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Scope of the course

Analysis and implementation of numerical methods for
pricing options.

Models: Black-Scholes, stochastic volatility, exponential
Lévy.

Options: European, American, Asian, barrier, compound . . .

In this course: Focus on deterministic (PDE based) methods

I Finite difference methods (FDM)

I Finite element methods (FEM)

This course will be complemented by the course Monte Carlo
methods in autumn 2009.

Computational Methods for Quant. Finance II



Partial differential equations (PDEs)
Solving the heat equation numerically

Organization of the course

14 lectures (2 hours) + 13 exercise classes (1 hour).

I No lectures on April, 14.

I Testat: 70% of solved homework assignments
(theoretical exercises + MATLAB programming).

Examination: On Tuesday, May 26, 15–17.
Written, closed-book examination includes theoretical and
MATLAB programming problems.
Examination takes place on ETH-workstations running MATLAB
under LINUX. Own computer will NOT be required.
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Definitions and notation

Let α = (α1, . . . , αd) ∈ N
d
0 be a multiindex. Set |α| =

∑d
i=1

αi.
For u : G → R, x = (x1, . . . , xd) ∈ G ⊂ R

d define

Dαu(x) :=
∂|α|u(x)

∂xα1

1
· · · ∂xαd

d

= ∂α1

x1
· · · ∂αd

xd
u.

Let k ∈ N0. Then

Dku(x) := {Dαu(x) : |α| = k}

is the set of all partial derivatives of order k. If k = 1, we regard
the elements of D1u(x) =: Du(x) as being arranged in a vector

Du = (∂x1
u, . . . , ∂xd

u).
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If k = 2, we regard the elements of D2u(x) as being arranged in a
matrix

D2u =






∂x1
∂x1

u · · · ∂x1
∂xd

u
. . .

∂xd
∂x1

u · · · ∂xd
∂xd

u




 .

In the following: write ∂xixj
instead of ∂xi

∂xj
. Hence, the

Laplacian ∆u of u can be written as

∆u :=

d∑

i=1

∂xixi
u = tr(D2u).

A partial differential equation (PDE) is an equation involving an
unknown function of two or more variables and certain of its
derivatives.
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Let G ∈ R
d be open, x = (x1, . . . , xd) and N 3 k ≥ 1.

Definition
An expression of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0, x ∈ G

is called a k-th order PDE, where

F : R
dk

× R
dk−1

× · · · × R
d × R × G → R

is given and
u : G → R

is the unknown.
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Let aij(x), bi(x), c(x) and f(x) be given functions. For a linear
2nd order PDE in d + 1 variables, F has the form

F (D2u,Du, u, x) = −
d∑

i,j=0

aij(x)∂xixj
u+

d∑

i=0

bi(x)∂xi
u+c(x)u−f(x).

Assume that the matrix A(x) := {aij(x)}d
i,j=0 is symmetric with

real eigenvalues λ0(x) ≤ λ1(x) ≤ · · · ≤ λd(x).

Definition
Let S = {0, . . . , d}. At x ∈ R

d+1, the PDE is called

(i) elliptic ⇔ λi(x) 6= 0, ∀i ∧ sign(λ0(x)) = . . . = sign(λd(x))

(ii) parabolic ⇔ ∃!j ∈ S : λj(x) = 0 ∧ rank(A(x), b(x)) = d + 1

(iii) hyperbolic ⇔ λi(x) 6= 0, ∀i ∧∃!j ∈ S : signλj(x) 6= signλk(x),

k ∈ S \ {j}

The PDE is called elliptic, parabolic, hyperbolic on G, if it is
elliptic, parabolic, hyperbolic ∀x ∈ G.
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Examples

I The heat equation ∂tu − ∆u = f(t, x) is parabolic (set
x0 = t).

I The Poisson equation ∆u = f(x) is elliptic.
I The wave equation ∂ttu − ∆u = f(t, x) is hyperbolic (set

x0 = t)
I The Black Scholes equation for the value of a European

option v(t, s)

∂tv −
1

2
σ2s2∂ssv − rs∂sv + rv = 0

with σ, r ≥ 0 is parabolic at (t, s) ∈ (0, T ) × (0, R) and
degenerates to a ordinary differential equation as s → 0.

Note: PDEs can have infinitely many solutions. To obtain a unique
solution, we have to pose boundary conditions.
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The PDE

Let G = (a, b) ⊂ R be a open interval and let J := (0, T ), T > 0.
Find u : J × G → R such that







∂tu − ∂xxu = f(t, x) in J × G
u = 0 on J × ∂G

u(0, ·) = u0 in G

Remark

(i) The equation u(0, ·) = u0 in G is the initial condition.

(ii) The equation u = 0 on J × ∂G is the boundary condition.

Here it is of Dirichlet type and homogeneous.

Goal: approximate u(t, x).
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Discretization of the domain

Computational domain J × G is replaced by discrete grid:

{(tm, xi)}, i = 0, . . . , N + 1, m = 0, . . . ,M,

where xi are space grid points with space step size h and tm are
the time levels with time step size k:

xi = a + ih, h =
b − a

N + 1
, tm = mk, k =

T

M
.

We represent the exact solution u(t, x) by its values on the grid:

u(t, x) −→ {um
i = u(tm, xi)}, i = 0, . . . , N +1, m = 0, . . . ,M.

The goal is to approximate the values {um
i }. Values of the solution

between grid points are then found by some interpolation.
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Difference Quotients (= Finite Differences)

We want to approximate the derivatives of u using only its values
on the grid. First, let us consider a function f(x) of one variable.

Assume that f ∈ C2. Then, using Taylor’s formula,

f ′(x) =
f(x + h) − f(x)

h
+

h

2
f ′′(ξ), ξ ∈ [x, x + h] .

If fi = f(xi) are the values of f on the grid {xi}, we obtain

f ′(xi) =
fi+1 − fi

h
+ O(h) =:

(
δ+
x f

)

i
+ O(h).

Similarly, for f ∈ C4

f ′′(xi) =
fi+1 − 2fi + fi−1

h2
+ O(h2) =:

(
δxxf

)

i
+ O(h2).
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FD scheme

Let θ ∈ [0, 1]. We replace the PDE ∂tu − ∂xxu = f by the set of
algebraic equations







Em
i = θfm+1

i + (1 − θ)fm
i i = 1, . . . , N, m = 0, . . . ,M − 1

u0
i = u0(xi) i = 1, . . . , N

um
k = 0 k ∈ {0, N + 1}, m = 0, . . . ,M

,

where Em
i is the finite difference operator

Em
i := k−1

(
um+1

i − um
i

)
−

[
θ(δxxu)m+1

i + (1 − θ)(δxxu)mi
]

=
um+1

i − um
i

k

−
[

θ
um+1

i+1
− 2um+1

i + um+1

i−1

h2
+ (1 − θ)

um
i+1 − 2um

i + um
i−1

h2

]

.
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FD scheme in matrix form

Introduce the column vectors

um = (um
1 , . . . , um

N )>, Em = (Em
1 , . . . , Em

N )>, fm = (fm
1 , . . . , fm

N )>

and the tridiagonal N × N matrix

G = h−2tridiag(−1, 2,−1) .

Then the FD-scheme Em = θfm+1 + (1 − θ)fm becomes, in

matrix form: Given u0 = (u0(x1), . . . , u0(xN ))> ∈ R
N , for

m = 0, . . . ,M − 1 find um+1 ∈ R
N such that

(
I + θkG
︸ ︷︷ ︸

=:B

)
um+1+

(
−I + (1 − θ)kG
︸ ︷︷ ︸

=:−C

)
um = k[θfm+1 + (1 − θ)fm

︸ ︷︷ ︸

=:Fm

],

or
Bum+1 = Cum + kF m, m = 0, . . . ,M − 1.
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Variational formulation

We do not require the PDE to be hold pointwise. Take a smooth
test function v ∈ C∞

0 (G) satisfying v(a) = v(b) = 0. Multiply the
PDE with v and integrate by parts:

∫

G

∂tuv dx −

∫

G

∂xxuv dx =

∫

G

fv dx

d

dt

∫

G

uv dx − [∂xu(t, x)v(x)]x=b
x=a

︸ ︷︷ ︸

=0

+

∫

G

∂xu∂xv dx =

∫

G

fv dx

The variational or weak formulation of the heat equation reads:
Find u such that u(0) = u0 and such that ∀v ∈ C∞

0 (G)

d

dt

∫

G

u(t, x)v(x)dx +

∫

G

u′(t, x)v′(x)dx =

∫

G

f(t, x)v(x)dx.
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Galerkin discretization

Let VN be a finite (N) dimensional subspace of H1
0 (G).

The idea is to approximate u(t, x) by an element uN (t, x) ∈ VN ,
for each t ∈ J .
Find uN (t, x) ∈ VN such that uN (0, x) = u0,N (x) and such that
∀vN ∈ VN

d

dt

∫

G

uN (t, x)vN (x)dx+

∫

G

u′
N (t, x)v′N (x)dx =

∫

G

f(t, x)vN (x)dx.

Let {bj}
N
j=1

be a basis of VN . Then

uN (t, x) =
∑N

j=1
uN,j(t)bj(x), where

uN (t) = (uN,1(t), uN,2(t), . . . , uN,N (t))>

is a vector of unknown functions. Similarly, ∀vN ∈ VN

vN (x) =
∑N

i=1
vN,ibi(x).
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Hence (we skip the argument x in
∫

G
)

d

dt

∫

G

uN (t)vN +

∫

G

u′

N(t)v′N =

∫

G

f(t)vN , ∀vN ∈ VN

⇔
d

dt

∫

G

(
∑

j

uN,j(t)bj

)(
∑

i

vN,ibi

)

+

∫

G

(
∑

j

uN,j(t)bj

)′( ∑

i

vN,ibi

)′

=

∫

G

f(t)
∑

i

vN,ibi

⇔
∑

i

vN,i

[
∑

j

u̇N,j

∫

G

bjbi + uN,j

∫

G

b′jb
′

i −

∫

G

f(t)bi

]

= 0

⇔ v>N

[

Mu̇N (t) + AuN (t) − f
N

(t)
]

= 0, ∀vN ∈ R
N

⇔ Mu̇N (t) + AuN (t) = f
N

(t) .
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Semi discrete scheme

Thus,

d

dt
(uN (t), vN ) + a

(
uN (t), vN

)
= (f(t), vN ), ∀vN ∈ VN

is equivalent to the ODE

Mu̇N (t) + AuN (t) = f
N

(t),

where M (mass matrix) and A (stiffness matrix) are N × N
matrices with

Mij =

∫

G

bj(x)bi(x)dx, Aij =

∫

G

b′j(x)b′i(x)dx.

Similarly, f
N

(t) ∈ R
N with entries

fN,i(t) =

∫

G

f(t, x)bi(x)dx.
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Fully discrete scheme

We discretize in time. Write

um
N := uN (tm), fm

N
:= fN (tm),

where the time levels tm, m = 0, . . . ,M are as before. Proceeding
exactly as in the FDM, the fully discrete scheme reads:

Given u0
N = (u0(xi))

N
i=1 ∈ R

N , for m = 0, . . . ,M − 1 find
um+1

N ∈ R
N such that

Mk−1
(
um+1

N −um
N

)
+A

(
θum+1

N +(1−θ)um
N

)
= θfm+1

N
+(1−θ)fm

N
.
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Choice of VN

Setting B := M + kθA, C := M − k(1 − θ)A and
Fm

N := θfm+1

N
+ (1 − θ)fm

N
this can be written as

Bum+1

N = Cum
N + kF m

N , m = 0, . . . ,M − 1.

It remains to chose a space VN . Probably the simplest choice: VN

is the space of piecewise linear, continuous functions.

Let

T := {a = x0 < x1 < · · · < xN+1 = b} = {Ki}
N+1

i=1

be an equidistant mesh on G with Ki := (xi−1, xi). (xi as before).
Set

VN = S1
0 :=

{
u ∈ C0

0(G) : u|Ki
is affin linear on Ki ∈ T

}
.

Note: dimVN = N .
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A basis {bi}
N
i=1 of VN is given by the so-called hat-functions

bi : [a, b] → R≥0, bi(x) = max{0, 1 − h−1|x − xi|}, i = 1, . . . , N.

PSfrag replacements

b1(x) b2(x) bk(x) bN (x)

a = x0 x1 x2 xk−1xk xk+1 xN−1xN xN+1 = b

With this basis, we find for the mass- and stiffness matrix

M = h/6 tridiag(1, 4, 1), A = h−1tridiag(−1, 2,−1).
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For both FDM and FEM, we have to solve M systems of N linear
equations of the form

Bum+1 = Cum + kF m, m = 0, . . . ,M − 1.

where F m = θfm+1 + (1 − θ)fm and

FDM FEM

um vector of um
i ≈ u(tm, xi) coeff. vector of uN (tm, x)

B I + kθG M + kθA
C I− k(1 − θ)G M− k(1 − θ)A

G = h−2tridiag(−1, 2,−1) A = h−1tridiag(−1, 2,−1)

fm f(tm, xi) fm

i
=

∫

G
f(tm, x)bi(x)dx
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Matlab coding (FDM)

function error = heateq_fdm(a,b,T,N,theta)

h = (b-a)/(N+1); k = h; e = ones(N,1);

I = speye(N); G = h^(-2)*spdiags([-e 2*e -e],-1:1,N,N);

B = I+k*theta*G; C = I-k*(1-theta)*G

x = [a+h:h:b-h]’; u0 = x.*sin(pi*x);

f = -(1-pi^2)*x.*sin(pi*x)-2*pi*cos(pi*x);

u = zeros(N,T/k+1); u(:,1) = u0;

for j = 1:T/k

F = k*f*(theta*exp(-j*k)+(1-theta)*exp(-(j-1)*k));

u(:,j+1) = B\(C*u(:,j)+F);

err(j) = norm(u(:,j+1)-exp(-k*j)*u0);

end

error = sqrt(h)*max(err)
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Example

Let G = (0, 1), T = 1, and u(x, t) = e−tx sin(πx).

We measure the discrete L∞(0, T ;L2(G))-error defined by

e := sup
m

h
1

2 ‖εm‖`2 , ‖εm‖2
`2

:=
∑

i

|u(tm, xi) − um
i |2 .

For θ = 0.5 and k = h, we obtain, in terms of the mesh width h,
convergence both of FDM and FEM of second order, i.e.,

e = O(hs), s = 2 .
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PSfrag replacements

h

e
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