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CHAPTER 1

Basic mathematical concepts

1.1. The singular value decomposition

1.1.1. Basic properties. Let H and K be Hilbert spaces. We saw in the lecture
notes (§2.6) that a compact operator A : H → K may be expanded with the singular
value decomposition as

(1.1) A f = ∑
l∈L

σl( f , fl)H gl ,

where:

• L is either a finite set or L = N;
• σl > 0 are called singular values, and form a non-increasing sequence

converging to 0 (if L = N);
• { fl}l and {gl}l are called right and left singular vectors, and are orthonor-

mal systems of H and K, respectively.

In other words, the action of the operator A on a vector f may be described as
follows: the component of f along fl is mapped into gl , with a weight σl .

EXAMPLE 1.1. Let H = L2([0, 1]) and A : H → H be defined by

(1.2) A f (t) =
ˆ t

0
f (s) ds, f ∈ H.

By the Ascoli-Arzelà theorem, A is compact. The adjoint of A is given by

A∗g(s) =
ˆ 1

s
g(t) dt.

In order to compute the singular values and the singular vectors, we need to con-
sider the equation A∗A f = λ f , namely

ˆ 1

s

ˆ t

0
f (τ) dτdt = λ f (s).

It immediately follows that f (1) = 0. Moreover, differentiating this identity yields

−
ˆ s

0
f (τ) dτ = λ f ′(s).

Arguing as before, we obtain f ′(0) = 0 and λ f ′′(s) + f (s) = 0. To sum up, we
have obtained  λ f ′′ + f = 0 in (0,1),

f (1) = 0,
f ′(0) = 0.

4



1.1. THE SINGULAR VALUE DECOMPOSITION 5

This eigenvalue problem may be easily solved. The solutions are given by

(1.3) λl = σ2
l =

4
(2l − 1)2π2 , fl(s) =

√
2 cos(σ−1

l s), l ∈N∗.

Finally, the identity A fl = σl gl yields

(1.4) gl(t) =
√

2 sin(σ−1
l t), l ∈N∗.

1.1.2. Solving inverse problems with the SVD. The SVD of an operator is
very useful when solving equation of the form A f = g, where g is known and f is
the unknown of the problem. In many inverse problems, the governing operator
A is compact.

Suppose for simplicity that the problem has a unique solution. Then, writing
g = ∑l(g, gl)Kgl , in view of (1.1) we obtain

∑
l∈L

(g, gl)Kgl = g = A f = ∑
l∈L

σl( f , fl)H gl .

Therefore, since the gls are linearly independent we obtain ( f , fl)H = σ−1
l (g, gl)K,

whence

(1.5) f = ∑
l∈L

σ−1
l (g, gl)K fl .

The above identity gives an explicit solution of A f = g in terms of the scalar
products of g with the singular vectors gl .

Suppose now that H and K are infinite dimensional, with A compact and L =

N∗. From the theory, we already know that A cannot have a continuous inverse1.
This can be clearly seen in (1.5): since σl → 0, very small perturbation in (g, gl)K
for large l will result in arbitrary large changes in f . In this case, we say that the
problem is ill-posed. The asymptotic behaviour of the singular values at infinity
tells us how severe the ill-posedness is: the faster the decay, the more unstable the
reconstruction becomes.

EXAMPLE 1.2. Let us reconsider the operator introduced in the previous ex-
ample:

A f (t) =
ˆ t

0
f (s) ds, f ∈ H.

The equation A f = g has the trivial solution f = g′. However, this operation is
not stable, as we now see. Consider the sequence of functions

gj(t) =
sin(jt)

j
, j ∈N∗.

We have gj → 0 in H but g′j = cos(·/j) 6→ 0 in H. In other words, if we look at gj
as being small noise added to zero, the inversion stays away from zero even if the
noise level goes to zero.

Formula (1.5) allows us to gain some insight into this issue. Using (1.3) and
(1.4) we obtain

f (s) = 2 ∑
l∈N

σ−1
l (g, sin(σ−1

l ·))2 cos(σ−1
l s), σl =

2
(2l − 1)π

.

1If A had a continuous inverse A−1, then I = AA−1 would be a compact operator, which would
imply that dim K < ∞.
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The terms (g, sin(σ−1
l ·))2 can be seen as Fourier coefficients of g at frequency

∼ σ−1
l . We noted before that the instabilities arise as l → ∞, since σ−1

l → ∞.
Therefore, instabilities arise at high frequencies: differentiating high frequencies
components is an unstable process. This is perfectly consistent with the example
we discussed above: the functions gj contain higher and higher frequencies as
j→ ∞.

1.1.3. Regularisation by truncation. In the above example, we showed that
differentiation corresponds to inverting a compact operator, and is therefore an
unstable process. In other words, if small noise is added to our datum, large errors
may appear during the inversion. Thanks to the SVD decomposition, we saw that
the largest instabilities arise at high frequencies, namely as l → ∞, since σ−1

l → ∞.
In order to solve this issue, a very natural idea is to truncate expansion (1.5) to

f = ∑
l:σl≥γ

σ−1
l (g, gl)K fl ,

for some γ > 0. In this way, the contributions coming from high values of σ−1
l

are simply discarded: this makes the reconstruction more stable. Note that this
formula may be equivalently rewritten as

(1.6) f =
l∗

∑
l=1

σ−1
l (g, gl)K fl ,

for some l∗ ∈N.

EXAMPLE 1.3. We consider again the previous example about integration and
differentiation, and apply this regularisation technique. We use Matlab. In order
to discretise the problem, we approximate L2([0, 1]) with RN with the map

f ∈ L2([0, 1]) 7→ ( f ((i− 1)/(N − 1)))i ∈ RN .

(In the implementation, we set N = 200.) The operator in (1.2) can be represented
by the matrix A ∈ RN,N given by

A = N−1


1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0
1 · · · 1 1

 .

Indeed, we are approximating the integral of f with a simple weighted sum of
the entries of the vector. The numerical implementation of the approach for the
function g(t) = 3t3 − 2t2 is presented in Listing 1.1, to which we refer for the
details. Here we briefly comment the results.

We use white Gaussian noise, so that the relative error of the measurement
is about 1%. The reconstruction with no regularisation is shown in Figure 1.1a
(namely, with l∗ = N = 200), and the reconstruction done using only the first
l∗ = 50 terms in (1.6) is shown in Figure 1.1b. Note that, in view of (1.3) and (1.4),
(1.6) corresponds to performing a low-pass filter to g before differentiating it.

The relative error of the reconstruction as a function of the truncation level in
(1.6) is shown in Figure 1.2.
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(A) The direct differenti-
ation of the noisy version of
g.
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(B) The truncated SVD
method for the differenti-
ation of g.

FIGURE 1.1. The truncated SVD method.
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FIGURE 1.2. The relative error of the reonstruction as a function
of the number of singular values used.

LISTING 1.1. Code for Example 1.3.
1 %% 1 . Exact d i f f e r e n t i a t i o n
2 c l e a r
3 N = 2 0 0 ;
4 s tep = 1/(N−1) ;
5 T = [ 0 : s tep : 1 ] ’ ;
6 g = 3∗T.^3 − 2∗T . ^ 2 ;
7

8 f i g u r e
9 subplot ( 2 , 3 , 1 )

10 p l o t ( T , g ) ; a x i s ( [ 0 1 −.2 1 . 1 ] )
11 t i t l e ( ’ g ( t ) = 3 t ^3 − 2 t ^2 ’ )
12 subplot ( 2 , 3 , 4 )
13 p l o t ( T ( 1 : end−1) , d i f f ( g ) /step , ’ r ’ ) ; a x i s ( [ 0 1 −2 6 ] )
14 t i t l e ( ’g ‘ ( t ) ’ )
15

16 %% 2 . Noisy case
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17

18 e r r = randn (N, 1 ) /300; % White Gaussian noise
19 g_err = g + e r r ;
20

21 subplot ( 2 , 3 , 2 )
22 p l o t ( T , g_err ) ; a x i s ( [ 0 1 −.2 1 . 1 ] )
23 t i t l e ( [ ’ g_e = g + noise . Rel . e r r o r = ’ , s p r i n t f ( ’ %.3 f ’ ,norm ( e r r ) /norm ( g ) ) ,

’ . ’ ] )
24 subplot ( 2 , 3 , 5 )
25 p l o t ( T ( 1 : end−1) , d i f f ( g_err ) /step ) ; a x i s ( [ 0 1 −2 6 ] )
26 t i t l e ( ’ g_e ‘ by d i r e c t d i f f e r e n t i a t i o n ’ )
27

28 %% 3 . Invers ion of the matrix and SVD
29

30 A = zeros (N,N) ;
31 f o r i = 1 :N
32 f o r l = 1 : i
33 A( i , l ) = 1/N;
34 end
35 end
36 f r e a l = A\g ;
37

38 subplot ( 2 , 3 , 3 )
39 p l o t ( T ,A\g_err , T , f r e a l ) ; a x i s ( [ 0 1 −2 6 ] )
40 t i t l e ( ’ g_e ‘ by i n v e r t i n g A’ )
41

42 [U, S ,V] = svd (A) ;
43 f = zeros (N, 1 ) ;
44 f o r l = 1 :N
45 f = f + dot ( g_err ,U( : , l ) ) ∗V ( : , l ) /S ( l , l ) ;
46 end
47

48 subplot ( 2 , 3 , 6 )
49 p l o t ( T , f , T , f r e a l ) ; a x i s ( [ 0 1 −2 6 ] )
50 t i t l e ( ’ g_e ‘ by i n v e r t i n g A with SVD ’ )
51

52 %% 4 . Regular iza t ion by t r u n c a t i o n of the SVD
53

54 f = zeros (N, 1 ) ; e r r o r = f ;
55

56 f i g u r e
57 f o r l = 1 : 5 0
58 f = f + dot ( g_err ,U( : , l ) ) ∗V ( : , l ) /S ( l , l ) ;
59 subplot ( 1 , 2 , 1 )
60 p l o t ( T , f , T , f r e a l ) ; a x i s ( [ 0 1 −2 6 ] )
61 e r r o r ( l ) = norm ( f−f r e a l ) /norm ( f r e a l ) ;
62 t i t l e ( [ ’ l <= ’ , num2str ( l ) , ’ . Rel . e r r o r = ’ , num2str ( e r r o r ( l ) ) ] )
63 subplot ( 1 , 2 , 2 )
64 p l o t ( e r r o r ( 1 : l ) ) ; a x i s ( [ 1 N 0 1 ] )
65 t i t l e ( ’ R e l a t i v e e r r o r as a funct ion of the number of \sigma_l ’ )
66 pause (1/ s q r t ( l ) )
67 end
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1.1.4. Tikhonov regularisation. It is worth pointing out that the regularisa-
tion by truncation of the SVD is almost equivalent with Tikhonov regularisation.
Using the above notation, suppose that we want to solve the inverse problem
A f = g. As explained in the lecture notes, Tikhonov regularisation consists in
the minimisation of the functional

(1.7) min
f∈H
‖A f − g‖2

K + α‖ f ‖2
H ,

for some regularisation parameter α > 0. The case α = 0 corresponds to the direct
inversion of A without regularisation.

The SVD decomposition allows us to find an explicit expression of the minim-
iser. Indeed, write

A f = ∑
l∈L

σl( f , fl)H gl , f = ∑
l∈L

( f , fl)H fl , g = ∑
l∈L

(g, gl)K gl .

We are now looking for an expression of ( f , fl)H in terms of (g, gl)K. For simpli-
city, write ( f , fl)H = xl(g, gl)K for some unknown xl to be determined. By the
Pythagorean theorem for Hilbert spaces, since { fl}l and {gl}l are orthonormal
systems of H and K, we obtain

‖A f − g‖2
K + α‖ f ‖2

H = ‖∑
l∈L

(σl( f , fl)H − (g, gl)K)gl‖2
K + α‖∑

l∈L
( f , fl)H fl‖2

H

= ∑
l∈L

(σl( f , fl)H − (g, gl)K)
2 + α( f , fl)

2
H

= ∑
l∈L

(σl xl(g, gl)K − (g, gl)K)
2 + αx2

l (g, gl)
2
K

= ∑
l∈L

(g, gl)
2
K

(
(σl xl − 1)2 + αx2

l

)
.

Therefore, the minimisation of (1.7) boils down to finding, for each l, the minimum
of the function wl(x) = (σl x − 1)2 + αx2. Since w′l(x) = 2((σ2

l + α)x − 2σl , we
obtain xl =

σl
σ2

l +α
, whence

( f , fl)H =
σl

σ2
l + α

(g, gl)K.

As a consequence, the solution of the minimisation problem (1.7) is given by

f = ∑
l∈L

σl

σ2
l + α

(g, gl)K fl .

Note that, for α = 0, this formula reduces to (1.5): this is expected, since in this case
there is no regularisation performed. On the other hand, for α > 0, this formula is
similar to (1.6). Indeed, for σl � α, we have σl

σ2
l +α
≈ σ−1

l and for σl � α we have
σl

σ2
l +α
≈ 0.

1.2. Random medium generation

When working in some aspects of inverse problems, in particular in medical
imaging, it is often of great need to have realistic models for the coefficients that
arise for each problem. Biological tissues in reality are not deterministic nor con-
stant, so a good model to approximate clinical examples includes randomness and
uncertainty.
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We want to be able to generate random media, with predefined statistics, to
produce examples of data for forwards models, and afterwards test any inverse
problem’s stability on it.

1.2.1. Fourier transform. We will need the isometric Fourier transform for d ∈
N; it is defined as:

f̂ (ξ) =
1

(2π)d/2

ˆ
Rd

f (x)e−ix·ξ dx.

To approximate its value in a fast fashion using Matlab, we will use the Fast
Fourier transform algorithm already implemented in Matlab as function fft.m.
The fast Fourier algorithm computes the discrete Fourier transform.

For the following we will consider d = 1, as for higher dimensions it extends
naturally by iterating the Fourier transform in each dimension. Let N ∈ N be
the amount of samples of a function, namely f [j], j ∈ { 0, 1, . . . , N − 1 }, then the
discrete Fourier transform is

Xk =
N−1

∑
j=0

f [j] · e−2πikj/N , k ∈ { 0, 1, . . . , N − 1 }

To approximate the Fourier transform we will assume a bounded function
such that supp( f ) ⊂ (−a/2, a/2), a > 0, then for equidistant samples in space
xj = a

N (j − N/2), j ∈ { 0, 1, . . . , N − 1 } and frequency ξk = 2π
a (k − N/2), k ∈

{ 0, 1, . . . , N − 1 }, we have that

f̂ (ξk) ≈
a

N
√

2π
e−iπN/2(−1)k

N−1

∑
j=0

f (xj)(−1)je−i2π jk/N j, k ∈ { 0, 1, . . . , N − 1 } .

Where considering the vectors ~f j = f (xj) ∈ CN , (±1)j = (−1)j, j ∈ { 0, 1, . . . , N − 1 }
and the Matlab notation for point to point product (a. ∗ b)j = aj ∗ bj, we can rewrite
this expression as

~̂f ≈ a
N
√

2π
e−iπN/2(±1). ∗ DFT(~f . ∗ (±1)), where ~̂fk := f̂ (ξk),

with DFT the discrete fourier transform of the vector.

PROOF. Write the Fourier transform evaluated at ξk and approximate the in-
tegral of the Fourier transform evaluating the function in points xj. Afterwards
distribute terms. �

Remark: Notice that, to enhance the resolution of the Fourier transform, in-
stead of needing to take more samples, it is needed to augment the support of the
samples.

1.2.2. Continuous-time Gaussian white noise. Let Wi ∼ N (0, 1) be a family
of independent normally distributed random variables, for a fixed interval [a, b]
and N ∈ N, consider the step hN = (b − a)/N and the grid xN

j = a + h(j +
1/2), j ∈ { 0, 1, . . . , N − 1 }. We define the 1-dimensional continuous-time Gaus-
sian white noise restricted to the interval [a, b] as the distribution resulting from
the following limit
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W = lim
N→∞

1√
hN

N−1

∑
j=0

Wj1[xN
j −h/2,xN

j +h/2](x).

For any smooth function f with support contained in [a, b], we have that the
integration against the Gaussian white noise is a normally distributed random
variable with variance || f ||2L2(a,b), i.e.

ˆ b

a
W f (x)dx ∼ N (0, || f ||2L2(a,b)).

PROOF. By definition the integral is
ˆ b

a
W f (x)dx = lim

N→∞

1√
hN

N−1

∑
j=0

Wj

ˆ b

a
1[xN

j −hN /2,xN
j +hN /2](x) f (x)dx

= lim
N→∞

1√
hN

N−1

∑
j=0

Wj

ˆ xN
j +hN /2

xN
j −hN /2

f (x)dx

∼ N

0, lim
N→∞

hN

N−1

∑
j=0

(
1

hN

ˆ xN
j +hN /2

xN
j −hN /2

f (x)dx

)2
 .

Since h−1
N
´ xN

j +hN /2

xN
j −hN /2

f (x)dx → f (xj), we have that

lim
N→∞

hN

N−1

∑
j=0

(
1

hN

ˆ xN
j +hN /2

xN
j −hN /2

f (x)dx

)2

=

ˆ b

a
f (x)2dx. �

Formally, to approximate this distribution with N ∈ N sample points, it is
enough to take N independent random Gaussian variables Wi and consider

W ≈
√

hN

N−1

∑
j=0

WjδxN
j

(1.8)

Remark 1: For the needed applications, we are not loosing generality by just
considering Gaussian random variables. Because if we consider any i.i.d. family
of random variables, the Lyapunov central limit theorem tells us that the limit of
the sum of these variables converges to a Normal random variable.

Remark 2: For higher dimensions the construction is similar. A d-dimensional
rectangular grid is considered, we generate independent Gaussian variables in
each point of the grid, and all are multiplied by Πd

j=1
√

hd, where hd = (bd −
ad)/Nd, The length of the corresponding dimension in the domain divided by the
amounts of points taken. The main property holds

´
W f dx ∼ N (0, || f ||L2(Rd)).

1.2.3. Generation of an isotropic random medium. Let C(y) be an even func-
tion with positive Fourier transform. Let W be a Gaussian white noise and F a filter
satisfying (2π)d/2|F̂(ξ)|2 = Ĉ(ξ), then the random medium U generated as

U(x) = (2π)d/2F−1(F̂ · Ŵ) = F ∗W,
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satisfies as covariance C(y) = E(U(x − y/2)U(x + y/2)) and at each point be-
haves as U(x) ∼ N (0, C(0)).

PROOF. For simplicity assume F is 1-dimensional with finite support. Take
N ∈ N and a sufficiently big grid zj, j ∈ { 0, 1, .., N − 1 }. Using the delta approx-
imation for the Gaussian white noise, we have that

U(x) = F ∗W(x) ≈
N−1

∑
j=0

√
hN F(x− zj)Wj.

With this we compute the covariance function

Cov(x− y/2, x + y/2) := E [U(x− y/2)U(x + y/2)]

= lim
N→∞

E

[(
N−1

∑
j=0

√
hN F(x− y/2− zj)Wj

)(
N−1

∑
k=0

√
hN F(x + y/2− zk)Wk

)]
.

Performing the cross products and afterwards taking the expectation, all terms
where j = k are zero as the Wj are independent, hence

Cov(x− y/2, x + y/2) = lim
N→∞

hN

N−1

∑
j=0

F(x− y/2− zj)F(x + y/2− zj).

Taking the limit on N, we obtain the integral

Cov(x− y/2, x + y/2) =
ˆ

R

F(x− y/2− z)F(x + y/2− z)dz

=

ˆ
R

F(z′)F(y + z′)dz′,

and applying the fourier transform on y, we arrive to our result

Ĉov(ξ) =
ˆ

R

F(z′)Fy
[
F(y + z′)

]
(ξ)dz′

=

ˆ
R

F(z′)eiz′ξ F̂(ξ)dz′

=
√

2πF̂(−ξ)F̂(ξ)

=
√

2π|F̂(ξ)|2.

�

Remark: From the proof, it is clear that the available covariance functions must
have a positive Fourier transform.

1.2.4. Numerical implementation. On the course web-page there is an avail-
able and well documented code to generate random media with any function
handle input covariance. The implementation follows the given guidelines of
this class. The Fourier transform is implemented as described in section 1.2.1,
the Gaussian white noise is generated using approximation (1.8), which in Matlab
consists in generating a N-dimensional independent Gaussian random variables
with variance

√
hN and the covariance is inputed as a function handle.
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In figure 1.3 we have two examples of random media with its respective stat-
istics; these random media are generated in an extended domain, but for visualisa-
tion we restrict ourselves to observe the first 50 correlation lengths. Each column
was generated with different correlation functions, these being respectively

C1(x) = e−x2/(2l2) x ∈ R, C2(x) = cos(
3π

4l
x)(2l − |x|) x ∈ [−2l, 2l],

where l is the correlation length, which is a non strictly well defined coefficient
that measures the distance at which we would see correlated values.

For 2 dimensional random media the process is the same and there is also the
possibility to generate them in the last section of the provided code. Be careful
because if a desired 1-dimensional covariance function has positive Fourier trans-
form, that does not imply that its 2-dimensional version will have it. In Figure 1.4
there are two examples of random media, corresponding to the same C1(|x|) and
C2(|x|).

LISTING 1.2. Random Medium Generator
1 % 1d Random Medium Generator
2

3 % Medium parameters
4 lengthMedium =1000000;
5 N=2^21;
6 h=lengthMedium/N;
7 x=h∗ ( ( 0 :N−1)−N/2) ; % s p a t i a l gr id
8 % Desired c o r r e l a t i o n funct ion
9 co rr_ len gth =10;

10 % Gaussian c o r r e l a t i o n
11 % C=@( x ) exp(−x .∗ x/2/ c orr _ le ngt h ^2) ;
12 % s i n c funct ion
13 % C=@( x ) s i n c (2∗ pi∗x/c orr _ le ngt h ) ;
14 % Piramid−shaped c o r r e l a t i o n
15 % C=@( x ) 10∗ heavis ide (2∗ corr_ length−abs ( x ) ) .∗(1− abs ( x ) /2/

co rr_ len gth ) ;
16 % Cosine
17 C=@( x ) cos ( x∗pi∗3/4/ cor r_ l eng th ) .∗ heavis ide (2∗ co rr_ len gth − abs ( x )

) ;
18 % Smoothed Cosine
19 % C=@( x ) cos ( x∗pi∗3/4/ cor r_ l eng th ) .∗ ( 1 − abs ( x ) /2/ cor r_ l eng th ) .∗

heavis ide (2∗ co rr_ len gth − abs ( x ) ) ;
20 % High−low Step
21 % C=@( x ) 1∗heavis ide ( 1 . 5∗ corr_ length−abs ( x ) ) − 0 .25∗ heavis ide (2∗

co rr_ len gth − abs ( x ) ) ;
22

23 % generat ing Gaussian white noise , the c o e f f i c i e n t i s as the i n t e g r a t i o n
24 % m u l t i p l i e s by h .
25 n=randn ( 1 ,N) ∗ s q r t (1/h ) ;
26

27 % Taking the Four ier transforms
28 Fourier_n=FourierTransform ( n , lengthMedium ) ;
29 Fourier_C=FourierTransform (C( x ) , lengthMedium ) ;
30

31 % Computing the random medium i n v e r t i n g the Four ier transform
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FIGURE 1.3. The left column correspond to random medium gen-
erated with a Gaussian correlation function C1, the right hand side
column correspond to a random medium generated with an atten-
uated and cropped cosine function C2.
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FIGURE 1.4. To the left a Gaussian 2 dimensional random me-
dium, and to the right hand side one generated using an attenu-
ated cosine correlation.

32 RandomMedium= s q r t (2∗ pi ) ∗FourierTransform ( s q r t ( abs ( Fourier_C ) ) / s q r t (
s q r t (2∗ pi ) ) .∗ Fourier_n , 2∗ pi∗N/lengthMedium ) ;

33

34 %% Observing random medium s t a t i s t i c s
35

36 f i g u r e
37 subplot ( 2 , 2 , 1 )
38 obsPoints=N;
39 p l o t ( x ( 1 : obsPoints ) , r e a l (RandomMedium ( 1 : obsPoints ) ) )
40 hold on
41 p l o t ( x ( 1 : obsPoints ) , imag (RandomMedium ( 1 : obsPoints ) ) , ’ r ’ )
42 hold o f f
43 t i t l e ( ’ F u l l random medium ’ )
44

45 gca=subplot ( 2 , 2 , 2 ) ;
46 % To see the l o c a l shape of the random medium , equal to 50 c o r r e l a t i o n
47 % lengths
48 i f lengthMedium >25∗ co rr_ len gth
49 aux=f ind ( x−x ( 1 ) >25∗ co rr_ len gth ) ;
50 obsPoints=aux ( 1 ) ;
51 e l s e
52 obsPoints=N;
53 end
54 p l o t ( x ( 1 : obsPoints ) , r e a l (RandomMedium ( 1 : obsPoints ) ) )
55 hold on
56 p l o t ( x ( 1 : obsPoints ) , imag (RandomMedium ( 1 : obsPoints ) ) , ’ r ’ )
57 hold o f f
58 s e t ( gca , ’XLim ’ , [ x ( 1 ) , x ( obsPoints ) ] )
59 t i t l e ( ’ Observing f i r s t 50 c o r r e l a t i o n lengths ’ )
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60

61 subplot ( 2 , 2 , 3 )
62 % D i s t r i b u t i o n of the obtained random medium
63 [ hh , hhh]= h i s t ( r e a l (RandomMedium) , 5 0 ) ;
64 bar ( hhh , hh/sum( hh∗ (hhh ( 2 )−hhh ( 1 ) ) ) )
65 hold on
66 % Expected d i s t r i b u t i o n
67 sigma2=C( 0 ) ;
68 d i s t y =@( x ) ( exp(−x .∗ x/2/sigma2 ) / s q r t (2∗ pi∗sigma2 ) ) ;
69 p l o t ( hhh , d i s t y ( hhh ) , ’ r ’ ) ;
70 legend ( ’ Empir ical d i s t . ’ , ’ T h e o r e t i c a l d i s t . ’ ) ;
71 t i t l e ( ’ Empir ical d i s t r i b u t i o n v/s t h e o r e t i c a l one ’ ) ;
72

73 gca=subplot ( 2 , 2 , 4 ) ;
74 % Empirical covar iance of the random medium
75

76 % We want to see only c l o s e to the 0 f o r the covar iance .
77 aux=f ind ( x−x ( 1 ) >3∗ co rr_ len gth ) ;
78 obsPoints=aux ( 1 ) ;
79 i f ( obsPoints <20)
80 disp ( ’h too small to see properly the covariance , augment N’ ) ;
81 end
82 empCov=zeros ( obsPoints −1 ,1) ;
83 waity=waitbar (1/ obsPoints , ’ covar ians ing ’ ) ;
84 f o r i =1: obsPoints−1
85 waitbar ( i /obsPoints , waity ) ;
86 empCov( i ) =sum(RandomMedium ( 1 : end−i ) .∗RandomMedium(1+ i : end ) ) /( length (

RandomMedium)− i ) ;
87 end
88 c l o s e ( waity )
89 p l o t ( x ( 2 : obsPoints )−x ( 1 ) , r e a l (empCov) )
90 hold on
91 % P l o t t i n g expected covar iance
92 p l o t ( x ( 2 : obsPoints )−x ( 1 ) , C( x ( 2 : obsPoints )−x ( 1 ) ) , ’ r ’ )
93 hold o f f
94 legend ( ’ Empir ical cov ’ , ’ T h e o r e t i c a l cov ’ ) ;
95 t i t l e ( ’ Empir ical covar iance v/s t h e o r e t i c a l one ’ ) ;
96 s e t ( gca , ’XLim ’ , [ x ( 2 )−x ( 1 ) , x ( obsPoints )−x ( 1 ) ] )
97 %% 2D Random Medium .
98

99 i f 1 %to a c t i v a t e or d e a c t i v a t e t h i s s e c t i o n
100

101 % Medium parameters ( For a square , and we t r e a t each v a r i a b l e separatedly )
102 lengthMedium =100;
103 N2=2^22;
104 N= s q r t (N2) ;
105 h=lengthMedium/N;
106 x=h∗ ( ( 0 :N−1)−N/2) ; % s p a t i a l gr id
107 [X , Y]= meshgrid ( x , x ) ;
108 % Desired c o r r e l a t i o n funct ion
109 co rr_ len gth =1;
110 % Gaussian c o r r e l a t i o n
111 % G=@( x ) exp(−x .∗ x/2/ c orr _ le ngt h ^2) ;
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112 % s i n c funct ion
113 % G=@( x ) s i n c (2∗ pi∗x /(10∗ co rr_ len gth ) ) ;
114 % Cone−shaped c o r r e l a t i o n
115 G=@( x ) 10∗ heavis ide (2∗ corr_ length−abs ( x ) ) .∗(1− abs ( x ) /2/ cor r_ l eng th

) ;
116 % % Cosine
117 % G=@( x ) cos ( x∗pi∗3/4/ c or r_ l eng th ) .∗ heavis ide (2∗ co rr_ len gth − abs (

x ) ) ;
118 % Smoothed Cosine
119 %G=@( x ) cos ( x∗pi∗3/4/ c or r_ l eng th ) .∗ ( 1 − abs ( x ) /2/ cor r_ l eng th ) .∗

heavis ide (2∗ co rr_ len gth − abs ( x ) ) ;
120 % High−low Step
121 %G=@( x ) 1∗heavis ide ( 1 . 5∗ corr_ length−abs ( x ) ) − 0 .25∗ heavis ide (2∗

co rr_ len gth − abs ( x ) ) ;
122

123 C=@( x , y ) G( s q r t ( x .^2+y . ^ 2 ) ) ;
124 % generat ing Gaussian white noise .
125 n=randn (N,N) ∗ s q r t (N/lengthMedium ) ^2;
126

127 % Taking the Four ier transforms
128 Fourier_n=zeros (N,N) ;
129 f o r i =1:N
130 [ Fourier_n ( : , i ) , x i ]= FourierTransform ( n ( : , i ) ’ , lengthMedium ) ;
131 end
132 f o r i =1:N
133 Fourier_n ( i , : ) =FourierTransform ( Fourier_n ( i , : ) , lengthMedium ) ;
134 end
135

136 Fourier_C=zeros (N,N) ;
137 f o r i =1:N
138 [ Fourier_C ( : , i ) , x i ]= FourierTransform (C(X ( : , i ) ,Y ( : , i ) ) ’ ,

lengthMedium ) ;
139 end
140 f o r i =1:N
141 Fourier_C ( i , : ) =FourierTransform ( Fourier_C ( i , : ) , lengthMedium ) ;
142 end
143

144 % Computing the random medium i n v e r t i n g the Four ier transform
145

146 RandomMedium= s q r t ( abs ( Fourier_C ) ) / s q r t (2∗ pi ) .∗ Fourier_n ;
147 f o r i =1:N
148 RandomMedium ( : , i ) = s q r t (2∗ pi ) ∗FourierTransform (RandomMedium ( : , i ) ’ , 2∗

pi∗N/lengthMedium ) ;
149 end
150 f o r i =1:N
151 RandomMedium( i , : ) = s q r t (2∗ pi ) ∗FourierTransform (RandomMedium( i , : ) ,2∗

pi∗N/lengthMedium ) ;
152 end
153

154 % P l o t t i n g
155 f i g u r e
156 subplot ( 1 , 3 , 1 )
157 % t o t a l random medium
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158 imagesc ( x , x , r e a l (RandomMedium) )
159 t i t l e ( ’ whole random medium ’ )
160

161

162 subplot ( 1 , 3 , 2 )
163 % zoom to random medium
164 i f lengthMedium >25∗ co rr_ len gth
165 aux=f ind ( x−x ( 1 ) >25∗ co rr_ len gth ) ;
166 obsPoints=aux ( 1 ) ;
167 e l s e
168 obsPoints=N;
169 end
170 imagesc ( x ( 1 : obsPoints ) , x ( 1 : obsPoints ) , r e a l (RandomMedium ( 1 : obsPoints ,

1 : obsPoints ) ) )
171 t i t l e ( ’ Closer look ’ )
172

173 subplot ( 1 , 3 , 3 )
174 % Pointwise histogram
175 % D i s t r i b u t i o n of the obtained random medium
176 [ hh , hhh]= h i s t ( r e a l (RandomMedium) , 5 0 ) ;
177 bar ( hhh , hh/sum( hh∗ (hhh ( 2 )−hhh ( 1 ) ) ) )
178 hold on
179 % Expected d i s t r i b u t i o n
180 sigma2=C( 0 , 0 ) ;
181 d i s t y =@( x ) ( exp(−x .∗ x/2/sigma2 ) / s q r t (2∗ pi∗sigma2 ) ) ;
182 p l o t ( hhh , d i s t y ( hhh ) , ’ r ’ ) ;
183 legend ( ’ Empir ical d i s t . ’ , ’ T h e o r e t i c a l d i s t . ’ ) ;
184 t i t l e ( ’ Empir ical d i s t r i b u t i o n v/s t h e o r e t i c a l one ’ ) ;
185 end

LISTING 1.3. Fourier transform computation
1 func t ion [ fhat , x i ] = FourierTransform ( f , a )
2 % INPUTS :
3 % f i s a vec tor of s i z e N=2^k , represent ing samples of a funct ion over the
4 % grid x _ j = a/N∗ ( j−N/2) , j = 0 , 1 , . . . N−1. i . e . from i n t e r v a l [ a /2 , a /2[
5 % OUTPUTS:
6 % f h a t i s the f o u r i e r transform of f , sampled on grid x i .
7

8 N=length ( f ) ;
9 plusminusones=mod( 2 : 2 : 2 ∗N, 4 ) −1; %Vector [1 , −1 ,1 ,−1 ,1 , . . .−1]

10

11 f h a t =a/N/ s q r t (2∗ pi ) ∗exp(−1 i ∗pi∗N/2)∗plusminusones .∗ f f t ( f .∗ plusminusones ) ;
12

13 x i = 2∗pi/a ∗ ( ( 0 :N−1) − N/2) ;
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1.3. Kramers-Kronig relations

We saw in the lecture notes (§2.4) that the real and imaginary parts of the
Fourier transform f of a real causal function satisfy the Kramers-Kronig relations

< f (ω) =
2
π

p.v.
ˆ ∞

0

s= f (s)
s2 −ω2 ds,(1.9)

= f (ω) = −2ω

π
p.v.
ˆ ∞

0

< f (s)
s2 −ω2 ds,(1.10)

for ω ∈ R. In theory, these relations allow the reconstruction of the real or ima-
ginary part of f from the knowledge of the other. However, this would require
measurements at all frequencies, and in particular at arbitrarily large frequencies,
which is clearly unpractical. We consider here a slightly simpler problem: recon-
struct f from the knowledge of f (ω) only for certain frequencies ω ∈ D, for some
D ⊆ R+.

For simplicity, take D = (0, 1). We suppose that < f and = f are known in D
and wish to reconstruct < f in R+ (similar considerations are valid for the recon-
struction of = f ).

First, approximate < f with a function g : R+ → R defined by

g(ω) =

{
< f (ω) if ω ∈ (0, 1],
p2(ω)e−α(ω−1) if ω ∈ (1, ∞),

where p2 is a second order polynomial chosen in such a way that g ∈ C2(R+) and
α > 0. The function g is known, is equal to < f in D and decays rapidly as ω → ∞.
In view of (1.10), we can compute an approximation fi of = f by

fi(ω) := −2ω

π
p.v.
ˆ ∞

0

g(s)
s2 −ω2 ds.

Since g is known, fi can be computed.
Using (1.10) and the fact that < f = g in D we immediately obtain

−2ω

π

ˆ ∞

1

< f (s)− g(s)
s2 −ω2 ds = = f (ω)− fi(ω), ω ∈ (0, 1).

In this identity, the right hand side is known for ω ∈ (0, 1), and the unknown is
the quantity r(s) = < f (s)− g(s) for s ∈ (1, ∞). Once r is reconstructed, < f can be
computed, since g is known. Thus, it remains to show how to reconstruct r from
the above identity.

In other words, we have to invert the operator r 7→ Ar defined by

Ar(ω) = −2ω

π

ˆ ∞

1

r(s)
s2 −ω2 ds, ω ∈ (0, 1).

Let us define the proper space where to define the operator A. Let

H = {r ∈W1,2((1, ∞)) : r(1) = 0} and K = L2((0, 1)),

and consider the operator A : H → K. By the invertibility of the Hilbert trans-
form, A is injective. Moreover, the operator A is compact (see the lemma below).
Therefore, it has an unbounded inverse, and so the inverse problem is ill-posed,
as expected. However, it may be solved with the SVD decomposition (see Sec-
tion 1.1), and a suitable regularisation may be easily performed (see §1.1.3).

It remains to show that A : H → K is compact.
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LEMMA 1.4. The operator A : H → K is compact.

PROOF. Let {rn}n be a bounded sequence in H, namely

(1.11) ‖rn‖2
W1,2((1,∞)) := ‖rn‖2

L2((1,∞)) + ‖r
′
n‖2

L2((1,∞)) ≤ C

for some C > 0. This implies that there exists r ∈ H such that rn ⇀ r in W1,2 (up
to a subsequence)2. In particular, r′n ⇀ r′ in L2. In view of the Rellich-Kondrachov
theorem, the embedding W1,2((1, ∞)) ↪→ L2((1, ∞)) is compact. Thus, rn → r in
L2((1, ∞)). Without loss of generality, assume that r = 0.

Writing rn(s) =
´ s

1 r′n(t) dt we have

Arn(ω) = −2ω

π

ˆ ∞

1

rn(s)
s2 −ω2 ds

= −2ω

π

ˆ ∞

1

ˆ s

1

r′n(t)
s2 −ω2 dt ds

= −2ω

π

ˆ ∞

1

ˆ ∞

t

r′n(t)
s2 −ω2 ds dt

= − 1
π

ˆ ∞

1
r′n(t)

ˆ ∞

t

2ω

s2 −ω2 ds dt.

Elementary calculus yields
ˆ ∞

t

2ω

s2 −ω2 ds =
ˆ ∞

t

1
s−ω

− 1
s + ω

ds = log
(

t + ω

t−ω

)
.

Combining these two identities we obtain

(1.12) Arn(ω) = − 1
π

ˆ ∞

1
r′n(t) log

(
t + ω

t−ω

)
dt.

Therefore, by Cauchy-Schwartz inequality and (1.11) we have

|Arn(ω)| ≤ 1
π
‖r′n‖L2((1,∞))‖log ((t + ω)/(t−ω))‖L2((1,∞))

≤ C
π
‖log ((t + ω)/(t−ω))‖L2((1,∞)).

It can be easily proven that ‖log ((t + ω)/(t−ω))‖L2((1,∞)) ≤ C′ for some con-
stant C′ > 0 independent of ω. Therefore

|Arn(ω)| ≤ CC′/π, ω ∈ (0, 1).

Finally, Arn → 0 in L2((0, 1)) by the dominated convergence theorem, since Arn →
0 almost everywhere (by (1.12) and the fact that r′n ⇀ r′ in L2). This shows that A
is compact. �

2The weak convergence rn ⇀ r in W1,2 means that

(rn, v)W1,2((1,∞)) −→ (r, v)W1,2((1,∞)), v ∈W1,2((1, ∞)),

where (·, ·)W1,2((1,∞)) denotes the scalar product associated to the norm defined in (1.11).
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1.4. The Spherical means Radon transform

The spherical mean Radon transform, which integrates a function over all
spheres centered at points of a given set, is useful in multi-wave tomography.
For instance, in photo-acoustic imaging under some simplifications, the spherical
mean data of an unknown function (the absorbed optical energy density) is meas-
ured by acoustic transducers, and the imaging problem is to invert that transform.

Let Ω be a bounded open set of Rd. The spherical mean Radon transform
R : C0(Rd)→ C0(∂Ω×R+) with centers on ∂Ω is given for f ∈ C0(Rd) by

R[ f ](x, s) =
1

ωd

ˆ
S

f (x + sξ)dσ(ξ), (x, s) ∈ ∂Ω×Rd,

where S denotes the unit sphere in Rd and ωd its surface measure.

1.4.1. The Wave equation. To motivate the interest in studying the spherical
means Radon transform, we look at the wave equation. Let f , g ∈ C0(Rn) be
functions with compact support, we are interested in solving the following initial
value problem 

∂2

∂t2 p(x, t)− ∆x p(x, t) = 0, Rd ×R+,
p(x, 0) = f (x), Rd,

∂
∂t p(x, 0) = g(x), Rd.

To do it so, we take the Fourier transform in space. Lets define p̂(ξ, t) =
Fx[p(·, t)](ξ) and then, by the Fourier transform property with respect to the de-
rivatives, we obtain a family of ODE’s parametrized by t ∈ R+

∂tt p̂(ξ, t) + |ξ|2 p̂(ξ, t) = 0, p̂(ξ, 0) = f̂ (ξ), ∂t p̂(ξ, 0) = ĝ(ξ), ∀ξ ∈ Rd, t ∈ Rt,

whose solution is given by

p̂(ξ, t) = f̂ (ξ) cos(|ξ|t) + ĝ(ξ)
sin(|ξ|t)
|ξ| .

So taking the inverse of the Fourier transform and using the convolution formula,
we arrive to

p(x, t) = (2π)d/2 f ∗ ∂tUt(x) + (2π)d/2g ∗Ut(x), ∀x ∈ Rd, t ∈ R+,

where

Ut(x) = F−1
x

[
sin(| · |t)
| · |

]
(x, t),

is the fundamental solution. The explicit form of this fundamental solution for
d = 2, 3 is given by:

Ut(x) =

{
1

2π(t2−|x|2)1/2 1|x|<t(x, t), d = 2,
δ(t− |x|)/4π|x|, d = 3.

Lets consider f = 0, then the value of the solution p(x, t) on some surface ∂Ω
enclosing g will be

p(x, t) =

{ ´ t
0

sR[g](x,s)√
t2−s2 ds, d = 2,

tR[g](x, t), d = 3.
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Thus if we are interested in recovering the initial speed from the external meas-
urements, we need to be able to invert the spherical means Radon transform.

1.4.2. Backprojection. Consider now Ω is the sphere on dimension d (∂Ω =
S), and the spherical means Radon transform defined on the Schwartz space, i.e.
R : S(Rd) → S(S × R+). We define the Backprojection operator R∗ : S(S ×
R+)→ S(Rd) as

R∗[g] = 1
ωd

ˆ
S

g(y, |x− y|)
|x− y|d−1 dσ(y).

If we consider the L2 internal product in both Schwartz spaces, the backprojection
operator is the adjoint of the spherical means operator.

PROOF. Consider f ∈ S(Rd), g ∈ S(S×R+), then

〈 f ,R∗[g]〉L2(Rd) =

ˆ
Rd

f (x)
1

ωd

ˆ
S

g(y, |x− y|)
|x− y|d−1 dσ(y)dx,

=

ˆ
S

ˆ
Rd

1
ωd

f (z + y)
g(y, |z|)
|z|d−1 dzdσ(y),

=

ˆ
S

ˆ
R+

ˆ
S

1
ωd

f (y + tw)g(y, t)dσ(w)dtdσ(y),

=

ˆ
S

ˆ
R+
R[ f ](y, t)g(y, t)dtdσ(y),

= 〈R[ f ], g〉L2(S×R+) .

�

Remark: This adjoint operator allows us to extend the domain of definition of
the Spherical means Radon transform to the Tempered Distribution space S′, as

〈R(T), f 〉 = 〈T,R∗( f )〉 .

This adjoint operatorR∗ is called backprojection because it defines a prelimin-
ary, and naive way of attempting to invert the spherical means Radon transform.
Namely the backprojection algorithm

f (x) ≈ R∗R[ f ](x) =
1

ωd

ˆ
S

1
ωd

ˆ
S

f (y + |x− y|w)

|x− y|d−1 dσ(w)dσ(y).

Intuitively, this algorithm at each point x ∈ Ω gives as value the average of all the
available spherical integrals of f that go trough that point. Since the reconstruction
is based on averages of integrals, it assigns positive value to all points in space (if
f ≥ 0) and the obtained reconstructions are heavily smoothed.

1.4.3. Filtered Backprojection. There are explicit inversion formulae for the
Spherical means Radon transform. For the particular case of ∂Ω = S and f with
compact support compactly contained in Ω, for d = 2, 3 these formulae are

f (x) =


1

2π∇ ·
´

S y
∂
∂s (sR[ f ])(y, |x− y|)

|x− y| dσ(y), d = 2,

1
2π

´
S
´ 2

0

[
∂

∂s
s

∂

∂s
R[ f ]

]
(y, s) log |s2 − |y− x|2|dsdσ(y), d = 3.
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FIGURE 1.5. In the left, the function we seek to reconstruct and
the available points on the sphere where the Spherical Radon
transform will be sampled. In the right hand side, we have the
obtained measurements. The right hand side image is the Spher-
ical Radon transform, with s ∈ [0, 2] and θ ∈ [0, 2π).
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FIGURE 1.6. In the left, the reconstructed function and, in the
right hand side, the relative error map. As it can be observed, the
error is concentrated on the high frequency zones of the objective
function.

These formulae belong to a type of inversion formulae called Filtered Backprojec-
tion, that are of the form

f (x) = R∗BR f ,

where B is considered to be a filter of dataR[ f ], hence the name of it. For instance,
in the case d = 2, the filter is

B[g](x, t) =
ˆ 2

0

∂2g
ds2 (x, s) log(|s2 − t2|)ds.

1.4.4. Numerical examples. There are codes in the webpage of the course that
simulate the 2-dimensional spherical means Radon transform measurements for
∂Ω = S and afterwards inverts it using the filtered backprojection. The paramet-
ers of the codes are the resolution of the function f , its shape and the amount of
samples of R[ f ](si, θj), where si ∈ (0, 2) are uniformly sampled, and θj can be
considered non-uniform on S. In figures 1.5, 1.6 and 1.7 there are two examples.
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FIGURE 1.7. Reconstruction of the same object, but with the
samples on the θ variables concentrated on the right hand side of
the image. To the right hand side there is the relative error map.
As it can be seen, the reconstruction strongly deteriorates.

1.5. Neumann-Poincaré operator

Introduce the operator KD : L2(∂D)→ L2(∂D) given by

(1.13) KD[ϕ](x) =
1

ωd

ˆ
∂D

(y− x) · νy

|x− y|d
ϕ(y) dσ(y) .

The operator defined by

(1.14) K∗D[ϕ](x) =
1

ωd

ˆ
∂D

(x− y) · νx

|x− y|d
ϕ(y) dσ(y) ,

is the L2-adjoint of KD. Furthermore, if D is a bounded C2-domain, then the oper-
ators KD and K∗D are compact operators in L2(∂D).

Suppose that D is a two dimensional disk with radius r0. Then,

(x− y) · νx

|x− y|2 =
1

2r0
∀ x, y ∈ ∂D, x 6= y ,

and therefore, for any ϕ ∈ L2(∂D),

(1.15) K∗D[ϕ](x) = KD[ϕ](x) =
1

4πr0

ˆ
∂D

ϕ(y) dσ(y) ,

for all x ∈ ∂D.
For d ≥ 3, if D is a ball with radius r0, then, we have

(x− y) · νx

|x− y|d
=

1
2r0

1
|x− y|d−2 ∀ x, y ∈ ∂D, x 6= y ,

and for any ϕ ∈ L2(∂D) and x ∈ ∂D,

(1.16) K∗[ϕ](x) = KD[ϕ](x) =
(2− d)

2r0
SD[ϕ](x) ,

where SD is the single layer potential.
If D is an ellipse whose semi-axes are on the x1− and x2−axes and of length

a and b, then, by using the parametric representation X(t) = (a cos t, b sin t), 0 ≤
t ≤ 2π, for the boundary ∂D, we have

(1.17) KD[ϕ](x) =
ab

2π(a2 + b2)

ˆ 2π

0

ϕ(X(t))
1−Q cos(t + θ)

dt ,
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where x = X(θ) and Q = (a2 − b2)/(a2 + b2).

1.5.1. Symmetrization of the Neumann-Poincaré operator. The following Calderón’s
identity holds:

(1.18) SDK∗D = KDSD on W2
−1/2(∂D) .

Consider the three-dimensional case. Since the single layer potential becomes
a unitary operator from W2

−1/2(∂D) onto W2
1/2(∂D), the operator K∗D can be sym-

metrized using Calderón identity (1.18) and hence becomes self-adjoint. It is then
possible to write its spectral decomposition. Let H∗(∂D) be the space W2

−1/2(∂D)
with the inner product

(1.19) (u, v)H∗ = −(u,SD[v])− 1
2 , 1

2
,

where (·, ·)− 1
2 , 1

2
is the duality pairing between W2

−1/2(∂D) and W2
1/2(∂D), which

is equivalent to the original one (on W2
−1/2(∂D)). The following results hold:

(i) The operator K∗D is self-adjoint in the Hilbert spaceH∗(∂D);
(ii) Let (λj, ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunc-

tion pair of K∗D in H∗(∂D), then λ0 = 1/2, λj ∈] − 1
2 , 1

2 [ for j ≥ 1, and
λj → 0 as j→ ∞;

(iii) The following spectral representation formula holds: for any ψ ∈W2
−1/2(∂D),

K∗D[ψ] =
∞

∑
j=0

λj(ψ, ϕj)H∗ ⊗ ϕj .

In two dimensions, even though the single-layer potential SD : W2
−1/2(∂D)→

W2
1/2(∂D) is not, in general, invertible nor injective, i.e., −(u,SD[v])− 1

2 , 1
2

does not
define an inner product, a symmetrization technique similar to the three-dimensional
case can be applied.

Note that using (1.15), it follows that if D is a disk, then the spectrum of K∗D is
1/2. Furthermore, by using (1.16) it can be shown that the spectrum of K∗D in the
case where D is a ball is 1/(2(2j + 1)), j = 0, 1, . . .. If D is an ellipse of semi-axes a
and b, then 0, 1/2 and ±(1/2)((a− b)/(a + b))j, j = 1, 2, . . . are the eigenvalues of
K∗D, which can be expressed by (1.17).

1.5.1.1. Code. In the course’s web-page there is a Matlab code that computes
the K operator and its adjoint. The code relies on a data structure that represents
the 2 dimensional curve ∂D, on this curve we approximate a basis for L2(∂D) by
defining points on ∂D and taking the family of functions that value 1 in only one
point and 0 in the others. Over this discrete family we compute the K that is
represented as a Matrix.

For the case of an ellipse of semi-axes a = 3, b = 2, using the code we can gen-
erate a sufficiently big matrix forK such that we can estimate the first eigenvalues,
being these
> 0.500
> 0.100
> 0.100
> 0.020
> 0.020
> 0.004



1.5. NEUMANN-POINCARÉ OPERATOR 26

> 0.004
...
which coincides with the ones given by the theory.

1.5.2. Polarization tensor. The polarization tensor is defined by

M(λ, D) =

ˆ
∂D

y(λI −K∗)−1[ν](y) dσ(y),

where ν is the outward normal to ∂D. It plays a key role in imaging.
There are also available codes to compute the polarization tensor of any curve.

For the case of an ellipse whose axes are aligned with the coordinate axes, we know
its polarization tensor is given by the 2x2 matrix

M(λ, B) = (k− 1)|B|
(

a+b
a+kb 0

0 a+b
b+ka

)
, where k =

2λ + 1
2λ− 1

.

These values coincides to the one computed with Matlab:
> 20.9440 0
> 0 17.1360

The polarization tensor of multiple domains (say D1 ∪ D2) can be defined by
by

M(λ, D1 ∪ D2) =

ˆ
∂D1

yϕ1(y) dσ(y) +
ˆ

∂D2

yϕ2(y) dσ(y),

where (ϕ1, ϕ2) is solution to

λI −K∗D1
− ∂SD2

∂ν(1)

∣∣
∂D1

− ∂SD1
∂ν(2)

∣∣
∂D2

λI −K∗D2

(
ϕ1
ϕ2

)
=

(
ν(1)

ν(2)

)
,

where ν(1) and ν(2) are the outward normal to ∂D1 and ∂D2, respectively.
As example, for the case of two discs of radius 0.5 and 0.3, located at (0.5, 0.5)

and (−0.8,−0.5) respectively, the computed polarization tensor is
> 0.7264 -0.1689
> 0.0660 1.1023



CHAPTER 2

Anomaly Imaging Algorithms

In this tutorial we will apply the accurate asymptotic formulas derived in the
course for the purpose of identifying the location and certain properties of the
inclusions. We consider conductivity and electromagnetic imaging, and single
out simple fundamental algorithms which are tested and uploaded in the course’s
web-page.

We will construct various reconstruction algorithms that take advantage of the
smallness of the inclusions. In particular, Multiple Signal Classification algorithm
(MUSIC), backpropagation and Kirchhoff migration.

All written codes are uploaded in the course’s web-page. The computations
make use of Matlab’s PDE toolbox, as it is required to implement the direct solu-
tion for each reconstruction method. The implementation and use of the PDE
toolbox will not be detailed as it is not in the scope of the course.

2.1. The Ill-posedness of Electrical Impedance Tomography

Before considering more sophisticated inversion schemes based on anomaly
detection, let us see that the direct approach for the reconstruction in Electrical
Impedance Tomography (EIT) leads to a severely ill-posed problem. This motiv-
ates the use of more advanced algorithms.

We refer to the lecture notes, where EIT is discussed and a model derived
(§6). Here, we shall use a linearized approximation. The inversion boils down to
solving a linear system of equations

MA = X

where M is the sensitivity matrix (known), A is the unknown image (written as a
column vector) and X is the vector of boundary measurements.

As discussed in §1.1.2, the ill-posedness of this inverse problem may be char-
acterized by the decay of the singular values of M. The singular values of M,
when considering a homogenous background in the unit ball in two-dimensions
are shown in Figure 2.1. As it can be clearly seen, the exponential decay of the
singular values indicates that this inverse problem is severely ill-posed, and so
suitable regularization techniques have to be implemented.

2.2. Direct Imaging for the Conductivity Problem

We will apply the conductivity problem asymptotic formula

(2.1) u(x) = U(x)− δd∇U(z) ·M(λ, B)∇zN(x, z) + O(δd+1) ,

for the purpose of identifying the location and certain properties of the conduct-
ivity inclusions. Two simple fundamental algorithms that take advantage of the

27
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FIGURE 2.1. The decay of the singular values of the sensitivity
matrix M in a semi-logarithmic scale.

smallness of the inclusions are singled out: projection-type algorithms and MUSIC-
type algorithms. These algorithms are fast, stable, and efficient.

2.2.1. Detection of a Single Inclusion: A Projection-Type Algorithm. The
projection-type location search algorithm makes use of constant current sources.
Let Ω be the background medium and let U be the background solution. One
wants to apply a special type of current that makes ∇U constant in the inclusion
D. The injection current g = a · ν for a fixed unit vector a ∈ Rd yields ∇U = a in
Ω.

Let the conductivity inclusion D be of the form z + δB. Let w be a smooth
harmonic function in Ω. From (2.1) it follows that the weighted boundary meas-
urements Iw[U] satisfies

(2.2) Iw[U] :=
ˆ

∂Ω
(u−U)(x)

∂w
∂ν

(x) dσ(x) ≈ −δd∇U(z) ·M(λ, B)∇w(z) ,

where λ = (k + 1)/(2(k− 1)), k being the conductivity of D.
Assume for the sake of simplicity that d = 2 and D is a disk. Set

w(x) = −(1/2π) log |x− y| for y ∈ R2 \Ω, x ∈ Ω .

Since w is harmonic in Ω, using the course’s derived formula for the polarization
tensor of ellipses and equation (2.2), it follows that

(2.3) Iw[U] ≈ (k− 1)|D|
π(k + 1)

(y− z) · a
|y− z|2 , y ∈ R2 \Ω .

The first step for the reconstruction procedure is to locate the inclusion. The
location search algorithm is as follows. Take two observation lines Σ1 and Σ2 con-
tained in R2 \Ω given by

Σ1 := a line parallel to a ,

Σ2 := a line normal to a .
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FIGURE 2.2. The plots of the functions Iw[U](zi) for zi ∈ Σi, i = 1, 2.

Find two points zS
i ∈ Σi, i = 1, 2, so that

Iw[U](zS
1 ) = 0, Iw[U](zS

2 ) = max
y∈Σ2
|Iw[U](y)| .

From (2.3), one can see that the intersecting point zS of the two lines

Π1(zS
1 ) := {y | a · (y− zS

1 ) = 0} ,(2.4)

Π2(zS
2 ) := {y | (y− zS

2 ) is parallel to a}(2.5)

is close to the center z of the inclusion D: |zS − z| = O(δ2).
Once one locates the inclusion, the factor |D|(k− 1)/(k + 1) can be estimated.

As it has been said before, this information is a mixture of the conductivity and
the volume. A small inclusion with high conductivity and larger inclusion with
lower conductivity can have the same polarization tensor.

EXAMPLE 2.1. As an example, we consider the two dimensional unit ball Ω =
B(0, 1) with a homogeneous background and an inclusion D = z + δB, with B =
B(0, 1), z = (0.4,−0.3) and δ = .2. The contrast is given by k = 2. We choose
a = e1. The plots of the functions Iw[U](zi) for zi ∈ Σi, i = 1, 2, are shown in
Figure 2.2. The approximated center of the inclusion may be calculated as above,
by looking at the zero of Iw[U](z1) and at the maximum of |Iw[U](z2)|. In this
case, we get (zS

1 , zS
2 ) = (0.4,−0.27), which is a very good approximation of the

exact center z.

2.2.2. Detection of Multiple Inclusions: A MUSIC-Type Algorithm. Con-
sider P well-separated inclusions Dp = δBp + zp (these are a fixed distance apart),
with conductivities kp, p = 1, . . . , P. Suppose for the sake of simplicity that all the
domains Bp are disks. Let yl ∈ R2 \Ω for l = 1, . . . , n denote the source points.
Set

Uyl = wyl := −(1/2π) log |x− yl | for x ∈ Ω, l = 1, . . . , n .

The MUSIC-type location search algorithm for detecting multiple inclusions is as
follows. For n ∈ N sufficiently large, define the response matrix A = (All′)

n
l,l′=1
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by

All′ = Iwyl
[Uyl′ ] :=

ˆ
∂Ω

(u−Uyl′ )(x)
∂wyl

∂ν
(x) dσ(x) .

Expansion (2.2) yields

All′ ≈ −
P

∑
p=1

2(kp − 1)|Dp|
kp + 1

∇Uyl′ (zp) · ∇Uyl (zp) .

For j = 1, 2, introduce

g(j)(zS) =

(
ej · ∇Uy1(z

S), . . . , ej · ∇Uyn(z
S)

)T

, zS ∈ Ω ,

where {e1, e2} is an orthonormal basis of R2.

LEMMA 2.2 (MUSIC characterization). There exists n0 > dP such that for any
n > n0 the following characterization of the location of the inclusions in terms of the
range of the matrix A holds:

(2.6) g(j)(zS) ∈ Range(A) for j = 1, 2 iff zS ∈ {z1, . . . , zP} .

The MUSIC-type algorithm to determine the locations of the inclusions is as
follows. Let Πnoise = I−Π, where Π is the orthogonal projection onto the range of
A. Given any point zS ∈ Ω, form the vector g(j)(zS). The MUSIC characterization
(2.6) says that the point zS coincides with the location of an inclusion if and only
if Πnoise[g(j)](zS) = 0, j = 1, 2. Thus one can form an image of the inclusions by
plotting, at each point zS, the cost function

IMU(zS) =
1√

||Πnoise[g(1)](zS)||2 + ||Πnoise[g(2)](zS)||2
.

The resulting plot will have large peaks at the locations of the inclusions.

EXAMPLE 2.3. We now consider two circular inclusions in the two-dimensional
unit ball Ω = B(0, 1), as shown in Figure 2.3a. We apply the above method and
compute the imaging functional IMU. A delicate issue is the estimate of the range
of A. This is done via the SVD decomposition of A, by keeping only the first L
right singular vectors. The results are shown in Figures 2.3b, 2.3c and 2.3d for
L = 3, L = 4 and L = 20, respectively. Since there are two inclusions and we are
in two dimensions, the range of A should be well-approximated by L = 4 vectors.
The images show what happens if the dimension of the range is not correctly es-
timated. Note that these images only indicate the locations of the inclusions, and
not their contrast.

2.3. Direct Imaging Algorithms for the Helmholtz Equation

In this section, we design direct imaging functionals for small inclusions at a
fixed frequency k0. Consider the Helmholtz equation with the Neumann data g in
the presence of the inclusion D and let U denote the background solution.

Let w be a smooth function such that (∆ + k2
0)w = 0 in Ω. The weighted

boundary measurements Iw[U] defined by

(2.7) Iw[U] :=
ˆ

∂Ω
(u−U)(x)

∂w
∂ν

(x) dσ(x)
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(A) The exact locations and contrasts
of the inclusions.

(B) The imaging functional IMU with
L = 3.

(C) The imaging functional IMU with
L = 4.

(D) The imaging functional IMU with
L = 20.

FIGURE 2.3. The imaging functional IMU for conductivity imaging.

satisfies

(2.8)
Iw[U, ω] = −δd

(
∇U(z) ·M(λ, D)∇w(z) + k2

0(
ε?
ε0
− 1)|D|U(z)w(z)

)
+ o(δd) ,

with λ given by µ0+µ∗
2(µ0−µ∗)

.
We apply the course’s derived asymptotic formulas for the Helmholtz equa-

tion and (2.8) for the purpose of identifying the location and certain properties of
the inclusions.

Consider P well-separated inclusions Dp = zp + δBp, p = 1, . . . , P. The mag-
netic permeability and electric permittivity of Dp are denoted by µp and εp, re-
spectively. Suppose that all the domains Bp are disks. In this case, we have

(2.9) Iw[U] ≈ −
P

∑
p=1
|Dp|

(
2

µp − µ0

µ0 + µp
∇U(z) · ∇w(z) + k2

0(
εp

ε0
− 1)U(z)w(z)

)
.
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2.3.1. MUSIC-type Algorithm. Let (θ1, . . . , θn) be n unit vectors in Rd. For
θ ∈ {θ1, . . . , θn}, we assume that we are in possession of the boundary data u
when the domain Ω is illuminated with the plane wave U(x) = eik0θ·x. Taking the
harmonic function w(x) = e−ik0θ′ ·x for θ′ ∈ {θ1, . . . , θn} and using (2.9) shows that
the weighted boundary measurement is approximately equal to

Iw[U] ≈ −
P

∑
p=1
|Dp|k2

0

(
2

µ0 − µp

µ0 + µp
θ · θ′ +

εp

ε0
− 1
)

eik0(θ−θ′)·zp .

Define the response matrix A = (All′)
n
l,l′=1 ∈ Cn×n by

(2.10) All′ := Iwl′ [Ul , ω] ,

where Ul(x) = eik0θl ·x, wl(x) = e−ik0θl ·x, l = 1, . . . , n. It is approximately given by

(2.11) All′ ≈ −
P

∑
p=1
|Dp|k2

0

(
2

µ0 − µp

µ0 + µp
θl · θl′ +

εp

ε0
− 1
)

eik0(θl−θl′ )·zp ,

for l, l′ = 1, . . . , n. Introduce the n-dimensional vector fields g(j)(zS), for zS ∈ Ω
and j = 1, . . . , d + 1, by

(2.12) g(j)(zS) =
1√
n
(
ej · θ1eik0θ1·zS

, . . . , ej · θneik0θn ·zS)T , j = 1, . . . , d ,

and

(2.13) g(d+1)(zS) =
1√
n
(
eik0θ1·zS

, . . . , eik0θn ·zS)T ,

where {e1, . . . , ed} is an orthonormal basis of Rd. Let g(zS) be the n × d matrix
whose columns are g(1)(zS), . . . , g(d)(zS). Then (2.11) can be written as
(2.14)

A ≈ −n
P

∑
p=1
|Dp|k2

0

(
2

µ0 − µp

µ0 + µp
g(zp)g(zp)

T
+ (

εp

ε0
− 1)g(d+1)(zp)g(d+1)(zp)

T)
.

Let Πnoise = I −Π, where Π is the orthogonal projection onto the range of A as
before. The MUSIC-type imaging functional is defined by

(2.15) IMU(zS) :=
( d+1

∑
j=1
‖Πnoise[g(j)](zS)‖2

)−1/2
.

This functional has large peaks only at the locations of the inclusions.

2.3.2. Backpropagation-type Algorithms. Let (θ1, . . . , θn) be n unit vectors in
Rd. Consider measurements with Ul(x) = wl(x) = eik0θl ·x, l = 1, . . . , n. The
response now will be approximately given by

All′ ≈ −
P

∑
p=1
|Dp|k2

0

(
2

µp − µ0

µ0 + µp
θl · θl′ +

εp

ε0
− 1
)

eik0(θl+θl′ )·zp ,

and thus its diagonal will be

All ≈ −
P

∑
p=1
|Dp|k2

0

(
2

µp − µ0

µ0 + µp
+

εp

ε0
− 1
)

ei2k0θl ·zp ,
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The backpropagation-type imaging algorithm makes use of this particular shape
to extract the location of the inclusion, which is contained only in the exponen-
tial term. To do it so we consider the following backpropagation-type imaging
functional at single frequency k0

(2.16) IBP(zS) :=
1
n

n

∑
l=1

e−2ik0θl ·zS
Iwl [Ul ] ,

For sufficiently large n and equidistant θl , we have

(2.17)
1
n

n

∑
l=1

eik0θl ·x ≈ 4(
π

k0
)d−2 =m

{
Γk0(x, 0)

}
=

{
sinc(k0|x|) for d = 3 ,
J0(k0|x|) for d = 2 ,

where sinc(s) = sin(s)/s is the sinc function and J0 is the Bessel function of the
first kind and of order zero.

Therefore, it follows that

IBP(zS, ω) ≈ −
P

∑
p=1
|Dp|k2

0

(
2

µp − µ0

µ0 + µp
+(

εp

ε0
− 1)

)
×
{

sinc(2k0|zS − zp|) for d = 3,
J0(2k0|zS − zp|) for d = 2 .

These imaging functional will have peaks at the location of the inclusions. Also,
these formulas show that the resolution of the imaging functional is the standard
diffraction limit. It is of the order of half the wavelength λ = 2π/k0.

2.3.3. Kirchhoff Migration. Note that IBP uses only the diagonal terms of the
response matrix A, we would like to use the whole matrix as it would give a more
stable and precise imaging method. As in MUSIC, consider the response matrix
given by Ul(x) = eik0θl ·x, wl(x) = e−ik0θl ·x, l = 1, . . . , n. Motivated by the rewriting
of the response matrix given by 2.14, we define the Kirchhoff migration functional
as:

(2.18) IKM(zS, ω) =
d+1

∑
j=1

g(j)(zS) · Ag(j)(zS) ,

where g(j) are defined by (2.12) and (2.13). When developing this operation, one
arrives to terms of the form

d+1

∑
j=1

d+1

∑
k=1
|g(j)(x) · g(k)(zp)|2,

that given some approximate orthogonality of these vectors when location x do
not match the location of the inclusion zp; this property allows us to find the zp.

2.3.4. Numerical simulations. For numerical simulations we consider a fixed
frequency k0 = 12, domain D the unitary disc, background constants µ0 = ε0 = 1
and two disc inclusions: one electrical inclusion with ε∗ = 5 and radius 0.1, and
one magnetic inclusion with µ∗ = 2 with radius 0.15. See figure 2.4 to visualize
the configuration.

The codes for backpropagation and Kirchhoff migration are straightforward
from the exposed fomulae. MUSIC on the contrary is not straight forward to code,
as it is based on studying the range of the response matrix; small perturbations
of this matrix will result on a full rank one, thus there is a need to regularize it to
reduce the rank. To this purpose it is safe to first decompose the matrix with an
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FIGURE 2.4. Considered domain for the Helmholtz equation. To
the left the location of the electric inclusion, to the right hand side
the location of the magnetic inclusion.

FIGURE 2.5. The inclusion location methods. From left to right
hand side: MUSIC, Backpropagation and Kirchhoff migration.

SVD decomposition and discard the matrices with a small enough singular value;
this smoothing process bounds the rank of the response matrix to any desired size.

MUSIC, backpropagation and Kirchhoff migration were tested for this setting,
the results can be seen on figure 2.5.It can be seen that both Kirchhoff and MUSIC
are accurate to locate the center of the inclusion, whereas backpropagation gives
rather poor results, aiming to some inclusion located in between them.

Backpropagation seems to fail by numerical errors, and given that the method
only considers the diagonal terms of the response matrix, it is expected to be sens-
itive to small perturbations as it uses a small amount of data. Kirchhoff migration
locates accurately the inclusions and give as added information some intensity
values that range to positive and negative, this information could be used success-
fully to obtain even more information about the inclusions, for instance if its of
magnetic or electric nature. MUSIC algorithm also locates successfully the loca-
tions of the inclusions, but it does not give more information about them.



CHAPTER 3

Coupled-physics imaging

3.1. Photoacoustic Imaging

As seen in course, the problem photo-acoustic inverse problem is closely re-
lated to be able to obtain the location of sound sources at time t = 0 from meas-
urements from the boundary. And we saw in Section 1.4, this is related to the
inversion of the spherical means Radon transform operator (SmRt).

For the case of the unitary sphere S , we have an explicit formula to invert the
SmRt presented in subsection 1.4.2. This is filtered backprojection algorithm

R∗BR[ f ],

where R is the SmRt operator, B is a filter operator and R∗ is the adjoint of the
SmRt. Although we have an exact inversion formula, it is ill-behaved when the
measurements R[ f ] are not proper. For instance we could have a low amount of
measurement on the boundary, that in practice means that the measurements were
done with a scarse amount of tranducers; partial measurements, where we cannot
access the information over the whole boundary of the target; or presence of noise
in the measurements.

To approach these issues we look at another way of recovering the data from
the measurements. Let g be the measurements of our inverse problem, and A be a
model of the data, the inverse problem we are interested to solve is to find f such
that A f = g. This problem could be ill-posed or simply there could not be any
solutions. Thus we formulate it in a way that gives us a well-posed problem, for
instance

(3.1) find u such that minimizes
1
2
||Au− g||2L2 − λJ(u),

where the first term ||Au− g|| is a term that seeks to get a solution that, according
to the model A, produces measurements close to the real ones; the second term
λJ(u) is a term where we can include some a priori information, acting as a regu-
larization term.

This formulation is typical in Tikhonov regularization, where the idea is to
impose stability of the inversion of an ill-posed problem. The standard choices are
picking J(·) as 1

2 || · ||2L2 or 1
2 ||∇ · ||2L2 . These choices are advantageous as they give

an easy minimization problem, but in the context of medical imaging, we would
like to have solutions that give good images.

In the image denoising area, it is considered a good image one that satisfies
both good spatial resolution and preserves edges. By considering J(·) = || · ||2L2

there is not much gain in space regularity, and by choosing J(·) = ||∇ · ||2L2 we
loose the edges. A popular choice of image denoising is to consider J as the total
variation, since it gives both space regularity and preserves edges.

35
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3.1.1. Total Variation. We might want something like J(u) = ||∇u||L1 , that
is clearly well defined for u ∈ W1,1. But the problem is that the family of func-
tions that have weak derivatives with finite L1 norm cannot present discontinuit-
ies across hypersurfaces, thus are not proper if we want an edge preserving image
from problem 3.1. The total variation extends this choice of J(u) to non continuous
functions.

In one dimension, the total variation is defined as

|u|TV([a,b]) = sup
P∈P

|P|−1

∑
i=0
|u(xi+1)− u(xi)|, xi ∈ P,

where P is the family of partitions of the interval [a, b]. In more dimensions, the
total variation is defined by duality. For u ∈ L1(Ω), Ω ⊂ Rd we have

|u|TV(Ω) = sup
{ˆ

Ω
u(x)divϕ(x)dx : ϕ ∈ C1

c (Ω, Rd), ||ϕ||L∞ ≤ 1
}

.

The total variation has some properties that are of interest for image denoising:
(1) If u ∈ C1, then |u|TV(Ω) = ||∇u||L1 .
(2) The family of functions with finite total variation (the bounded variation

functions) allows discontinuous functions across hypersurfaces.
(3) If E is a set with smooth C1,1 boundary, then

|χE|TV = |∂E|.
This can be proved by using the total variation formula, pick any ϕ ∈
K :=

{
ϕ ∈ C1

c , ||ϕ||L∞ ≤ ∞
}

thenˆ
Ω

χE(x)divϕ(x) =
ˆ

∂E
ϕ · νdσ,

where ν is the normal derivative. This integral can be maximized by
choosing ϕ = ν, which is possbile given the regularity of the E, by doing
so we obtainˆ

Ω
χE(x)divϕ(x) ≤

ˆ
∂E
|ν|2dσ = |∂E|,

and we can conclude.
(4) The total variation is a convex operator. This stems from the fact that it

can be written as the supremum of linear functions. Consider for ϕ ∈ K
the linear functions

Lϕ : u→
ˆ

Ω
u(x)divϕ(x)dx,

hence by definition of the total variation, we have

|u|TV = sup
ϕ∈K

Lϕ(u).

The first property gives an idea of what it is penalizing, while the second prop-
erty tells us that it allows discontinuous functions and hence, would give edge
preserving images. The third property tells us that penalizing the total variation
will also try to minimize the length of the boundaries, hence smoothing high fre-
quencies on them. Finally the convexity property is the most important one for
optimization, as it allows us to use a wide family of optimization techniques.
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3.1.2. Optimization algorithms. The problem we seek to minimize is 3.1 with
J as the total variation, basically it is the sum of two convex functions. For this
will use the iterative shrinkage algorithm (ISTA), with a little step modification
that gives a faster convergence speed (FISTA). The ISTA can be viewed as a split,
gradient-descent, iterative scheme, we will review the main ideas behind it.

3.1.2.1. Gradient descent. Let f be a smooth function, then the gradient descent
with step s is given by iterating

x+ = x− s · ∇ f (x).

3.1.2.2. Proximal gradient descent. The idea is to minimize a local quadratic ap-
proximation of f and replacing ∇2 f (x) by I/s, this gives as update step

x+ = arg min
z

f̃s(z, x) =: arg min
z

f (x) +∇ f (x)t(z− x) +
1
2s
||z− x||22.

At first glance it does not look like a good idea, but the main advantage of it is that
it solves a minimization problem that is independent of f , as it only evaluates its
value and derivative, and afterwards minimize a simple d dimensional quadratic
function.

3.1.2.3. Iterative shrinkage method (ISTA). Consider f = G + J the sum of two
functions, where G is differentiable. The idea is to implement an splitting method:
we minimize first one function and afterwards the other one, but there is some
joint minimization as we will use the proximal gradient descent idea. The update
step is given by

x+ = arg min
z

G̃s(z, x) + J(z)

= arg min
z

G(x) +∇G(x)t(z− x) +
1
2s
||z− x||22

= arg min
z

+J(z)
1
2s
||z− (x− s∇G(x))||22 + J(z)

So written in another fashion, we define the proximal step

proxs(x) = arg min
z

1
2s
||x− z||22 + J(z),

and thus, the update step becomes

x+ = proxs(x− s∇G(x)).

The improvement obtained by this method is that now it is only needed to minim-
ize J added to a quadratic function, in the particular case of the total variation we
have an algorithm to obtain accurately the value of proxt(x).

Observe that for the particular case we want to deal with, being G(x) =
1
2 ||Rx− g||22 we have

〈∇G(x), y〉 = 〈Rx− g,Ry〉 = 〈R∗ (Rx− g) , y〉 .

Thus we can easily compute the gradient ∇G(x) = R∗ (Rx− g) .
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3.1.2.4. Fast iterative shrinkage method (FISTA). This is a modification to the
ISTA by Beck and Teboulle (2009) that speeds up the convergence speed of it. It
adds an extra intermediate variable and a dynamic step size. The algorithm will
be written for the specific problem we are dealing with.

y0 = 0, x0 = 0, s0 = 1

xk+1 = proxγτ (yk − γR∗ (R[xk]− g))

sk+1 =
1 +

√
1 + 4s2

k

2

yk+1 = xk+1 +
sk − 1
sk+1

(xk+1 − xk)

3.1.2.5. Minimization of the total variation. To be able to compute the proximal
operator in the case of the total variation, we need to solve

min
u

||u− g||22
2λ

+ |u|TV .

This minimization problem is treated by Chambelle’s paper And algorithm for total
variation minimization and applications. The key ingredient is to prove that the solu-
tion is given by

u = g− πλK(g),
with K defined before as the set where we take the supremum for the total vari-
ation and πλK the projection operator. To compute efficiently this projection, we
have the following algorithm

p0 = 0 ∈ Ω, τ ∈ (0, 1/8)

pn+1 =
pn + τ (∇(divpn − g/λ))

1 + τ| (∇(divpn − g/λ)) |
λdiv(pend) = πλK(g)

3.1.3. Numerical Simulation. Following the guidelines of the previous al-
gorithms, we can implement the total variation regularization for reconstruction
with incomplete data. Following the same example as the one given in figure 1.7
the obtained regularized reconstruction can be seen in 3.1. It can be observed a
clear enhancement in the reconstruction, it is a more uniform object and at the
same time the background inversion errors, where the strong negative values are
found, are well reconstructed.

3.2. Using multiple frequencies in thermoacoustic tomography

3.2.1. Main results. Given a smooth bounded domain Ω ⊆ Rd, d = 2, 3, we
consider the Dirichlet boundary value problem

(3.2)
{
−∆ui

ω − (ω2ε + iωσ) ui
ω = 0 in Ω,

ui
ω = gi on ∂Ω.

We assume that ε, σ ∈ L∞(Ω; R) and satisfy

(3.3) Λ−1 ≤ ε, σ ≤ Λ almost everywhere in Ω

for some Λ > 0 and that gi ∈ C1,α(Ω; C) for some α ∈ (0, 1). For the derivation of
this PDE we refer to §14 of the lecture notes.
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FIGURE 3.1. The object to reconstruct and the location of the
transducers to the left, on the middle the reconstruction using the
inverse formula. On the right hand side the reconstruction with
the total variation regularization.

FIGURE 3.2. The domain D = {ω ∈ C : |=ω| < η} and the
admissible set A.

<ω

=ω

η

−η
A

By classical elliptic theory we have the following existence and regularity res-
ult.

PROPOSITION 3.1. There exists η > 0 depending on Ω and Λ only such that for
ω ∈ B(0, M) with |=ω| ≤ η, f ∈ L∞(Ω; C), F ∈ C0,α(Ω; C3) and g ∈ C1,α(Ω; C) the
problem

(3.4)
{
−∆u− (ω2ε + iωσ) u = div(F) + f in Ω,
u = g on ∂Ω,

has a unique solution u ∈ C1,α(Ω; C) with

(3.5) ‖u‖C1,α(Ω;C) ≤ C(Ω, Λ, M)
[
‖g‖C1,α(Ω;C) + ‖F‖C0,α(Ω;C3) + ‖ f ‖L∞(Ω;C)

]
.

Let A = [Kmin, Kmax] represent the frequencies we have access to, for some
0 < Kmin < Kmax. Set D := {ω ∈ C : |=ω| < η}. Figure 3.2 represents the domain
D and the admissible set of frequencies A.

We introduce the particular class of sets of measurements we are interested in.



3.2. USING MULTIPLE FREQUENCIES IN THERMOACOUSTIC TOMOGRAPHY 40

DEFINITION 3.2. A set of measurements K× {g1, . . . , gd+1} is C-proper if there
exists an open cover of Ω

Ω =
⋃

ω∈K
Ωω,

such that for any ω ∈ K∣∣u1
ω(x)

∣∣ ≥ C, x ∈ Ωω,(3.6a) ∣∣det
[

u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣ ≥ C, x ∈ Ωω.(3.6b)

Namely, a C-proper set gives a cover of Ω into #K subdomains, such that the
constraints given in (3.6) are satisfied in each subdomain for different frequen-
cies. Once this is achieved, the exact reconstruction formula for thermoacoustic
tomography discussed in the lecture notes may be applied in each subdomain for
different values of the frequency, and reconstruct the unknown parameter every-
where.

We now describe how to choose the frequencies in the admissible set A. Let
K(n) be the uniform partition of A into n− 1 intervals so that #K(n) = n, namely

(3.7) K(n) = {ω(n)
1 , . . . , ω

(n)
n }, ω

(n)
i = Kmin +

(i− 1)
(n− 1)

(Kmax − Kmin).

The main result of this section reads as follows.

THEOREM 3.3. Assume that (3.3) holds true. There exist C > 0 and n ∈N depend-
ing on Ω, Λ and A such that

K(n) × {1, x1, . . . , xd}
is a C-proper set of measurements.

3.2.2. Quantitative unique continuation. The following result is a quantitat-
ive version of the unique continuation property for holomorphic functions of one
complex variable.

LEMMA 3.4. Take 0 < r < R1 and 0 < R2. Let g be a holomorphic function in the
ellipse

E = {ω ∈ C :
(<ω)2

R2
1

+
(=ω)2

R2
2

< 1}

such that |g(0)| ≥ C0 > 0 and supE |g| ≤ D. There exists ω ∈ [r, R1) such that

|g(ω)| ≥ C

for some constant C > 0 depending only on R1, R2, r, D and C0.

PROOF. Since [r, (R1 + r)/2] ⊆ [r, R1), it is sufficient to show that there exists
C > 0 depending on R1, R2, r, D and C0 only such that

max
[r,(R1+r)/2]

|g| ≥ C.

By contradiction, suppose that there exists a sequence (gn)n of holomorphic func-
tions in E such that supE |gn| ≤ D, |gn(0)| ≥ C0 and max[r,(R1+r)/2] |gn| → 0. Since
supE |gn| ≤ D, by standard complex analysis, up to a subsequence gn → g∞ for
some g∞ holomorphic in E. As max[r,(R1+r)/2] |gn| → 0, we obtain g∞ = 0 on
[r, (R1 + r)/2], whence g∞ = 0, which contradicts |g∞(0)| ≥ C0. �
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3.2.3. Proof of Theorem 3.3. We now prove Theorem 3.3. For simplicity, we
shall say that a positive constant depends on a priori data if it depends only on Ω,
Λ and A.

We first show that the map ω ∈ D 7→ ui
ω ∈ Cκ is holomorphic. This will be

one of the basic tools of the proof of Theorem 3.3.

PROPOSITION 3.5. Under the assumptions of Theorem 3.3, the map

D −→ C1(Ω; C), ω 7−→ ui
ω

is holomorphic.

PROOF. Fix ω0 ∈ D: we are going to show that f : ω ∈ D 7→ ui
ω ∈ C1(Ω; C)

is holomorphic in ω0. Let ω ∈ D. A direct calculation shows that v(ω) = ( f (ω)−
f (ω0))/(ω−ω0) solves{

−∆vω − (ω2
0ε + iω0σ) vω = ((ω + ω0)ε + iσ) f (ω) in Ω,

vω = 0 on ∂Ω.

By Proposition 3.1, we have that v(ω) → w in the norm of C1(Ω; C) as ω → ω0,
where w is the unique solution of{

−∆w− (ω2
0ε + iω0σ)w = (2ω0ε + iσ) f (ω0) in Ω,

w = 0 on ∂Ω.

This shows that

lim
ω→ω0

f (ω)− f (ω0)

ω−ω0
∈ C1(Ω; C),

namely the map f is holomorphic in ω0. �

Define for j = 1, 2 the maps θ j : D → C(Ω; C) given by

θ1(ω) = u1
ω, θ2(ω) = det

[
u1

ω · · · ud+1
ω

∇u1
ω · · · ∇ud+1

ω

]
As a consequence of the previous result and of the fact that compositions of holo-
morphic maps are holomorphic, the maps θ j are holomorphic.

We next study some a priori bounds on θ j and ∂ωθ j, which immediately follow
from Proposition 3.1.

LEMMA 3.6. There exists C > 0 depending on a priori data such that for every
j = 1, 2 and ω ∈ B(0, M) ∩ D we have

(1)
∥∥θ

j
ω

∥∥
C(Ω;C)

≤ C;

(2)
∥∥∂ωθ

j
ω

∥∥
C(Ω;C)

≤ C.

The next lemma is the last step needed for the proof of Theorem 3.3.

LEMMA 3.7. For every x ∈ Ω there exists ωx ∈ A such that∣∣θ j
ωx (x)

∣∣ ≥ C, j = 1, . . . , r

for some C > 0 depending on a priori data.
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PROOF. Several positive constants depending on a priori data will be denoted
by C.

Take x ∈ Ω and define

gx(ω) = θ1
ω(x)θ2

ω(x), ω ∈ D.

Since the maps θ j are holomorphic, the map gx is holomorphic in D and by Lemma 3.6,
part (1), maxB(0,M)∩D

∣∣gx
∣∣ ≤ C. Moreover, |gx(0)| = 1, since u1

0 ≡ 1 and ui
0 ≡ xi−1

for i = 2, . . . , d + 1 (which follow from the fact that 1 and xi−1 solve the Laplace
equation). Therefore, by Lemma 3.4 with r = Kmin, R1 = Kmax, and R2 = η there
exists ωx ∈ A such that

∣∣gx(ωx)
∣∣ ≥ C. The result now follows from Lemma 3.6,

part (1). �

We are now ready to prove Theorem 3.3.

PROOF OF THEOREM 3.3. Different positive constants depending on a priori
data will be denoted by C or Z.

In view of Lemma 3.7, for every x ∈ Ω there exists ωx ∈ A such that∣∣θ j
ωx (x)

∣∣ ≥ C, j = 1, 2.

Thus, by Lemma 3.6, part (2), there exists Z > 0 such that

(3.8)
∣∣θ j

ω(x)
∣∣ ≥ C, ω ∈ [ωx − Z, ωx + Z] ∩A, j = 1, 2.

Recall that A = [Kmin, Kmax] and that ω
(n)
i = Kmin + (i−1)

(n−1) (Kmax − Kmin). It is
trivial to see that there exists P = P(Z, |A|) ∈N such that

(3.9) A ⊆
P⋃

p=1

Ip, Ip = [Kmin + (p− 1)Z, Kmin + pZ].

Choose now n ∈ N big enough so that for every p = 1, . . . , P there exists ip =

1, . . . , n such that ω(p) := ω
(n)
ip
∈ Ip. Note that n depends on Z and |A| only.

Take now x ∈ Ω. Since |[ωx − Z, ωx + Z]| = 2Z and
∣∣Ip
∣∣ = Z, in view of (3.9)

there exists px = 1, . . . , P such that Ipx ⊆ [ωx − Z, ωx + Z]. Therefore ω(px) ∈
[ωx − Z, ωx + Z] ∩A, whence by (3.8) there holds

∣∣θ j
ω(px)

(x)
∣∣ ≥ C for all j = 1, 2.

Recalling the definition of θ j this implies

(3.10) |u1
ω(px)

(x)| ≥ C, |det

[
u1

ω(px)
· · · ud+1

ω(px)

∇u1
ω(px)

· · · ∇ud+1
ω(px)

]
(x)| ≥ C.

Define now

Ωω = {x ∈ Ω : |u1
ω(x)| > C/2, |det

[
u1

ω · · · ud+1
ω

∇u1
ω · · · ∇ud+1

ω

]
(x)| > C/2}.

By (3.10) this gives an open cover Ω = ∪ω∈K(n)Ωω, since ω(px) ∈ K(n). As a
consequence, K(n) × {1, x1, . . . , xd} is C-proper (Definition 3.2). The theorem is
proved. �
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3.3. Ultrasonically Induced Lorentz Force Imaging

Let a physical object to be imaged occupy a three-dimensional domain Ω with
a smooth boundary ∂Ω. Assume that this body is placed in a constant magnetic
field B in the direction e3 where {e1, e2, e3} denotes the standard orthonormal basis
of R3. We are interested in recovering the electrical conductivity of this body σ ∈
L∞(Ω) with the known lower and upper bounds:

0 < σ ≤ σ ≤ σ < ∞ .

An acoustic transducer sends a short acoustic pulse from y ∈ R3 in the direction
ξ ∈ S, with S being the unit sphere, such that ξ · e3 = 0. This pulse generates the
velocity field v(x, t)ξ.

3.3.1. The Ionic Model of Conductivity. We describe here the electrical beha-
vior of the medium as an electrolytic tissue composed of ions capable of motion in
an aqueous tissue. We consider k types of ions in the medium with charges of qi,
i ∈ {1, . . . , k}. The corresponding volumetric density ni is assumed to be constant.
Neutrality in the medium is described as

(3.11) ∑
i

qini = 0 .

The Kohlrausch law defines the conductivity of such a medium as a linear
combination of the ionic concentrations

(3.12) σ = e+ ∑
i

µiqini,

where e+ is the elementary charge, and the coefficients µi denote the ionic mobility
of each ion i.

3.3.2. Ion Deviation by Lorentz Force. We embed the medium in a constant
magnetic field B with direction e3, and perturb it mechanically using the short,
focused, ultrasonic pulses v defined above. The motion of the charged particle i
inside the medium is deviated by the Lorentz force

(3.13) Fi = qivξ × B .

This force accelerates the ion in the orthogonal direction τ = ξ × e3. Then, almost
immediately, the ion reaches a constant speed given by,

vτ,i = µi|B|v
at the first order, where µi are coefficients depending on the ion. Finally, the ion i
has a total velocity

vi = vξ + µi|B|vτ .

The current density generated by the displacement of charges can be described as
follows:

jS = ∑
i

niqivi =

(
∑

i
niqi

)
vξ +

(
∑

i
niµiqi

)
|B|vτ .

Using the neutrality condition (3.11) and the definition of σ in (3.12), we get the
following simple formula for jS:
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(3.14) jS =
1

e+
|B|σvτ .

This electrolytic description of the tissue characterizes the interaction between
the ultrasonic pulse and the magnetic field through a small deviation of the charged
particles embedded in the tissue. This deviation generates a current density jS or-
thogonal to ξ and to B, locally supported inside the domain. At a fixed time t, jS
is supported in the support of x 7→ v(x, t). This current is proportional to σ, and
is the source of the current that we measure on the electrodes placed at ∂Ω. In the
next section, a formal link is substantiated between jS and the measured current I.

3.3.3. Internal Electrical Potential. Because the characteristic time of the acous-
tic propagation is very long compared with the electromagnetic wave propagation
characteristic time, we can adopt the electrostatic frame. Consequently, the total
current j in Ω at a fixed time t can be formulated as

(3.15) j = jS + σ∇u ,

where u is the electrical potential. It satisfies

(3.16) ∇ · (jS + σ∇u) = ∇ · j = 0 .

Let Γ1 and Γ2 be portions of the boundary ∂Ω where two planner electrodes are
placed. Denote Γ0 = ∂Ω \ (Γ1 ∪ Γ2).

As we measure the current between the two electrodes Γ1 and Γ2, the electrical
potential is the same on both electrodes, and can be fixed to zero without loss of
generality. Further, it is assumed that no current can leave from Γ0. The potential
u can then be defined as the unique solution in W1,2(Ω) of the elliptic system

(3.17)


−∇ · (σ∇u) = ∇ · jS in Ω ,

u = 0 on Γ1 ∪ Γ2 ,

∂νu = 0 on Γ0 .

Where ∂ν denotes the normal derivative. Note that the source term jS depends on
the time t > 0, the position of the acoustic transducer y ∈ R3, and the direction
ξ ∈ S. The electrical potential u also depends on these variables.

The measurable intensity I is the current flow through the electrodes. Integ-
rating (3.17) by parts gives ˆ

Γ1

σ∂νu +

ˆ
Γ2

σ∂νu = 0 ,

which is the expression of current flow conservation. We define the intensity I by

(3.18) I =
ˆ

Γ2

σ∂νu .

3.3.4. Virtual Potential. In order to link I to σ, we introduce a virtual potential
U ∈W1,2(Ω) defined as the unique solution of

(3.19)


−∇ · (σ∇U) = 0 in Ω ,

U = 0 on Γ1 ,
U = 1 on Γ2 ,

∂νU = 0 on Γ0 .
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Then we multiply (3.17) by U and integrate by parts. Assuming that the support
of v does not intersect the electrodes Γ1 and Γ2, we obtain

−
ˆ

Ω
σ∇u · ∇U +

ˆ
Γ2

σ∂νu =

ˆ
Ω

jS · ∇U .

From the property of U in (3.19) and the definition of I in (3.18), the above identity
becomes

I =
ˆ

Ω
jS · ∇U .

The above identity links the measured intensity I to an internal information of σ
using the expression of jS in (3.14):

I =
|B|
e+

ˆ
Ω

v(x, t)σ(x)∇U(x)dx · τ .

v depends on y, ξ, and t, so does I. We define the measurement function as

(3.20) My,ξ(z) =
ˆ

Ω
v(x, z/c)σ(x)∇U(x)dx · τ(ξ)

for any y ∈ R3, ξ ∈ S and z > 0.
Now we simplify the problem by assuming the displacement field v(x, z/c)

on direction ξ can be considered as concentrated as a delta function, hence we
can approximately obtain σ(x)∇U(x) · τ(ξ) as information. Under the hypothesis
that ∀x ∈ Ω we can send at least two pulses with direction ξ1, ξ2 ∈ S such that
ξ1 × ξ2 6= 0, then we can get as information σ(x)∇U(x)∀x ∈ Ω. Our inverse
problem then reduces to be able to recover σ out of the non linear data σ∇U.

3.3.5. Recovering the Conductivity by Optimal Control. In this section we
assume that, according to the previous one, we are in the situation where we know
a good approximation of the virtual current D := σ∇U in the sense of L2(Ω). The
objective here is to provide efficient methods for separating σ from D.

For a < b, let us denote by L∞
a,b(Ω) := { f ∈ L∞(Ω) : a < f < b} and define

the operator F : L∞
σ,σ(Ω) −→W1,2(Ω) by

(3.21) F [σ] = U :


∇ · (σ∇U) = 0 in Ω ,

U = 0 on Γ1 ,
U = 1 on Γ2 ,

∂νU = 0 on Γ0 .

The following lemma holds.

LEMMA 3.8. Let dF be the Fréchet derivative of F . For any σ ∈ L∞
σ,σ(Ω) and

h ∈ L∞(Ω) such that σ + h ∈ L∞
σ,σ(Ω) we have

(3.22) dF [σ](h) = v :


∇ · (σ∇v) = −∇ · (h∇F [σ]) in Ω ,

v = 0 on Γ1 ∪ Γ2 ,

∂νv = 0 on Γ0 .
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PROOF. Let us denote by w = F [σ+ h]−F [σ]− v. This function is in W1,2(Ω)
and satisfies the equation

∇ · (σ∇w) = −∇ · (h∇(F [σ + h]−F [σ]))
with the same boundary conditions as v. We have the elliptic global control:

‖∇w‖L2(Ω) ≤
1
σ
‖h‖L∞(Ω) ‖∇(F [σ + h]−F [σ])‖L2(Ω) .

Since
∇ · (σ∇(F [σ + h]−F [σ])) = −∇ · (h∇F [σ + h]) ,

we can also control F [σ + h]−F [σ] with

‖∇(F [σ + h]−F [σ])‖L2(Ω) ≤
1√
σ
‖h‖L∞(Ω) ‖∇F [σ + h]‖L2(Ω) .

Then, there is a positive constant C depending only on Ω such that

‖∇F [σ + h]‖L2(Ω) ≤ C

√
σ

σ
.

Finally, we obtain

‖∇w‖L2(Ω) ≤ C
√

σ

σ2 ‖h‖
2
L∞(Ω) ,

and the proof is complete. � �

We look for the minimizer of the functional

(3.23) J[σ] =
1
2

ˆ
Ω
|σ∇F [σ]− D|2 .

In order to do so, we compute its gradient. The following lemma holds.

LEMMA 3.9. For any σ ∈ L∞
σ,σ(Ω) and h ∈ L∞(Ω) such that σ + h ∈ L∞

σ,σ(Ω),

dJ[σ](h) = −
ˆ

Ω
h
(
(σ∇F [σ]− D−∇p) · ∇F [σ]

)
,

where p is defined as the solution to the adjoint problem:

(3.24)


∇ · (σ∇p) = ∇ · (σ2∇F [σ]− σD) in Ω ,

p = 0 on Γ1 ∪ Γ2 ,

∂ν p = 0 on Γ0 .

PROOF. AsF is Fréchet differentiable, so is J. For σ ∈ L∞
σ,σ(Ω) and h ∈ L∞(Ω)

such that σ + h ∈ L∞
σ,σ(Ω), we have

dJ[σ](h) =
ˆ

Ω
(σ∇F [σ]− D)x(h∇F [σ] + σ∇dF [σ](h)) .

Now, multiplying (3.24) by dF [σ](h), we get
ˆ

Ω
σ∇p · ∇dF [σ](h) =

ˆ
Ω
(σ2∇F [σ]− σD) · ∇dF [σ](h) .
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Real conductivity σ Reconstruction after 50 iterations

FIGURE 3.3. Objective function and its respective reconstruction
with the gradient descent method.

Logarithm of error Gradient at first iteration

FIGURE 3.4. On the left we can see how the error decreases fast
for each iteration. On the right we can see the first gradient, rep-
resenting how the reconstruction converges at each step. This be-
havior is similar at each iteration.

On the other hand, multiplying (3.22) by p we arrive at
ˆ

Ω
σ∇p · ∇dF [σ](h) = −

ˆ
Ω

h∇F [σ] · ∇p ,

and therefore,

dJ[σ](h) =
ˆ

Ω
h(σ∇F [σ]− D−∇p) · ∇F [σ] ,

which completes the proof. �

Lemma 3.9 allows us to implement a numerical gradient descent method in
order to find σ.

3.3.6. Numerical Implementation. The gradient descent method is implemen-
ted to reconstruct the value of σ out of data representing the value σ∇F [σ]. In fig-
ure 3.3 we can see the real data and the obtained reconstruction with 50 iterations,
the initial guess is constant equal to 2. In figure 3.4 we can see how the log-error
log J[σ] evolves at each iteration and the shape of the derivative at time 0.

Overall, the method gives accurate reconstructions and is stable to noise. As it
is natural, there is smoothing of the boundaries as we are minimizing the L2 error.
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3.4. Acousto-electromagnetic tomography

3.4.1. Introduction. This section focuses on the technique called acousto elec-
tromagnetic tomography. Spherical ultrasonic waves are sent from sources around
the domain under investigation. The pressure variations create a displacement
in the tissue, thereby modifying the electrical properties. Microwave boundary
measurements are taken in the unperturbed and in the perturbed situation (see
Figure 3.5). In a first step, as in Ultrasound-Modulated Optical Tomography (see
the lecture notes) the cross-correlation of all the boundary values, after the inver-
sion of a spherical mean Radon transform, gives the internal data of the form

|uω(x)|2∇q(x),

where q is the spatially varying electric permittivity of the body Ω ⊂ Rd for d =
2, 3, ω > 0 is the frequency and uω satisfies the Helmholtz equation with Robin
boundary conditions

(3.25)
{

∆uω + ω2quω = 0 in Ω,
∂uω
∂ν − iωuω = −iωϕ on ∂Ω.

(In fact, only the gradient part ψω of |uω |2∇q = ∇ψω + curlΦ is measured.) The
second step of this hybrid methodology consists in recovering q from the know-
ledge of ψω.

Denoting the measured datum by ψ∗ω, we minimize the energy functional

Jω(q) =
1
2

ˆ
Ω
|ψω(q)− ψ∗ω |2dx

with a gradient descent method. In this case, this is equivalent to a Landweber iter-
ation scheme. As explained in the lecture notes, the convergence of such algorithm
is guaranteed provided that ‖Dψω [q](ρ)‖ ≥ C ‖ρ‖. This condition represents the
uniqueness and stability for the linearized inverse problem Dψω [q](ρ) 7→ ρ. In
general, the kernel of ρ 7→ Dψω [q](ρ) may well be non-trivial.

In order to obtain an injective problem, we use a multiple frequency approach.
If the boundary condition ϕ is suitably chosen (e.g. ϕ = 1), the kernels of the op-
erators ρ 7→ Dψω [q](ρ) “move” as ω changes, and by choosing a finite number
of frequencies K in a fixed range, determined a priori, it is possible to show that
the intersection becomes empty. In particular, there holds ∑ω∈K ‖Dψω [q](ρ)‖ ≥
C ‖ρ‖ and the convergence of an optimal control algorithm for the functional J =
∑ω∈K Jω follows (see Theorem 3.10). The idea is the same as the one used in Sec-
tion 3.2, and extended here to an infinite-dimensional setting. Indeed, now we
want to avoid kernels of operators instead of zeros of functions.

This section is structured as follows. §3.4.2 describes the physical model and
the proposed optimization approach. In §3.4.3 we prove the convergence of the
multi-frequency Landweber scheme. Some numerical simulations are discussed
in §3.4.4.

3.4.2. Acousto-Electromagnetic Tomography. In this section we recall the coupled
physics inverse problem of the Acousto-Electromagnetic Tomography.

3.4.2.1. Physical Model. We now briefly describe how to measure the internal
data in the hybrid problem under consideration. The reader is referred to the part
of lecture notes discussing the Ultrasound-Modulated Optical Tomography.
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FIGURE 3.5. The acousto-electromagnetic tomography experiment.

Let Ω ⊂ Rd be a bounded and smooth domain, for d = 2 or d = 3 and
q ∈ L∞(Ω; R) ∩ H1(Ω; R) be the electric permittivity of the medium. We assume
that q is known and constant near the boundary ∂Ω, namely q = 1 in Ω \Ω′, for
some Ω′ b Ω. More precisely, suppose that q ∈ Q, where for some Λ > 0
(3.26)

Q := {q ∈ H1(Ω; R) : Λ−1 ≤ q ≤ Λ in Ω, ‖q‖H1(Ω) ≤ Λ and q = 1 in Ω \Ω′}.

We model electromagnetic propagation in Ω at frequency ω ∈ A = [Kmin, Kmax] ⊂
R+ by (3.25). The boundary value problem model allows us to consider arbitrary q
beyond the Born approximation, and so it is used here instead of the free propaga-
tion model. Problem (3.25) admits a unique solution uω ∈ H1(Ω; C) for a fixed
boundary condition ϕ ∈ H1(Ω; C) (see Lemma 3.12).

Let us discuss how microwaves are combined with acoustic waves. A short
acoustic wave creates a displacement field v in Ω (whose support is the blue area
in Figure 3.5), which we suppose continuous and bijective. Then, the permittivity
distribution q becomes qv defined by

qv(x + v(x)) = q(x), x ∈ Ω,

and the complex amplitude uv
ω of the electric wave in the perturbed medium sat-

isfies

(3.27) ∆uv
ω + ω2qvuv

ω = 0 in Ω.

Using (3.25) and (3.27), for v small enough we obtain the cross-correlation formula

ˆ
∂Ω

(
∂uω

∂n
uv

ω −
∂uv

ω

∂n
uω) dσ = ω2

ˆ
Ω
(qv − q)uωuv

ω dx ≈ ω2
ˆ

Ω
|uω |2∇q · v dx,
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By boundary measurements, the left hand side of this equality is known. Thus, we
have measurements of the formˆ

Ω
|uω |2∇q · v dx,

for all perturbations v. As shown in the lecture notes, choosing radial displace-
ments v allows to recover the gradient part of |uω |2∇q by using the inversion for
the spherical mean Radon transform. Namely, writing the Helmholtz decomposi-
tion of |uω |2∇q

|uω |2∇q = ∇ψω + curlΦω,
for ψω ∈ H1

0(Ω; R) and Φω ∈ H1(Ω; R2d−3), the potential ψω can be measured.
Moreover, ψω is the unique solution to

(3.28)
{

∆ψω = div(|uω |2∇q) in Ω,
ψω = 0 on ∂Ω.

In this part, we assume that the inversion of the spherical mean Radon trans-
form has been performed and that we have access to ψω. In the following, we shall
deal with the second step of this hybrid imaging problem: recovering the map q
from the knowledge of ψω.

3.4.2.2. The Landweber Iteration. Let q∗ be the real permittivity with corres-
ponding measurements ψ∗ω. Let K ⊂ A be a finite set of admissible frequencies
for which we have the measurements ψ∗ω, ω ∈ K. The set K will be determined
later. Let us denote the error map by

(3.29) Fω : Q→ H1
0(Ω; R), q 7→ ψω(q)− ψ∗ω,

where ψω(q) is the unique solution to (3.28), and H1
0(Ω; R) = {u ∈ H1(Ω; R) :

u = 0 on ∂Ω}.
A natural approach to recover the real conductivity is to minimize the discrep-

ancy functional J defined as

(3.30) J(q) =
1
2 ∑

ω∈K

ˆ
Ω
|Fω(q)|2dx, q ∈ Q.

The gradient descent method can be employed to minimize J. At each iteration
we compute

qn+1 = T (qn − hDJ[qn]) ,
where h > 0 is the step size and T : H1(Ω; R) → Q is the Hilbert projection onto
the convex closed set Q, which guarantees that at each iteration qn belongs to the
admissible set Q. Since DJ[q] = ∑ω DFω [q]∗(Fω(q)), this algorithm is equivalent
to the Landweber scheme given by

(3.31) qn+1 = T
(

qn − h ∑
ω∈K

DFω(qn)
∗(Fω(qn))

)
.

(For the Fréchet differentiability of the map Fω, see Lemma 3.14.)
The main result of this section states that the Landweber scheme defined above

converges to the real unknown q∗, provided that K is suitably chosen and that h
and ‖q0 − q∗‖H1(Ω) are small enough. The most natural choice for the set of fre-
quencies K is as a uniform sample of A, namely let

K(m) = {ω(m)
1 , . . . , ω

(m)
m }, ω

(m)
i = Kmin +

(i− 1)
(m− 1)

(Kmax − Kmin).
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THEOREM 3.10. Set ϕ = 1. There exist C > 0 and m ∈ N∗ depending only on Ω,
Λ and A such that for any q ∈ Q and ρ ∈ H1

0(Ω; R)

(3.32) ∑
ω∈K(m)

‖DFω [q](ρ)‖ H1(Ω;R) ≥ C ‖ρ‖ H1(Ω;R).

As a consequence, the sequence defined in (3.31) converges to q∗ provided that h and
‖q0 − q∗‖H1(Ω) are small enough.

The proof of this theorem is presented in §3.4.3. In view of what explained
in the lecture notes, the convergence of the Landweber iteration follows from the
Lipschitz continuity of Fω and from inequality (3.32). The Lipschitz continuity of
Fω is a simple consequence of the elliptic theory.

On the other hand, the lower bound given in (3.32) is non-trivial, since it
represents the uniqueness and stability of the multi-frequency linearized inverse
problem

(DFω [q](ρ))ω∈K(m) 7−→ ρ.
As it has been discussed in the Introduction, the kernels of the operators ρ 7→
DFω [q](ρ) “move” as ω changes. More precisely, the intersection of the kernels
corresponding to the a priori determined finite set of frequencies K(m) is empty.
Moreover, the argument automatically gives an a priori constant C in (3.32).

The multi-frequency method is based on the analytic dependence of the prob-
lem with respect to the frequency ω, and on the fact that in ω = 0 the problem is
well posed. Indeed, when ω → 0 it is easy to see that uω → 1 in (3.25), so that
u0 = 1. Thus, looking at (3.28), the measurement datum ψ0 is nothing else than q∗

(up to a constant). Therefore, q∗ could be easily determined when ω = 0 since q∗ is
known on the boundary ∂Ω. As we show in the following section, the analyticity
of the problem with respect to ω allows to “transfer” this property to the desired
range of frequencies A.

3.4.3. Convergence of the Landweber Iteration. In order to use the well-
posedness of the problem in ω = 0 we shall need the following result on quant-
itative unique continuation for vector-valued holomorphic functions. It is an ana-
logue of Lemma 3.4 for the infinite-dimensional setting.

LEMMA 3.11. Let V be a complex Banach space, A = [Kmin, Kmax] ⊂ R+, C0, D >
0 and g : B(0, Kmax)→ V be holomorphic such that ‖g(0)‖ ≥ C0 and

sup
ω∈B(0,Kmax)

‖g(ω)‖ ≤ D.

Then there exists ω ∈ A such that

‖g(ω)‖ ≥ C

for some C > 0 depending only on A, C0 and D.

PROOF. By contradiction, assume that there exists a sequence of holomorphic
functions gn : B(0, Kmax) → V such that ‖gn(0)‖ ≥ C0, supω∈B(0,Kmax)

‖gn(ω)‖ ≤
D and maxω∈A ‖gn(ω)‖ → 0. By Hahn Banach theorem, for any n there ex-
ists Tn ∈ V′ such that ‖Tn‖ ≤ 1 and Tn(gn(0)) = ‖gn(0)‖. Set fn := Tn ◦
gn : B(0, Kmax) → C. Thus ( fn) is a family of complex-valued uniformly bounded
holomorphic functions, since

| fn(ω)| ≤ ‖Tn‖ ‖gn(ω)‖ ≤ D, ω ∈ B(0, Kmax).
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As a consequence, by standard complex analysis, there exists a holomorphic func-
tion f : B(0, Kmax) → C such that fn → f uniformly. We readily observe that for
any ω ∈ A there holds

| f (ω)| = lim
n
| fn(ω)| ≤ lim

n
‖Tn‖ ‖gn(ω)‖ = 0,

since maxω∈A ‖gn(ω)‖ → 0. By the unique continuation theorem f (0) = 0. On
the other hand, as Tn(gn(0)) = ‖gn(0)‖,

f (0) = lim
n

fn(0) = lim ‖gn(0)‖ ≥ C0 > 0,

which yields a contradiction. �

In view of (3.32), we need to study the Fréchet differentiability of the map Fω

and characterize its derivative. Before doing this, we study the well-posedness of
(3.25) with q ∈ Q. The result is classical, and the proof is left to the reader.

LEMMA 3.12. Let Ω ⊂ Rd be a bounded and smooth domain for d = 2, 3, ω ∈
B(0, Kmax) and q ∈ Q. For any f ∈ L2(Ω; C) and ϕ ∈ H1(Ω; C) the problem

(3.33)
{

∆u + ω2qu = ω f in Ω,
∂u
∂ν − iωu = −iωϕ on ∂Ω,

augmented with the condition

(3.34)
ˆ

∂Ω
u dσ =

ˆ
∂Ω

ϕ dσ− i
ˆ

Ω
f dx

if ω = 0 admits a unique solution u ∈ H2(Ω; C). Moreover

‖u‖H2(Ω;C) ≤ C
(
‖ f ‖L2(Ω;C) + ‖ϕ‖H1(Ω;C)

)
for some C > 0 depending only on Ω, Λ and Kmax.

Since for ω = 0 the solution to (3.33) is unique up to a constant, condition
(3.34) is needed to have uniqueness. Even though it may seem mysterious, this
condition is natural in order to ensure continuity of u with respect to ω. Indeed an
integration by parts gives

ω

ˆ
Ω

f dx =

ˆ
∂Ω

∂u
∂ν

dσ + ω2
ˆ

Ω
qu dx = iω

ˆ
∂Ω

(u− ϕ) dσ + ω2
ˆ

Ω
qu dx,

whence for ω 6= 0 we obtainˆ
∂Ω

u dσ =

ˆ
∂Ω

ϕ dσ− i
ˆ

Ω
f dx + ωi

ˆ
Ω

qu dx,

and so for ω = 0 we are left with (3.34). The above condition is a consequence of
(3.33) for ω 6= 0, but needs to be added in the case ω = 0 to guarantee uniqueness.

Let us go back to (3.25). Fix ϕ ∈ H1(Ω; C) and ω ∈ B(0, Kmax). By Lemma 3.12
the problem

(3.35)
{

∆uω + ω2quω = 0 in Ω,
∂uω
∂n − iωuω = −iωϕ on ∂Ω,

together with condition

(3.36)
ˆ

∂Ω
uω dσ =

ˆ
∂Ω

ϕ dσ + ωi
ˆ

Ω
quω dx
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admits a unique solution uω ∈ H2(Ω; C) such that

(3.37) ‖uω‖H2(Ω;C) ≤ C ‖ϕ‖H1(Ω;C)

for some C > 0 depending only on Ω, Λ and Kmax. As above, (3.36) guarantees
uniqueness and continuity in ω = 0 and is implicit in (3.35) if ω 6= 0.

Next, we study the dependence of uω on ω.

LEMMA 3.13. Let Ω ⊂ Rd be a bounded and smooth domain for d = 2, 3, q ∈ Q
and ϕ ∈ H1(Ω; C). The map

F (q) : B(0, Kmax) ⊂ C −→ H2(Ω; C), ω 7−→ uω

is holomorphic. Moreover, the derivative ∂ωuω ∈ H2(Ω; C) is the unique solution to

(3.38)

{
∆∂ωuω + ω2q∂ωuω = −2ωquω in Ω,
∂(∂ωuω)

∂ν − iω∂ωuω = iuω − iϕ on ∂Ω,

together with condition

(3.39)
ˆ

∂Ω
∂ωuω dσ = ωi

ˆ
Ω

q∂ωuω dx + i
ˆ

Ω
quω dx,

and satisfies
‖∂ωuω‖H2(Ω;C) ≤ C ‖ϕ‖H1(Ω;C)

for some C > 0 depending only on Ω, Λ and Kmax.

PROOF. The proof of this result is completely analogous to the one given in
Proposition 3.5 in a similar situation. Here only a sketch will be presented.

Fix ω ∈ B(0, Kmax): we shall prove that F (q) is holomorphic in ω and that
the derivative is ∂ωuω, i.e., the unique solution to (3.38)-(3.39). For h ∈ C let
vh = (uω+h − uω)/h. We need to prove that vh → ∂ωuω in H2(Ω) as h → 0.
Suppose first ω 6= 0. A direct calculation shows that{

∆vh + ω2qvh = −2ωquω+h − hquω+h in Ω,
∂vh
∂ν − iωvh = i(uω+h − ϕ) on ∂Ω.

Arguing as in Lemma 3.12, we obtain uω+h → uω as h → 0 in H2(Ω), whence
vh → ∂ωuω in H2(Ω), as desired.

When ω = 0, the above system must be augmented with the condition
ˆ

∂Ω
vh dσ = i

ˆ
Ω

qu0 dx,

which is a simple consequence of (3.36), and the result follows. �

We now study the Fréchet differentiability of the map Fω defined in (3.29). The
proof of this result is close to the ones presented during the course, and the details
are left to the reader.

LEMMA 3.14. Let Ω ⊂ Rd be a bounded and smooth domain for d = 2, 3, q ∈ Q,
ω ∈ B(0, Kmax) and ϕ ∈ H1(Ω; C). The map Fω is Fréchet differentiable and for ρ ∈
H1

0(Ω; R), the derivative ξω(ρ) := DFω [q](ρ) is the unique solution to the problem{
∆ξω(ρ) = div

(
|uω |2∇ρ + (uωvω(ρ) + uωvω(ρ))∇q

)
in Ω,

ξω(ρ) = 0 on ∂Ω,



3.4. ACOUSTO-ELECTROMAGNETIC TOMOGRAPHY 54

where vω(ρ) ∈ H2(Ω; C) is the unique solution to

(3.40)

{
∆vω(ρ) + ω2qvω(ρ) = −ω2ρ uω in Ω,
∂vω(ρ)

∂ν − iωvω(ρ) = 0 on ∂Ω,

together with
´

∂Ω v0(ρ) dσ = 0 if ω = 0. In particular, Fω is Lipschitz continuous,
namely

‖ξω(ρ)‖H1(Ω;R) ≤ C(Ω, Λ, Kmax, ‖ϕ‖H1(Ω;C)) ‖ρ‖H1(Ω;R) .

The main step in the proof of Theorem 3.10 is inequality (3.32), which we now
prove. The argument in the proof clarifies the multi-frequency method illustrated
in the previous section. The proof is structured as the proof of Theorem 3.3.

PROPOSITION 3.15. Set ϕ = 1. There exist C > 0 and m ∈ N∗ depending on Ω,
Λ and A such that for any q ∈ Q and ρ ∈ H1

0(Ω; R)

∑
ω∈K(m)

‖DFω [q](ρ)‖ H1(Ω;R) ≥ C ‖ρ‖ H1(Ω;R).

PROOF. In the proof, several positive constants depending only on Ω, Λ and
A will be denoted by C or Z.

Fix q ∈ Q. For ρ ∈ H1
0(Ω; R) such that ‖ρ‖H1(Ω;R) = 1 define the map

gρ(ω) = div (uωuω∇ρ + (uωvω(ρ) + uωvω(ρ))∇q) , ω ∈ B(0, Kmax).

Hence gρ : B(0, Kmax) → H−1(Ω; C) is holomorphic1. We shall apply Lemma 3.11
to gρ, and so we now verify the hypotheses.

Since ϕ = 1, by (3.35)-(3.36) we have u0 = 1 and by (3.40) we have v0(ρ) = 0,
whence gρ(0) = div(∇ρ). Since ρ = 0 on ∂Ω there holds∥∥gρ(0)

∥∥
H−1(Ω;C)

= ‖div(∇ρ)‖H−1(Ω;C) ≥ C ‖∇ρ‖L2(Ω) ≥ C > 0,

since ‖ρ‖H1(Ω;R) = 1. For ω ∈ B(0, Kmax) we readily derive∥∥gρ(ω)
∥∥

H−1(Ω;C)
≤ C ‖uωuω∇ρ + (uωvω(ρ) + uωvω(ρ))∇q‖L2(Ω)

≤ C (‖uω‖L∞‖uω‖L∞‖∇ρ‖L2 + (‖uω‖L∞‖vω(ρ)‖L∞ + ‖uω‖L∞‖vω(ρ)‖L∞)‖∇q‖L2)

≤ C
(
‖ρ‖H1(Ω) + ‖q‖H1(Ω)

)
≤ C,

where the third inequality follows from (3.37), Lemma 3.12 applied to vω(ρ) and
the Sobolev embedding H2 ↪→ L∞. Therefore, by Lemma 3.11 there exists ωρ ∈ A
such that

(3.41)
∥∥gρ(ωρ)

∥∥
H−1(Ω;C)

≥ C.

1 Since, the map F ∈ L2(Ω; C3) 7→ div(F) ∈ H−1(Ω; C) is linear and continuous, the holomorph-
icity of gρ follows from the holomorphicity of

g̃ρ : B(0, Kmax)→ L2(Ω; C3), ω 7→ uωuω∇ρ + (uωvω(ρ) + uωvω(ρ))∇q.

The fact that g̃ρ is holomorphic follows from the holomorphicity of ω 7→ uω (Lemma 3.13) and of
ω 7→ vω (which follows as for uω), the elementary fact that products of holomorphic functions is
holomorphic and the property that ω 7→ f (ω) is holomorphic if ω 7→ f (ω) is holomorphic.
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Consider now for ω ∈ B(0, Kmax)

g′ρ(ω) = div
(
(u′ωuω + uωu′ω)∇ρ + (u′ωvω(ρ) + uωv′ω(ρ) + u′ωvω(ρ) + uωv′ω(ρ))∇q

)
where for simplicity the partial derivative ∂ω is replaced by ′. Arguing as before,
and using Lemma 3.13 we obtain∥∥∥g′ρ(ω)

∥∥∥
H−1(Ω;C)

≤ C, ω ∈ B(0, Kmax).

As a consequence, by (3.41) we obtain

(3.42)
∥∥gρ(ω)

∥∥
H−1(Ω;C)

≥ C, ω ∈ [ωρ − Z, ωρ + Z] ∩A.

Since A = [Kmin, Kmax] there exists P = P(Z,A) ∈N such that

(3.43) A ⊆
P⋃

p=1

Ip, Ip = [Kmin + (p− 1)Z, Kmin + pZ].

Choose now m ∈ N∗ big enough so that for every p = 1, . . . , P there exists ip =

1, . . . , m such that ω(p) := ω
(m)
ip
∈ Ip (recall that ω

(m)
i = Kmin + (i−1)

(m−1) (Kmax −
Kmin)). Note that m depends only on Z and |A|.

Since
∣∣[ωρ − Z, ωρ + Z]

∣∣ = 2Z and
∣∣Ip
∣∣ = Z, in view of (3.43) there exists pρ =

1, . . . , P such that Ipρ ⊆ [ωρ− Z, ωρ + Z]. Therefore ω(pρ) ∈ [ωρ− Z, ωρ + Z]∩A,
whence by (3.42) there holds

∥∥gρ(ω(pρ))
∥∥

H−1(Ω;C)
≥ C. Since ω(pρ) ∈ R this

implies∥∥∥div
(
|uω(pρ)|

2∇ρ + (uω(pρ)vω(ρ) + uωvω(pρ)(ρ))∇q
)∥∥∥

H−1(Ω;C)
≥ C,

which by Lemma 3.14 yields
∥∥∥div(∇ξω(pρ)(ρ))

∥∥∥
H−1(Ω;C)

=
∥∥∥∆ξω(pρ)(ρ)

∥∥∥
H−1(Ω;C)

≥

C. By the continuity of the map F ∈ L2(Ω; C3) 7→ div(F) ∈ H−1(Ω; C), this im-
plies

∥∥∥∇ξω(pρ)(ρ)
∥∥∥

L2(Ω;C3)
≥ C. Hence, since ξω(pρ)(ρ) = 0 on ∂Ω, by Poincaré’s

inequality there holds
∥∥∥ξω(pρ)(ρ)

∥∥∥
H1(Ω)

≥ C. Thus, since ω(pρ) ∈ K(m)

∑
ω∈K(m)

‖ξω(ρ)‖H1(Ω) ≥ C.

We have proved this inequality only for ρ ∈ H1
0(Ω; R) with unitary norm. By

using the linearity of ξω(ρ) with respect to ρ we immediately obtain

∑
ω∈K(m)

‖ξω(ρ)‖H1(Ω) ≥ C ‖ρ‖H1(Ω) , ρ ∈ H1
0(Ω; R),

as desired. �

We are now ready to prove Theorem 3.10.

PROOF OF THEOREM 3.10. Inequality (3.32) follows from Proposition 3.15. Moreover,
Fω is Lipschitz continuous by Lemma 3.14. Therefore, the convergence of the
Landweber iteration is a consequence of the results in the lecture notes, provided
that ‖q0 − q∗‖H1(Ω) and h are small enough. �



3.4. ACOUSTO-ELECTROMAGNETIC TOMOGRAPHY 56

FIGURE 3.6. The true permittivity distribution q∗.

(A) Reconstructed distribu-
tion after 100 iterations.
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(B) Relative error depending
on the number of iterations.

FIGURE 3.7. Reconstruction of q for the set of frequencies K = {3}.

3.4.4. Numerical Results. In this section we present some numerical results.
Let Ω be the unit square [0, 1]× [0, 1]. We set the mesh size to be 0.01. A phantom
image is used for the true permittivity distribution q∗ (see Figure 3.6). According
to Theorem 3.10 we set the Robin boundary condition to be a constant function
ϕ = 1. Let K be the set of frequencies for which we have measurements ψ∗ω,
ω ∈ K. As discussed in § 3.4.2.2, we minimize the functional J in (3.30) with the
Landweber iteration scheme given in (3.31). The initial guess is q0 = 1.

We start with the imaging problem at a single frequency. In Figure 3.7 we
display the findings for the case K = {3}. Figure 3.7a shows the reconstructed dis-
tribution after 100 iterations. Figure 3.7b shows the relative error as a function of
the number of iterations. This suggests the convergence of the iterative algorithm,
even though the algorithm is proved to be convergent only in the multi-frequency
case. It is possible that for small frequencies ω (with respect to the domain size)
we are still in the coercive case, i.e. the kernel Rω of ρ 7→ DFω [q](ρ) is trivial and
a single frequency is sufficient.

However, this does not work at higher frequencies (with respect to the domain
size). Figure 3.8 shows some reconstructed maps for ω = 10, ω = 15 and ω = 20,
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(A) K = {10} (B) K = {15}

(C) K = {20}

FIGURE 3.8. Reconstruction of q for higher frequencies.

which suggest that the algorithm may not converge numerically for high frequen-
cies. In each case, there are areas that remain invisible. This may be an indication
that Rω 6= {0} for these values of the frequency.

The invisible areas in Figure 3.8 are different for different frequencies, and
so combining these measurements may give a satisfactory reconstruction. More
precisely, according to Theorem 3.10, by using multiple frequencies it is possible
to make the problem injective, namely ∩ωRω = {0}, since the kernels Rω change
as ω varies. Figure 3.9 shows the results for the case K = {10, 15, 20}. (According
to the notation introduced in Section 3.4.2, this choice of frequencies corresponds
to A = [10, 20] and m = 3.) These findings suggest the convergence of the multi-
frequency Landweber iteration, even though it was not convergent in each single-
frequency case. Since we chose higher frequencies, the convergence is slower.

3.5. Full-Field Optical Coherence Elastography

3.5.1. Introduction. In this section, we provide a mathematical analysis of
and a numerical framework for full-field optical coherence elastography, which
has unique features including micron-scale resolution, real-time processing, and
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(A) Reconstructed distribu-
tion after 200 iterations.

(B) Relative error depending
on the number of iterations.

FIGURE 3.9. Reconstruction of q for K = {10, 15, 20}.

non-invasive imaging. We present an algorithm for transforming volumetric op-
tical images before and after the mechanical solicitation of a sample with sub-
cellular resolution into quantitative shear modulus distributions.

Optical Coherence tomography (OCT) is a non-invasive and a non-ionizing
imaging technique that produces high-resolution images of biological tissues. It
performs optical slicing in the sample, to allow three-dimensional reconstructions
of internal structures. Conventional optical coherence time-domain and frequency-
domain tomographies require transverse scanning of the illumination spot in one
or two directions to obtain cross-sectional or en face images, respectively.

Full-field OCT allows OCT to be performed without transverse scanning; the
tomographic images are obtained by combining interferometric images acquired
in parallel using an image sensor. Both the transverse and the axial resolutions are
of the order of 1µm.

The idea is to register a volumetric optical image before and after mechanical
solicitation of the sample. Based on the assumption that the density of the optical
scatterers is advected by the deformation, the displacement map can be first estim-
ated. Then, using a quasi-incompressible model for the tissue elasticity, the shear
modulus distribution can be reconstructed from the estimated displacement map.

The OCT elastography is able to perform displacement measurements with
sub-cellular resolution. It enables a more precise characterization of tissues than
that achieved using ultrasound or magnetic resonance elastography; therefore, it
provides a more accurate assessment of microscale variations of elastic properties.
A map of mechanical properties added as a supplementary contrast mechanism
to morphological images could aid diagnosis. The technique costs less than other
elastography techniques.

In all of the aforementioned techniques, transforming the OCT images before
and after the application of a load into quantitative maps of the shear modulus is
a challenging problem.
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In this section we present a mathematical and numerical framework for the
OCT-elastography experiment. Using the set of images before and after mech-
anical solicitation we design a novel method to reconstruct the shear modulus
distribution inside the sample.

To mathematically formulate the problem, let Ω0 ⊂ Rd, d = 2, 3, and let ε0
be the known piecewise smooth optical image of the medium, and µ be its shear
modulus. In this chapter we consider heterogeneous (unknown) shear modulus
distributions. The medium is solicited mechanically. Since compression modulus
of biological media is four order of magnitude larger than the shear modulus, it
can be shown that the displacement map u obeys the linearized equations of in-
compressible fluids or the Stokes system. The model problem is then the following
Stokes system in a heteregeneous medium which reads:

(3.44)


∇ ·

(
µ(∇u +∇uT)

)
+∇p = 0 in Ω0,

∇ · u = 0 in Ω0,

u = f on ∂Ω0,

where superposed the real-valued vector f satisfies the compatibility condition´
∂Ω0

f · ν = 0 with ν being the outward normal at ∂Ω0.
Throughout this section, we assume that µ ∈ C0,1(Ω0) and f ∈ C2(∂Ω0)

d. It
is known that (3.44) has a unique solution u ∈ C1(Ω0)

d . Moreover, there exists a
positive constant C depending only on µ and Ω0 such that

||u||C1(Ω0)d ≤ C|| f ||C2(∂Ω0)d .

Using a second OCT scan, one has access to the optical image of the deformed
medium εu(x̃), ∀ x̃ ∈ Ωu, where Ωu is defined by

Ωu = {x + u(x), x ∈ Ω0}.

The new optical image is linked to the original one by

(3.45) ε(x) = εu (x + u(x)) , ∀ x ∈ Ω0.

The goal is to reconstruct the shear modulus map µ on Ω0 from the functions ε and

εu. As it will be seen, in two dimensions if the direction of
∇ε

|∇ε| is not constant in a

neighborhood of x, then the displacement field u at x can be approximately recon-

structed. In three dimensions, one shall assume that the vectors
∇ε(y)
|∇ε(y)| are not

coplanar for y a neighborhood of x. Hence, the reconstructed value of u(x) serves
as an initial guess for the minimization of the discrepancy between computed and
measured changes in the optical image. Then, with a minimization scheme we can
retrieve the shear modulus map from the reconstructed displacements. Note that
reconstructing the displacement field from ε − εu is a registration problem and
its linearization is an optical flow problem. It is also worth mentioning that the
approach developed in this section applies to other speckle imaging modalities.

3.5.2. Displacement Field Measurements.
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3.5.2.1. First-Order Approximation. Let Ω b (Ω0 ∩Ωu) be a smooth simply
connected domain. On Ω, we have

εu = ε ◦ (I + u)−1

ε = εu ◦ (I + u) ,

where I is the d× d identity matrix.

PROPOSITION 3.16. Let ε ∈ BV(Ω), the bounded variation functions, and let u ∈
C1(Ω)d be such that ‖u‖C1(Ω)d < 1. Then, for any ψ ∈ C1

0 (Ω), we have

(3.46)
∣∣∣∣ˆ

Ω
(ε− εu)ψ−

ˆ
Ω

ψu · ∇ε

∣∣∣∣ ≤ C‖u‖C0(Ω)d‖u‖C1(Ω)d‖ψ‖C1
0 (Ω)|ε|TV(Ω) ,

where the constant C is independent of ψ and | |TV(Ω) denotes the total variation semi-

norm. Estimate (3.46) yields that
εu − ε + u · Dε

‖u‖C0(Ω)d
weakly converges to 0 in C1

0 (Ω) when

‖u‖C1(Ω)d goes to 0.

PROOF. For each t ∈ [0, 1], define ϕt by ϕ−1
t (x) = x + tu(x). Let η > 0 be

a small parameter, and ε(η) be a smooth function such that ‖ε − ε(η)‖L1(Ω) → 0,

and |ε(η)|TV(Ω) → |ε|TV(Ω) as η → 0. Analogously, we define ε
(η)
u to be the smooth

approximation of εu given by

ε
(η)
u (x) = ε(η) ◦ ϕ1(x) .

From

ε
(η)
u (x)− ε(η)(x) =

(
ε(η) ◦ ϕ1

)
(x)−

(
ε(η) ◦ ϕ0

)
(x), ∀ x ∈ Ω ,

we have

ε
(η)
u (x)− ε(η)(x) =

ˆ 1

0
∇ε(η)(ϕt(x)) · ∂t ϕt(x)dt, ∀ x ∈ Ω .

Therefore, for ψ ∈ C∞
0 (Ω) with C∞

0 (Ω) being the set of compactly supported C∞

functions,

(3.47)
ˆ

Ω

[
ε
(η)
u (x)− ε(η)(x) +∇ε(η)(x) · u(x)

]
ψ(x)dx =

ˆ
Ω

[ˆ 1

0
∇ε(η)(ϕt(x)) · ∂t ϕt(x)dt

]
ψ(x)dx+

ˆ
Ω
∇ε(η)(x) ·u(x)ψ(x)dx, ∀ x ∈ Ω .

By a change of variables in the first integral and using the fact that

∂t ϕt(x) = −∂x ϕt(x)∂t ϕ−1
t (y)|y=ϕt(x),

we get, for all x ∈ Ω,
ˆ 1

0

[ˆ
Ω
∇ε(η)(ϕt(x)) · ∂t ϕt(x)ψ(x)dx

]
dt =

−
ˆ 1

0

ˆ
Ω
∇ε(η)(y) ·

[
∂x ϕt(ϕ−1

t (y))∂t ϕ−1
t (y)

]
|det ∂x ϕ−1

t (y)|ψ
(

ϕ−1
t (y)

)
dydt .
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Here, det denotes the determinant of a matrix. Since

∀ (y, t) ∈ Ω× [0, 1], ∂t ϕ−1
t (y) = u(y),

∂y ϕ−1
t (y) = I + t∇u(y),

and
∂x ϕt(ϕ−1

t (y))∂y ϕ−1
t (y) = I ,

we can writeˆ 1

0

ˆ
Ω

[
∇ε(η)(ϕt(x)) · ∂t ϕt(x)ψ(x)dx

]
dt =

−
ˆ 1

0

ˆ
Ω
∇ε(η)(y) ·

[
(I + t∇u(y))−1 u(y)

]
|det I + t∇u(y)|ψ

(
ϕ−1

t (y)
)

dydt ,

and hence,

(3.48)
ˆ

Ω

[
ε
(η)
u (x)− ε(η)(x) +∇ε(η)(x) · u(x)

]
ψ(x)dx =

ˆ 1

0

ˆ
Ω
∇ε(η)(x) · u(x)

[
ψ(x)− ψ

(
ϕ−1

t (x)
) ]

dxdt

+

ˆ 1

0

ˆ
Ω
∇ε(η)(x) ·

([
(I + t∇u(x))−1 |det I + t∇u(x)| − I

]
u(x)

)
ψ
(

ϕ−1
t (x)

)
dxdt .

The first term in the right-hand side of (3.48) can be estimated as follows:∣∣∣∣∣
ˆ 1

0

ˆ
Ω
∇ε(η)(x) · u(x)

[
ψ(x)− ψ

(
ϕ−1

t (x)
) ]

dxdt

∣∣∣∣∣ ≤ ‖u‖2
C0(Ω)d‖∇ε(η)‖L1(Ω)d‖∇ψ‖C0(Ω)d .

Let tr denote the trace of a matrix. Using the fact that

(I + t∇u)−1 = ∑
i=0

(−1)i (t∇u)i ,

which follows from ||u||C1(Ω)d < 1, and

det (I + t∇u) =


1− tr t∇u + det t∇u if d = 2 ,

1 + tr t∇u− 1
2

[
(tr t∇u)2 − tr (t∇u)2

]
+ det t∇u if d = 3 ,

we get
ˆ 1

0

ˆ
Ω
∇ε(η)(x) · u(x)

[
(I + t∇u(x))−1 |det I + t∇u(x)| − I

]
ψ
(

ϕ−1
t (x)

)
dxdt

≤ ‖u‖C0(Ω)d‖u‖C1(Ω)d‖∇ε(η)‖L1(Ω)d‖ψ‖C0(Ω) ,

which is the desired estimate for the second term in the right-hand side of (3.48).
Now, we can deduce the final result by density when η → 0. Since u ∈ C1(Ω)d

and ψ ∈ C1
0 (Ω), we can writeˆ

Ω
ψu · ∇ε(η) = −

ˆ
Ω
∇ · (ψu)ε(η).

Since ‖ε(η) − ε‖L1(Ω) → 0, we haveˆ
Ω
∇ · (ψu)ε(η) →

ˆ
Ω
∇ · (ψu)ε .
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As |ε(η)|TV(Ω) → |ε|TV(Ω), we arrive at (3.46) and the proof of the proposition is
complete. �

3.5.2.2. Local Recovery Via Linearization. For simplicity we will assume ε is smooth,
thus differentiable. The data consists of ε and εu on Ω. In order to reconstruct u,
we can use the first order approximation of ε− εu:

ε− εu ≈ u · ∇ε,

given by Proposition 3.16. We will denote the measurement data ε− εu as D(x), x ∈
Ω.

Let w be a mollifier supported on [−1, 1]. For any δ > 0, we define

wδ =
1
δd w

( ·
δ

)
,

and introduce

uδ(x) =
ˆ

Ω
u(y)wδ(|x− y|)dy.

Since u is smooth, for any x ∈ Ω, uδ(x) is a good approximation of u on the ball
with center x and radius δ.

We want to find an approximate value for uδ from the optical measurements
and use it as an initial guess in an optimization procedure. For doing so, we intro-
duce the functional Jx : Rd −→ R given by

u 7−→ Jx(u) =
ˆ

Ω
|∇ε(y) · u− D(y)|2wδ(|x− y|)dy ,

and look for minimizers of Jx in Rd. The gradient of Jx can be explicitly computed
as follows:

∇Jx(u) = 2
ˆ

Ω
(∇ε(y) · u− D(y))∇ε(y)wδ(|x− y|)dy .

Jx is a quadratic functional and we have

(3.49) ∇Jx(u) = 0

if and only if

(3.50)
(ˆ

Ω
wδ(|x− y|)∇ε(y)∇εT(y)dy

)
u =

ˆ
x+δB

D(y)wδ(|x− y|)∇ε(y)dy ,

where B is the ball with center 0 and radius 1.
If the matrix

ˆ
Ω

wδ(|x− y|)∇ε(y)∇εT(y) is invertible, then the minimizer is

given by

(3.51) u=

(ˆ
Ω

wδ(|x− y|)∇ε(y)∇εT(y)dy
)−1 ˆ

x+δB
D(y)wδ(|x− y|)∇ε(y)dy .

The following proposition gives a sufficient condition for the invertibilty of the

matrix
ˆ

Ω
wδ(|x− y|)∇ε(y)∇εT(y).
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PROPOSITION 3.17. Suppose that ε has no jumps and d = 2. Assume x + δB ⊂ Ω.
Then, if there is an positive measure set contained in∇ε in {y : wδ(|y− x|) 6= 0} where
all vectors are not collinear, then the matrixˆ

Ω
wδ(|x− y|)∇ε(y)∇εT(y)dy

is invertible.

PROOF. Writing

∀ y ∈ x + δB, ∇ε(y) = u(y)e1 + v(y)e2,

where {e1, e2} is the cannonical basis of R2, it follows that

∇ε∇εT(y) = u2(y)e1eT
1 + v2(y)e2eT

2 + u(y)v(y)
(

e1eT
2 + e2eT

1

)
, ∀ y ∈ x + δB .

Computing the convolution with respect to wδ, we get
ˆ

Ω
wδ(|y− y|)∇ε(y)∇εT(y)dy =

(ˆ
Ω

u2(y)wδ(|y− x|)dy
)

e1eT
1

+

(ˆ
Ω

v2(y)wδ(|y− x|)dy
)

e2eT
2 +

(ˆ
Ω

u(y)v(y)wT
δ (|y− x|)dy

)(
e1eT

2 + e2eT
1

)
.

Using the determinant, this matrix is not invertible if and only if(ˆ
Ω

u2(y)wδ(|y− x|)dy
)(ˆ

Ω
v2(y)wδ(|y− x|)dy

)
=

(ˆ
Ω

u(y)v(y)wδ(|y− x|)dy
)2

,

which is exactly the equality case in weighted Cauchy-Schwarz inequality. So, if
there exist a positive measure set where u is not proportional to v, it is equivalent
to not have all vectors in the set collinear , and hence the matrix is invertible. �

REMARK 3.18. Assuming that∇ε(y) 6= 0 for y ∈ x + δB ⊂ Ω, Proposition 3.17

gives that the direction of
∇ε

|∇ε| in not constant in x + δB ⊂ Ω if and only if

ˆ
x+δB

∇ε(y)∇εT(y)dy is invertible.

Hence, under the above condition on ε in the neighborhood x + δB, the displace-
ment field u at x can be approximately reconstructed.

REMARK 3.19. By exactly the same arguments as those in two dimensions, one
can prove that in the three-dimensional case, if all vectors∇ε in {y : wδ(|y− x|) 6=
0} are not coplanar, then the matrixˆ

Ω
wδ(|x− y|)∇ε(y)∇εT(y)dy

is invertible.
On the other hand, in the case where ε is piecewise smooth, one can first detect

the surface of jumps of ε using for example an edge detection algorithm and then
apply the proposed local algorithm in order to have a good approximation of u in
the domains where ε is smooth.



3.5. FULL-FIELD OPTICAL COHERENCE ELASTOGRAPHY 64

3.5.2.3. Minimization of the Discrepancy Functional. This step was omitted, as it
required subdifferential calculus and various steps. The main idea is the one used
already in many lectures, that corresponds to minimize the discrepancy functional
using (3.51) as first guess. With the reconstructed displacement map we now seek
to reconstruct the shear modulus.

3.5.3. Reconstruction of the Shear Modulus. The problem is now to recover
the function µ the reconstructed internal data u. We introduce the operator F

u = F [µ] =


∇ ·

(
µ(∇u +∇uT)

)
+∇p = 0 in Ω0 ,

∇ · u = 0 in Ω0 ,

u = f on ∂Ω0 ,

and minimize the function K given by

C0,1(Ω0) −→ R

µ 7−→ K[µ] =
ˆ

Ω
|F [µ]− u|2 dx .

K is Fréchet differentiable and its gradient can be explicitly computed. Let v be
the solution of

∇ ·
(

µ(∇v +∇vT)
)
+∇q = (F [µ]− u) in Ω0 ,

∇ · v = 0 in Ω0 ,

v = 0 on ∂Ω0 .

Then,

∇K(µ)[h] =
ˆ

Ω0

h(∇v +∇vT) : (∇u +∇uT) dx .

A gradient descent method can be applied in order to reconstruct µ from u.

3.5.4. Numerical Illustrations. We take Ω = [0, 1]2 and discretize it on a
300× 300 grid, and generate a random Gaussian process to model the optical im-
age ε of the medium as shown in Figure 3.10. Given a shear modulus µ map on Ω;
see Figure 3.14 (left), we solve (3.44) on Ω via a finite element method compute the
displacement field u. We then compute the displaced optical image εu by using a
spline interpolation approach and proceed to recover the shear modulus from the
data ε and εu on the grid by the method described in this chapter.

Using (3.51), we first compute the initial guess uδ for the displacement field
as the least-square solution to minimization of Jx. Figure 3.11 shows the kernel
wδ used to compute uδ. As one can see δ needs to be large enough so the matrix
wδ ?

(
∇ε∇εT) is invertible at each point x, which is basically saying that δ must be

bigger than the correlation length of ε. Figure 3.12 shows the conditioning of the
matrix wδ ?

(
∇ε∇εT). Figure 3.13 shows the true displacement u∗, the result of the

first order approximation (i.e., the initial guess) uδ and then the result of the op-
timization process using a gradient descent method to minimize the discrepancy
functional I.

Once the displacement inside the domain is reconstructed, we can recover the
shear modulus µ, as shown in Figure 3.14. We reconstruct µ by minimizing the
functional K and using a gradient descent-type method. Note that gradient of
K is computed with the adjoint state method, described previously. As it can be
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FIGURE 3.10. Optical image ε of the medium.

FIGURE 3.11. Averaging kernel wδ.

seen in Figure 3.14, the reconstruction is very accurate but not so perfect on the
boundaries of Ω, which is due to the poor estimation of u on ∂Ω.

3.5.5. Concluding Remarks. In this chapter, we developed a novel algorithm
which gives access not only to stiffness quantitative information of biological tis-
sues but also opens the way to other contrasts such as mechanical anisotropy. In
the heart, the muscle fibers have anisotropic mechanical properties. It would be
very interesting to detect a change in fiber orientation using OCT elastographic
tomography.
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FIGURE 3.12. Conditioning of the matrix wδ ?∇ε∇εT .

FIGURE 3.13. Displacement field and its reconstruction.
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FIGURE 3.14. Shear modulus reconstruction.



CHAPTER 4

Effective Electrical Tissue Properties and Nanoparticle
Imaging

4.1. Effective Electrical Tissue Properties

4.1.1. Introduction. This chapter aims at analytically exhibiting the funda-
mental mechanisms underlying the fact that effective biological tissue electrical
properties and their frequency dependence reflect the tissue composition and physiology.
For doing so, a homogenization theory is derived to describe the effective admit-
tivity of cell suspensions. A formula is reported for dilute cases that gives the
frequency-dependent effective admittivity with respect to the membrane polariz-
ation. Different microstructures are shown to be distinguishable via spectroscopic
measurements of the overall admittivity using the spectral properties of the mem-
brane polarization. The Debye relaxation times associated with the membrane
polarization tensor are shown to be able to give the microscopic structure of the
medium. A natural measure of the admittivity anisotropy is introduced and its
dependence on the frequency of applied current is derived. A Maxwell-Wagner-
Fricke formula is given for concentric circular cells.

The electric behavior of biological tissue under the influence of an electric field
at frequency ω can be characterized by its frequency-dependent effective admit-
tivity ke f := σe f (ω) + iωεe f (ω), where σe f and εe f are respectively its effective
conductivity and permittivity. Electrical impedance spectroscopy assesses the fre-
quency dependence of the effective admittivity by measuring it across a range of
frequencies from a few Hz to hundreds of MHz. Effective admittivity of biological
tissues and its frequency dependence vary with tissue composition, membrane
characteristics, intra-and extra-cellular fluids and other factors. Hence, the admit-
tance spectroscopy provides information about the microscopic structure of the
medium and physiological and pathological conditions of the tissue.

In this chapter, we consider a periodic suspension of identical cells of arbit-
rary shape. We apply at the boundary of the medium an electric field of frequency
ω. The medium outside the cells has an admittivity of k0 := σ0 + iωε0. Each cell
is composed of an isotropic homogeneous core of admittivity k0 and a thin mem-
brane of constant thickness δ and admittivity km := σm + iωεm. The thickness δ
is considered to be very small relative to the typical cell size and the membrane
is considered very resistive, i.e., σm � σ0. In this context, the potential in the me-
dium passes an effective discontinuity over the cell boundary; the jump is propor-
tional to its normal derivative with a coefficient of the effective thickness, given
by δk0 /km. The normal derivative of the potential is continuous across the cell
boundaries.

We use homogenization techniques with asymptotic expansions to derive a
homogenized problem and to define an effective admittivity of the medium. We

68
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prove a rigorous convergence of the original problem to the homogenized prob-
lem via two-scale convergence. For dilute cell suspensions, we use layer potential
techniques to expand the effective admittivity in terms of cell volume fraction.
Through the effective thickness, δ k0/km, the first-order term in this expansion can
be expressed in terms of a membrane polarization tensor, M, that depends on the
operating frequency ω. We retrieve the Maxwell-Wagner-Fricke formula for con-
centric circular-shaped cells.

The imaginary part of M is positive for δ small enough. Its two eigenvalues
are maximal for frequencies 1/τi, i = 1, 2, of order of a few MHz with physic-
ally plausible parameters values. This dispersion phenomenon well known by the
biologists is referred to as the β-dispersion. The associated characteristic times τi
correspond to Debye relaxation times. Given this, we show that different micro-
scopic organizations of the medium can be distinguished via τi, i = 1, 2, alone.
The relaxation times τi are computed numerically for different configurations: one
circular or elliptic cell, two or three cells in close proximity. The obtained results
illustrate the viability of imaging cell suspensions using the spectral properties of
the membrane polarization. The Debye relaxation times are shown to be able to
give the microscopic structure of the medium.

The chapter is organized as follows. Section 4.1.2 introduces the problem set-
tings and state our main results. In section 4.1.3 we consider the problem of de-
termining the effective property of a suspension of cells when the volume fraction
goes to zero. In section 4.1.4 we provide numerical examples that support our
findings. A few concluding remarks are given in the last section. For simplicity,
we only treat the two-dimensional case.

4.1.2. Problem Settings and Main Results. The aim of this section is to intro-
duce the problem settings and state the main results of this chapter.

4.1.2.1. Periodic Domain. We consider the probe domain Ω to be a bounded
open set of R2 of class C2. The domain contains a periodic array of cells whose
size is controlled by ε. Let C be a C2,η domain being contained in the unit square
Y = [0, 1]2, see Figure 4.1. Here, 0 < η < 1 and C represents a reference cell. We
divide the domain Ω periodically in each direction in identical squares (Yε,n)n of
size ε, where

Yε,n = εn + εY .

Here, n ∈ Nε :=
{

n ∈ Z2 : Yε,n ∩Ω 6= ∅
}

.
We consider that a cell Cε,n lives in each small square Yε,n. As shown in Fig-

ure 4.4, all cells are identical, up to a translation and scaling of size ε, to the refer-
ence cell C:

∀n ∈ Nε, Cε,n = εn + ε C .

So are their boundaries (Γε,n)n∈Nε to the boundary Γ of C:

∀n ∈ Nε, Γε,n = εn + ε Γ .

Let us also assume that all the cells are strictly contained in Ω, that is for every
n ∈ Nε, the boundary Γε,n of the cell Cε,n does not intersect the boundary ∂Ω:

∂Ω ∩ (
⋃

n∈Nε

Γε,n) = ∅.
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4.1.2.2. Electrical Model of the Cell. In this section we consider the reference cell
C immersed in a domain D. We apply a sinusoidal electrical current g ∈ L2

0(∂D)
with angular frequency ω at the boundary of D.

The medium outside the cell, D \ C, is a homogeneous isotropic medium with
admittivity k0 := σ0 + iωε0. The cell C is composed of an isotropic homogeneous
core of admittivity k0 and a thin membrane of constant thickness δ with admittiv-
ity km := σm + iωεm. We make the following assumptions :

σ0 > 0, σm > 0, ε0 > 0, εm ≥ 0 .

If we apply a sinusoidal current g(x) sin(ωt) on the boundary ∂D in the low
frequency range below 10 MHz, the resulting complex-valued time harmonic po-
tential ǔ is governed by

∇ · (k0 + (km − k0)χ(Γδ))∇ǔ) = 0 in D ,

k0
∂ǔ
∂ν

= g on ∂D ,

where Γδ := {x ∈ C : dist(x, Γ) < δ} and χ(Γδ) is the characteristic function of
the set Γδ.

The membrane thickness δ is considered to be very small compared to the
typical size ρ of the cell, i.e., δ/ρ � 1. According to the transmission condition,

the normal component of the current density k0
∂ǔ
∂ν

can be approximately regarded
as continuous across the thin membrane Γ.

We set β :=
δ

km
. Since the membrane is very resistive, i.e., σm/σ0 � 1, the

potential ǔ in D undergoes a jump across the cell membrane Γ, which can be ap-

proximated at first order by βk0
∂ǔ
∂ν

.

More precisely, we approximate ǔ by u defined as the solution of the following
equations:

(4.1)



∇ · k0∇u = 0 in D \ C ,

∇ · km∇u = 0 in C ,

k0
∂u
∂ν

∣∣∣
+
= km

∂u
∂ν

∣∣∣
−

on Γ ,

u|+ − u|− − βkm
∂u
∂ν

= 0 on Γ ,

k0
∂u
∂ν

∣∣∣
∂D

= g,
ˆ

∂D
g(x)ds(x) = 0,

ˆ
D\C

u(x)dx = 0 .

Equation (4.1) is the starting point of our analysis.
For any open set B in R2, we denote W̃1,2(B) the Sobolev space W1,2(B)/C,

which can be represented as

W̃1,2(B) =
{

u ∈W1,2(B) :
ˆ

B
u(x)dx = 0

}
.



4.1. EFFECTIVE ELECTRICAL TISSUE PROPERTIES 71

Γ
(δ, km)

Y−

(k0)

Y+

(k0)

FIGURE 4.1. Schematic illustration of a unit period Y.

Let D+ = D \ C and D− = C. The following result holds.

LEMMA 4.1. There exists a unique solution u := (u+, u−) in W̃1,2(D+)×W1,2(D−)
to (4.1).

PROOF. To prove the well-posedness of (4.1) we introduce the following Hil-
bert space: V := W̃1,2(D+)×W1,2(D−) equipped with the following natural norm
for our problem:

‖u‖V = ‖∇u+‖L2(D+) + ‖∇u−‖L2(D−) + ‖u+ − u−‖L2(Γ), ∀u ∈ V .

We write the variational formulation of (4.1) as follows:

Find u ∈ V such that for all v := (v+, v−) ∈ V :
ˆ

D+
k0∇u+(x) · ∇v−(x) dx +

ˆ
D−

k0∇u+(x) · ∇v−(x) dx

+
1

βk0

ˆ
Γ
(u+ − u−)(v+ − v−) dσ(x) =

1
k0

ˆ
∂D

gv dσ(x) .

Since <(k0) = σ0 > 0 and <( 1
βk0

) =
σmσ0 + εmε0

δ|k0|
> 0, we can apply Lax-Milgram

theory to obtain existence and uniqueness of a solution to problem (4.1). �

We conclude this subsection with a few numerical simulations to illustrate the
typical profile of the potential u. We consider an elliptic domain D in which lives
an elliptic cell. We choose to virtually apply at the boundary of D an electrical
current g = ei30r.
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FIGURE 4.2. Real and imaginary parts of the potential u outside and
inside the cell.

We use for the different parameters the following realistic values:

• the typical size of eukaryotes cells: ρ ' 10− 100 µm;
• the ratio between the membrane thickness and the size of the cell: δ/ρ =

0.7 · 10−3;
• the conductivity of the medium and the cell: σ0 = 0.5 S.m−1;
• the membrane conductivity: σm = 10−8 S.m−1;
• the permittivity of the medium and the cell: ε0 = 90× 8.85 · 10−12 F.m−1;
• the membrane permittivity: εm = 3.5× 8.85 · 10−12 F.m−1;
• the frequency: ω = 106 Hz.

Note that the assumptions of our model δ� ρ and σm � σ0 are verified.
The real and imaginary parts of u outside and inside the cell are represented

in Figure 4.2.
We can observe that the potential jumps across the cell membrane. We plot the

outside and inside gradient vector fields; see Figure 4.3.
4.1.2.3. Governing Equation. We denote by Ω+

ε the medium outside the cells
and Ω−ε the medium inside the cells:

Ω+
ε = Ω ∩ (

⋃
n∈Nε

Yε,n \ Cε,n), Ω−ε =
⋃

n∈Nε

Cε,n .

Set Γε :=
⋃

n∈Nε

Γε,n. By definition, the boundaries ∂Ω+
ε and ∂Ω−ε of respectively Ω+

ε

and Ω−ε satisfy:

∂Ω+
ε = ∂Ω ∪ Γε, ∂Ω−ε = Γε .

We apply a sinusoidal current g(x) sin(ωt) at x ∈ ∂Ω, where g ∈ L2
0(∂Ω). The

induced time-harmonic potential uε in Ω satisfies:
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FIGURE 4.3. Gradient vector fields of the real and imaginary parts of u.

(4.2)



∇ · k0∇u+
ε = 0 in Ω+

ε ,

∇ · km∇u−ε = 0 in Ω−ε ,

k0
∂u+

ε

∂ν
= km

∂u−ε
∂ν

on Γε ,

u+
ε − u−ε − ε βkm

∂u+
ε

∂ν
= 0 on Γε ,

k0
∂u+

ε

∂ν

∣∣∣
∂Ω

= g,
ˆ

∂Ω
g(x)ds(x) = 0,

ˆ
Ω+

ε

u+
ε (x)dx = 0 ,

where uε =

 u+
ε in Ω+

ε ,

u−ε in Ω−ε .

Note that the previously introduced constant β, i.e., the ratio between the
thickness of the membrane of C and its admittivity, becomes εβ. Because the cells
(Cε,n)n∈Nε are in squares of size ε, the thickness of their membranes is given by εδ

and consequently, a factor ε appears.

4.1.2.4. Main Results. We set Y+ := Y \ C and Y− := C and assume that
dist(Y−, ∂Y) = O(1). We write the solution uε as

(4.3) ∀x ∈ Ω uε(x) = u0(x) + εu1(x,
x
ε
) + o(ε)

with

y 7−→ u1(x, y)Y-periodic and u1(x, y) =

{
u+

1 (x, y) in Ω×Y+ ,

u−1 (x, y) in Ω×Y− .

Recall the definition of two-scale convergence and a few results of this theory.
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∂Ω
Γε (εδ, km)

Ω−ε (k0)

Ω+
ε (k0)

FIGURE 4.4. Schematic illustration of the periodic medium Ω.

DEFINITION 4.2. A sequence of functions uε in L2(Ω) is said to two-scale con-
verge to a limit u0 belonging to L2(Ω× Y) if, for any function ψ in L2(Ω, C](Y)),
we have

lim
ε→0

ˆ
Ω

uε(x)ψ(x,
x
ε
)dx =

ˆ
Ω

ˆ
Y

u0(x, y)ψ(x, y)dxdy .

This notion of two-scale convergence makes sense because of the next com-
pactness theorem.

THEOREM 4.3. From each bounded sequence uε in L2(Ω), we can extract a sub-
sequence, and there exists a limit u0 ∈ L2(Ω× Y) such that this subsequence two-scale
converges to u0.

The following result holds.

THEOREM 4.4. (i) The solution uε to (4.2) two-scale converges to u0 and∇uε(x)
two-scale converges to∇u0(x)+χ(Y+)(y)∇yu+

1 (x, y)+χ(Y−)(y)∇yu−1 (x, y),
where χ(Y±) are the characteristic functions of Y±.

(ii) The function u0 in (4.3) is the solution in W̃1,2(Ω) to the following homogenized
problem:

(4.4)

{ ∇ · K∗∇u0(x) = 0 in Ω ,

ν · K∗∇u0 = g on ∂Ω ,
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where K∗, the effective admittivity of the medium, is given by

(4.5) ∀(i, j) ∈ {1, 2}2, K∗ij = k0

(
δij +

ˆ
Y
(χ(Y+)∇w+

i + χ(Y−)∇w−i ) · ej

)
,

and the function (wi)i=1,2 are the solutions of the following cell problems:

(4.6)



∇ · k0∇(w+
i (y) + yi) = 0 in Y+ ,

∇ · k0∇(w−i (y) + yi) = 0 in Y− ,

k0
∂

∂ν
(w+

i (y) + yi) = k0
∂

∂ν
(w−i (y) + yi) on Γ ,

w+
i − w−i − βk0

∂

∂ν
(w+

i (y) + yi) = 0 on Γ ,

y 7−→ wi(y) Y-periodic.

(iii) Moreover, u1 can be written as

(4.7) ∀(x, y) ∈ Ω×Y, u1(x, y) =
2

∑
i=1

∂u0

∂xi
(x)wi(y) .

We define the integral operator LΓ : C2,η(Γ)→ C1,η(Γ), with 0 < η < 1 by

(4.8) LΓ[ϕ](x) =
1

2π

ˆ
Γ

∂2 log |x− y|
∂ν(x)∂ν(y)

ϕ(y)ds(y), x ∈ Γ .

LΓ is the normal derivative of the double layer potential on Γ = ∂Y−.
Since LΓ is positive, one can prove that the operator I + αLΓ : C2,η(Γ) →

C1,η(Γ) is a bounded operator and has a bounded inverse provided that < α > 0.
As the fraction f of the volume occupied by the cells goes to zero, we derive

an expansion of the effective admittivity for arbitrary shaped cells in terms of the
volume fraction. We refer to the suspension, as periodic dilute. The following
theorem holds.

THEOREM 4.5. The effective admittivity of a periodic dilute suspension admits the
following asymptotic expansion:

(4.9) K∗ = k0

(
I + f M

(
I − f

2
M
)−1

)
+ o( f 2) ,

where ρ =
√
|Y−|, f = ρ2,

(4.10) M =

(
Mij = βk0

ˆ
ρ−1Γ

νjψ
∗
i (y)ds(y)

)
(i,j)∈{1,2}2

,

and ψ∗i is defined by

(4.11) ψ∗i = −
(

I + βk0Lρ−1Γ

)−1
[νi] .

Note that ρ−1Γ is the rescaled membrane and therefore, M is independent of
ρ.
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4.1.3. Effective Admittivity for a Dilute Suspension. In general, the effect-
ive admittivity given by formula (4.5) can not be computed exactly except for a
few configurations. In this section, we consider the problem of determining the
effective property of a suspension of cells when the volume fraction |Y−| goes to
zero. In other words, the cells have much less volume than the medium surround-
ing them. This kind of suspension is called dilute. Many approximations for the
effective properties of composites are based on the solution for dilute suspension.

4.1.3.1. Case of Concentric Circular-Shaped Cells: the Maxwell-Wagner-Fricke For-
mula. We consider in this section that the cells are disks of radius r0. ρ−1Γ becomes
a circle of radius r0.

For all f ∈ L2((0, 2π)), we introduce the Fourier coefficients:

∀m ∈ Z, f̂ (m) =
1

2π

ˆ 2π

0
f (θ)e−imθdθ ,

and have then for all θ ∈ (0, 2π):

f (θ) =
∞

∑
m=−∞

f̂ (m)eimθ .

For f ∈ C2,η(ρ−1Γ), we obtain after a few computations:

∀θ ∈]0, 2π[, (I + βk0Lρ−1Γ)
−1[ f ](θ) = ∑

m∈Z\{0}

(
1 + βk0

|m|
2r0

)−1

f̂ (m) eimθ .

For p = 1, 2, ψ∗p = −(I + βk0Lρ−1Γ)
−1[νp] then have the following expression:

∀θ ∈ (0, 2π), ψ∗p = −
(

1 +
βk0

2r0

)−1
νp .

Consequently, we get for (p, q) ∈ {1, 2}2 :

Mpq = −δpq
βk0πr0

1 +
βk0

2r0

,

and hence,

(4.12) =Mpq = δpq
πr0δω(εmσ0 − ε0σm)

(σm + σ0
δ

2r0
)2 + ω2(εm + ε0

δ

2r0
)2

.

Formula (4.12) is the two-dimensional version of the Maxwell-Wagner-Fricke
formula, which gives the effective admittivity of a dilute suspension of spherical
cells covered by a thin membrane.

An explicit formula for the case of elliptic cells can be derived by using the
spectrum of the integral operator Lρ−1Γ, which can be identified by standard Four-
ier methods.

4.1.3.2. Debye Relaxation Times. From (4.12), it follows that the imaginary part
of the membrane polarization attains its maximum with respect to the frequency
at

1
τ
=

σm + σ0
δ

2r0

εm + ε0
δ

2r0

.
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This dispersion phenomenon due to the membrane polarization is well known and
referred to as the β-dispersion. The associated characteristic time τ corresponds to
a Debye relaxation time.

For arbitrary-shaped cells, we define the first and second Debye relaxation
times, τi, i = 1, 2, by

(4.13)
1
τi

:= arg max
ω
|λi(ω)|,

where λ1 ≤ λ2 are the eigenvalues of the imaginary part of the membrane polar-
ization tensor M(ω). Note that if the cell is of circular shape, λ1 = λ2.

As it will be shown later, the Debye relaxation times can be used for identify-
ing the microstructure.

4.1.3.3. Properties of the Membrane Polarization Tensor and the Debye Relaxation
Times. In this subsection, we derive important properties of the membrane polar-
ization tensor and the Debye relaxation times defined respectively by (4.10) and
(4.13). In particular, we prove that the Debye relaxation times are invariant with
respect to translation, scaling, and rotation of the cell.

First, since the kernel ofLρ−1Γ is invariant with respect to translation, it follows
that M(C, βk0) is invariant with respect to translation of the cell C.

Next, from the scaling properties of the kernel of Lρ−1Γ we have

M(sC, βk0) = s2M(C,
βk0

s
)

for any scaling parameter s > 0.
Finally, we have

M(RC, βk0) = RM(C, βk0)RT for any rotationR ,

where T denotes the transpose.
Therefore, the Debye relaxation times are translation and rotation invariant.

Moreover, for scaling, we have

τi(hC, βk0) = τi(C,
βk0

h
), i = 1, 2, h > 0.

Since β is proportional to the thickness of the cell membrane, β/h is nothing else
than the real rescaled coefficient β for the cell C. The Debye relaxation times (τi)
are therefore invariant by scaling.

Since Lρ−1Γ is self-adjoint, it follows that M is symmetric. Finally, we show
positivity of the imaginary part of the matrix M for δ small enough.

We consider that the cell contour Γ can be parametrized by polar coordinates.
We have, up to O(δ3),

(4.14) M + βρ−1|Γ| = −β2
ˆ

ρ−1Γ
nLρ−1Γ[n] ds ,

where again we have assumed that σ0 = 1 and ε0 = 0.
Recall that

β =
δσm

σ2
m + ω2ε2

m
− i

δωεm

σ2
m + ω2ε2

m
.
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Hence, the positivity of Lρ−1Γ yields

=M ≥ δωεm

2ρ(σ2
m + ω2ε2

m)
|Γ|I

for δ small enough, where I is the identity matrix.
Finally, by using (4.14) one can see that the eigenvalues of =M have one max-

imum each with respect to the frequency. Let li, i = 1, 2, l1 ≥ l2, be the eigenvalues
of
´

ρ−1Γ nLρ−1Γ[n]ds. We have

(4.15) λi =
δωεm

ρ(σ2
m + ω2ε2

m)
|Γ| − 2δ2ωεmσm

(σ2
m + ω2ε2

m)
2 li, i = 1, 2 .

Therefore, τi is the inverse of the positive root of the following polynomial in ω:

−ε4
m|Γ|ω4 + 6δε2

mσmliρω2 + σ4
m|Γ| .

4.1.3.4. Anisotropy Measure. Anisotropic electrical properties can be found in
biological tissues such as muscles and nerves. In this subsection, based on formula
(4.9), we introduce a natural measure of the conductivity anisotropy and derive
its dependence on the frequency of applied current. Assessment of electrical an-
isotropy of muscle may have useful clinical application. Because neuromuscular
diseases produce substantial pathological changes, the anisotropic pattern of the
muscle is likely to be highly disturbed. Neuromuscular diseases could lead to a
reduction in anisotropy for a range of frequencies as the muscle fibers are replaced
by isotropic tissue.

Let λ1 ≤ λ2 be the eigenvalues of the imaginary part of the membrane polar-
ization tensor M(ω). The function

ω 7→ λ1(ω)

λ2(ω)

can be used as a measure of the anisotropy of the conductivity of a dilute sus-
pension. Assume ε0 = 0. As frequency ω increases, the factor βk0 decreases.
Therefore, for large ω, using the expansions in (4.15) we obtain that

(4.16)
λ1(ω)

λ2(ω)
= 1 + (l1 − l2)

2δσmρ

(σ2
m + ω2ε2

m)|Γ|
+ O(δ2) ,

where l1 ≤ l2 are the eigenvalues of
´

ρ−1Γ nLρ−1Γ[n]ds.
Formula (4.16) shows that as the frequency increases, the conductivity aniso-

tropy decreases. The anisotropic information can not be captured for

ω � 1
εm

((l1 − l2)
2δσmρ

|Γ| − σ2
m)

1/2 .

4.1.4. Numerical Simulations. We present in this section some numerical sim-
ulations to illustrate the fact that the Debye relaxation times are characteristics of
the microstructure of the tissue.

We take realistic values for our parameters, which are the same as those used
in Subsection 4.1.2.2 and let the frequency ω ∈ [104, 109] Hz.

We first want to retrieve the invariant properties of the Debye relaxation times.
We consider (Figure 4.5) an elliptic cell (in green) that we translate (to obtain the
red one), rotate (to obtain the purple one) and scale (to obtain the dark blue one).
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FIGURE 4.5. An ellipse translated, rotated and scaled.

We compute the membrane polarization tensor, its imaginary part, and the associ-
ated eigenvalues which are plotted as a function of the frequency (Figure 4.6). The
frequency is here represented on a logarithmic scale. One can see that for the two
eigenvalues the maximum of the curves occurs at the same frequency, and hence
that the Debye relaxation times are identical for the four elliptic cells. Note that
the red and green curves are even superposed; this comes from the fact that M is
invariant by translation.

Next, we are interested in the effect of the shape of the cell on the Debye relax-
ation times. We consider for this purpose, (Figure 4.7) a circular cell (in green), an
elliptic cell (in red) and a very elongated elliptic cell (in blue). We compute simil-
arly as in the preceding case, the polarization tensors associated to the three cells,
take their imaginary part and plot the two eigenvalues of these imaginary parts
with respect to the frequency. As shown in Figure 4.8, the maxima occur at dif-
ferent frequencies for the first and second eigenvalues. Hence, we can distinguish
with the Debye relaxation times between these three shapes.

These simulations prove that the Debye relaxation times are characteristics of
the shape and organization of the cells. For a given tissue, the idea is to obtain
by spectroscopy the frequency dependence spectrum of its effective admittivity.
One then has access to the membrane polarization tensor and the spectra of the
eigenvalues of its imaginary part. One compares the associated Debye relaxation
times to the known ones of healthy and cancerous tissues at different levels. Then
one would be able to know using statical tools with which probability the imaged
tissue is cancerous and at which level.

4.2. Plasmonic Nanoparticle Imaging

Plasmon resonant nanoparticles have unique capabilities of enhancing the
brightness of light and confining strong electromagnetic fields. A thriving interest
for optical studies of plasmon resonant nanoparticles is due to their recently pro-
posed use as labels in molecular biology. New types of cancer diagnostic nan-
oparticles are constantly being developed. Nanoparticles are also being used in
thermotherapy as nanometric heat-generators that can be activated remotely by
external electromagnetic fields.
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FIGURE 4.6. Frequency dependence of the eigenvalues of =M for the 4
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FIGURE 4.7. A circle, an ellipse and a very elongated ellipse.
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different cell shapes in Figure 4.7.

This section is devoted to the mathematical modeling of plasmonic nano-
particles. Its aim is twofold: (i) to mathematically define the notion of plasmonic
resonance and to analyze the shift and broadening of the plasmon resonance with
changes in size and shape of the nanoparticles and (ii) to study the scattering and
absorption enhancements by plasmon resonant nanoparticles and express them in
terms of the polarization tensor of the nanoparticle. Optimal bounds on the en-
hancement factors are also derived. For simplicity, the Helmholtz equation is used
to model electromagnetic wave propagation.

According to the quasi-static approximation for small particles, the surface
plasmon resonance peak occurs when the particle’s polarizability is maximized.
Plasmon resonances in nanoparticles can be treated at the quasi-static limit as
an eigenvalue problem for the Neumann-Poincaré integral operator, which leads
to direct calculation of resonance values of permittivity and optimal design of
nanoparticles that resonate at specified frequencies. At this limit, they are size-
independent. However, as the particle size increases, they are determined from
scattering and absorption blow up and become size-dependent. We precisely
quantify the scattering absorption enhancements in plasmonic nanoparticles. We
derive new bounds on the enhancement factors given the volume and electro-
magnetic parameters of the nanoparticles. At the quasi-static limit, we prove that
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the averages over the orientation of scattering and extinction cross-sections of a
randomly oriented nanoparticle are given in terms of the imaginary part of the
polarization tensor. Moreover, we show that the polarization tensor blows up at
plasmonic resonances and derive bounds for the absorption and scattering cross-
sections. We also prove the blow-up of the first-order scattering coefficients at
plasmonic resonances.

4.2.1. Problem Formulation and Some Basic Results. We consider the scat-
tering problem of a time-harmonic wave incident on a plasmonic nanoparticle.
For simplicity, we use the Helmholtz equation instead of the full Maxwell equa-
tions. The homogeneous medium is characterized by electric permittivity εm and
magnetic permeability µm, while the particle occupying a bounded and simply
connected domain D b R3 of class C1,α for some 0 < α < 1 is characterized by
electric permittivity εc and magnetic permeability µc, both of which may depend
on the frequency. Assume that <εc < 0,=εc > 0,<µc < 0,=µc > 0 and define

km = ω
√

εmµm, kc = ω
√

εcµc ,

and
εD = εmχ(R3\D̄) + εcχ(D̄), µD = εmχ(R3\D̄) + εcχ(D) ,

where χ denotes the characteristic function. Let ui(x) = eikmd·x be the incident
wave. Here, ω is the frequency and d is the unit incidence direction. Throughout
this paper, we assume that εm and µm are real and strictly positive and that<kc < 0
and =kc > 0.

Using dimensionless quantities, we assume that the following set of condi-
tions holds.

CONDITION 4.2.1.1. We assume that the numbers εm, µm, εc, µc are dimension-
less and are of order one. We also assume that the particle has size of order one
and ω is dimensionless and is of order o(1).

It is worth emphasizing that in the original dimensional variables ω refers
to the ratio between the size of the particle and the wavelength. Moreover, the
operating frequency varies in a small range and hence, the material parameters εc
and µc can be assumed independent of the frequency.

The scattering problem can be modeled by the following Helmholtz equation

(4.17)



∇ · 1
µD
∇u + ω2εDu = 0 in R3\∂D ,

u+ − u− = 0 on ∂D ,
1

µm

∂u
∂ν

∣∣∣∣
+

− 1
µc

∂u
∂ν

∣∣∣∣
−
= 0 on ∂D ,

us := u− ui satisfies the Sommerfeld radiation condition.

Here, ∂/∂ν denotes the normal derivative and the Sommerfeld radiation condition
can be expressed in three dimensions as follows:∣∣∣∣ ∂u

∂|x| − ikmu
∣∣∣∣ ≤ C|x|−2

as |x| → +∞ for some constant C independent of x.

4.2.2. Scattering and Absorption Enhancements.
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4.2.2.1. Preeliminaries. To compute the scattering and absorption effects on a
plasmonic nanoparticle, we need some definitions and results. For a vector field
U = Re(u(x)e−iωt), the averaged value of the energy flux vector is

f (x, t) = −2
∂U
∂t
∇xU

= −(iω)
(
−u(x)eßωt + u(x)eiωt

) (
−∇u(x)eßωt +∇u(x)eiωt

)
= (−iω)

(
−u∇u + u∇u− u∇ue−2iωt + u∇ue2iωt

)
And taking the average in time, for a long enough time relative to the wavelength
of the incident wave, we obtain

F(x) = −iω
(

u(x)∇u(x)− u(x)∇u(x)
)

Consider the outward flow of energy through the sphere ∂BR of radius R and
center the origin

W =

ˆ
∂B

F(x) · ν(x)dσ(x)

The total field, decomposed in the incident and scattering parts u = ui + us, let us
decompose the outward flow in three parts : W =W i +W s +W ′, where

W i = −iω
ˆ

∂BR

(
ui(x)∇ui(x)− ui(x)∇ui(x)

)
· ν(x)dσ(x),

W s = −iω
ˆ

∂BR

(us(x)∇us(x)− us(x)∇us(x)) · ν(x)dσ(x),

W ′ = −iω
ˆ

∂BR

(
ui∇us − us∇ui − ui∇us + us∇ui

)
· ν(x)dσ(x).

Notice that considering the incident wave as a plane wave ui(x) = eiωd·x, then
W i = 0 as

W i = −iω
ˆ

∂BR

uiiωui − ui · (−iωd)uiν(x)dσ(x)

= ω2
ˆ

∂BR

d|ui|2 + d|ui|2dσ(x)

= 2ω2d
ˆ

∂BR

dσ(x)

= 0.

Intuitively speaking, since we are measuring the flux of energy over a sphere,
it can be seen that the contribution of a plane wave cancel outs, as the same amount
of energy that gets in, gets out. In the presence of absorbing scatterers, by conser-
vation of energy the rate of absorption isW a = −W , Hence

W a +W s = −W ′.

The term W ′ is called the extinction rate and it is the rate at which the energy is
removed by the scatterers from the illuminating plane wave.
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DEFINITION 4.6. The scattering, absorbtion and extintion cross-sections, re-
spectively Qs, Qa, Qext are

Qs =
W s

V
, Qa =

W a

V
, Qext =

Wext

V
,

where V(x) = |ui(x)∇ui(x) − ui(x)∇ui(x)|. In our case where we have con-
sidered a plane wave, this value is constant equal to 2ω.

DEFINITION 4.7. In dimension 3, the scattering amplitude A∞ is defined as
the function that satisfies

us(x) = u(x)− ui(x) =
eiω|x|

|x| A∞[ε, µ, ω]

(
x
|x| , d

)
+ O

(
1
|x|2

)
THEOREM 4.8. Optical theorem For dimension 3, and ui(x) = eiωd·x an incident

plane wave, we have that

Qext[ε, µ, ω](d) = Qs[ε, µ, ω](d) + Qa[ε, µ, ω](d)

=
4π

ω
Im [A∞[ε, µ, ω] (d, d)]

Qs[ε, µ, ω](d) =
ˆ
|x̂|=1

|A∞[ε, µ, ω](d, d)|2 dσ(x̂)

4.2.2.2. The Quasi-Static Limit. We start by recalling the small volume expan-
sion in the far-field. The following asymptotic expansion holds.

PROPOSITION 4.9. Assume that D = δB + z. As δ goes to zero the scattered field
us can be written as follows:
(4.18)

us(x) = −k2
m

(
εc

εm
− 1
)
|D|Γkm(x, z)ui(z)−∇zΓkm(x, z) ·M(λ, D)∇ui(z)

+O
(

δ4

dist(λ, σ(K∗D))

)
for x away from D. Here, dist(λ, σ(K∗D)) denotes minj |λ− λj| with λj being the eigen-
values of K∗D.

Assume for simplicity that εc = εm. Consider the scattering amplitude A∞
(4.7). We explicitly compute it. Take ui(x) = eikmd·x and assume again for simpli-
city that z = 0. Equation (4.18) yields, for |x| � 1

ω ,

us(x) =
eikm |x|

4π|x| ikm

(
ikm

x
|x| −

x
|x|2

)
·M(λ, D)d + O(

δ4

dist(λ, σ(K∗D))
) .

Since we are in the far-field region, we can write that, up to an error of order
δ4/dist(λ, σ(K∗D)),

us(x) = −k2
m

eikm |x|

4π|x|

(
x
|x| ·M(λ, D)d

)
+ O

(
1
|x|2

)
.(4.19)

In the next proposition we write the extinction and scattering cross-sections, Qext
m

and Qs
m, in terms of the polarization tensor.
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PROPOSITION 4.10. The leading-order term (as δ goes to zero) of the average over
the orientation of the extinction cross-section of a randomly oriented nanoparticle is given
by

Qext
m = −4πkm

3
= [traceM(λ, D)] ,(4.20)

where trace denotes the trace of a matrix. The leading-order term of the average over the
orientation scattering cross-section of a randomly oriented nanoparticle is given by

Qs
m =

k4
m

9π
|traceM(λ, D)|2 .(4.21)

PROOF. Remark from (4.19) that the scattering amplitude A∞ in the case of a
plane wave illumination is given by

A∞

(
x
|x| , d

)
= − k2

m
4π

x
|x| ·M(λ, D)d.(4.22)

Using Theorem 4.8, we can see that for a given orientation

Qext = −4πkm= [d ·M(λ, D)d] .

Therefore, if we integrate Qext over all illuminations we find that

Qext
m =− km=

[ˆ
S

d ·M(λ, D)d dσ(d)
]

.

Since =M(λ, D) is symmetric, it can be written as =M(λ, D) = PtN(λ)P, where
P is unitary and N is diagonal and real. Then, by the change of variables d = Ptx
and using spherical coordinates, it follows that

Qext
m = −km

[ˆ
S

x · N(λ)xdσ(x)
]

,

and therefore,

(4.23) Qext
m = −4πkm

3
[traceN(λ)] = −4πkm

3
= [traceM(λ, D)] .

Now, we compute the averaged scattering cross-section. Let<M(λ, D) = P̃tÑ(λ)P̃
where P̃ is unitary and Ñ is diagonal and real. We have

Qs
m =

k4
m

16π2

¨
S×S
|x ·M(λ, D)d|2 dσ(x) dσ(d) ,

=
k4

m
16π2

[¨
S×S

∣∣∣x̃ · N(λ)d̃
∣∣∣2 dσ(x̃)dσ(d̃) +

¨
S×S

∣∣∣x̃ · Ñ(λ)d̃
∣∣∣2 dσ(x̃) dσ(d̃)

]
.

Then a straightforward computation in spherical coordinates gives

Qs
m =

k4
m

9π
|traceM(λ, D)|2 ,

which completes the proof. �

From Theorem 4.8, we obtain that the averaged absorption cross-section is
given by

Qa
m = −4πkm

3
= [traceM(λ, D)]− k4

m
9π
|traceM(λ, D)|2 .
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Therefore Qa
m blows up at plasmonic resonances, as the trace of the polarization

tensor does.

REMARK 4.11. Notice that both the absorption and the scattering cross sec-
tions of the nanoparticle explodes when there is plasmonic resonances, this counter
intuitive effect is interesting by itself as the amount of light energy emitted to it is
not being augmented. This is why it is possible to both heat the nanoparticle for
treatment purposes and to measure the scattering for imaging.

4.2.3. An Upper Bound for the Averaged Extinction Cross-Section. The goal
of this section is to derive an upper bound for the modulus of the averaged extinc-
tion cross-section Qext

m of a randomly oriented nanoparticle. Most of the details
and proofs will be omitted as being way too lengthy, for further reference see the
course notes.

Recall that the entries Mlm(λ, D) of the polarization tensor M(λ, D) are given
by

(4.24) Mlm(λ, D) :=
ˆ

∂D
xl(λI −K∗D)−1[νm](x) dσ(x) .

For a C1,α domain D in Rd, K∗D is compact and self-adjoint in H∗ (defined in the
course). Thus, we can write

(λI −K∗D)−1[ψ] =
∞

∑
j=0

(ψ, ϕj)H∗ ⊗ ϕj

λ− λj
,

with (λj, ϕj) being the eigenvalues and eigenvectors of K∗D in H∗. Hence, the
entries of the polarization tensor M can be decomposed as

(4.25) Mlm(λ, D) =
∞

∑
j=1

α
(j)
lm

λ− λj
,

where α
(j)
lm := (νm, ϕj)H∗(ϕj, xl)− 1

2 , 1
2
. Note that (νm, χ(∂D))− 1

2 , 1
2
= 0. So, consider-

ing the fact that λ0 = 1/2, we have (νm, ϕ0)H∗ = 0 and so, α
(0)
lm = 0.

The following lemmas are useful for us.

LEMMA 4.12. We have

α
(j)
l,l ≥ 0, j ≥ 1 .

LEMMA 4.13. Let

Mlm(λ, D) =
∞

∑
j=1

α
(j)
l,m

λ− λj

be the (l, m)-entry of the polarization tensor M associated with a C1,α domain D b Rd.
Let δlm denote the Kronecker symbol. Then, the following properties hold:

(i)
∞

∑
j=1

α
(j)
l,m = δlm|D| ;
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(ii)

∞

∑
j=1

λi

d

∑
l=1

α
(j)
l,l =

(d− 2)
2
|D| ;

(iii)

∞

∑
j=1

λ2
j

d

∑
l=1

α
(j)
l,l =

(d− 4)
4
|D|+

d

∑
l=1

ˆ
D
|∇SD[νl ]|2dx .

Let λ = λ′ + iλ′′. We have

(4.26)
∣∣=(trace(M(λ, D)))

∣∣ = ∞

∑
j=1

|λ′′|∑d
l=1 α

(j)
l,l

(λ′ − λj)2 + λ′′2
.

For d = 2 the spectrum σ(K∗D)\{1/2} is symmetric. For d = 3 this is no
longer true. Nevertheless, for our purposes, we can assume that σ(K∗D)\{1/2} is

symmetric by defining α
(j)
l,l = 0 if λj is not in the original spectrum.

THEOREM 4.14. Let M(λ, D) be the polarization tensor associated with a C1,α do-
main D b Rd with λ = λ′ + iλ′′ such that |λ′′| � 1 and |λ′| < 1/2. Then,

∣∣=(trace(M(λ, D)))
∣∣ ≤ d|λ′′||D|

λ′′2 + 4λ′2

+
1

|λ′′|(λ′′2 + 4λ′2)

(
dλ′2|D|+ (d− 4)

4
|D|+

d

∑
l=1

ˆ
D
|∇SD[νl ]|2dx + 2λ′

(d− 2)
2
|D|
)

+ O(
λ′′2

4λ′2 + λ′′2
) .

The bound in the above theorem depends not only on the volume of the
particle but also on its geometry.

4.2.3.1. Bound for ellipses. If D is an ellipse whose semi-axes are on the x1- and
x2- axes and of length a and b, respectively, then its polarization tensor takes the
form,

(4.27) M(λ, D) =


|D|

λ− 1
2

a−b
a+b

0

0
|D|

λ + 1
2

a−b
a+b

 .

On the other hand, inH∗(∂D),

σ(K∗D)\{1/2} =
{
±1

2

(
a− b
a + b

)j
, j = 1, 2, . . .

}
.
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Then, from (4.25), we also have

M(λ, D) =



∞

∑
j=1

α
(j)
1,1

λ− 1
2

(
a−b
a+b

)j

∞

∑
j=1

α
(j)
1,2

λ− 1
2

(
a−b
a+b

)j

∞

∑
j=1

α
(j)
1,2

λ− 1
2

(
a−b
a+b

)j

∞

∑
j=1

α
(j)
2,2

λ− 1
2

(
a−b
a+b

)j


.

Let λ1 =
1
2

a− b
a + b

and V(λj) = {i ∈ N such that K∗D[ϕi] = λj ϕi}. It is clear now

that

(4.28) ∑
i∈V(λ1)

α
(i)
1,1 = ∑

i∈V(−λ1)

α
(i)
2,2 = |D|, ∑

i∈V(λj)

α
(i)
1,1 = ∑

i∈V(−λj)

α
(i)
2,2 = 0

for j ≥ 2 and

∑
i∈V(λj)

α
(i)
1,2 = 0

for j ≥ 1. taking all together , we can conclude that

|=(Tr(M(λ, D)))| ≤ |λ
′′|

2

∞

∑
j=1

4λ′2β(j) + λ′′2(β(j) + β(j))

λ′′2(4λ′2 + λ′′2)
+ O(

λ′′2

4λ′2 + λ′′2
) .

Note that for for any ellipse D̃ of semi-axes of length a and b,=(trace(M(λ, D̃))) =
=(trace(M(λ, D))). Then using Lemma 4.13 we obtain the following result.

COROLLARY 4.14.1. For any ellipse D̃ of semi-axes of length a and b, we have

(4.29) |=(trace(M(λ, D̃)))| ≤ |D̃|4λ′2

|λ′′|(λ′′2 + 4λ′2)
+

2|λ′′||D̃|
λ′′2 + 4λ′2

+ O(
λ′′2

4λ′2 + λ′′2
) .

Figure 4.9 shows (4.29) and the average extinction of two ellipses of semi-axis
a and b, where the ratio a/b = 2 and a/b = 4, respectively.

We can see from (4.26), Lemma 4.12 and the first sum rule in Lemma 4.13 that
for an arbitrary shape B, |=(trace(M(λ, B)))| is a convex combination of |λ′′ |

(λ′−λj)2+λ′′2

for λj ∈ σ(K∗B)\{1/2}. Since ellipses put all the weight of this convex combination
in ±λ1 = ± 1

2
a−b
a+b , we have for any ellipse D̃ and any shape B such that |B| = |D̃|,

|=(trace(M(λ∗, B)))| ≤ |=(trace(M(λ∗, D̃)))|
with

λ∗ = ±1
2

a− b
a + b

+ iλ′′ .

Thus, bound (4.29) applies for any arbitrary shape B in dimension two. This
implies that, for a given material and a given desired resonance frequency ω∗, the
optimal shape for the extinction resonance (in the quasi-static limit) is an ellipse of
semi-axis a and b such that λ′(ω∗) = ± 1

2
a−b
a+b .

As conclusion, this bound allows us to conclude when a shape is optimal for
the desired plasmonic resonance at a given size.
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FIGURE 4.9. Optimal bound for ellipses.
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