lagrange polynomials) x 7→ bx

k (x) and

y 7→ b
y
ℓ (y), respectively, will coincide with T Pp(Rd):

∀v ∈ TI: Span{bx
k}

q
k=1 = T Pd(R

p) , ∀v ∈ TI: Span{by
ℓ}

q
ℓ=1 = T Pd(R

p) . (2.4.6.7)

Though not expressed by the notation, the cardinal functions depend on the clusters, of course.

Let us restrict ourselves to the row tree TI and focus on non-leaf clusters v ∈ TI. For the associated
cardinal functions ∈ T Pp(Rd) we write bv

k , k = 1, . . . , q, Owing to (2.4.6.7) they can be represented by
linear combinations of the cardinal functions of each son cluster:

∀s ∈ sons(v): bv
k =

q

∑
ν=1

tv,s
k,νbs

ν , tv,s
k,ν = bv

k(t
s
ν) , k, ν ∈ {1, . . . , q} , (2.4.6.8)

with {ts
1, . . . , ts

q} ⊂ box(s) standing for the set of interpolation nodes on the son cluster s ∈ TI. The

formula for the expansion coefficients tv,s
k,ν is immediate from (2.2.1.28). This permits us to rewrite the

low-rank factor matrix Uv for the cluster v in terms of the corresponding matrices for its sons:

(Uv)i,k = bv
k(xi) =

q

∑
ν=1

tv,s
k,νbs

ν(xi) , i ∈ I(v) , k = 1, . . . , q , (2.4.6.9a)

s ∈ sons(v) ⇒ (Uv)i,k =
q

∑
ν=1

tv,s
k,ν(Us)i,ν , i ∈ I(s) . (2.4.6.9b)

For a cluster v ∈ TI and one of its sons s ∈ sons(v) we collect the coefficients tv,s
k,ν from (2.4.6.9) in the

transfer matrix Tv,s ∈ Rq,q:

(Tv,s)k,ν = tv,s
k,ν = bv

k(t
s
ν) , k, ν = 1, . . . , q . (2.4.6.10)

In the particular case of a binary cluster tree TI with sons(v) = (s1, s2), the rules of matrix multiplication
imply

(2.4.6.9b) Uv =

[
Us1

(Tv,s1)⊤

Us2(T
v,s2)⊤

]
. (2.4.6.11)

✎ Notation: Since every cluster, except for the root cluster, has exactly one father, we may associate the
transfer matrix Tv,s with the son cluster s and, when doing so, denote it by Ts.

y

§2.4.6.12 (Storing hierarchical matrix based on transfer matrices) Let us assume the setting of the
previous paragraph § 2.4.6.6 with triple-factor low-rank representation MH|σ = UvCσV⊤w of the far-field
matrix blocks as in (2.2.1.47). The relationship (2.4.6.11) suggests a more efficient way to store the
hierarchical matrix MH.

Idea: ✦ Store Uv/Vw in the leaf nodes only.
✦ Store the transfer matrices Tv/Tw in all (son) clusters v ∈ TI/w ∈ TJ.

storage(transfer matrices) = q2 · (♯TI + ♯TJ) . (2.4.6.13)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 248

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In the case of balanced binary trees, we know ♯TI ≤ 2♯I and ♯TJ ≤ 2♯J and in this case

storage(transfer matrices) ≤ 2q2(m + n) .

Recall that in Ex. 2.4.6.3 the asymptotically largest amount of storage was used for the cluster-specific
factors of the triple-factor low-rank factorization, cf. (2.4.6.5). So a data structure relying on transfer
matrices can achieve an asymptotic memory complexity of O(n) in this example! y

§2.4.6.14 (H2-matrices) Storing hierarchical matrices with triple-factor low-rank representations of far-
field blocks and the possibility of a “leaf-down” successive computation of the cluster-specific transfer
matrices according to (2.4.6.11) can be abstracted into a new variant of hierarchical matrices.

Definition 2.4.6.15. H2-matrices

Given n, m ∈ N, a matrix H ∈ Rn,m is a H2-matrix with local rank q, if there exist
• cluster trees TI (row tree) and TJ (column tree) for I := {1, . . . , n} and J := {1, . . . , m},
• an abstract admissibility condition adm : TI × TJ → {true, false},
• transfer matrices Tv/Tw for all v ∈ TI \ {root(TI)}/w ∈ TJ \ {root(TJ)},

such that

(i) H|v×w = UvC(v,w)V
⊤
w ,

Uv ∈ R♯I(v),q ,
C(v,w) ∈ Rq,q ,

Vw ∈ R♯I(w)

∀(v, w) ∈ Ffar , (2.4.6.16a)

(ii) Uv =
[
Us(Ts)⊤

]
s∈sons(v)

, v ∈ TI , Vw =
[
Vt(Tt)⊤

]
t∈sons(w)

, w ∈ TJ , (2.4.6.16b)

(iii) ♯I(v), ♯I(w) ≤ q ∀ leaves v ∈ TI, w ∈ TJ , (2.4.6.16c)

where the far field Ffar ⊂ TI × TJ is defined as in Def. 2.4.1.2.

The matrices Uv, v ∈ TI, are called the row cluster bases, Vw, w ∈ TJ, the column cluster basis, and
C(v,w) the coupling matrices.

The estimate

storage(transfer matrices) = q2 · (♯TI + ♯TJ) . (2.4.6.13)

for the amount of memory needed to store the transfer matrices still holds forH2-matrices. For leaf clusters
v, w of TI or TJ, respectively, we have to keep Uv or Vw, which will consume another ≤ q(♯TI + ♯TJ)
floating point numbers. For estimates addressing the amount of storage needed for the coupling matrices
and the near-field blocks refer to § 2.3.4.20 and (2.3.4.30); the role of the sparsity measure spm(F) from
Def. 2.3.4.27 remains unchanged. Summing up, we can bound

storage(H2-matrix) ≤ ∑
(v,w)∈Fnear

♯I(v) + ♯I(w) + (spm(Ffar) + 1)q2 · (♯TI + ♯TJ) . (2.4.6.17)

In the special case of a balanced binary tree as constructed by buildRec from Code 2.3.3.5, the number
of near-field blocks and the number of clusters is bounded by n + m, which implies

storage(H2-matrix from buildRec()) = O(q2(m + n)) for n, m→ ∞ , (2.4.6.18)

where we assumed that the sparsity measure as introduced in Def. 2.3.4.27 is uniformly bounded with
respect to n, m. Compared to Ex. 2.4.6.3, (2.4.6.5), we could remove the number of levels from the
asymptotic estimate of the required storage. y

Remark 2.4.6.19 (Data structure for H2-matrices) Any object of a type compatible with the concept of
an H2-matrix with local rank q according to Def. 2.4.6.15 must provide

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 249

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• access to suitable objects for both row and column cluster tree TI and TJ,

• instant access to

– the cluster bases Uv ∈ R♯I(v),q and Vw ∈ R♯I(w),q for leaf nodes,

– the tranfer matrices Tv ∈ Rq,q, Tw ∈ Rq,q for all v ∈ TI and w ∈ TJ.

– the coupling matrices C(v,w) ∈ Rq,q for all far-field cluster pairs (v, w) ∈ Ffar,

– the dense near-field blocks H|v×w ∈ R♯I(v),♯I(w) for all (v, w) ∈ Fnear.

y

§2.4.6.20 (H2-matrix×vector multiplication) We extend the considerations of Section 2.3.5 about how
to organize the matrix×vector product~ρ := H~µ efficiently in the case of local triple-factor low-rank repre-
sentation

M̃
∣∣∣
v×w

= Uv · C(v,w) ·V⊤w , (v, w) ∈ Ffar ,

of the matrix M̃ to H2-matrices, which feature the additional component of transfer matrices, see
Def. 2.4.6.15, (2.4.6.16b).

Recall the restrict-to-cluster restriction and index remapping operation for w ∈ TJ

Rw : Rm → R♯I(w) , Rw(~µ) :=

µj1
...

µjℓ

 , with I(w) = {j1, . . . , jℓ}, ℓ := ♯I(w) . (2.3.5.1)

and the expand-from-cluster assembly operation for a row cluster v ∈ TI:

Ev : R♯I(v) → Rn , (Ev~ν)i :=

{
νℓ , if iℓ = i ,

0 , if k 6∈ I(v) ,
with I(v) = {i1, . . . , ik}, k := ♯I(v) ,

(2.3.5.2)

with associated matrices Rw and Ev. Consider a far-field cluster pair (v, w) ∈ Ffar consisting of non-leaf
clusters v ∈ TI, w ∈ TJ with

sons(v) = {s1, s2} , sons(w) = {t1, t2} .

Then, (2.4.6.16b) implies

Uv =

[
Us1

(Ts1
)⊤

Us2(Ts2)
⊤

]
, Vw =

[
Vt1

(Tt1
)⊤

Vt2(Tt2)
⊤

]
. (2.4.6.21)

We right-multiply H ∈ Rn,m with a column vector~µ ∈ Rm, storing the result in ~ρ ∈ Rn. We focus on the
contribution of the far-field block H|v×w, (v, w) ∈ Ffar, H in H2-format:

(2.4.6.16a) ~ρ← ~ρ + EvUvC(v,w)V
⊤Rw~µ .

Next, based on (2.4.6.21) the second summand can be expressed as

EvUvC(v,w)V
⊤Rw~µ =

Es1

Us1
T⊤S1︸︷︷︸
FtS

+Es2Us2 T⊤s2︸︷︷︸
FtS

 · C(v,w) ·

 Tt1︸︷︷︸

StF

V⊤t1
Rt1

+ Tt2︸︷︷︸
StF

V⊤t2
Rt2

~µ .

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 250

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We observe that restrict-to-cluster and multiplication with the column cluster basis as well as multiplication
with the row cluster basis and expand-from-cluster can be done on the level of the sons. This has to be
supplemented by son→father (StF) and father→son (FtS) transformations through the transfer matrices.
Thus, by recursion all reduction and expansion operations can be pushed to the leaf level of the cluster
trees.

The following algorithm does this for restrict-to-cluster and multiplication with the column cluster bases
and implements the so-called forward transformation.

Pseudocode 2.4.6.22: Recursive transformation into column cluster bases

1 void forward_trf (H2−mat r i x M , c l u s t e r w ∈ TJ ,
2 vec to r ~µ ∈ Rm , re f vec to rs (~ωw)w∈TJ

) {

3 i f (sons(w) == ∅) { // leaf cluster

4 ~ωw := V⊤w~µ|I(w) ;

5 }
6 else { // recurse into sons for father clusters

7 foreach t ∈ sons(w) {
8 forward_trf (M , t , ~µ , (~ωw)w∈TJ

) ;

9 ~ωw += Tt~ω|I(t) ;

10 }
11 }
12 }

The backward transformation realizes the multiplication with the row cluster bases Uv for each v ∈ TI and
the subsequent expand-from-cluster operation:

Pseudocode 2.4.6.23: Recursive transformation into column cluster bases

1 void backward_trf (H2−mat r i x M , c l u s t e r v ∈ TI ,

2 vec to rs
(
~ζv

)
v∈TI

, re f vec to r ~ρ ∈ Rn) {

3 i f (sons(v) == ∅) { // leaf cluster

4 ~ρ|I(v) += Uv
~ζv ;

5 }
6 else { // recurse into sons for father clusters

7 foreach s ∈ sons(v) {

8 ~ζs += T⊤s ~ζv ;

9 backward_trf (M , s ,
(
~ζv

)
v∈TI

, ~ρ) ;

10 }
11 }
12 }

The argument vector~ρ used for returning the result has to be initialized with zero.

These two recursive functions are building blocks for a 3-pass computation of M~µ analogous to the algo-
rithm from Section 2.3.5:

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 251

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pseudocode 2.4.6.24: Recursive transformation into column cluster bases

1 vec to r ← h2mv(H2−mat r i x M , vec to r ~µ ∈ Rn) {
2 vec to rs (~ωw)w∈TJ

:= 0 ; forward_trf (M , root(TJ) , ~µ , (~ωw)w) ;

3 vec to rs
(
~ζv

)
v∈TI

= 0 ;

4 // far-field blocks: multiplication with coupling matrices

5 foreach ((v, w) ∈ Ffar) { ~ζv += C(v,w)~ωw ; }
6 // near-field blocks: direct multiplication

7 foreach ((v, w) ∈ Fnear) { ~ζv += H|v×w~ωw ; }

8 vec to r ~ρ ∈ Rn := 0 ; backward_trf (M , root(TI) ,
(
~ζv

)
v∈TI

, ~ρ) ;

9 return ~ρ ;
10 }

Review question(s) 2.4.6.25.

1. We can define a class H∗ of n×m hierarchical matrices, n, m ∈ N by fixing the row and column
cluster trees and the block partition F. Outline an algorithm that, given M ∈ Rn,m constructs

H∗ := argmin
H∈H∗

‖M−H‖F .

△

y

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 252

Bibliography

[BK16] Jonas Ballani and Daniel Kressner. “Matrices with hierarchical low-rank structures”. In: Exploit-

ing hidden structure in matrix computations: algorithms and applications. Vol. 2173. Lecture
Notes in Math. Springer, Cham, 2016, pp. 161–209 (cit. on p. 157).

[Beb08] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Prob-

lems. Vol. 63. Lecture Notes in Computational Science and Engineering (LNCSE). Springer-
Verlag, 2008 (cit. on p. 179).

[Bör21] S. Börm. Numerical Methods for Non-Local Operators. Lecture Notes. Universität Kiel, 2021
(cit. on pp. 198, 241, 252).

[GV13] Gene H. Golub and Charles F. Van Loan. Matrix computations. Fourth. Johns Hopkins Stud-
ies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013,
pp. xiv+756 (cit. on p. 235).

[GH03] L. Grasedyck and W. Hackbusch. “Construction and arithmetics ofH-matrices”. In: Computing

70 (2003), pp. 295–334 (cit. on pp. 219, 221).
[Hac15] Wolfgang Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Vol. 49. Springer Series

in Computational Mathematics. Springer, Heidelberg, 2015, pp. xxv+511 (cit. on p. 252).
[HM21] Helmut Harbrecht and Michael Multerer. Samplets: A new paradigm for data compression.

2021 (cit. on p. 198).
[NS02] K. Nipp and D. Stoffer. Lineare Algebra. 5th ed. Zürich: vdf Hochschulverlag, 2002 (cit. on

p. 169).
[Str09] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich. 2009 (cit. on p. 181).

253

Chapter 3

Convolution Quadrature

This chapter studies a class of modern numerical methods for particular evolution problems, which are
models with a particular direction of propagation, usually called time. In these models we can distin-
guish past and future and the latter must not have any influence on the former, a feature called causality.
The mathematical description of many evolution models relies on initial value problems (IVP) for ordi-
nary differential equations (ODEs), see [NumCSE Section 11.1]. They seek an for an unknown function
y : I ⊂ R → V satisfying (the symbol ˙ stands for the derivative with respect to time t)

ẏ = f(t, y) , y(t0) = y0 , (3.0.0.1)

with y0 ∈ V and f : I ×V → V. Here, V is the state space, either V = Rd, d ∈ N, or a more general Ba-
nach space. The latter case also covers evolution problems for partial differential equations like parabolic
initial boundary value problems [NumPDE Section 9.2] and wave equations [NumPDE Section 9.3]. In this
case V will be a Sobolev space like H1(Ω).

One may call (3.0.0.1) a “time-local” evolution, because the direction of evolution depends only on the
current state. This is in contrast to causal evolution problems with memory, which will be our focus now.
In these problems (the change of) the current state will be influenced by the entire past from some initial
time. This will entail fundamentally new approaches to the construction of stable and efficient numerical
integrators (timestepping schemes).

Contents

3.1 Basic Concepts and Tools . 269

3.1.1 Convolution of Causal Functions . 269
3.1.2 Discrete Convolutions . 273
3.1.3 The Laplace Transform . 276
3.1.4 Diagonalizing Convolutions . 281
3.1.5 Toeplitz Matrix Numerical Linear Algebra 285

3.2 Convolution Equations: Examples . 291

3.2.1 Tomography: Abel Integral Equation . 291
3.2.2 Impedance Boundary Conditions . 293
3.2.3 Time-Domain Boundary Integral Equations 296

3.3 Implicit-Euler Convolution Quadrature . 299

3.3.1 Setting and Goal . 299
3.3.2 Derivation of Implicit Euler CQ . 301
3.3.3 Properties of implicit-Euler Convolution Quadrature 307
3.3.4 Convergence . 310

3.4 Multistep Convolution Quadrature (MSCQ) . 313

3.4.1 Linear Multi-Step Numerical Integrators . 314
3.4.2 Multi-Step Convolution Quadrature: Weights 321

254

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

3.4.3 Multi-Step Convolution Quadrature: Algorithms 329
3.5 Runge-Kutta Convolution Quadrature (RKCQ) . 334

3.5.1 Implicit Runge-Kutta Single-Step Methods 335
3.5.2 Runge-Kutta CQ weights . 336

3.6 Fast and Oblivious Convolution Quadrature . 339

Supplementary literature.

• [HS16]: A survey of convolution quadrature and its application to retarded potential time-
domain integral equations with a focus on algorithms

• [Say16]: A comprehensive treatment of retarded potential time-domain integral equations for
wave scattering problems. Convolution quadrature is discussed in several chapters.

• [BS21]: A complete treatment of convolution quadrature, theory and algorithms, for the solution
of convolution-type evolution problems.

• [LS02; SLL65]: Fast & oblivious convolution quadrature, two variants.

3.1 Basic Concepts and Tools

3.1.1 Convolution of Causal Functions

Everybody knows what is meant by the pointwise multiplication of two (continuous) functions R 7→ C,
which yields another continuous function R 7→ C. Now we will learn about another operation on pairs of
functions R 7→ C, which is as important, but rather obscure.

We introduce that operation as a fundamental binary operation on absolutely integrable functions R → R,
that are functions belonging to

L1(R) := { f : R → R integrable: ‖ f ‖L1(R) :=
∫

R
| f (x)|dx < ∞} . (3.1.1.1)

Definition 3.1.1.2. Convolution on the real line

Given two functions f , g ∈ L1(R), their convolution f ∗ g ∈ L1(R) is defined as

(f ∗ g)(t) :=
∫

R
f (t− ξ) g(ξ)dξ =

∫

R
f (ξ) g(t− ξ)dξ , t ∈ R .

From the very definition we conclude that

∗ : L1(R)× L1(R)→ L1(R) is continous, bilinear, and symmetric.

Here, “symmetric” means that f ∗ g = g ∗ f , which is a straightforward consequence of making the sub-
stitution xi′ := t− ξ. Continuity in L1(R) can be concluded by applying Fubini’s theorem [STRLN89]:

‖ f ∗ g‖L1(R) =
∫

R

∣∣∣∣
∫

R
f (t− ξ)g(ξ)dξ

∣∣∣∣dt

≤
∫

R

∫

R
| f (t− ξ)||g(ξ)|dξ dt

≤
∫

R
|g(ξ)|

∫

R
f (t− ξ)dt dξ ≤ ‖ f ‖L1(R) ‖g‖L1(R) ∀ f , g ∈ L1(R) .

Interchanging orders of integration (again possible owing to Fubini’s theorem) reveals another important
property of convolution:

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 255

https://en.wikipedia.org/wiki/Fubini%27s_theorem

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Corollary 3.1.1.3. Associativity of convolution

(f ∗ g) ∗ h = f ∗ (g ∗ h) ∀ f , g, h ∈ L1(R)

EXAMPLE 3.1.1.4 (Some special convolutions)

• Convolution with the Heaviside function boils down to integration:

f (t) =

{
1 , if t ≥ 0 ,

0 , if t < 0 ,
(f ∗ g)(t) =

t∫

−∞

g(ξ)dξ , t ∈ R . (3.1.1.5)

• Convolution reproduces (complex) exponentials:

(f ∗ {t 7→ exp(iωt)}) = exp(iωt) ·
∞∫

−∞

f (ξ) exp(−iωξ)dξ , t ∈ R . (3.1.1.6)

Sloppily speaking, when considering the convolution with a fixed function f as a linear mapping
g 7→ f ∗ g, then the exponentials {t 7→ exp(iωt)} can be regarded as eigenfunctions. However,
note that they do not belong to L1(R)!

y

Remark 3.1.1.7 (Convolution in Lp(R)-spaces) As a generalization of L1(R), for 1 ≤ p < ∞ and an
interval I ⊂ R we may consider the space of functions

Lp(I) := { f : I → R integrable: ‖ f ‖p

Lp(I)
:=
∫

I
| f (x)|p dx < ∞} . (3.1.1.8)

This family is completed by L∞(R) the space of essentially bounded functions equipped with a generalized
supremum norm. All these spaces are Banach spaces. We can define the convolution on certain pairs of
them.

Theorem 3.1.1.9. Young’s inequality for convolutions [McL00, Thm. 3.1]

If p, q, r ∈ [1, ∞] satisfy p−1 + q−1 = 1 + r−1, then the convolution can be extended to a continu-

ous mapping ∗ : Lp(R)× Lq(R)→ Lr(R), in particular

‖ f ∗ g‖Lr(R) ≤ ‖ f ‖Lp(R) · ‖g‖Lq(R) ∀ f ∈ Lp(R) , g ∈ Lq(R) . (3.1.1.10)

The case p = r = ∞, q = 1, furnishes pointwise estimates

(f ∗ g)(t) ≤ ‖ f ‖L1(R) · ‖g‖L∞(R) ∀ f ∈ L1(R) , g ∈ L∞(R) . (3.1.1.11)

y

Remark 3.1.1.12 (Convolution of distributions [Rud73, pp. 170]) Sloppily speaking, a distribution on
R is a linear functional on the space C∞

0 (R) of smooth compactly supported functions. The evaluation of
a distribution φ for g ∈ C∞

0 (R) is usually written as a formal integral:

φ(g) =: 〈φ, g〉 =:
∫

R
φ(ξ) g(ξ)dξ , ∀g ∈ C∞

0 (R) .

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 256

https://en.wikipedia.org/wiki/Young_convolution_inequality

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In this sense, we can read the convolution of a distribution with a smooth compactly supported function
g ∈ C∞

0 (R)

(φ ∗ g)(t) :=
∫

R
φ(t− ξ)g(ξ)dξ =

∫

R
φ(ξ)g(t− ξ)dξ := 〈φ, {ξ 7→ g(t− ξ)}〉 , t ∈ R .

(3.1.1.13)

In some cases the resulting expression remains meaningful even for functions g of limited smoothness.
One such case is the δ-distribution

δx : C∞
0 (R)→ R , δx(g) := g(x) x ∈ R , (3.1.1.14)

for which convolution becomes a shift operation that makes sense for for very general functions

(δx ∗ g)(t) = g(t− x) , g ∈ L∞(R) . (3.1.1.15)

y

§3.1.1.16 (Convolutions of operators) In Def. 3.1.1.2, we considered the convolution of two real-valued
functions. By componentwise consideration, we can instantly extend this to integrable matrix-valued and
vector-valued functions

F : R → Rn,m , g : R → Rm .

(F ∗ g)(t) :=
∫

R
F(t− ξ)·g(ξ)dξ =

∫

R
F(ξ) · g(t− ξ)dξ ∈ Rn , t ∈ R .

Here, · designates the matrix×vector product. Generalizations of the associativity property, Cor. 3.1.1.3,
and 3.1.1.9 to this case are straightforward. Of course, this kind of convolution can no longer be commu-
tative.

We can even go one step further and for Banach spaces X, Y consider the convolution with a one-
parameter family of bounded linear operators represented by an integrable “linear-operator-valued” func-
tion f : R → L(X, Y), L(X, Y) the vector space of bounded linear mappings X → Y:

f : R → L(X, Y) , g : R → X: (f ∗ g)(t) :=
∫

R
f(t− ξ)(g(ξ))︸ ︷︷ ︸

∈Y

dξ ∈ Y , t ∈ R . (3.1.1.17)

Of course, once operators are involved, convolutions can no longer be symmetric.

Read f ∗ g as “convolution operator f acting on g”.

y

§3.1.1.18 (Causal functions) Causal evolutions model processes that start at some point t = 0 in time.
They can be described by functions on R that vanish for t < 0. This gives time a direction.

Definition 3.1.1.19. Causal functions

For a vector space X an integrable function f : R → X is called causal, if f (t) = 0 for almost all
t < 0.

Note that causal functions are defined on the whole real line R. Thus, a causal function g that is continuous

will automatically satisfy g(0) = 0. If g is k-times continuously differentiable, then g(ℓ)(0) = 0 for all
0 ≤ ℓ ≤ k.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 257

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The convolution of two C-valued causal functions takes a special form and yields another causal function

f , g causal ⇒ (f ∗ g)(t) =
∫ t

0
f (t− ξ)g(ξ)dξ =

∫ t

0
f (ξ)g(t− ξ)dξ , t ≥ 0 , (3.1.1.20)

⇒ (f ∗ g)(t) depends on f |[0,t], g|[0,t] only. (3.1.1.21)

Thus, in the causal case, Thm. 3.1.1.9 leads to the estimates

‖ f ∗ g‖Lr([0,T]) ≤ ‖ f ‖Lp([0,T]) · ‖g‖Lq([0,T]) , (3.1.1.22)

if p, q, r ∈ [1, ∞] satisfy the assumptions of Thm. 3.1.1.9: p−1 + q−1 = 1 + r−1. y

Remark 3.1.1.23 (Signal-processing background) A function f : R → R can be regarded as a time-
continuous, analog signal. Such a signal can be sent over a causal, linear, time-invariant channel, which,
mathematically speaking, is a linear operator T : L∞(R)→ L∞(R) that

✦ maps causal functions to causal functions, that is, g(t) = 0 for t < 0 then (Tg)(t) = 0 for t < 0,
too.

✦ satisfies

T({t 7→ g(t− ξ)})(t) = (Tg)(t− ξ) , ∀g ∈ L∞(R) , ∀ξ ∈ R . (3.1.1.24)

Fig. 119

xk yk

time ttime t

input signal output signalchannel T

Then there is a f ∈ L1(R) such that

Tg = f ∗ g ∀g ∈ L∞(R) .

The function f is called the impulse response (function) of T, because “ f = T(δ0)” hints that it can be
obtained as output, when feeding the “impulse” δ0 into the channel.

Fig. 120

xk yk

time ttime t

impulse output signal

00

channel T

y

§3.1.1.25 (Convolution equations (CEQs)) As in § 3.1.1.16, let X, Y be Banach spaces. Given a causal
continuous function y : R → Y and a causal operator-valued function f : R → L(X, Y), we can state the
convolution equation

(f ∗ u)(t) =
∫ t

0
f(t− ξ)(u(ξ))dξ = y(t) , t ∈ R , (3.1.1.26)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 258

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for the unknown causal function u : R → X. At first glance this looks like a simpler form of the integral
equations tackled in Chapter 1, but it is fundamentally different because it encodes a direction of propa-
gation, since u|[0,T] should depend on y|[0,T] only (causality!). This is also reflected by the fact that the
domain of integration depends on t unlike in the case of integral equations of the form

u : Γ→ R:
∫

Γ
k(x, y) u(y)dS(y) = y(x) , y ∈ Γ .

This chapter will be dedicated to

1. approximating the convolution (3.1.1.20) of causal functions, given in a particular form, namely
through their Laplace transform.

2. approximately solving convolution equations like (3.1.1.26).

Since both types of tasks address evolution problems, the methods will have the flavor of timestepping
schemes. y

3.1.2 Discrete Convolutions

§3.1.2.1 (Sequences) We consider the sampling of a continuous function f : R → X, X a vector space,
on an equidistant lattice with step size τ > 0,

Gτ := {tℓ := τ · ℓ}ℓ∈Z . (3.1.2.2)

This yields a sequence (fℓ) : Z → X, fℓ := f (tℓ), ℓ ∈ Z “(fℓ) = f |Gτ
”.

✎ Notation: We write (xℓ) for a sequence Z → X with terms xℓ ∈ X. Sometimes the index range will be
restricted to a subset of Z.

Replacing the improper integral in Def. 3.1.1.2 with a bi-infinite sum yields the convolution of real-valued
absolutely summable sequences:

Definition 3.1.2.3. Convolution of sequences

If the sequences (fℓ), (gℓ) : Z → C satisfy ∑ℓ∈Z | fℓ| < ∞ and ∑ℓ∈Z |gℓ| < ∞, then

((fℓ) ∗ (gℓ))n := ∑
ℓ∈Z

fn−ℓ · gℓ = ∑
ℓ∈Z

fℓ · gn−ℓ , n ∈ Z . (3.1.2.4)

defines another summable sequence Z → R the discrete convolution of (fℓ) and (gℓ).

The discrete convolution operation enjoys similar properties as the convolution on R:

Theorem 3.1.2.5. Properties of discrete convolution of sequences

The discrete convolution according to Def. 3.1.2.3 is a symmetric, bilinear, and associative mapping

of the space ℓ1(Z) of summable sequences into itself.

Young’s inequality of Thm. 3.1.1.9 also carries over:

(
∞

∑
n=−∞

|((fℓ) ∗ (gℓ))n|r
) 1

r

≤
(

∞

∑
n=−∞

| fℓ|p
) 1

p

·
(

∞

∑
n=−∞

|gℓ|q
) 1

q

(3.1.2.6)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 259

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for p, q, r ∈ [1, ∞] with p−1 + q−1 = 1 + r−1 and for all sequences for which the right hand side of
(3.1.2.6) is finite. If p, r = ∞, q = 1, the maximum modulus term of the sequence has to be picked.
y

Remark 3.1.2.7 (Sequences as distributions) Given a sequence (fℓ) ⊂ R, for τ > 0 we can define the
distribution

ϕ :=
∞

∑
ℓ=−∞

fℓ δτℓ , δτℓ =̂ δ-distribution located at τℓ, cf. (3.1.1.14). (3.1.2.8)

Based on

(φ ∗ g)(t) :=
∫

R
φ(t− ξ)g(ξ)dξ =

∫

R
φ(ξ)g(t− ξ)dξ := 〈φ, {ξ 7→ g(t− ξ)}〉 , t ∈ R ,

(3.1.1.13)

we find that for g ∈ C∞
0 (R)

{
t 7→ (ϕ ∗ g)(t)

}
=
{

t 7→
∞

∑
ℓ=−∞

fℓ g(t− τℓ)
}
∈ C∞(R) . (3.1.2.9)

A closer inspection shows that with ϕ given in (3.1.2.8)

(ϕ ∗ g)|Gτ
= (fℓ) ∗ (g|Gτ

) . (3.1.2.10)

Beware: the ∗ on the left designated the convolution of (generalized) functions according to Def. 3.1.1.2,
whereas the ∗ on the right means the convolution of sequences from Def. 3.1.2.3. y

§3.1.2.11 (Causal sequences) If f : R → X is causal, the sequence (fℓ) := f |Gτ
is causal in the sense

that fℓ = 0 for ℓ < 0. In analogy to (3.1.1.20) the discrete convolution of two causal sequences yields
another causal sequence according to

(fℓ), (gℓ) causal ⇒ ((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n ∈ N0 . (3.1.2.12)

Causal sequences are a powerful abstraction: In a signal-processing context a causal sequence repre-
sents a time-discrete analog signal, recall [NumCSE § 4.0.0.1]. Regarding the causal sequence (gℓ) as
input the convolution (fℓ) ∗ (gℓ) represents the output of a time-invariant, linear, causal filter with impulse

response (fℓ): the impulse gℓ at t = tℓ triggers the response (fk−ℓ)k≥ℓ and the output signal results
from the linear superposition of all these responses. More details are given in [NumCSE Section 4.1]. y

§3.1.2.13 (Operator-valued sequences) The generalization pursued in § 3.1.1.16 can also be pursued
for causal sequences. For normed vector spaces X, Y let (fℓ) ⊂ L(X, Y) stand for a causal sequence of
bounded linear operators X → Y, and (gℓ) ⊂ X for a causal sequence in X. The natural way to extend
the discrete convolution to these sequences is

((fℓ) ∗ (gℓ))n := ∑
ℓ∈Z

fn−ℓ(gℓ) = ∑
ℓ∈Z

fℓ(gn−ℓ) ∈ Y , n ∈ Z . (3.1.2.14)

This defines a causal sequence in Y.

A discrete convolution equation for causal sequences has the simple structure of an infinite triangular
linear system of operator equations. If (fℓ) ⊂ L(X, Y), (yℓ) ⊂ Y are causal sequences, then

(fℓ) ∗ (uℓ) = (yℓ) ⇔

f0 O
f1 f0 O . . .
f2 f1 f0 O . . .
...

.
...

.

u0

u1

u2
...
...

=

y0

y1

y2
...
...

. (3.1.2.15)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 260

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

If and only if f0 is invertible, this operator equation can be solved recursively similar to the forward elimina-
tion step in Gaussian elimination:

f0un = yn −
n−1

∑
ℓ=0

fn−1−ℓuℓ , n ∈ N0 . (3.1.2.16)

This simple scheme is also known as marching on in time (MOT) algorithm in the area of timestepping
methods for evolution problems. y

Our goal will be the disretization of the convolution of causal functions through replacement by a dis-

crete convolution: for causal f : R → L(X, Y), g : R → X we seek τ-dependent sequences (w
f ,τ
ℓ)

of convolution weights such that

(f ∗ g)|Gτ
≈ (w

f ,τ
ℓ) ∗ g|Gτ

(3.1.2.17)

m
nτ∫

0

f (tn − ξ) (g(ξ))dξ ≈
n

∑
ℓ=0

w
f ,τ
n−ℓ g(ℓτ) , (3.1.2.18)

where “≈” should be read as “convergence in a suitable norm for τ → 0”. The origin of the name
convolution quadrature for this approximation is clear, because (3.1.2.18) can be regarded as the
approximation of an integral value by a weighted sum, similar to a quadrature formula as defined in
Def. 1.4.3.41.

We consider the approximation problem for f ∗ g in a particular setting: the function f may have awkward
properties or not be available at all. Instead, its Laplace transform may be simple and known and we

should rely on it to determine the convolution weights w
f ,τ
ℓ .

3.1.3 The Laplace Transform

The exponentials es : t 7→ exp(st) have the unique property that they are “eigenfunctions” of both the

differentiation operator d
dt : C∞(R)→ C∞(R) and the translations g 7→ g(· − τ), τ ∈ R:

d

dt
{t 7→ exp(st)} = s {t 7→ exp(st)} , exp(s(t− τ)) = exp(−sτ) exp(st) .

So exponentials are the right building blocks for function spaces to use, when dealing with (linear) equa-
tions involving differentiation and translations. The latter play a prominent role in convolutions.

§3.1.3.1 (Fourier transform on R) Considering the exponentials on the entire real line R and demanding
that they or their Lp-norms are bounded, leaves s := ıω, ω ∈ R as the only option, which leads to the
famous Fourier transform

F : L1(R)→ L∞(R) , F f (ω) :=
1√
2π

∫

R
f (t) exp(−ıωt)dt . (3.1.3.2)

By the Plancherel theorem F gives rise to an isometric isomorphism of L2(R):

‖ f ‖L2(R) = ‖F f ‖L2(R) ∀ f ∈ L2(R) , (3.1.3.3)

which means
∫

R
| f (t)|2 dt =

∫

R
|F f (ω)|2 dω .

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 261

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Thus the Fourier transform is invertible on L2(R) and for F (f) ∈ L2(R) ∩ L1(R) we have the inversion
formula

f (t) =
1√
2π

∫

R
F f (ω) exp(ıωt)dω . (3.1.3.4)

Morally speaking, by means of the Fourier transform, a function f : R → C can be broken down into a
superposition of exponentials {t 7→ exp(ıωt)}. y

On the half real line R+
0 a much larger family of exponentials does not blow up: {t 7→ exp(st)} for

Re(s) ≤ 0. This gives much more freedom for writing functions as a superposition of exponentials.

Definition 3.1.3.5. Causal polynomially bounded functions

For a vector space X denote by CF (X) the space of causal (→ Def. 3.1.1.19) integrable functions
R → X satisfying a polynomials growth bound:

∀ f ∈ CF (X): ∃M > 0, m ∈ N: ‖ f (t)‖X ≤ M(1 + |t|)m ∀t ∈ R .

In the case X = R the space CF (X) is closed under convolution: f , g ∈ CF (X) ⇒ f ∗ g ∈ CF (X),
because the convolution of two polynomial causal functions is another polynomial causal function.

Definition 3.1.3.6. Laplace transform

For f ∈ CF (X), its Laplace transform L f is an X-valued function on the right half plane
C+ := {z ∈ C : Re(z) > 0} defined as

L f (s) :=
∫ ∞

0
f (t) e−st dt , s ∈ C+ .

The improper integral is well defined because

∥∥ f (t)e−st
∥∥

X
≤ ‖ f (t)‖X exp(−Re(s)t)

Def. 3.1.3.5
≤ M(1 + t)m exp(−Re(s)t) .

The bound on the right-hand side is an integrable function of t for any Re(s) > 0.

The next theorem is proved by differentiation under the integral and a limit argument (Weierstrass theorem)
to deal with the improper integral.

Theorem 3.1.3.7. Analyticity of Laplace transforms

For every f ∈ CF (X) its Laplace transform L f is an analytic/holomorphic function (→
Def. 1.4.3.68) on C+.

Analytic functions initially defined on open subsets of C possess an intrinsic extension to a maximal
domain of definition. This also applies to Laplace transforms.

EXAMPLE 3.1.3.8 (Laplace transform of causal power function) We consider the causal power func-
tion

f (t) := t
q
+ :=

{
tq for t ≥ 0 ,

0 for t < 0
, q > −1 .

(The constraint q > −1 is meant to ensure integrability, because for q < 0 the function has a singularity
at t = 0.) This function belongs to CF (R).

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 262

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We directly compute the Laplace transform, first for s > 0,

L f (s) =

∞∫

0

tq e−st dt =

∞∫

0

(η
s

)q
e−ηs−1 dη [Subst. η := st]

=
1

sq+1

∞∫

0

ηqe−η dη =
Γ(q + 1)

sq+1
,

where Γ stands for the Gamma function, which interpolates the factorials: Γ(n) = (n− 1)! for all n ∈ N.

Next, we consider analytic continuation beyond R+:

Fig. 121

Re

Im
We can rewrite s−(q+1) = exp(−(q + 1) log(s)) to
find the maximal domain of analyticity of L f : The
(main branch of the) complex logarithm is analytic in
C \ [−∞, 0], which also yields the domain of analyt-
icity of L f :

L{t 7→ t
q
+} is analytic in C \ [−∞, 0]

Obviously this domain of analyticity extends far be-
yond C+. This is a common phenomenon with
Laplace transforms: Though defined only on C+

by means of the integral formula, they often per-
mit an analytic extension into large subdomains of
C− := (z ∈ C : Re(z) < 0). The extension is then
understood as L f .

y

Remark 3.1.3.9 (Complex contour integrals) In complex analysis you have seen complex contour inte-
grals, the integral of a function f : D ⊂ C → C along a C1

pw-curve Γ ⊂ D, given by a parameterization

γ : I ⊂ R → C, Γ := γ(I), I an interval:
∫

Γ
f (z)dz :=

∫

I
f (γ(ξ)) · γ̇(ξ)dξ , (3.1.3.10)

where · is multiplication in C, and γ̇ is the derivative with respect to the parameter.

For example, the unit circle S1 ⊂ C around 0 viewed as an oriented closed curve has the the parameteri-
zation ξ 7→ exp(2πıξ), ξ ∈ I := [0, 1]. Hence, the contour integral of a C-valued function f defined in a
neighborhood of S1 can be computed via

∫

S1
f (z)dz = 2πı

∫ 1

0
f (exp(2πıξ)) exp(2πıξ)dξ .

y

§3.1.3.11 (Laplace inversion formula) Restricting the Laplace transform to a line parallel to the imaginary
axis reveals a close connection with the Fourier transform on R addressed in § 3.1.3.1. For an integrable
causal function f ∈ CF (X) we formally compute

s = σ + ıω ⇒ L f (s) =

∞∫

−∞

f (t) e−(σ+ıω)t dt =
√

2πF ({t 7→ e−σt f (t)})(ω) , (3.1.3.12)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 263

https://en.wikipedia.org/wiki/Gamma_function

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

where we have split s ∈ C+ into real and imaginary part: s = σ + ıω, σ ∈ R+, ω ∈ R. Apply the Fourier
inversion formula

(F−1G)(t) :=
1√
2π

∞∫

−∞

G(ω) exp(ıωt)dω , t ∈ R , (3.1.3.4)

to (3.1.3.12) to obtain

√
2πe−σt f (t) = F−1{ω 7→ (L f)(σ + ıω)}(t) = 1√

2π

∞∫

−∞

L f (σ + ıω) exp(ıωt)dω .

Multiply with exp(σt) and recall the tool of complex contour integration from Rem. 3.1.3.9, which permits
us to rewrite

∞∫

−∞

L f (σ + ıω) exp((σ + ıω)t)dω = 1
ı

∫

σ+ıR
L f (s) exp(st)ds ,

where σ + ıR is a “curve” in C, a line parallel to the imaginary axis, for which we have used the natural
parametertization ω → σ + ıω.

Theorem 3.1.3.13. Inverse Laplace transform

If F : C+ → X is analytic in C+ and satisfies the decay condition

‖F(s)‖X ≤ |s|µ for µ < −1 , (3.1.3.14)

then, for any σ > 0, F is the Laplace transform of the causal function given by the improper contour

integral (Bromwich integral)

(L−1F)(t) :=
1

2πı

∫

σ+ıR
F(s) exp(st)ds , t ∈ R (3.1.3.15)

The decay of s 7→ F(s) stipulated by (3.3.1.2) guarantees the existence of the improper integral. By the
Cauchy integral theorem that we recall next

• the value of the contour integral does not depend on σ > 0, and

• the function from (3.1.3.15) is causal.

Theorem 3.1.3.16. Cauchy integral theorem

Let D ⊂ C be open and simply connected. If f : D→ C is analytic on D and Γ ⊂ D is a closed

C1
pw-curve then the contour integral (→ Rem. 3.1.3.9) of f over Γ vanishes

∫

Γ
f (z)dz = 0 .

y

§3.1.3.17 (Vanishing Bromwich integrals) Now, for σ > 0 and R > 0 consider the contour

ΓR := {σ + ı[−R, R]} ∪ {|z− σ| = R, Re(z) > σ} , (3.1.3.18)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 264

https://en.wikipedia.org/wiki/Cauchy_integral_theorem

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

marked in color in Fig. 122. We also assume that f ∈ CF (X) is such that its Laplace transform L f is
polynomially bounded,

∃C > 0, m ∈ N: |L f (s)| ≤ C|s|m ∀s ∈ C+ . (3.1.3.19)

Fig. 122

Re

Im

R

−R

To begin with, Thm. 3.1.3.7 combined with by the
Cauchy integral theorem imply

∫

ΓR

F(s) est ds = 0 .

If t < 0, then

|est| = et Re s ≤ 1 ∀s ∈ C+ . (3.1.3.20)

This identity together with (3.1.3.19) also gives us the
bound
∣∣∣∣∣∣∣∣

∫

|z−σ|=R
Re(z)>σ

L f (s) est ds

∣∣∣∣∣∣∣∣
≤ C

∫

|z−σ|=R
Re(z)>σ

|s|met Re s ds

We parameterize the half circle as ϕ ∈ [−π
2 , π

2] 7→
[

σ+R cos ϕ
R sin ϕ

]
, which permits us to express the previous

bound as
∫

|z−σ|=R
Re(z)>σ

L f (s) est ds ≤ C(r + σ)m
∫ π/2

−π/2

et(σ+R cos ϕ) dϕ→ 0 for R→ ∞

by Lebesgue’s dominated convergence theorem. Hence also the integral of L f over σ + ıR has to vanish.
y

§3.1.3.21 (Differentiation in Laplace domain) Now we will reap a first fruit of the fact that exponentials
are “eigenfunctions” of the differentiation operator.

Theorem 3.1.3.22. Differentiation formula for Laplace transform

For a causal continuously differentiable function f ∈ CF (X) ∩ C1(R) (“of time”)

L ḟ (s) = s · L f (s) , s ∈ C+ ,

where ḟ is the (temporal) derivative of f .

The proof is straightforward integration by parts. We mention two consequences of this theorem.

➊ The Laplace transform converts linear ordinary differential equations (ODEs) with constant coefficients
into algebraic equations in the “Laplace domain”

For the initial value problem for a second-order ODE,

ÿ(t)− a2y(t) = c(t) , a ∈ R , y(0) = ẏ(0) = 0 ,

set Y(s) := Ly(s) and obtain

s2Y(s) = a2Y(s) + Lc(s) Y(s) =
Lc(s)

s2 − a2
.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 265

https://en.wikipedia.org/wiki/Dominated_convergence_theorem

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➋ Thm. 3.1.3.22 makes it possible to extend the Laplace inversion formula to functions violating the decay
condition (3.3.1.2), see also [Say16, Prop. 3.1.2]

Let F : C+ → X be analytic and comply with the power-law growth bound

∃µ ∈ R, M > 0: ‖F(s)‖X ≤ M|s|µ . (3.1.3.23)

Then, by Thm. 3.1.3.13, for m ∈ N, m > µ + 1, the function

fm(t) :=
1

2πı

∫

σ+ıR
s−mF(s) est ds , t ∈ R ,

is causal and its Laplace transform satisfies

sm · L fm(s) = F(s) ∀s ∈ C+ .

Then, we can invoke Thm. 3.1.3.22 and find

L(f) = F for f :=
dm fm

dtm
defined in the sense of distributions,

y

3.1.4 Diagonalizing Convolutions

We started Section 3.1.3 by pointing out that exponentials es : t 7→ exp(st) are “eigenfunctions” of every
translation operator in L∞(R). Note that convolution

(f ∗ g)(t) :=
∫

R
f (ξ) g(t− ξ)dξ , t ∈ R ,

seen as an operator g 7→ f ∗ g is essentially a superposition of translations of g. Hence, it comes as no
surprise that exponentials will also be “eigenfunctions” of this convolution operator: For f ∈ L1(R)

f ∗ eıω = eıω ·
∫

R
f (ξ) exp(−ıωξ)dξ = eıω · (F f)(ω) , ω ∈ R , (3.1.4.1)

where F is the Fourier transform on R. This immediately leads to the famous convolution theorem for the
Fourier transform.

Theorem 3.1.4.2. Convolution theorem for Fourier transform

For all f , g ∈ L1(R): F (f ∗ g) = F f · Fg pointwise on R.

Proof. (formal) Appeal to the inverse Fourier transform and boldly exchange convolution and integra-
tion:

(f ∗ g)(t) =
(

f ∗
∫

R
(Fg)(w) eıω(·)dω

)
(t) =

∫

R
(Fg)(ω) (f ∗ eıω)(t)dω

=
∫

R
(Fg)(ω)(F f)(ω) eıω(t)dω by (3.1.4.1) .

✷

Demanding that f is causal (→ Def. 3.1.1.19) we can admit s ∈ C+ in the above reasoning, which gives us
a similar result for the Laplace transform. Again, relying on formal computations for causal f , g ∈ CF (C)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 266

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

and (3.1.1.20)

L(f ∗ g)(s) =

∞∫

0

t∫

0

f (ξ)g(t− ξ)dξ exp(−st)dt =

∞∫

0

∞∫

ξ

exp(−st) f (ξ)g(t− ξ)dt

dξ

=

∞∫

0

exp(−sξ) f (ξ) ·
∞∫

ξ

exp(−s(t− ξ))g(t− ξ)dt dξ = (L f)(s) · (Lg)(s) , s ∈ C+ .

The next theorem restates this result in the more general context of vector-valued/operator-valued causal
functions, cf. § 3.1.1.16.

Theorem 3.1.4.3. Convolution theorem for Laplace transform

For Banach spaces X, Y and g ∈ CF (X), f ∈ CF (L(X, Y)) holds

L(f ∗ g)(s) = ((L f)(s))((Lg)(s)) , s ∈ C+ .

§3.1.4.4 (Operational calculus) Convolution with f ∈ CF (L(X, Y)) is now regarded as a family of linear
mappings CF (X)→ CF (Y), g 7→ f ∗ g parameterized by f. If the Laplace transform F(s) := Lf(s) is
more easily accessible than f itself, we can also use F as “parameter”. This leads to the “operational
calculus” view of convolution, introduced by Ch. Lubich [Lub88].

Definition 3.1.4.5. Operational calculus

For F : C+ → C analytic we define the linear operator

F(∂t) :

{ CF (X) ∩ C∞
0 (R, X) → CF (Y) ∩ C∞(R, Y)

g 7→ F(∂t)g := L−1({s 7→ F(s) · Lg(s)})
,

induced by the transfer function F.

Equivalently, we can write

Def. 3.1.4.5 ⇒

(LF(∂t)g)(s) = F(s) · Lg(s) , s ∈ C+ ,

F(∂t)g = L−1F ∗ g ,

(3.1.4.6)

(3.1.4.7)

where the last identity is a consequence of Thm. 3.1.4.3. Hence, operational calculus is another way to
encode causal convolution with emphasis on the Laplace transform of one factor.

Operational calculus can also be viewed as a generalization of differentiation, because Thm. 3.1.3.22
implies for m ∈ N0

F(s) = sm ⇒ F(∂t)g(t) =
dmg

dtm
(t) t ∈ R . (3.1.4.8)

Already these formulas hint that the restriction to g ∈ CF (X) ∩ C∞(R, X) in Def. 3.1.4.5 is not nec-
essary. If the growth of F admits a polynomial bound, argument functions of finite smoothness can be
accommodated.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 267

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Lemma 3.1.4.9. Pointwise estimate for convolution

Assume that F : C+ → C is analytic and satisfies the power law growth bound

∃µ ∈ R , M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ , . (3.1.4.10)

Then, for every m ∈ N, m > µ + 1, there holds the pointwise estimate

‖(F(∂t)g)(t)‖X ≤
t∫

0

e−σξ
∥∥∥g(m)(ξ)

∥∥∥
X

dξ · eσt

2π

∫

σ+ıR

|F(s)|
|s|m ds , t ∈ R , (3.1.4.11)

for all causal g ∈ CF (X) for which the right-hand side is finite.

Proof. For the sake of simplicity, consider X = C. Thm. 3.1.3.22 gives the identity (σ > 0)

F(∂t)g(t) =
1

2πı

∫

σ+ıR

(
F(s)

sm

)
(smLg(s)) est ds =

1

2πı

∫

σ+ıR

(
F(s)

sm

)
Lg(m)(s) est ds .

The assertion of the lemma follows from the estimate

|Lg(m)(s)| =

∣∣∣∣∣∣

∞∫

0

g(m)(t) e−st dt

∣∣∣∣∣∣
≤

∞∫

0

e−σt |g(m)(t)|dt , s ∈ σ + ıR ,

and the fact that F(∂t)g(t) depends on g|[0,t] only.
✷

Knowing the growth of F(s), the right-hand side of (3.1.4.11) can be estimated further, which yields the
following refined bound after elementary but tedious calculus.

Theorem 3.1.4.12. Pointwise estimate for convolution II [Say16, Prop. 3.2.2]

Assume that

✦ the operator-valued function H : C+ → L(X, Y), X, Y Banach spaces, is analytic, and

✦ satisfies the power law growth bound

∃µ ≥ 0 , m ∈ N , M > 0: ‖H(s)‖ ≤ M max{1, (Re s)−m}|s|µ ∀s ∈ C+ , (3.1.4.13)

✦ and that the causal X-valued function g ∈ CF (X) belongs to Cn(R, X) for some n ∈ N,

n > µ + 1, and

✦ that its n-th derivative g(n) is integrable on R.

Then we can estimate

‖H(∂t)g(t)‖Y ≤ M2µ 1 + δ

πδ

tδ max{1, tm}
(1 + t)δ

t∫

0

∥∥∥∥∥
n

∑
ℓ=0

(
k

ℓ

)
g(ℓ)(τ)

∥∥∥∥∥
X

dτ ,

with δ := n− (µ + 1).

y

§3.1.4.14 (Diagonalizing discrete convolutions) We return to the convolution of (scalar) sequences
according to Def. 3.1.2.3,

((fℓ) ∗ (gℓ))n := ∑
ℓ∈Z

fn−ℓ · gℓ = ∑
ℓ∈Z

fℓ · gn−ℓ , n ∈ Z . (3.1.2.4)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 268

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for sequences (fℓ), (gℓ) : Z → C. Regard (3.1.2.4) as “sequence (fℓ) acting on sequence (gℓ)”. What
are “eigensequences” of this linear mapping?

Inspired by the central role of the exponential function in the diagonalization of the convolution of functions
we try

gℓ := gz
ℓ := exp(−sℓ) = z−ℓ , ℓ ∈ Z with z := es , s ∈ C : (3.1.4.15)

((fℓ) ∗ (gz
ℓ))n := ∑

ℓ∈Z

fℓ · gz
n−ℓ = ∑

ℓ∈Z

fℓ · z−n+ℓ = z−n
︸︷︷︸
=gz

n

· ∑
ℓ∈Z

fℓz
ℓ

︸ ︷︷ ︸
“eigenvalue”

∀n ∈ Z . (3.1.4.16)

This formal computation reveals that ℓ 7→ z−ℓ is an “eigensequence” with associated “eigenvalue”
∑
ℓ∈Z

fℓz
ℓ. Of course, that sequence bounded, if and only if |z| = 1 ⇔ s = ıω for some ω ∈ R. Notice

the similarity to the Fourier transform.

If (fℓ) is causal, fℓ = 0 for ℓ < 0, then the eigenvalue is given by the evaluation of a power series. Let
us associate a (formal) power series to every causal sequence

(fℓ) causal ↔ (Z(fℓ))(z) :=
∞

∑
ℓ=0

fℓz
l , z ∈ C . (3.1.4.17)

The function possibly defined by this power series is called the z-transform of (fℓ). If (fℓ) is summable,
then the series will converge inside the unit disc {z ∈ C : |z| < 1} ⊂ C and define an analytic function
there.

For (formal) power series the discrete convolution formula

((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n ∈ N0 . (3.1.2.12)

agrees with the Cauchy product of the two sequences. An important consequence is that the product of z-
transforms of two summable causal sequences is equivalent to the power series expansion of the discrete
convolution of the given sequences.

Theorem 3.1.4.18. z-Transform and discrete convolution

If (gℓ) and (fℓ) are causal summable sequences, then

Z((fℓ) ∗ (gℓ))(z) = Z((fℓ))(z) · Z((gℓ))(z) , ∀z ∈ {z ∈ C : |z| < 1} . (3.1.4.19)

Note that in (3.1.4.19) · is the multiplication in C. Again, we have mapped a convolution in “sequence
domain” to a simple pointwise multiplication in “z-domain”. This is the same structure captured in
Thm. 3.1.4.2 and Thm. 3.1.4.3. y

§3.1.4.20 (Truncated convolution of causal sequences: matrix view) We continue our study of discrete
convolutions (3.1.2.12) of causal sequences (fℓ) ⊂ C and (gℓ) ⊂ C:

((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n ∈ N0 . (3.1.2.12)

In computations, we are interested in only a finite number N + 1, N ∈ N, of terms,

yn := ((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n = 0, . . . , N . (3.1.4.21)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 269

https://en.wikipedia.org/wiki/Z-transform
https://en.wikipedia.org/wiki/Cauchy_product

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

which can be expressed as, see also (3.1.2.15),

y0
...

...
yN

=

f0 0 0

f1 f0 0 . . .
...

f2 f1 f0 0 . . .
...

.
...

. 0
fN fN−1 . . . f2 f1 f0

g0
...

...
gN

⇔ y = Kg , K ∈ CN+1,N+1 , (3.1.4.22)

that is, a matrix×vector multiplication with a lower-triangular matrix K of a very special structure: It is a
lower-triangular Toeplitz matrix. y

3.1.5 Toeplitz Matrix Numerical Linear Algebra

We now revisit [NumCSE Chapter 4], which in great detail discusses the relationships of and algorithms
for periodic convolutions (→ [NumCSE Def. 4.1.4.7]) and causal discrete convolution, see [NumCSE Sec-
tion 4.1] and, in particular, [NumCSE Rem. 4.1.4.15]. As explained in [NumCSE Section 4.2.2], diagonal-
ization of periodic convolutions will lead to the discrete Fourier transform (DFT) as the fundamental linear
transformation underlying all algorithms connected with discrete convolutions. The Fast Fourier Trans-
form (FFT) offers an optimal-complexity implementation of DFT, see [NumCSE Section 4.3]. We give a
summary of the considerations leading to an optimal algorithm for causal discrete convolution.

§3.1.5.1 (Tool: Circulant matrices → [NumCSE § 4.1.4.11])

Definition 3.1.5.2. circulant matrix →
[NumCSE Def. 4.1.4.12]

A matrix C ∈ Cn,n, n ∈ N, is circu-

lant, if there exists an n-periodic sequence
(pk)k∈Z such that

(C)ℓ,j = pℓ−j , 1 ≤ ℓ, j ≤ n .

A sequence (pk)k∈Z is n-periodic, if pk+n = pk

for all k ∈ Z.

C =

p0 pn−1 pn−2 · · · · · · p2 p1

p1 p0 p2

p2
...

...
...

... pn−2

pn−2 pn−1

pn−1 pn−2 . . . · · · p2 p1 p0

The columns and rows of a circulant n× n-matrix can be generated by successive cycling shifting of
the entries of an n-vector.

The multiplication of a circulant matrix C ∈ Cn,n generated by the n-periodic sequence (pk) with a vector
x = [x1, . . . , xn]⊤ ∈ Cn amounts to periodic discrete convolution [NumCSE Def. 4.1.4.7]:

(Cx)n =
n

∑
ℓ=1

pn−ℓxℓ , n = 1, . . . , N . (3.1.5.3)

An elementary and fundamental observation is that all circulant matrices ∈ Cn,n commute and, therefore,
share the same basis of eigenvectors.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 270

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 3.1.5.4. Diagonalization of circulant matrices

For any circulant matrix C ∈ Cn,n, n ∈ N, (C)ℓ,j = pℓ−j, (pk) an n-periodic sequence of complex

numbers, holds

CFn = Fn diag(λ1, . . . , λn) ,

λ1
...

λn

 := Fn

p0
...

pn−1

 , (3.1.5.5)

where Fn ∈ Cn,n is the Fourier matrix

(Fn)ℓ,j = ω
(ℓ−1)(j−1)
n , ℓ, j ∈ {1, . . . , n} , ωn := exp(− 2πı

n) . (3.1.5.6)

Proof. (See also [NumCSE § 4.2.1.6]) Throughout this proof we adopt C++ indexing for matrix entries and

vector components. In the following elementary manipulations we exploit the n-periodicity ω
nj
n = 1 for all

j ∈ Z and ωn = ω−1
n .

(
C
(
Fn

)
:,j

)
k
=

k

∑
ℓ=0

pℓ
(
Fn

)
k−ℓ,j

+
n−1

∑
ℓ=k+1

pℓ
(
Fn

)
n−ℓ+k,j

=
k

∑
ℓ=0

pℓω
j(k−ℓ)
n +

n−1

∑
ℓ=k+1

pℓω
j(n−ℓ+k)
n

= ω
jk
n ·

k

∑
ℓ=0

pℓω
−jℓ
n + ω

jk
n ·

n−1

∑
ℓ=k+1

pℓω
−jℓ
n

= ω
jk
n ·

n−1

∑
ℓ=0

pℓω
jl
n =

(
Fn

)
k,j
·
(

Fn[pℓ]
n−1
ℓ=0

)
j

, j = 0, . . . , n− 1 .

This means that the j-th column of the Fourier matrix Fn is an eigenvector of C with eigenvalue (Fnp)j,

p := [p0, . . . , pn−1]
⊤ ∈ Cn.

✷

Since ωn is a root of unity, the Fourier matrix as defined in (3.1.5.6) is, up to scaling with 1√
n

, unitary→
[NumCSE Lemma 4.2.1.14],

F−1
n =

1

n
FH

n =
1

n
Fn , (3.1.5.7)

which implies the diagonalization formula [NumCSE Eq. (4.2.1.17)]

C = F−1
n diag(λ1, . . . , λn) Fn , (3.1.5.8)

that is, the columns of the Fourier matrix provide an eigenbasis for every circulant matrix.

The multiplication of a Fourier matrix Fn with a vector is known as discrete Fourier transform (DFT):

c = Fny ⇔ y = 1
n Fnc , c = [ck]

n
k=1, y =

[
yj

]n

j=1
∈ Cn

ck =
n

∑
j=1

yj ω
(k−1)(j−1)
n ⇔ yj =

1

n

n

∑
k=1

ck ω
−(k−1)(j−1)
n , k, j = 1, . . . , n .

(3.1.5.9)

✎ Notation: We write FFTn(y) := Fny and IFFTn(c) := F−1
n c

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 271

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

FFTny =

[
n

∑
j=1

yj ω
(k−1)(j−1)
n

]n

k=1

⇔ IFFTnc =

[
1

n

n

∑
k=1

ck ω
−(k−1)(j−1)
n

]n

j=1

, k, j = 1, . . . , n .

(3.1.5.10)

Thanks to (3.1.5.8), the multiplication of a vector with a circulant matrix C ∈ Cn,n generated by the n-
periodic sequence (pk) can be expressed as (.∗ stands for entrywise multiplication, MATLAB syntax.)

Cx = IFFTn(FFTn([p0, . . . , pn−1]
⊤). ∗ FFTn(x)) ∀x ∈ Cn . (3.1.5.11)

A C++ implementation based on a DFT library function of EIGEN is given in [NumCSE Code 4.2.2.4]. y

§3.1.5.12 (Fast Fourier Transform (FFT)) The Fast Fourier Transform is a divide-and-conquer algo-
rithm for the efficient computation of the discrete Fourier transform of complex vectors, see [NumCSE
Section 4.3].

Asymptotic computational effort for DFT

cost(DFT of a vector ∈ Cn) = O(n log n) for n→ ∞

Owing to (3.1.5.11) the asymptotic computational effort for multiplying a circulant matrix ∈ Cn,n with
a vector is

cost(circulant n× n- matrix× vector) = = O(n log n) for n→ ∞

y

§3.1.5.14 (Techniques for Toeplitz matrices) We observe that the matrix K ∈ CN+1,N+1 from (3.1.4.22)
has “constant (off-)diagonals” and, therefore, belongs to a special class of matrices → [NumCSE
Def. 4.5.1.7].

Definition 3.1.5.15. Toeplitz matrix

T ∈ Cm,n, m, n ∈ N, is a Toeplitz matrix

generated by the sequence (u−m+1, . . . , un−1) of
n + m− 1 complex numbers, if

(T)ij = uj−i , 1 ≤ i ≤ m , 1 ≤ j ≤ n .

T =

u0 u1 · · · · · · un−1

u−1 u0 u1
...

...
.

...
...

.
...

...
. u1

u1−m · · · · · · u−1 u0

Obviously a Toeplitz matrix T ∈ Cm,n has an information content of merely m + n + 1 numbers. This sets
a strict lower bound for the asymptotic complexity of operations involving Toeplitz matrices.

Idea behind fast algorithms for Toeplitz matrices:

Circulant augmentation: embed Teoplitz matrix into larger circulant matrix

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 272

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Lemma 3.1.5.16. Circulant augmentation of Toeplitz matrix

Given a sequence (u−m+1, . . . , un−1) of m + n− 1 numbers, let C ∈ Cn+m,n+m be the circulant

matrix (→ Def. 3.1.5.2) generated by the m + n-periodic sequence

(u0, u−1, u−2, . . . , u−m+1, 0, un−1, un−2, . . . , u1) .

Then the upper-left m× n-block (C)1:m,1:n of C is the m× n Toeplitz matrix (→ Def. 3.1.5.15)

generated by the sequence

(u−m+1, u−m+2, . . . , u0, . . . , un−2, un−1) .

Appropriately the matrix C is called the circulant augmentation of T.

The following formula demonstrates the structure of C in the case m = n with the Toeplitz block highlighted
in color.

C =

u0 u1 · · · · · · un−1 0 u1−n · · · · · · u−1

u−1 u0 u1
... un−1 0

. . .
...

...
.

...
...

.
...

.
...

. . .
...

. u1
...

. u1−n

u1−n · · · · · · u−1 u0 u1 un−1 0
0 u1−n · · · · · · u−1 u0 u1 · · · · · · un−1

un−1 0
. . .

... u−1 u0 u1
...

...
.

...
.

...
. . .

...
.

...
...

. u1−n
...

. u1

u1 un−1 0 u1−n · · · · · · u−1 u0

The case of a rectangular Toeplitz block with m = 6, n = 4 is shown next:

C =

u0 u1 u2 u3 0 u−5 u−4 u−3 u2 u−1

u−1 u0 u1 u2 u3 0 u−5 u−4 u−3 u−2

u−2 u−1 u0 u1 u2 u3 0 u−5 u−4 u−3

u−3 u−2 u−1 u0 u1 u2 u3 0 u−5 u−4

u−4 u−3 u−2 u−1 u0 u1 u2 u3 0 u−5

u−5 u−4 u−3 u−2 u−1 u0 u1 u2 u3 0
0 u−5 u−4 u−3 u−2 u−1 u0 u1 u2 u3

u3 0 u−5 u−4 u−3 u−2 u−1 u0 u1 u2

u2 u3 0 u−5 u−4 u−3 u−2 u−1 u0 u1

u1 u2 u3 0 u−5 u−4 u−3 u−2 u−1 u0

The message of Lemma 3.1.5.16 is that for a given Toeplitz matrix T ∈ Cm,n, we can find a circulant matrix
C ∈ Cm+n,m+n such that

C =

[
T ∗
∗ ∗

]
, ∗ =̂ matrix blocks of suitable size. (3.1.5.17)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 273

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

As a consequence the product of a Toeplitz matrix T ∈ Cm,n with a vector u ∈ Cn can be computed by
the multiplication of its circulant augmentation with a “zero-padded” argument vector:

C

[
u
0

]
=

[
T ∗
∗ ∗

][
u
0

]
=

[
Tu
∗
]

, (3.1.5.18)

where C ∈ Cm+n,m+n is the circulant matrix from Lemma 3.1.5.16 with (C)1:m,1:n = T. This shows how
to harness the power of FFT for multiplying a Toeplitz matrix with a vector.

Toeplitz matrix × vector

The multiplication of a Toeplitz matrix with a vector can be converted to the multiplication of a
circulant matrix with a vector:

cost(m× n Toeplitz matrix × vector) = O((m + n) log(m + n)) for m, n→ ∞

y

§3.1.5.20 (Diagonalization-based algorithms for discrete convolutions) It is clear from (3.1.4.22) that
the FFT-based multiplication of a general Toeplitz matrix with a vector can immediately be applied for the
computation of the initial N + 1 terms of a discrete convolution (3.1.5.22) of causal sequences, because

K :=

f0 0 0

f1 f0 0 . . .
...

f2 f1 f0 0 . . .
...

.
...

. 0
fN fN−1 . . . f2 f1 f0

∈ CN+1,N+1

obviously is a Toeplitz matrix generated by the sequence

(fN, fN−1, . . . , f0, 0, . . . , 0) ∈ C2N+1 .

The N + 1 first terms of the discrete convolution of causal sequences can be computed with an
asymptotic effort of O(N log N) for N → ∞.

y

§3.1.5.21 (Efficient solution of convolution equations) We consider the (truncated) convolution equa-
tion (3.1.2.15) in the simple setting X = Y = C. Given y ∈ Cn we seek a vector u ∈ Cn such that

f0 0 0

f1 f0 0 . . .
...

f2 f1 f0 0 . . .
...

.
...

. 0
fn−1 fn−2 . . . f2 f1 f0

u1
...

...
un

=

y1
...

...
yn

⇔ Ku = y . (3.1.5.22)

We assume f0 6= 0, which ensures that the lower-triangular coefficient matrix of (3.1.5.22) is invertible.
The simple forward elimination according to (3.1.2.16),

uℓ = f−1
0 (yℓ −

ℓ−1

∑
k=1

fℓ−kuk) , ℓ = 1, . . . , n , ,

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 274

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

gives the result vector with an asymptotic effort of O(n2) for n→ ∞. A faster method uses the efficient
algorithms for Toeplitz matrices from § 3.1.5.14.

Idea: Divide-and-conquer algorithm:

Apply recursion to 2× 2-block split linear system

For 1 ≤ k < n, preferably k ≈ n/2, consider

Ku = y ⇔
[

(K)1:k,1:k O
(K)k+1:n,1:k (K)k+1:n,k+1:n

][
(u)1:k

(u)k+1,n

]
=

[
(y)1:k

(y)k+1,n

]
, (3.1.5.23)

and note that

✦ both (K)1:k,1:k and (K)k+1:m,k+1,n are lower-triangular Toeplitz matrices again, and

✦ (K)k+1:n,1:k is a Toeplitz matrix.

This suggests the following algorithm:

➊ solve (K)1:k,1:k(u)1:k = (y)1:k ➣ recursion
➋ Compute t := (y)k+1:n − (K)k+1:n,1:k(u)1:k (Toeplitz matrix × vector)
➌ Solve (K)k+1:n,k+1:n(u)k+1:n = t ➣ recursion

The asymptotic complexity can easily determined for the case n = 2p, where at each level of the recur-
sion the task is split into two problems of half the size. Denoting by W(p) the computational effort for
n = 2p and taking into account that the multiplication of a vector with an 2p × 2p Toeplitz matrix involves
asymptotic computational cost of O(p2p), by trivial induction we arrive at the estimate [BHS80]

W(p) ≤ 2W(p− 1) + C2p p ➣ W(p) ≤ C 2p p2 .

Hence, in this case, the discrete convolution equation can be solved with an asymptotic effort of
O(n log2 n). This holds for all system sizes.

The asymptotic cost for computing n components of the solution of the discrete convolution equation
(3.1.2.15) is O(n log2 n).

y

3.2 Convolution Equations: Examples

Convolution equations occur in a wide range of mathematical models of phenomena with non-local inter-
actions and, in particular, “memory in time”. We highlight a few simple examples.

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 275

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

3.2.1 Tomography: Abel Integral Equation

Fig. 123 X-ray source

X-ray receiver

✁ 2D cross-section of a tomography set-up.

In X-ray tomography parallel X-rays are shot through an ob-
ject and their attenuation is measured. From the attenuation
regarded as a function of the ray line the spatial density distri-
bution of the object can be computed by means of the Radon
transform [Rie03, Sect. 1.1].

This method is the mathematical foundation of CT-scans, which
is a widely used technology in medical imaging.

We study only a substantially simplified setting.

We assume that the object is a long straight circu-
lar cylinder with radius 1 and that its density ρ is
a function of the radius only: ρ = ρ(x1, x2) = ρ(r),

r :=
√

x2
1 + x2

2.

Hence, only a single ray direction is required, let it be
the x2-direction. The ray position can be character-
ized by its x1-coordinate.

Let I = I(x1, x2) denote the intensity of the X-rays.
It is governed by the attenuation equation

∂I

∂x2
(x1, x2) = −ρ(x1, x2)I(x1, x2) , (3.2.1.1)

a simple linear ordinary differential equation with x1

acting as a parameter. Dividing by I(x1, x2) we get
from the chain rule

∂

∂x2
log(I(x1, x2)) = −ρ(x1, x2) . (3.2.1.2)

Fig. 124

x1

x2

r

X-ray source

X-ray receiver

Write IS = IS(x1) for the intensity at the source, and IR = IR(x1) for the intensity measured by the re-
ceiver. Integrating (3.2.1.2) in x2-direction over [−1, 1] yields (ρ(x1, x2) = 0 for x2

1 + x2
2 > 1)

g(x1) := − log
IR(x1)

IS(x1)
= 2

√
1−x2

1∫

0

ρ(x1, x2)dx2 , −1 ≤ x1 ≤ 1 , (3.2.1.3)

where we also used the symmetry of ρ: ρ(x1, x2) = ρ(x1,−x2).

The task is to tease out ρ = ρ(
√

x2
1 + x2

2) from the data g = g(x1), which have to satisfy

g(−1) = g(1) = 0 and g(−x1) = g(x1). This amounts to seeking a non-negative function ρ = ρ(r)

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 276

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

defined on [0, 1] and solving the integral equation

2

√
1−x2

1∫
0

ρ(
√

x2
1 + x2

2)dx2 = g(x1) , 0 ≤ x1 ≤ 1 . (3.2.1.4)

We perform the substitutions

t := 1− x2
1 ⇒ x1 =

√
1− t ,

ξ := 1− x2
1 − x2

2 ⇒ x2 =
√

t− ξ , dξ = −2x2dx2 ,

which converts the integral equation (3.2.1.4) into

0∫

t

ρ(
√

1− ξ)√
t− ξ

dξ = g(
√

1− t) , 0 ≤ t ≤ 1 . (3.2.1.5)

We continue with substitutions and set

u(ξ) := ρ(
√

1− ξ) , 0 ≤ ξ ≤ 1 , y(t) := −g(
√

1− t) , 0 ≤ t ≤ 1 ,

and, finally, end up with the Abel integral equation for u : [0, 1]→ R

t∫

0

u(ξ)√
t− ξ

dξ = y(t) , 0 ≤ t ≤ 1 . (3.2.1.6)

Notice the structure of a convolution equation (with singular kernel k(t, ξ) = 1√
t−ξ

) for causal functions as

presented abstractly in § 3.1.1.25. An equivalent way to write (3.2.1.6) is

(Au)(t) :=
(
{t 7→ 1√

t
}∗u

)
(t) = y(t) , 0 ≤ t ≤ 1 , (3.2.1.7)

where A is known as Abel integral operator. The restriction to the finite interval [0, 1] is irrelevant thanks
to causality.

In Ex. 3.1.3.8 we established

L{t 7→ t−1/2
+ }(s) = Γ(1/2)s−1/2 =

√
π√
s

, s ∈ C+ . (3.2.1.8)

Thus, the Abel integral operator can be fit into operational calculus

A = F(∂t) with F(s) =

√
π√
s

. (3.2.1.9)

Remark 3.2.1.10 (The square of the Abel integral operator) From (3.2.1.9) we conclude

LA2u(s) =

√
π√
s
LAu(s) =

π

s
(Lu)(s) .

Thm. 3.1.3.22 tells us that division by s in the Laplace domain corresponds to integration in time domain:
for a continuous causal function f satisfying a polynomial growth condition we have

L{t 7→
∫ t

0
f (τ)dτ}(s) = 1

s
(L f)(s) , s ∈ C+ . (3.2.1.11)

Inverting the Laplace transform this implies for a continuous causal function u ∈ C0(R)

(A2u)(t) = π
∫ t

0
u(τ)dτ , t ≥ 0 ,

⇒ d

dt
(A2u)(t) = πu(t) , t ≥ 0 .

In a sense, the Abel integral operator A is the square root of the antiderivative. y

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 277

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

3.2.2 Impedance Boundary Conditions

A typical task in computational electromagnetics: A current-carrying “inifinte” straight co-axial cable is
aligned x3-direction. The goal is to compute the electric and magnetic fields in the vicinity of the cable.

In this setting the magneto-quasistatic (eddy current) approximation of Maxwell’s equations can be used,
which boils down to the evolution equations

curl E(x, t) = − ∂

∂t
(µ(x)H(x, t)) ,

curl H(x, t) = σ(x)E(x, t) + js(x, t)
in R3×]0, T[. (3.2.2.1)

Here,

✦ E = E(x, t) is the electric field ([E] = Vm−1),

H = H(x, t) is the magnetic field ([H] = Am−1),

✦✦ js = Js(x, t) is a given source current density ([js] = Am−2),

✦ σ = σ(x) ≥ 0 is the conductivity ([σ] = A
Vm),

✦ µ = µ(x) is the uniformly positive magnetic permeability ([µ] = Vs
Am).

We assume that

• The geometry is perfectly translation-invariant in x3-direction,

• the conductivity σ does not depend on x3 and µ is constant,

• the source current flows in x3-direction, js(x) = j(x1, x2) · [0, 0, 1]⊤.

Then, in (3.2.2.1) all partial derivatives ∂
∂x3

vanish, and so do the field components E1, E2, and H3. We

eliminate H and retain the x3-component of E as unknown u(x1, x2, t) := E3(x1, x2, t), [x1, x2]
⊤ ∈ R2.

Assuming vanishing fields at initial time t = 0 and now writing x := [x1, x2]
⊤ we arrive at the degenerate

parabolic initial-value problem in two space dimensions

∂

∂t
(σ(x)µu)− ∆u = f (x, t) := µ

∂j

∂t
(x, t) in R2 × [0, T] ,

u(x, 0) = 0 in R2 .
(3.2.2.2)

Fig. 125

ΩC

nsupp(j)

The co-axial cable has a copper core with constant
and large conductivity σ > 0, whereas the space out-
side ΩC is non-conducting:

σ(x) =

{
σ in ΩC ,

0 in R3 \ΩC .
(3.2.2.3)

The core’s cross-section occupies the bounded do-
main ΩC ⊂ R2.

The core is surrounded by a cladding carrying a time-dependent source current

js(x, t) = js(x1, x2, t)[0 0 1]⊤ in x3-direction, which provides the exciting source in the model. The
spatial support of j, ΩJ := supp(j) ⊂ R2, is bounded and outside ΩC. The source current is switched
on at time t = 0.

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 278

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

By linearity, the evolution problem (3.2.2.2) can be transformed from time domain to the Laplace domain
using Thm. 3.1.3.22. We apply the Laplace transform on both sides of the PDE in (3.2.2.2) and arrive
at

sσ(x)µ(Lu)(s)− ∆(Lu)(s) = f̂ (s) := L{t 7→ f (·, t)}(s) . (3.2.2.4)

In the sequel we write û(s) := Lu(s). Note that s ∈ C+ can be regarded as a parameter in (3.2.2.4).

Two approximations are commonly applied to the model (3.2.2.4):

(I) Instead on the whole space R3 the spatial computational domain is truncated to a bounded domain
Ω ⊂ R2 containing both ΩJ and ΩC and indicated by the outer box in Fig. 125,

(II) The interaction of the conducting core and the electromagnetic fields is taken into account by im-
posing impedance boundary conditions on the surface of ΩC:

grad û(x, s) · n(x) = −
√

s ηû(x, s) for all x ∈ ∂ΩC , (3.2.2.5)

where n is the unit normal vectorfield on ∂ΩC pointing into the interior of Ω)C, and η :=
√

µσ. A
derivation is given in Rem. 3.2.2.14 below.

Imposing homogeneous Neumann boundary conditions for û at the artificial truncation boundary, the final
boundary value problem in Laplace domain seeks û = û(x, s) satisfying

−∆xû(x, s) = f̂ (x, s) in Ωe := Ω \ΩC ,

gradx û(·, s) · n= −
√

s ηû(·, s) on ∂ΩC ,

gradx ·û(·, s) · n = 0 on ∂Ω ,

s ∈ C+ . (3.2.2.6)

This is a second-order elliptic boundary value problem with linear impedance-type boundary conditions.
As explained in [NumPDE Ex. 1.8.0.6] its weak (variational) formulation reads: Given any s ∈ C+ seek
û(s) ∈ H1(Ωe) such that

∫

Ωe

grad û(s) · grad v dx +
∫

∂ΩC

√
s ηû(s)v dS =

∫

Ωe

f̂ (s)v dx ∀v ∈ H1(Ωe) . (3.2.2.7)

Appealing to Thm. 3.1.3.22 again, we can transform (3.2.2.7) back into time domain. We obtain an evolu-
tion problem for u = u(x, t) with the following spatial variational formulation: seek u(t) ∈ H1(Ωe)

∫

Ωe

grad u(t) · grad v dx

︸ ︷︷ ︸
=:a(u,v)

+
∫ t

0
k(t− τ)

∫

∂ΩC

ηu(τ)v dS

︸ ︷︷ ︸
convolution term

=
∫

Ωe

f (t)v dx

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1(Ωe) , (3.2.2.8)

with k(t) :=
1√
πt

, as derived in Ex. 3.1.3.8.

Note that the multiplication with
√

s in Laplace domain has become a convolution in time domain. What
we also know about the convolution kernel k in (3.2.2.8) is its Laplace transform: (Lk)(s) = s1/2.

Let us rewrite (3.2.2.8) resorting to operational calculus from Def. 3.1.4.5. We define the operator-valued
Laplace transform

F :=

C\]−∞, 0] → L(H1(Ωe), L(H1(Ωe), C))

s 7→

H1(Ωe) → L(H1(Ωe), C)

u 7→
{

H1(Ωe) → C

v 7→ √
s
∫

∂ΩC
ηu(x)v(x)dS(x)

(3.2.2.9)

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 279

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The space L(H1(Ωe), L(H1(Ωe), C)) can be identified with L(H1(Ωe)× H1(Ωe), C), the vector space
of continuous bilinear forms on H1(Ωe), which means that F(s) is a bilinear form on H1(Ωe). This and
the abbreviations from (3.2.2.8) permit to rewrite (3.2.2.8) as

u ∈ H1(Ωe): a(u, v) + F(∂t)(u, v) = ℓ(v) ∀v ∈ H1(Ωe) . (3.2.2.10)

Remark 3.2.2.11 (Kernel with known Laplace transform) This example illustrates a mathematical model
with a convolution term in time, whose kernel has a simple Laplace transform. y

Remark 3.2.2.12 (Finite element discretization) In the spirit of the method of lines introduced in
[NumPDE Section 9.2.4] we can achieve the spatial semi-discretization of (3.2.2.8) through a Galerkin
approach using H1(Ωe)-conforming finite elements on a triangulation of Ωe. The simplest choice would
be triangular linear Lagrangian finite elements, see [NumPDE Section 2.4].

Writing N ∈ N for the dimension of the finite element space and ~µ(t) for coefficient vector of the basis
expansion of the finite element approximation of u(t), this will result in the convolution equation

A~µ(t) + (K ∗~µ)(t) = ~ϕ(t) , K(τ) = k(τ)B , (3.2.2.13)

where ✄ A ∈ RN,N is the finite element Galerkin matrix (“stiffness matrix”) for −∆,
✄ B ∈ RN,N arises from the boundary bilinear form in (3.2.2.8).

y

Remark 3.2.2.14 (Derivation of impedance conditions) If the conductivity σ of the conducting core is
large, the electromagnetic field do not penetrate deep, which is known as skin effect.

Fig. 126

ΩC Ωe

σ > 0 σ = 0
x1x

n

If the (smooth) boundary ∂Ω at the length scale
of the penetration depth can be well approximated
by a plane, then we can describe the local behav-
ior of the fields by a 1D half-space model . Given
x ∈ ∂ΩC we choose the direction of the exterior nor-
mal vector n(x) as x1-direction. All variations of
the fields in other directions are suppressed, which
turns (3.2.2.4) into the ordinary differential equation
for x1 7→ û(x1, s),

−d2û

dx2
1

+ sµσ(x1)û = 0 for x1 < 0 . (3.2.2.15)

Only solutions that decay→ 0 as x1 → −∞ are of interest and that solution is

û(x1, s) = exp(
√

sµσ x1)û(0, s) , x1 < 0 , (3.2.2.16)

∂û

dx1
(0, s) = −

√
sη û(s, 0) , η :=

√
µσ . (3.2.2.17)

Remember that the exterior normal unit vector n(x) at ∂ΩC points in x1-direction.

grad û(x, s) · n(x) ≈ dû

dx1
(0, s) = −

√
sη û(0, s) = −

√
sη û(x, s) . (3.2.2.18)

This is the impedance boundary condition stated in (3.2.2.5). y

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 280

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

3.2.3 Time-Domain Boundary Integral Equations

§3.2.3.1 (Acoustic Scattering) Freely propagating acoustic waves are described by a time-dependent
pressure distribution u = u(x, t) in the air region Ω ⊂ R3, governed by the linear wave equation, cf.

[NumPDE § 9.3.1.9]

∂2p

∂t2
− c2∆x p = 0 in Ω×]0, T[, (3.2.3.2)

for fixed final observation time T > 0. Here, c > 0 is the constant wave speed, [c] = m
s , which agrees

with the maximal speed of propagation in the model. For in-depth explanations refer to [NumPDE Sec-
tion 9.3.2].

Fig. 127

D

pinc

We are interested in simulating the scattering of an
incident plane acoustic wave propagating in direction
d ∈ R3, ‖d‖ = 1,

pinc(x, t) := Ψ(d · x + ct) ,
x ∈ R2

t ∈ R
, (3.2.3.3)

with smooth Ψ : R → R , (3.2.3.4)

impinging on a sound-soft (∗) object occupying
D ⊂ R3.

(∗) “Sound-soft” means that p(t) = 0 on Γ := ∂D for all times t: the total pressure field p satisfies
homogeneous Dirichlet boundary conditions on ∂D.

We assume that pinc is causal: pinc(x, t) = 0 for t ≤ 0 and x in a neighborhood of D. To simplify the
presentation, we also rescale units of space and time to achieve c = 1.

This scattering problem is modeled by an exterior Dirichlet problem for the unknown scattered field
u := p− pinc on the unbounded spatial domain Ω := R3 \ D:

∂2u

∂t2
− ∆xu = 0 in Ω×]0, T[, (3.2.3.5a)

u(x, t) = −pinc(x, t) for x ∈ ∂D , t ∈]0, T[, (3.2.3.5b)

u(x, 0) =
∂u

∂t
(x, 0) = 0 for x ∈ Ω . (3.2.3.5c)

§3.2.3.6 (Scattering boundary integral equations in Laplace domain) Since u is causal as a func-
tion of time and all the equations in (3.2.3.5) are linear, we can apply the Laplace transform in time
and get the follpowing parameterized family of boundary value problems for the transformed unknown
û(x, s) := (L{t 7→ u(x, t)})(s), s ∈ C+,

s2û(x, s)− ∆xû(x, s) = 0 in Ω , (3.2.3.7a)

û(x, s) = −TD p̂inc(x, s) , p̂inc := Lpinc, for x ∈ ∂D . (3.2.3.7b)

For no s ∈ C+ the solution û(s) may suffer blow-up as ‖x‖ → ∞. Therefore we supplement (3.2.3.7) with
decay conditions at ∞, analogous to what we did in Section 1.1.7.

û(x, s)→ 0 for ‖x‖ → ∞ . (3.2.3.8)

Note that (3.2.3.7) is an exterior Dirichlet boundary value problem (BVP) for the parameterized partial
differential equation −∆û(s) + s2û(s) = 0. If the term s2û(s) was not present, we would already know a

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 281

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

way to solve it: As elaborated in § 1.3.6.3 in this case we can convert the BVP into an equivalent indirect
first-kind boundary integral equation (1.3.6.4) for the unknown Neumann data. The only obstacle to doing
this for the more general PDE (3.2.3.7a) is the missing fundamental solution. The next lemma will provide
it.

Lemma 3.2.3.9. Fundamental solution for L := −∆ + s2

The fundamental solution for the second-order linear differential operator Lu := −∆u + s2u,

s ∈ C+, in three dimensions is

Gs(x, y) :=
exp(−s‖x− y‖)

4π‖x− y‖ , x 6= y . (3.2.3.10)

Of course, for s = 0 we recover the fundamental solution (1.2.2.33) for the Laplacian −∆. Also notice that
x 7→ Gs(x, y) decays exponentially for ‖x‖ → ∞.

Lemma 3.2.3.9 can be proved by a slight generalization of the computations presented in Ex. 1.2.2.24,
see [STE09b]. We remark that all essential results of Section 1.2, in particular the representation formula
from Thm. 1.2.4.5, and of Section 1.3, in particular the jump relations from Thm. 1.3.3.15, carry over to
the more general differential operator L.

Thus, following the policy of Section 1.3.6 we represent û(s) in Ω by means of the single layer potential

acting on an s-dependent unknown density φ̂(s) ∈ H−
1
2 (∂Ω), Γ := ∂Ω:

û(x, s) = Ψs
SL(φ̂(s))(x) in Ω , Ψs

SL(φ)(x) =
∫

Γ

exp(−s‖x− y‖)
4π‖x− y‖ φ(y)dS(y) , x 6∈ Γ .

(3.2.3.11)

We apply the Dirichlet trace operator TD on Γ := ∂D and take into account the prescribed Dirichlet data
(3.2.3.5b), which yields the boundary integral equation (also given in variational form)

V(s)φ̂(s) = −TD p̂inc(s) in H
1
2 (∂Ω) (3.2.3.12)

m
φ̂(s) ∈ H−

1
2 (∂Ω): a(s; φ̂(s), ψ) :=

∫

Γ

(
V(s)φ̂(s)

)
(x)ψ(x)dS(x) = −

∫

Γ
p̂inc(x, s)ψ(x)dS(x)

∀ψ ∈ H−
1
2 (∂Ω) ,

with the s-dependent single-layer boundary integral operator

V(s) :

H−
1
2 (∂Ω) → H

1
2 (∂Ω)

φ 7→
(
V(s)φ

)
(x) :=

∫

Γ

exp(−s‖x− y‖)
4π‖x− y‖ φ(y)dS(y) , x ∈ Γ . (3.2.3.13)

y

§3.2.3.14 (Boundary element discretization → Section 1.5) As explained in Section 1.5 the s-

dependent variational problem (3.2.3.12) set in H−
1
2 (∂Ω) is amenable to Galerkin boundary element

discretization using piecewise constant trial and test functions on a surface mesh (→ Def. 1.5.1.4) G of Γ:
use S−1

1 (M) as trial and test space.

The main challenge faced when computing the entries of the Galerkin matrix arises from the singularity
of the integral kernel. Up to a modulation with the continuous functions (x, y) 7→ exp(−s‖x− y‖), this
singularity is the same as the one for the single-layer boundary integral operator for the Laplacian −∆.
Therefore, the techniques from Section 1.5.3 can be applied unchanged.

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 282

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This gives us a family of linear systems of equations, parameterized with s:

V(s)~φ(s) = ~ρ(s) , s ∈ C+ , (3.2.3.15)

with a dense boundary element Galerkin matrix V(s) ∈ CN,N, N := dimS−1
1 (M), and ~φ standing for

the basis expansion coefficient vector of the approximate solution.

§3.2.3.16 (Retarded potential integral equations) The left-hand side of (3.2.3.12) is a bilinear expres-

sion, a product, involving the s-dependent boundary integral operator V(s) ∈ L(H−
1
2 (∂Ω), H

1
2 (∂Ω)) and

the s-dependent density φ̂(s) ∈ H−
1
2 (∂Ω). According to the rule “multiplication in Laplace domain corre-

sponds to convolution in time domain” expressed in Thm. 3.1.4.3, the boundary integral equation (3.2.3.12)
can be transformed back to time domain and we obtain a convolution equation for the time-dependent den-

sity φ : [0, T]→ H−
1
2 (∂Ω)

(kV ∗ φ)(t) = −TDuinc(t) , t ∈ [0, T] , (3.2.3.17)

with kernel kV : [0, T]→ L(H−
1
2 (∂Ω), H

1
2 (∂Ω)), whose Laplace transform is explicitly available from

(3.2.3.13).

In fact, by the inverse Laplace transform, we can obtain an explicit formula for KV and the convolution in
(3.2.3.17). Recall the formal inverse Laplace transform of an exponential:

L−1({s 7→ exp(−sτ)})(t) = δ(t− τ) , τ > 0 ,

where δ is the δ-distribution. This formula can be used to deal with the numerator of the fundamental
solution Gs(x, y):

L−1
({

s 7→ V(s)φ̂(s)
})

(t) =

t∫

0

∫

Γ

δ(t− ‖x− y‖)
4π‖x− y‖ φ(y, t)dS(y)dt =

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dS(y) ,

where φ = φ(y, t) := L−1{s 7→ φ̂(y, s)}, y ∈ Γ, 0 ≤ t ≤ T, is a time-dependent surface density.
Hence, the time-domain version of the integral equations (3.2.3.12) reads:

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dS(y) = −pinc(x, t) , x ∈ Γ , 0 ≤ t ≤ T , (3.2.3.18)

for obvious reasons called a retarded-potential boundary integral equation. From its solution φ the scat-
tered pressure field can be reconstructed through

u(x, t) =
∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dS(y) , x ∈ Ω . (3.2.3.19)

This is called a Kirchhoff representation formula; the scattered field is given by the superposition of fields
radiated by time-dependent point sources on the boundary Γ of the scatterer.

3.3 Implicit-Euler Convolution Quadrature

3.3.1 Setting and Goal

Throughout we are given a transfer function F(s) := L f (s), the Laplace transform (→ Def. 3.1.3.6) of a
causal function f : R → C.

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 283

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Assumption 3.3.1.1. Properties of transfer function

F : C+ → C is analytic on the right half plane and satisfies the decay condition

∃M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ and some µ < −1 . (3.3.1.2)

✎ notation: We write A for the set of transfer functions satisfying Ass. 3.3.1.1

A :=
{

F : C+ → C analytic : ∃M > 0, µ < −1 : |F(s)| ≤ M|s|µ
}

.

Recall that Gτ = τZ for some timestep τ > 0 denotes an equidistant temporal grid. Also remember
operational calculus introduced in Def. 3.1.4.5, here, for the sake of simplicity, used with X = Y = C:

(F(∂t)g)(t) := (f ∗ g)(t) =

t∫

0

f (ξ)g(t− ξ)dξ =

t∫

0

f (t− ξ)g(ξ)dξ .

The goal of convolution quadrature is to find a linear mapping

CQτ : A → {causal sequences Z → C} ,

depending on the timestep τ > 0, such that

F(∂t)g|Gτ
≈ CQτ(F) ∗ g|Gτ

for g ∈ CF (C) ∩ C∞
0 (R, C) , (3.3.1.3)

where ≈ means the convergence requirement

lim
τ→0

∥∥∥F(∂t)g|Gτ∩[0,T] − CQτ(F) ∗ g|Gτ∩[0,T]

∥∥∥ = 0 ∀g “sufficiently smooth” , (3.3.1.4)

for some finite time T > 0 and a suitable (semi-)norm ‖·‖ on the space of causal sequences Z → C.

We can rewrite (3.3.1.3) more explicitly as

nτ∫

0

f (t− ξ)g(ξ)dξ ≈
n

∑
ℓ=0

(CQτ(F))n−ℓg(τℓ) , n ∈ N0 . (3.3.1.5)

This conveys why the terms of the sequence CQτ(F) : Z → C are called convolution quadrature

weights. They will usually depend on both F and τ and, therefore we write wF,τ
ℓ ∈ C, ℓ ∈ Z:

CQτ(F) =:
(

wF,τ
ℓ

)
ℓ∈Z

➣ CQ(F) ∗ g|Gτ
=

(
n

∑
ℓ=0

wF,τ
n−ℓgℓ

)

n∈Z

, gℓ := g(ℓτ) .

We mention two desirable algebraic structural properties of CQτ:

➊ CQ should preserve the neutral element of convolution (Ass. 3.3.1.1 violated!):

CQτ({s 7→ 1}) = (δ0,ℓ)ℓ∈Z
, (3.3.1.6)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 284

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➋ and CQ should be compatible with the convolution theorem for the Laplace transform

CQτ(F1 · F2) = CQτ(F1) ∗ CQτ(F2) , (3.3.1.7)

for transfer functions F1, F2 : C+ → C complying with Ass. 3.3.1.1. Note that in (3.3.1.7) ∗ is the dis-
crete convolution of causal sequences, see (3.1.2.12). Thus this formula is the discrete counterpart
of the convolution theorem for the Laplace transform, Thm. 3.1.4.3,

(F1 · F2)(∂t)g = (f1 ∗ f2) ∗ g = f1 ∗ (f2 ∗ g) = F1(∂t)
(

F2(∂t)g
)

.

Relationship (3.3.1.7) can be expressed by a commuting diagram.

A×A ·−−−→ A
(CQτ ,CQτ)

y
yCQτ

CS × CS ∗−−−→ CS

,
· =̂ pointwise product,
∗ =̂ discrete convolution Def. 3.1.2.3,

where, for the sake of brevity, we wrote CS for the vector space of causal sequences Z → C.

Remark 3.3.1.8 (Approximately solving convolution equations by convolution quadrature) As in
§ 3.1.1.25 let us consider a convolution equation

u ∈ CF (C):
[

F(∂t)u(t) = (f ∗ u)(t) =
] ∫ t

0
f (t− ξ)u(ξ) = y(t) , t ∈ R , (3.3.1.9)

for given causal y ∈ CF (C). By the convolution theorem for the Laplace transform

Theorem 3.1.4.3. Convolution theorem for Laplace transform

For Banach spaces X, Y and g ∈ CF (X), f ∈ CF (L(X, Y)) holds

L(f ∗ g)(s) = (L f)(s)((Lg)(s)) , s ∈ C+ .

we can lift (3.3.1.9) to the Laplace domain
∫ t

0
f (t− ξ)u(ξ) = y(t) ⇔ F(s) · (Lu)(s) = (Ly)(s) , s ∈ C+ , (3.3.1.10)

where the transfer function F is the Laplace transform of f ∈ CF (C).

Applying convolution quadrature to the convolution equation (3.3.1.9) converts it to a discrete convolution

equation, cf. (3.1.2.15),

seek (un) : Z → C causal: CQτ(F) ∗ (un) = (yn) := y|Gτ
, (3.3.1.11)

set in the space containing causal sequences.

Assume that F(s) 6= 0 for all s ∈ C+. Then s 7→ F(s)−1 will also be analytic in C+ and the solution of the
convolution equation can be obtained as

Lu(s) = F−1(s) · Ly(s) ⇔ u(t) = L−1(F−1 · Ly)(t) . (3.3.1.12)

The key observation is that the properties (3.3.1.6) and (3.3.1.7) enable an analoguous formula on the
discrete level

CQτ(F) ∗ (un) = (yn) ⇔ CQτ(F−1) ∗ CQτ(F) ∗ (un) = CQτ(F−1) ∗ (yn)

(3.3.1.7)⇔ CQτ(F−1 · F) ∗ (un) = CQτ(F−1) ∗ (yn)

(3.3.1.6)⇔ (un) = CQτ(F−1) ∗ (yn) .

(3.3.1.13)

Thus, if convolution quadrature satisfies the structural properties (3.3.1.6) and (3.3.1.7), then a convolution
equation can be solved approximately by a simple discrete convolution. y

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 285

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

3.3.2 Derivation of Implicit Euler CQ

Let F : C+ → C be a transfer function satisfying Ass. 3.3.1.1 related to a causal function/distribution f
through Laplace transform (→ Def. 3.1.3.6) and its inverse (→ Thm. 3.1.3.13)

F(s) =

∞∫

0

f (t)e−st dt ⇔ f (t) =
1

2πı

∫

σ+ıR

F(s)est ds , σ > 0 .

§3.3.2.1 (Reduction to ordinary differential equations) Using the Laplace inversion formula and boldly
changing the order of integration permits us to rewrite convolution

F(∂t)g(t) = (f ∗ g)(t) =

t∫

0

f (t− ξ)g(ξ)dξ

=

t∫

0

1

2πı

∫

σ+ıR

F(s)es(t−ξ) ds · g(ξ)dξ =
1

2πı

∫

σ+ıR

F(s) ·
t∫

0

es(t−ξ) g(ξ)dξ

︸ ︷︷ ︸
=:y(s;t)

ds

Surprisingly, the highlighted integral expression, in the sequel abbreviated by y(s; t) is related to a family
of simple initial value problems for ordinary differential equations.

Lemma 3.3.2.2. Variation of constants formula

For a continuous causal function g : R → C and any s ∈ C the solution t 7→ y(s; t) of the initial

value problem (IVP)

ẏ(t) = sy(t) + g(t) , t ∈ R , y(0) = 0 , (3.3.2.3)

has the integral representation

y(s; t) =

t∫

0

es(t−ξ)g(ξ)dξ . (3.3.2.4)

Proof. The initial value problem (3.3.2.3) for a simple scalar linear ordinary differential equation has a
solution y : R → C. We make the transformation

z(t) = e−sty(t) ⇔ y(t) = estz(t) , t ∈ R .

By the product rule we find

ż(t) = −se−sty(t) + e−stẏ(t) = −se−sty(t) + e−st(sy(t) + g(t)) = e−stg(t) .

z(t) =

t∫

0

e−sξ g(ξ)dξ ⇔ y(t) =
∫ t

0
es(t−ξ)g(ξ)dξ , t ∈ R .

✷

As a consequence the convolution F(∂t)g can be written as a contour integral involving solutions of a
family of linear initial value problems

F(∂t)g(t) =
1

2πı

∫

σ+ıR

F(s) y(s; t)ds , t ∈ R , σ > 0 . (3.3.2.5)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 286

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

Idea: Use numerical integration of the IVPs for ẏ = sy + g(t) on the temporal grid Gτ,
producing a sequence

(yn(s))n∈Z: yn(s) ≈ y(s; nτ) , (3.3.2.6)

and then, inspired by (3.3.2.5), approximate

(
F(∂t)g

)
(nτ) ≈ 1

2πı

∫

σ+ıR

F(s) yn(s)ds (3.3.2.7)

§3.3.2.8 (Implicit Euler (IE)/backward Euler timestepping → [NumCSE Section 11.2.2]) The implicit
Euler method converts the ordinary differential equation (ODE) ẏ = g(y, t) into a difference equation by
using a backward difference quotient to approximate the temporal derivative

ẏ = g(y, t) ➣
y(t)− y(t− τ)

τ
≈ g(y(t), t) with timestep τ > 0 ,

and restricting the difference quotient to the temporal grid Gτ:

yn − yn−1 = τg(yn, tn) , tn := τn , k ∈ Z . (3.3.2.9)

Thinking of timestepping yn−1 → yn, given yn−1 this is an equation for yn. Consult [NumCSE
Rem. 11.2.2.3] for an explanation why (3.3.2.9) has a unique solution yn provided that g is differentiable
w.r.t y and the timestep τ is sufficiently small. y

§3.3.2.10 (Implicit Euler for scalar linear ODEs) We elaborate the above idea in the concrete case
of numerical integration by means of the implicit Euler method. We apply implicit Euler timestepping
(3.3.2.9) with uniform timestep size τ > 0 to (3.3.2.3) (ODE ẏ = sy + g(t)), that is, with the right-hand
side function f (t, y) := sy + g(t) and yk(s) := y(kτ0) = 0 for all k < 0. As in (3.3.2.6) we write (yn(s))
for the resulting causal sequence, which, if τs 6= 1, it is defined by (n ∈ N)

yn(s) = yn−1(s) + τsyn(s) + τg(tn) , n ∈ N0 , y−1(s) = 0

m
yn(s) = (1− τs)−1(yn−1(s) + τg(τn)) .

yn(s) = τ
n

∑
ℓ=0

(1− τs)−(ℓ+1)gn−ℓ , n ∈ N , gℓ := g(τℓ) , (3.3.2.11)

because we have g0 = g(0) = 0 for the causal continuous function g. y

If σ < 1
τ , then we can plug (3.3.2.11) into (3.3.2.7):

F(∂t)(nτ) ≈ 1

2πı

∫

σ+ıR

F(s) yn(s)ds =
1

2πı

∫

σ+ıR

F(s) τ
n

∑
ℓ=0

(1− τs)ℓ+1gn−ℓ ds

=
n

∑
ℓ=0

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds · gn−ℓ .

(3.3.2.12)

Strikingly, this amounts to a discrete convolution:

(
F(∂t)g

)
(nτ) ≈

n

∑
ℓ=0

wF,τ
ℓ · gn−ℓ with wF,τ

ℓ :=
τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds . (3.3.2.13)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 287

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We have found our first convolution quadrature scheme!

Definition 3.3.2.14. Implicit Euler convolution quadrature (IE-CQ)

Given the transfer function F : C+ → C, convolution quadrature based on implicit Euler timestep-
ping with timestep τ > 0 is defined as (0 < σ < τ−1)

CQIE
τ (F) :=

wF,τ

ℓ :=
τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds

ℓ∈N0

.

Remark 3.3.2.15 (Well-defined IE-CQ) An elementary estimate yields |1− τs| > τ|s| − 1, which implies
|(1− τs)−(ℓ+1)| < (τ|s| − 1)−(ℓ+1). Thus under the decay condition from Ass. 3.3.1.1, the improper
contour integrals in the definition of CQIE

τ (F) are always well-defined for ℓ ∈ N0, if σ < τ−1. y

Remark 3.3.2.16 (Convolution quadrature based on explicit Euler timestepping?) Another simple
timestepping scheme is the explicit Euler method which replaces the temporal derivative with a forward
difference quotient, see [NumCSE Section 11.2.1]:

ẏ = g(y, t) ➣
y(t + τ)− y(t)

τ
≈ g(y(t), t) with timestep τ > 0 .

For the initial value problem (3.3.2.3) and uniform timestep τ > 0 this yields the recurrence

yn+1(s) = yn(s) + τsyn(s) + τgn , y0 = 0 yn(s) = τ
n

∑
ℓ=1

(1 + τs)ℓgn−ℓ (3.3.2.17)

This would lead to convolution weights defined by

wℓ :=
τ

2πı

∫

σ+ıR

F(s)(1 + τs)ℓ ds , ℓ ∈ N , w0 := 0 .

Yet, |1 + τs| ≥ τ|s| − 1 such that the improper integrals will in general diverge for almost all ℓ ∈ N,
unless F decays exponentially for |s| → ∞, which cannot be expected. Hence, explicit Euler timestepping
is not suitable for defining a convolution quadrature scheme. y

§3.3.2.18 (CQ weights by integration over compact contour) To manipulate the formula for the convo-
lution quadrature weights for IE-CQ from Def. 3.3.2.14

wF,τ
ℓ :=

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds , ℓ ∈ N0 , 0 < σ < 1
τ , (3.3.2.19)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 288

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 128

Re

Im

τ−1

σ

Γ

−R

R

Assume σ < 1/τ. Note that the integrand

s 7→ F(s)(1− τs)−(ℓ+1)

is analytic in C+ \ {τ−1}. Thus by the Cauchy inte-
gral theorem Thm. 3.1.3.16 its path integral over the
contour

Γ := Γσ ∪ ΓR ∪ Γr ,

Γσ := σ + ı[−R, R] ,

ΓR := {s : |s| = R, Re z ≥ σ} ,

Γr := {s : |s− τ−1| = r} ,

with r, R > 0, R > τ−1 + r and suitable orientations
of the pieces, vanishes. Thanks to the decay proper-
ties of F from Ass. 3.3.1.1, we have
∫

ΓR

F(s)(1− τs)−(ℓ+1) ds→ 0 for R→ ∞ .

Hence, the convolution quadrature weight can also be computed by integrating over a (small) circle cen-
tered at τ−1 and oriented counter-clockwise:

wF,τ
ℓ :=

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds = − τ
2πı

∫

|s− 1
τ |=r

F(s)(1− τs)−(ℓ+1) ds (3.3.2.20)

= − 1

2πıτℓ

∫

|s− 1
τ |=r

F(s)

(τ−1 − s)ℓ+1
ds .

Note that the formula (3.3.2.20) is well-defined for any F analytic in C+; we can dispense with the
decay condition stated in Ass. 3.3.1.1!

y

§3.3.2.21 (CQ weights through Taylor expansion) A fundamental result of complex analysis reveals
another benefit of switching to an integration contour surrounding τ−1.

Theorem 3.3.2.22. Cauchy integral formula [Rem84, §7.2]

If g : D ⊂ C → C is analytic in D, c ∈ D, and B := {s : |s− z| ≤ r} ⊂ D for some r > 0, then

g(z) =
1

2πı

∫

∂B

g(s)

s− z
ds ∀z ∈ B ,

where the integral is a complex contour integral and the circle ∂B is oriented counterclockwise.

Proof. Fix z ∈ D. Then

s ∈ D \ {z} 7→ g(s)− g(z)

s− z

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 289

https://en.wikipedia.org/wiki/Cauchys_integral_formula

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

is analytic and has the limit for s→ z exists, which means that this function is analytic everywhere in D.
By the Cauchy integral theorem Thm. 3.1.3.16 and for B ⊂ D

0 =
∫

∂B

g(s)− g(z)

s− z
ds =

∫

∂B

g(s)

s− z
ds− 2πıg(z) ,

from which the assertion follows immediately.
✷

By formal differentiation under the integral we obtain a similar representation of all derivatives of g:

Corollary 3.3.2.23. Cauchy differentiation formula [Rem84, §7.3.4]

If g : D ⊂ C → C is analytic in D, c ∈ D, and B := {z : |z− c| ≤ r} ⊂ D for some r > 0, then

the ℓ-th derivative of g can be computed as the contour integral

g(ℓ)(z) =
ℓ!

2πı

∫

∂B

g(s)

(s− z)ℓ+1
ds ∀z ∈ B , ℓ ∈ N0 .

Remember that s ∈ C+ 7→ F(s) is analytic, which permits us to this formula with g = F, z = 1/τ,
B := {z ∈ C : |z− τ−1| = r}, r < τ−1 − σ:

wF,τ
ℓ = − 1

2πıτℓ

∫

|s− 1
τ |=r

F(s)

(τ−1 − s)ℓ+1
ds =

(−1)ℓ

ℓ!τℓ
F(ℓ)(1/τ) =

1

ℓ!

dℓ

dzℓ
{z 7→ F(

1− z

τ
)}
∣∣∣∣∣
z=0

.

Recall the local Taylor expansion for a function g that is analytic in an neighborhood of c ∈ C:

g(z) =
∞

∑
ℓ=0

1

ℓ!
g(l)(c)(z− c)ℓ for all z : |z− c| sufficiently small.

Obviously, the convolution weights are the Taylor coefficients of {z 7→ F(1−z
τ)} when expanded around

z = 0.

Lemma 3.3.2.24. Convolution quadrature weights are Taylor expansion coefficients

If F : C+ → C is analytic and complies with Ass. 3.3.1.1, then z 7→ F(1−z
τ) is a generating function

for the convolution quadrature weights from Def. 3.3.2.14, that is,

F(
1− z

τ
) =

∞

∑
ℓ=0

wF,τ
ℓ zℓ for |z| < 1 . (3.3.2.25)

Note that the power series in (3.3.2.25) converges for |z| < 1, because z 7→ F(1−z
τ) is analytic for

Re z < 1. Also note that this formula makes sense for any F that is analytic in a neighborhood of 1
and, thus, extends Def. 3.3.2.14, which requires decay properties of F. y

Remark 3.3.2.26 (Real-valued convolution quadrature weights) If F(s) ∈ R for s ∈ R, then

G(z) := F(
1− z

τ
) ∈ R , if z ∈ R .

Hence, all derivatives G(m)(0) will be real and so will be the convolution quadrature weights wF,τ
ℓ for IE-

CQ. y

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 290

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

EXAMPLE 3.3.2.27 (Direct computation of convolution quadrature weights) For simple transfer func-
tions F Lemma 3.3.2.24 paves the way for computing the convolution quadrature weights wF,τ

ℓ , ℓ ∈ N0,
by Taylor expansion/repeated differentiation. We elaborate this for two examples

(I) If F(s) = sµ, µ ∈ R \N0, then

G(z) := F(
1− z

τ
) = τ−µ(1− z)µ ,

⇒ G(ℓ)(z) = τ−µ(−1)ℓµ(µ− 1) · · · · · (µ− ℓ+ 1)(1− z)µ−ℓ .

G(ℓ)(0) = τ−µ(−1)ℓµ(µ− 1) · · · · · (µ− ℓ+ 1) ,

G(z) =
∞

∑
ℓ=0

τ−µ(−1)ℓ
ℓ−1

∏
k=0

µ− k

k + 1
zℓ .

Thus we find the IE-CQ weights

wF,τ
0 = τ−µ , wF,τ

ℓ = τ−µ(−1)ℓ
ℓ−1

∏
k=0

µ− k

k + 1
, ℓ ∈ N . (3.3.2.28)

(II) For F(s) = (s2 + ω2)−1, ω > 0, we rely on a factorization approach:

F(
1− z

τ
) =

1
(

1−z
τ

)2
+ ω2

=
1

1−z
τ − ıω

· 1
1−z

τ + ıω

=
τ2

1 + ω2τ2
·
(∞

∑
n=0

(1− ıωτ)−nzn
)
·
(∞

∑
n=0

(1 + ıωτ)−nzn
)

,

where the last step employed the geometric series. By the Cauchy product formula for power series,
cf. Thm. 3.1.4.18, we obtain the convolution quadrature weights by discrete convolution:

wF,τ
ℓ =

τ2

1 + ω2τ2
·

l

∑
n=0

(1− ıωτ)−n+ℓ(1 + ıωτ)−ℓ , ℓ ∈ N0 . (3.3.2.29)

y

3.3.3 Properties of implicit-Euler Convolution Quadrature

Does the convolution quadrature scheme as introduced in the previous section (→ Def. 3.3.2.14,
Lemma 3.3.2.24) satisfy the crucial properties (3.3.1.6) and (3.3.1.7)?

➊ We consider the constant transfer function F(s) = 1 and use Lemma 3.3.2.24 that obviously gives

w
{s 7→1},τ
ℓ = δℓ,0, which is (3.3.1.6). This is the neutral element of discrete convolution.

➋ Given two analytic transfer functions F1, F2 : C+ → C, we appeal to Lemma 3.3.2.24

Fi(
1− z

τ
) =

∞

∑
ℓ=0

w
Fi,τ
ℓ zℓ , i = 1, 2 , (F1 · F2)(

1− z

τ
) =

∞

∑
ℓ=0

wF2·F2,τ
ℓ zℓ .

The Cauchy product formula for power series immediately gives

(F1 · F2)(
1− z

τ
) = F1(

1− z

τ
) · F2(

1− z

τ
) =

(
∞

∑
ℓ=0

wF1,τ
ℓ zℓ

)
·
(

∞

∑
ℓ=0

wF2,τ
ℓ zℓ

)

=
∞

∑
ℓ=0

(
l

∑
k=0

wF1,τ
ℓ−kwF2,τ

k

)
zl .

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 291

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Comparing Taylor coefficients we conclude

wF2·F2,τ
ℓ =

l

∑
k=0

wF1,τ
ℓ−kwF2,τ

k ⇔ CQIE
τ (F1 · F2) = CQIE

τ (F1) ∗ CQIE
τ (F2) =̂ (3.3.1.7) . (3.3.3.1)

§3.3.3.2 (Continuous-in-time (c.i.t.) convolution quadrature [Say16, Sect. 4.4]) A new perspective is
opened by considering an alternative motivation for implicit Euler convolution quadrature. Remember the
shift operator

Tτ : CF (C)→ CF (C) , (Tτg)(t) := g(t− τ) , τ > 0 . (3.3.3.3)

Also recall the following correspondences for the Laplace transform:

time domain Laplace domain

Derivative:
d

dt
s·

Backward difference quotient:
1− Tτ

τ
≈ d

dt

1− exp(−sτ)

τ
· ≈ s·

We point out that the backward difference quotient is the approximation of the derivative underlying the
implicit Euler timestepping scheme, cf. § 3.3.2.8.

We define a modified transfer function

Fτ(s) := F(
1− exp(−sτ)

τ
) , Fτ : C+ → C analytic. (3.3.3.4)

The formula for the convolution quadrature weights wF,τ from Lemma 3.3.2.24,

F(
1− z

τ
) =

∞

∑
ℓ=0

wF,τ
ℓ zℓ for |z| < 1 , (3.3.2.25)

with z := e−sτ gives us

Fτ(s) = F(
1− exp(−sτ)

τ
) =

∞

∑
ℓ=0

wF,τ
ℓ e−sτℓ .

Recall the Laplace transform of a shifted δ-distribution

L{t 7→ δ(t− τ)}(s) = “
∫

R
δ(t− τ) exp(−st)dt ” = exp(−sτ) . (3.3.3.5)

This gives us the time-domain counterpart of Fτ as a causal distribution:

fτ(t) := (L−1Fτ)(t) =
n

∑
ℓ=0

wF,τ
ℓ δ(t− ℓτ) . (3.3.3.6)

Convolution with this comb function is straightforward:

Fτ(∂t)g = (fτ ∗ g)(t) =
∞

∑
ℓ=0

wF,τ
ℓ g(t− ℓτ) (3.3.3.7)

Using the definition of convolution quadrature, this formula reveals that

CQIE
τ (F) ∗ g|Gτ

= Fτ(∂t)g|Gτ
. (3.3.3.8)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 292

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Continuous-in-time (c.i.t.) convolution quadrature

Implicit-Euler convolution quadrature realizes (continuous) operational calculus with

F(s) replaced with Fτ(s) := F(
1− exp(−sτ)

τ
), s ∈ C+.

For t 7→ (Fτ(∂t)g)(t) we sometimes write t 7→ (CQIE
τ (F) ∗ g)(t) and call this the continuous-in-time (im-

plicit Euler) convolution quadrature. We regards CQIE
τ (F)∗ as mapping a causal function on R to another

causal function on R.

Moreover, the formula (3.3.3.8) again confirms (3.3.1.7) for IE-CQ as a simple consequence of the obvious
fact (F1 · F2)τ = F1,τ · F2,τ and of the convolution theorem for the Laplace transform Thm. 3.1.4.3. y

Remark 3.3.3.10 (“Differentiation theorem” for convolution quadrature) Consider the transfer function
F(s) = s, for which we have by the differentiation formula for the Laplace transform (→ Thm. 3.1.3.22):

F(s) := s ⇒ F(∂t)g(t) =
dg

dt
(t) , t ∈ R ,

see also (3.1.4.8). The corresponding convolution quadrature is straightforward by Lemma 3.3.2.24:

F(
1− z

τ
) =

1− z

τ
⇔

(
CQIE

τ (s 7→ s)
)
ℓ
=

1/τ for ℓ = 0 ,

−1/τ for ℓ = 1 ,

0 else.

This means that convolution quadrature is reduced to applying the backward difference quotient. Adopting
the continuous-in-time point of view, for any causal g : R → C

(CQIE
τ ({s 7→ s}) ∗ g)(t) =

g(t)− g(t− τ)

τ
=

(
Id− Tτ

τ
g

)
(t) , t ∈ R , (3.3.3.11)

where we have used the shift operator

Tτ : CF (C)→ CF (C) , (Tτg)(t) := g(t− τ) , τ > 0 .

The right-hand side in (3.3.3.11) can be regarded as an approximation of dg
dt in the points of the temporal

mesh Gτ.

Generalizing these considerations we immediately get the convolution quadratures induced by powers as
transfer functions

(CQIE
τ ({s 7→ sm}) ∗ g)(t) =

((
Id− Tτ

τ

)m

g

)
(t) . (3.3.3.12)

Again, we recognize a backward difference quotient approximations of g(m). For instance, in the case
m = 2, we find

(CQIE
τ ({s 7→ s2}) ∗ g)(t) =

((
Id− Tτ

τ

)2

g

)
(t) =

g(t)− 2g(t− τ) + g(t− 2τ)

τ2
=

d2g

dt2
(t) + O(τ) for τ →

which is a second backward difference quotient. Finally, we can combine these formulas with (3.3.1.7)
and get

CQIE
τ ({s 7→ smF(s)}) ∗ g = CQIE

τ (F) ∗
(
Id− Tτ

τ

)m

g

︸ ︷︷ ︸
approximation of g(m)

, (3.3.3.13)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 293

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

a CQ-counterpart of Thm. 3.1.3.22. y

Remark 3.3.3.14 (Polynomially growing transfer functions) What if F fails to satisfy the decay condi-
tions of Ass. 3.3.1.1, but still has polynomially bounded growth:

∃M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ and some µ ∈ R . (3.3.3.15)

If µ ≥ −1 we can pick m ∈ N, m > µ + 1, and apply (3.3.3.13).

CQIE
τ (F) ∗ g = CQIE

τ ({s 7→ F(s)

sm
} · {s 7→ sm}) ∗ g = CQIE

τ ({s 7→ F(s)

sm
}) ∗

(
Id− Tτ

τ

)m

g .

(3.3.3.16)

Note that that function {s 7→ F(s)
sm } satisfies Ass. 3.3.1.1 so that all consideration of this section apply.

Compare ➋ in § 3.1.3.21. y

3.3.4 Convergence

This section present quantitative results about the asymptotic convergence of convolution quadrature as
the timestep τ → 0. In particular we are interested in the maximum error at points of the temporal grid in
a finite time interval [0, T], T > 0:

err(τ) := max
n=0,...,N

∣∣∣(F(∂t)g)(τn)−
(
CQIE

τ (F) ∗ g|Gτ

)
n

∣∣∣ , τ := T/N , N ∈ N , (3.3.4.1)

for a given causal function g : R → C. We first report some empirical results in order to see what kind of
convergence can be expected.

EXPERIMENT 3.3.4.2 (Convergence of implicit Euler convolution quadrature) Throughout this ex-
periment we consider F(s) = 1√

s
, which corresponds to Abel integral operator, cf. (3.2.1.6),

F(∂t)g(t) =
1√
π

t∫

0

g(ξ)√
t− ξ

dξ .

We choose T = 1.

Fig. 129

10 -4 10 -3 10 -2 10 -1

timestep

10 -5

10 -4

10 -3

10 -2

10 -1

er
r(

)
(m

ax
im

um
 n

or
m

)

g(t) = exp(-t) on [0,1]

err()
O()

➊ We consider g(t) = 1− e−t, t ≥ 0, and find
F(∂t)g(t) = 2√

π
(
√

t− FD(
√

t)), where FD is the

Dawson function

FD(t) = e−t2
∫ t

0
eζ2

dζ .

✁ We observe algebraic convergence of order 1:

err(τ) = O(τ) for τ → 0 .

(Error points located close to a line with slope 1 in
doubly-logarithmic plot)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 294

https://en.wikipedia.org/wiki/Dawson_function

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 130

10 -4 10 -3 10 -2 10 -1

timestep

10 -5

10 -4

10 -3

10 -2

10 -1

er
r(

)
(m

ax
im

um
 n

or
m

)

g(t) = sqrt(t) on [0,1]

err()
O()

➋ Now we choose the non-smooth g(t) =
√

t, which
implies F(∂t)g(t) =

√
πt/2.

✁ Though g is not continuously differentiable on
[0, 1], we still observe algebraic convergence of
order 1:

err(τ) = O(τ) for τ → 0 .

In both cases we observe perfect algebraic convergence with rate 1 as τ → 0. y

We provide a rigorous justification of the convergence observed in Exp. 3.3.4.2 for the case X = C and
assuming at most polynomial growth of F.

Assumption 3.3.4.3. Polynomial growth of F

We assume that F : C+ → C is analytic and satisfies the growth condition

∃M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ and some µ ≥ 0 . (3.3.4.4)

The starting point is the fundamental relationship (3.3.3.8) from § 3.3.3.2

CQIE
τ (F) ∗ g|Gτ

= Fτ(∂t)g|Gτ

max
n=0,...,N

∣∣∣F(∂t)g(τn)−
(
CQIE

τ (F) ∗ g|Gτ

)
n

∣∣∣ ≤ sup
0≤t≤T

|(F− Fτ)(∂t)g(t)| , (3.3.4.5)

with [0, T] the time interval of interest and τ > 0 the timestep. Pointwise estimates for convolutions are
available through

Theorem 3.1.4.12. Pointwise estimate for convolution II

Assume that

✦ the operator-valued function H : C+ → L(X, Y), X, Y Banach spaces, is analytic, and

✦ satisfies the power law growth bound

∃µ ≥ 0 , m ∈ N , M > 0: ‖H(s)‖ ≤ M max{1, (Re s)−m}|s|µ ∀s ∈ C+ , (3.1.4.13)

✦ and that the causal X-valued function g ∈ CF (X) belongs to Cn(R, X) for some n ∈ N,

n > µ + 1, and

✦ that its n-th derivative g(n) is integrable on R.

Then we can estimate

‖H(∂t)g(t)‖Y ≤ M2µ 1 + δ

πδ

tδ max{1, tm}
(1 + t)δ

t∫

0

∥∥∥∥∥
n

∑
ℓ=0

(
k

ℓ

)
g(ℓ)(τ)

∥∥∥∥∥
X

dτ ,

with δ := n− (µ + 1).

and we intend to apply that theorem with F ← F− Fτ.

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 295

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Idea: Verify the assumption (3.1.4.13) of Thm. 3.1.4.12 for F− Fτ with

M ≤ Cτ , C > 0 independent of τ .

To begin with, we use the mean value theorem for complex-valued functions

F(s)− Fτ(s) = F(s)− F
(1− exp(−sτ)

τ

)
≤ |s− 1− exp(−sτ)

τ
| max

z∈Ξ(s)
|F′(z)| , (3.3.4.6)

with the line segment Ξ(s) ⊂ C connecting s and
1−exp(−sτ)

τ :

Ξ(s) :=

{
ζs + (1− ζ)

1− exp(−sτ)

τ
, 0 ≤ ζ ≤ 1

}
.

By Taylor expansion for small |s| and elementary estimates for large |s| one can bound the length of Ξ(s)
by

∣∣∣∣s−
1− exp(−sτ)

τ

∣∣∣∣ ≤ C
1

τ
|τs|2 = Cτ|s|2 , (3.3.4.7)

with some universal constant C > 0.

Next, we tackle |F′(z)| by means of the Cauchy differentiation formula from Cor. 3.3.2.23,

F(ℓ)(z) =
ℓ!

2πı

∫

∂B

F(s)

(w− z)ℓ+1
dw ∀z ∈ B , z ∈ disk B ⊂ C+ , ℓ ∈ N0 ,

taking into account that F is analytic in the right half-plane C+.

|F′(z)| ≤ 1

π

∣∣∣∣∣∣∣

∫

|z−w|= 1
2 Re(z)

F(w)

(w− z)2
dw

∣∣∣∣∣∣∣
.

On the circle {w : |z− w| = 1
2 Re(z)} we have Re w ≥ 1

2 Re z and |w| ≤ 3
2 |z|, which yields the estimate

(M > 0 from Ass. 3.3.4.3)

|F′(z)| ≤ M(3
2)

µ 2

Re z
|z|µ ∀z ∈ C+ . (3.3.4.8)

Again by Taylor expansion and elementary estimates we see

for z ∈ Ξ(s): Re z ≥ min
{

Re s, Re
1− exp(−sτ)

τ

}
≥ 1

2 min{1, Re s} ,

|z| ≤ max{|s|,
∣∣1− exp(−sτ)

τ

∣∣} ≤ C|s| ,

with another universal constant C > 0.

|F′(z)| ≤ CM

min{1, Re s} |s|
µ ∀z ∈ Ξ(s) , s ∈ C+ , (3.3.4.9)

with C > 0 independent of s and τ. Combine this with the estimate (3.3.4.7) for the length of the segment
Ξ(s):

|F(s)− Fτ(s)| ≤ τ
CM

min{1, Re s} |s|
µ+2 ∀s ∈ C+ . (3.3.4.10)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 296

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Plugging this into the estimate provided by Thm. 3.1.4.12 (for m = 1) gives us

|((F− Fτ)(∂t)g)(t) ≤ CM τ

T∫

0

∣∣∣∣∣
n

∑
ℓ=0

g(ℓ)(τ)

∣∣∣∣∣ , 0 ≤ t ≤ T , (3.3.4.11)

with n ∈ N, n ≥ µ + 3, and C > 0 independent of τ, but, of course, depending on T > 0. Finally, we
invoke (3.3.4.5).

Theorem 3.3.4.12. Convergence of IE-CQ

Under Ass. 3.3.4.3 on F and assuming g to be causal and g ∈ Cn(R), n > µ + 3, we have

max
n=0,...,N

∣∣∣F(∂t)g(τn)−
(
CQIE

τ (F) ∗ g|Gτ

)
n

∣∣∣ ≤ CM τ

T∫

0

∣∣∣∣∣
n

∑
ℓ=0

g(ℓ)(τ)

∣∣∣∣∣ , τ :=
T

N
,

with C > 0 independent of g and N.

3.4 Multistep Convolution Quadrature (MSCQ)

In § 3.3.2.1 the derivation of convolution quadrature schemes centered around the formula

(
F(∂t)g

)
(nτ) = (f ∗ g)(nτ) =

nτ∫

0

f (nτ − ξ)g(ξ)dξ ≈ 1

2πı

∫

σ+ıR

F(s) yn(s)ds . (3.3.2.7)

where yn(s) is a numerical approximation at t = nτ of the solution t 7→ y(s; t) of the initial-value prob-
lem

ẏ(s; t) := sy(s; t) + g(t) , t ∈ R , y(s; 0) = 0 with s ∈ C+ . (3.3.2.3)

In Section 3.3 we focused on the implicit Euler single-step method (3.3.2.9) as numerical integrator for
(3.3.2.3). Now we consider a whole class of timestepping schemes, which will spawn a class of CQ
schemes.

3.4.1 Linear Multi-Step Numerical Integrators

§3.4.1.1 (Recalled: Single-step numerical inegrators) [NumCSE Chapter 11], [NumCSE Chapter 12],
[NumPDE § 10.2.2.7], and [NumPDE Chapter 7] exlusively treat single step methods for the approximate
solution of initial-value problems (IVP) for an ordinary differential equation (ODE) ẏ = f(t, y). They pro-
duce sequences (yk) of states, approximating yk ≈ y(tk) on temporal mesh {t0 < t1 < t2 < · · · < tM}
according to the formula

yk+1 := Ψ(tk+1, tk, yk) , k = 0, . . . , M− 1 ,

where Ψ is a suitable discrete evolution operator. Obviously, these methods have no memory ; at the k-
th step they forget about all previous approximations except yk−1, which could mean needlessly discarding
information. y

Now we consider linear multi-step methods (MSMs) for the solution of the IVP

ẏ = f(t, y) , y(t0) = y0 , (3.4.1.2)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 297

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with right-hand side function f : I × D→ RN, I ⊂ R an interval, D ⊂ RN the state space. These meth-
ods try to gain efficiency, by resorting to several past terms in the sequence (yk)

M
k=0 of approximate states

they produce: yk+1 is computed from yk−m+1, . . . , yk in the case of a m-step method.

In the sequel, we confine ourselves to t0 = 0 and equidistant temporal meshes Mτ := {tj := jτ}M
j=0,

with the timestep size τ > 0.

EXAMPLE 3.4.1.3 (Explicit midpoint method) The solution of t 7→ y(t) of (3.4.1.2) satisfies

y((k + 1)τ) = y((k− 1)τ) +
∫ tk+1

tk−1

f(ξ, y(ξ))dξ .

We can approximate the integral by the midpoint quadrature rule,

y((k + 1)τ) ≈ y((k− 1)τ) + 2τf(kτ, y(kτ)) ,

which leads to the explicit midpoint method, a 2-step method,

yk+1 := yk−1 + 2τf(kτ, yk) , k = 1, . . . , M− 1 . (3.4.1.4)

This method is explicit , because yk+1 can be computed solely based on f-evaluations. y

EXAMPLE 3.4.1.5 (Backward difference formulas (BDF), [DB02, Sect. 7.3.2]) We consider the IVP
(3.4.1.2) with t0 = 0 and equidistant temporal meshesMτ := {tj := jτ}M

j=0.

Given states yj ≈ y(tj), j = k−m + 1, . . . , k, compute yk+1 := q(tk+1), where

q ∈ (Pm+1)
N is an uni-variate RN-valued polynomial of degree m, uniquely defined by

the

interpolation conditions: q(tj) = yj , j = k−m + 1, . . . , k , and the (3.4.1.6)

collocation condition: q̇(tk+1) = f(tk+1, yk+1) . (3.4.1.7)

This defines an implicit m-step method. Let us extract more explicit formulas from (3.4.1.6) and (3.4.1.7).
We write Li, i = 0, . . . , m, for the m + 1 Lagrange polynomials [NumCSE § 5.2.2.3] belonging to the
nodes (0, 1, 2, . . . , m): Li ∈ Pm, Li(j) = δi,j, i, j ∈ {0, . . . , m}. Then, by the cardinal basis property of
the Lagrange polynomials and the interpolation conditions satisfied by q,

q(t) =
m

∑
i=0

yk−m+1+iLi

(
t− tk−m+1

τ

)
, t ∈ R .

This already respects (3.4.1.6). It remains to take into account (3.4.1.7) and this is done through demand-
ing

[q̇(tk+1) =]
1

τ

m

∑
i=0

yk−m+1+i L̇i

(
tk+1 − tk−m+1

τ

)
= f(tk+1, yk+1) ,

which becomes

m

∑
i=0

yk−m+1+i L̇i(m) = τf(tk+1, yk+1) . (3.4.1.8)

This is a (non-linear) equation defining yk+1 (for sufficiently small τ > 0), which accounts for the attribute
“implicit” used above. The simplest BDF schemes contained in (3.4.1.8) are,

m = 1: yk+1 − yk = τf(tk+1, yk+1) , (3.4.1.9)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 298

https://en.wikipedia.org/wiki/Backward_differentiation_formula
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

m = 2: 3
2 yk+1 − 2yk +

1
2 yk−1 = τf(tk+1, yk+1) , (3.4.1.10)

m = 3: 11
6 yk+1 − 3yk +

3
2 yk−1 − 1

3 yk−2 = τf(tk+1, yk+1) . (3.4.1.11)

The method (3.4.1.9) is the familiar implicit Euler 1-step method, the 2-step method (3.4.1.10) is known as
BDF-2. . y

In the above examples we can identify a general pattern.

Definition 3.4.1.12. Linear multi-step method

A general linear m-step method, m ∈ N, for the discretization of the ODE ẏ = f(t, y) on an
equidistant temporal mesh with step size τ > 0 is characterized by the recurrence relation

m

∑
ℓ=0

αℓyj+ℓ = τ
m

∑
ℓ=0

βℓf(tj+ℓyj+ℓ) , j = 0, . . . , M−m , (3.4.1.13)

where αℓ, βℓ ∈ R, ℓ = 0, . . . , m, are given coefficients satisfying |α0|+ |β0| > 0 and αm 6= 0.

Obviously, if βm 6= 0, the we deal with an implicit m-step method. For all BDF schemes from Ex. 3.4.1.5
we have βm = 1 and β j = 0 for all j ∈ {0, . . . , m− 1}.

Remark 3.4.1.14 (Special initial steps for multi-point methods) While single-step numerical integrators
can directly start from the initial state y0, their multi-step counterparts need special initial steps: for an
m-step method, m > 1, we need to determine y1, . . . , ym−1 before we can apply it directly to generate
the sequence of approximate states. So Def. 3.4.1.12 does not immediately define a numerical integration
scheme.

However, since we are mainly interested in causal solutions of (3.3.2.3), for m > 1 we can formally set
y−m+1 = . . . = y−1 = 0 to launch the multi-step method for that special initial-value problem. Hence, we
gloss over the issue of how to start multi-step integrators. y

§3.4.1.15 (Characteristic polynomials) We introduce

• the sequences (yk)k (approximate states) and (fk := f(tk, yk))k, and

• the sequence left-shift operator S : {Z → RN} → {Z → RN}, (S(zk))ℓ = zℓ+1, ℓ ∈ Z.

Then (3.4.1.13) can be rephrased as

m

∑
ℓ=0

αℓS
ℓ(yk) = τ

m

∑
ℓ=0

βℓS
ℓ(fk) . (3.4.1.16)

Another way to write is by means of the two characteristic polynomials

ρ(z) :=
m

∑
ℓ=0

αℓz
ℓ , σ(z) :=

m

∑
ℓ=0

βℓz
ℓ : (3.4.1.17)

(3.4.1.16) ⇔ ρ(S)(yk) = σ(S)(fk) . (3.4.1.18)

y

§3.4.1.19 (Consistency of multi-step methods) A difference equation of a numerical integration scheme
like (3.4.1.13) is called consistent of order p ∈ N with the ODE ẏ = f(t, y), if any solution of the ODE,

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 299

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

when restricted to the temporal mesh Mτ, satisfies the difference equation up to a residual of size
O(τp+1) as τ → 0.

Hence an m-step method according to Def. 3.4.1.12 is certainly consistent of order p ∈ N, if

m

∑
ℓ=0

αℓy((j + ℓ)τ)− τ
m

∑
ℓ=0

βℓẏ((j + ℓ)τ) = O(τp+1) for τ → 0 (3.4.1.20)

and for all smooth t→ y(t). Here, we use the ODE to replace f((j + ℓ)τ, y((j + ℓ)τ)) with ẏ((j + ℓ)τ).
By Taylor expansion we see the equivalence

(3.4.1.20) ⇔
m

∑
ℓ=0

αℓq((j + ℓ)τ)− τ
m

∑
ℓ=0

βℓq̇((j + ℓ)τ) = 0 ∀q ∈ Pp+1 . (3.4.1.21)

In turns, this is equivalent to

(3.4.1.22) ⇔
m

∑
ℓ=0

αℓℓ
k −

m

∑
ℓ=0

βℓkℓ
k−1 = 0 , k ∈ {0, . . . , p} . (3.4.1.22)

Hence, a multi-step method from Def. 3.4.1.12 with characteristic polynomials ρ and σ is at least first-order

consistent , if

(I)
m

∑
ℓ=0

αℓ = 0 ⇔ ρ(1) = 0 , and (3.4.1.23a)

(I I)
m

∑
ℓ=0

ℓαℓ =
m

∑
ℓ=0

βℓ ⇔ ρ′(1) :=
dρ

dz
(1) = σ(1) . (3.4.1.23b)

y

Remark 3.4.1.24 (Order of consistency of some multi-step methods)

• The explicit midpoint method

yk+1 := yk−1 + 2τf(kτ, yk) , k = 1, . . . , M− 1 . (3.4.1.4)

is characterized by the coefficients

m = 2 , (α0, α1, α2) = (−1, 0, 1) , (β0, β1, β2) = (0, 2, 0) . (3.4.1.25)

We check (3.4.1.22) for k = 0, 1, 2:

α0 + α1 + α2 = 0 ✔ ,

1 · α1 + 2 · α2 = β0 + β1 + β2 ✔ ,

12 · α1 + 22 · α2 = 2(1 · β1 + 2 · β2) ✔ .

Hence, the explicit midpoint 2-step method is of second order.

• By construction the m-step BDF multi-point methods as introduced in Ex. 3.4.1.5 are consistent of
order m.

y

Now we investigate the issue of stability of multi-step methods, when they are applied to linear ODEs.
When do we have a guarantee that they produce bounded sequences of approximate states, if all IVPs for
the ODE have bounded solutions? We start with a disturbing observation and continue with fundamental
considerations.

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 300

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

EXAMPLE 3.4.1.26 (Instability of a 2-step method) The explicit midpoint method from Ex. 3.4.1.3 is a
2-step method of order 2.

Fig. 131
0 2 4 6 8 10

 time t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 y
k

 = 0.08

 = 0.025

✁ Explicit midpoint method applied to decay equa-
tion ẏ = −y with implicit Euler starting step
y0 = 1, y1 = 1/1+τ, two different timestep sizes
τ.

We observe exponential blow-up of the solutions!

This exponential blow-up will occur for any timestep
size τ > 0; the method is unconditionally unstable.

y

§3.4.1.27 (Stability of linear recurrence relations) A sequence (xk)k∈N0
of complex numbers is said to

solve an m + 1-term linear recurrence relation, m ∈ N, if

∃γℓ ∈ C, γ0, γm 6= 0:
m

∑
ℓ=0

γℓxj+ℓ = 0 ∀j ∈ N0 . (3.4.1.28)

We try xk = ζk for some ζ ∈ C \ {0}. This sequence will solve the linear recurrence relation, if

m

∑
ℓ=0

γℓζ
ℓ = 0 ⇔ π(ζ) = 0 for π(z) :=

m

∑
ℓ=0

γℓz
ℓ ∈ Pm . (3.4.1.29)

The polynomial π is called the characteristic polynomial of the recurrence relation. From (3.4.1.29) we
learn that solutions of the linear recurrence relations and roots of its characteristic polynomial are closely
related. We also learn, that the location of those roots allows to predict the growth of solutions.

Theorem 3.4.1.30. Growth of solutions of linear recurrence relations, [DB02, Thm. 3.40]

Consider an m + 1-term linear recurrence relation with characteristic polynomial π ∈ Pm, m ∈ N,

whose set of complex root we denote with R, R := {ζ ∈ C : π(ζ) = 0}.
(i) If all root of π have modulus < 1, R ⊂ {z ∈ C : |z|< 1}, then all solutions decay exponen-

tially.

(ii) If there is a root with modulus > 1, ∃ζ ∈ R : |ζ|> 1, then there is an exponentially increasing

solution.

More refined results are available: If π has a double root on the unit circle,

∃ζ ∈ C: , |ζ| = 1 , π(ζ) = π′(ζ) = 0 ,

then the recurrence relation will have a polynomially increasing solution:

π′(ζ) = 0 ⇔
m

∑
ℓ=0

γℓℓζℓ−1 = 0 ⇔
m

∑
ℓ=0

γℓxj+ℓ = 0 for xk := kζk−1 , k ∈ N0 .

y

EXAMPLE 3.4.1.31 (Explicit midpoint method for decay equation, Ex. 3.4.1.26 cnt’d) The explicit
midpoint method (timestep τ > 0) applied to the decay equation ẏ = −y gives rise to the linear 3-term
recurrence relation

yk+1 = yk−1 − 2τyk π(z) = −1 + 2τz + z2 .

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 301

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The characteristic polynomial π has roots ζ± = −τ ±
√

τ2 + 1 with |ζ−| > 1, which explains the expo-
nential blow-up observed in Ex. 3.4.1.26. y

§3.4.1.32 (Zero-stability of multi-step methods) What we definitely do not want is a blow-up of the
solution sequence produced by a multi-step method applied to the trivial ODE ẏ = 0. The resulting linear
recurrence relation is

m

∑
ℓ=0

αℓyj+ℓ = 0 with characteristic polynomial π(z) = ρ(z) =
m

∑
ℓ=0

αℓz
ℓ .

From § 3.4.1.27 we conclude that all solutions of this recurrence relation will be bounded, if all roots of the
polynomial ρ will have modulus ≤ 1 and all roots on the unit circle are simple,

ζ ∈ C , ρ(ζ) = 0 =⇒ |ζ| < 0 or
(
|ζ| = 1 =⇒ ρ′(ζ) 6= 0

)
. (3.4.1.33)

Multi-step methods satisfying this are often called zero-stable. y

Keep in mind that for the construction of CQ methods we want to apply multi-step numerical integrators
to the linear ODE ẏ = sy + g(t). We badly need to avoid blow-up of solutions (yn)n∈N0

, at least in the
stable case Re s ≤ 0, cf. Rem. 3.3.2.16.

§3.4.1.34 (A-stability of multi-step methods) We adapt the key technique of linear model problem
analysis from [NumCSE Section 12.1]/[NumPDE Section 7.1] to linear multistep methods. We investigate,
if and when the multi-step method applied to the autonomous scalar linear ODE ẏ = λy, λ ∈ C, can have
(exponentially) increasing solutions.

A linear m-step method according to Def. 3.4.1.12 applied to ẏ = λy, λ ∈ C, will give rise to the linear
m + 1-term recurrence relation

m

∑
ℓ=0

αℓyj+ℓ = τλ
m

∑
ℓ=0

βℓyj+ℓ ⇔
m

∑
ℓ=0

(αℓ − zβℓ)yj+ℓ = 0 , z := τλ ∈ C . (3.4.1.35)

In light of the results of § 3.4.1.27 this makes it possible to adapt the concept of region of stability [NumCSE
Def. 12.1.0.51]/[NumPDE Def. 7.1.0.51] to linear multi-step methods.

Definition 3.4.1.36. Region of stability for linear multi-step method

The region of (absolute) stability of a linear m-step method defined by the two characteristic poly-
nomials ρ, σ ∈ Pm+1, m ∈ N, cf. (3.4.1.17), is

S :=
{

w ∈ C: ζ ∈ C, πw(ζ) = 0 =⇒ |ζ| < 1 or
(
|ζ| = 1 =⇒ π′w(ζ) 6= 0

)}
,

(3.4.1.37)

where πw := ρ− w · σ ∈ Pm+1, w ∈ C.

Another concept from single-step methods, see [NumCSE Def. 12.3.4.9]/[NumPDE Def. 7.3.4.9], can
naturally be extended to multi-step methods.

Definition 3.4.1.38. A-Stability of linear multi-step methods [DB02, Sect. 7.2.2]

A multi-step method is A-stable, if {z ∈ C : Re z ≤ 0} ⊂ S .

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 302

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Lemma 3.4.1.39. A sign condition for A-stability of multi-step methods

The polynomials ρ, σ ∈ Pm+1 characterizing an A-stable m-step method, cf. (3.4.1.17), satisfy

z ∈ C , |z| > 1 =⇒ Re
ρ(z)

σ(z)
> 0 .

Proof. Let w ∈ C, Re w ≤ 0, ζ ∈ C satisfy

πw(ζ) = ρ(ζ)− w · σ(ζ) = 0 . (3.4.1.40)

As the method is A-stable, {z ∈ C : Re z ≤ 0} ⊂ S , we know that w ∈ S , which implies |ζ| ≤ 1.

By modus tollens we infer that, if (3.4.1.40) has a solution ζ ∈ C with |ζ| > 1, then Re w > 0 must hold.
In addition, σ(ζ) = 0 can be ruled out in this case, because it would clash with the requirement (3.4.1.33)
of zero-stability. As a consequence

0 < Re w = Re

{
ρ(ζ)

σ(ζ)

}
. (3.4.1.41)

✷

Remark 3.4.1.42 (A-stability and order of linear multi-step methods) The message of Rem. 3.3.2.16
is that A-stability of the underlying numerical integration scheme is essential for the construction of viable
CQ schemes. Therefore the following result is somewhat daunting.

Theorem 3.4.1.43. Second Dahlquist barrier, [DB02, Thm. 7.36]

An A-stable linear multi-step method (→ Def. 3.4.1.12) is at best 2nd-order consistent.

y

EXAMPLE 3.4.1.44 (Region of stability for BDF methods) The 2-step BDF method (BDF-2) introduced
in Ex. 3.4.1.5 is characterized by the polynomials

ρ(z) = 1
2 − 2z + 3

2 z2 , σ(z) = z2 πw(z) =
1
2 − 2z + (3

2 − w)z2 . (3.4.1.45)

The zeros of πw are

ζ± =
1

2(3
2 − w)

(
2±

√
4− 2(3

2 − w)

)
, w 6= 3

2 .

We see that η± → 0 for |w| → ∞, which means that the complement C \ S is bounded. A closer inspec-
tion reveals that the 2-step BDF method is A-stable, which is still possible in light of Thm. 3.4.1.43. No
higher-order BDF multi-step can be A-stable.

The pink areas in the following figures mark the stability regions of the BDF-2 and BDF-3 multi-step
methods1. BDF-3 barely misses A-stability.

1Fig. 132, Fig. 133 by Jitse Niesen, CC0, Wikipedia

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 303

https://commons.wikimedia.org/w/index.php?curid=18767292

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 132

BDF-2

Fig. 133

BDF-3y

§3.4.1.46 (Convergence of linear multi-step methods [DB02, Sect. 7.1.3]) On finite time intervals order-
p single-step numerical integrators for initial-value problems for ODEs generate sequences of approximate
states that converge algebraically to the exact solution (sampled on the temporal grid) in maximum norm,
see [NumCSE Section 11.3.2] or [NumPDE Section 6.3.2].

Mere order-p consistency is not enough for linear multistep method. In addition zero-stability is required.

Theorem 3.4.1.47. A stable and consistent linear MSM is convergent

Let y ∈ Cp+1([0, T], RN) be the solution of the IVP ẏ = f(t, y), y(0) = y0.

Then for a zero-stable linear m-step method with consistency order p there exist constants C > 0,

ǫ∗ > 0, τ∗ > 0, such that for uniform timestep size τ := T
M < τ∗ and starting error

ǫ0 := max{‖yℓ − y(τℓ)‖ : ℓ ∈ {0, . . . , m− 1}} ≤ ǫ∗

the method generates a sequence yℓ, ℓ = 0, . . . , M, of approximate states, which satisfies

‖yℓ − y(τℓ)‖ ≤ C(ǫ0 + τp) ∀ℓ = 0, . . . , M .

For a Runge-Kutta single-step method the number of stages limits the order of consistency: The maxmimal
order of an s-stage implicit RK-SSM is 2s. A similar result also applies to linear multi-step methods.

Theorem 3.4.1.48. First Dahlquist barrier [DB02, Thm. 7.16]

The order p of consistency of a zero-stable linear m-step method is subject to the following restric-

tions:

(i) p ≤ m + 2 for even m,

(ii) p ≤ m + 1 for odd m,

(iii) p ≤ q, if the method is explicit (βm = 0).

y

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 304

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

3.4.2 Multi-Step Convolution Quadrature: Weights

Let the transfer function F : C+ → C be the Laplace transform (→ Def. 3.1.3.6) of a causal function/dis-
tribution f and write g : R → C for a continuous causal function. From § 3.3.2.1 we recall the formula

F(∂t)g(t) = (f ∗ g)(t) =

t∫

0

f (t− ξ)g(ξ)dξ =
1

2πı

∫

σ+ıR

F(s) y(s; t)ds ,
t ≥ 0 ,
σ > 0 ,

(3.3.2.5)

where t 7→ y(s; t), s ∈ C+, is the unique solution of the scalar linear initial-value problem

ẏ(s; t) :=
∂y

∂t
(s; t) = sy(s; t) + g(t) , t ≥ 0 , y(s; t) = 0 ∀t ≤ 0 . (3.3.2.3)

§3.4.2.1 (Multi-step numerical integration of (3.3.2.3)) Multi-step convolution quadrature with step size
τ > 0 boils down to the approximation

(F(∂t)g)(τn) ≈ 1

2πı

∫

σ+ıR

F(s) yn(s)ds , n ∈ N0 , (3.4.2.2)

with (yn(s))n∈N0
the (causal) sequence of approximations yn(s) ≈ y(s; τn) generated by some multi-

step method applied to (3.3.2.3) with uniform step size τ > 0 and zero starting states. Concretely, using
a linear m-step method according to

Definition 3.4.1.12. Linear multi-step method

A general linear m-step method for the discretization of the ODE ẏ = f(t, y) on an equidistant
temporal mesh with step size τ > 0 is given by the recurrence relation

m

∑
ℓ=0

αℓyj+ℓ = τ
m

∑
ℓ=0

βℓf(tj+ℓyj+ℓ) , j = 0, . . . , M−m , (3.4.1.13)

where αℓ, βℓ ∈ R, ℓ = 0, . . . , m, are given coefficients satisfying |α0|+ |β0| > 0 and αm 6= 0.

with m ∈ N, the sequence (yn(s)) is defined by the recurrence relation

m

∑
ℓ=0

αℓyn+ℓ(s) = τs
m

∑
ℓ=0

βℓyn+ℓ(s) + τ
m

∑
ℓ=0

βℓgn+ℓ , n ∈ N0 , (3.4.2.3a)

yj(s) = 0 ∀j ∈ Z, j ≤ 0 . (3.4.2.3b)

Here we wrote gj := g(τ j), j ∈ N0, and we extended (yn) by zero to obtain a causal sequence. This will
define a valid timstepping scheme only if αm − τsβm 6= 0, which we assume in the sequel.

Assumption 3.4.2.4. Properties of linear multi-step method underlying CQ

The linear multi-step method defining (yn) by means of (3.4.2.3) and σ > 0 are expected to satisfy

βmαm > 0 (=⇒ implicit MSM) and αm − τsβm 6= 0 ∀s ∈ C, Re s = σ . (3.4.2.5)

y

§3.4.2.6 (Multi-step recurrence in z-domain) Straightforward computations show that under the z-
transform as defined in (3.1.4.17) shift operators in sequence space become multiplication with powers of
z in the z-domain. For a bounded causal sequence

(
xj

)

Z(S(
(
xj

)
))(z) =

∞

∑
ℓ=0

(
S(xj)

)
ℓ

zℓ =
∞

∑
ℓ=0

xℓ+1zℓ =
1

z

(
Z(
(

xj

)
)(z)− x0

)
, z ∈ C, |z| < 1 . (3.4.2.7)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 305

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We can exploit this, because both sides of (3.4.2.3a) act on causal sequences through a linear combination
of powers of shift operators.

Idea: Apply the z-transform Z from (3.1.4.17) to both sides of (3.4.2.3a)

We will not use (3.4.2.7), but, for the sake of clarity, we directly work with the definition (3.1.4.17) and
manipulate power series. We start with a change of index n→ n−m in (3.4.2.3a):

m

∑
ℓ=0

αℓyn−m+ℓ(s) = τs
m

∑
ℓ=0

βℓyn−m+ℓ(s) + τ
m

∑
ℓ=0

βℓgn−m+ℓ , n ∈ N0 . (3.4.2.8)

Next, we multiply both sides of (3.4.2.8) with zn and sum over n, assuming that the series converge for |z|
sufficiently small:

∞

∑
n=0

(
m

∑
ℓ=0

αℓyn−m+ℓ(s)

)
·zn =

∞

∑
n=0

(
τs

m

∑
ℓ=0

βℓyn−m+ℓ(s)

)
·zn +

∞

∑
n=0

(
τ

m

∑
ℓ=0

βℓgn−m+ℓ

)
·zn , z ∈ C .

What we are aiming for is to obtain an equation featuring the z-transforms of the involved causal se-
quences,

Y(s; z) := Z((yn(s))n) =
∞

∑
n=−∞

yn(s)z
n , G(z) := Z(

(
gj

)
j
) =

∞

∑
j=−∞

gjz
j , z ∈ C, |z| < 1 .

(3.4.2.9)

To that end we first distribute powers of z:

∞

∑
n=0

m

∑
ℓ=0

αℓyn−m+ℓ(s)z
n−m+ℓ · zm−ℓ = τs

∞

∑
n=0

m

∑
ℓ=0

βℓyn−m+ℓ(s)z
n−m+ℓ · zm−ℓ+

τ
∞

∑
n=0

m

∑
ℓ=0

βℓgn−m+ℓz
n−m+ℓ · zm−l .

(3.4.2.10)

We change the order of summation and then extract n-independent factors from the inner sums:

m

∑
ℓ=0

αℓz
m−ℓ

∞

∑
n=0

yn−m+l(s)z
n−m+ℓ =

τs
m

∑
ℓ=0

βℓz
m−ℓ

∞

∑
n=0

yn−m+l(s)z
n−m+ℓ + τ

m

∑
ℓ=0

βℓz
m−ℓ

∞

∑
n=0

gn−m+ℓz
n−m+ℓ , (3.4.2.11)

which means, since (yn) and (gn) are causal sequences,

m

∑
ℓ=0

αℓz
m−ℓ Y(s; z) = τs

m

∑
ℓ=0

βℓz
m−ℓ Y(s; z) + τ

m

∑
ℓ=0

βℓz
m−ℓ G(z) , z ∈ C, |z| ≪ 1 (3.4.2.12)

⇐⇒ zmρ(z−1)Y(s; z) = τs zmσ(z−1)Y(s; z) + τzmσ(z−1) G(z) , z ∈ C, |z| ≪ 1 .

Now we can solve for Y(s; z):

Y(s; z) =

(
1

τ−1δ(z)− s

)
G(z) , δ(z) :=

zmρ(z−1)

zmσ(z−1)
=

m

∑
ℓ=0

αℓz
m−ℓ

m

∑
ℓ=0

βℓzm−ℓ
. (3.4.2.13)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 306

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Summing up, with (3.4.2.13) we have found an expression for the solution of (3.4.2.3) in the “z-domain”. y

§3.4.2.14 (Properties of δ)

✦ z 7→ δ(z) as defined in (3.4.2.13) is a rational function of degree (m, m).

✦ By virtue of Ass. 3.4.2.4 z 7→ δ(z) is analytic in a neighborhood of z = 0 and

δ(0) = αm/βm > 0 . (3.4.2.15)

✦ If the multi-step method is A-stable (→ Def. 3.4.1.38), then Lemma 3.4.1.39 implies

|z| < 1 =⇒ Re δ(z) > 0 , (3.4.2.16)

because δ(z) = ρ(z−1)/σ(z−1).

y

§3.4.2.17 (Formula for multi-step CQ weights) As explained in Section 3.3.1, for given transfer function
F; C+ → C and timestep τ > 0 we want to find a causal sequence CQτ(F) : N0 → C such that

F(∂t)g|Gτ
≈ CQτ(F) ∗ g|Gτ

=

 1

2πı

∫

σ+ıR

F(s) yn(s)ds

n∈N0

, (3.4.2.18)

with (yn(s)) the sequence generated by the linear recurrence relation (3.4.2.3). The formula (3.4.2.13)
implicitly defines that sequence (yn(s)) through its z-transform z 7→ Y(s; z).

Idea: Apply the z-transform on both sides of (3.4.2.18).

We abbreviate Q(z) := (Z(CQτ(F)))(z), z ∈ C, |z| small, and appeal to the convolution theorem for the
z-transform:

Theorem 3.1.4.18. z-Transform and discrete convolution

If (gℓ) and (fℓ) are causal summable sequences, then

Z((fℓ) ∗ (gℓ))(z) = Z((fℓ))(z) · Z((gℓ))(z) , ∀z ∈ {z ∈ C : |z| < 1} . (3.1.4.19)

Thus, applying the z-transform to both sides of (3.4.2.18), we arrive at

Q(z)G(z) =
∞

∑
n=0

 1

2πı

∫

σ+ıR

F(s) yn(s)ds

 ·zn

=
1

2πı

∫

σ+ıR

F(s)
∞

∑
n=0

yn(s)·zn ds =
1

2πı

∫

σ+ıR

F(s)Y(s; z)ds .

(3.4.2.19)

We can immediately plug in the formula (3.4.2.13) for Y(s; z) and get for all z ∈ C sufficiently close to
zero

Q(z)G(z) =
1

2πı

∫

σ+ıR

F(s)

(
1

τ−1δ(z)− s

)
ds · G(z) , (3.4.2.20)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 307

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

which means

Q(z) =
∞

∑
n=0

(CQτ(F))nzn =
1

2πı

∫

σ+ıR

F(s)

(
1

τ−1δ(z)− s

)
ds . (3.4.2.21)

From this point the transfer function is supposed to satisfy Ass. 3.3.1.1.

Assumption 3.3.1.1. Properties of transfer function

F : C+ → C is analytic on the right half plane C+ and satisfies the decay condition

∃M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ and some µ < −1 . (3.3.1.2)

This makes it possible to pursue the same considerations as in § 3.3.2.21. To begin with, Ass. 3.4.2.4
ensures that

Re
δ(z)

τ
> σ for |z| < 1 and σ sufficiently small . (3.4.2.23)

Then note that the integrand has a singularity in s = τ−1δ(z) and is holomorphic in C+ \ {τ−1δ(z)}, This
makes it possible to “deform the contour of integration”:

Fig. 134

Re

Im

τ−1δ(z)

σ

Γ

−R

R

Since the integrand

s 7→ F(s)

(
1

τ−1δ(z)− s

)

is analytic in C+ \ {τ−1δ(z)}, by the Cauchy inte-
gral theorem Thm. 3.1.3.16 its path integral over the
contour

Γ := Γσ ∪ ΓR ∪ Γr ,

Γσ := σ + ı[−R, R] ,

ΓR := {s : |s| = R, Re z ≥ σ} ,

Γr := {s : |s− τ−1δ(z)| = r} ,

with r, R > 0, R > τ−1δ(z) + r and suitable orien-
tations of the pieces, vanishes. The decay properties
of F from Ass. 3.3.1.1 imply

∫

ΓR

F(s)

(
1

τ−1δ(z)− s

)
ds→ 0 for R→ ∞ .

Hence, instead of integrating along a line parallel to the imaginary axis we can evaluate a path integral
over a small circle centered at z0 = τ−1δ(z):

1

2πı

∫

σ+ıR

F(s)

(
1

τ−1δ(z)− s

)
ds = − 1

2πı

∫

|s−δ(z)/τ|

F(s)

τ−1δ(z)− s
ds = F

(δ(z)

τ

)
, (3.4.2.24)

where we applied the Cauchy integral formula to the holomorphic function F : C+ → C:

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 308

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 3.3.2.22. Cauchy integral formula

If g : D ⊂ C → C is analytic in D, c ∈ D, and B := {s : |s− z| ≤ r} ⊂ D for some r > 0, then

g(z) =
1

2πı

∫

∂B

g(s)

s− z
ds ∀z ∈ B ,

where the integral is a complex contour integral and the circle ∂B is oriented counterclockwise.

Obviously, combining (3.4.2.21) and (3.4.2.24) yields

Q(z) =
∞

∑
n=0

(CQτ(F))nzn = F

(
δ(z)

τ

)
, |z| < 1 .

We have arrived at a generalization of Lemma 3.3.2.24:

Lemma 3.4.2.25. Convolution quadrature weights for multi-step CQ

We consider CQ with uniform timestep τ > 0 based on a linear multi-step method according to

Def. 3.4.1.12, whose coefficients satisfy Ass. 3.4.2.4. If F : C+ → C is analytic and complies with

Ass. 3.3.1.1, then

z 7→ F

(
δ(z)

τ

)
, δ(z) :=

zmρ(z−1)

zmσ(z−1)
=

m

∑
ℓ=0

αℓz
m−ℓ

m

∑
ℓ=0

βℓzm−ℓ
, z ∈ C, |z| ≪ 1 , (3.4.2.26)

is a generating function for the convolution quadrature weights from Def. 3.3.2.14, that is,

F

(
δ(z)

τ

)
=

∞

∑
ℓ=0

(CQτ(F))ℓz
ℓ for |z| sufficiently small . (3.4.2.27)

Note that for an A-stable (→ Def. 3.4.1.38) multi-step method (3.4.2.16) guarantees that δ(z)/τ ∈ C+, so
that the argument of F will always lie in its domain of definition. This is another reason, why CQ schemes
are mostly based on A-stable timestepping methods. y

EXAMPLE 3.4.2.28 (δ for simple BDF multi-step schemes)

• The implicit Euler method, the first-order BDF scheme, fits Def. 3.4.1.12 with m = 1 and

α0 = −1 , α1 = 1 , β1 = 1 , β0 = 0 ,

δ(z) = 1− z ,

which shows that Lemma 3.3.2.24 is just a special case of Lemma 3.4.2.25.

• For the 2-step BDF method of order 2 from (3.4.1.10) we have

(α0, α1, α2) = (1
2 ,−2, 3

2) , (β0, β1, β2) = (0, 0, 1) ,

δ(z) = 1
2 z2 − 2z + 3

2 .

• The general formular for the m-step BDF schemes introduced in Ex. 3.4.1.5 is

δ(z) =
m

∑
j=1

1

j
(1− z)j , z ∈ C =⇒ δ ∈ Pm+1 . (3.4.2.29)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 309

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

§3.4.2.30 (Continuous-in-time multi-step convolution quadrature) In § 3.3.3.2 we saw that the CQ
scheme based on implicit Euler timestepping (with uniform timestep τ > 0) can be viewed as approxi-
mating the operator F(∂t) by Fτ(∂t) where F ≈ Fτ, see Section 3.3.4. This was succinctly expressed
by

CQIE
τ (F) ∗ g|Gτ

= Fτ(∂t)g|Gτ
. (3.3.3.8)

Hardly surprising, this can be generalized to multi-step CQ schemes. To simplify notation we write

CQτ(F) =
(

wF,τ
ℓ

)
ℓ∈N0

for the sequence of CQ weights. defined by (3.3.2.25):

F

(
δ(z)

τ

)
=

∞

∑
ℓ=0

wF,τ
ℓ zℓ for |z| sufficiently small . (3.4.2.31)

Formally, for “continuous time argument” t ∈ R we can rewrite convolution quadrature by means of con-
volution with shifted δ-distributions:

(Fτ(∂t)g)(t) =
∞

∑
ℓ=0

wF,τ
ℓ g(t− ℓτ) =

(
∞

∑
ℓ=0

wF,τ(δℓτ ∗ g)

)
(t) . (3.4.2.32)

With the Laplace transform of a shifted δ-distribution

L{t 7→ δ(t− τ)}(s) = “
∫

R
δ(t− τ) exp(−st)dt ” = exp(−sτ) , (3.3.3.5)

Laplace-transforming both sides of (3.4.2.32) we get with G(s) := Lg(s)

Fτ(s)G(s) = L(Fτ(∂t)g =

(
∞

∑
ℓ=0

wF,τ
ℓ e−sℓτ

)
· G(s) . (3.4.2.33)

Taking into account (3.4.2.31) we end up with

Fτ(s) = F

(
δ(e−sτ)

τ

)
, s ∈ C+ . (3.4.2.34)

y

Remark 3.4.2.35 (Approximations underlying (3.4.2.34)) The function y(t) = e−st solves the ODE
ẏ = −sy, s ∈ C+ fixed. Consider a m-step method according to Def. 3.4.1.12 of order p. In § 3.4.1.19
we argued that it must satisfy

m

∑
ℓ=0

αℓe
−s(j+ℓ)τ − τs

m

∑
ℓ=0

βℓe
−s(j+ℓ)τ = O(τp+1) for τ → 0

m [z := sτ]
m

∑
ℓ=0

αℓe
−zℓ + z

m

∑
ℓ=0

βℓe
−zℓ = O(zp+1) for z→ 0

m
m

∑
ℓ=0

αℓe
z(m−ℓ) + z

m

∑
ℓ=0

βℓe
z(m−ℓ) = O(zp+1) for z→ 0 .

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 310

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Since βm 6= 0 we can divide by ∑
m
ℓ=0 βℓe

z(m−ℓ) for sufficiently small z and get

δ(ez) + z = O(zp+1) for z→ 0 . (3.4.2.36)

In words, w→ δ(w) is a rational approximation of w 7→ − log w in a neighborhood of 1. Combining
(3.4.2.36) with (3.4.2.34) we conclude

δ(e−sτ)

τ
→ s for τ → 0 =⇒ Fτ(s)→ F(s) for τ → 0 . (3.4.2.37)

y

Remark 3.4.2.38 (Convergence of multi-step CQ) If a multi-step convolution quadrature scheme is
based on an A-stable multi-step method of order p ∈ N, then, under several technical assumptions on F
and for sufficiently smooth causal g : R → C, we can expect [BS21, Sect. 2.5]

max
n∈{0,...,T/τ}

|(((F− Fτ)(∂t))(g))(τn)| = O(τp) for τ → 0 . (3.4.2.39)

y

EXPERIMENT 3.4.2.40 (Convergence of CQ based on BDF-2) We revisit the setting of Exp. 3.3.4.2
with F(s) = s−1/2 (Abel integral operator), choose g(t) = t and g(t) = t2 for t > 0 and monitor2 the
error (3.4.2.39) for T = 1.

Fig. 135
10−4 10−3 10−2

timestep τ

10−7

10−6

10−5

10−4

10−3

10−2

er
ro
r(
τ
)
(m

ax
im

u
m

n
or
m
)

g(t) = t on [0, 1]

Implicit Euler

BDF-2

O(τ)

O(τ3/2)

g(t) = t

Fig. 136
10−4 10−3 10−2

timestep τ

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

er
ro
r(
τ
)
(m

ax
im

u
m

n
or
m
)

g(t) = t2 on [0, 1]

Implicit Euler

BDF-2

O(τ)

O(τ2)

g(t) = t2

We clearly observe empirical algebraic convergence of the error (norm) in τ, because the error point a
neatly located on straight lines in a doubly logarithmic plot.

The function g(t) = t2 enjoys global C1-smoothness, no kink at t = 0, whereas g(t) = t has a discontin-
uous derivative. So in the latter case the optimal rate 2 of asymptotic algebraic convergence for τ → 0 of
BDF-2 CQ cannot be realized. y

3.4.3 Multi-Step Convolution Quadrature: Algorithms

We consider a CQ scheme founded on an A-stable linear multistep method (→ Def. 3.4.1.12) as intro-
duced in Section 3.4.2. The transfer function F is to comply with Ass. 3.3.4.3. Moreover, we have to deal
with the following constraint.

2Python codes by L. Banjai, https://github.com/lehelb/TDBIE-CQ-book

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 311

https://github.com/lehelb/TDBIE-CQ-book

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Constraint in transfer function F

The transfer function F : C+ → C is given only in procedural form, that is, as
complex<double> F(complex<double> z); ;

only point evaluations are possible, cf. [NumCSE Rem. 5.1.0.9].

Again, we abbreviate the CQ weights as wF,τ
ℓ := (CQτ(F))ℓ and assume that we are given a causal

function g : R → C, also in procedural form.

Task: Our goal is to approximately (∗) compute the first M ∈ N terms of the CQ-discretized convolution
f ∗ g, namely

yn ≈
n

∑
ℓ=0

wF,τ
n−ℓ gℓ , n ∈ {0, . . . , M} , gℓ := g(τℓ) , τ > 0 . (3.4.3.2)

(∗): approximation is inevitable, owing to the above constraint on F!

Often one wants to evaluate a convolution up to some final time T > 0. In this case, choose M ≈ T/τ.

§3.4.3.3 (CQ weights through complex path integrals) The formula

F

(
δ(z)

τ

)
=

∞

∑
ℓ=0

wF,τ
ℓ zℓ for |z| < 1 , (3.4.2.27)

from Lemma 3.4.2.25 shows that the CQ weights are the coefficients of a Taylor series expansion of
function holomorphic in a neighborhood of z = 0. As such they can be computed from derivatives in
z = 0, which, in turns, can be expressed via

Corollary 3.3.2.23. Cauchy differentiation formula

If g : D ⊂ C → C is analytic in D, z ∈ D, and B := {s ∈ C : |s− z| ≤ r} ⊂ D for some r > 0,

then the ℓ-th derivative of g can be computed as the contour integral

g(ℓ)(z) =
ℓ!

2πı

∫

∂B

g(s)

(s− z)ℓ+1
ds ∀z ∈ B , ℓ ∈ N0 .

wF,τ
ℓ =

1

ℓ!

dℓ

dzℓ

{
z 7→ F

(
δ(z)

τ

)}

z=0

=
1

2πı

∫

|z|=r

1

zℓ+1
F

(
δ(z)

τ

)
dz , ℓ ∈ Z , (3.4.3.4)

for any r ∈]0, 1[. Only in rare cases the weights can be computed explicitly, refer to Ex. 3.3.2.27.
Usually we will have to rely on numerical approximations, which start from the parameterization
ϕ ∈ [0, 1] 7→ r exp(2πıϕ) of the circular path of integration in (3.4.3.4):

wF,τ
ℓ =

1

2πı

1∫

0

1

(re2πıϕ)ℓ+1
F

(
δ(re2πıϕ)

τ

)
2πı re2πıϕ dϕ

= r−ℓ
1∫

0

e−2πıℓϕ F

(
δ(re2πıϕ)

τ

)
dϕ , ℓ ∈ Z .

(3.4.3.5)

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 312

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Note that the integrand is 1-periodic and analytic in a strip along the real axis. We also point out that for
ℓ < 0 the integrand in (3.4.3.4) is holomorphic on z ∈ C : |z| < 1. Then, by the Cauchy integral formula

of Thm. 3.3.2.22 we infer wF,τ
ℓ = 0 for ℓ < 0: (3.4.3.4) defines a causal sequence. y

EXPERIMENT 3.4.3.6 (The “magic” of the equidistant composite trapezoidal quadrature rule,

[NumCSE Exp. 7.5.0.16]) For the approximation of an integral one may use the N + 1-point, N ≥ 1,
equidistant composite trapezoidal rule, see [NumCSE Eq. (7.5.0.4)], [NumCSE Code 7.5.0.6]

∫ b

a
f (t)dt ≈ TN(f) := h

(
1
2 f (a) +

N−1

∑
k=1

f (kh) + 1
2 f (b)

)
, h :=

b− a

N
. (3.4.3.7)

Its order [NumCSE Def. 7.4.1.1] is merely 2 [NumCSE Ex. 7.4.1.10] and for smooth integrands f one
would expect an asymptotic behavior of the quadrature error like O(N−2) for N → ∞.

We apply this quadrature rule to the 1-periodic smooth (analytic) integrand

f (t) =
1√

1− a sin(2πt− 1)
, 0 < a < 1 ,

on different intervals. As “exact value of integral” we use T500 in the computation of the quadrature errors.

Fig. 137
10

0
10

1
10

2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 no. of. quadrature nodes

 |q
ua

dr
at

ur
e

er
ro

r|

 Trapezoidal rule quadrature for non−periodic function

a=0.5

a=0.9

a=0.95

a=0.99

quadrature error for Tn(f) on [0, 1
2]

Merely algebraic convergence

Fig. 138
0 2 4 6 8 10 12 14 16 18 20

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 no. of. quadrature nodes

 |q
ua

dr
at

ur
e

er
ro

r|

 Trapezoidal rule quadrature for 1./sqrt(1−a*sin(2*pi*x+1))

a=0.5

a=0.9

a=0.95

a=0.99

quadrature error for Tn(f) on [0, 1]

Impressive exponential convergence

Integrating over the full period boosts the decay of the quadrature error from algebraic to exponential3

y

§3.4.3.8 (Convergence of the equidistant trapezoidal composite quadrature rule for analytic peri-

odic integrands) We start with a simple observation about the equidistant N + 1-point trapezoidal com-
posite quadrature rule on [0, 1],

∫ 1

0
f (t)dt ≈ TN(f) := h

(
1
2 f (0) +

N−1

∑
k=1

f (kh) + 1
2 f (1)

)
, h :=

1

N
: (3.4.3.9)

3For the concepts of algebraic and exponential convergence consult [NumCSE Def. 6.2.2.7].

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 313

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

f (t) = e2πıkt , k ∈ Z

∫ 1
0 f (t)dt =

{
0 , if k 6= 0 ,

1 , if k = 0 .

TN(f) = 1
n

N−1

∑
l=0

e
2πı

n lk=

{
0 , if k 6∈ NZ ,

1 , if k ∈ NZ .

(3.4.3.10)

The second identity is a consequence of the geometric sum formula [NumCSE Eq. (4.2.1.9)]. An immedi-
ate consequence of (3.4.3.9) is the following result, cf. [NumCSE Lemma 7.5.0.22].

Lemma 3.4.3.11. Exact quadrature by equidistant trapezoidal rule

The N + 1-point equidistant trapezoidal quadrature rule on [0, 1]

∫ 1

0
f (t)dt ≈ TN(f) := h

(
1
2 f (0) +

N−1

∑
k=1

f (kh) + 1
2 f (1)

)
, h :=

1

N
. (3.4.3.9)

is exact for trigonometric polynomials [NumCSE Section 6.5.1] of degree ≤ 2N − 2, that is, for

f ∈ PT
2N−1 := Span{t 7→ exp(2πıjt) : j = −N + 1, . . . , N − 1} .

Hence the quadrature error can immediately be bounded by the best-approximation error with respect to
the space PT

2N−2 of trigonometric polynomials:

∣∣∣∣
∫ 1

0
f (t)dt− TN(f)

∣∣∣∣ ≤ 2 inf
q∈PT

2N−2

‖ f − q‖L∞(]0,1[) . (3.4.3.12)

That best approximation error can be predicted by means of the following result for trigonometric interpo-
lation [NumCSE Section 6.5.1].

Theorem 3.4.3.13. Exponential convergence of trigonometric interpolation for analytic inter-

polands, [NumCSE Thm. 6.5.3.14]

If f : R → C is 1-periodic and possesses an analytic extension to the strip

S̄η := {z ∈ C: − η ≤ Im z ≤ η} , for some η > 0 ,

then there is Cη > 0 depending only on η such that

∥∥∥ f − ITn f
∥∥∥
∗
≤ Cηe−πηN‖ f ‖L∞(S̄) , N ∈ N , (∗ = L2(]0, 1[), L∞(]0, 1[)) , (3.4.3.14)

where ITn : C0([0, 1])→ PT
2N−1, N ∈ N, is the trigonometric interpolation operator uniquely

defined by the interpolation conditions

(ITn f)

(
j

2N − 1

)
= f

(
j

2N − 1

)
∀j = 0, . . . , 2N − 2 . (3.4.3.15)

Summing up, for a 1-periodic integrand, analytic on S̄η, the quadrature error of equidistant trapezoidal
composite quadrature rules on [0, 1] can be bounded as

∃C > 0:

∣∣∣∣
∫ 1

0
f (t)dt− TN(f)

∣∣∣∣ ≤ C e−πηN for all N ∈ N . . (3.4.3.16)

y

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 314

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§3.4.3.17 (CQ weights by quadrature and DFT) In light of the preceding §s it is clear that the ideal
quadrature formula for the approximate computation of the CQ weights wF,τ

ℓ in

wF,τ
ℓ = r−ℓ

1∫

0

e−2πıℓϕF

(
δ(re2πıϕ)

τ

)
dϕ , ℓ ∈ Z , 0 < r < 1 . (3.4.3.5)

is the equidistant composite trapezoidal rule. Using N + 1 quadrature points we obtain

wF,τ
ℓ ≈ w̃F,τ

ℓ :=
r−ℓ

N + 1

N

∑
k=0

exp(−2πı
ℓk

N + 1
) fk , ℓ ∈ Z , (3.4.3.18)

fk := F

(
1
τ δ(r exp(2πı

k

N + 1
))

)
, k = 0, . . . , N . (3.4.3.19)

• We have seen wF,τ
ℓ = 0 for ℓ < 0, but w̃F,τ

ℓ need not vanish for all ℓ < 0,
(

w̃F,τ
ℓ

)
ℓ

is not exactly

causal. Fortunately, for r bounded away from 1 and large N those weights will be extremely small,
w̃F,τ
ℓ ≈ 0.

• We have to link to the number of quadrature nodes to the number M of CQ weights we want to
compute in (3.4.3.2). We can choose N = M, we can also employ more quadrature nodes, but not
less, because then we would face aliasing.

The summations in (3.4.3.18) boils down to a discrete Fourier transform (DFT) that we already
saw in § 3.1.5.1.

Definition [NumCSE Def. 4.2.1.18]. Discrete Fourier transform (DFT)

The linear map FFTn : Cn 7→ Cn, FFTn(f) := Fnf, Fn =
[
exp(−2πiu

kj
n)
]n−1

k,j=0
the Fourier matrix

(3.1.5.6), f ∈ Cn, n ∈ N, is called discrete Fourier transform (DFT), i.e. for [y0, . . . , yn−1] :=
FFTn(f)

yk =
n−1

∑
j=0

f j ω
kj
n =

n−1

∑
j=0

f j exp
(
−2πı

kj

n

)
, k = 0, . . . , n− 1 . [NumCSE Eq. (4.2.1.19)]

FFTnf =

[
n−1

∑
j=0

exp(−2πı
jk

n
)

]n−1

k=0

, f = [f0, . . . , fn−1]
⊤ ∈ Cn ,

IFFTny := FFT−1
n y =

[
1

n

n−1

∑
k=0

yk exp(2πı
kj

n
)

]n−1

j=0

, y = [y0, . . . , yn−1] ∈ Cn .

Pseudocode 3.4.3.20: Efficient implementation of (3.4.3.18), C++ indexing

1 Vector ← cqweightsByDFT (
2 FUNCTOR F , FUNCTOR δ , rea l τ , integer N) {

3 r := 2(N+1)
√

EPS ; // Refer to Rem. 3.4.3.21

4 Vector f ∈ CN+1 ;

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 315

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

5 for k :=0 to N { f [k] := F(δ(r exp(2πık/(N + 1)))/τ) ; }
6 Vector w ∈ CN+1 ;
7 w := FFT (f) / (N+1) ;
8 for k :=0 to N { w [k] := w [k] / rk ; }
9 return w ;

10 }

The asymptotic computational effort is O(N log N) for N → ∞, the cost for the discrete Fourier transform,
cf. § 3.1.5.12. y

Remark 3.4.3.21 (Choice of integration radius r) In exact arithmetic it would not make a difference how
r ∈]0, 1[is chosen in (3.4.3.18). Yet, the choice of r very much affects the result when the algorithm is
executed in floating-point arithmetic. A deeper round-off error analysis shows that r := 2(N+1)

√
EPS, EPS

the machine precision [NumCSE Ass. 1.5.3.11], is optimal in terms of numerical stability [BS21, Sect 3.1
& 3.4]. y

§3.4.3.22 (All-steps-at-once convolution quadrature) Above we merely computed the CQ weights and
the discrete convolution has to be carried out in a second step using the algorithm from § 3.1.5.13 for the
multiplication of a Toeplitz matrix with a vector.

It is possible to merge both steps and evaluate (3.4.3.2) with approximate CQ weights w̃F,τ
ℓ from

wF,τ
ℓ ≈ w̃F,τ

ℓ :=
r−ℓ

N + 1

N

∑
k=0

exp(−2πı
ℓk

N + 1
) fk , ℓ ∈ Z , (3.4.3.18)

fk := F

(
1
τ δ(r exp(2πı

k

N + 1
))

)
, k = 0, . . . , N ,

in one fell swoop:

yn =
n

∑
ℓ=0

w̃F,τ
n−ℓgℓ

(∗)
=

N

∑
ℓ=0

w̃F,τ
n−ℓgℓ , gℓ := g(ℓτ) [(∗) as w̃F,τ

j ≈ 0 for j < 0] ,

=
N

∑
ℓ=0

r−(n−ℓ)

N + 1

N

∑
k=0

exp

(
−2πı

(n− ℓ)k

N + 1

)
fkgℓ , fk := F

(
δ(r exp(2πı k

N+1))

τ

)
,

=
r−n

N + 1

N

∑
k=0

fk

(
N

∑
ℓ=0

rℓgℓ exp(2πı
ℓk

N + 1
)

)
exp(−2πı

kn

N + 1
) ,

= r−n
N

∑
k=0

fk

(
IFFTN+1

[
rℓgℓ

]N

ℓ=0

)

k

exp(−2πı
kn

N + 1
) , n = 0, . . . , M ,

= r−n FFTN+1

(
f . ∗ IFFTN+1

[
rℓgℓ

]N

ℓ=0

)
, n = 0, . . . , M .

Be aware of the requirement N ≥ M. Obviously, this formula involves two nested DFTs of length N + 1.

Pseudocode 3.4.3.23: All-steps-at-once CQ based on a linear multi-step method, scalar set-

ting

1 Vector ← asaoCQ (
2 FUNCTOR F , FUNCTOR δ , rea l τ , integer N, const Vector g) {

3 r := 2(N+1)
√

EPS ; // Refer to Rem. 3.4.3.21

3. Convolution Quadrature, 3.4. Multistep Convolution Quadrature (MSCQ) 316

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

4 Vector h ∈ CN+1 , y ∈ CN+1 ;
5 for k := 0 to N do { h [k] := rk

*g [k] ; }
6 t := IFFT (h) ;
7 for k := 0 to N do { t [k] *= F(δ(r exp(2πık/(N + 1)))/τ) ; }
8 y := FFT (t) ;
9 for n := 0 to N do { y [n] *= r−n ; }

10 return y ;
11 }

The asymptotic computational effort for N → ∞ is dominated by the FFTs: O(N log N). y

3.5 Runge-Kutta Convolution Quadrature (RKCQ)

The most popular numerical integrators for initial-value problems for ODEs are Runge-Kutta single-step
methods (RK-SSM). It is natural to wonder whether they can also be used to approximate the solution
t 7→ y(s; t) of the initial-value problem

ẏ(t) = sy(t) + g(t) , t ∈ R , y(0) = 0 , (3.3.2.3)

in the formula

F(∂t)g(t) = (f ∗ g)(t) =

t∫

0

f (t− ξ)g(ξ)dξ =
1

2πı

∫

σ+ıR

F(s) y(s; t)ds ,
t ≥ 0 ,
σ > 0 .

(3.3.2.5)

3.5.1 Implicit Runge-Kutta Single-Step Methods

From [NumCSE Def. 12.3.3.1] we recall the definition of a general implicit Runge-Kutta single-step method
for the initial-value problem (IVP)

ẏ = f(t, y) , y(0) = y0 ∈ RN , (3.4.1.2)

with right-hand side function f : I × D → RN, D ⊂ RN open, I ⊂ R and interval.

Definition 3.5.1.1. Implicit Runge-Kutta single-step method, [NumCSE Def. 12.3.3.1]

An m-stage implicit Runge-Kutta single-step method, m ∈ N, applied to (3.4.1.2) with uniform
timestep size τ > 0 produces the sequence (yn)n ∈ RN of approximate states according to

ki,n := f(tn + ciτ, yn + τ
m

∑
j=1

ai,jkj,n) , i = 1, . . . , m , yn+1 := yn + τ
m

∑
i=1

biki,n , n ∈ N0 .

Here bi, ai,j ∈ R, i, j ∈ {1, . . . , m}, are given coefficients and ci := ∑
m
j=1 ai,j, i = 1, . . . , m.

From [NumCSE Eq. (12.3.3.3)] recall the Butcher scheme notation,

c A

bT ,
A :=

[
ai,j

]m

i,j=1
∈ Rm,m ,

b :=
[
bj

]m

j=1
∈ Rm , c := [ci]

m
i=1 ∈ Rm .

(3.5.1.2)

3. Convolution Quadrature, 3.5. Runge-Kutta Convolution Quadrature (RKCQ) 317

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We can rewrite the RK-SSM in stage form [NumCSE Rem. 12.3.3.6] setting vi,n := yn + τ
m

∑
j=1

ai,jkj,n,

i = 1, . . . , m:

vi,n = yn + τ
m

∑
j=1

ai,jf(tn + ciτ, vj,n) , i = 1, . . . , m ,

yn+1 = yn + τ
m

∑
j=1

bjf(tn + cjτ, vj,n) ,

n ∈ N0 . (3.5.1.3)

Applying the RK-SSM in stage form to (3.3.2.3) (where N = 1, f(t, y) := sy + g(t)) results in

vi,n(s) = yn(s) + τ
m

∑
j=1

ai,j

(
svj,n(s) + g(tn + cjτ)

)
, i = 1, . . . , m ,

yn+1(s) = yn(s) + τ
m

∑
j=1

bj

(
svj,n(s) + g(tn + cjτ)

)
,

n ∈ N0 . (3.5.1.4)

Remark 3.5.1.5. The stages vi,n provide approximations to y(tn + ciτ), where t 7→ y(t) solves (3.4.1.2).
y

For the sake of feasibility of the derivation and also simplicity we restrict ourselves to a particular class of
implicit m-stage RK-SSMs.

Assumption 3.5.1.6. Requirements on implicit RK-SSM for CQ

(i) The Butcher matrix A ∈ Rm,m is invertible.
(ii) The RK-SSM is A-stable [NumCSE Def. 12.3.4.9].
(iii) We have bj = am,j, j = 1, . . . , m.

Remark 3.5.1.7 (Stiffly accurate RK-SSMs) Runge-Kutta single-step methods satisfying Item (iii) are
called stiffly accurate. According to the considerations of [NumCSE Rem. 12.3.4.18], Item (ii) and
Item (iii) imply that the RK-SSM is L-stable [NumCSE Def. 12.3.4.15]. y

EXAMPLE 3.5.1.8 (Important stiffly accurate RK-SSMs) The following two implicit Runge-Kutta single-
step methods comply with Ass. 3.5.1.6:

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

(3.5.1.9)

2-stage Radau IIA, order = 3

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12
1 1

6
2
3

1
6

1
6

2
3

1
6

(3.5.1.10)

3-stage, Lobatto IIIC, order = 4

These are only two simple members of families of Radau ∗A and Lobatto ∗C methods, which can be of
arbitrarily high order. y

3.5.2 Runge-Kutta CQ weights

Obviously, for stiffly-accurate RK-SSMs the last stage gives the next state, vm,n = yn+1, which renders the
second equation in (3.5.1.3) and (3.5.1.4) redundant. Thus, under assumption Ass. 3.5.1.6, an equivalent

3. Convolution Quadrature, 3.5. Runge-Kutta Convolution Quadrature (RKCQ) 318

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

way of writing (3.5.1.4) is

vi,n(s) = vm,n−1(s) + sτ
m

∑
j=1

ai,jvj,n(s) + τ
m

∑
j=1

ai,jg(tn + cjτ) , i = 1, . . . , m , n ∈ N0 . (3.5.2.1)

§3.5.2.2 (Runge-Kutta recurrence in z-domain) We want to adapt the z-transform approach of Sec-
tion 3.4.2 to (3.5.2.1). The difficulty is that, evidently, the causal function g is sampled on the non-uniform

temporal grid {tn + ciτ}i,n. This seems to rule out the use of the z-transform.

Rewrite (3.5.2.1) as a recurrence relation for the vectors

~vn(s) := [vi,n(s)]
m
i=1 ∈ Cm , ~gn := [g(tn + ciτ)]

m
i=1 ∈ Cm , n ∈ N0 . (3.5.2.3)

(3.5.2.1) ~vn(s) = 1e⊤m~vn−1(s) + τsA~vn(s) + τA~gn (3.5.2.4)

⇔ (Im − τsA)~vn(s) = 1e⊤m~vn−1(s) + τA~gn . (3.5.2.5)

where 1 := [1, . . . , 1]⊤ ∈ Rm, em = [0, · · · , 0, 1] ∈ Rm, and A ∈ Rm,m is the Butcher matrix from
(3.5.1.2). We z-transform (3.5.2.5):

∞

∑
n=0

(Im − τsA)~vn(s)z
n =

∞

∑
n=0

1e⊤m~vn−1(s)z
n +

∞

∑
n=0

τA~gnzn

⇔ (Im − τsA)~V(z) = z1e⊤m~V(s; z) + τA~G(z) .

where we abbreviated the z-transforms

~V(s; z) :=
∞

∑
n=0

~vn(s)z
n ∈ Cm , ~G(z) :=

∞

∑
n=0

~gnzn ∈ Cm

We can solve for ~V(s; z):

~V(s; z) = (∆(z)/τ − sIm)
−1~G(z) ∈ Cm , ∆(z) := A−1(Im − z1e⊤m) ∈ Cm,m , (3.5.2.6)

unless τs is an eigenvalue of ∆(z). This is the Runge-Kutta counterpart of (3.4.2.13). y

§3.5.2.7 (Vector-expanded Runge-Kutta convolution quadrature) Carrying on with the “vectorization”
idea of § 3.5.2.2, we conclude that convolution quadrature, so far written as

(F(∂t)g)(τn) ≈
n

∑
ℓ=0

wF,τ
n−ℓg(τℓ) , wF,τ

j := (CQτ(F))j ∈ C , n ∈ N0 , (3.3.1.5)

should become

(F(∂t)~g)|Gτ
≈
(

n

∑
ℓ=0

WF,τ
n−ℓ~gℓ

)

n∈N0

with matrix-valued weights WF,τ
n−ℓ ∈ Cm,m . (3.5.2.8)

Stretching notation we wrote ~g(t) := [g(t + c1τ), . . . , g(t + cmτ)]⊤ ∈ Cm and ~gℓ := ~g(ℓτ) ∈ Cm. Us-
ing those notations we obtain via (3.3.2.5)

(F(∂t)~g)(t) =
1

2πı

∫

σ+ıR

F(s)~y(s; t)ds , t ∈ R, σ > 0 , (3.5.2.9)

3. Convolution Quadrature, 3.5. Runge-Kutta Convolution Quadrature (RKCQ) 319

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

where t 7→ ~y(s; t) ∈ Cm solves the IVP

∂~y(s; t)

∂t
= s~y(s; t) +~g(t) , s ∈ C , ~y(s; 0) = 0 , (3.5.2.10)

Remember that the stages computed during the execution of an implicit RK-SSM (with uniform timestep
τ > 0) provide approximations of the solution trajectory at times tj + cτ, tj ∈ Gτ. Thus

~vn(s) ≈ ~y(s; tn) ∀n ∈ N0 , ~vn(s) as in (3.5.2.3) . (3.5.2.11)

In the spirit of § 3.3.2.1 we approximate

(F(∂t)~g)(τn) ≈ 1

2πı

∫

σ+ıR

F(s)~vn(s)ds
!
=

n

∑
ℓ=0

WF,τ
n−ℓ~gℓ . (3.5.2.12)

As in § 3.4.2.17 we write Q(z) ∈ Cm,m for the (matrix-valued!) z-transform of the matrix sequence(
WF,τ

j

)∞

j=0
. In analogy to (3.4.2.20), z-transforming both sides of

!
= in (3.5.2.12) we obtain

Q(z)~G(z) =
1

2πı

∫

σ+ıR

F(s)~V(s; z)ds , ~V(s; z) =̂ z-transform of (~vn(s))n . (3.5.2.13)

The next steps run parallel to those in § 3.4.2.17. They also require Ass. 3.3.4.3 concerning the transfer
function F : C+ → C. We insert the explicit formula (3.5.2.6) for ~V(s; z) into (3.5.2.13), deform the path
of integration to a closed contour enclosing the spectrum of ∆(z)/τ, invoke the Cauchy integral formula

Thm. 3.3.2.22, and “cancel” ~G(z), which yields

Q(z) =
∞

∑
n=0

WF,τ
n zn = F

(
∆(z)

τ

)
. (3.5.2.14)

The Runge-Kutta convolution quadrature weights turn out to be the Taylor series coefficients of the

analytic matrix-valued function z 7→ F
(

∆(z)
τ

)
at z = 0.

Note that thanks to Ass. 3.5.1.6, the use of a stiffly accurate RK-SMM for which the m-th stage also
supplies the next state, we can directly extract an approximate discrete convolution from (3.5.2.8),

(F(∂t)g)(τn) ≈
(

n−1

∑
ℓ=0

WF,τ
n−ℓ~gℓ

)

m

, n ∈ N . (3.5.2.15)

y

Remark 3.5.2.16 (Matrix functions) In (3.5.2.14) we plug a matrix into the function F. What does this
mean? If F is a polynomial, the meaning of F(M), M ∈ Cm,m, is clear,

F(z) =
p

∑
n=0

αnzn F(M) :=
p

∑
n=0

αnMn ∈ Cm,m .

If F can be represented by a power series with radius of convergence > ‖M‖ for some matrix norm,
then

F(z) =
∞

∑
n=0

αnzn F(M) :=
∞

∑
n=0

αnMn ∈ Cn,n , (3.5.2.17)

3. Convolution Quadrature, 3.5. Runge-Kutta Convolution Quadrature (RKCQ) 320

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

because the series will converge in Cm,m. What if F is analytic, but the radii of convergence of local power
series expansions may not be large enough to permit us to plug in the matrix M? Assume that M can be
diagonalized,

∃S ∈ Cm,m, S regular , λi ∈ C: S−1MS = D := diag(λ1, . . . , λm) .

Then we can rewrite (3.5.2.17)

F(M) =
∞

∑
n=0

αn

(
SDS−1

)n
= S diag

(
∞

∑
n=0

αnλi

)m

i=1

S−1

= S diag(F(λ1), . . . , F(λm))S
−1 ,

(3.5.2.18)

which can be used to make sense of M for any matrix M ∈ Rm,m that can be diagonalized provided that
F(λ) is well-defined for every eigenvalue λ of M.

Can we avoid diagonalization of the matrix argument M ∈ Cm,m? This is possible, if F is analytic/holo-

morphic in a simply connected open set D ⊂ C that contains all eigenvalues of M.

Fig. 139

Re

Im

Γ

✁ � =̂ domain D of holomorphy of F
• =̂ eigenvalus λi of M
— =̂ contour of integration

If Γ ⊂ D is a positively oriented contour of integra-
tion enclosing all eigenvalues λi, i = 1, . . . , m, of M,
then by the Cauchy integral formula

F(λi) =
1

2πı

∫

Γ

F(s)

s− λi
ds , i = 1, . . . , m .

We can insert this formula into (3.5.2.18), provided that Γ once winds around (inside D, of course) the
whole set of eigenvalues, the spectrum, of M:

F(M) = S diag

(
1

2πı

∫

Γ
F(s)(s− λi)

−1 ds

)m

i=1

S−1

= S
1

2πı

∫

Γ
F(s) (sIm − diag(λ1, . . . , λm))

−1 ds S−1

=
1

2πı

∫

Γ
F(s) (sIm −M)−1 ds .

(3.5.2.19)

We could remove all traces of diagonalization! This formula can be used in case M cannot be diagonal-
ized. y

§3.5.2.20 (Computation of Runge-Kutta convolution quadrature weights) As explained in § 3.4.3.3,
we can use the Cauchy differentiation formula Cor. 3.3.2.23 to obtain from (3.5.2.14)

WF,τ
ℓ =

1

l!

dℓ

dzℓ

{
z 7→ F

(
∆(z)

τ

)}

z=0

=
1

2πı

∫

|z|=r

1

zℓ+1
F

(
∆(z)

τ

)
dz ,

= r−ℓ
∫ 1

0
e−2πıℓF

(
∆(re2πıϕ)

τ

)
dϕ , ℓ ∈ N0 ,

(3.5.2.21)

3. Convolution Quadrature, 3.5. Runge-Kutta Convolution Quadrature (RKCQ) 321

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

for all sufficiently small r > 0. We approximate the integral, which features an analytic and 1-periodic
integrand, by means of the equidistant N + 1-point trapezoidal composite quadrature rule.

WF,τ
ℓ ≈ W̃F,τ

ℓ :=
r−ℓ

M + 1

M+1

∑
k=0

exp(−2πı
ℓk

M + 1
)F

(
1

τ
∆(re2πı k

N+1)

)
. (3.5.2.22)

Refer to Code 3.4.3.20 for the efficient FFT-based evaluation of the sum (3.5.2.22). In practical implemen-
tations the evaluation of the matrix function F(. . .) will usually rely on diagonalization as in (3.5.2.18). This
is no undue effort, because matrix sizes are small, m ∈ {2, 3, 4}. y

Remark 3.5.2.23 (Algorithms for Runge-Kutta-based convolution quadrature) It goes without saying
that all the algorithms elaborated for multi-step CQ in § 3.4.3.22 carry over to Runge-Kutta CQ. y

3.6 Fast and Oblivious Convolution Quadrature

EXAMPLE 3.6.0.1 (Convolution evolution partial differential equations) Let Ω ⊂ Rd, d = 2, 3, be a
spatial domain, f : [0, T]→ L2(Ω) a time-dependent source function. Then the convolution evolution

PDE induced by the transfer function F : C+ → C

F(∂t)u(x, t)− ∆xu(x, t) = f (x, t) in Ω×]0, T[, u(·, t) = 0 on ∂Ω×]0, T[, (3.6.0.2)

can be regarded as a generalization of the heat equation u̇− ∆xu = f , to which it boils down when
F(s) := s. Here we relied on the operational calculus notation of Def. 3.1.4.5. Seeking causal solutions of
(3.6.0.2) we supplement it with the “initial condition” u(·, t) = 0 for all t < 0.

In the spirit of the method of lines [NumPDE Section 9.2.4] we perform a spatial Galerkin (finite-element)
discretization based on an N-dimensional discrete trial and test space Vh ⊂ H1

0(Ω), N ∈ N, N ≫ 1,
equipped with an ordered basis

{
b1

h, . . . , bN
h

}
. This yields the generalization of the method-of-lines ODE

[NumPDE Eq. (9.2.4.4)] for the time-dependent basis expansion coefficient vector t 7→ ~µ(t) ∈ CN of the
spatially semidiscrete solution t 7→ uh(t) ∈ Vh:

(F(∂t)M~µ)(t) + A~µ(t) = ~ϕ(t) , t ∈ [0, T] , ~µ(t) = 0 ∀t < 0 , (3.6.0.3)

with M :=

[∫

Ω
bi

h(x)b
j
h(x)dx

]N

i,j=1

∈ RN,N ,

A :=

[∫

Ω
grad bi

h(x) · grad b
j
h(x)dx

]N

i,j=1

∈ RN,N ,

~ϕ(t) :=

[∫

Ω
f (x)bi

h(x)dx

]N

i=1

∈ RN .

(3.6.0.4)

The equation (3.6.0.3) can be rewritten as a true causal convolution equation

(G(∂t)~µ)(t) = ~ϕ(t) , t ∈ R , with G(s) := F(s)M + A , (3.6.0.5)

which fits the framework of convolution in an operator setting § 3.1.1.16. Its solution is given by

~µ(t) = (G−1(∂t)~ϕ)(t) with G−1(s) := (F(s)M + A)−1 , s ∈ C+ . (3.6.0.6)

Since both M and A are symmetric positive definite (s.p.d.) G(s) is invertible for all s ∈ C+, provided that
F(C+) ⊂ C+.

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 322

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

We employ (multi-step) convolution quadrature to discretize (3.6.0.6) in time. Writing WG−1,τ
ℓ ∈ CN,N for

the matrix-valued CQ weights for uniform timestep τ := T/M, M ∈ N, we get the a discrete convolution
formula for~µn ∈ CN, n = 0, . . . , M:

~µ(τn) ≈ µn :=
n

∑
ℓ=0

WG−1,τ
n−ℓ ~ϕℓ , n = 0, . . . , M , ~ϕℓ := ~ϕ(τℓ) . (3.6.0.7)

The coefficient vectors ~µn ∈ CN can now be computed with the algorithm of § 3.4.3.22, which will re-
quire (assuming that M and A are finite-element Galerkin matrices with only a few non-zero entries per
row/column)

• O(N ·M log M) computational effort for N, M→ ∞ (excluding G−1-evaluations),

• O(N ·M) memory for N, M→ ∞ (G−1-evaluations not taken into account),

• O(M) evaluations of s 7→ G−1(s), each of which amounts to solving a different N × N linear

system of equations.

Compare this with the fully discrete heat equation in the same setting using implicit Euler timestepping.
This will involve an asymptotic (for M, N → ∞) computational effort of O(N ·M) (ignoring linear solves),
require only O(N) memory, and M solves of the same N × N sparse linear system of equations. y

§3.6.0.8 (Convolution with sums of exponentials) Consider the causal function

f (t) =

m

∑
j=1

cje
λjt for t ≥ 0 ,

0 for t < 0 ,

cj, λj ∈ C , (3.6.0.9)

whose Laplace transform is a rational function,

F(s) := (L f)(s) =
m

∑
j=1

cj

s− λj
, s ∈ C \ {λ1, . . . , λj} . (3.6.0.10)

Thanks to the variation-of-constants formula of Lemma 3.3.2.2, a convolution with f can be reduced to
solving m initial value problems for linear ODEs:

(f ∗ g)(t) =

t∫

0

f (t− ξ)g(ξ)dξ =
m

∑
j=1

cj

t∫

0

eλj(t−ξ)g(ξ)dξ =
m

∑
j=1

cjy(t; λj) , (3.6.0.11)

where t 7→ y(t; s) stands for the (unique) solution of the initial value problem (g : R → C causal)

dy(t; s)

dt
= sy(t; s) + g(t) , y(0; s) = 0 . (3.6.0.12)

The formula (3.6.0.11) remains valid in a matrix setting. If

F(t) =

m

∑
j=1

Cj exp(λjt) for t ≥ 0 ,

O for t < 0 ,

Cj ∈ CN,N , λj ∈ C , N ∈ N , (3.6.0.13)

and g : R → CN is causal, then

(F ∗ g)(t) =

t∫

0

F(t− ξ) · g(ξ)dξ =
m

∑
j=1

Cj

t∫

0

exp(λj(t− ξ))g(ξ)dξ =
m

∑
j=1

Cjy(t; λj) ,

(3.6.0.14)

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 323

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

with t 7→ y(t; λ) ∈ CN solving

dy(λ; ·)
dt

(t) = λy(t; λ) + g(t) , y(0; λ) = 0 . (3.6.0.15)

Hence, (3.6.0.14) can be discretized by applying (implicit) timestepping to m initial value problems of the
type (3.6.0.15) with λ← λj. If we use the implicit Euler single-step method with timestep τ > 0, we
obtain

yn,j := (1− τλj)
−1
(
yn−1,j + τg(nτ)

)
, n = 1, . . . , m , (F ∗ g)(τn) ≈

m

∑
j=1

Cjyn,j .

Obviously, M uniform timesteps will require O(mN) memory and computing mM matrix×vector products.
y

For the sake of lucidity, we temporarily restrict ourselves to the scalar case, f : R → C ↔ F : C+ → C,
g : R → C.

Remark 3.6.0.16 (Exponential sum approximation by quadrature) If F : C+ → C, F(s) := (L f)(s) is
analytic/holomorphic in C+ and |F(s)| ≤ C|s|−µ on C+ for µ > 1 and C > 0, then f can be computed
by the Bromwich contour integral, see Thm. 3.1.3.13: for any σ > 0

f (t) = (L−1F)(t) =
1

2πı

∫

σ+ıR
F(s) est ds =

eσ

2π

∫ ∞

−∞
F(σ + ıθ)eıθt dθ . (3.1.3.15)

Approximating this integral by means of an m-point quadrature formula on]−∞, ∞[with weights ωj and
nodes λj ∈ R we obtain

f (t) ≈ eσ

2π

m

∑
j=1

ωjF(σ + ıλj) eıλjt .

This is a weighted sum of exponentials!

Unfortunately this is hardly ever feasible, unless F decays rapidly, because

• the integrand θ 7→ F(σ + ıθ)eıθt will be rapidly oscillating, in particular for larger values of |t|, and

• the decay of that integrand for |θ| → ∞ will usually be rather slow: O(|θ|−µ) as θ → ∞.

y

§3.6.0.17 (Sectorial transfer functions) The incredible power of the Cauchy integral theorem stated in
Thm. 3.1.3.16 breathes new life into the idea floated in the previous §, at least for a rather large class of
transfer functions F.

Definition 3.6.0.18. Sectorial transfer function/-

parabolic symbol

A function F : C+ → C is called α-sectorial,
0 ≤ α < π

2 , if F possesses an analytic extension

to

C−(α) := {z = reıϕ ∈ C: − π + α ≤ ϕ ≤ π − α} .

� =̂ domain of analyticity of α-sectorial F ✄

Fig. 140

Re

Im

α

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 324

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

A prime example of sectorial transfer functions are the power functions

F(s) = sq = exp(q log(s)) , q ∈ R \N0 , analytic in C \R−0 0-sectorial . (3.6.0.19)

Let us make the rather mild assumption

|F(s)| → 0 uniformly as |s| → ∞ .

Then by the Cauchy integral theorem
∫

Γ

F(s)est ds =
∫

σ+ıR

F(s) est ds (3.6.0.20)

where Γ ⊂ C−(α) is the left-bending contour −→ in
Fig. 141. ✄

Note that the integrals over the−→-paths in Fig. 141
tends to zero as those “move towards ∞”.

Fig. 141

Re

Im

Γ

σ

The crucial observation is that s 7→ F(s)est decays to zero exponentially as s ∈ Γ→ ∞. This is conse-
quence of t > 0, |F(s)est| = |F(s)|eRe{s}t, and Re{s} < 0 on the “far parts” of Γ. This may pave the way
for sufficiently accurate numerical quadrature on Γ. y

§3.6.0.21 (Left-bending paths of integration for α-sectorial functions) We define the contour of inte-
gration through a parameterization γ : I → C, I ⊂ R.

For α-sectorial F:

Hyperbola contours

γH(θ) := µ sin(ϕ + ıθ) , θ ∈ R , (3.6.0.22)

with ϕ < π/2− α. The parameter ϕ controls the
“opening angle” and µ > 0 is a stretching parame-
ter.

Fig. 142
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

Re

-0.3

-0.2

-0.1

0

0.1

0.2

Im

Hyperbola contours, = 0.1, = 0

 = /5

 = /4

 = /3

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 325

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 143
-40 -35 -30 -25 -20 -15 -10 -5 0 5

Re

-15

-10

-5

0

5

10

15

Im

Talbot contours, = 0.6, = 0

 = 8

 = 4

 = 2

 = 1

For 0-sectorial F:

argument Talbot contour

γT(µ; θ) = µ(−θ cot(θ) + ıνθ) ,

− π < θ < π ,
(3.6.0.23)

with width parameter ν > 0 and stretching parameter
µ > 0.

✁ These integration contours lie in C−(0) and have
asymptotes parallel to the real axis.

y

EXAMPLE 3.6.0.24 (Quadrature over Talbot contour) On the Talbot contour Γ (3.6.0.23) we use the
equidistant trapezoidal rule on the parameter domain.

1

2πı

∫

Γ
F(s)est ds =

1

2πı

π∫

−π

F(γT(µ; θ)) exp(γT(θ)t)
dγT(µ; ·)

dθ
(θ)dθ

≈ f̃m,µ(t) :=
1

2πı
· 1

2m

m−1

∑
j=−m+1

F(γT(µ; θj)) exp(γT(µ; θj)t)
dγT(µ; ·)

dθ
(θj) , θj :=

π j

m
. (3.6.0.25)

The mapped quadrature nodes γT(θj) are marked with ∗ in Fig. 143. Note that the integrand decays
exponentially to zero as θ → ±π, which permits us to drop the endpoints. In light of § 3.4.3.8 this also
guarantees exponential convergence→ 0 of the quadrature error for m→ ∞.

For F(s) = 1√
s

(↔ f (t) = 1√
πt

) we report the absolute quadrature error as a function of t ∈ [0.001, 2].

Fig. 144
0 0.5 1 1.5 2

time t

10 -15

10 -10

10 -5

10 0

a
b

s
o

lu
te

 q
u

a
d

ra
tu

re
 e

rr
o

r

 = 8.0

m = 11

m = 21

m = 41

m = 81

m = 161

m = 321

Fig. 145
0 0.5 1 1.5 2

time t

10 -15

10 -10

10 -5

10 0

a
b

s
o

lu
te

 q
u

a
d

ra
tu

re
 e

rr
o

r

 = 4.0

m = 11

m = 21

m = 41

m = 81

m = 161

m = 321

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 326

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 146
0 0.5 1 1.5 2

time t

10 -15

10 -10

10 -5

10 0

a
b

s
o

lu
te

 q
u

a
d

ra
tu

re
 e

rr
o

r

 = 1.0

m = 11

m = 21

m = 41

m = 81

m = 161

m = 321

Fig. 147
0 0.5 1 1.5 2

time t

10 -15

10 -10

10 -5

10 0

a
b

s
o

lu
te

 q
u

a
d

ra
tu

re
 e

rr
o

r

 = 0.5

m = 11

m = 21

m = 41

m = 81

m = 161

m = 321

• We observe that the quadrature error strongly depends on t.

• For very small times 0 < t≪ 1 quadrature approximation struggles to achieve any accuracy.

• For different values of the Talbot contour parameter µ the quadrature error is small(est) for different
ranges of t.

• Convergence f̃m,µ(t)→ f (t) is asymptotically exponential for t > 0 and m→ ∞ (Error points have
almost constant gaps on the logarithmic error scale).

y

§3.6.0.26 (Scaling quadrature on Talbot contours) We try to understand the observations made in
Ex. 3.6.0.24 and let these insights inspire algorithm development. As in Ex. 3.6.0.24 we consider
F(s) = s−1/2, which means f (t) = (πt)−1/2.

Write γ∗ for a Talbot contour, for which we assume t-uniform exponential convergence f̃m,µ∗(t)→ f (t)
for m→ ∞ on [1, B], B > 1. More precisely, we assume an exponentially decaying relative quadrature
error

∃C > 0, q ∈ [0, 1[:
∣∣∣ f̃m,µ∗(t)− f (t)

∣∣∣ ≤ Cqm | f (t)| ∀t ∈ [1, B] . (3.6.0.27)

Now pick t ∈ [ξ, Bξ] for some ξ > 0. We apply the quadrature approximation (3.6.0.25) on a Talbot
contour with stretching parameter µ := µ∗/ξ. Noting that γT(µ; θ) = ξ−1γT(µ

∗; θ) we get

f̃m,µ(t) =
1

4πım

m−1

∑
j=−m+1

1√
γT(µ; θj

exp(γT(µ; θj)t)
dγT

dθ
(µ; θj)

=
1

4πım

m−1

∑
j=−m+1

√
ξ√

γT(µ∗; θj)
exp(γT(µ

∗; θj)t/ξ)
1

ξ

dγT

dθ
(µ∗; θj)

= f (t)
√

πt/ξ f̃m,µ∗(t̂) , t̂ :=
t

ξ
∈ [1, B] .

(3.6.0.28)

Next, use (3.6.0.27) in the form

f̃m,µ∗(t̂) = f (t)(1 + δm) with |δm| ≤ Cqm ,

which yields (f (t) = 1/
√

πt)

f̃m,µ(t) = f (t)
√

πt/ξ f (t̂)(1 + δm) = f (t)(1 + δm) ∀t ∈ [ξ, Bξ] . (3.6.0.29)

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 327

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Summing up, we get the convergence expressed by (3.6.0.27) for any dilated t-interval [ξ, Bξ], ξ > 0,
provided that we use a Talbot contour with the right stretching parameter µ := µ∗/ξ!

y

§3.6.0.30 (Local trapezoidal rule quadrature) The above consideration have been pursued for the trans-
fer function F(s) := s−1/2, but they apply to virtually all 0-sectorial functions and suggest a policy for doing
t-uniformly accurate quadrature approximation of (3.6.0.20).

Idea: Achieve t-uniform convergence of the quadrature approximation (3.6.0.25) on
[τ, Mτ], τ > 0, M ∈ N, M≫ 1, by applying it locally with suitable stretching
parameters µ on a partition of [τ, T] into intervals [ξ, Bξ[for some B > 1.

Of course, the partition should involve as few intervals as possible, which suggests letting their lengths
grow geometrically:

[τ, Mτ] ⊂
K⋃

k=1

Ik , Ik := [Bk−1τ, Bkτ[, K ∈ N minimal: BK ≥ M . (3.6.0.31)

Write µk for the Talbot contour stretching parameter suitable for the t-interval Ik and Γk for the correspond-
ing Talbot contour: Γk = γT(µk;]−π, π[). We also abbreviate the quadrature points/quadrature weights
for the 2m + 1-point trapezoidal rule on Γk

s
(k)
j := γT(µk, θj) ,

ω
(k)
j :=

1

4πım

dγT

dθ
(µk; θj) ,

θj :=
π j

m
, j = −m + 1, . . . , m− 1 . (3.6.0.32)

This leads to t-uniform exponential sum approximation of f (t) on [τ, Mτ]:

f (t) ≈ f̃m,µk
(t) :=

m−1

∑
j=−m+1

F(s
(k)
j) exp(s

(k)
j t)ω

(k)
j for t ∈ Ik . (3.6.0.33)

y

EXPERIMENT 3.6.0.34 (Quadrature error of t-local trapezoidal rule quadrature) We study the quadra-
ture error of the t-local trapezoidal rule quadrature approximation (3.6.0.33) for F(s) = s−1/2 on [τ, Mτ]
with τ = 10−3, M = 2000.

Fig. 148
10 -3 10 -2 10 -1 10 0 10 1

time t

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

 r
el

at
iv

e
 q

u
a

d
ra

tu
re

 e
rr

o
r

m = 5, 11 quadrature nodes

mu = 833.33

mu = 166.67

mu = 33.33

mu = 6.67

mu = 1.33

m = 5, B = 5

Fig. 149
10 -3 10 -2 10 -1 10 0 10 1

time t

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

 r
el

at
iv

e
 q

u
a

d
ra

tu
re

 e
rr

o
r

m = 9, 19 quadrature nodes

mu = 1500.00

mu = 300.00

mu = 60.00

mu = 12.00

mu = 2.40

m = 9, B = 5

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 328

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

As expected from the preceding analysis we see an indetical t-dependence of the relative quadrature error
in the intervals [Bk−1τ, Bkτ], k ∈ N.

Fig. 150
5 10 15 20 25 30 35

No. of quadrature nodes

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

re
l.
 q

u
a

d
ra

tu
re

 e
rr

o
r

fo
r

t
 [

0
.0

0
1

,2
.0

0
0

]

✁ Quadrature error as a function of the number of
quadrature nodes, maximum over t ∈ {0.001, 2}

We observe empiric t-uniform exponential conver-

gence for increasing number of quadrature nodes.

y

§3.6.0.35 (Time-local exponential sum approximation for convolution) Given a causal g : R → C,
a 0-sectorial transfer function F : C \R−0 → C, and a timestep τ > 0, M ∈ N, M≫ 1, we want to
compute approximately

xn := (F(∂t)g)(τn) =

nτ∫

0

f (nτ − ξ)g(ξ)dξ , n = 1, . . . , M ,

Idea: In the convolution integral use t-dependent quadrature formulas to obtain t-local ex-
ponential sum approximations of f (t).

Given a “interval growth factor” B > 0 we write

ak := Bkτ , k ∈ N0 , Ik := [ak−1, ak] , k ∈ N .

Harking back to § 3.6.0.30 note that this defines a non-overlapping covering of [0, Mτ],

[0, Mτ] = [0, τ[∪ I1 ∪ I2 ∪ . . . ∪ IL , L :=

⌈
log M− log τ

log B

⌉
. (3.6.0.36)

We write the convolution integral as a sum of integrals, for each of which t− ξ belongs to a single interval
of the partition (3.6.0.36):

t∫

0

f (t− ξ)g(ξ)dξ =

t∫

t−τ

f (t− ξ)g(ξ)dξ +
K(t)

∑
k=1

t−ak−1∫

t−ak

f (t− ξ)g(ξ)dξ

︸ ︷︷ ︸
t−ξ∈Ik !

, K(t) =

⌈
log t− log τ

log B

⌉

When t− ξ ∈ Ik, k ∈ N, we use the 2m + 1-point quadrature approximation (3.6.0.33):

t−ak−1∫

t−ak

f (t− ξ)g(ξ)dξ ≈
t−ak−1∫

t−ak

m−1

∑
j=−m+1

ω
(k)
j F(s

(k)
j) exp(s

(k)
j (t− ξ)) g(ξ)dξ

=
m−1

∑
j=−m+1

ω
(k)
j F(s

(k)
j) exp(ak−1s

(k)
j)

t−ak−1∫

t−ak

exp((t− ak−1)− ξ)g(ξ)dξ .

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 329

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Appealing to the variation-of-constants formula from Lemma 3.3.2.2, as in § 3.6.0.8 we can replace the
integral with a solution of an IVP for a linear ODE. For a ∈ R and s ∈ C write

t 7→ y(t, a; s) for the solution of

{
ẏ = sy + g(t) ,

y(max{0, a}) = 0 .
(3.6.0.37)

This permits us to express

t−ak−1∫

t−ak

f (t− ξ)g(ξ)dξ ≈
m−1

∑
j=−m+1

ω
(k)
j F(s

(k)
j) exp(ak−1s

(k)
j)y(t− ak−1, t− ak; s

(k)
j) . (3.6.0.38)

Combining these approximations, we arrive at a formula that relies on solutions of ⌈logB
t
τ ⌉ linear ordinary

differential equations.

t∫

0

f (t− ξ)g(ξ)dξ ≈

t∫

t−τ

f (t− ξ)g(ξ)dξ +
K(t)

∑
k=1

m−1

∑
j=−m+1

ω
(k)
j F(s

(k)
j) exp(ak−1s

(k)
j)y(t− ak−1, t− ak; s

(k)
j) . (3.6.0.39)

y

§3.6.0.40 (Approximation of “near past” convolution [HS03, Eq. (29)]) To deal with the first summand
on the right-hand side of (3.6.0.39) for τ ≪ 1 we replace t 7→ g(t) on [t− τ, t] with its linear interpolant
ξ 7→ (g(t− τ)− g(t))t−ξ/τ + g(t).

t∫

t−τ

f (t− ξ)g(ξ)dξ ≈
τ∫

0

f (ξ)(c1(τ − ξ) + c0)dξ , c1 :=
g(t)− g(t− τ)

τ
, c0 := g(t− τ) .

By the fundamental theorem of calculus and integration by parts,

τ∫

0

f (ξ)dξ = π1(τ) for causal π1 , π′1 = f ,

τ∫

0

f (ξ)(τ − ξ)dξ =

τ∫

0

π1(ξ)dξ = π2(τ) for causal π2 , π′′2 = f .

The (anti-)differentiation formula for the Laplace transform from Thm. 3.1.3.22 gives

(Lπ1)(s) =
F(s)

s
, (Lπ2)(s) =

F(s)

s2
. (3.6.0.41)

Thus, π1(τ) and π2(τ), which have 0-sectorial Laplace transforms, can be computed by inverting Laplace
transforms and we can approximate them by quadrature on the Talbot contour Γ1 (meant for the interval
[τ, Bτ]!):

πν(τ) =
1

2πı

∫

Γ1

F(s)

sν
esτ ds ≈

m−1

∑
j=−m+1

ω
(1)
j

F(s
(1)
j)

(s
(1)
j)ν

exp(s
(1)
j τ) , ν = 1, 2 . (3.6.0.42)

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 330

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

These numbers need only be computed once in the beginning in order to be able to evaluate

t∫

t−τ

f (t− ξ)g(ξ)dξ ≈ Φ1 g(t− τ) + Φ2
g(t)− g(t− τ)

τ
, Φ1 := π1(τ), Φ2 := π2(τ) , (3.6.0.43)

for any t ≥ τ y

§3.6.0.44 (Sampling (3.6.0.39) [LS02, Sect. 2.4]) Remember that we want to approximate
xn := (F(∂t)g)(τn) for n = 1, . . . , M, M≫ 1, and “timestep” τ > 0. A key concern will be the reuse of

information contained in the solutions t 7→ y(t, ·, s
(k)
j) of IVPs (3.6.0.37) occurring in (3.6.0.39).

For the sake of simplicity we will only4 consider the case B = 2, which means that different Talbot contours
are used for t in the intervals

Ik = [2k−1τ, 2kτ] , k ∈ N: I1 = [τ, 2τ] , I2 = [2τ, 4τ] , I3 = [4τ, 8τ]

Below we use the following shorthand notation to indicate the splitting of intervals over which we integrate.
For instance,

∫ 15τ

0
f (15τ − ξ)g(ξ)dξ =

∫ 15τ

14τ
· · · dξ +

∫ 14τ

12τ
· · · dξ

︸ ︷︷ ︸
t−ξ∈I1

+
∫ 12τ

8τ
· · · dξ

︸ ︷︷ ︸
t−ξ∈I2

+
∫ 8τ

0
· · · dξ

︸ ︷︷ ︸
t−ξ∈I3

is written as

[0, 15τ] = [14τ, 15τ] ∪ [12τ, 14τ] ∪ [8τ, 12τ] ∪ [0, 8τ] .

The colors correspond to the colors used in the following visualization of the different decompositions
employed for the cases t = nτ, n = 1, . . . , 15, cf. [LS02, Fig. 2.5].

Fig. 151

t = 1τ

t = 2τ

t = 3τ

t = 4τ

t = 5τ

t = 6τ

t = 7τ

t = 8τ

t = 9τ

t = 10τ

t = 11τ

t = 12τ

t = 13τ

t = 14τ

t = 15τ

t− τ < τ (“near past”)

t− ξ ∈ I1

t− ξ ∈ I2

t− ξ ∈ I3

0 4τ 8τ 12τ

➤ n = 1: Use the formula (3.6.0.43), gj := g(jτ),

x1 ≈ Φ1g0 + Φ2
g1 − g0

τ
. (3.6.0.45)

4For general B the algorithm is presented in [LS02, Sect. 2.5] and [HS03, Sect. 4]

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 331

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➤ n = 2: Split [0, 2τ] = [τ, 2τ] ∪ [0, τ] .

x2 ≈ Φ1 g1 + Φ2
g2 − g1

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(τ, 0; s

(1)
j) . (3.6.0.46)

➤ n = 3: Split [0, 3τ] = [2τ, 3τ] ∪ [0, 2τ] .

x3 ≈ Φ1 g2 + Φ2
g3 − g2

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(2τ, 0; s

(1)
j) . (3.6.0.47)

➤ n = 4: Split [0, 4τ] = [3τ, 4τ] ∪ [2τ, 3τ] ∪ [0, 2τ] .

x4 ≈ Φ1 g2 + Φ2
g3 − g2

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(3τ, 2τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(2τs

(2)
j) y(2τ, 0; s

(2)
j) .

(3.6.0.48)

➤ n = 5: Split [0, 5τ] = [4τ, 5τ] ∪ [2τ, 4τ] ∪ [0, 2τ] .

x5 ≈ Φ1 g4 + Φ2
g5 − g4

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(4τ, 2τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(3τs

(2)
j) y(2τ, 0; s

(2)
j) .

(3.6.0.49)

➤ n = 6: Split [0, 6τ] = [5τ, 6τ] ∪ [4τ, 5τ] ∪ [0, 4τ] .

x6 ≈ Φ1 g5 + Φ2
g6 − g5

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(5τ, 4τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(2τs

(2)
j) y(4τ, 0; s

(2)
j) .

(3.6.0.50)

➤ n = 7: Split [0, 7τ] = [6τ, 7τ] ∪ [4τ, 6τ] ∪ [0, 4τ] .

x7 ≈ Φ1 g6 + Φ2
g7 − g6

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(6τ, 4τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(3τs

(2)
j) y(4τ, 0; s

(2)
j) .

(3.6.0.51)

➤ n = 8: Split [0, 8τ] = [7τ, 8τ] ∪ [6τ, 7τ] ∪ [4τ, 6τ] ∪ [0, 4τ] .

x8 ≈ Φ1 g7 + Φ2
g8 − g7

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(7τ, 6τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(2τs

(2)
j) y(6τ, 4τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(4τs

(3)
j) y(4τ, 0; s

(3)
j) .

(3.6.0.52)

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 332

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➤ n = 9: Split [0, 9τ] = [8τ, 9τ] ∪ [6τ, 8τ] ∪ [4τ, 6τ] ∪ [0, 4τ] .

x9 ≈ Φ1 g8 + Φ2
g9 − g8

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(8τ, 6τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(3τs

(2)
j) y(6τ, 4τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(5τs

(3)
j) y(4τ, 0; s

(3)
j) .

(3.6.0.53)

➤ n = 10: Split [0, 10τ] = [9τ, 10τ] ∪ [8τ, 9τ] ∪ [4τ, 8τ] ∪ [0, 4τ] .

x10 ≈ Φ1 g9 + Φ2
g10 − g9

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(9τ, 8τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(2τs

(2)
j) y(8τ, 4τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(6τs

(3)
j) y(4τ, 0; s

(3)
j) .

(3.6.0.54)

➤ n = 11: Split [0, 11τ] = [10τ, 11τ] ∪ [8τ, 10τ] ∪ [4τ, 8τ] ∪ [0, 4τ] .

x11 ≈ Φ1 g10 + Φ2
g11 − g10

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(10τ, 8τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(3τs

(2)
j) y(8τ, 4τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(7τs

(3)
j) y(4τ, 0; s

(3)
j) .

(3.6.0.55)

➤ n = 12: Split [0, 12τ] = [11τ, 12τ] ∪ [10τ, 11τ] ∪ [8τ, 10τ] ∪ [0, 8τ] .

x12 ≈ Φ1 g11 + Φ2
g12 − g11

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(11τ, 10τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(2τs

(2)
j) y(10τ, 8τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(6τs

(3)
j) y(8τ, 0; s

(3)
j) .

(3.6.0.56)

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 333

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

➤ n = 13: Split [0, 13τ] = [12τ, 13τ] ∪ [10τ, 12τ] ∪ [8τ, 10τ] ∪ [0, 8τ] .

x13 ≈ Φ1 g12 + Φ2
g13 − g12

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(12τ, 10τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(3τs

(2)
j) y(10τ, 8τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(5τs

(3)
j) y(8τ, 0; s

(3)
j) .

(3.6.0.57)

➤ n = 14: Split [0, 14τ] = [13τ, 14τ] ∪ [12τ, 13τ] ∪ [8τ, 12τ] ∪ [0, 8τ] .

x14 ≈ Φ1 g13 + Φ2
g14 − g13

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(13τ, 12τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(2τs

(2)
j) y(12τ, 8τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(6τs

(3)
j) y(8τ, 0; s

(3)
j) .

(3.6.0.58)

➤ n = 15: Split [0, 15τ] = [14τ, 15τ] ∪ [12τ, 14τ] ∪ [8τ, 12τ] ∪ [0, 8τ] .

x13 ≈ Φ1 g14 + Φ2
g15 − g14

τ
+

m−1

∑
j=−m+1

ω
(1)
j F(s

(1)
j) exp(τs

(1)
j) y(14τ, 12τ; s

(1)
j)+

m−1

∑
j=−m+1

ω
(2)
j F(s

(2)
j) exp(3τs

(2)
j) y(12τ, 8τ; s

(2)
j)+

m−1

∑
j=−m+1

ω
(3)
j F(s

(3)
j) exp(7τs

(3)
j) y(8τ, 0; s

(3)
j) .

(3.6.0.59)

Also for n = 1, . . . , 15 let us tabulate the solutions of different initial-value problems of the type (3.6.0.37)
used in the n-th step

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 334

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

n = 1 :

n = 2 : y(τ, 0; s
(1)
j)

n = 3 : y(2τ, τ; s
(1)
j)

n = 4 : y(3τ, 2τ; s
(1)
j) y(2τ, 0; s

(2)
j)

n = 5 : y(4τ, 2τ; s
(1)
j) y(2τ, 0; s

(2)
j)

n = 6 : y(5τ, 4τ; s
(1)
j) y(4τ, 0; s

(2)
j)

n = 7 : y(6τ, 4τ; s
(1)
j) y(4τ, 0; s

(2)
j)

n = 8 : y(7τ, 6τ; s
(1)
j) y(6τ, 4τ; s

(2)
j) y(4τ, 0u; s

(3)
j)

n = 9 : y(8τ, 6τ; s
(1)
j) y(6τ, 4τ; s

(2)
j) y(4τ, 0; s

(3)
j)

n = 10 : y(9τ, 8τ; s
(1)
j) y(8τ, 4τ; s

(2)
j) y(4τ, 0; ; s

(3)
j)

n = 11 : y(10τ, 8τ; s
(1)
j) y(8τ, 4τ; s

(2)
j) y(4τ, 0; s

(3)
j)

n = 12 : y(11τ, 10τ; s
(1)
j) y(10τ, 8τ; s

(2)
j) y(8τ, 0; s

(3)
j)

n = 13 : y(12τ, 10τ; s
(1)
j) y(10τ, 8τ; s

(2)
j) y(8τ, 0; s

(3)
j)

n = 14 : y(13τ, 12τ; s
(1)
j) y(12τ, 8τ; s

(2)
j) y(8τ, 0; s

(3)
j)

n = 15 : y(14τ, 12τ; s
(1)
j) y(12τ, 8τ; s

(2)
j) y(8τ, 0; s

(3)
j)

An underlined table entry means that in the following step the initial condition will be set to a more advanced
time (“reset”). y

§3.6.0.60 (Exponential numerical integration of (3.6.0.37) [HS03, Eq. (27)]) In the formulas above we
need (approximate) solutions of initial-value problems (s ∈ C)

ẏ(t) = sy(t) + g(t) , y(ℓτ) = 0 for some ℓ ∈ N (3.6.0.61)

and for times t = iτ, i ∈ N, i > ℓ.

Approximate t 7→ g(t) by its linear interpolant gτ : R → R on Gτ := {τi}i∈Z:

gτ(t) := gi + (t− τi)
gi+1 − gi

τ
for iτ ≤ t < (i + 1)τ , i ∈ Z . (3.6.0.62)

where we set gi := g(iτ), i ∈ Z.

The advantage of replacing g→ gτ is that the initial value problem

ẏ(t) = sy(t) + gτ(t) , y(ℓτ) = yℓ (3.6.0.63)

can be solved analytically using the extended variation of constants formula

y(t) = y0est +

t∫

ℓτ

es(t−ξ)gτ(ξ)dξ , t ∈ R , (3.6.0.64)

which we apply with ℓ = 0, g0 := g(0), g1 := g(τ):

y1 := y(τ) = esτy0 +

τ∫

0

es(τ−ξ)(g0 +
g1 − g0

τ
ξ)dξ

= esτy0 +
g0

s
(esτ − 1) +

g1 − g0

τs2
(esτ − 1− sτ)

= y0 +
exp(sτ)− 1

sτ

(
sτy0 + τg0 +

g1 − g0

s

)
− g1 − g0

s
.

(3.6.0.65)

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 335

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Hence, the solution of (3.6.0.63) sampled on the temporal grid Gτ can be computed according to

yn = yn−1 +
exp(sτ)− 1

sτ

(
sτy0 + τgn−1 +

gn − gn−1

s

)
− gn − gn−1

s
, n ∈ Z , (3.6.0.66)

where we wrote gi := g(iτ), i ∈ Z. y

§3.6.0.67 (Fast & oblivious CQ: Algorithm) Now we abandon the scalar setting and return to the situation
of Ex. 3.6.0.1, where s 7→ F(s) is matrix-valued , in particular, where F(s) ∈ CN,N, s ∈ C\]−∞, 0], is,
formally, the inverse of a large sparse matrix, which we can never afford to compute explicitly. All we can
do is to apply F(s) to a vector ∈ CN.

Thus, we regard F(s) as a functor object, which supplies an eval() member function realizing the
product of F(s) ∈ CN,N with a vector. In a sense, now F should be viewed as a functor-valued function of
a complex argument!

The argument function g has to be CN-valued. Given a timestep size τ > 0, the algorithm will only use
the values gi := g(τi), ∈∈ N0. If we know in advance the final time T := Mτ, M ∈ N, then we may

simply pass the sequence (gi)
M
i=0.

Pseudocode 3.6.0.68: Fast & oblivious convolution quadrature, B = 2

1 Matrix focq (FUNCTOR F , integer m, rea l τ , integer M, Sequence (gi)
M
i=0) {

2 Matrix X ∈ RN,M ;
3 L := ⌊log2 M⌋ ;

4 Compute s
(k)
j , ω

(k)
j , j = −m + 1, . . . , m− 1 , k = 1, . . . , L // See (3.6.0.32)

5 Evaluate F (j , k) := F(s
(k)
j) , j = −m + 1, . . . , m− 1 , k = 1, . . . , L ;

6 // Vectors keeping solutions states y(∗, ∗; s
(k)
j) for (3.6.0.37)

7 Vector y
(k)
j ∈ RN , j = −m + 1, . . . , m− 1 , k = 1, . . . , L ;

8 Compute Φ1 , Φ2 ; // (3.6.0.42), (3.6.0.43)

9 // Initial times for k-th family of solutions of (3.6.0.37)

10 integer b [k] = 0 , k = 1, . . . , L ;
11 // Main timestepping loop

12 for n = 1 to M do {
13 // Near-past convolution

14 (X):,n := Φ1 gn−1 + Φ2
gn − gn−1

τ
;

15 // Far-past updates using different Talbot contours

16 for k = 1 to L do {
17 i f (n ≥ 2k) {
18 i f (n mod 2k = 0) {

19 y
(k)
j := 0 , j = −m + 1, . . . , m− 1 ; // “reset”

20 }
21 i f (n mod 2k−1 = 0) {
22 for l = 1 to 2k−1 do {
23 for j = −m+1 to m−1 do {
24 // Timestepping according to (3.6.0.66)

25 γ :=
gb[k]+1 − gb[k]

s
(k)
j

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 336

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

26 y
(k)
j +=

exp(s
(k)
j τ)− 1

s
(k)
j τ

(
s
(k)
j τy

(k)
j + τgb[k] + γ

)
− γ ; //

27 }
28 b [k] := b [k] + 1 ;
29 }
30 }
31 // Add Talbot contour contribution as in (3.6.0.39)

32 (X):,n +=
m−1

∑
j=−m+1

ω
(k)
j exp((n− b[k])τs

(k)
j) F(j, k).eval(y

(k)
j) ; //

33 }
34 }
35 }
36 return X ;
37 }

y

§3.6.0.69 (Fast & oblivious CQ: Cost) We determine the asymptotic computational effort and storage
requirements of the function focq() from Code 3.6.0.68 for M→ ∞, where M stands for the number
of timesteps. Some estimates will also involve the dimension N of the state space (“number of degrees of
freedom”) and the number m of quadrature nodes.

• The amount of memory focq() needs to compute approximations for all xn := (F(∂t)g)(τn),
n = 1, . . . , M, is

storage(focq()) = O(mN log M) for M→ ∞ . (3.6.0.70)

This is the combined size of all the auxiliary vectors y
(k)
j ∈ CN, j = −m + 1, . . . , m− 1,

k = 1, . . . , L, L := ⌊log2 M⌋. In (3.6.0.70) we ignored the memory required for the result matrix
X, which just records the output states.

• Simple inspection of Code 3.6.0.68 and counting yields

♯{F()-evaluations} = O(m log M) for M→ ∞ , (3.6.0.71)

♯{F.eval()-invocations} = O(m M log M) for M→ ∞ . (3.6.0.72)

• The bulk of elementary matrix-vector operations in Code 3.6.0.68 is due to the update in Line 26.
For n = 15 these updates are marked with + in the following figure.

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 337

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 152

t = 1τ

t = 2τ

t = 3τ

t = 4τ

t = 5τ

t = 6τ

t = 7τ

t = 8τ

t = 9τ

t = 10τ

t = 11τ

t = 12τ

t = 13τ

t = 14τ

t = 15τ

t− τ < τ

t− ξ ∈ I1

t− ξ ∈ I2

t− ξ ∈ I3

0 4τ 8τ 12τ

For every Talbot contour (index k) at most M update steps have to be carried out when executing
focq(). This amounts to

cost(vector operations in focq()) = O(mN M log M) for M→ ∞ . (3.6.0.73)

This also includes the update operations in Line 32.

y

Remark 3.6.0.74 (Fast & oblivious CQ: Properties & variants)

• Unlike the convolution quadrature schemes introduced in Section 3.4 and Section 3.5 the function
focq() from Code 3.6.0.68 provides an approximation of F(∂t) by a discrete convolution, which
fails to possess the crucial associativity property (3.3.3.1).

• The empiric asymptotic convergence of the approximation provided by focq() in the maximum
norm over all timesteps is O(τ2 + qm) for τ → 0, m→ ∞ and some g ∈ [0, 1[. The method con-
verges algebraically with rate 2 in the timestep size τ and exponentially in the number m of quadra-
ture points. Rigorous theoretical estimates are not available.

• The work [SLL65] devised an algorithm related to that of ??, which uses time-local quadrature on
families on integration contours to obtain “fast & oblivious” approximations of all the CQ schemes
presented in Section 3.4 and Section 3.5. The cost estimates of § 3.6.0.69 apply. Theses schemes
enjoy associativity and allow a rigorous theoretical analysis [BS21, Sect. 8.2].

y

3. Convolution Quadrature, 3.6. Fast and Oblivious Convolution Quadrature 338

Bibliography

[BS21] L. Banjai and F.-J. Sayas. Integral equation methods for evolutionary PDE. Springer, 2021 (cit.
on pp. 269, 328, 333, 356).

[BHS80] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. “A General Method for Solving
Divide-and-conquer Recurrences”. In: SIGACT News 12.3 (Sept. 1980), pp. 36–44. DOI:
10.1145/1008861.1008865 (cit. on p. 290).

[DB02] P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equations.
2nd ed. Vol. 42. Texts in Applied Mathematics. New York: Springer, 2002 (cit. on pp. 314, 318–
321).

[HS16] Matthew Hassell and Francisco-Javier Sayas. “Convolution quadrature for wave simulations”.
In: Numerical simulation in physics and engineering. Vol. 9. SEMA SIMAI Springer Ser. Cham:
Springer, 2016, pp. 71–159 (cit. on p. 269).

[HS03] R. Hiptmair and A. Schädle. “Non-reflecting boundary conditions for Maxwell’s equations”. In:
Computing 71.3 (2003), pp. 165–292 (cit. on pp. 348, 349, 353).

[Lub88] C. Lubich. “Convolution quadrature and discretized operational calculus. II”. In: Numer. Math.

52.4 (1988), pp. 413–425 (cit. on p. 282).
[LS02] Ch. Lubich and A. Schädle. “Fast convolution for non-reflecting boundary conditions”. In: SIAM

J. Sci. Comp. 24 (2002), pp. 161–182 (cit. on pp. 269, 348, 349).
[McL00] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge, UK: Cam-

bridge University Press, 2000 (cit. on p. 270).
[Rem84] R. Remmert. Funktionentheorie I. Grundwissen Mathematik 5. Berlin: Springer, 1984 (cit. on

pp. 305, 306).
[Rie03] Andreas Rieder. Keine Probleme mit inversen Problemen. Braunschweig: Friedr. Vieweg &

Sohn, 2003, pp. xiv+300. DOI: 10.1007/978-3-322-80234-7 (cit. on p. 291).
[Rud73] W. Rudin. Functional Analysis. 1st. McGraw–Hill, 1973 (cit. on p. 271).
[Say16] Francisco-Javier Sayas. Retarded potentials and time domain boundary integral equations.

Vol. 50. Springer Series in Computational Mathematics. Springer, [Cham], 2016, pp. xv+242
(cit. on pp. 269, 281, 283, 308).

[SLL65] A. Schädle, M. Lopez-Fernandez, and C. Lubich. “Fast and oblivious convolution quadrature”.
In: SIAM J. Sci. Comp. 28.2 (20065), p. 421 (cit. on pp. 269, 356).

339

https://doi.org/10.1145/1008861.1008865
https://doi.org/10.1007/978-3-322-80234-7

Chapter 4

(Algebraic) Multigrid Methods

Supplementary literature. [TOS00] is a comprehensive textbook about and introduction into

the foundations and algorithmic aspects of various kinds of multigrid methods:

• An outline of geometric multigrid is given in Chapter 2c “Basic Multigrid I”,

• Appendix A titled “Introduction to Algebraic Multigrid” is the text underlying parts of the presen-
tation in Section 4.3.

4.1 Solvers for Finite Element Linear Systems

[NumPDE Chapter 2] introduced low-order finite element methods with small fixed polynomial degree
of the local trial spaces for the approximate solution of second-order elliptic boundary value problems.
However, the discussion completely glossed over a key issue: How can we solve the arising large sparse
linear systems of equations fast?

Here, “large” hints at huge matrix dimensions that can go up to several billions as of 2023.

4.1.1 Elliptic Model Boundary Value Problems

The focus in this chapter is on scalar elliptic boundary value problems (BVPs) with homogeneous Dirich-
let boundary conditions on bounded connected polyhedral domains [NumPDE Section 1.5] Ω ⊂ Rd,
d = 2, 3:

−div(A(x) grad u) + c(x)u = f in Ω , u = 0 on ∂Ω . (4.1.1.1)

The unknown is a function u : Ω→ R and the source function f must be square integrable: f ∈ L2(Ω).

Further, A : Ω→ Rd,d is a matrix-valued function, often called diffusion coefficient. We demand that

(i) A ∈ (C0
pw(Ω)d,d, that is, A is piecewise continuous with respect to a subdomain partition of Ω,

(ii) A(x) is symmetric for all x ∈ Ω, and

(iii) A is bounded and uniformly positive definite [NumPDE Def. 1.2.2.9]: there are constants
0 < α− ≤ α+ such that

α−‖z‖2 ≤ z⊤A(x)z ≤ α+‖z‖2 ∀z ∈ Rd , ∀x ∈ Ω . (4.1.1.2)

340

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The function c : Ω→ R is called reaction coefficient, has to belong to C0
pw(Ω) and to satisfy c(x) ≥ 0

for all x ∈ Ω.

EXAMPLE 4.1.1.3 (Poisson equation) In the special case A(x) = I (identity matrix) and c ≡ 0, we face
a homogeneous Dirichlet boundary value problem for the Poisson equation

−∆u = f in Ω , u = 0 on ∂Ω . (4.1.1.4)

y

§4.1.1.5 (Two-point boundary value problems) A special case is d = 1, where Ω =]a, b[, a, b ∈ R,
a < b. Then (4.1.1.1) reads:

d

dx

(
a(x)

du

dx
(x)
)
= f (x) for x ∈]a, b[, u(a) = u(b) = 0 . (4.1.1.6)

The Dirichlet boundary conditions reduce to prescribing the value of the solution u at two points, which is
why (4.1.1.6) has been dubbed two-point boundary-value problem [NumPDE ??]. y

§4.1.1.7 (Variational formulation) The finite element method relies on the variational formulation
of (4.1.1.1), also known as the weak form [NumPDE Section 1.4]: seek u ∈ H1

0(Ω)

∫

Ω

A(x) grad u(x) · grad v(x) + c(x)u(x)v(x)dx

︸ ︷︷ ︸
=:a(u,v)

=
∫

Ω

f (x)v(x)dx

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1
0(Ω) . (4.1.1.8)

For the Sobolev space H1
0(Ω) refer to [NumPDE Section 1.3.4]. Under the above assumptions on A and

c existence and uniqueness of solutions of (4.1.1.8) can be taken for granted. y

§4.1.1.9 (Equivalent minimization problem) As explained in [NumPDE Section 1.4] the linear variational
problem (4.1.1.8) is equivalent to the quadratic minimization problem

u = argmin
v∈H1

0 (Ω)

J(v) , J(v) := 1
2a(v, v)− ℓ(v) , (4.1.1.10)

with a and ℓ the bilinear form and linear form as defined in (4.1.1.8). y

§4.1.1.11 (Finite element Galerkin discretization)

We equip Ω with a simplicial mesh/triangulation M
in the sense of [NumPDE Def. 2.5.1.1]. For d = 1
it will be a partitioning of the interval Ω into smaller
intervals (cells), for d = 2 a special tiling of Ω with
triangles.

A triangular mesh in 2D, edges drawn in blue, those
on the boundary ∂Ω in red ✄

We take for granted that the interior angles of all
triangles are above a fixed threshold, which en-
sures a uniformly bounded shape-regularity measure
[NumPDE Def. 3.3.2.20].

Fig. 153
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 341

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The finite element method converts (4.1.1.8) into a discrete vasriational formulation by replacing H1
0(Ω)

by a finite-dimensional subspace Vh, a procedure called Ritz-Galerkin discretization [NumPDE Sec-
tion 2.2]: seek uh ∈ Vh

∫

Ω

A(x) grad uh(x) · grad vh(x) + c(x)uh(x)vh(x)dx

︸ ︷︷ ︸
=:a(uh,vh)

=
∫

Ω

f (x)vh(x)dx

︸ ︷︷ ︸
=:ℓ(vh)

∀vh ∈ Vh . (4.1.1.12)

We restrict ourselves to linear Lagrangian finite
elements and use Vh = S0

1,0(M), see [NumPDE
§ 2.3.1.4] (1D) and [NumPDE Section 2.4.2] (2D).
We use “tent function” locally supported nodal basis
functions as explained in [NumPDE Section 2.4.3].
They provide a cardinal basis of S0

1,0(M) with re-
spect to point evaluation at interior vertices ofM.

A single “tent function” on a triangular mesh ✄

(Graph is a pyramid with height 1.) Fig. 154

Inserting the nodal basis expansion of uh ∈ S0
1,0(M), the discrete variational problem can be converted

into an equivalent linear system of equations A~µ = ~ϕ, where A ∈ RN,N is the Galerkin matrix,~µ ∈ RN

the vector of the basis expansion coefficients of uh ∈ Vh, and ~ϕ ∈ RN the load vector. Throughout
N ∈ N will stand for the dimension of the finite element space N := dim Vh. It agrees with the number
of interior nodes ofM.

The structure of the variational problem (4.1.1.8) implies particular properties of Galerkin matrices:

Lemma 4.1.1.13. Symmetric positive definite Galerkin matrices

Every matrix A ∈ RN,N arising from a Galerkin discretization of (4.1.1.8) based on the trial and

test space Vh ⊂ H1
0(Ω) will be symmetric and positive definite, that is

A = A⊤ and ~ν⊤A~ν > 0 ∀~ν ∈ RN \ {0} . (4.1.1.14)

y

§4.1.1.15 (Finite element computations based on local quadrature rules) The occurrence in (4.1.1.8)
of “general functions” A = A(x), c = c(x), and f = f (x) that may be accessible through point evaluation
only entails using numerical quadrature on the cells of the mesh in order to evaluate a(uh, vh) and ℓ(vh)
approximately.

For Vh = S0
1,0(M) it is sufficient to rely on the composite trapezoidal rule, locally defined by

∫

K
ϕ(x)dx ≈ 1

3 |K|
(

ϕ(a1) + ϕ(a2) + ϕ(a3)
)

, K ∈ M triangle with vertices a1, a2, a3 , (4.1.1.16)

for the approximation of all integrals:
∫

Ω
ϕ(x)dx ≈ ∑

K∈M
1
3 |K|

(
ϕ|K(a1) + ϕ|K(a2) + ϕ|K ϕ(a3)

)
(4.1.1.17)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 342

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§4.1.1.18 (Sparsity of finite element Galerkin matrices) The nodal basis functions b1
h, . . . , bN

h of

vh = S0
1,0(M) are “tent functions” associated with the interior nodes/vertices x1, . . . , xN of the mesh

M. Since

supp(bi
h) =

⋃
{K : K ∈ M, xi ∈ K} , (4.1.1.19)

that is, the support of a basis function is the union of the (closed) triangles adjacent to the associated
vertex, the S0

1,0(M)-Galerkin matrix A ∈ RN,N for the bilinear form a(·, ·) from (4.1.1.8) satisfies:

{
Nodes xi, xj ∈ V(M)

not connected by an edge
⇔ Vol(supp(bi

h) ∩ supp(b
j
h)) = 0

}
⇒ (A)ij = 0 .

(4.1.1.20)

This means that for a “nice” mesh M the finite-
element Galerkin matrix A is sparse in the sense of
[NumPDE Notion 2.4.4.3]: most of its entries will be
zero.

Non-zero entries of the S0
1,0(M)-Galerkin matrix

arising from discretizing (4.1.1.8) on the triangular
mesh displayed in Fig. 153. ✄

Fig. 155
0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2670

Here “nice” means that the shape-regularity measure ρM ofM according to [NumPDE Def. 3.3.2.20] is
small.

Definition [NumPDE Def. 3.3.2.20]. Shape regularity measure

For a simplex K ∈ Rd we define its shape regularity measure as the ratio

ρK := hd
K : |K| , hK := diam(K) ,

and the shape regularity measure of a simplicial meshM = {K} as

ρM := max
K∈M

ρK .

As a consequence, the solid of cells ofM are bounded from below, which means that only a small number
of cells (depending on ρM) can abut a node. This limits the number of edges emanating from a node.

Sparsity of finite element Galerkin matrices

N × N Galerkin matrices for low-order finite element methods
have O(N) non-zero entries for N → ∞.

As a consequence

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 343

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ It takes only O(N) memory to store an N × N finite element Galerkin matrix
(➣ data-sparse matrices),

✦ the computational effort for the multiplication of an N × N finite element Galerkin matrix with a
vector scales like O(N) for N → ∞.

y

EXAMPLE 4.1.1.22 (Poisson matrix)

Fig. 156

As in [NumPDE § 4.1.3.3] we consider the finite el-
ement Galerkin discretization of the Poisson equa-
tion (4.1.1.4) on the unit square Ω =]0, 1[2 using
linear finite elements on the “equidistant triangular
tensor-product mesh”M displayed beside.

Line-by-line lexikographic numbering of the interior
nodes (•) is assumed, cf. [NumPDE Section 4.1].

If there are M + 1 cells in each direction, the to-
tal number of interior nodes will be N := M2, which
agrees with dimS0

1,0(M).

As explained in [NumPDE § 4.1.2.3], we end up with an N × N block-tridiagonal Galerkin matrix, known
as Poisson matrix

A :=

T −I 0 · · · · · · 0

−I T −I
...

0 −I T −I
...

...
. 0

... −I T −I
0 · · · · · · 0 −I T

, T :=

4 −1 0 0

−1 4 −1
...

0 −1 4 −1
...

...
.

... −1 4 −1
0 · · · · · · 0 −1 4

∈ RM,M (4.1.1.23)

We are going to rely on this matrix in several numerical experiments. y

EXAMPLE 4.1.1.24 (Bilinear FE for scalar elliptic Dirichlet BVPs) We start from the scalar ellip-
tic boundary value problem with constant diffusion tensor and homogeneous Dirichlet boundary condi-
tions:

−div

([
α 0
0 β

]
grad u

)
= f in Ω :=]0, 1[2 , u = 0 on ∂Ω , (4.1.1.25)

with α, β > 0, f ∈ C0(Ω). Obviously, the diffusion tensor is symmetric and positive definite, which en-
sures the existence of a unique solution u ∈ H2(Ω) [NumPDE Thm. 3.4.0.10].

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 344

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 157

M+1

MM−1

M*M

2 3

M+2 M+3 2M

M(M−1)+1

1

✄ We use an equidistant quadrilateral tensor product
mesh M with M ∈ N interior nodes in each direction
and meshwidth h := 1

M+1 .

We number the M2 interior mesh nodes lexikographi-
cally.

We rely on the piecewise bilinear Lagrangian finite ele-
ment space S0

1,0(M) introduced in [NumPDE Ex. 2.6.2.1]
for the Galerkin finite-element discretization of the lin-
ear variational problem arising from (4.1.1.25): seek
u ∈ H1

0(Ω) such that

∫

Ω

[
α 0
0 β

]
grad u(x) · grad v(x)dx =

∫

Ω
f (x)v(x)dx

for all v ∈ H1
0(Ω).

The vertex-associated local shape functions on the reference element K̂, the unit square, are, cf.

[NumPDE Eq. (2.6.2.3)],

b̂1(x) = (1− x1)(1− x2) ,

b̂2(x) = x1(1− x2) ,

b̂3(x) = x1x2 ,

b̂4(x) = (1− x1)x2 .

(4.1.1.26)

b̂i(aj) = δij , 1 ≤ i, j ≤ 4 ,

that is, these basis functions satisfy the cardinal ba-
sis property with respect to the vertices of the unit
square.

Fig. 158

K

➀ ➁

➂➃

x1

x2

a1
a2

a3
a4

Affine pullback then provides the local shape functions bi
K, i = 1, 2, 3, 4, for any square K of the meshM.

Using the vertex numbering from Fig. 158 plus the local trapezoidal quadrature rule
∫

K
ϕ(x)dx ≈ 1

4 |K|
(

ϕ(a1) + ϕ(a2) + ϕ(a3) + ϕ(a4)
)

, (4.1.1.27)

the element matrix AK has the entries

AK =

[∫

K
grad b

j
K(x) · grad bi

K(x)dx

]4

i,j=1

≈

1/2(α + β) −1/2α 0 −1/2β
−1/2α 1/2(α + β) −1/2β 0

0 −1/2β 1/2(α + β) −1/2α
−1/2β 0 −1/2α 1/2(α + β)

 .

(4.1.1.28)

Again using the local trapezoidal quadrature rule, the element load vector evaluates to

ϕK =

[∫

Ω
f (x)bi

k(x)dx

]4

i=1

≈ h2
[

f (ai)
]4

i=1
. (4.1.1.29)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 345

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Assembly then produces the M2 ×M2 linear system of equations

A~µ =
[

f (pi)
]M2

i=1
,
{

p1, p2, . . . , pM·M
}

=̂ interior nodes ofM ,

where the matrix A has a structure similar to the one in (4.1.1.23):

A :=

T −βI 0 · · · · · · 0

−βI T −βI
...

0 −βI T −βI
...

...
. 0

... −βI T −βI
0 · · · · · · 0 −βI T

∈ RM2,M2
,

T :=

2(α + β) −α 0 0

−α 2(α + β) −α
...

0 −α 2(α + β) −α
...

...
.

... −α 2(α + β) −α
0 · · · · · · 0 −α 2(α + β)

∈ RM,M .

(4.1.1.30)

y

§4.1.1.31 (Stencil notation [NumPDE § 4.1.2.10]) In Ex. 4.1.1.22 and Ex. 4.1.1.24 we saw rather
special finite-element meshes that can be obtained by truncating an infinite periodic lattice to finite domain.
Meshes of this special type are often called (finite-difference) grids. Grid functions are mappings from
nodes/edges/cells of such grids into the real numbers.

Fig. 159

Translation-invariant local linear operators operators acting on
grid functions can be described by means of (finite-difference)
stencils. Consider the M×M 2D tensor-product grid dis-
played beside with M + 1 cells in each direction and meshwidth
h := 1

M+1 .
Its interior nodes can be indexed by pairs (i, j),
i, j ∈ {1, . . . , M}, i being the “row index”. Thus a node-
based grid function µ corresponds to an M×M-matrix with
entries µi,j.

A translation-invariant local linear operator L providing an endomorphism on the space of node-based grid
functions can be written as

(L~µ)i,j =
1

∑
ℓ−1

1

∑
k=−1

sℓ,kµi+ℓ,j+k , i, j ∈ {1, . . . , M} . (4.1.1.32)

(µi,j = 0 assumed for “out-of-range” indices.)

The (difference) stencil notation for this operator L is denoted as

Stencil of L from (4.1.1.32) =

s1,−1 s1,0 s1,1

s0,−1 s0,0 s0,1

s−1,−1 s−1,0 s−1,1

h

. (4.1.1.33)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 346

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

4.1.2 Sparse Elimination Solvers

Recall Gaussian elimination (GE) and its rewriting through the LU-decomposition of matrices, [NumCSE
Section 2.3]. Gaussian elimination does not mesh smoothly with the sparse matrices obtained from finite
element discretization:

!
[NumCSE Ex. 2.7.4.1]: LU-factors of a sparse matrix need not be sparse

fill-in [NumCSE Def. 2.7.4.3]

Let A ∈ RN,N be a large sparse finite element Galerkin matrix for a 2D or 3D BVP with “O(N)” non-zero
entries:

Dream: Cost for solving A~µ = ~ϕ = O(N)

Reality Cost for solving A~µ = ~ϕ = O(Nα), 1.5 ≤ α ≤ 2.

The exponent α depends on the details of the method and tends to be bigger for 3D problems. In practice
one observes

• α ≈ 1.5 for 2D finite element Galerkin matrices,

• α ≈ 2 for finite element Galerkin matrices arising from 3D problems.

EXPERIMENT 4.1.2.1 (Cost of direct elimination solvers)

Fig. 160
10

5
10

6

Matrix size

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
(s

ec
)

3D Laplacian
2D Laplacian
Complexity O(1.801)
Complexity O(1.449)

✁ Runtime measurements for direct solution of FE
linear systems, courtesy of Prof. O. Schenk, USI
Lugano

✦ Sparse solver code PARDISO 6.1 [SG06]
✦ Domain Ω =]0, 1[d, A =̂ Poisson-Galerkin

matrix on uniforrm 2D/3D tensor product mesh
(5-point/9-point stencil)

✦ OS: Ubuntu Linux 18.04,
Compiler: gcc-7, -O3, single core,
CPU: I2ntel Xeon CPU E7-4880@2.50GHz

y

4.1.3 Stationary Linear Iterations (SLIs)

The O(Nα), α ≈ 2 asymptotic computational cost of direct elimination solvers becomes prohibitive for
N ≈ 107 even on HPC systems. Is there an alternative?

§4.1.3.1 (Iterative solution of linear systems of equations) As an alternative to the direct solution

of A~µ = ~ϕ, A ∈ RN,N sparse, we could try iterative methods that produce sequences
(
~µ(k)

)
k∈N0

of

approximate solutions that, ideally, fast converge to the exact solution

lim
k→∞

∥∥∥~µ(k) −~µ∗
∥∥∥ = 0 , A~µ∗ = ~ϕ .

Interative methods may be preferred for several reasons often relevant in the context of finite element
computations:

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 347

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
http://www.pardiso-project.org/

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(I) The sheer size of the linear system of equations rules out the use of methods whose memory
requirements scale like O(Nα) as N → ∞ for some α > 1.

(II) In light of inevitable discretization errors highly accurate solutions of the linear systems are not
needed; early termination of the iteration may be possible.

(III) If a rather good approximation of the solution is available already as initial guess, a sufficiently
accurate solution may be obtained after only a few iterations.

y

§4.1.3.2 (Gauss-Seidel method) The Gauss-Seidel method is an iterative solution method for general
square linear systems of equations: Given

✦ the coefficient matrix A ∈ RN,N, N ∈ N, with non-zero diagonal elements, (A)i,i 6= 0,

✦ any right-hand-side vector~ϕ ∈ RN,

✦ and an initial guess~µ0 ∈ RN,

it can be implemented as follows (the argument ~µ both passes the initial guess and serves to return the
approximate solution):

Pseudocode 4.1.3.3: Gauss-Seidel method for A~µ = ~ϕ

1 void GaussSeidel (const A ∈ RN,N , const ~ϕ ∈ RN , re f ~µ ∈ RN , double TOL) {
2 do {
3 double deltanorm = 0; // squared norm of update in one step

4 // Update all components of the approximate solution

5 for (i n t i =0; i <N; i ++) { \ \

6 double δµ :=
1

(A)i,i

(
(
~ϕ
)

i
−

N

∑
j=1

(A)i,j

(
~µ
)

j

)
;

7 (~µ)i += δµ ;
8 deltanorm += (δµ)2 ;
9 } \ \

10 }
11 while (s q r t (deltanorm) < TOL·‖~µ‖) ; // Termination criterion

12 }

The outer loop in Code 4.1.3.3 embodies the steps of the Gauss-Seidel method. At step i of the inner
loop (Line 5–Line 9) the solution component

(
~µ
)

i
is adjusted so that the i-th row of the LSE A~µ = ~ϕ is

satisfied exactly.

Obviously, the computational effort for a single step of the Gauss-Seidel method is proportional to the
number of non-zero entries of A, hence O(N) for finite element Galerkin matrices and N → ∞, remember
§ 4.1.1.18. y

§4.1.3.4 (Gauss-Seidel method as stationary linear iteration) The operations in the inner loop of
Code 4.1.3.3 from Line 5 through Line 9 boil down to

(A)i,i

(
~µ
)

i
:=
(
~ϕ
)

i
−

N

∑
j=1
j 6=i

(A)i,j

(
~µ
)

j
, i = 1, . . . , N . (4.1.3.5)

Thus, the entire inner loop of the Gauss-Seidel method from Code 4.1.3.3 can be rewritten as

~µ← ~µ + tril(A)−1~ρ with residual ~ρ := ~ϕ−A~µ , (4.1.3.6)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 348

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

where tril(A) ∈ RN,N extracts the lower-triangular part of the matrix A. Assuming, (A)i,i 6= 0 for all i
ensures that tril(A) is invertible.

Hence, the Gauss-Seidel method is an iteration generating the vector sequence ~µ(0),~µ(1),~µ(2), . . . ac-
cording to the rule

~µ(0) := ~µ0 , ~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) with M := tril(A)−1 . (4.1.3.7)

An itaration of the form~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) is called a stationary linear iteration consistent
with the linear system of equations A~µ = ~ϕ.

Obviously, any solution of the LSE A~µ = ~ϕ provides a fixed point of the associated linear stationary
iteration

A~µ(k) = ~ϕ ⇒ ~µ(k+1) = ~µ(k) . (4.1.3.8)

This is the meaning of “consistent”. Moreover, every fixed point gives a solution of the LSE provided that
M is invertible

~µ = ~µ + M(~ϕ−A~µ)
M invertible
=⇒ A~µ = ~ϕ . (4.1.3.9)

y

§4.1.3.10 (Jacobi method) The Jacobi method is a stationary linear iteration for the solution of A~µ = ~ϕ
defined by

~µ(k+1) := ~µ(k) + ωD−1(~ϕ−A~µ(k)) , D := diag(A) , (4.1.3.11)

that is, it is of the form (4.1.3.7) with M replaced with the scaled diagonal part ω diag(A) ∈ RN,N of A,
where ω > 0 is a suitable relaxation parameter.

This method does not offer any advantages compared to the Gauss-Seidel method, except for being easier
to analyze. y

§4.1.3.12 (Error recursion for stationary linear iterations) We consider a stationary linear iteration

~µ(k+1) = ~µ(k) + M
(
~ϕ−A~µ(k)) with invertible M ∈ RN,N , (4.1.3.13)

consistent with the N × N linear system of equations (LSE) A~µ = ~ϕ, A ∈ RN,N,~ϕ ∈ RN.

Assuming that A is invertible, we write~µ∗ ∈ RN for the unique solution of the LSE: A~µ∗ = ~ϕ. A one-line
elementary calculation yields the error recursion

~ǫ(k+1) = (I−MA)~ǫ(k) for the iteration error ~ǫ(k) := ~µ∗ −~µ(k) . (4.1.3.14)

The matrix E := I−MA is called the error propagation matrix (EPM) for the stationary linear iteration
(4.1.3.13).

Corollary 4.1.3.15. Convergence of stationary linear iterations

Let ‖·‖ be a matrix norm induced by the vector norm ‖·‖ on RN. If ρ := ‖I−MA‖ < 1, the

stationary linear iteration (4.1.3.13) converges to~µ∗ := A−1~ϕ linearly with rate ρ.

“Linear convergence” of an iteration is defined in [NumCSE Def. 8.2.2.1] and means that
∥∥∥~µ∗ −~µ(k+1)

∥∥∥ ≤ ρ
∥∥∥~µ∗ −~µ(k)

∥∥∥ for some ρ < 1 .

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 349

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

Remark 4.1.3.16 (Asymptotic decay of iteration error) As in § 4.1.3.12 we consider the stationary
linear iteration (4.1.3.13). From the error recursion (4.1.3.14) we learn that the sequence of error vectors

(~ǫ(0),~ǫ(1),~ǫ(2), . . .) is generated by a power iteration. Therefore, we know

lim
k→∞

∥∥∥~ǫ(k+1)
∥∥∥

∥∥∥~ǫ(k)
∥∥∥

= λmax(I−MA) := max{|λ| : λ ∈ σ(I−MA)} , (4.1.3.17)

for any vector norm ‖·‖: Asymptotically the decay of the iteration error will be determined by the largest
eigenvalue of the error propagation matrix. y

Remark 4.1.3.18 (Measuring rates of convergence of stationary linear iterations) Write λmax(X) for
the largest (in modulus) eigenvalue of the matrix X ∈ RN,N:

λmax(X) := max{|λ| : λ ∈ σ(X)} , σ(X) := spectrum of X . (4.1.3.19)

Then, for any matrix norm ‖·‖ induced by a vector norm

∥∥∥Xk
∥∥∥→ λmax(X)

k for k→ ∞ . (4.1.3.20)

Hence, the spectral radius λmax(X) will give precise information about the so-called asymptotic rate of
linear convergence, which, after several steps, is a good approximation of the actual rate.

The computation of λmax(X) relies on the power iteration, see [NumCSE Section 9.3.1] and Code 4.1.3.21

Pseudocode 4.1.3.21: Power method for computing λmax(X), X ∈ RN,N

1 rea l comp_lmax (const Matrix X ∈ RN,N , rea l TOL) {
2 Vector ~ν ∈ RN := random vec to r ;
3 λnew := 0
4 do {
5 λold := λnew ;

6 ~ν :=
~ν

‖~ν‖ ; // normalization

7 ~ν := X~ν ;
8 λnew := ‖~ν‖ ; // new guess for largest eigenvalue

9 }

10 while (
|λnew − λold|
|λnew|

> TOL) ; // Terminate in case small relative change

11 return (λnew) ;
12 }

Next note that a stationary linear iteration (4.1.3.13) with~ϕ = 0 boils down to a power iteration with iteration
matrix I−MA. Thus we can adapt Code 4.1.3.21 to compute the asymptotic rate of convergence of a

stationary linear iteration for solving A~µ = ~ϕ, a single step of which (~µ(k) → ~µ(k+1)) can be carried out by
calling the function

Vector s t a t L i n I t (const Vector ~ϕ ∈ RN , const Vector ~µ ∈ RN) ;

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 350

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pseudocode 4.1.3.22: Computing the asymptotic convergence rate of a stationary linear

iteration available through statLinIt().

1 rea l compAsympCvgRate (rea l TOL) {
2 Vector ~ν ∈ RN := random vec to r ;
3 λnew := 0
4 do {
5 λold := λnew ;

6 ~ν :=
~ν

‖~ν‖ ; // normalization

7 ~ν := s t a t L i n I t (0 , ~ν) ;
8 λnew := ‖~ν‖ ; // new guess for largest eigenvalue

9 }

10 while (
|λnew − λold|
|λnew|

> TOL) ; // Terminate in case small relative change

11 return (λnew) ;
12 }

y

EXPERIMENT 4.1.3.23 (Convergence of Gauss-Seidel method for Poisson matrix) We measure the
(asymptotic) rate of linear convergence of the Gauss-Seidel method from Code 4.1.3.3 when applied to
the linear system of equations A~µ = ~ϕ, where A is the N × N Poisson matrix from (4.1.1.23) and~ϕ = 1
is the vector of all ones.

Fig. 161

2 3 4 5 6 7 8 9 10
ℓ

0.5

0.6

0.7

0.8

0.9

1.0

λ m
ax
(E

G
S)

We investigate the matrix sizes N := M2,
M = 2ℓ − 1, ℓ = 2, . . . , 10, and compute a guess
for the rate of linear convergence by means of the
power iteration with TOL=10−3.

As initial guess we used 0.

We observe a massive deterioration of
the rate of convergence for increasing
matrix size.

A simple heuristic argument can make this observation plausible: If~νmin ∈ RN, ‖~νmin‖ = 1, is an eigen-
vector of the Poisson matrix A belonging to the smallest eigenvalue κmin, then we expect (‖·‖ the Eu-
clidean norm)

∥∥∥(I− tril(A)−1A)~νmin

∥∥∥ ≈ 1− λmin .

The eigenvectors and eigenfunctions of the Poisson matrix are well-known [Stü99, Ex. 3.1], [Hac94,
Sect. 4.1]: for k, m ∈ {1, . . . , n− 1} we find

eigenvectors :

[
sin(π

i

n
k)

]n−1

i=1

⊗
[

sin(π
j

n
m)

]n−1

j=1

∈ RN ,

eigenvalues : λk,m = 4− 2 cos(
kπ

n
)− 2 cos(

mπ

n
) = 4 sin2(

kπ

2n
) + 4 sin2(

mπ

2n
) .

(4.1.3.24)

As a consequence we have λmin = O(N−1) for N → ∞ and the asymptotic rate of convergence of the

Gauss-Seidel iteration will behave like 1−O(N−1). Hence, writing ~µ(k) for the Gauss-Seidel iterates,

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 351

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

from (4.1.3.14) we can expect that after a few steps and for large N

∃C > 0:
∥∥∥~µ∗ −~µ(k+1)

∥∥∥ ≤ (1− C

N
)
∥∥∥~µ∗ −~µ(k)

∥∥∥ .

In order to achieve error reduction by a factor of ǫ < 1, we have to carry out at least

K ≥ log ǫ

log(1− C
N)
≥ | log ǫ|

C
· N = O(N) for N → ∞

Gauss-Seidel steps. Since each step involves computational cost O(N), we arrive at an asymptotic
effort of O(N2) for solving A~µ = ~ϕ approximately up to a prescribed error level. This does not compare
favorably with the effort required by a modern sparse direct solver, see Section 4.1.2. y

§4.1.3.25 (Composition of stationary linear iterations) Let us consider two interleaved stationary linear
iterations

~µtmp = ~µ(k) + M1

(
~ϕ−A~µ(k)) with invertible M1 ∈ RN,N ,

~µ(k+1) = ~µtmp + M2

(
~ϕ−A~µtmp

)
with invertible M2 ∈ RN,N .

(4.1.3.26)

By elementary algebra, this yields another stationary linear iteration

~µ(k+1) = ~µ(k) + M
(
~ϕ−A~µ(k)) , M := M1 + M2 −M2AM1 . (4.1.3.27)

Naturally, its error propagation matrix must be the product of the two error propagation matrices of the
involved stationary linear iterations:

I−MA = (I−M2A)(I−M1A) . (4.1.3.28)

y

4.1.4 Conjugate Gradient Method (CG)

From Lemma 4.1.1.13 we learn that finite element discretizations will lead to linear systems of equations
with large spare symmetric positive definite coefficient matrices. For this class of linear systems, the
conjugate gradient method (CG) [NumCSE Section 10.2] is the most important iterative method.

§4.1.4.1 (CG iteration) The guiding idea of the CG method is minimization over Krylov spcaes.

Definition 4.1.4.2. Krylov space

For A ∈ RN,N,~ζ ∈ RN, z 6= 0, the ℓ-th Krylov space, ℓ ∈ N, is defined as

Kl(A,~ζ) := Span{~ζ, A~ζ, . . . , Al−1~ζ} .

Now assume that A is symmetric positive definite, that is,

A = A⊤ and ~ξ
⊤

A~ξ > 0 ∀~ξ ∈ RN \ {0} . (4.1.4.3)

Then the k-iterate of the CG iterative method for solving A~µ = ~ϕ with initial guess~µ(0) ∈ RN is the unique

vector minimizing the A-norm/energy norm of the iteration error over~µ(0) +Kk(A,~ρ0),~ρ0 := ~ϕ−A~µ(0)

[NumPDE ??]:

~µ(k) := argmin
~ν∈~µ(0)+Kk(A,~ρ0)

(~ν−~µ∗)⊤A(~ν−~µ∗) , ~ρ0 := ~ϕ−A~µ(0) , ~µ∗ := A−1~ϕ . (4.1.4.4)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 352

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This defines a non-linear stationary iterative method, because the sequence
(
~µ(k)

)
cannot be generated

by an iteration of type (4.1.3.13).

It can be shown that ~µ(N) = ~µ∗; the CG method, when executed in exact arithmetic, will yield the exact
solution after at most N steps. y

§4.1.4.5 (CG algorithm [NumCSE Section 10.2.2]) Amazingly, the computation of the iterate ~µ(k) ac-
cording to (4.1.4.4) requires only k matrix×vector multiplications (with A) in addition to ∼ 6kN arithmetic
operations!

The next pseudocode gives a mathematical definition of the conjugate gradient method applied to the LSE
A~µ = ~ϕ. For the derivation refer to [NumCSE Section 10.2].

Pseudocode 4.1.4.6: Conjugate gradient method

1 Vector cg (A ∈ RN,N , ~ϕ ∈ RN , ~µ(0)) {

2 ~ζ1 = ~ρ0 := ~ϕ−A~µ(0) ;
3 for (j =1; j < maxi t ; ++ j) {

4 ~µ(j) := ~µ(j−1) +
~ζ
⊤
j ~ρj−1

~ζ
⊤
j A~ζ j

~ζ j ;

5 ~ρj = ~ρj−1 −
~ζ
⊤
j ~ρj−1

~ζ
⊤
j A~ζ j

A~ζ j ;

6 ~ζ j+1 = ~ρj −
(A~ζ j)

⊤~ρj

~ζ
⊤
j A~ζ j

~ζ j ;

7 i f (
∥∥∥~ρj

∥∥∥ < TOL · ‖~ρ0‖) return (~µ(j)) ;

8 }
9 }

✁ CG-Algorithm for solving
LSE A~µ = ~ϕ

Input:
✦ S.p.d. matrix A ∈ RN,N,
✦ right-hand-side vector~ϕ,

✦ initial guess ~µ(0) ∈ RN,
✦ tolerance TOL for termination

criterion.

Return value: approximate solution.

Cost of CG step

A single CG step requires one A×vector multiply plus a small number of vector operations.

The cost for a single CG step applied to an N × N finite element linear system is
O(N) asymptotically for N → ∞.

y

§4.1.4.8 (Convergence of CG [NumCSE Section 10.2.3]) For a symmetric positive definite matrix
A ∈ RN,N we denote by ‖·‖A the energy norm induced by A:

‖~ν‖2
A := ~ν⊤A~ν , ~ν ∈ RN . (4.1.4.9)

This energy norm is fundamental in the theory of the CG method [NumCSE Cor. 10.2.3.3] and it is in this
energy norm that convergence estimates are stated. We also need the notion of the spectral condition
number of an invertible matrix

κ(A) :=
λmax(A)

λmin(A)
=

max{|λ| : λ ∈ σ(A)}
min{|λ| : λ ∈ σ(A)} . (4.1.4.10)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 353

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem 4.1.4.11. Convergence of the CG method [NumCSE Thm. 10.2.3.5]

The iterates of the CG method for solving A~µ = ~ϕ (see Code 4.1.4.6) with A = A⊤ ∈ RN,N s.p.d.

satisfy

∥∥∥~µ∗ −~µ(l)
∥∥∥

A
≤ 2 ρl

∥∥∥~µ∗ −~µ(0)
∥∥∥

A
, ρ :=

√
κ(A)− 1√
κ(A) + 1

, l ∈ N ,

where A~µ∗ = ~ϕ.

The larger κ(A) the slower the convergence of CG! y

EXPERIMENT 4.1.4.12 (Convergence of CG for the Poisson matrix) We apply the CG method to a
linear system with the Poisson matrix (4.1.1.23) as coefficient matrix.

Fig. 162
10 20 30 40 50 60 70 80 90 100

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
te

Convergence of CG

We record the “approximate asymptotic convergence
rates”

rate ≈ 10

√√√√√

∥∥∥~µ(30) −~µ∗
∥∥∥

A∥∥∥~µ(20) −~µ∗
∥∥∥

A

,

for~µ∗ = 1 and~µ(0) = 0.

We measure these rates of convergence for
N = (n− 1)2, n = 5, 6, . . . , 30.

✁ We observe a pronounced deterioration of CG
convergence for larger N.

y

§4.1.4.13 (CG convergence for FE linear systems) The observation made in the previous experiment
can be concluded from Thm. 4.1.4.11 and [NumPDE Lemma 9.2.7.30]. That theorem told us that for
finite element Galerkin matrices A for second-order scalar elliptic boundary value problems (4.1.1.8) and
trial/test spaces S0

1,0(M) we have

0 < λmin(A) ≤ C , λmax(A) ≥ C′h−2
M , (4.1.4.14)

with constants C, C′ > 0 depending only on the shape-regularity measure (→ [NumPDE Def. 3.3.2.20])
and quasi-uniformity of the meshM. As a consequence

κ(A) ≥ Ch−2
M . (4.1.4.15)

Hence, by Thm. 4.1.4.11 we expect slower convergence on finer meshes, exactly what we have observed
in Exp. 4.1.4.12. In fact, κ(A) ≈ h−2

M , which gives, asymptotically on sequences of uniformly and regularly
refined meshes

∥∥∥~µ∗ −~µ(k)
∥∥∥

A
≤ 2(1−O(hM))k

∥∥∥~µ∗ −~µ(0)
∥∥∥

A
for meshwidth hM → 0 . (4.1.4.16)

In two dimensions we have N = O(h−2
M), which means that we get an asymptotic reduction of the energy

norm of the CG iteration error by a factor of ǫ < 1, if we carry out at least

K ≥ log ǫ

log(1− CN−
1
2)
≥ log ǫ

C
N

1
2 = O(

√
N) for N → ∞

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 354

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

CG steps. We conclude an asymptotic computational effort of O(N
3
2) for solving A~µ = ~ϕ up to a pre-

scribed relative accuracy. This is superior to the Gauss-Seidel method, but not better than the advanced
sparse direct solvers mentioned in Section 4.1.2. y

4.2 Geometric Multigrid Method

Recall the Gauss-Seidel iteration for solving the linear system of equations A~µ = ~ϕ,

~µ(0) := ~µ0 , ~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) with M := tril(A)−1 , (4.1.3.7)

for which we found the error recursion

~ǫ(k+1) = (I−MA)~ǫ(k) for the iteration error ~ǫ(k) := ~µ∗ −~µ(k) . (4.1.3.14)

Idea: Study the eigenvector belonging to the largest (in modulus) eigenvalue of
I−MA

= most slowly converging error component!

EXPERIMENT 4.2.0.1 (Convergence of Gauss-Seidel II, see also Exp. 4.1.3.23) As in Exp. 4.1.3.23 we
study the Gauss-Seidel iteration

~µ(k+1) = ~µ(k) + tril(A)−1(
~ϕ−A~µ(k)) ,

for the 2D Poisson matrix A as defined in (4.1.1.23). We choose~ϕ := A~µ∗ with a random vector~µ∗ ∈ RN

(entries equidistributed in [0, 1]), and initial guess~µ(0) = 0.

➊ For N = 100 we we plot the finite element “error” functions e
(k)
h ∈ S0

1,0(M) with nodal coefficient

vectors~µ∗ −~µ(k) generated by the Gauss-Seidel iteration (4.1.3.7).

Fig. 163

0

1

0.2

0.4

1

F
E

 E
rr

o
r 0.6

0.8

k =0

Y

0.8

0.5 0.6

X

1

0.4
0.2

0 0

k = 0

Fig. 164

0

1

0.1

0.2

1

0.3

F
E

 E
rr

o
r 0.4

0.8

k =2

Y

0.5

0.5

0.6

X

0.6

0.4
0.2

0 0

k = 2

Fig. 165

0

1

0.1

0.2

1

0.3

F
E

 E
rr

o
r

0.4

0.8

k =4

Y

0.5

0.5

0.6

X

0.6

0.4
0.2

0 0

k = 4

Fig. 166

0

1

0.1

0.2

1

F
E

 E
rr

o
r 0.3

0.8

k =8

Y

0.4

0.5 0.6

X

0.5

0.4
0.2

0 0

k = 8

We observe that after several steps of the Gauss-Seidel iteration the iteration error viewed as a finite
element function becomes smooth.

➋ For the Poisson matrix A given in (4.1.1.23) we inspect the finite element functions defined by the
eigenvectors of the error propagation matrix E := I− tril(A)−1A belonging to the largest eigenvalue.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 355

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 167

0

1

0.05

0.1

1

F
E

 f
u
n
c
ti
o
n

0.15

0.8

Y

0.2

0.5 0.6

X

0.25

0.4
0.2

0 0

N = 64, λmax(E) = 0.88302

Fig. 168

0

1

0.02

0.04

1

0.06

F
E

 f
u
n
c
ti
o
n 0.08

0.8

Y

0.5

0.1

0.6

X

0.12

0.4
0.2

0 0

N = 256, λmax(E) = 0.96624

Fig. 169

0

1

0.01

0.02

1

0.03

F
E

 f
u
n
c
ti
o
n 0.04

0.8

Y

0.5

0.05

0.6

X

0.06

0.4
0.2

0 0

N = 1024, λmax(E) = 0.99096

We observe that the “most slowly converging” error functions are smooth and their per-step reduction as
measured by λmax(E) becomes smaller with increasing N: λmax(E)→ 1 as N → ∞.

➌ Now we examine the finite element function defined by the eigenfunction of the Gauss-Seidel error
propagation matrix E belonging to the smallest (in modulus) eigenvalue.

Fig. 170

-1

1

-0.8

-0.6

1

-0.4

F
E

 f
u
n
c
ti
o
n -0.2

0.8

Y

0.5

0

0.6

X

0.2

0.4
0.2

0 0

N = 64, λmin(E) = 0

Fig. 171

-0.2

1

0

0.2

1

0.4

F
E

 f
u
n
c
ti
o
n 0.6

0.8

Y

0.5

0.8

0.6

X

1

0.4
0.2

0 0

N = 256, λmin(E) = 0

Fig. 172

-1

1

-0.8

-0.6

1

-0.4

F
E

 f
u
n
c
ti
o
n -0.2

0.8

Y

0.5

0

0.6

X

0.2

0.4
0.2

0 0

N = 1024, λmin(E) = 0

Obviously, the “fastest converging” error functions are highly localized and they experience an (almost)
N-independent per-step reduction given by λmin(E). y

Behavior of the Gauss-Seidel iteration error

When applied to LSE arising from the finite element discretization of scalar 2nd-order elliptic bound-
ary value problems on fine meshes (large N, small hM), the Gauss-Seidel iteration

✦ effects a fast reduction of highly-oscillatory error components,
✦ fails to reduce smooth error components significantly.

4.2.1 Subspace Correction Methods

The relationship between variational problems, linear systems of equations, and minimization problems,
hinted at in § 4.1.1.9 suggests an abstract approach to the construction of iterative solution methods for
finite element linear systems of equations with s.p.d. coefficient matrix.

Let us assume that A is spawned by the Galerkin discretization of a linear variational problem

uh ∈ Vh: a(uh, vh) = ℓ(vh) ∀vh ∈ Vh , (4.2.1.1)

using the finite-dimensional trial/test space Vh and its basis {b1
h, . . . , bN

h } ⊂ Vh, N := dim Vh. Thus, we

assume (A)i,j := a(b
j
h, bi

h), 1 ≤ i, j ≤ N.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 356

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

If the bilinear form a(·, ·) is symmetric and positive definite, then (4.2.1.1) is equivalent to the quadratic
minimization problem

uh = argmin
vh∈Vh

J(v) , J(v) := 1
2a(v, v)− ℓ(v) . (4.2.1.2)

The scheme outlined next is a natural iterative approach to solving (4.2.1.2).

Definition 4.2.1.3. (Successive) subspace correction method

Given an additive decomposition (not necessarily direct)

Vh =
M

∑
m=1

Vm , with subspaces Vm ⊂ Vh M ∈ N , (4.2.1.4)

a single step u
(k)
h → u

(k+1)
h of the induced (successive) subspace correction iteration is defined as

u
(k+1)
h := u

(k)
h , u

(k+1)
h ← u

(k+1)
h + argmin

wm∈Vm

J(u
(k+1)
h + wm) , m = 1, . . . , n . (4.2.1.5)

Remember from [NumPDE Section 1.4.1] that the necessary and sufficient optimality conditions for a
quadratic minimization problem with s.p.d. bilinear form amount to a linear variational problem. Thus, any
successive subspace correction method can also be reformulated in terms of linear variational problems
restricted to the subspaces Vm, because

J(uh + wm) =
1
2a(wm, wm)− (ℓ(wm)− a(uh, wm)) + a(uh, uh)− ℓ(uh)

is a quadratic functional in wm ∈ Vm. Hence, by the equivalence of linear variational problems with s.p.d.
bilinear forms and quadratic minimization problems,

vm = argmin
wm∈Vm

J(u
(k+1)
h + wm)

m
vm ∈ Vm: a(vm, wm) = r(uh; wm) := ℓ(wm)− a(uh, wm) ∀wm ∈ Vm ,

with the residual linear form w 7→ r(uh; w) := ℓ(w)− a(uh, w), w ∈ Vh. As a consequence, the sub-
space correction iteration (4.2.1.5) can be recast as

u
(k+1)
h := u

(k)
h ,

{
vm ∈ Vm: a(vm, wm) = r(u

(k+1)
h ; wm) ∀wm ∈ Vm ,

u
(k+1)
h ← u

(k+1)
h + vm ,

m = 1, . . . , M .
(4.2.1.6)

We switch to an algebraic perspective: Assume that we are given a basis {b1
m, . . . , bNm

m } of Vm,
Nm := dim Vm. Then we can express vm from (4.2.1.6) as a linear combination

vm =
Nm

∑
k=1

(ν̃m)kbk
m for some ν̃m ∈ RNm .

The coefficient vector ν̃m ∈ RNm can be computed as the solution of the Nm × Nm linear system of
equations

Amν̃m = ρ̃m(uh) with

(
Am

)
i,j
= a(b

j
m, bi

m) , i, j ∈ {1, . . . , Nm} ,

(ρ̃m(uh))i := r(uh, bi
m) , i ∈ {1, . . . , Nm} .

(4.2.1.7)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 357

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Since Vm ⊂ Vh, the basis functions b
j
m are linear combinations of the basis functions bk

h of Vh:

∃Pm ∈ RN,Nm : bi
m =

N

∑
k=1

(Pm)k,ib
k
h , i ∈ {1, . . . , Nm} , m = 1, . . . , M . (4.2.1.8)

Exploiting the bilinarity of a(·, ·) and the linearity of r(uh, ·), we find

Am = P⊤mAPm , (4.2.1.9)

ρ̃m(uh) = P⊤m(~ϕ−A~µ) , (4.2.1.10)

where ~µ ∈ RN is the coefficient vector of uh ∈ Vh with respect to the basis {b1
h, . . . , bN

h } of Vh. This
implies that the solution of (4.2.1.7) reads

ν̃m =
(

P⊤mAPm

)−1
P⊤m(~ϕ−A~µ(k+1)) ,

with the coefficient vector ~µ(k+1) of u
(k+1)
h . Also ν̃m describes a function in Vm ⊂ Vh and this function is

represented by a coefficient vector~νh ∈ RN, too:

~νm = Pmν̃m = Pm

(
P⊤mAPm

)−1
P⊤m(~ϕ−A~µ(k+1)) . (4.2.1.11)

This gives the final algebraic version of (4.2.1.6):

~µ(k+1) := ~µ(k) ,

~νm := Pm

(
P⊤mAPm

)−1
P⊤m(~ϕ−A~µ(k+1)) ,

~µ(k+1) ← ~µ(k+1) +~νm ,

m = 1, . . . , M .
(4.2.1.12)

The highlighted formula provides the subspace correction in the direction of Vm. Actually, matching
(4.2.1.12) with the general recursion formula

~µ(k+1) = ~µ(k) + M
(
~ϕ−A~µ(k)) with M ∈ RN,N , (4.1.3.13)

for a generic stationary linear iteration (for solving the LSE A~µ = ~ϕ), we see that a single subspace correc-

tion step amounts to carrying out one step of a stationary linear iteration with M := Pm

(
P⊤mAPm

)−1
P⊤m.

The following pseudocode implements a subspace correction iteration for the linear system of equations
A~µ = ~ϕ. The function takes the right-hand side vector ~ϕ ∈ RN and the initial guess ~µ as arguments
and returns the final approximation in ~µ. The codes assumes that the basis transformation matrices Pm,
m = 1, . . . , M, are known. Termination triggered when the relative size of the update of~µ drops below a
specified threshold TOL.

Pseudocode 4.2.1.13: Algebraic (successive) subspace correction method

1 void ssc (const Vector ~ϕ ∈ RN , re f Vector ~µ , rea l TOL) {
2 // Precompute Galerkin matrices in subspaces

3 Compute Am := PmAP⊤m ∈ RNm,Nm , m = 1, . . . , M ;
4 do {
5 ~µold := ~µ ;
6 for (i n t m = 1; m < M; m++) {

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 358

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

7 Compute ~ρm := P⊤m(~ϕ−A~µ) ;
8 Solve Am~γ = ~ρ ; // Nm × Nm LSE

9 ~µ← ~µ +~γ ; // Update in the direction of Vm

10 }
11 }
12 while (‖~µ−~µold‖ > TOL · ‖~µ‖) ; // Termination test

13 }

From (4.2.1.12) it is clear that

(i) the correction in the direction of Vm already defines a stationary linear iteration of the form (4.1.3.13)

with M = Pm

(
P⊤mAPm

)−1
P⊤m,

(ii) the whole subspace correction iteration is the composition of subspace corrections in individual
directions as introduced in § 4.1.3.25.

Hence, from § 4.1.3.25 and, in particular (4.1.3.28), we learn that the whole subspace correction iteration
is a stationary linear iterative method, whose error propagation matrix is

ESSC := I−MsscA = (I− PM

(
P⊤MAPM

)−1
P⊤MA) · · · · · (I− P1

(
P⊤1 AP1

)−1
P⊤1 A) . (4.2.1.14)

§4.2.1.15 (Gauss-Seidel as a subspace correction method) Now we view the Gauss-Seidel stationary
linear iteration for a s.p.d. finite element Galerkin matrix A ∈ RN.,N as defined in Code 4.1.3.3/(4.1.3.7)
from a new angle and identify it as a particular subspace correction method.

To that end, we consider the very special situation

M = N , Nm = 1 , b1
m = bm

h ,

which yields a subspace correction method with one-dimensional subspaces spanned by a single basis
function of Vh each. In this case we have

Pm =~εm =̂ m-th coordinate vector , Am = (A)m,m , m = 1, . . . , N .

This means

~µ← ~µ + PmA−1
m P⊤m(~ϕ−A~µ) ⇐⇒ (~µ)m ← (~µ)m +

1

(A)m,m

(
(
~ϕ
)

m
−

N

∑
j=1

(A)m,j

(
~µ
)

j

)
.

(4.2.1.16)

This perfectly agrees with what is done in the inner loop body of the Gauss-Seidel implementation
Code 4.1.3.3. Carrying out (4.2.1.16) sequentially for m = 1, . . . , N, we recover one step of the Gauss-
Seidel method for the LSE A~µ = ~ϕ! Hence, Gauss-Seidel is a subspace correction iteration based on the
special type of splitting (4.2.1.4)

Vh =
N

∑
m=1

Span{bm
h } . (4.2.1.17)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 359

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Gauss-Seidel for FE LSEs = local subspace correction

Gauss-Seidel for a finite-element linear system of equations realizes a successive subspace cor-
rection in the directions of finite elements basis functions.

Since finite element basis functions invariably have localized supports, it is not suprising that, when applied
on fine meshes, the Gauss-Seidel iteration cannot cope with smooth, that is, long-range error components.

y

4.2.2 Convergence of SSC Methods

§4.2.2.1 (SSC = Method of successive projections) Recall a concept from linear algebra.

Definition 4.2.2.2. Orthogonal projection in finite dimensions

Let V be a finite-dimensional real vector space equipped with an inner product, a symmetric positive

definite bilinear form a : V ×V → R. For a subspace U ⊂ V the mapping Q : V 7→ U defined by

Qv ∈ U: a(Qv, u) = a(v, u) ∀u ∈ U (4.2.2.3)

is an a-orthogonal projection.

Corollary 4.2.2.4. Properties of orthogonal projections

The orthogonal projection Q : V → U from Def. 4.2.2.2

(i) is a linear mapping,

(ii) is idempotent, that is Q ◦Q = Q,

(iii) is a-selfadjoint, a(Qv, w) = a(v,Qw) for all v, w ∈ V,

(iv) and satisfies ‖Qv‖A ≤ ‖v‖A, where ‖·‖A is the (energy) norm induced by a(·, ·).

Proof.

(i) Linearity of Q is an immediate consequence of the linearity of a.

(ii) Q2 = Q follows by inserting v := Qw, w ∈ V, into (4.2.2.3).

(iii) Directly from the definition, since Qv ∈ U:

a(Qv, w) = a(Qv,Qw) = a(v,Qw) ∀v, w ∈ V .

(iv) The contraction property is immediate from

‖Qv‖2
A = a(Qv,Qv)

(4.2.2.3)
= a(v,Qv) ≤ ‖v‖A‖Qv‖A ,

where we use the Cauchy-Schwarz inequality in the last step.

✷

Let us return to the initial linear variational problem

uh ∈ Vh: a(uh, vh) = ℓ(vh) ∀vh ∈ Vh , (4.2.1.1)

and the linear variational problem (4.2.1.6) to be solved to compute the subspace correction vm of

u
(k)
h ∈ Vh in direction Vm ⊂ Vh:

vm ∈ Vm: a(vm, wm) = ℓ(wm)− a(u
(k)
h , wm) ∀wm ∈ Vm . (4.2.2.5)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 360

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Writing u∗h ∈ Vh for the solution of (4.2.1.1), that is, a(u∗h, wh) = ℓ(wh) for all wh ∈ Vh, (4.2.2.5) is equiv-
alent to

vm ∈ Vm: a(vm, wm) = a(u∗h − u
(k)
h , wm) ∀wm ∈ Vm . (4.2.2.6)

Assumption 4.2.2.7. a defines an inner product

The bilinear form a : Vh ×Vh → R is symmetric and positive definite (s.p.d.).

Under this assumption and in light of Def. 4.2.2.2 from (4.2.2.6) we conclude that the correction vm ∈ Vm

is the a-orthogonal projection of the iteration error u∗h − u
(k)
h onto Vm:

vm = Qm(u
∗
h − u

(k)
h) , Qm : Vh → Vm =̂ a-orthogonal projection onto Vm . (4.2.2.8)

The error after the correction is

u∗h −
(

u
(k)
h + vm

)
= (Id−Qm)(u

∗
h − u

(k)
h) . (4.2.2.9)

Error propagation in SSC

Under Ass. 4.2.2.7, subspace correction in the direction of Vm amounts to the a-orthogonal projec-
tion of the iteration error onto the a-orthogonal complement of Vm.

Thus, the error propagation of one step of the SSC method of ?? can be described by the action of the
operator product

ESSC = (Id−QM) ◦ (Id−QM−1) ◦ · · · ◦ (Id−Q2) ◦ (Id−Q1) . (4.2.2.11)

We may call ESSC : Vh → Vh the error propagation operator of the SSC method of Def. 4.2.1.3. The
error propagation matrix ESSC from (4.2.1.14) is its representation with respect to the chosen basis of Vh.

y

Remark 4.2.2.12 (The geometry of SSC) We study SSC in Euclidean space R2 with M = 2:

R2 = V1 + V2 , Vm := Span{vm} , m = 1, 2 , vm ∈ R2 . (4.2.2.13)

The role of the bilinear form a(·, ·) is played by the Euclidean inner product.

Fig. 173

x1

x2

α

α

v1

v2
V⊥1

V⊥2

✁ • =̂ initial error e(0)

In turns, the error vector is projected onto
V⊥1 = Span{v1}⊥ and V⊥2 = Span{v2}⊥.

∥∥∥e(k+1)
∥∥∥

2
= cos2 α ·

∥∥∥e(k)
∥∥∥

2
, (4.2.2.14)

where α ∈ [0, π/2] is the angle enclosed by the sub-
spaces V1 and V2.

The larger the angle ∡(V1, V2) the faster the
convergence of iterated SSC.

y

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 361

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Remark 4.2.2.15 (SSC with M = 2: Method of alternating projections) Ass. 4.2.2.7 still applies. We
consider the SSC iteration for M = 2 in the special setting

Vh = V1 + V2 , V1 ∩V2 = {0} , (4.2.2.16)

which means that Vh is the direct sum of V1 and V2. The angle between V1 and V2, ∡(V1, V2) ∈ [0, π/2],
is defined as

δ := cos∡(V1, V2) = sup

{ |a(v1, v2)|
‖v1‖A‖v2‖A

: v1 ∈ V1 \ {0}, v2 ∈ V2 \ {0}
}

. (4.2.2.17)

We denote by Zi := Id−Qi, i = 1, 2, the a-orthogonal projection onto the orthogonal complement V⊥i .
Then, appealing to (4.2.1.14),

‖ESSC‖2
A = ‖Z2Z2‖2

A = sup
{
‖Z2Z1v‖2

A : ‖v‖A = 1
}
= sup{a(Z2Z1v,Z2Z1v) : ‖v‖A = 1}

= sup
{
a(Z1v,Z2

2Z1v) : ‖v‖A = 1
}

≤ δ sup{‖Z1v‖A‖Z2Z1v‖A : ‖v‖A = 1} ≤ δ‖ESSC‖A .

(4.2.2.18)

We used that orthogonal projections are selfadjoint, idempotent, contracting, together with (4.2.2.17).

Thus, also in this case the angle enclosed by V1 and V2 directly determines the rate of linear convergence
(w.r.t. the energy norm). y

§4.2.2.19 (SSC with orthogonal subspaces) Obviously, in the setting of Rem. 4.2.2.12, if V1 and V2 are
orthogonal, then the exact solution is recovered after only one step of SSC. This reflects a general fact
that we want to state and prove now.

Theorem 4.2.2.20. SSC with orthogonal subspaces

In the context of the SSC method of Def. 4.2.1.3, if the spaces Vm ⊂ Vh are mutually a-orthogonal,

then the iteration produces the exact solution of (4.2.1.1) after only one step.

The theorem is a consequence of the following auxiliary result.

Lemma 4.2.2.21. Orthogonal projections onto orthogonal subspaces

Let V be equipped with an inner product a : V ×V → R, and let Q1 : V → V1 and Q2 : V → V2

be two a-orthogonal projections onto subspaces V1 and V2, respectively.

If V1 and V2 are a-orthogonal in the sense that

a(v1, v2) = 0 ∀v1 ∈ V1, v2 ∈ V2 ,

then

(i) the composition of Q1 and Q2 vanishes, Q1 ◦Q2 = O, and

(ii) Q1 +Q2 is the a-orthogonal projection onto V1 + V2

Proof.

(i) By the very definition of an orthogonal projection T := Q1 ◦Q2 is defined by

Tv ∈ V1: a(Tv, v1) = a(Q2v, v1) ∀v1 ∈ V1 .

By orthogonality, since Q2v ∈ V2, the right-hand side vanishes for all v1 ∈ V2, which implies
Tv = 0.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 362

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

(ii) It is clear that (Q1 +Q2)v ∈ V1 + V2 for any v ∈ V. Besides,

a((Q1 +Q2)v, v1) = a(Q1v, v1) + a(Q2v, v1)︸ ︷︷ ︸
=0 by orthogonality

= a(v, v1) ∀v1 ∈ V1 ,

a((Q1 +Q2)v, v2) = a(Q2v, v2) + a(Q1v, v2)︸ ︷︷ ︸
=0 by orthogonality

= a(v, v2) ∀v2 ∈ V2 ,

which means

a((Q1 +Q2)v, v1 + v2) = a(v, v1 + v2) ∀v1 ∈ V1, v2 ∈ V2 .

Compare this with Def. 4.2.2.2.

✷

Proof. (of Thm. 4.2.2.20) Apply Lemma 4.2.2.21 repeatedly to the product formula

ESSC = (Id−QM) ◦ (Id−QM−1) ◦ · · · ◦ (Id−Q2) ◦ (Id−Q1) (4.2.2.11)

for the error propagation operator ESSC.

ESSC = Id−
M

∑
m=1

Qm = Id− Id = 0 ,

owing to Lemma 4.2.2.21, Item (ii). A vanishing error propagation operator implies that already after one
step of the iteration the exact solution has been reached.

✷

y

Remark 4.2.2.22 (Abstract convergence theory for SSC) Again, we rely on Ass. 4.2.2.7 and study
convergence of SSC according to Def. 4.2.1.3 in the energy norm ‖·‖A induced by a(·, ·). The difficulty
is to find the appropriate generalization of the angle between two subspaces in the case M > 2. This
“appropriate generalization” is expressed through the assumptions of the main convergence theorem for
SSC.

Theorem 4.2.2.23. Main convergence theorem for SSC

In the setting of Def. 4.2.1.3 and using Ass. 4.2.2.7, if the subspace splitting Vh = ∑
M
m=1 vm satisfies

• the stability estimate

∃c0 > 0: inf

{
M

∑
m=1

‖vm‖2
A : vm ∈ Vm,

M

∑
ℓ=1

vℓ = v

}
≤ c0‖v‖2

A ∀v ∈ Vh , (4.2.2.24)

• and the strengthened Cauchy-Schwarz inequalities,

∃δi,j = δj,i ∈ [0, 1]: |a(vi, vj)| ≤ δi,j‖vi‖A

∥∥vj

∥∥
A
∀vi ∈ Vi, vj ∈ Vj , , (4.2.2.25)

for all i, j ∈ {1, . . . , M}, then

‖ESSC‖A ≤
√

1− 1

c0λmax(D)2
, D :=

[
δi,j

]M

i,j=1
∈ RM,M . (4.2.2.26)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 363

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The proof of this main theorem requires some preparation. We introduce the auxiliary operator

T :=
M

∑
m=1

Qm : Vh → Vh , Qm : Vh → Vm =̂ a-orthogonal projection onto Vm . (4.2.2.27)

Lemma 4.2.2.28. Lower bound for T

Assuming (4.2.2.24) the operator T is “bounded from below”:

‖v‖2
A ≤ c0a(Tv, v) ∀v ∈ Vh .

Proof. An elementary but central tool is the Cauchy-Schwarz inequality in RM:

∣∣∣∣∣
M

∑
m=1

αmβm

∣∣∣∣∣ ≤
(

M

∑
m=1

|αm|2
) 1

2

· ≤
(

M

∑
m=1

|βm|2
) 1

2

∀αi, βi ∈ C . (4.2.2.29)

Pick v ∈ Vh and assume that the decomposition vh = ∑
M
m=1 vm, vm ∈ Vm, realizes the stability estimate

(4.2.2.24).

‖v‖2
A =

M

∑
m=1

a(vm, v) =
M

∑
m=1

a(Qmvm, v) =
M

∑
m=1

a(vm,Qmv)

≤
(

M

∑
m=1

‖vm‖2
A

) 1
2

·
(

M

∑
m=1

‖Qmv‖2
A

) 1
2

≤ c
1
2
0 ‖v‖A ·

(
M

∑
m=1

a(Qmv, v)

) 1
2

≤ c
1
2
0 ‖v‖A · (a(Tv, v))

1
2 ,

which, after canceling ‖v‖A, amounts to the assertion of the lemma.
✷

Note that Lemma 4.2.2.28 implies that T is injective with closed range. As T is also selfadjoint, we can
conclude that T is surjective.

Lemma 4.2.2.30. Upper bound for T

If (4.2.2.24) and (4.2.2.25) hold true, the operator T from (4.2.2.27) is “bounded from above”:

a(Tv, v) ≤ λmax(D)2c0‖v‖2
A ∀v ∈ Vh .

Proof. Since the matrix D is symmetric, we have ‖D‖2 = λmax(D), which implies

x⊤Dy ≤ λmax(D)‖x‖2‖y‖2 ∀x, y ∈ RM . (4.2.2.31)

Again, fix v ∈ Vh and choose a splitting v = ∑
M
m=1 vm that realizes (4.2.2.24).

a(Tv, v) =
M

∑
j=1

a(Qjv, v) =
M

∑
m=1

M

∑
j=1

a(Qjv, vm) =
(4.2.2.25)
≤

M

∑
m=1

M

∑
j=1

δm,j

∥∥Qjv
∥∥

A
‖vm‖A

(4.2.2.31)
≤ λmax(D)

(
M

∑
j=1

∥∥Qjv
∥∥2

A

) 1
2

·
(

M

∑
m=1

‖vm‖2
A

) 1
2

≤ λmax(D) · a(Tv, v)
1
2 · c

1
2
0 ‖v‖A .

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 364

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Cancel a(Tv, v)
1
2 and square the resulting inequality.

✷

Proof. (of Thm. 4.2.2.23) We define the operators

Ei := (Id−Qi) ◦ · · · ◦ (Id−Q1) , i = 1, . . . , M , E0 := Id . (4.2.2.32)

Note that EM = ESSC, which means that we have to find a bound for ‖EM‖A. From the very definition
(4.2.2.32) of the Eis we infer

Ei = (Id−Qi)Ei−1 ⇐⇒ Ei−1 − Ei = QiEi−1 Ei = Id−
i

∑
j=0

QjEj−1 , (4.2.2.33)

by a telescopic sum. Another telescopic sum yields for any v ∈ Vh

‖EMv‖2
A − ‖v‖2

A = −
M

∑
j=0

a(QjEj−1,Ej−1) , (4.2.2.34)

because ‖Eiv‖2
A = a((Id−Qi)Ei−1v,Ei−1) = ‖Ei−1v‖2

A − a(QiEi−1v,Ei−1v) .

Expressing Id by means of (4.2.2.33) gives us

a(Qiv, v) = a(Qiv,Ei−1v +
i−1

∑
j=0

QjEj−1v) =
i

∑
j=0

a(Qiv,QjEj−1v) . (4.2.2.35)

We sum up these identities for i = 0, . . . , M and then invoke the the strengthened Cauchy-Schwarz in-
equality (4.2.2.25):

a(Tv, v) =
M

∑
i=0

a(Qiv, v) =
M

∑
i=0

i

∑
j=0

a(Qiv,QjEj−1v) ≤
M

∑
i=0

i

∑
j=0

δi,j‖Qiv‖A

∥∥QjEj−1v
∥∥

A

≤ λmax(D) · a(Tv, v)
1
2

(
M

∑
j=0

a(QjEj−1v,Ej−1v)

) 1
2

a(Tv, v) ≤ λmax(D)2 ·
M

∑
j=0

a(QjEj−1v,Ej−1v) . (4.2.2.36)

As if by magic, the term from (??) has popped up! Thus, (4.2.2.36) implies

a(Tv, v) ≤ λmax(D)2 ·
(
‖v‖2

A − ‖EMv‖2
A

)
⇒ ‖EMv‖2

A ≤ ‖v‖2
A − λmax(D)−2a(Tv, v) .

In the last step we resort to the estimate ‖v‖2
A ≤ c0a(Tv, v) of Lemma 4.2.2.28 and get

‖EMv‖2
A ≤

(
1− 1

c0λmax(D)2

)
‖v‖2

A ,

which is the assertion of the theorem.

✷

y

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 365

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

4.2.3 Coarse-Grid Correction (CGC)

Now we discuss a remedy for the failure of the Gauss-Seidel iteration from Code 4.1.3.3 to reduce
smooth/long-range error components effectively. This remedy is suggested by the subspace correction
interpretation of the Gauss-Seidel method elaborated in § 4.2.1.15.

Idea: Augment the subspace splitting Vh = ∑
N
m=1 Span{bm

h } defining the Gauss-Seidel
iteration by another subspace VH ⊂ Vh capable of representing smooth functions
with global support.

Of course, the dimension of this extra subspace must not be too large, in order to keep the cost of com-
puting the subspace correction affordable.

Idea: Choose VH as finite element space on a coarse meshMH of the computational
domain Ω with significantly fewer cells thanM, e.g., VH := S0

1,0(MH).

! For unrelatedM,MH the requirement VH ⊂ Vh will not be met in general.

Fortunately, [NumPDE § 3.1.4.2] discusses a special situation, in which VH ⊂ Vh is guaranteed for La-
grangian finite elements: the case of nested meshes.

Definition 4.2.3.1. Nested finite element meshes

Two finite element meshes Mh, MH (→ [NumPDE Def. 2.5.1.1]) of a computational domain
Ω ⊂ Rd are nested,MH ≺Mh, if every (closed) cell ofMH is the union of closed cells ofMh.

Lemma 4.2.3.2. Nesting of meshes implies nesting of finite element spaces

In the case of nested meshesMH ≺Mh we have S0
1,0(MH) ⊂ S0

1,0(Mh).

Proof. The assertion is immediate from the definition [NumPDE Def. 2.6.1.1] of the Lagrangian finite
element space S0

1 (M): thanks to the nesting propertyMH ≺Mh every function in S0
1,0(MH) is affine

linear on every cell ofMh. Continuity and boundary conditions are immediate.
✷

On pairs of nested meshes we can thus defined an enhanced Gauss-Seidel method supplemented with a
so-called coarse grid correction. The resulting subspace correction method is known as two-grid iteration.

Two-grid iteration

The two-grid method based on nested meshesMH ≺Mh carrying nested finite element spaces
VH ⊂ Vh is the successive subspace correction method according to Def. 4.2.1.3 using the sub-
space decomposition

Vh =
N

∑
j=1

Span{bj
h}+VH , (4.2.3.4)

where {b1
h, . . . , bN

h }, N := dim Vh, is the nodal basis of Vh.

In finite element applications nested meshes are usually generated by means of local or global refinement.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 366

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 174

K

T1
T2

T3

T4

We focus on the global regular refinement
of 2D triangular meshes as achieved by
splitting every triangle into four smaller
ones, see figure beside.

✁ Regular refinement of triangle K into
four congruent triangles T1, T2, T3, T4

Two nested triangular mesh created by uniform reg-
ular refinement ✄

—: edges of coarse meshMH

—: new edges of fine meshMh

�: interior nodes of coarse meshMH

•: new interior nodes of fine meshMh

• dimS0
1,0(MH) = 3,

• dimS0
1,0(Mh) = 17,

Fig. 175

For two given nested triangular meshes MH ≺Mh with associated linear Lagrangian finite element
spaces Vh := S0

1,0(Mh) and VH := S0
1,0(MH) we now explain the computation of the so-called prolon-

gation matrix PH ∈ RN,NH , N := dim Vh, NH := dim VH with respect to the nodal bases {b1
h, . . . , bN

h }
and {b1

H, . . . , bNH
H } of Vh and VH, respectively. Remember that PH is a basis transformation matrix and,

thus, the entries of PH are defined by the relationship

bi
H =

N

∑
j=1

(
PH

)
j,i

b
j
h , i = 1, . . . , NH . (4.2.3.5)

We number the interior nodes/vertices of meshes:

• {x1
h, . . . , xN

h } =̂ interior nodes of the fine meshMh,

• {x1
H, . . . , xNH

H } =̂ interior nodes of the coarse meshMH.

Since the nodal basis functions are are one-on-one associated with interior nodes, we assume that the
numbering of both matches. Therefore,

bi
h(x

j
h) = δi,j , i, j ∈ {1, . . . , N} , bi

H(x
j
H) = δi,j i, j ∈ {1, . . . , NH} . (4.2.3.6)

From this cardinal basis property we conclude for the prolongation matrix

(
PH

)
j,i
= bi

H(x
j
h) , 1 ≤ i ≤ NH, 1 ≤ j ≤ N . (4.2.3.7)

Notice that the new nodes ofMh, those that do not coincide with nodes ofMH are midpoints of edges
ofMH,see Fig. 175. The function bi

H is linear on all edges of the coarse mesh and attains the value 1
2 at

all midpoints of edges adjacent to xi
H. From this observation and (4.2.3.6) we infer

(PH)i,j =

1 , if xi
h = x

j
H ,

1
2 , if xi

his midpoint of an edge ofMH adjacent to x
j
H ,

0 , otherwise,

,
1 ≤ i ≤ N ,
1 ≤ j ≤ NH .

(4.2.3.8)

EXAMPLE 4.2.3.9 (A concrete basis transformation matrix)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 367

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 176

1

2
3

4

5
6

7 8 9

10

1112

13
14

15

16
17

We examine the two nested meshes MH ≺Mh

sketched beside, see also Fig. 175.

The interior nodes of both meshes are numbered as
indicated, with the coinciding nodes numbered first
on the fine mesh.

We use piecewise linear Lagrangian finite el-
ements on both meshes: Vh := S0

1,0(Mh),

VH := S0
1,0(MH).

According to the rule (4.2.3.8), we have

P⊤H =

1 0 0 1
2

1
2

1
2 0 1

2
1
2 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1
2

1
2 0 1

2 0 1
2 0 0 0 0 1

2
0 0 1 0 0 0 0 0 1

2
1
2

1
2 0 1

2 0 1
2

1
2 0

 ∈ R3,17 . (4.2.3.10)

y

Evidently, the prolongation matrix PH is a sparse matrix, with important consequences:

Applying the basis transformation matrix

The asymptotic cost of multiplying a vector with PH or P⊤H is O(N) for N → ∞.

Assuming that the basis transform matrix PH is available, the two-grid iteration for solving the linear system
of equations A~µ = ~ϕ can be implemented as follows on the algebraic level:

Pseudocode 4.2.3.12: Two-grid iteration algorithm

1 void two_grid_i terat ion (const Matrix A ∈ RN,N , const Vector ~ϕ ∈ RN ,
2 re f Vector ~µ , double TOL) {
3 AH := P⊤HAPH ; // build Galerkin matrix on MH

4 do {
5 ~µold := ~µ ;
6 for (i =1 ; i <N ; i ++) { // Inner Gauss-Seidel loop

7 (~µ)i =
1

(A)i,i

(
(~ϕ)i −

N

∑
j=1
j 6=i

(A)i,j(~µ)j

)
;

8 } //

9 ~ρh := ~ϕ−A~µ ; // Residual vector ∈ RN

10 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNH by restriction

11 Solve AH~νH = ~ρH ; // Correction in VH

12 ~µ← ~µ + PH~νH ; // Prolongation and update of approximate solution

13 }
14 while (‖~µ−~µold‖ > TOL · ‖~µ‖) ; // Termination test

15 }

Here, the argument~µ both passes the initial guess and serves as variable to return the final approximate
solution. As has already been mentioned, the operations in lines 9–8 of Code 4.2.3.12 are usually called
coarse-grid correction. The Gauss-Seidel loop comprising lines 6–8 is often dubbed the smoothener.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 368

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

What is implemented in Code 4.2.3.12 is pre-smoothening, because the smoothener comes before the
coarse-grid correction. Of course, the coarse-grid correction and the smoothener can also be swapped
and this will result in post-smoothening.

A simple inspection of the algorithm reveals its computational cost:

Cost of two-grid method

Apart from solving the linear system AH~νH = ~ρH the asymptotic computational cost of the two-grid
method from Code 4.2.3.12 is O(N) provided that A is a sparse finite element matrix.

Moreover, the two grid method is the composition in the sense of § 4.1.3.25 of the Gauss-Seidel iteration
and a subspace correction in the direction of VH. Hence, from (4.1.3.28) and (4.1.3.7) we draw the
following conclusions:

Corollary 4.2.3.14. Two-grid method as stationary linear iteration

The two-grid method from Code 4.2.3.12 is a stationary linear iteration with error propagation matrix

ETGM = (I− PHA−1
H P⊤A)(I− tril(A)−1A) . (4.2.3.15)

EXPERIMENT 4.2.3.16 (Two-grid method for the Poisson matrix)

Fig. 177

2 3 4 5 6 7 8 9 10
ℓ

0.25

0.30

0.35

0.40

0.45

0.50

λ m
ax
(E

TG
M
)

Apply the two-grid method to the Poisson matrix
A ∈ RN,N, N = (n− 1)2, from (4.1.1.23).

We investigate the matrix sizes N := (n− 1)2,
n = 2ℓ, ℓ = 2, . . . , 10, and compute a guess for the
rate of linear convergence by means of the power it-
eration with TOL=10−3.

In sharp contrast to the behavior of the Gauss-Seidel and CG iterations, the convergence
of the two-grid method does not deteriorate on fine meshes; it is h-uniform.

y

4.2.4 Multigrid Iteration

? The coarse grid linear system AH~νH = ~ρH may still be too big for direct elimination solvers.

Idea: (Recursion) If alsoMH arises from refining an even coarser mesh, iteratively
solve AH~νH = ~ρH approximately by another two-grid iteration.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 369

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Assumption 4.2.4.1. Mesh hierarchy

We assume that a hierarchy of nested meshes

M0 ≺M1 ≺ · · · ≺ ML , L ∈ N ,

is available.

The subscript ℓ ofMℓ is called the level of a mesh.

This gives us a sequence of nested finite element spaces

V0 ⊂ Vℓ ⊂ · · · ⊂ Vh := VL , e.g., Vl := S0
1,0(Mℓ) . (4.2.4.2)

All these spaces are equipped with (nodal) finite element bases:

Vl = Span{b1
ℓ , . . . , b

Nℓ
ℓ } , Nℓ := dim Vℓ . (4.2.4.3)

This fixes the finite element Galerkin matrices Aℓ ∈ RNℓ.Nℓ for all levels ℓ = 0, . . . , L. We can also com-
pute the prolongation matrices Pℓ−1,ℓ ∈ RNℓ,Nℓ−1 through, cf. (4.2.3.5)

bi
ℓ−1 =

Nℓ

∑
j=1

(Pℓ−1,ℓ)j,ib
j
ℓ . (4.2.4.4)

At this point we have all ingredients ready for the (geometric) multigrid iteration, whose recursive imple-
mentation is given next:

Pseudocode 4.2.4.5: Multigrid iteration: recursive algorithm (adaptive cycle)

1 void mul t i_gr id_ i tera t ion (const Vector ~ϕ ∈ RNℓ , r e f Vector ~µ ,
2 i n t ℓ , double TOL , i n t max_n_steps) {
3 i f (ℓ == 0) { D i r e c t l y solve A0~µ = ~ϕ ; }
4 else {
5 for (nsteps = 0; nsteps < max_n_steps ; nsteps ++) {
6 ~µold := ~µ ;
7 ~µ← ~µ + tril(Aℓ)

−1(~ϕ−Aℓ~µ) ; // Gauss-Seidel step, pre-smoothening

8 ~ρh := ~ϕ−Aℓ~µ ; // Residual vector ∈ RNℓ

9 ~ρH := P⊤ℓ−1,ℓ~ρh ; // Residual vector ∈ RNℓ−1

10 ~νH := 0 ; // Natural initial guess for correction

11 mult i_gr id_ i tera t ion (~ρH , ~νH , ℓ−1 , 0.0 , 1) ; // Recursion

12 ~µ← ~µ + Pℓ−1,ℓ~νH ; // Update approximate solution

13 i f (‖~µ−~µold‖A ≤ TOL · ‖~µ‖A) break ; // Termination test

14 }
15 e r r o r ("No convergence") ;
16 }
17 }

The algorithm assumes that all Galerkin matrices Aℓ ∈ RNℓ,Nℓ on all levels ℓ = 1, . . . , L, have been
precomputed. Again, the code in lines 8–12 represents the coarse-grid correction and Line 7 is a compact
way to express Gauss-Seidel pre-smoothening. The corresponding variant with post-smoothening should
be clear.

In practice, one prefers to apply both pre- and post-smoothening together and in a symmetric fashion. In
Code 4.2.4.5 this can be realized by inserting the backward Gauss-Seidel smoothening step

~µ← ~µ + triu(A)−1(~ϕ−A~µ) ,

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 370

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

after Line 12. Here triu designates the upper triangular part of the matrix A.

Remark 4.2.4.6 (Multigrid cycles)

Note that only that in Code 4.2.4.5 coarse grid cor-
rection make s use of only a single multigrid iteration.
This is called a multigrid V-cycle.

The name is due to a popular visualization of the con-
trol flow in the form of a ’V’, descending down to the
coarsest mesh and aascending on the way back. ✄

In the figure • stands for an application of a pre-/post-
smoother, � designates the use of a direct solver.

Fig. 178

Level L

Level L− 2

Level L− 2

Level 0

In the ’1’ in Line 11 of Code 4.2.4.5 is replaced with a ’2’, the resulting scheme is known as multigrid

W-cycle. y

§4.2.4.7 (Cost of multigrid iteration) Let us supplement Ass. 4.2.4.1 with the additional requirement that
the number of cells on coarser meshes decreases geometrically

♯Mℓ−1 = q♯Mℓ for 0 < q < 1 , ℓ = 1, . . . , L . (4.2.4.8)

This is the case, e.g., if the sequence of nested meshes M0 ≺M1 ≺ · · · ≺ ML is generated by re-
peated global regular refinement, recall Section 4.2.3. In 2D in this case we obtain q = 1

4 . A consequence
of (4.2.4.8) is that

Nℓ := dimS0
1,0(Mℓ) ≈ q−ℓN0 , ℓ = 1, . . . , L . (4.2.4.9)

As we have already noted, apart from Line 11 the cost of a function call in Code 4.2.4.5 is
≈ Nℓ. Summing the geometric series, we conclude that the total cost for all recursive calls
of multi_grid_iteration() is O(NL)!

Remark 4.2.4.10 (Multigrid iteration as successive subspace correction method) It was a major dis-
covery that the complete multigrid iteration as implemented in Code 4.2.4.5 is a genuine successive sub-
space correction method according to Def. 4.2.1.3, see [TOS00, Appendix B].

Theorem 4.2.4.11. Multigrid = multi-level subspace correction [Xu92]

The multigrid iteration from Code 4.2.4.5 with max_n_steps= 1 is a successive subspace cor-

rection method based on the space decomposition

Vh = V0 +
L

∑
ℓ=1

Nℓ

∑
j=1

Span{bj
ℓ} . (4.2.4.12)

This interpretation of the geometric multigrid method made it possible to establish h-uniform convergence
for finite element linear systems.

Theorem 4.2.4.13. Convergence of geometric multigrid [BY93]

Consider the Galerkin discretization of (4.1.1.8) by means of linear Lagrangian finite elements. Let

the multigrid iteration from Code 4.2.4.5 with max_n_steps= 1 be based on a uniformly shape-

regular and quasi-uniform family of nested triangular meshes. Then the energy operator norm

of the error propagation operator of the multigrid iteration is bounded by a constant 0 < ρ < 1
that depends only on the shape-regularity and quasi-uniformity of the meshes and the coefficient

functions A and γ.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 371

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In particular, geometric multigrid enjoys a rate of linear convergence, which does not depend on the
number L of levels involved. y

§4.2.4.14 (Nested iteration (NI)) One crucial issue remains: How do we choose the initial guess?

Idea: (Recursion) Use “low-accuracy” solution obtained by multigrid iteration on next
coarser level as initial guess.

This policy is known as nested iteration and a recursive implementation is given next. Again, the Galerkin
matrices Aℓ ∈ RNℓ,Nℓ are supposed to be available.

Pseudocode 4.2.4.15: Nested multigrid iteration: recursive algorithm

1 RNℓ−vector mg_solve (const ~ϕ ∈ RNℓ , i n t ℓ , double TOL , i n t max_n_steps) {
2 i f (ℓ == 0) { D i r e c t l y solve A0~µ = ~ϕ ; }
3 else {
4 ~ϕH := P⊤ℓ−1,ℓ~ϕ ;

5 ~µH := mg_solve (~ϕH , ℓ− 1 , ρ · TOL , max_n_steps) ;
6 ~µh := Pℓ−1,ℓ~µH ; // Transfer solution to the next level

7 mult i_gr id_ i tera t ion (~ϕ , ~µ , ℓ , TOL , max_n_steps) ; // Code Code 4.2.4.5

8 }
9 return (~µ) ;

10 }

Here the factor ρ > 1 takes into account that on coarser meshes we expect a larger discretization error,
which justifies relaxed accuracy requirements there. The concrete choice of ρ can be guided by asymptotic
a-priori error estimates for finite element Galerkin solutions: If we expect an asymptotic convergence like
O(hα

M) for some α > 0 in a norm of interest, and assume regular global refinement, then choosing ρ = 2α

is the proper value. y

§4.2.4.16 (Nested iteration with fixed number of iterations) We consider the S0
1 (M)-finite ele-

ment Galerkin discretization of a 2nd-order elliptic boundary value problem on Ω ⊂ R2, cf. the
model problems discussed in Section 4.1.1. A hierarchy of nested meshes finite-element meshes
M0 ≺M1 ≺ · · · ≺ ML, L ∈ N, created by uniform regular refinement [NumPDE Ex. 3.1.4.3], Fig. 174,
is supposed to be available. In particular, for the meshwidths hℓ of these meshes holds

hℓ =
1
2 hℓ−1 , ℓ = 1, . . . , L . (4.2.4.17)

We write

• u ∈ H1(Ω) for the exact (weak) solution,

• uℓ ∈ S0
1 (Mℓ) for the finite-element Galerkin solution onMℓ.

We assume that u ∈ H2(Ω), so that [NumPDE Thm. 3.3.5.6] plus the quasi-optimality of Galerkin solu-
tions in energy norm [NumPDE Thm. 3.1.3.7] implies the a priori finite-element error estimate (hℓ =̂ mesh
width ofMℓ)

∃C > 0: ‖u− uℓ‖a ≤ Chℓ‖u‖H2(Ω) ∀ℓ ∈ {0, . . . , L} , (4.2.4.18)

where ·a is the energy norm induced by the bilinear form of the variational problem [NumPDE Sec-
tion 3.1.1]. If C is chosen as small as possible, the estimates (4.2.4.18) will be rather sharp.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 372

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Assumption 4.2.4.19. ℓ-uniform linear convergence of multigrid V-cycle

The multigrid V-cycle for solving Aℓ~µℓ = ~ϕℓ, implemented in multi_grid_iteration() in
Code 4.2.4.5, converges linearly in energy norm with rate ρ < 1 for all ℓ.

Consequently, the function call

mul t i_gr id_ i tera t ion (~ϕℓ , ~µ
(0)
ℓ , ℓ , 0 .0 , 1)

will overwrite~µ
(0)
ℓ ∈ RNℓ with a vector~µ

(1)
ℓ ∈ RNℓ satisfying

∥∥∥u
(1)
ℓ − uℓ

∥∥∥
a
=
∥∥∥~µ(1)

ℓ −~µℓ

∥∥∥
Aℓ

≤ ρ
∥∥∥~µ(0)

ℓ −~µℓ

∥∥∥
Aℓ

=
∥∥∥u

(0)
ℓ − uℓ

∥∥∥
a

. (4.2.4.20)

Here, the basis expansion coefficient vectors~µℓ,~µ
(0)
ℓ ,~µ

(1)
ℓ belong to the functions uℓ, u

(0)
ℓ , u

(1)
ℓ ∈ S0

1 (M).
In light of this correspondence, a “function-centered” perspective is adopted below.

We employ multi_grid_iteration()-based nested iteration with a fixed number m of multigrid
V-cycles as iterative solvers on each level.

Pseudocode 4.2.4.21: Fixed-steps nested multigrid iteration

1 RNL −vec to r nested_mg_fixed (i n t m) {
2 Solve A0~µ0 = ~ϕ0 ;
3 for (i n t l = 1 ; l <= L ; ++ l) {
4 ~µℓ := Pℓ−1,ℓ~µℓ−1 ; // Transfer solution to the next level

5 for (i n t k = 0 ; k < m; ++k) {
6 m u l t i _ g r i d _ i t e r a t i o n (~ϕℓ , ~µℓ , ℓ , 0 .0 , 1) ; // Multigrid V-cycle SLI

7 }
8 }
9 return (~µL) ;

10 }

(The S0
1 (Mℓ) Galerkin matrices Aℓ, right-hand side vectors ~ϕℓ, and prolongation matrices Pℓ−1,ℓ are

assumed to be available.)

We choose

m := ⌈− log 4

log ρ
⌉ ⇐⇒ ρm ≤ 1

4 . (4.2.4.22)

From (4.2.4.18) we conclude

‖u0 − u‖a ≤ Ch0‖u‖H2(Ω) . (4.2.4.23)

Since u0 is the initial guess u
(0)
1 on level 1, by the triangle inequality

∥∥∥u
(m)
1 − u1

∥∥∥
a
≤ 1

4

∥∥∥u
(0)
1 − u1

∥∥∥
a
≤ 1

4(‖u0 − u‖a + ‖u1 − u‖a)

(4.2.4.18)
≤ 1

4(Ch0 + Ch1)‖u‖H2(Ω) ≤ 3
4Ch1‖u‖H2(Ω) .

(4.2.4.24)

Induction in ℓ based on (4.2.4.24) with 1→ ℓ, 0→ ℓ− 1, leads to the estimate
∥∥∥u

(m)
ℓ − uℓ

∥∥∥
a
≤ 1

4

∥∥∥u
(0)
ℓ − uℓ

∥∥∥
a
≤ 1

4(‖uℓ−1 − u‖a + ‖uℓ − u‖a)

(4.2.4.18)
≤ 1

4(Chℓ−1 + Chℓ)‖u‖H2(Ω) ≤ Chℓ‖u‖H2(Ω) ,

ℓ = 1, . . . , L . (4.2.4.25)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 373

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Under Ass. 4.2.4.19 and chosing m according to (4.2.4.22), fixed-step nested multigrid iteration
achieves an iteration/solver error smaller than the discretization error (in energy norm)

∥∥∥u
(m)
L − uL

∥∥∥
a
. ‖uL − u‖a .

This leaves nothing wanting, because any further reduction of the iteration/solver error would not gain
anything in terms of overall accuracy.

Since the dimensions of the finite element spaces S0
1 (Mℓ) decrease exponentially as ℓ decreases and the

cost of multi_grid_iteration() on level ℓ is proportional to Nℓ := dimS0
1 (Mℓ) (→ § 4.2.4.7), a

geometric sum argument shows that

cost(nested_mg_fixed()) = O(NL) , NL := dimS0
1 (ML) , for L→ ∞ . (4.2.4.26)

y

4.2.5 Multigrid Preconditioning

§4.2.5.1 (Preconditioned conjugate gradient method (PCG)) In § 4.1.4.13 we saw that the comjugate
gradient (CG) iterative solvers is haunted by a similar degradation of performance for large finite element
linear systems A~µ = ~ϕ, A ∈ RN,N s.p.d., as the Gauss-Seidel method. Fortunately, there is a powerful
technique for accelerating the convergence of CG known as preconditioning, cf. [NumCSE Section 10.3].
It relies on the availability of a linear operator RN → RN, henceforth incarnated by an s.p.d. matrix
B ∈ RN,N. The resulting algorithm for the preconditioned conjugate gradient method (PCG) is given next.

Pseudocode 4.2.5.2: PCG method

1 void pcg (A ∈ RN,N , ~ϕ ∈ RN , re f ~µ ,
2 B ∈ RN,N , double TOL) {
3 ~ρ := ~ϕ−A~µ ; // Residual vector

4 π := B~ρ ; ~η := ~π ; τ0 = ~π⊤~ρ ;
5 for (j =1; j < maxi t ; ++ j) {

6 β := ~ρ⊤~η ;
7 ~γ := A~η ;

8 α := β

~π⊤~γ
;

9 ~µ← ~µ + α~π ; // update solution

10 ~ρ← ~ρ− α~γ ; // update residual

11 ~η← B~ρ ; // Apply preconditioner

12 β← ~ρ⊤~η
β ;

13 i f (|~η⊤~ρ| < TOL·τ0) break ;
14 ~π ←~η+ β~π ;
15 }
16 }

✁ Preconditioned conjugate gradient
method for solving A~µ = ~ϕ with
preconditioner B.

(~µ passes the initial guess and also re-
turns the result.)

Computational effort per step:
• One A× vector operation
• One A× vector operation
• 3 dot products
• 3 AXPY operations

PCG requires only the application of
the linear operators described by A
and B to a vector.

Cost of PCG step

If A and B are sparse matrices with “O(N) number of non-zero entries”, then the computational
cost per PCG step is O(N) for N → ∞.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 374

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The assertion of Thm. 4.1.4.11 remains valid for PCG, provided that κ(A) is replaced with κ(BA):

Theorem 4.2.5.4. Convergence of the PCG method [NumCSE Thm. 10.2.3.5]

The iterates of the PCG method with preconditioner B ∈ RN,N for solving A~µ = ~ϕ (see

Code 4.2.5.2) with A = A⊤, B = B⊤ ∈ RN,N s.p.d. satisfy

∥∥∥~µ∗ −~µ(l)
∥∥∥

A
≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)l∥∥∥~µ∗ −~µ(0)
∥∥∥

A
, l ∈ N ,

where A~µ∗ = ~ϕ.

Summing up, a good preconditioner B must satisfy that

(I) B is symmetric and positive definite,

(II) the cost of B×vector is proportional to N, and

(III) the spectral condition number κ(BA) is small independently of N.

y

How to build preconditioners? The good news is that stationary linear iterations for solving A~µ = ~ϕ,
A ∈ RN,N

~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) , M = M⊤ ∈ RN,N regular , (4.1.3.13)

are a source for preconditioners:

Theorem 4.2.5.5. Preconditioners from stationary linear iterations

If the stationary linear iteration (4.1.3.13) enjoys an asymptotic rate of convergence ρ < 1, then

κ(MA) ≤ 1 + ρ

1− ρ
.

Proof. As explained in § 4.1.3.12 we have λmax(I−MA) ≤ ρ, which implies

|1− λ| ≤ ρ

m
1− ρ ≤ λ ≤ 1 + ρ

for all eigenvalues λ ∈ σ(MA) .

The claim follows from the definition of κ(MA) := λmax(MA)λ−1
min(MA).

✷

Thus, the stationary linear iteration induced by the multigrid method is a promising candidate for a precon-
ditioner, provided that it supplies a symmetric M! Thm. 4.2.4.11 together with the following lemma tell us
how to achieve this.

Lemma 4.2.5.6. Symmetric successive subspace correction

The error propagation matrix ESSC of a successive subspace correction method according to

Def. 4.2.1.3 satisfies

AESSC = E⊤SSCA ,

if A = A⊤ and VM−j+1 = Vj, j = 1, . . . , M.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 375

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Proof. Using (4.2.1.14) we conclude

E⊤A = (I−A⊤P1

(
P⊤1 AP1

)−1
P⊤1 A) · · · · · (I−A⊤Pm

(
P⊤mAPm

)−1
P⊤mA)

= (I−A⊤Pm

(
P⊤mAPm

)−1
P⊤mA) · · · · · (I−A⊤P1

(
P⊤1 AP1

)−1
P⊤1 A)

= AE ,

because A = A⊤.
✷

If the assumptions of the lemma are satisfied, we have

M⊤SSC = A−1(I− E⊤SSC) = (I−A−1E⊤SSCA)A−1 Lemma 4.2.5.6
= (I−A−1AESSC)A

−1 = MSSC .

The symmetry of the subspace splitting, VM−j+1 = Vj, j = 1, . . . , M, can be ensured by using symmetric
pre- and post-smoothening steps, that is, we employ Gauss-Seidel iterations with opposite directions. This
results in the following algorithm:

Pseudocode 4.2.5.7: Multigrid iteration: recursive algorithm (symmetric V-cycle)

1 void mgsym_iteration (const ~ϕ ∈ RNℓ , r e f ~µ , i n t ℓ) {
2 i f (ℓ == 0) { D i r e c t l y solve A0~µ = ~ϕ ; }
3 else {
4 ~µold := ~µ ;
5 ~µ← ~µ + tril(A)−1(~ϕ−A~µ) ; // Gauss-Seidel step, pre-smoothening

6 ~ρh := ~ϕ−A~µ ; // Residual vector ∈ RNℓ

7 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNℓ−1

8 ~νH := 0 ; // Natural initial guess for correction

9 mgsym_iteration (~ρH , ~νH , ℓ−1) ; // Recursion

10 ~µ← ~µ + PH~νH ; // Update approximate solution

11 ~µ← ~µ + triu(A)−1(~ϕ−A~µ) ; // Gauss-Seidel step, post-smoothening

12 }
13 }

Then the multigrid preconditioner can be realized as follows. Line 11 of Code 4.2.5.2 becomes

~η := B~ρ ←→ ~η := 0; mgsym_iteration(~ρ,~η, L) , (4.2.5.8)

where L is the refinement level of the finest mesh in the hierarchy, cf. Ass. 4.2.4.1.

4.2.6 Full Approximation Storage Multigrid (FAS)

Multigrid iterative solvers can be extended to non-linear boundary value problems, but the adaptation is
not straightforward. It will be discussed in this section.

§4.2.6.1 (Non-linear variational boundary-value problem) On a (polygonally bounded) domain Ω ⊂ R2

we consider a second-order scalar non-linear elliptic variational problem (NLVP) with homogeneous
Dirichlet boundary conditions:

u ∈ V: a(u; v) = ℓ(v) ∀v ∈ V , V ⊂ H1
0(Ω) , (4.2.6.2)

where

✦ V is a subspace of H1
0(Ω), which may also coincide with H1

0(Ω),

✦ a : V ×V → R is continuous and linear in the second argument,

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 376

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

✦ ℓ : H1
0(Ω)→ R is a continuous/bounded linear form.

• The notation a(u ; v) with a “;” is supposed to hint at the non-linear dependence on the first argu-
ment.

• Concrete examples are presented in [NumPDE Section 5.2.3]. The need to switch to a subspace of
H1

0(Ω) is due to the fact that a may not be well-defined on the whole Sobolev space H1
0(Ω).

• Of course, existence of solutions of (4.2.6.2) crucially depends on the properties of a and will just be
assumed in the sequel.

y

§4.2.6.3 (Finite-element Galerkin discretization) We follow the approach of [NumPDE Section 5.3]. We
equip Ω with a triangular finite-element mesh M as defined in [NumPDE Section 2.5.1]. As trial and
test space we opt for the lowest-order Lagrangian finite-element space Vh := S0

1,0(M), assuming that

S0
1,0(M) ⊂ V. This yields the nonlinear discrete variational problem:

uh ∈ Vh: a(uh; vh) = ℓ(vh) ∀vh ∈ Vh . (4.2.6.4)

We write Bh :=
{

b1
h, . . . , bN

h

}
for the tent-function basis of Vh as introduced in [NumPDE Section 2.4.3].

Here N := dim Vh, that is, N is the number of interior nodes of M. Plugging basis expansions for uh

and vh into (4.2.6.4) we obtain an N × N non-linear system of (algebraic) equations:

~µ = [µ1, . . . , µN]
⊤ ∈ RN : a

(
N

∑
j=1

µjb
j
h; bi

h

)
= ℓ(bi

h) ∀i = 1, . . . , N . (4.2.6.5)

For it we adopt the shorthand notation

~µ = [µ1, . . . , µN]
⊤ ∈ RN : Ah(~µ) = ~ϕ :=

[
ℓ(bi

h)
]N

i=1
, (4.2.6.6)

with a non-linear mapping Ah : RN → RN, Ah(~ξ) :=

[
a

(
N

∑
j=1

ξ jb
j
h; bi

h

)]N

i=1

. y

§4.2.6.7 (Setting: nested meshes) We retain the setting of Section 4.2.4, in particular Ass. 4.2.4.1, which
provides a hierarchy of nested triangular meshes of Ω:

M0 ≺M1 ≺M2 ≺ · · · ≺ ML , L ∈ N . (4.2.6.8)

Remember from [NumPDE Ex. 3.1.4.3] that nesting of finite-element meshesMℓ−1 ≺Mℓ means that

∀K ∈ Mℓ−1: ∃KK ⊂Mℓ: K =
⋃

K′∈KK

K
′

, (4.2.6.9)

that is, every (closed) triangle of Mℓ−1 is the union of (closed) triangles of Mℓ. Recall that on nested
meshes also the Lagrangian finite-element spaces are nested:

Mℓ−1 ≺Mℓ ⇒ S0
1,0(Mℓ−1) ⊂ S0

1,0(Mℓ) . (4.2.6.10)

y

§4.2.6.11 (Failure of stationary linear iteations for (4.2.6.6)) The coarse grid correction of geometric
multigrid as introduced in Section 4.2.3 is a stationary linear iteration (4.1.3.13). We could try to generalize
(4.1.3.13) to (4.2.6.6) as follows:

~µ(k+1) := ~µ(k) +Mh

(
~ϕ− Ah(~µ

(k))
)

, k = 0, 1, 2, (4.2.6.12)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 377

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Here Mh : RN → RN should be some approximate inverse of Ah. A simple “thought experiment” dis-
closes That (4.2.6.12) is pointless. Assume that Ah : RN → RN is bijective and that Mh = A−1

h is its
exact inverse. Not even in this case, we can say anything about the convergence of (4.2.6.12), let alone
claim that it will converge to the solution in one step, as it happens in the linear case. y

§4.2.6.13 (Non-linear Gauss-Seidel iteration) Though the use of stationary linear iterations is doomed,
the subspace correction idea developed in Section 4.2.1 remains effective. Inspired by § 4.2.1.15 we can
use it to define the non-linear Gauss-Seidel iteration for (4.2.6.6) as a non-linear successive subspace
correction method in the direction of the one-dimensional spaces spanned by the basis functions bi

h. Given
an approximate solution uh ∈ Vh one sweep of the non-linear Gauss-Seidel iteration corrects it according
to

∀j ∈ {1, . . . , N}: { ξ ∈ R: a(uh + ξb
j
h; b

j
h) = ℓ(b

j
h); uh ← uh + ξb

j
h; } .

Pseudocode 4.2.6.14: Single Non-linear Gauss-Seidel sweep for Ah(~µ) = ~ϕ

1 void nlGS (Ah : RN → RN , const ~ϕ ∈ RN , re f ~µ ∈ RN) {
2 // Update all components of the approximate solution

3 for (i n t j =0; j <N; j ++) {
4 Solve ξ ∈ R:

(
Ah(~µ + ξ~ǫj)

)
j
= (~ϕ)j ; // ~ǫi =̂ j-th Cartesian basis

vector
5 (~µ)j += ξ ; \ \ Local update

6 }
7 }

This function assumes that, initially, its argument ~µ ∈ RN already provides a good approximation of the
solution of Ah(~µ) = ~ϕ.

Note that Line 4 amounts to solving a scalar non-linear equation of the form F(ξ) = 0 for a func-
tion F : R → R, here concretely given by F(ξ) :=

(
Ah(~µ + ξ~ǫj)−~ϕ

)
j
. We can use any method from

[NumCSE Section 8.4] to determine ξ, Newton’s method, the secant method, regula falsi, etc. y

§4.2.6.15 (FAS coarse grid correction) We adopt a two-grid perspective, fix ℓ ∈ {1, . . . , N}, and abbre-
viateMh :=Mℓ, MH :=Mℓ−1, Vh := S0

1,0(Mh), VH := S0
1,0(MH). We start from an approximate

solution uh ∈ Vh of (4.2.6.4). We try subspace correction in the direction of VH:

cH ∈ VH : a(uh + cH; vH) = ℓ(vH) ∀vH ∈ VH; uh ← uh + cH . (4.2.6.16)

Problem: We cannot determine cH by solving a non-linear variational problem (4.2.6.4) on VH.

However, finding a correction by solving the same problem “on the coarse grid”, that is, on VH, is the gist
of coarse grid correction. In this respect (4.2.6.16) disappoints.

An equivalent way to write the discrete variational equation of (4.2.6.16) is

cH ∈ VH : a(uh + cH; vH)− a(uh; vH) = r(uh; vH) ∀vH ∈ VH , (4.2.6.17)

with residual linear form r(uh; v) := ℓ(v)− a(uh; v) , v ∈ V .

Idea: Replace uh on the left-hand side of (4.2.6.17) with an approximation ũH ∈ VH.

This converts (4.2.6.17) into

cH ∈ VH : a(ũH + cH; vH)− a(ũH; vH) = r(uh; vH) ∀vH ∈ VH , (4.2.6.18)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 378

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf
https://en.wikipedia.org/wiki/Regula_falsi

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

which, assuming that the residual linear form can be evaluated on VH, is a non-linear variational problem
completely set in VH. To see this, we recast (4.2.6.18) as a non-linear system of equations. We set
NH := dim VH, write ~µH ∈ RNH for the basis expansion coefficient vector of ũH ∈ VH, and obtain the
basis expansion coefficient vector~νH ∈ RNH of cH + ũH ∈ VH from

~ζH ∈ RNH : AH (~ζH) = AH(~µH) +~ρH; ~νH :=~ζH −~µH , (4.2.6.19)

where ~ρH :=
[
r(uh; b1

H), . . . , r(uh; bNH
H)

]
∈ RNH . As in Section 4.2.3, that vector ~ρH can be computed

as the restriction of the residual vector from the fine grid

~ρH := P⊤H~ρh , ~ρh :=
[
r(uh; b1

h), . . . , r(uh; bN
h)
]
∈ RN , (4.2.6.20)

and the matrix PH ∈ RN,NH defined in (4.2.3.7), (4.2.3.8).

The standard choice for ũH is ũH := IHuh, where IH : C0(Ω)→ S0
1 (MH) is the linear interpolation

operator [NumPDE Def. 3.3.2.1] defined by

(IH f)(p) = f (p) ∀p ∈ V(MH) := {nodes ofMH} . (4.2.6.21)

On the algebraic level, with~µ∗ standing for the basis expansion coefficient vectors of u∗ ∈ V∗, this can be
expressed as

~µH = NH~µh , NH ∈ {0, 1}NH ,N , (N)i,j :=

{
1 , if node i ofMH = node j ofMh,

0 else.
(4.2.6.22)

y

§4.2.6.23 (FAS two-grid iteration) As in Section 4.2.3 non-linear Gauss-Seidel sweeps as smoothing
steps can be combined with the FAS coarse grid correction to obtain a viable two-grid iterative solver. The
following code illustrates the FAS counterpart of Code 4.2.3.12.

Pseudocode 4.2.6.24: FAS Two-grid iteration

1 void two_grid_fas (const ~ϕ ∈ RN , re f ~µ , double TOL) {
2 do {
3 ~µold := ~µ ;
4 ~µH := NH~µ ; // NH as in (4.2.6.22)

5 nlGS (Ah , ~ϕ , ~µ) ; // Pre-smoothing, see Code 4.2.6.14

6 ~ρh := ~ϕ− Ah(~µ) ; // Residual vector ∈ RN

7 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNH by restriction

8 Solve AH(~ζH) = AH(~µH) +~ρH ; // Coarse grid problem

9 ~νH :=~ζH −~µH ; // Correction

10 ~µ← ~µ + PH~νH ; // Prolongation and update of approximate solution

11 nlGS (Ah , ~ϕ , ~µ) ; // Post-smoothing, see Code 4.2.6.14

12 }
13 while (‖~µ−~µold‖ > TOL · ‖~µ‖) ; // Termination test

14 }

y

§4.2.6.25 (Full FAS nultigrid method) Of course, the two key ideas of Section 4.2.4 can also be applied
with for the FAS scheme:

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 379

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• Recursion: The coarse grid problem in Line 8 of Code 4.2.6.24 can be solved approximately by
calling

1 two_grid_fas (AH(~µH) +~ρH , ~ζH , TOL) ;

• Nested iteration: An initial guess onMℓ is obtained by prolongating the approximate solution from
Mℓ−1, refer to § 4.2.4.14.

y

Remark 4.2.6.26. It goes without saying that the FAS multigrid method as introduced above can be
abstractly defined for a non-linear variational problem like (4.2.6.2) and its Galerking discretization based
on a sequence of nested trial and test spaces V0 ⊂ V1 ⊂ · · · ⊂ VL. y

Review question(s) 4.2.6.27 (Geomtric multigrid methods)

(Q4.2.6.27.A) Consider an SSC method based on sub-spaces Vm ⊂ Vh, m = 1, . . . , M for iteratively
solving a linear discrete variational problem posed on Vh.

(i) Show that the sub-space correction in the direction of Vm gives the exact solution, if the iteration
error was in Vm before that sub-space correction.

(ii) In light of (i), why do SSC methods not converge in one step generally, though the sum of the
underlying sub-spaces spans the whole space Vh?

△

4.3 Algebraic Multigrid (AMG): Matrix-Based Multigrid

§4.3.0.1 (Need for black-box plug-in iterative solvers) For a large array of discretized (by means of
finite elements or finite differences) boundary value problems for PDEs full geometric multigrid iterative
solvers provide sufficiently accurate solutions with O(N) asymptotic effort for N → ∞, N the number of
unknowns/degrees of freedom. What else could we desire?

Yet, geometric multigrid relies on a hierarchy of (nested) meshes, remember Ass. 4.2.4.1, whereas in
practical finite-element computations are usually done on a single fine mesh output by a mesh generator
(like GMSH [NumPDE Section 2.7.1]).

In practice, when solving boundary value problems on complicated domains, in general no hierarchy

of nested meshes is available.

In addition, non-modular “legacy” simulation codes are are still widely used and maintainers are wary
of rewriting them in order to incorporate a geometric multigrid module, because this will entail a highly
intrusive modification of the computational kernel.

“Network-type” systems of equations that share many properties with those arising from the discretization
of boundary value problems for PDEs, but lack a PDE background, are faced in many applications. The
missing context of a spatial discretization makes generalizing geometric multigrid difficult.

The dream (at least for the case of sparse linear systems of equations) is,

• an iterative solution method that uses only information contained in the system matrix and the right-
hand side vector (“black-box”)

• that can be implemented as a function (“plug-in”)

Vector solve(const Matrix A, const Vector rhs, double tolerance)

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 380

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• that delivers fast convergence independent of the size of the linear system,

• and with the cost of one iteration proportional for the system size.

Of, course for general sparse linear systems of equations this will remain a dream. However, the alge-

braic multigrid method (AMG) presented in this section works this magic at least for linear systems of
equations arising from the finite-element discretization of 2nd-order scalar elliptic BVPs. y

4.3.1 AMG Framework

We focus on the two-grid method. Extension to many grids/levels is immediate by recursion, see
Code 4.2.4.5.

The goal is to solve a linear system of equations A~µ = ~ϕ, A ∈ RN,N large and sparse, iteratively.

Assumption 4.3.1.1.

The sparse matrix A ∈ RN,N is given in a sparse matrix format, e.g., CRS/CCS [NumCSE Sec-
tion 2.7.1], permitting access to the non-zero entries in rows and columns.

§4.3.1.2 (Building multigrid components algebraically) Based on the matrix A ∈ RN,N we have to
find the following components that we identified as key building blocks for the geometric multigrid two-grid
iteration of Code 4.2.3.12:

(I) The prolongation matrix/transfer matrix P ∈ RN,NH , and

(II) and a smoother, an affine linear operator RN → RN.

What about the course-grid matrix AH that plays a key role in Code 4.2.3.12? We can recover it through
the so-called Galerkin construction as AH = P⊤AP ∈ RNH ,NH . The name can be explained as follows
assuming that A stems from a Galerkin discretization and using the notations of Section 4.2.3: for all
i, j ∈ {1, . . . , NH}

(AH)i,j = a(b
j
H, bi

H) =
N

∑
ℓ=1

N

∑
k=1

a((P)ℓ,jb
ℓ
h, (P)k,ib

k
h) =

N

∑
ℓ=1

N

∑
k=1

(P)ℓ,j(P)k,ia(b
ℓ
h, bk

h) =
(

P⊤AP
)

i,j
.

In fact, this construction was also used in Code 4.2.3.12.

Note that AH will be regular, provided that A is regular and the nullspace of P is trivial: N (P) = {0}. y

§4.3.1.3 (AMG two-grid iteration) Almost all AMG algorithms rely on simple point smoothers, in particular
Gauss-Seidel sweeps. This settles Item (II) from § 4.3.1.2. Then the AMG two-grid iteration is essentially
the same as the method outlined in Code 4.2.3.12:

Pseudocode 4.3.1.4: AMG two-grid iteration step, coarse-grid-correction highlighted

1 void AMG_TG_step (const Matrix A ∈ RN,N , const Vector ~ϕ ∈ RN ,
2 r e f Vector ~µ) {
3 Matrix AH := P⊤HAPH ; // Galerkin construction, precomputed once

4 ~µ← ~µ + triu(A)−1(~ϕ−A~µ) ; // (forward) Gauss-Seidel pre-smoothing

5 ~ρh := ~ϕ−A~µ ; // Residual vector ∈ RN

6 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNH by restriction

7 Solve AH~νH = ~ρH ; // Coarse grid correction equation

8 ~µ← ~µ + PH~νH ; // Prolongation and update of approximate solution

9 ~µ← ~µ + tril(A)−1(~ϕ−A~µ) ; // (backward) Gauss-Seidel post-smoothing

10 }

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 381

https://people.math.ethz.ch/~grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

This is a stationary linear iteration (4.1.3.14) with error propagation matrix, cf. Cor. 4.2.3.14,

EATG := (IN − tril(A)−1A)︸ ︷︷ ︸
=E⊤GS

(IN − PA−1
H P⊤A)

︸ ︷︷ ︸
=EGCC

(IN − triu(A)−1A)︸ ︷︷ ︸
=EGS

. (4.3.1.5)

y

Remark 4.3.1.6 (AMG terminology) The inventors of AMG methods always imagined that the matrix
A ∈ RN,N was generated by the discretization of a scalar elliptic boundary value problem by means of
linear Lagrangian finite elements. This is why they referred to indices ∈ {1, . . . , N} as nodes, a terminol-
ogy that has persisted. y

§4.3.1.7 (Abstract AMG prolongation matrix) At this point the design of an AMG method is reduced to
the single task of finding a suitable matrix P ∈ RN,NH !

This mission is split into two steps:

➊ Definition of a suitable coarse-fine splitting of the index set {1, . . . , N}, a partition

{1, . . . , N} = C ∪ F , C ∩ F = ∅ . (4.3.1.8)

The indices in C are called the coarse nodes (C-nodes), those in F the F-nodes, and we have NH := ♯C.
The indices in C are supposed to be ordered and, then, are associated with the columns of the prolongation
matrix P ∈ RN,NH .

Fixing C entails the following constraint on P

(P)i,j =

{
1 , if i is the j-th index in C ,

0 for all other indices i ∈ C .
(4.3.1.9)

This means, that the prolongated value of a C-node is preserved for that C-node, solely spreads to F-
nodes, and does not affect any other C-nodes:

Application of P ⇐⇒ interpolation from C-nodes into F-nodes.

Furthermore, after reordering the basis vectors of RN according to the coarse-fine splitting (C-indices first,
F-indices last), we can bring P in the form

P =

[
INH

PF

]
,

INH
=̂NH × NH identity matrix,

PF ∈ RNF,NH , NF := N − NH .
(4.3.1.10)

➋ Determination of the entries of PF, known as prolongation weights.

For the sake of efficiency – we strive for O(N) asymptotic computational cost for a single two-grid iteration
step except for solving AH~νH = ~ρH — the matrix PF must be sparse with only a small number of non-zero
entries per row: P should distribute the value of a C-node to only a few T -nodes. y

Remark 4.3.1.11 (Relationship to prolongation for geometric multigrid) We return to the geometric
multigrid setting of Section 4.2.3 and relate it to the previous §.

• The C-nodes of AMG clearly correspond to the vertices of the coarse mesh.

• The requirement (4.3.1.9) is satisfied by the formula (4.2.3.8).

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 382

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

y

§4.3.1.12 (Matrix (adjacency) graph and mesh graph)

Definition 4.3.1.13. Matrix graph

Given a square matrix A ∈ RN,N, its associated matrix (adjacency) graph is the directed graph
GA = (V , E) with

• node/vertex set V := {1, . . . , N}, and

• edge set E :=
{
(i, j) ∈ {1, . . . , N}2 : (A)i,j 6= 0

}
.

Sloppily speaking, the edges of a matrix graph correspond to the non-zero entries of the matrix. If the
matrix A is symmetric, then GA can be regarded as an undirected graph. This is the perspective adopted
in the sequel.

If A is regarded as a S0
1 (M) Galerkin matrix, then the matrix graph of A agrees with the vertex-edge

graph of the finite-element meshM, unless some entries of A vanish “by coincidence”. Refer to [NumPDE
Section 2.4.4] for more explanations.

Fig. 179

1

2
3

765
4

8

9

13

10

14

11

15

12

✁ planar visualization of matrix graph of

A =

∗ ∗ 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 ∗ 0 0 0 0 0 0 0 0
∗ 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0 0
∗ ∗ 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0
0 ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 ∗ ∗ 0 0 0
0 0 0 ∗ 0 0 0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ 0
0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ ∗ 0 ∗ ∗
0 0 0 0 0 0 ∗ 0 0 0 ∗ ∗ 0 0 ∗
0 0 0 0 0 0 0 ∗ ∗ 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 0 0 ∗ ∗ 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 ∗ ∗

y

§4.3.1.14 (Matrix graph and prolongation) Interpreting vectors ∈ RNH as values attached to C-nodes,
the action of the F-part PF of the prolongation matrix P amounts to distributing values from C-nodes to
F-nodes.

This action can be regarded as local , if (PF)i,k 6= 0 only if (A)i,j 6= 0, where the k-th C-node has the index

j: Values are distributed along edges of the matrix graph.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 383

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 180

1

2
3

765
4

8

9

13

10

14

11

15

12

Small example related to Fig. 179:

✁ =̂ nodes ∈ C: C-nodes

=̂ nodes ∈ F : F-nodes

— =̂ edges of the mesh

C = {1, 3, 11, 13} ,

F = {1, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15} .

In the figure below solid blue arrows indicate local distribution of values from C-nodes, the single dashed
arrow marks a non-local assignment, node numbers “i/j” give indices “on the fine/coarse mesh”.

Fig. 181

3/2

765
4

8

9

10

14 15

12

1/1

2

11/3

13/4

P =

∗ 0 0 0
∗ ∗ 0 0
0 ∗ 0 0
∗ 0 0 0
∗ 0 0 0
0 ∗ 0 0
0 ∗ ∗ 0
0 0 0 ∗
0 0 0 ∗
0 0 ∗ ∗
0 0 ∗ 0
0 0 ∗ 0
0 0 0 ∗
0 0 ∗ ∗
0 0 ∗ 0

.

y

Remark 4.3.1.15 (The AMG fill-in challenge) The embedding of the algebraic two-grid method into a
recursive algebraic multigrid method hinges on the coarse grid matrix AH being sparse with a small fixed
number of non-zero entries per row and column. Otherwise the smoothing steps will become too costly
and the algorithms constructing coarse-fine splittings will fail.

The coarse grid matrix is obtained by the Galerkin construction AH := P⊤AP. Thus its sparsity pattern
is completely determined by that of P and A: For k, ℓ ∈ {1, . . . , NH},

(AH)k,ℓ 6= 0 =⇒ ∃i, j ∈ {1, . . . , N}: (P)i,k 6= 0 ∧ (A)i,j 6= 0 ∧ (P)j,ℓ 6= 0 . (4.3.1.16)

Thus, necessary (but not sufficient!) condition for the sparsity of AH is that P is also sparse; each C-node
is connected with a small number of F-nodes only. A stronger condition is that P is local,

(P)i,k 6= 0 only if F-node i and C-node k are connected in the matrix graph of A . (4.3.1.17)

The following example based on Fig. 181 displays the matrix graph of AH for a local P.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 384

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Fig. 182

1

2
3

765
4

8

9

13

10

14

11

15

12

✁

— =̂ edge of matrix graph of A

=̂ C-nodes

=̂ F-nodes

−→ =̂ non-zero C-F entries of P

←→ =̂ edge of matrix graph of AH

(corresponds to non-zero entries of AH)

y

4.3.2 AMG Heuristics

We develop a recipe for building P given a coarse-fine splitting.

§4.3.2.1 (Assumptions on A) We focus on the Galerkin finite element discretization of a second-order
scalar elliptic boundary value problem (4.1.1.1) using piecewise linear Lagrangian finite elements and the
tent function basis. In particular A ∈ RN,N is supposed to be s.p.d. (symmetric positive definite):

A = A⊤ and ~ν⊤A~ν > 0 ∀~ν ∈ RN \ {0} . (4.3.2.2)

Temporarily we make the additional assumption that A is an M-matrix [NumPDE Rem. 3.7.2.11],
[NumPDE Def. 3.7.2.18]:

• (A)ii > 0 (positive diagonal) , [NumPDE Eq. (3.7.2.12)]

• (A)ij ≤ 0 for j 6= i (non-positive off-diagonal entries) , [NumPDE Eq. (3.7.2.13)]

• ∑
j

(A)ij≥ 0 (non-negative row sums) . [NumPDE Eq. (3.7.2.14)]

From [NumPDE Rem. 3.7.2.21] we know that for d = 2 and triangular meshesM the S0
1,0(M) finite-

element Galerkin matrix for (4.1.1.12) will be an M-matrix, if none of the triangles has an obtuse angle
> π/2. y

§4.3.2.3 (Assumptions on ~ϕ) Note that the right-hand side vector ~ϕ of the linear system of equations
A~µ = ~ϕ tackled by a stationary linear iteration (4.1.3.13) does not influence the error propagation matrix.
Hence, the convergence of a stationary linear iteration can be fully understood by studying the case~ϕ = 0.

Since the algebraic multigrid method is a special stationary linear iteration we need only consider the case
~ϕ = 0 in its derivation. y

§4.3.2.4 (Effect of coarse grid correction) We study the error propagation operator associated with
coarse grid correction derived in also Section 4.2.3:

ECGC := IN − PA−1
H P⊤A (4.3.2.5)

We reconnect to some insights already gained in § 4.2.2.1.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 385

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Lemma 4.3.2.6. Error propagation operator of coarse grid correction

Assume that A = A⊤ ∈ RN,N is s.p.d. and that that the prolongation matrix P ∈ RN,NH , NH < N,

has full rank NH.

Then, in the case of the Galerkin construction of the coarse grid matrix, AH := P⊤AP, the error

propagation operator of the coarse grid correction is

• an A-orthogonal projection (→ Def. 4.2.2.2),

• with kernel N (ECGC) = R(P).

✎ Notations: We writeN (M) for the kernel/nullspace of a matrix M andR(M) for its range space/image
space.

Recall that an s.p.d. matrix A ∈ RN,N induces an inner product on RN. “A-orthogonal” refers to that
inaner product.

Proof. (of Lemma 4.3.2.6) From linear algebra you know that a linear mapping described by a matrix M is
an A-orthogonal projection, if

(i) M is idempotent, M2 = M,

(ii) M is A-selfadjoint,

(AM~ξ) ·~ν = (A~ξ) · (M~ν) ⇐⇒ M⊤A = AM . (4.3.2.7)

We directly verify these properties for ECGC:

E2
CGC = IN − 2PA−1

H P⊤ + P (P⊤AP)−1P⊤AP︸ ︷︷ ︸
=INH

A−1
H P⊤A = ECGC ,

E⊤CGCA = A−APA−1
H P⊤A = A(IN − PA−1

H P⊤A) = AECGC .

The kernel of ECGC is found as follows:

~ξ ∈ N (ECGC) ⇐⇒ ~ξ = PA−1
H P⊤~ξ ∈ R(P)) ,

~ξ = R(P) ⇐⇒ ∃~ν ∈ RNH : ~ξ = P~ν =⇒ ETGM
~ξ = P~ν− P (P⊤AP)−1P⊤AP︸ ︷︷ ︸

=INH

~ν = 0 .

Remember that the assumption that P has full rank/trivial kernel ensures that AH is invertible.
✷

y

We have learned that the coarse grid correction completely eliminates error components in R(P).

Error components that are insufficiently reduced by the smoother must be captured by R(P).

More formally, writing ES for the error propagation operator of the smoothing step, we desire

~η ∈ RN , ES~η ≈~η =⇒ ~η ∈ R(P) desired. .

For Gauss-Seidel smoothing„ as used in Code 4.3.1.4, we have ES = IN − tril(A))−1A. Thus, for van-
ishing right-hand side vector

~η ≈ (IN − tril(A))−1A)~η ⇐⇒ (~η)i ≈ −
1

(A)ii
∑
i 6=j

(A)i,j(~η)j , i = 1, . . . , N . (4.3.2.8)

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 386

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Hence, if A is an M-matrix, the components error vectors that the Gauss-Seidel smoother just passes on
are A-weighted averages of the components associated with neighboring nodes (in the matrix graph of
A).

Ideally, one would like to use (4.3.2.8) with “≈” replaced with “=” to define P. However, this amounts to
too many constraints and it clashes with the requirement (4.3.1.9) that values in C-nodes are preserved.
Yet, for F-nodes our wish can be fulfilled.

Choose P such that for i ∈ F (P~η)i is an A-weighted average:

“ (P~η)i = −
1

(A)i,i
∑
j 6=i

(A)i,j · η-value at node j ” . (4.3.2.9)

In this crude form, this idea is doomed, because P acts only on the values in the C-nodes, whereas the
sums on the right-hand side of (4.3.2.9) also cover F-nodes. We will resume the discussion and resolve
this problem in Section 4.3.4.

4.3.3 C/F Splitting Algorithm

F-node prolongation by averaging, the idea floated in the previous section for the construction of the
prolongation matrix P, can only work if every F-node is “sufficiently strongly connected” (w.r.t. A) to at
least one C-node. In this section we want to make rigorous this fuzzy requirement and let it inspire an
algorithm for building a coarse-fine splitting (4.3.1.8).

Also in this section A ∈ RN,N should be thought of as a symmetric M-matrix; we retain the assumptions
of § 4.3.2.1.

§4.3.3.1 (Strong coupling) We quantify the notion of coupling between two indices/nodes/degrees of
freedom. Of course, this will rely on the relative sizes and signs of entries of A.

Definition 4.3.3.2. Strongly coupled nodes

Given A = A⊤ ∈ RN,N a pair (i, j) of different nodes/indices i, j ∈ {1, . . . , N}, i 6= j, is (τC-

)strongly (negatively) coupled (w.r.t. to A), if

−(A)i,j ≥ τC max
{
|(A)i,k|: (A)i,k < 0, k ∈ {1, . . . , N} \ {i}

}
(4.3.3.3)

for some fixed τC ∈]0, 1[.

A commonly used value for τC is τC = 1
4 . From now we fix τC.

For the sake of concise notation we introduce two sets of strongly coupled neighboring nodes:

S(i) := {j ∈ {1, . . . , N} : (i, j) is strongly coupled }
:=
{

j ∈ {1, . . . , N} : −(A)i,j ≥ τC max
{
|(A)i,k|: (A)i,k < 0, k ∈ {1, . . . , N}

}}
,

S(j)∗ := {i ∈ {1, . . . , N} : j ∈ S(i)}
=
{

i ∈ {1, . . . , N} : −(A)i,j ≥ τC max
{
|(A)i,k|: (A)i,k < 0, k ∈ {1, . . . , N}

}}
.

• S(i) captures the strong couplings to node i, the set of nodes from which node i could receive
values during prolongation.

• S(j)∗ is the set of nodes to which node j could send values during prolongation.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 387

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In general S(i) 6= S(i)∗. y

EXAMPLE 4.3.3.4 (Strong couplings defined by Poisson matrix) We consider the Poisson matrix
A ∈ RN,N, N = (M− 1)2, from Ex. 4.1.1.22. We clearly have

S(i) =
{

j ∈ {1, . . . , N} \ {i} : (A)i,j 6= 0
}

.

Fig. 183

Remember that the indices/nodes are in one-to-one
correspondence with the nodes of a tensor-product
mesh of]0, 1[2 and that A can be represented
by a five-point stencil, see § 4.1.1.31, [NumPDE
§ 4.1.2.10]:

A ∼

0 −1 0
−1 4 −1
0 −1 0

h

. (4.3.3.5)

Thus, the set S(i) can be visualized as a subset of
the nodes of the tensor-product mesh.

✁ =̂ node i

=̂ set S(i) of nodes

=̂ nodes 6∈ S(i)
The set S(i) comprises the four neighbors of a node in horizontal and vertical direction. y

EXAMPLE 4.3.3.6 (Anisotropic diffusion matrix) Next we consider the matrix A from Ex. 4.1.1.24,
(4.1.1.30) with α = 1, 0 < β≪ 1, which has the 5-point difference stencil representation

A ∼

0 −β 0
−α 2(α + β) −α
0 −β 0

h

. (4.3.3.7)

=̂ node i

=̂ sets S(i), S(i)∗ of nodes

=̂ nodes 6∈ S(i)

✄

Strong coupling in horizontal direction only!

Fig. 184

y

§4.3.3.8 (“Smoothable” variables) Let us consider a “strongly diagonally dominant” row of
A ∈ RN,N:

|(A)i,i| ≥ σ ∑
k 6=i

|(A)i,k| , σ > 1, e.g. σ =
3

2
, i ∈ {1, . . . , N} . (4.3.3.9)

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 388

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Then a Gauss-Seidel sweep on A~µ = 0 will substantially reduce the i-th component of the error. If
(4.3.3.9) held true for all i, then a Gauss-Seidel iterative solver would enjoy N-independent (robust) fast
linear convergence.

Thus, in the context of AMG, nodes satisfying (4.3.3.9) can be left to the smoother and need not be
included in the coarse grid correction; they can all be classified as F-nodes. y

§4.3.3.10 (A greedy algorithm) The algorithm from [Stü99] for constructing the coarse-fine splitting
(4.3.1.8) of the node set relies on three dynamic sets

F =̂ nodes that have already been identified as suitable F-nodes
C =̂ nodes that will become C-nodex
U =̂ “unassigned nodes”, not yet assigned to either F or Cc.

The algorithm also makes use of the connectivity measure

λ(i) := ♯(S(i)∗ ∩ U) + 2 · ♯(S(i)∗ ∩ F) , i ∈ {1, . . . , N} . (4.3.3.11)

It tries to reflect the suitability of a node to be promoted to a C-node. The more strongly connected
F-nodes, the larger λ(i).

Pseudocode 4.3.3.12: Construction of coarse-fine splitting based on matrix A [ZAS17]

1 [C , F] = CFsplit (mat r i x A ∈ RN,N) {
2 F := {i ∈ {1, . . . , N} : |(A)i,i| ≥ σ ∑

k 6=i
|(A)i,k|} ; // See § 4.3.3.8

3 C := ∅ ; // no C-nodes yet

4 U := {1, . . . , N} \ F ; // still unassigned nodes

5 Compute λ(i) for a l l i ∈ U ; // Connectivity measure (4.3.3.11)

6 while (∃j ∈ U : λ(j) 6= 0) {
7 i ∈ argmax

j∈U
{λ(j)} ; // Most suitable C-node

8 C ← C ∪ {i} ; // Grow set of C-nodes

9 F ← F ∪ S(i)∗ ; // Eligible “receiver nodes” as F-nodes

10 U ← U \ {{i} ∪ S(i)∗} ;
11 Update λ(i) , i ∈ U ; // Necessary for only a small number of λ(i)s

12 }
13 F ← F ∪ U ; // Make all remaining nodes F-nodes

14 return { C , F } ;
15 }

The algorithm is called greedy because it picks the “next best” C-node. The aggressive relegation of nodes
to F-nodes in Line 9 ensures that there is hardly any strong coupling between C-nodes. y

EXAMPLE 4.3.3.13 (Coarse-fine splitting for the Poisson matrix) As in Ex. 4.3.3.4 we consider the
Poisson matrix A ∈ RN,N as introduced in Ex. 4.1.1.22 and visualize the advance of the greedy algorithm
of Code 4.3.3.12 (executions of the while-loop body) on the underlying tensor-product mesh.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 389

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

• • • • • • •
• ∗ • • • ∗ •
• • • • • • •
• • • • • • •
• • ∗ • • • •
• � • ∗ • ∗ •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • ∗ • •
• ∗ • • • • •
• • � • • • •
• � • ∗ • • •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• ∗ • • • • •
• • � • • • •
• � • � • ∗ •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• ∗ • • • • •
• • � • ∗ • •
• � • � • � •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• ∗ • ∗ • ∗ •
• • � • � • •
• � • � • � •
• • • • • • •

• • • • • • •
• • • • • ∗ •
• • • • • • •
• ∗ • ∗ • � •
• • � • � • •
• � • � • � •
• • • • • • •

Symbols: • =̂ node in U , ∗ =̂ candidate for next C-node, • =̂ F-node ∈ F , � =̂ C-node ∈ C, • =̂
smoothable node

We see that about half of the nodes will be promoted to C-nodes. The emerging pattern is called red-black

refinement in the context of geometric multigrid. y

Remark 4.3.3.14. In the construction of a coarse-fine splitting we have to balance two conflicting goals:

1. Keep the number of C-nodes as low a possible.

2. Ensure that every F-node is sufficiently strongly connected to C-nodes (F-nodes have to be “sur-
rounded” by C-nodes).

y

4.3.4 AMG Prolongation

After having fixed the coarse-fine splitting {1, . . . , N} = C∪̇F the only remaining unspecified component
of the AMG two-grid algorithm is the prolongation matrix P ∈ RN,N+H in the form (C-nodes numbered
first)

P =

[
INH

PF

]
,

INH
=̂NH × NH identity matrix, NH := ♯C ,

PF ∈ RNF,NH , NF := N − NH = ♯F .
(4.3.1.10)

We resume the considerations of Section 4.3.2, which suggested the use of A-weighted averaging to
determine PF, remember the tentative formula

“ (P~η)i = −
1

(A)i,i
∑
j 6=i

(A)i,j · η-value at node j ” , i ∈ F . (4.3.2.9)

The remaining challenge is to devise an A-weighted averaging relying on values in C-nodes alone. As
indicated by the definition of strong coupling, Def. 4.3.3.2, this will entail taking into account the signs of
off-diagonal entries of A in order to be able to deal with matrices that are not M-matrices. We describe the
scheme of “standard interpolation” [TOS00, A.7.2.1] implemented in many AMG packages, e.g. [FJY06].

The first step consists of restricting the summation in (4.3.2.9) to nodes strongly connected to i ∈ F , that
is, to the set S(i):

(P~η)i := − 1

(A)i,i
∑

j∈S(i)
(A)i,j(~η)j , i ∈ F . (4.3.4.1)

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 390

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

The tacit assumption (A)i,i 6= 0 for all i ∈ {1, . . . , N} is made throughout.

§4.3.4.2 (Locally preserving constants (LPC)) Let us assume that A has vanishing row sums, A1 = 0,

1 = [1, . . . , 1]⊤, which is satisfied, for instance, for the S0
1 (M) Galerkin matrix for pure Neumann BVPs.

In this case the Gauss-Seidel smoother will not be able to effect any correction in the direction of 1, which
means that 1 ∈ R(P) is mandatory.

In light of (4.3.1.10), this is equivalent to demanding PF1 = 1:

A1 = 0 =⇒ PF1 = 1 . (4.3.4.3)

To repeat, interpreting A as the S0
1 (M) finite-element Galerkin matrix of a scalar second-order elliptic

BVP, the property A1 = 0 will hold for the pure Neumann problem [NumPDE Ex. 1.8.0.10].

The requirement (4.3.4.3) is extended to general matrices in the form of a localized version:

(A1)ℓ = 0 =⇒ (PF1)ℓ = 1 . (4.3.4.4)

We call this property of P a “local preservation of constants”.

In light of (4.3.4.4) we convert (4.3.4.1) by re-weighting to

(P~η)i := − αi

(A)i,i
∑

j∈S(i)
(A)i,j(~η)j , αi :=

∑
k 6=i

(A)i,k

∑
k∈S(i)

(A)i,k

, i ∈ F . (4.3.4.5)

Obviously,~η = 1 and (P~η)i = 1 satisfies this equation, if (A1)i = 0:

(A)i,i = −
∑

k 6=i
(A)i,k

∑
k∈S(i)

(A)i,k

· ∑
j∈S(i)

(A)i,j = −∑
k 6=i

(A)i,k .

y

§4.3.4.6 (Positive and negative connections) Heuristic arguments [TOS00, A.4.2.2] suggest a distinc-
tion between negative and positive off-diagonal matrix entries. Keeping in mind the local preservation of
constants, we refine (4.3.4.5) into1

(A)i,i(P~η)i := −αi ∑
j∈S(i)

(A)−i,j(~η)j − βi ∑
j∈S(i)

(A)+i,j(~η)j , (4.3.4.7)

αi :=

∑
k 6=i

(A)−i,k

∑
k∈S(i)

(A)−i,k
, βi :=

∑
k 6=i

(A)+i,k

∑
k∈S(i)

(A)+i,k

for i ∈ F , which still ensures (4.3.4.3): if (A1)i = 1, then

(PF1)i =
1

(A)i.i

·

−

∑
k 6=i

(A)−i,k

∑
k∈S(i)

(A)−i,k
· ∑

j∈S(i)
(A)−i,j −

∑
k 6=i

(A)+i,k

∑
k∈S(i)

(A)+i,k
· ∑

j∈S(i)
(A)+i,j

=
1

(A)i.i

·
(
−∑

k 6=i

(A)−i,k −∑
k 6=i

(A)+i,k

)
= 1 .

1Throughout, collapsing sums will be set to zero, even after “division by zero”.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 391

https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Above we wrote

(A)+i,j :=

{
(A)i,j, if (A)i,j> 0 ,

0 else,
, (A)−i,j :=

{
(A)i,j, if (A)i,j< 0 ,

0 else.
,

This realizes a purely local prolongation based on node connections corresponding to edges in the matrix
adjacency graph of A. However, (4.3.4.7) still fails to make sense, because the right-hand side sums still
covers F-nodes, for which (~η)j is not defined. y

§4.3.4.8 (Reduction to C-nodes)

Fig. 185

i ∈ F

We may face the situation that an F-node i is connected to only
other F-nodes: S(i) ⊂ F .

✁ � =̂ C-nodes
• =̂ F-nodes
— =̂ edge of matrix graph of A

Idea: Prolongate values into i from strongly con-
nected C-neighbors of F-nodes ∈ S(i).

Thus we can remove the ill-defined values (~η)j from the right-hand side of (4.3.4.7),

(P~η)i := − 1

(A)i,i

αi ∑

j∈S(i)
(A)−i,j(~η)j + βi ∑

j∈S(i)
(A)+i,j(~η)j

 , i ∈ F , (4.3.4.7)

by pursuing the following strategy. In (4.3.4.7) for j ∈ S(i) ∩ F replace

(~η)j ←
(
~η′
)

j
:=

1

(A)j,j

α̂j · ∑
k∈S(j)∩C

(A)j,k(~η)k , α̂j :=

∑
k 6=j

(A)j,k

∑
k∈S(j)∩C

(A)j,k

. (4.3.4.9)

Note that we have employed the same re-weighting approach as in the transition from (4.3.2.9) to (4.3.4.1)
in order to ensure the local preservation of constants.

Then define (P~η)i through

(P~η)i := − 1

(A)i,i

(
αi

(
∑

j∈S(i)∩C
(A)−i,j(~η)j + ∑

j∈S(i)∩F

(A)−i,j
(A)j,j

· α̂j · ∑
k∈S(j)∩C

(A)j,k(~η)k

)
+

β̂i ∑
j∈C∩S(i)

(A)+i,j(η)j

)
, β̂i :=

∑
k 6=i

(A)+i,k

∑
j∈C∩S(i)

(A)+i,j
.

(4.3.4.10)

In this formula, only values in C-nodes are accessed and those are available from components of~η.

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 392

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

In the situation of Fig. 185 during prolongation (=̂ application of
P to the vector of values on the C-nodes) F-node i would now
receive values from four C-nodes located at distance 2 in the
matrix graph.

� =̂ C-nodes
• =̂ F-nodes
— =̂ edge of matrix graph of A
−→ =̂ transfer of values

during prolongation

✄

Fig. 186

i ∈ F

y

4. (Algebraic) Multigrid Methods, 4.3. Algebraic Multigrid (AMG): Matrix-Based Multigrid 393

Bibliography

[BY93] F. Bornemann and H. Yserentant. “A basic norm equivalence for the theory of multilevel meth-
ods”. In: Numer. Math. 64.4 (1993), pp. 455–476 (cit. on p. 391).

[Hac94] Wolfgang Hackbusch. Iterative solution of large sparse systems of equations. Vol. 95. Applied
Mathematical Sciences. New York: Springer-Verlag, 1994, pp. xxii+429 (cit. on p. 370).

[RS87] J. Ruge and K. Stüben. “Algebraic multigrid”. In: Multigrid methods. Ed. by S. McCormick. Fron-
tiers in Applied Mathematics. Philadelphia: SIAM, 1987. Chap. 4, pp. 73–130 (cit. on p. 358).

[SG06] Olaf Schenk and Klaus Gärtner. “On fast factorization pivoting methods for sparse symmetric
indefinite systems”. In: Electron. Trans. Numer. Anal. 23 (2006), pp. 158–179 (cit. on p. 365).

[Stü99] K. Stüben. Alegebraic Multigrid (AMG): An introduction with applications. Report 70. St. Au-
gustin, Germany: GMD – German National Research Center for Information Technology, 1999
(cit. on pp. 370, 409).

[TOS00] U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. London: Academic Press, 2000 (cit.
on pp. 358, 390, 410, 411).

[Wag99] C. Wagner. “Introduction to Algebraic Multigrid”. 1999 (cit. on p. 358).
[Xu92] J. Xu. “Iterative methods by space decomposition and subspace correction”. In: SIAM Review

34 (1992), pp. 581–613 (cit. on p. 391).

394

Chapter 5

Reduced Bases Methods (RBM)

Supplementary literature. [HRS16; QMN16] are two textbooks on reduced basis methods,

both with a focus on algorithms. This chapter mainly follows these works.

5.1 Parameterized Boundary Value Problems

5.1.1 Coefficients as Parameters

§5.1.1.1 (Stationary heat conduction in composite solids)

y

§5.1.1.2 (Quantity of intereest (QoI): Heat flux)

y

§5.1.1.3 (Unvertainty quantification)

y

5.1.2 Parameter-Dependent Domains

§5.1.2.1 (Model problem with variable computational domain)

y

§5.1.2.2 (Pullback to reference domain)

y

5.1.3 Abstract Framework

§5.1.3.1 (Parameter-dependent variational problems)

y

§5.1.3.2 (Reduced Bases Methods: Objectives and Policy)

y

395

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

§5.1.3.3 (π-Uniformity assumptions)

y

§5.1.3.4 (Trusted approximation: “Truth solution”)

y

5.2 Reduced Bases Methods: Ideas and Algorithms

5.2.1 Prelude: Polynomial Interpolation

5.2.2 Projected Variational Problem

5.2.3 Generation of Reduced Bases

5.2.3.1 Proper Orthogonal Decomposition (POD)

5.2.4 Special Case: Separable Decomposition

§5.2.4.1 (O(N) trap)

y

§5.2.4.2 (Separable variational problems)

y

§5.2.4.3 (Setup and evaluation phases)

y

5.3 Error Estimation

5.3.1 Residual-Based Estimator

5.3.2 Computation of Residual Norm

5.3.3 Lower Bound for γh(π)

5.4 Separable Approximation

5.4.1 Interpolation on Parameter Space

5.4.2 Adaptive Cross Approximation (ACA)

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 396

Main Index: Terms and Keywords

L2-projections, 134
H2-matrix, 249
H-matrix, 215
z-transform, 269
H2-matrices, 249
(Layer) potentials, 42
(Successive) subspace correction method, 357
1D Quadrature formula/quadrature rule, 100

A-stability
of multi-step methods, 302

A-Stability of linear multi-step methods [DB02,
Sect. 7.2.2], 302

A-stable, 302
Abel integral equation, 277
Abel integral operator, 277
Abstract admissibility condition, 198
acoustic scattering, 281
acoustic wave equation, 281
adjoint

differential operator, 35
admissibility condition, 154, 215

abstract, 198
admissibility measure, 171, 173, 179
Admissibility of index sets, 183
admissible

index sets, 183
algebraic convergence, 104
alternating directional splitting, 193
analytic extension, 107
analytic function, 107
Analyticity of a function in C, 107
arclength derivative, 64
arclength parameterization, 114
Ass: ℓ-uniform linear convergence of multigrid

V-cycle, 373
Ass: a defines an inner product, 361
Ass: Analytic parameterization, 112
Ass: Analyticity of local parameterizations, 126
Ass: Availability of low-rank factor matrices, 216
Ass: Binary cluster trees, 216
Ass: Connected domains, 16

Ass: Data in procedural form, 83
Ass: Mesh compatible with partition, 139
Ass: Mesh hierarchy, 370
Ass: Near-field diagonal blocks, 241
Ass: Polynomial growth of F, 295
Ass: Properties of linear multi-step method

underlying CQ, 305
Ass: Properties of transfer function, 284
Ass: Rank-q separable approximation on

admissible boxes, 178
Ass: Requirements on implicit RK-SSM for CQ,

318
Ass: Structure of result matrix, 229
Ass: Uniform distribution, 155
Ass: Unisolvence of interpolation nodes, 163
assembly

of Galerkin matrices, 88
Asymptotic convergence of quadrature rules,

104
attenuation equation, 276
average

of traces, 58

barycentric coordinate functions, 125
barycentric interpolation formula, 206
BDF-2, 299
Bernstein ellipse, 108, 174
BIE =̂ boundary integral equations, 48
bilinear form, 23

elliptic, 131
BIO =̂ boundary integral operator, 48
BIO =̂ boundary integral equations, 67
block

of a hierarchical matrix, 216
Block tree underlying a hierarchical matrix, 217
boundary conditions

mirror symmetry, 20
boundary element space, 77
boundary integral equations, 48, 67
boundary integral operators, 48
Boundary integral operators for −∆, 61
boundary value problem

397

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

elliptic, 340
boundary-value problem

two-point, 341
bounding box, 191

of a cluster, 191
Bounding box of an index set, 183
Bounding boxes of clusters, 191
Bromwich integral, 264
Butcher scheme, 317

cardinal basis property, 367
cardinal function, 164
Cauchy integral formula, 289, 309
Cauchy integral theorem, 264
Cauchy product, 269, 291
causal function, 257
Causal functions, 257
causal polynomially bounded function, 262
Causal polynomially bounded functions, 262
causal sequence, 260
Cea’s lemma, 131
CG, 352
channel, 258

time-invariant, 258
characteristic function, 81
characteristic polynomial, 299
charge density, 21
Chebychev interpolation, 86, 174

error estimates, 172
Chebychev nodes, 165, 173
circulant augmentation, 272
circulant matrix, 270
Clenshaw-Curtis quadrature rule, 102
cluster, 191
cluster bases

for H2-matrix, 249
Cluster tree, 191
cluster tree, 191
co-axial cable, 278
co-normal trace, 56
coarse-fine splitting, 382
coarse-grid correction, 368
coarse-grid correction, 366
coefficient vector, 77
collocation

of a kernel, 156
column cluster bases

for H2-matrix, 249
column tree, 215
comb function, 292
compatibility conditions

for H1(Ω), 19

complex contour integral, 263
Concepts connected with trees, 189
configuration space, 20
conjugate gradient method, 352
consistent, 349
convergence

algebraic, 104
exponential, 104

convolution, 39, 255
associativity, 256
of causal functions, 258
of distributions, 256
of operators, 257
of sequences, 259

convolution equation, 258, 285
discrete, 260

Convolution of functions in Rd, 39
Convolution of sequences, 259
Convolution on the real line, 255
convolution quadrature, 284
convolution quadrature weights, 284
Corollary: Associativity of convolution, 256
Corollary: Cauchy differentiation formula, 290
Corollary: Continuous, piecewise-C1 functions in

H
1
2 (Γ), 52

Corollary: Convergence of stationary linear
iterations, 349

Corollary: Direct 1st-kind variational BIE for
transmission problem, 143

Corollary: Embedding of H
1
2 (Γ), 51

Corollary: Embeddings of boundary element
spaces, 80

Corollary: Green’s function integral
representations, 46

Corollary: Mapping properties of Dirichlet trace,
49

Corollary: Mapping properties of the Newton
potential, 39

Corollary: Properties of orthogonal projections,
360

Corollary: Two-grid method as stationary linear
iteration, 369

Coulomb force, 14, 32
coupling matrix

for H2-matrix, 249
curl operator, 15
curl-free, 15
curved polygon, 31, 78
curvilinear polyhedron, 31

d.o.f. mapper, 89

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 398

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

data sparse, 158
decay conditions, 27
delta distribution, 35
density, 49
density unknowns, 74
DFT, 315
DFT (discrete Fourier transform), 271
diffusion coefficient, 340
Dirichlet BVP, 68, 83
Dirichlet trace operator, 49
Dirichlet trace space, 49
discrete Fourier transform, 315
discrete variational problem, 76, 77
distributions, 35
Double layer potential, 44
Doxygen, 75
Dual norm for source charge distributions, 29
duality, 29, 55

eddy current model, 278
edge, 120
edge set

of a tree, 189
Electrostatic field energy [NumPDE

Eq. (1.2.2.6)], 14
elliptic, 131

bilinear form, 69
elliptic boundary value problem, 340
energy norm

for Neumann trace space, 53
equilibrium principle, 22
error propagation matrix, 349
error recursion

for stationary linear iterations, 349
expand-from-cluster, 250
explicit midpoint method, 298
exponential convergence, 104
exterior Dirichlet probem, 149

face, 120
Far field, 181
far field, 180, 183
Far-field blocks of index pairs, 184
FFT (fast Fourier transform), 271
fill-in, 347
filter, 260
finite-difference grid, 346
First-kind BIE, 71
forward transformation, 251
Fourier matrix, 271
Fourier transform, 261

discrete, 315

full aproximation storage (FAS), 376
Fundamental solution, 35
fundamental solution, 35, 45

Galerkin approximation, 76
Galerkin discretization, 75, 342
Galerkin matrix, 342
Gauss quadrature, 101

generalized, 103
Gauss-Seidel method, 348

non-linear, 378
Gaussian elimination, 347
generating function, 290, 309
global shape functions (GSF), 124
Gram determinant, 31
Green’s first formula, 24
Green’s function, 45

for disk, 46
for half space, 47

grid, 346
grid function, 346

h-refinement, 131
h-uniform convergence, 369
half space, 47
hat function, 81
Hierarchical matrix, 215
hierarchical matrix, 215
Hilbert BEM library, 74
Hilbert space of square integrable functions

[NumPDE Def. 1.3.2.3], 17
horizontal concatenation

of matrices, 225

idempotent, 360
impedance boundary conditions, 279
impedance condition, 280
Implicit Euler convolution quadrature (IE-CQ),

288
implicit Euler method, 287
Implicit Runge-Kutta single-step method,

[NumCSE Def. 12.3.3.1], 317
impulse response, 260
initial guess, 348
integration by parts

multidimensional, 24
interpolation, 163

bi-directional, 166
polynomial, 86

interpolation conditions, 163
interpolation nodes, 163
interpolation operator, 163

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 399

https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

intrinsic norm, 52
irrotational, 15
iteration error, 349

Jacobi method, 349
Jacobian, 15
jump

of traces, 58
jump relations, 60

kernel
asymptotically smooth, 169
of an integral operator, 38, 42, 62

Kernel collocation matrix, 156
kernel collocation matrix, 156
kernel function, 156
Krylov space, 352
Krylov subspace method, 214

Lagrange polynomials, 164
Lagrangian finite elements

bilinear, 345
Lagrangian multiplier, 84
Laplace inversion formula, 264
Laplace transform, 262

inverse, 264
Laplacian, 37

spherical coordinates, 36
layer potential, 48
leaf

of a tree, 189
Lebesgue constant, 176
Legendre polynomials, 82
Lemma: A sign condition for A-stability of

multi-step methods, 303
Lemma: Arclength integration by parts, 64
Lemma: Chebychev interpolation error estimate,

173
Lemma: Circulant augmentation of Toeplitz

matrix, 273
Lemma: Convolution quadrature weights are

Taylor expansion coefficients, 290
Lemma: Convolution quadrature weights for

multi-step CQ, 309
Lemma: Ellipticity of c, 143
Lemma: Error propagation operator of coarse

grid correction, 386
Lemma: Exact quadrature by equidistant

trapezoidal rule, 314
Lemma: Fundamental solution for

L := −∆ + s2, 282
Lemma: Generalized orthogonal polynomials,

103

Lemma: Lower bound for T, 364
Lemma: Nesting of meshes implies nesting of

finite element spaces, 366
Lemma: Orthogonal projections onto orthogonal

subspaces, 362
Lemma: Pointwise estimate for convolution, 268
Lemma: Properties of I, 163
Lemma: Quadrature error and

best-approximation error, 106
Lemma: Representation of low-rank matrices,

159
Lemma: Smoothness of double layer potential,

45
Lemma: Smoothness of single layer potential, 43
Lemma: Symmetric positive definite Galerkin

matrices, 342
Lemma: Symmetric successive subspace

correction, 375
Lemma: Upper bound for T, 364
Lemma: Variation of constants formula, 286
level

of mesh, 370
of the nodes of a tree, 190

Level of nodes of tree, 190
Linear interpolation operator, 163
Linear multi-step method, 299
Linear variational problem, 23
load vector, 342
local parameterization, 82
local shape functions (LSF), 124
local→global index map, 89
LU-dcomposition, 239
LU-decomposition, 239

magneto-quasistatic model, 278
marching on in time (MOT), 261
Matrix graph, 383
matrix norm, 158
mesh, 120, 341

of a curve, 78
mesh hierarchy, 370
Mesh/partitioning of a curve, 78
Meshwidth, 132
meshwidth, 132
method of lines, 322
Minimal angle, 132
mirror symmetry, 20
MOT = marching on in time, 261
Multivariate polynomials, 122

Near field, 181
near field, 180

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 400

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Nested finite element meshes, 366
nested iteration, 372
nested meshes, 366
Neumann BVP, 69, 73, 83
Neumann trace, 52
Neumann trace operator, 52
Neumann trace space, 53
Newton potential, 38
nodal interpolation operator, 134
nodal interpolation operators, 123
node

quadrature, 101
node set

of a tree, 189
nodes

of a mesh, 79
non-linear variational problem, 376
non-local operator, 148
Non-local operators on RN, 149
Non-local operators on function spaces, 148
normal component trace, 19
numerical quadrature, 100

offset function, 138
Operational calculus, 267
operational calculus, 267
operator

non-local, 148
order

of quadrature formula, 101
Order of a quadrature rule, 101
orthogonal projection, 360
Orthogonal projection in finite dimensions, 360

panels
of a mesh, 79

parameterization, 78
Pardiso, 347
partitioning

of a curve, 78
PEC boundary conditions, 20
Piecewise Sobolev spaces on Γ, 132
Plancherel theorem, 261
plane wave, 281
point charge, 32
Poisson equation, 341
Poisson integral formula, 47
Poisson matrix, 344
polygon

curved, 78
polynomial interpolation, 86
polynomials

degree, 122
multivariate, 122

post-smmoothening, 369
potential

electrostatic, 16
pre-smmoothening, 369
preconditioners, 245
procedural form, 83
prolongation matrix, 367
pullback, 79
Pullback from a curve, 79

quadratic minimization problem, 341
quadrature error, 104
quadrature formula

order, 101
quadrature node, 101
quadrature weight, 101

Rank of a matrix, 158
reaction coefficient, 341
Real analytic functions, 107
real analytic, 107
recurrence relation, 301
reference interval, 82
reference shape function, 82
reference shape functions, 82
Region of stability for linear multi-step method,

302
regularization

of a BIE, 150
relative distance

of panels, 119
relaxation parameter, 349
residual linear form, 357
restrict-to-cluster, 210, 250
root

of a tree, 189
Rotation invariance, 36
rotation operator, 15
rotation-invariant, 36
row cluster bases

for H2-matrix, 249
row tree, 215
Runge-Kutta single-step method, 317

sampling, 259
scattered field, 281
Sectorial transfer function/parabolic symbol, 324
separation of variables, 36
shape function

reference, 82

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 401

https://en.wikipedia.org/wiki/Analytic_function

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

shape functions
global, 80, 124
local, 81

shape regularity, 132
shape regularity measure, 343
shift operator, 293
Single layer potential, 43
single layer potential, 42
singularity, 33
skin effect, 280
smoothener, 368
Sobolev norm, 132
Sobolev space

higher-order, 132
on surfaces, 61

Sobolev space H1(Ω), [NumPDE Def. 1.3.4.8],
17

solid-angle formula, 150
sons

in a tree, 189
sound-soft, 281
source charge distribution, 22
Space of function with square-integrable

Laplacian, 54
sparse matrix, 343
sparsity measure

of a block partition, 208
Sparsity measure of block partition, 208
spectral condition number, 353
spherical coordinates, 36, 130
stability

of subspace splitting, 363
stage

of RK-SSM, 317
stage form

of RK-SSM, 318
stationary linear iteration, 349
stationary linear iterations

error recursion, 349
stencil, 346
strengthened Cauchy-Schwarz inequality, 363
Strongly coupled nodes, 387
sub-tree, 190
Sub-trees, 190
subspace correction method, 356, 359
support

of a function, 148
surface gradient, 66
surface integral, 31
surface mesh, 121
symmetric positive definite (s.p.d.), 240

tangent vector, 64
tangential component trace, 19
Taylor expansion, 15, 161
tensor product polynomials, 110, 165
tensor-product interpolation, 165
tensor-product polynomial interpolation operator,

165
Tensor-product polynomials, 110
tensor-product quadrature, 110
tent function, 81, 342
test space

for Galerkin discretization, 76
Theorem: z-Transform and discrete convolution,

269
Theorem: “Higher” continuity of BIOs, 62
Theorem: A stable and consistent linear MSM is

convergent, 304
Theorem: Analyticity of Laplace transforms, 262
Theorem: Asymptotic interpolation/projection

error estimates, 135
Theorem: Best low rank approximation, 223
Theorem: Cauchy integral formula, 289
Theorem: Cauchy integral theorem, 264
Theorem: Cea’s lemma, 131
Theorem: Characterization of Cauchy data, 68
Theorem: Chebychev interpolation of analytic

functions, 174
Theorem: Compatibility conditions for piecewise

smooth functions in H1(Ω), 19
Theorem: Continuity of boundary integral

operators, 61
Theorem: Continuity of single layer potential in

energy (trace) spaces, 57
Theorem: Continuity of the double layer potential

in energy trace spaces, 57
Theorem: Continuity of the Neumann trace on

H(∆, Ω), 54
Theorem: Continuity of the single layer potential,

43
Theorem: Convergence of geometric multigrid,

371
Theorem: Convergence of IE-CQ, 297
Theorem: Convergence of the CG method, 354
Theorem: Convergence of the PCG method, 375
Theorem: Convolution theorem for Fourier

transform, 266
Theorem: Convolution theorem for Laplace

transform, 267
Theorem: Decay of Newton potential, 39
Theorem: Diagonalization of circulant matrices,

271

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 402

https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Theorem: Differentiation formula for Laplace
transform, 265

Theorem: Dimensions of BE spaces on curves,
80

Theorem: Dimensions of BE spaces on
triangulated surfaces, 123

Theorem: Economical QR-decomposition, 223
Theorem: Electric fields are irrotational/curl-free,

15
Theorem: Ellipticity of aV in 2D, 70
Theorem: Ellipticity of aV in 3D, 69
Theorem: Ellipticity of aW, 71

Theorem: Embedding of H−
1
2 (Γ), 55

Theorem: Equivalence theorem for quadratic
minimization problems, 23

Theorem: Existence and uniqueness of energy
minimizing potentials, 23

Theorem: Existence of electrostatic potential, 16
Theorem: Exponential convergence of

trigonometric interpolation for analytic
interpolands, [NumCSE Thm. 6.5.3.14],
314

Theorem: First Dahlquist barrier [DB02,
Thm. 7.16], 304

Theorem: Gauss(-Legendre) quadrature, 101
Theorem: Generalized Gauss quadrature, 104
Theorem: Green’s first formula, 24
Theorem: Green’s second formula, 30
Theorem: Growth of solutions of linear

recurrence relations, [DB02, Thm. 3.40],
301

Theorem: Higher order trace theorem, 134
Theorem: Independence of Galerkin solution of

choice of basis, 77
Theorem: Integral representation formula, 41
Theorem: Integral representation formula for 3D

exterior domains, 41
Theorem: Integral representation of aW in 2D, 66
Theorem: Integral representation of aW in 3D, 66
Theorem: Inverse Laplace transform, 264
Theorem: Jump relations for layer potentials, 60
Theorem: Jump representation formula, 58
Theorem: LU-decomposition of s.p.d. matrices,

240
Theorem: Main approximation theorem for

S−1
p (G), 133

Theorem: Main approximation theorem for
S0

p(G), 133
Theorem: Main convergence theorem for SSC,

363
Theorem: Multigrid = multi-level subspace

correction, 371
Theorem: Multiplicative trace inequality, 50
Theorem: Pointwise estimate for convolution II,

268
Theorem: Polynomial approximation of analytic

functions, 108
Theorem: Positivity of Clenshaw-Curtis weights,

102
Theorem: Preconditioners from stationary linear

iterations, 375
Theorem: Properties of discrete convolution of

sequences, 259
Theorem: Quadrature error estimate for

integrands with finite smoothness, 106
Theorem: Second Dahlquist barrier, [DB02,

Thm. 7.36], 303
Theorem: Singular Value Decomposition (SVD),

222
Theorem: SSC with orthogonal subspaces, 362
Theorem: Uniqueness of fundamental solutions,

36
Theorem: Validity of 1st-kind indirect BIE for

Dirichlet problem, 73
Theorem: Validity of 1st-kind indirect BIE for

Neumann problem, 73
Theorem: Young’s inequality for convolutions,

256
Theorem: L2(Γ)-duality between H

1
2 (Γ) and

H−
1
2 (Γ), 55

tiling, 180
time-invariant channel, 258
Toeplitz matrix, 272
tomography, 276
trace

normal component, 19
tangential component, 19

Trace operator, 42
trace operator, 48
transfer function, 267
transfer matrix, 249
translation-invariant, 36
transmission conditions, 140
transmission problems, 139
trapezoidal rule, 101, 314
Tree, 189
tree, 189
trial space

for Galerkin discretization, 76
Triangular planar mesh/triangulation, 120
Triangular surface mesh/surface triangulation,

121

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 403

https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NumMeth/NumCSE_Lecture_Document.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

triangulation, 120
trigonometric polynomial, 314
triple-factor low-rank factorization, 246
two-point boundary-value problem, 341

uniform cone condition, 115
uniformly positive definite, 340
unisolvence

of interpolation nodes, 163

V-cycle, 371
of multigrid, 376

variation of constants formula
extended, 335

variational crimes, 136
variational formulation, 341
variational problem

discrete, 76, 77
vertex, 120

vertex set
of a tree, 189

vertical concatenation
of matrices, 225

virtual work principle, 22
volume integral operator, 38
volume potential, 38

W-cycle, 371
weight

quadrature, 101
weight function, 103
weights

convolution quadrature, 284

Young’s inequality
for convolutions, 256

z-transform, 269
zero-stable, 302

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 404

Abbreviations and Acronyms

BDF =̂ backward difference formula, 298
BEM =̂ boundary element method, 11
BIE =̂ boundary integral equation , 48
BIO =̂ boundary integral operator , 60
BLF =̂ bilinear form , 23
BVP =̂ boundary value problem , 11
BVP =̂ boundary-value problem, 340

c.i.t. =̂ continuous-in-time, 292
CEQ =̂ convolution equation, 258
CGC =̂ coarse grid correction, 366

DFT =̂ discrete Fourier transform, 315

EDP =̂ exterior Dirichlet boundary value
problem, 149

EPM =̂ error propagation matrix, 349

FAS =̂ full aproximation storage, 376
FOCQ =̂ fast and oblivious convolution

quadrature, 322
FS =̂ fundamental solution , 32

GalM =̂ Galerkin matrix , 77
GE =̂ Gaussian elimination, 347
GSF =̂ global shape function , 80

IRK-SSM =̂ implicit Runge-Kutta single-step
method, 317

LF =̂ linear form , 23
LPC =̂ local preservation of constants, 391
LSE =̂ linear system of equations, 151
LSE =̂ linear system of equations , 11
LSF =̂ local shape function , 81

MSCQ =̂ multi-step convolution quadrature, 297
MSM =̂ (linear) multi-step method, 297

NI =̂ nested iteration, 372
NLVP =̂ non-linear variational problem, 376

PDE =̂ partial differential equation , 11
pwc =̂ piecewise constant , 81
pwl =̂ piecewise linear , 79

QF =̂ quadratic functional or quadrature formula
(→ Def. 1.4.3.41), 100

QF =̂ quadratic functional or quadrature formula
(→ Def. 1.4.3.41), 22

QMP =̂ quadratic minimization problem , 22
QN =̂ quadrature node (→ Def. 1.4.3.41), 100
QR =̂ quadrature rule (→ Def. 1.4.3.41), 100
QW =̂ quadrature weight (→ Def. 1.4.3.41), 100

RF =̂ representation formula , 30
rhs =̂ right-hand side , 38
RK-SSM =̂ Runge-Kutta single-step method,

317
RK-SSM =̂ Runge-Kutta single-step methods,

317
RKCQ =̂ Runge-Kutta convolution quadrature,

317

s.p.d. =̂ symmetric positive definite, 240
SLI =̂ stationary linear iteration, 347
SSM =̂ single-step method, 297

VF =̂ variational formulation , 69

405

List of Symbols

C1
pw(Ω) =̂ continuous, piecewise continuously

differentiable functions, 19
(xℓ) =̂ sequence (usually on Z), 259
∗ =̂ convolution (binary operation), 255
Div =̂divergence of a vector field, 24
tℓv =̂ interpolation nodes associated with cluster

v, 203
A =̂ set of transfer functions satisfying

Ass. 3.3.1.1, 284
D(Ω)′ =̂ space of distributions on Ω, 35
LI =̂ set of leaves of a cluster tree TI, 191
Qp(Rd), 110
FFTn =̂ discrete Fourier transform of length n,

315
u, Fv, Fw =̂ functions in H

1
2 (Γ), 49

H(∆, Ω) =̂ space of function with
square-integrable Laplacian, 54

H
1
2 (Γ) =̂ Dirichlet trace space., 49

H−
1
2 (Γ) =̂ Neumann trace space on ∂Ω, 53

H1(Ω) =̂ Sobolev space, see Def. 1.1.2.14, 17
Kl(A, z) =̂ Krylov subspace, 352
L∞(D) =̂ space of bounded functions on D, 43
L1(D) =̂ space of integrable functions on D, 43
L2(Ω) =̂ Hilbert space of square integrable

functions, see Def. 1.1.2.15, 17
‖·‖H1(Ω) =̂ norm of Sobolev space H1(Ω), 17

‖·‖L2(Ω) =̂ norm of L2(Ω), 17

‖·‖ =̂ Euclidean norm of a vector ∈ Rn, 31
‖·‖1, ‖·‖2, ‖·‖∞ =̂ vector norms and associated

matrix norms, 158
A, B, C, . . . (matrices), 77
Tv =̂ transfer matrix in H2-matrix format, 248
adm =̂ abstract admissibility condition, 198
αmin(G) =̂ minimal angle of mesh G, 132
{T}Γ =̂ average of a trace, 58
Br(x) =̂ ball with center x and radius r > 0, 27
C+ := {z ∈ C : Re(z) > 0}, 262
C+ := {z ∈ C : Re(z) > 0}, 262
D := {1, . . . , n} × {1, . . . , m} =̂ index pairs for

kernel collocation matrix, 181
F =̂ matrix block partition for a hierarchical

matrix, 215
box =̂ bounding box, 191
box =̂ bounding box for collocation points, 183
gradΓ =̂ surface gradient, 66
CF (X) =̂ causal polynomially bounded

functions, 262
Ω′ := Rd \Ω =̂ complement of a domain

Ω ⊂ Rd, 13
CQIE

τ =̂ implicit Euler convolution quadrature,
288

D =̂ total derivative operator, 15
dist(X; Y) =̂ (Euclidean) distance of two set

Rd, 172
dist(X; Y) =̂ distance of two sets X, Y ⊂ Rd,

119
ḟ , γ̇ =̂ derivative of a function depending on a

single parameter (“time”), 31
d f
ds =̂ arclength derivative, 64
d
ds =̂ arclength derivative, 64

G∆(x, y) =̂ fundamental solutions, 34
γ∗ f =̂ pullback under parameterization γ, 79
JTKΓ =̂ jump of a trace, 58
κ(A) =̂ spectral condition number of the

invertible matrix A, 353
Lℓ =̂ℓ-th Lagrange polynomial for polnomial

interpolation, 164
L(X, Y) =̂ vector space of bounded (continous)

linear operators (mappings) X → Y,
257

MH ≺Mh =̂ nesting of meshes, 366
N∆ =̂ Newton potential operator, 38
Tn,Σ =̂ normal component trace, 19
TN =̂ Neumann trace on Γ, 52
FFT =̂ discrete Fourier transform, 271
depth(T) =̂ depth of a tree T , 190
spm =̂ sparsity measure of a cluster-based

block partitioning, 208
tril =̂ lower-triangular part of a matrix, 349
triu =̂ upper triangular part of a matrix, 371
⊕ =̂ H-addition of hierarchical matrices, 227
Pp(Rd) =̂ space of d-variate polynomials, 122

406

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Pp(Rd) =̂ d-variate polynomials of total degree
≤ p, 79

Hm
pw(∂Ω) =̂ piecewise Sobolev space on

Γ := ∂Ω, 132
S−1

p (G) =̂ discontinuous, piecewise polynomial
BE functions of degree p, 123

S−1
p (G) =̂ discontinuous, piecewise polynomial

BE functions of degree p, 79
rank(M) =̂ rank of a matrix M, 158
Î =̂ reference interval]-1,1[, 82
ρK =̂ shape regularity measure of cell K, 343
ρM =̂ shape regularity measure of a meshM,

343
M|v×w =̂ matrix block belonging to a pair of

clusters, 202
S0

p(G) =̂ continuous, piecewise polynomial BE
functions of degree p, 123

S0
p(G) =̂ continuous, piecewise polynomial BE

functions of degree p, 79

♯M =̂ cardinality (no. of elements) of the set
M, 80

Tt,Σ =̂ tangential component trace, 19
Tr =̂ trace operator for matrices, 37
root(T) =̂ root of a tree T , 189

~µ,~ϕ,~ξ, . . . (coefficient vectors), 77
V(G) =̂ set of vertices of mesh G, 81
b1

N, . . . , bN
N =̂ basis function for BE space, 80

bv
ℓ =̂ ℓ-th cardinal function belonging to cluster

v, 203
cqop =̂ convolution quadrature operator, 284
diam =̂ diameter of a set in Rd, 172
hG =̂ meshwidth of mesh G, 132

sH
1
2 (∂Ω) =̂ functions in H

1
2 (∂Ω) with vanishing

mean, 71
GΓ =̂ mesh of curve/surface Γ, 79
E(G) =̂ edge set of a mesh, 121
V(G) =̂ vertex set of a mesh, 121
a, . . . , x, y, Bz =̂ small vectors/points, 14

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 407

Examples and Remarks

H-LU decomposition as preconditioner, 245
H-matrix × dense matrix, 220
δ for simple BDF multi-step schemes, 309
Backward difference formulas (BDF), [DB02,

Sect. 7.3.2], 298
Global bi-directional interpolation of singular

kernel, 168
“LyGL = δx”, 35

“Continuity” of functions in H
1
2 (Γ), 51

“Differentiation theorem” for convolution
quadrature, 293

“First-kind”, 71
“Second-kind”, 72

A basis for S−1
0 (G), 81

A concrete basis transformation matrix, 367
A-stability and order of linear multi-step

methods, 303
Abstract convergence theory for SSC, 363
Adaptive Clenshaw-Curtis quadrature, 109
Adaptive low-rank recompression, 225
Admissible source charge distributions, 22
Affine space V, 76
Algorithms for Runge-Kutta-based convolution

quadrature, 322
AMG terminology, 382
Anisotropic diffusion matrix, 388
Approximately solving convolution equations by

convolution quadrature, 285
Approximation of surfaces, 124
Approximations underlying (3.4.2.34), 310
Assembly of Galerkin matrix for double layer BIO

K, 91
Asymptotic complexity of H-multiplication, 239
Asymptotic decay of iteration error, 350
Asymptotically smooth kernels, 169

Behavior of quadrature errors for global
quadrature rules, 104

Bi-directional interpolation of smooth kernel
function, 168

Bi-directional polynomial interpolation, 206

BIEs for general second-order scalar differential
operators, 68

Bilinear FE for scalar elliptic Dirichlet BVPs, 344
Binary cluster tree for d = 1, 195
Boundary integral equations related to scalar

2nd-order elliptic BVPs, 152
Bounding the sparsity measure, 209

Choice of integration radius r, 316
Co-normal trace, 56
Coarse-fine splitting for the Poisson matrix, 389
Complex contour integrals, 263
Compressing discrete BIEs with double layer

kernels, 213
Computing G∆ in 3D, 36
Convergence of CG for the Poisson matrix, 354
Convergence of CQ based on BDF-2, 311
Convergence of Gauss-Seidel II, 355
Convergence of Gauss-Seidel method for

Poisson matrix, 351
Convergence of implicit Euler convolution

quadrature, 294
Convergence of multi-step CQ, 311
Convolution evolution partial differential

equations, 322
Convolution in Lp(R)-spaces, 256
Convolution of distributions [Rud73, pp. 170],

256
Convolution quadrature based on explicit Euler

timestepping?, 288
Cost of direct elimination solvers, 347

Data structure for H2-matrices, 249
Density argument, 49
Derivation of impedance conditions, 280
Differential operators are strictly local, 148
Direct computation of convolution quadrature

weights, 291

Electrostatic interpretation of ΨSL, 44
Electrostatic meaning of Ψ∆

DL, 45
Electrostatics in homogeneous isotropic media,

26

408

https://en.wikipedia.org/wiki/Backward_differentiation_formula

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

Error incurred in multiplication of H-matrices,
239

Expand and restrict as adjoint operations, 210
Explicit midpoint method, 298
Explicit midpoint method for decay equation,

Ex. 3.4.1.26 cnt’d, 301
Exponential sum approximation by quadrature,

324

Families of sparse matrices, 158
Fast & oblivious CQ: Properties & variants, 338
Finite element discretization, 280
Fixed potential boundary conditions, 21
Fixing the potential, 21
Fundamental solution for 2nd-order partial

differential operator, 37

Galerkin error estimates for 2nd-kind BIE, 131
Gauss’ law, 25
General cluster tree, 191
General layer potentials, 57
Global quadrature of analytic integrand, 108
Globally supported singular kernel functions, 156
Green’s function for a half space, 47
Green’s function for −∆ on a disk, 46

Impact of kernel approximation on kernel matrix,
160

Important stiffly accurate RK-SSMs, 318
Instability of a 2-step method, 301
Integral representation formula for exterior

domains, 41
Intrinsic norm of H

1
2 (Γ), 52

Iterative solution methods for linear systems of
equations, 213

Kernel with known Laplace transform, 280

Laplace transform of causal power function, 262
Layer potentials and traces, 42
local→global index map, 89
Logarithmic kernel in 1D: Separable

approximation by Taylor expansion, 162

Matrix functions, 320
Meaning of “density unknowns” φ and v, 74
Measuring rates of convergence of stationary

linear iterations, 350
More general surface meshes, 122
Multigrid cycles, 371
Multigrid iteration as successive subspace

correction method, 371
Multiplication of “simple” H-matrices, 237

Near- and far-field boxes constructed from
cluster trees in 1D, 201

Necessity of decay conditions, 28
Nodal basis for S0

1 (G), 81
Nodal interpolation operators, 123
Nyström-discretized boundary integral equations

of the second kind, 149

Order of consistency of some multi-step
methods, 300

Pairing of traces, 53
Partial blocks contributing to target block, 237
Poisson equation, 341
Poisson integral formula, 47
Poisson matrix, 344
Polynomially growing transfer functions, 294
Potentials on unbounded domains, 18
Precomputing complex quadrature formula, 129
Preview: multiplication of hierarchical matrices,

220
Properties of the potential due to a point charge,

32
Properties of the potential of a point charge in

2D, 33

Quadrature error of t-local trapezoidal rule
quadrature, 328

Quadrature over Talbot contour, 326
Quadtree partition from cluster trees, 196
Quadtree-based admissible tiling of unit square

[Bör21, Sect. 2.4], 187

Real-valued convolution quadrature weights, 290
Reference shape functions for S−1

0 (G), 125

Reference shape functions for S0
1 (G), 125

Region of stability for BDF methods, 303
Relationship to prolongation for geometric

multigrid, 382

S.p.d. boundary element Galerkin matrices, 240
Scalar potentials and work, 16
Scaling of electromagnetic field problems, cf.

[NumPDE Rem. 1.2.1.25], 14
Separable approximation by truncated power

series, 161
Sequences as distributions, 260
Signal-processing background, 258
Simplification of right-hand side, 142
Some special convolutions, 256
Sparsity measure for clustering in 1D, 209
Special initial steps for multi-point methods, 299

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 409

https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NUMPDEFL/NUMPDE.pdf

AdvNumCSE, AT’23, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2023

SSC with M = 2: Method of alternating
projections, 362

Stable evaluation of integrands, 118
Stiffly accurate RK-SSMs, 318
Storage requirements of double-factor and

triple-factor representations, 246
Strong couplings defined by Poisson matrix, 388
Surface meshes as traces of volume meshes,

122

Tensor-product Chebychev interpolation of
singular kernel, 177

The “magic” of the equidistant composite
trapezoidal quadrature rule, [NumCSE
Exp. 7.5.0.16], 313

The AMG fill-in challenge, 384
The geometry of SSC, 361
The Neumann trace is not defined on H1(Ω), 53
The Newton potential from a physics

perspective, 39
The prototypical simple H-matrix, 215
The square of the Abel integral operator, 277
Trapezoidal rule, 101
Two-grid method for the Poisson matrix, 369

Unbalanced cluster tree, 195

Unbounded functions in H
1
2 (Γ), 52

Well-defined IE-CQ, 288

5. Reduced Bases Methods (RBM), 5.4. Separable Approximation 410

https://people.math.ethz.ch/\protect \unhbox \voidb@x \protect \penalty \@M \ {}grsam/NumMeth/NumCSE_Lecture_Document.pdf

	0 Introduction
	0.1 Course Contents
	0.1.1 Focus of this Course
	0.1.2 Prerequisite Knowledge
	0.1.3 Goals
	0.1.4 Requests for Student Activity
	0.1.5 Literature

	0.2 Specific information
	0.2.1 Assistants and exercise classes
	0.2.2 Assignments
	0.2.3 Information on Examinations

	1 Boundary Element Methods (BEM)
	1.0.1 Further Reading for this Chapter
	1.1 Elliptic Model Boundary Value Problem: Electrostatics
	1.1.1 The Electric Field
	1.1.2 Electric Scalar Potential
	1.1.3 Continuity of Fields and Boundary Conditions
	1.1.4 Equilibrium Conditions
	1.1.5 Variational Equations
	1.1.6 Boundary Value Problems
	1.1.7 Decay conditions on unbounded domains
	1.1.8 Supplement: An energy norm for source charge distributions

	1.2 Boundary Representation Formulas
	1.2.1 Green's Formulas
	1.2.2 Fundamental Solutions
	1.2.2.1 Potential of a Point Charge
	1.2.2.2 Potential of a Line Charge
	1.2.2.3 Distributional View: bold0mu mumu L= 0L= 0subsubsectionL= 0L= 0L= 0L= 0

	1.2.3 Volume Potential Representation
	1.2.4 Boundary Potential Representation
	1.2.5 Layer Potentials
	1.2.5.1 Single Layer Potential
	1.2.5.2 Double Layer Potential

	1.2.6 Green's Functions

	1.3 Boundary Integral Equations (BIEs)
	1.3.1 Trace Operators
	1.3.1.1 Dirichlet Trace
	1.3.1.2 Neumann Trace

	1.3.2 Mapping Properties of Layer Potentials
	1.3.3 Jump Relations for Layer Potentials
	1.3.4 Boundary Integral Operators (BIOs)
	1.3.4.1 Formal Definition
	1.3.4.2 Integral Representations
	1.3.4.3 Variational Form for Hypersingular BIO

	1.3.5 Direct Boundary Integral Equations
	1.3.5.1 First-kind BIEs
	1.3.5.2 Second-kind BIEs

	1.3.6 Indirect Boundary Integral Equations

	1.4 Boundary Element Methods in Two Dimensions
	1.4.1 Abstract Galerkin Discretization
	1.4.2 Boundary Element Spaces on Curves
	1.4.2.1 Curve Partitionings
	1.4.2.2 Piecewise Polynomial Functions on Curves
	1.4.2.3 Shape Functions
	1.4.2.4 Solving Boundary Value Problems via Galerkin BEM
	1.4.2.5 Approximation of Curves

	1.4.3 Computation of BEM-Galerkin Matrix in 2D
	1.4.3.1 Panel-oriented Assembly
	1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas
	1.4.3.3 Recapitulated [NumCSE NCSE-cha:NumericalQuadrature]: Aspects of Numerical Quadrature
	1.4.3.4 Matrix Entries by Quadrature

	1.5 Boundary Element Methods on Closed Surfaces
	1.5.1 Surface Meshes
	1.5.2 Boundary Element Spaces on Triangulated Surfaces
	1.5.2.1 Definitions
	1.5.2.2 Shape Functions

	1.5.3 Assembly of Galerkin Matrices

	1.6 BEM: Various Aspects
	1.6.1 Convergence
	1.6.1.1 Abstract Galerkin Error Estimate
	1.6.1.2 Approximation in Boundary Element spaces
	1.6.1.3 Variational Crimes
	1.6.1.4 Pointwise Recovery of Solutions

	1.6.2 Mixed Boundary Value Problems
	1.6.3 Transmission Problems
	1.6.3.1 Two-Domain Setting
	1.6.3.2 Multi-Domain Transmission Problem

	1.6.4 BEM for Wave Propagation

	2 Local Low-Rank Compression of Non-Local Operators
	2.1 Examples: Non-Local Operators
	2.1.1 (Discretized) Integral Operators
	2.1.2 Long-Range Interactions in Discrete Models
	2.1.3 Kernel Collocation Matrices

	2.2 Approximation of Kernel Collocation Matrices
	2.2.1 Separable (= Low-Rank) Kernel Approximation
	2.2.1.1 Polynomial Expansions
	2.2.1.2 Uni-directional Interpolation
	2.2.1.3 Bi-directional interpolation

	2.2.2 Error Estimates and Admissibility Condition for Singular Kernels
	2.2.2.1 Truncation Error Estimates for Taylor Expansion
	2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation
	2.2.2.3 Estimates for Bi-Directional Interpolation

	2.3 Clustering Techniques
	2.3.1 Local Separable Approximation
	2.3.2 Cluster Trees
	2.3.3 Building Near- and Far-Field Blocks
	2.3.4 Storing Block-Partitioned Kernel Collocation Matrix
	2.3.5 MatrixVector: Efficient Implementation
	2.3.6 Panel Clustering

	2.4 Hierarchical Matrices
	2.4.1 Definition
	2.4.2 Low-Rank Matrices: Algorithms
	2.4.3 H-Addition of Hierarchical Matrices
	2.4.4 H-Multiplication of Hierarchical Matrices [Sect. 5.6]BOE17
	2.4.5 Hierarchical LU-Decomposition
	2.4.6 H2-Matrices

	3 Convolution Quadrature
	3.1 Basic Concepts and Tools
	3.1.1 Convolution of Causal Functions
	3.1.2 Discrete Convolutions
	3.1.3 The Laplace Transform
	3.1.4 Diagonalizing Convolutions
	3.1.5 Toeplitz Matrix Numerical Linear Algebra

	3.2 Convolution Equations: Examples
	3.2.1 Tomography: Abel Integral Equation
	3.2.2 Impedance Boundary Conditions
	3.2.3 Time-Domain Boundary Integral Equations

	3.3 Implicit-Euler Convolution Quadrature
	3.3.1 Setting and Goal
	3.3.2 Derivation of Implicit Euler CQ
	3.3.3 Properties of implicit-Euler Convolution Quadrature
	3.3.4 Convergence

	3.4 Multistep Convolution Quadrature (MSCQ)
	3.4.1 Linear Multi-Step Numerical Integrators
	3.4.2 Multi-Step Convolution Quadrature: Weights
	3.4.3 Multi-Step Convolution Quadrature: Algorithms

	3.5 Runge-Kutta Convolution Quadrature (RKCQ)
	3.5.1 Implicit Runge-Kutta Single-Step Methods
	3.5.2 Runge-Kutta CQ weights

	3.6 Fast and Oblivious Convolution Quadrature

	4 (Algebraic) Multigrid Methods
	4.1 Solvers for Finite Element Linear Systems
	4.1.1 Elliptic Model Boundary Value Problems
	4.1.2 Sparse Elimination Solvers
	4.1.3 Stationary Linear Iterations (SLIs)
	4.1.4 Conjugate Gradient Method (CG)

	4.2 Geometric Multigrid Method
	4.2.1 Subspace Correction Methods
	4.2.2 Convergence of SSC Methods
	4.2.3 Coarse-Grid Correction (CGC)
	4.2.4 Multigrid Iteration
	4.2.5 Multigrid Preconditioning
	4.2.6 Full Approximation Storage Multigrid (FAS)

	4.3 Algebraic Multigrid (AMG): Matrix-Based Multigrid
	4.3.1 AMG Framework
	4.3.2 AMG Heuristics
	4.3.3 C/F Splitting Algorithm
	4.3.4 AMG Prolongation

	5 Reduced Bases Methods (RBM)
	5.1 Parameterized Boundary Value Problems
	5.1.1 Coefficients as Parameters
	5.1.2 Parameter-Dependent Domains
	5.1.3 Abstract Framework

	5.2 Reduced Bases Methods: Ideas and Algorithms
	5.2.1 Prelude: Polynomial Interpolation
	5.2.2 Projected Variational Problem
	5.2.3 Generation of Reduced Bases
	5.2.3.1 Proper Orthogonal Decomposition (POD)

	5.2.4 Special Case: Separable Decomposition

	5.3 Error Estimation
	5.3.1 Residual-Based Estimator
	5.3.2 Computation of Residual Norm
	5.3.3 Lower Bound for h(bold0mu mumu subsection)

	5.4 Separable Approximation
	5.4.1 Interpolation on Parameter Space
	5.4.2 Adaptive Cross Approximation (ACA)
	Index
	Acronyms
	Symbols
	Examples
	Codes

