
NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

ETH Lecture 401-0663-00L Numerical Methods for CSE

Homework Problems

Prof. R. Hiptmair, SAM, ETH Zurich

Autumn Term 2016

(C) Seminar für Angewandte Mathematik, ETH Zürich

URL: https://www.sam.math.ethz.ch/ grsam/HS16/NumCSE/NCSEProblems.pdf

0.1 Current Assignment

Christmas homework problems

• Problem 11.4

• Problem 12.4 (Core problem)

• Problem 12.5

• Problem 12.6 (Core problem)

• Problem 12.7

(0.1.2) Homework problems 9.12.2016 - 19.12.2016

• Problem 11.2 (Core problem)

• Problem 11.3 (Core problem)

• Problem 11.5

• Problem 11.1

(0.1.3) Homework problems 2.12.2016 - 12.12.2016

• Problem 8.4 (Core problem)

• Problem 8.5 (Core problem)

• Problem 8.7 (Core problem)

0. Preface, 0.1. Current Assignment 1

https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NCSEProblems.pdf

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

• Problem 7.1

• Problem 8.9

(0.1.4) Homework problems 25.11.2016 - 05.12.2016

• Problem 7.3 (Core problem)

• Problem 7.5 (Core problem)

• Problem 7.4

• Problem 7.6

(0.1.5) Homework problems 17.11.2016 - 28.11.2016

• Problem 5.6

• Problem 6.2 (Core problem)

• Problem 6.3 (Core problem)

• Problem 6.4

(0.1.6) Homework problems 11.11.2016 - 21.11.2016

• Problem 5.3 (Core problem)

• Problem 5.1 (Core problem)

• Problem 5.5

• Problem 5.4

(0.1.7) Homework problems 4.11.2016 - 14.11.2016

• Problem 4.3 (Core problem)

• Problem 4.4 (Core problem)

• Problem 4.2

• Problem 4.1

(0.1.8) Homework problems 28.10.2016 - 07.11.2016

• Problem 3.7 (Core problem)

• Problem 3.8

• Problem 3.9 (Core problem)

0. Preface, 0.1. Current Assignment 2

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

• Problem 3.10 (Core problem)

(0.1.9) Homework problems 21.10.2016 - 31.10.2016

• Problem 3.5 (Core problem)

• Problem 3.4 (Core problem)

• Problem 3.2

• Problem 3.1

(0.1.10) Homework problems 14.10.2016 - 24.10.2016

• Problem 2.9 (Core problem)

• Problem 2.10

• Problem 2.11

• Problem 2.13 (Core problem)

• Problem 2.12

• Problem 2.8

(0.1.11) Homework problems 8.10.2016 - 17.10.2016

• Problem 2.3

• Problem 2.5 (Core problem)

• Problem 2.4

• Problem 2.6 (Core problem)

(0.1.12) Homework problems 30.9.2016 - 10.10.2016

• Problem 1.8 (Core problem)

• Problem 1.10

• Problem 1.11

• Problem 2.2 (Core problem)

(0.1.13) Homework problems 22.9.2016 - 3.10.2016

• Problem 1.2 [discussed on Monday, Sep 26]

• Problem 1.1 [discussed on Monday, Sep 26]

0. Preface, 0.1. Current Assignment 3

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

• Problem 1.5

• Problem 1.3 (Core problem)

• Problem 1.7 (Core problem)

0. Preface, 0.1. Current Assignment 4

Contents

0.1 Current Assignment . 1

0.2 General Information . 7

0.2.1 Weekly Homework Assignments . 7

0.2.2 Importance of Homework . 7

0.2.3 Corrections and Grading of Assignments . 7

0.2.4 Codes and Templates . 8

0.2.5 Hints and Solutions . 8

1 Computing with Matrices and Vectors 9

Problem 1.1: Arrow matrix×vector multiplication . 9

Problem 1.2: Gram-Schmidt orthonormalization with EIGEN . 13

Problem 1.3: Kronecker product . 14

Problem 1.4: Fast matrix multiplication with EIGEN . 16

Problem 1.5: Householder reflections . 17

Problem 1.6: Matrix powers . 19

Problem 1.7: Structured matrix–vector product . 21

Problem 1.8: Avoiding cancellation . 23

Problem 1.9: Complexity of a C++ function . 24

Problem 1.10: Approximating the Hyperbolic Sine . 26

Problem 1.11: Complex roots . 27

Problem 1.12: Symmetric Gauss-Seidel iteration . 28

2 Direct Methods for Linear Systems of Equations 30

Problem 2.1: Resistance to impedance map . 30

Problem 2.2: Partitioned Matrix . 33

Problem 2.3: Banded matrix . 35

Problem 2.4: Sequential linear systems . 37

Problem 2.5: Rank-one perturbations . 38

Problem 2.6: Lyapunov equation . 40

Problem 2.7: Structured linear systems with pivoting . 42

Problem 2.8: Structured linear systems . 44

Problem 2.9: Triplet format to CRS format . 46

Problem 2.10: Sparse matrices in CCS format . 48

Problem 2.11: Ellpack sparse matrix format . 49

Problem 2.12: Grid functions . 52

Problem 2.13: Efficient sparse matrix-matrix multiplication in COO format 54

3 Direct Methods for Linear Least Squares Problems 56

Problem 3.1: Matrix least squares in Frobenius norm . 56

Problem 3.2: Sparse Approximate Inverse (SPAI) . 59

Problem 3.3: Constrained least squares and Lagrange multipliers 60

Problem 3.4: Hidden linear regression . 61

5

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.5: Estimating a Tridiagonal Matrix . 62

Problem 3.6: Approximation of a circle . 63

Problem 3.7: Shape identification . 66

Problem 3.8: Properties of Householder reflections . 69

Problem 3.9: Cholesky and QR decomposition . 71

Problem 3.10: Low rank approximation of matrices . 73

4 Filtering Algorithms 75

Problem 4.1: Autofocus with FFT . 75

Problem 4.2: FFT and least squares . 78

Problem 4.3: Multiplication and division of polynomials based on FFT 80

Problem 4.4: Solving triangular Toeplitz systems . 82

5 Data Interpolation in 1D 86

Problem 5.1: Evaluating the derivatives of interpolating polynomials 86

Problem 5.2: Piecewise linear interpolation . 87

Problem 5.3: Lagrange interpolant . 88

Problem 5.4: Generalized Lagrange polynomials for Hermite interpolation 89

Problem 5.5: Piecewise linear interpolation with knots different from nodes 90

Problem 5.6: Cardinal basis for trigonometric interpolation . 92

6 Approximation of Functions in 1D 95

Problem 6.1: Adaptive polynomial interpolation . 95

Problem 6.2: Piecewise Cubic Hermite Interpolation . 96

Problem 6.3: Piecewise linear approximation on graded meshes 99

Problem 6.4: Chebyshev polynomials and their properties . 101

7 Numerical Quadrature 104

Problem 7.1: Zeros of orthogonal polynomials . 104

Problem 7.2: Efficient quadrature of singular integrands . 105

Problem 7.3: Smooth integrand by transformation . 107

Problem 7.4: Generalize “Hermite-type” quadrature formula . 108

Problem 7.5: Numerical integration of improper integrals . 108

Problem 7.6: Nested numerical quadrature . 110

Problem 7.7: Quadrature plots . 111

Problem 7.8: Quadrature by transformation . 112

Problem 7.9: Discretization of the integral operator . 113

8 Iterative Methods for Non-Linear Systems of Equations 115

Problem 8.1: Order of convergence from error recursion . 115

Problem 8.2: Code quiz . 116

Problem 8.3: Convergent Newton iteration . 117

Problem 8.4: Modified Newton method . 117

Problem 8.5: The order of convergence of an iterative scheme 118

Problem 8.6: Newton’s method for F(x) := arctan x . 119

Problem 8.7: Order-p convergent iterations . 120

Problem 8.8: Nonlinear electric circuit . 120

Problem 8.9: Julia Set . 121

Problem 8.10: Solving a quasi-linear system . 122

9 Eigenvalues 124

10 Krylov Methods for Linear Systems of Equations 125

CONTENTS, CONTENTS 6

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

11 Numerical Integration – Single Step Methods 126

Problem 11.1: Integrating ODEs using the Taylor expansion method 126

Problem 11.2: Linear ODE in spaces of matrices . 127

Problem 11.3: Explicit Runge-Kutta methods . 129

Problem 11.4: Non-linear Evolutions in Spaces of Matrices . 130

Problem 11.5: System of second-order ODEs . 131

Problem 11.6: Order is not everything . 132

Problem 11.7: Initial Condition for Lotka-Volterra ODE . 134

12 Single Step Methods for Stiff Initial Value Problems 137

Problem 12.1: Semi-implicit Runge-Kutta SSM . 137

Problem 12.2: Exponential integrator . 139

Problem 12.3: Damped precession of a magnetic needle . 140

Problem 12.4: Implicit Runge-Kutta method . 142

Problem 12.5: Singly Diagonally Implicit Runge-Kutta Method 143

Problem 12.6: Stability of a Runge-Kutta method . 144

Problem 12.7: Mono-implicit Runge-Kutta single step method 145

Problem 12.8: Extrapolation of evolution operators . 147

13 Structure Preserving Integration 149

0.2 General Information

0.2.1 Weekly Homework Assignments

All problems will be published in this single “.pdf” file. Every week, we publish a list of problems (cf. Section

Section 0.1) that should be solved. We denote by “Core problem” problems that you should really try to

solve, whenever you do not have much time to dedicate to the homework.

0.2.2 Importance of Homework

Homework assignments are not mandatory. However, it is very important that you constantly exercise

with the material you learn. “Solving” the homework assignments one week before the main exam by

looking at the solutions will likely result in failure.

We provide hints and solutions from the beginning. It is your responsibility to look at the solutions only if

you are stuck in a difficult problem and you tried to find a solution for a sufficient amount of time.

Make sure to practise with the Linux environment. During the exam you will have to work on Fedora

with Gnome3: there will be no time to become familiar with this environment.

0.2.3 Corrections and Grading of Assignments

Place your handwritten solutions by Thursday night in the pigeon-holes in front of HG G 53.2. You can

submit your codes to the assistants using the online submission interface. You should submit your so-

lutions even if those are incomplete and/or incorrect. Feedback from the assistants is most useful when

incomplete/incorrect solutions are returned.

0. Preface, 0.2. General Information 7

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Please do not submit solutions you copied from others or from the published solutions. Assignments are

not graded.

You will obtain feedback about your submissions on the subsequent Monday, during the exercise class.

0.2.4 Codes and Templates

For each problem involving coding you will find templates on GitLab (the specific link is provided in the

problem sheet). Templates may be used as starting point for your solutions. All solutions we provide will

be based on the templates. You are not forced to use the templates, but using them will allow you to focus

on the problems. This will also simplify the correction from the assistants. A similar workflow will also be

used during the exam.

All templates come with a self-contained CMake file that can be used to compile only the problem you are

working on.

There are many ways to obtain templates and solutions:

1. Clone the entire GitLab repository and navigate to the folders:

• Assigmnents/Codes/<Chapter>/<ProblemName>/templates_nolabels for tem-

plates.

• Assigmnents/Codes/<Chapter>/<ProblemName>/solutions_nolabels for so-

lutions.

2. Follow the link you find in this “.pdf” and use the button “Download zip”.

3. Use the “.zip” files we provide on the website.

Choose the way you prefer.

0.2.5 Hints and Solutions

Hints and solutions are kept in separate “.pdf” files.

You can download the “.pdf” files with hints and solutions from the website.

0. Preface, 0.2. General Information 8

https://gitlab.math.ethz.ch/NumCSE/NumCSE/
https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/
https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/

Chapter 1

Computing with Matrices and Vectors

Problem 1.1: Arrow matrix×vector multiplication

Innocent looking linear algebra operation can burn considerable CPU power when implemented

carelessly, see Code 1.3.11. In this problem we study operations involving so-called arrow matrices,

that is, matrices, for which only a few rows/columns and the diagonal are populated, see the spy-

plots in Rem. 1.3.5.

Templates: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let n ∈ N, n > 0. An “arrow matrix” A ∈ Rn×n is constructed given two vectors a ∈ Rn and d ∈ Rn.

The matrix is then squared and multiplied with a vector x ∈ Rn. This is implemented in the following C++

function:

C++11-code 1.0.1: Computing A2y for an arrow matrix A

2 void arrow_matr ix_2_t imes_x (const VectorXd &d , const VectorXd &a ,

3 const VectorXd &x , VectorXd &y) {

4 assert (d . size () == a . size () && a . size () == x . size () &&

5 " V e c t o r s i z e must be t h e same ! ") ;

6 i n t n = d . size () ;

7

8 VectorXd d_head = d . head (n−1) ;

9 VectorXd a_head = a . head (n−1) ;

10 MatrixXd d_diag = d_head . asDiagonal () ;

11

12 MatrixXd A(n , n) ;

13

14 A << d_diag , a_head ,

15 a_head . transpose () , d (n−1) ;

16

17 y = A∗A∗x ;

18 }

Get it on GitLab (arrowmatvec.cpp).

9

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/ArrowMatrix/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/ArrowMatrix/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/ArrowMatrix/templates_nolabels/arrowmatvec.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(1.1.a) For general vectors d = [d1, . . . , dn]⊤ and a = [a1, . . . , an]⊤ sketch the pattern, that is, the

spy-plot, of the matrix A created in the function arrow_matrix_2_times_x in Code 1.0.1.

HIDDEN HINT 1 for (1.1.a) → 1.1.1:arrmatha.pdf

SOLUTION for (1.1.a) → 1.1.1:arrws.pdf N

(1.1.b)

We measure the runtime of the function

arrow_matrix_2_times_x with respect to

the matrix size n and plot the results in Figure 1.

(Get it on GitLab (arrowmatvec.cpp).)

The plot shows timings for

arrow_matrix_2_times_x (log-log plot).

Machine details: Intel(R) Core(TM) i7-6700K CPU

@ 4.00GHz. Compiled with: gcc 6.2.1 (flags: -O3).

✄

Give a detailed description of the behavior of the

measured runtimes and an explanation for it.

Fig. 1

SOLUTION for (1.1.b) → 1.1.2:arrwc.pdf N

(1.1.c) Write an efficient C++ function

void efficient_arrow_matrix_2_times_x(const VectorXd &d,

const VectorXd &a,

const VectorXd &x,

VectorXd &y)

that computes the same product as in Code 1.0.1, but with optimal asymptotic complexity with respect

to n. Compute the complexity of your code and explain why you obtain such result.

Here d passes the vector [d1, . . . , dn]⊤ and a passes the vector [a1, . . . , an]⊤.

SOLUTION for (1.1.c) → 1.1.3:arrwi.pdf N

(1.1.d) What is the asymptotic complexity of your algorithm from sub-problem (1.1.c) (with respect to

matrix size n)?

SOLUTION for (1.1.d) → 1.1.4:arrwce.pdf

N

(1.1.e) Compare the runtime of your implementation and the implementation given in Code Code 1.0.1

for n = 25, . . . , 212. Beware, for large n (n > 2048) the computations may take a long time.

Output the times in seconds, using 3 decimal digits in scientific notation. You can use std::setw,

std::precision(int) and std::scientific from the standard library to output formatted

text (include iomanip). For example:

1 std : : cout << std : : setw (8) << 1 . / 3 e4

2 << std : : s c i e n t i f i c << std : : setprecision (3)

3 << std : : setw (15) << 1 . / 3 e−9;

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 10

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/ArrowMatrix/templates_nolabels/arrowmatvec.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Remark: run your code using optimization flags (-O3). With CMake, you can achieve this using

-DCMAKE_BUILD_TYPE=Release as a CMake option.

(1.0.6) Measuring runtimes in a C++ code

In order to measure runtimes you have two options: either you use std::chrono or use the Timer

class.

How to use Timer

If you want to time a code, include timer.h, create a new Timer object, as demonstrated in the

following code.

C++11-code 1.0.7: Usage of Timer

1 Timer t ;

2 t . s t a r t () ;

3 // HERE CODE TO TIME

4 t . s top () ;

5

6 // Now you can get the time passed between start and stop using

7 t . du ra t i on () ;

8 // You can start() and stop() again, a number of times

9 // Ideally: repeat experiment many times and use min() to obtain
the

10 // fastest run

11 t . min () ;

12 // You can also obtain the mean():

13 t . mean () ;

All times will be outputted in seconds. Timer is simply a wrapper to std::chrono.

Advanced user: how to use std::chrono

Find the documentation of chrono on C++ reference.

First include the chrono STL header file (note: this requires C++11). The chrono header provides

the function:

C++11-code 1.0.8: now() function

1 std : : chrono : : h i gh_ reso lu t i on_c lock : : t ime_po in t

2 std : : chrono : : h i gh_ reso lu t i on_c lock : : now () ;

that returns the current time using the highest possible precision offered by the machine. For simplicity,

we rename the return type:

C++11-code 1.0.9: now() function

1 using t ime_po in t_ t = std : : chrono : : h i gh_ reso lu t i on_c lock : : t ime_po in t ;

2 // Declare a starting point and a termination time

3 t ime_po in t_ t s t a r t , end ;

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 11

http://en.cppreference.com/w/cpp/chrono/high_resolution_clock

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

The difference between two objects of type time_point_t (e.g. end - start) is an object of type

std::chrono::high_resolution_clock::duration. In order to convert the chrono’s du-

ration type (which, in principle, can be anything: seconds, milliseconds, ...), to a fixed duration (say

nanoseconds, std::chrono::nanoseconds), use the duration_cast:

1 using d u r a t i o n _ t = std : : chrono : : nanoseconds ;

2 d u r a t i o n _ t elapsed = std : : chrono : : dura t ion_cas t <dura t ion_ t >(end − s t a r t) ;

To obtain the actual number (as integer) used to represent elasped, use elapsed.count().

Note: the data type used to represent std::chorno::seconds, std::chorno::milliseconds,

etc. is of integer type. Thus, you cannot obtain fractions of this units. Make sure you use a sufficiently

“refined” unit of measure (e.g. std::chrono::nanoseconds).

SOLUTION for (1.1.e) → 1.1.5:arrwc.pdf N

End Problem 1.1

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 12

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.2: Gram-Schmidt orthonormalization with EIGEN

In ➜Ex. 0.2.41 and ➜Code 0.2.42 you can find an implementation of the famous Gram-Schmidt

orthonormalization algorithm from linear algebra. That code makes use of a rather simple (and

inefficient) implementation of vector and matrix classes.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

(1.2.a) Determine the asymptotic complexity of the function gramschmidt() from ➜Code 0.2.42 in

terms of the matrix dimension n, if the argument matrix A has size n× n and no premature termination

occurs.

SOLUTION for (1.2.a) → 1.2.1:grsi.pdf N

(1.2.b) Based on the C++ linear algebra library EIGEN, implement a function that performs the same

computations as ➜Code 0.2.42:

1 MatrixXd gram_schmidt (const MatrixXd &A) ;

The output vectors should be returned as the columns of a matrix.

Use EIGENs block operations see Eigen documentation.

SOLUTION for (1.2.b) → 1.2.2:grsi.pdf N

(1.2.c) Test your implementation by applying the function gram_schmidt to a small random matrix

and checking the orthonormality of the columns of the output matrix.

HIDDEN HINT 1 for (1.2.c) → 1.2.3:sp2mn.pdf

HIDDEN HINT 2 for (1.2.c) → 1.2.3:sp2QQ.pdf

SOLUTION for (1.2.c) → 1.2.3:grst.pdf

N

End Problem 1.2

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 13

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/GramSchmidt/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/GramSchmidt/solutions_nolabels/
https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.3: Kronecker product

In Def. 1.4.17 we learned about the so-called Kronecker product. In this problem we revisit the

discussion of Ex. 1.4.18.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

(1.3.a) Compute the Kronecker product C = A⊗ B of the matrices

A =

[
1 2
3 4

]

and

B =

[
5 6
7 8

]

.

SOLUTION for (1.3.a) → 1.3.1:cmpm.pdf N

(1.3.b) Implement a C++ function

void kron(const MatrixXd & A, const MatrixXd & B, MatrixXd & C);

that computes the Kronecker product of the argument matrices A and B and stores the result in the

matrix C. You can use Eigen “block” operations, see the Eigen documentation.

SOLUTION for (1.3.b) → 1.3.2:cmpk.pdf N

(1.3.c) What is the asymptotic complexity (Def. 1.4.4) in terms of the problem size parameter n→ ∞

of your implementation of kron from (1.3.b), when we pass n× n square matrices as arguments.

You may use the Landau symbol from Def. 1.4.5 to state your answer.

SOLUTION for (1.3.c) → 1.3.3:cmpk.pdf N

(1.3.d) In general, computing the entire matrix is unnecessary. Devise an efficient implementation of

an EIGEN-based C++ function

void kron_mult(const MatrixXd & A, const MatrixXd & B,1

const VectorXd & x, VectorXd & y);

for the computation of y = (A⊗ B)x for square matrices A, B ∈ Rn,n. Do not use reshaping through

the Mapmethod of EIGEN’s matrix classes; use access to sub-vectors by the segmentmethod instead.

The meaning of the arguments of kron_mult should be self-explanatory.

HIDDEN HINT 1 for (1.3.d) → 1.3.4:h1.pdf

SOLUTION for (1.3.d) → 1.3.4:cmpk.pdf N

(1.3.e) Devise another efficient implementation of a C++ code for the computation of y = (A⊗ B)x,

A, B ∈ Rn,n. This time use Eigen “reshaping” functions. The function to implement is:

void kron_reshape(const MatrixXd &A, const MatrixXd &B,

const VectorXd &x, VectorXd &y);

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 14

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Kronecker/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Kronecker/solutions_nolabels/
https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Study Rem. 1.2.27 about “reshaping” matrices in EIGEN. See also the Eigen documentation.

HIDDEN HINT 1 for (1.3.e) → 1.3.5:.pdf

SOLUTION for (1.3.e) → 1.3.5:cmpk.pdf N

(1.3.f) Compare the runtimes of your implementations in sub-problems (1.3.b), (1.3.d) and (1.3.e).

To this end, measure the runtime of the functions kron, kron_mult, kron_reshape, with n =
21, . . . , 28. Repeat the experiments 10 times and consider only the smallest runtime (skip the compu-

tations with kron for n > 26). You can use the class Timer or the STL class std::chrono as

explained in Problem 1.1, § 1.0.6.

Report the measurements in seconds with scientific notation using 3 decimal digits.

SOLUTION for (1.3.f) → 1.3.6:cmpk.pdf N

End Problem 1.3

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 15

https://eigen.tuxfamily.org/dox/group__TutorialMapClass.html

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.4: Fast matrix multiplication with EIGEN

➜Rem. 1.4.10 presents Strassen’s algorithm that can achieve the multiplication of two dense square

matrices of size n = 2k, k ∈ N, with an asymptotic complexity better than O(n3) (which is the

complexity of a loop-based matrix multiplication). This problem centers around the implementation

of this algorithm in EIGEN.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

(1.4.a) Using EIGEN , implement a recursive function

MatrixXd strassenMatMult(const MatrixXd &A, const MatrixXd &B);

that uses Strassen’s algorithm (➜Rem. 1.4.10) to multiply the two square matrices A and B of size

n = 2k, k ∈ N, and returns the result as output.

You can use the template we provide. Get it on GitLab (strassen.hpp).

SOLUTION for (1.4.a) → 1.4.1:fastmi.pdf N

(1.4.b) Validate the correctness of your code by comparing the result with EIGEN’s built-in matrix

multiplication.

You can use the template. Get it on GitLab (test.cpp).

HIDDEN HINT 1 for (1.4.b) → 1.4.2:hs1.pdf

SOLUTION for (1.4.b) → 1.4.2:fastmv.pdf N

(1.4.c) Measure the runtime of your function strassenMatMult for random matrices of sizes 2k,

k = 4, . . . , 9, and compare with the matrix multiplication offered by the ∗-operator of EIGEN.

You can use the class Timer or the STL class std::chrono as explained in Problem 1.1, § 1.0.6.

Base your code on the supplied template. Get it on GitLab (test.cpp).

Recommendation: Use the optimization capabilities of your C++ compiler. With CMake, this can be

done by appending -DCMAKE_BUILD_TYPE=Release to the CMake invocation. Please note that

this also disables various integrity checks.

Warning: For big values of n, the computations may take some time. Consider reducing n while debug-

ging.

SOLUTION for (1.4.c) → 1.4.3:fastmt.pdf N

End Problem 1.4

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 16

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/FastMatMult/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/FastMatMult/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/FastMatMult/solutions_nolabels/strassen.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/FastMatMult/solutions_nolabels/test.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/FastMatMult/solutions_nolabels/test.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.5: Householder reflections

This problem is a supplement to ➜Section 1.5.1 and is related to Gram-Schmidt orthogonalization,

see ➜Code 1.5.4.

For solving this problem, it is useful to remember the QR-decomposition of a matrix from linear

algebra, see also ➜Thm. 3.3.9. This problem is meant to practise some (advanced) linear algebra

skills.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

(1.5.a)

Let v ∈ Rn, n ∈ N, n > 0. Consider the following algorithm:

Algorithm 1.0.20: Householder reflection

w← v/‖v‖2

u← w
u1 ← u1 + 1
q← u/‖u‖2

X← I− 2qq⊤

Z← ((X):,2:n

Write a C++ function with signature:

void houserefl(const VectorXd &v, MatrixXd &Z);

that implements Code 1.0.20. Use data types from EIGEN.

HIDDEN HINT 1 for (1.5.a) → 1.5.1:hrfH1.pdf

SOLUTION for (1.5.a) → 1.5.1:impl.pdf N

(1.5.b) Show that the matrix X, defined in Code 1.0.20, satisfies:

X⊤X = In

Here In is the identity matrix of size n.

HIDDEN HINT 1 for (1.5.b) → 1.5.2:norm.pdf

SOLUTION for (1.5.b) → 1.5.2:orth.pdf N

(1.5.c) Show that the first column of X, in Code 1.0.20, is a multiple of the vector v.

HIDDEN HINT 1 for (1.5.c) → 1.5.3:mulh.pdf

SOLUTION for (1.5.c) → 1.5.3:muls.pdf N

(1.5.d) What property does the set of columns of the matrix Z have? What is the purpose of the

function houserefl?

SOLUTION for (1.5.d) → 1.5.4:propertyimpl.pdf N

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 17

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/HouseRefl/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/HouseRefl/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(1.5.e) What is the asymptotic complexity of the function houserefl as the length n of the input

vector v tends to ∞?

Specify it in leading order using the Landau symbol O.

SOLUTION for (1.5.e) → 1.5.5:impl.pdf N

End Problem 1.5

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 18

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.6: Matrix powers

This problems studies a (moderately) efficient way to compute large integer powers of matrices in

EIGEN.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

This problems deals with integer powers of square matrices, defined as:

Ak :=

k times
︷ ︸︸ ︷

A · . . . ·A, k ∈ N

for A ∈ Cn×n and n ∈ N, n > 0.

(1.6.a) Implement a C++ function

void matPow(MatrixXcd & A, unsigned i n t k);

that, using only basic linear algebra operations (including matrix-vector or matrix-matrix multiplications),

computes the kth power of the n × n matrix A as efficiently as possible. You can use the provided

template. Get it on GitLab (matPow.cpp).

Here, MatrixXcd is a complex matrix. A complex matrix is similar to MatrixXd, and differs only by

the fact that if contains elements of C.

HIDDEN HINT 1 for (1.6.a) → 1.6.1:.pdf

Remark: a MatrixXcd is defined internally (in EIGEN), as:

using MatrixXcd = Matrix<std::complex, Dynamic, Dynamic>;

where Dynamic is an enum type with value −1. A generic matrix can be defined in EIGEN as

Matrix<T, rows, cols> M;

where rows and cols are integers (number of rows resp. columns) and T is the underlying type.

If rows (resp. cols) is −1 (or Dynamic), the Matrix will have a variable number of rows (resp.

columns), see ➜§ 1.2.11.

Remark: Matrix multiplication in EIGEN is not affected by aliasing issues, cf. Eigen documentation.

Therefore you can safely write A = A*A).

Remark: For code validatioin the EIGEN implementation of Matrix power (MatrixXcd::pow(unsigned

int)) can be used writing:

inc lude <unsupported/Eigen/MatrixFunctions>

SOLUTION for (1.6.a) → 1.6.1:powi.pdf N

(1.6.b) Find (in leading order and state using the Landau symbol O) the asymptotic complexity in

k (and n) of your implementation of matPow() taking into account that in EIGEN a matrix-matrix

multiplication requires a O(n3) computational effort.

SOLUTION for (1.6.b) → 1.6.2:powc.pdf N

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 19

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/MatPow/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/MatPow/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/MatPow/templates_nolabels/matPow.cpp
https://eigen.tuxfamily.org/dox/group__TopicAliasing.html

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(1.6.c) Compute the runtime of the EIGEN power function (MatrixXxd::pow(int)) and find out

the complexity w.r.t k. Compare this with the function matPow from (1.6.a). For n > 0, use the n× n
matrix defined by

(Aj,k) :=
1√
n

exp
(2πı jk

n

)

to test the two functions (ı is the complex imaginary unit).

You should use the class Timer or the STL class std::chrono as explained in Problem 1.1, § 1.0.6.

Compute and output the runtime of the computation of the power for a matrix of size N = 3. The

runtime should be the minimum runtime of 10 trial runs for k = 2, . . . , 231. Output the time is seconds,

using 3 decimal digits in scientific notation.

SOLUTION for (1.6.c) → 1.6.3:powr.pdf N

End Problem 1.6

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 20

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.7: Structured matrix–vector product

In ➜Ex. 1.4.15 we saw how the particular structure of a matrix can be exploited to compute a matrix-

vector product with substantially reduced computational effort. This problem presents a similar case.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let n ∈ N, n > 0 and consider the real n× n matrix A defined by

(A)i,j = ai,j = min{i, j}, i, j = 1, . . . , n. (1.0.24)

The matrix-vector product y = Ax can be implemented in C++ as

C++11-code 1.0.25: Computing Ax for A from 1.0.24

2 VectorXd one = VectorXd : : Ones (n) ;

3 VectorXd l i n s p = VectorXd : : LinSpaced (n , 1 , n) ;

4 y = ((one ∗ l i n s p . transpose ())

5 . cwiseMin (l i n s p ∗ one . transpose ())) ∗ x ;

Get it on GitLab (multAmin.cpp).

(1.7.a) What is the asymptotic complexity (for n → ∞) of the evaluation of the C++ code displayed

above, with respect to the problem size parameter n?

SOLUTION for (1.7.a) → 1.7.1:strc.pdf N

(1.7.b) Write an efficient C++ function

void multAmin(const VectorXd &x, VectorXd &y);

that computes the same multiplication as Code 1.0.29 but with a better asymptotic complexity with

respect to n (you can use the template). Get it on GitLab (multAmin.cpp).

You can test your implementation by comparing the returned values with the ones obtained with Code

1.0.29.

HIDDEN HINT 1 for (1.7.b) → 1.7.2:smv:h1.pdf

SOLUTION for (1.7.b) → 1.7.2:stri.pdf N

(1.7.c) What is the asymptotic complexity (in terms of problem size parameter n) of your function

multAmin?

SOLUTION for (1.7.c) → 1.7.3:cmpk.pdf N

(1.7.d) Compare the runtimes of your implementation and the implementation given in Code 1.0.29

for n = 25, . . . , 212.

You can use the class Timer or the STL class std::chrono as explained in Problem 1.1, § 1.0.6.

Report the measurements in seconds with scientific notation using 3 decimal digits.

SOLUTION for (1.7.d) → 1.7.4:cmpk.pdf N

(1.7.e) Consider the following C++ snippet:

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 21

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/StructuredMatrixVector/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/StructuredMatrixVector/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/StructuredMatrixVector/templates_nolabels/multAmin.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/StructuredMatrixVector/templates_nolabels/multAmin.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

C++11-code 1.0.29: Initializing B

2 MatrixXd B = MatrixXd : : Zero (n , n) ;

3 for (unsigned i n t i = 0 ; i < n ; ++ i) {

4 B(i , i) = 2 ;

5 i f (i < n−1) B(i +1 , i) = −1;

6 i f (i > 0) B(i −1, i) = −1;

7 }

8 B(n−1,n−1) = 1;

Get it on GitLab (multAmin.cpp).

Sketch the matrix B created by these lines.

SOLUTION for (1.7.e) → 1.7.5:cmpk.pdf N

(1.7.f) With A from (1.0.24) and B from (1.7.e) write a short EIGEN-based C++ program that, for

n = 10, computes ABej, ej the j-th unit vector in Rn, j = 1, . . . , n, and prints the result.

Formulate a conjecture based on you observations.

SOLUTION for (1.7.f) → 1.7.6:cmpkinv.pdf

N

End Problem 1.7

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 22

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/StructuredMatrixVector/solutions_nolabels/multAmin.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.8: Avoiding cancellation

In ➜Section 1.5.4 we saw that the so-called cancellation phenomenon is a major cause of nu-

merical instability, cf. ➜§ 1.5.43. Cancellation is the massive amplification of relative errors when

subtracting two real numbers in floating point representation of about the same value.

Fortunately, expressions vulnerable to cancellation can often be recast in a mathematically equiv-

alent form that is no longer affected by cancellation, see ➜§ 1.5.55. There, we studied several

examples, and this problem gives some more.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

(1.8.a) We consider the function

f1(x0, h) := sin(x0 + h)− sin(x0) . (1.0.30)

1. Derive an equivalent expression f2(x0, h) = f1(x0, h), which no longer involves the difference of

return values of trigonometric functions.

2. Suggest a formula that avoids cancellation errors for computing the approximation

f ′(x) ≈ f (x0 + h)− f (x0)

h

of the derivative of f (x) := sin(x) at x = x0.

3. Write a C++ program that implements your formula and computes an approximation of f ′(1.2), for

h = 1 · 10−20, 1 · 10−19, . . . , 1. Tabulate the relative error of the result using cos(1.2) as exact

value. Plot the error of the approximation of f ′(x) at x = 1.2. Use the mgl::Figure class as

explained in the lecture notes.

For background information refer to Ex. 1.5.45.

4. Explain the observed behaviour of the error.

HIDDEN HINT 1 for (1.8.a) → 1.8.1:cnch1.pdf

SOLUTION for (1.8.a) → 1.8.1:cancsin.pdf N

(1.8.b) Rewrite function f (x) :− ln(x−
√

x2 − 1), x > 1, into a mathematically equivalent expres-

sion that is more suitable for numerical evaluation for any x > 1. Explain why, and provide a numerical

example, which highlights the superiority of your new formula.

HIDDEN HINT 1 for (1.8.b) → 1.8.2:logcnch.pdf

SOLUTION for (1.8.b) → 1.8.2:canclog.pdf N

(1.8.c) For the following expressions, state the numerical difficulties that might affect a straightforward

implementation for certain values of x (which ones?), and rewrite the formulas in a way that is more

suitable for numerical computation.

1.

√

x + 1
x −

√

x− 1
x , for x > 1.

2.

√
1
a2 +

1
b2 , for a, b > 0.

SOLUTION for (1.8.c) → 1.8.3:cancsqr.pdf N

End Problem 1.8

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 23

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/Cancellation/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/Cancellation/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.9: Complexity of a C++ function

In this problem we recall a concept from linear algebra: the diagonalization of a square matrix.

Unless you can still remember what this means, please look up the chapter on “eigenvalues” in your

linear algebra lecture notes. This problem also has a subtle relationship with Problem 1.6.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider the C++ function defined in getit.cpp (cf. Code 1.0.32). Get it on GitLab (getit.cpp).

C++11-code 1.0.32: Code for getit.

2 VectorXd g e t i t (const MatrixXd &A, const VectorXd &x , unsigned i n t k) {

3

4 EigenSolver<MatrixXd> eig = EigenSolver<MatrixXd >(A) ;

5 const VectorXcd & V = eig . eigenvalues () ;

6 const MatrixXcd & W = eig . e igenvectors () ;

7

8 VectorXcd cx = x . cast <std : : complex<double > >() ;

9

10 VectorXcd r e t = W ∗
11 (

12 V. array () . pow(k) ∗
13 (W. p a r t i a l P i v L u () . solve (cx)) . array ()

14) . matrix () ;

15

16 return r e t . rea l () ;

17 }

Get it on GitLab (getit.cpp).

See the Eigen documentation for eigenvalue decompositions in Eigen.

The operator array() for v ∈ Rn transforms the vector to an EIGEN array, on which operations are

performed componentwise. The function matrix() is the “inverse” of array(), transforming an array

to a matrix, on which vector/matrix operations are performed.

The code W.partialPivLU().solve(cx) performs a LU decomposition and solves the system

W*x = cx for x. See the Eigen documentation.

The MatrixBase::cast<T>() method applied to a matrix, will perform a componentwise cast of the

matrix to a matrix of type T. See the Eigen documentation.

(1.9.a) What is the output of getit, when A is a diagonalizable n× n matrix, x ∈ Rn and k ∈ N?

SOLUTION for (1.9.a) → 1.9.1:eigpoww.pdf N

(1.9.b) Fix k ∈ N. Discuss (in detail) the asymptotic complexity of getit for n→ ∞.

You may use the fact that computing eigenvalues and eigenvectors of an n× n matrix has asymptotic

complexity O(n3) for n→ ∞.

SOLUTION for (1.9.b) → 1.9.2:eigpowc.pdf N

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 24

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/EigMatPow/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/EigMatPow/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/EigMatPow/templates_nolabels/getit.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/EigMatPow/templates_nolabels/getit.cpp
https://eigen.tuxfamily.org/dox/group__Eigenvalues__Module.html
https://eigen.tuxfamily.org/dox/group__LU__Module.html
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

End Problem 1.9

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 25

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.10: Approximating the Hyperbolic Sine

In this problem, we study how Taylor expansions can be used to avoid cancellation errors in the

approximation of the hyperbolic sine, cf. the discussion in ➜Ex. 1.5.65.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the C++ code given in Listing 1.0.33.

C++11-code 1.0.33: Implementation of sinh

2 auto s inh_unstab le = [] (double x) {

3 double t = std : : exp (x) ;

4 return .5 ∗ (t − 1 . / t) ;

5 } ;

Get it on GitLab (sinh.cpp).

(1.10.a) Explain why the function given in Listing 1.0.33 may not give a good approximation of the

hyperbolic sine for small values of x, and compute the relative error

ǫrel :=
|sinh_unstable(x)− sinh(x)|

| sinh(x)|

with C++ for x = 10−k, k = 1, 2, . . . , 10. As “exact value” use the result of the C++ built-in function

std::sinh (include cmath).

SOLUTION for (1.10.a) → 1.10.1:sinhex.pdf N

(1.10.b) Write the Taylor expansion with m terms around x = 0 of the function ex. Specify the

remainder, cf. ➜Ex. 1.5.65.

SOLUTION for (1.10.b) → 1.10.2:sinhwrt.pdf N

(1.10.c) Prove that, for every x ≥ 0 the following inequality holds true:

sinh x ≥ x. (1.0.35)

SOLUTION for (1.10.c) → 1.10.3:sinhleq.pdf N

(1.10.d) Based on the Taylor expansion, find an approximation for sinh(x), for every 0 ≤ x ≤ 10−3, so

that the relative approximation error ǫrel is smaller than 10−15. Follow the considerations of ➜Ex. 1.5.65.

SOLUTION for (1.10.d) → 1.10.4:sinhty.pdf N

End Problem 1.10

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 26

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Sinh/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Sinh/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Sinh/solutions_nolabels/sinh.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.11: Complex roots

This problem deals with complex numbers and cancellation errors.

Templates: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Given a complex number w = u + iv, u, v ∈ R with v ≥ 0, its root
√

w = x + iy can be defined by

x :=

√

(
√

u2 + v2 + u)/2, (1.0.36)

y :=

√

(
√

u2 + v2 − u)/2. (1.0.37)

Here,
√
−1 =: i.

(1.11.a) For what w ∈ C will the direct implementation of (1.0.36) and (1.0.37) be vulnerable to

cancellation?

SOLUTION for (1.11.a) → 1.11.1:root1.pdf N

(1.11.b) Compute xy as an expression of u and v.

SOLUTION for (1.11.b) → 1.11.2:root2.pdf N

(1.11.c) Implement a function

std::complex<double> myroot(std::complex<double> w);

that computes the root of w as given by (1.0.36) and (1.0.37) without the risk of cancellation. You

may use only real arithmetic: for instance, you may not apply the function std::sqrt with complex

arguments.

Test your implementation with w = 1020 + 5i and with w = −5 + 1020i.

SOLUTION for (1.11.c) → 1.11.3:root3.pdf N

End Problem 1.11

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 27

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/ComplexRoot/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/ComplexRoot/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 1.12: Symmetric Gauss-Seidel iteration

For a square matrix A ∈ Rn,n, define DA, LA, UA ∈ Rn,n by:

(DA)i,j :=

{

(A)i,j, i = j,

0, i 6= j
, (LA)i,j :=

{

(A)i,j, i > j,

0, i ≤ j
, (UA)i,j :=

{

(A)i,j, i < j,

0, i ≥ j
. (1.0.39)

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

The symmetric Gauss-Seidel iteration associated with the linear system of equations Ax = b is defined

as

x(k+1) = (UA + DA)
−1b− (UA + DA)

−1LA(LA + DA)
−1(b−UAx(k)). (1.0.40)

(1.12.a) Give a necessary and sufficient condition on A, such that the iteration (1.0.40) is well-defined.

SOLUTION for (1.12.a) → 1.12.1:gsitw.pdf N

(1.12.b) Assume that (1.0.40) is well-defined. Show that a fixed point x of the iteration (1.0.40) is a solution

of the linear system of equations Ax = b.

SOLUTION for (1.12.b) → 1.12.2:sinhex.pdf N

(1.12.c) Implement a C++ function

void GSIt(const MatrixXd & A, const VectorXd & b,

VectorXd & x, double rtol);

solving the linear system Ax = b using the iterative scheme (1.0.40). To that end, apply the iterative

scheme to an initial guess x(0) passed trough x. The approximated solution given by the final iterate is

then stored in x as an output.

Use a correction based termination criterion with relative tolerance rtol based on the Euclidean vector

norm.

SOLUTION for (1.12.c) → 1.12.3:gsitf.pdf N

(1.12.d) Test your implementation (n = 9, rtol = 10e− 8) with the linear system given by

A =











3 1 0 . . . 0

2
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 2 3











∈ R
n,n, b =






1
...

1




 ∈ R

n (1.0.49)

output the l2 norm of the residual of the approximated solution. Use b as your initial data.

SOLUTION for (1.12.d) → 1.12.4:gsitim.pdf N

(1.12.e) Using the same matrix A and the same r.h.s. vector b as above (1.12.d), we have tabulated the

quantity ‖x(k) −A−1b‖2 for k = 1, . . . , 20.

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 28

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Gsit/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/MatVec/Gsit/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

k ‖x(k) −A−1b‖2 k ‖x(k) −A−1b‖2

1 0.172631 11 0.00341563

2 0.0623049 12 0.00234255

3 0.0464605 13 0.00160173

4 0.0360226 14 0.00109288

5 0.0272568 15 0.000744595

6 0.0200715 16 0.000506784

7 0.0144525 17 0.000344682

8 0.0102313 18 0.000234316

9 0.00715417 19 0.000159234

10 0.00495865 20 0.000108185

Describe qualitatively and quantitatively the convergence of the iterative scheme with respect to the

number of iterations k.

SOLUTION for (1.12.e) → 1.12.5:gsitc.pdf N

End Problem 1.12

1. Computing with Matrices and Vectors, 1. Computing with Matrices and Vectors 29

Chapter 2

Direct Methods for Linear Systems of

Equations

Problem 2.1: Resistance to impedance map

In ➜§ 2.6.13, we learned about the Sherman-Morrison-Woodbury update formula ➜Lemma 2.6.22,

which allows the efficient solution of a linear system of equations after a low-rank update according

to ➜Eq. (2.6.17), provided that the setup phase of an elimination (→➜§ 2.3.30) solver has already

been done for the system matrix.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

In this problem, we examine the concrete application

from ➜Ex. 2.6.25, where the update formula is key

to efficient implementation. This application is the

computation of the impedance of the circuit drawn

in Fig. 5 as a function of a variable resistance of a

single circuit element.

This circuit contain only identical linear resistors with

the resistance R, that is, the relationship between

branch currents and voltages is I = RU throughout.

Excitation is provided by a voltage V imposed at

node 16.

Here we consider DC operation (stationary setting),

that is, all currents and voltages are real-valued. Fig. 5

6

~~

Rx 16

10

1 2 3 4

5 6

7 8 9

11 12 13

14 15

17

RR

R

RR

R
R

R

R

R
R

R

RR

R RR

R

RR

R

RR

R

RR

R

V

(2.1.a) Study ➜Ex. 2.1.3 that explains how to compute voltages and currents in a linear circuit by

means of nodal analysis. Understand how this leads to a linear system of equations for the unknown

nodal potentials. The fundamental laws of circuit analysis should be known from physics as well as the

principles of nodal analysis. N

(2.1.b) Use nodal analysis to derive the linear system of equations ARx x = b satisfied by the

nodal potentials of the circuit from Figure 5. Here, x denotes the unknown voltages at the nodes. The

voltage V is applied to node #16. Node #17 is grounded (set voltage to 0V). All resistors except for

the controlled one (Rx, colored magenta) have the same resistance R. Use the numbering of nodes

indicated in Figure 5.

Optionally, you can make the computer work for you and find a fast way to build a matrix providing only

30

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CircuitImpedance/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CircuitImpedance/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

the essential data. This is less tedious, less error prone and more flexible than specifying each entry

individually. For this you can use auxiliary data structures.

SOLUTION for (2.1.b) → 2.1.2:circmat.pdf N

(2.1.c) Characterise the change in the circuit matrix ARx derived in sub-problem (2.1.b) induced by a

change in the value of Rx as a low-rank modification of the circuit matrix A0. Use the matrix A0 (with

Rx = 0) as your “base state”.

HIDDEN HINT 1 for (2.1.c) → 2.1.3:circh.pdf

SOLUTION for (2.1.c) → 2.1.3:circsmw.pdf N

(2.1.d) Based on the EIGEN library, implement a C++ class

C++11-code 2.0.2: ImpedanceMap Class signature

2 class ImpedanceMap {

3 std : : size_t nnodes ; //< Number of nodes in the circuit

4 public :

5 /* \brief Build system matrix and r.h.s. and perform a LU

decomposition

6 * The LU decomposition is stored in ’lu’ and can be

7 * reused in the SMW formula

8 * to avoid expensive matrix solves

9 * for repeated usages of the operator()

10 * \param R Resistance (in Ohm) value of R
11 * \param V Source voltage V at node 16 (in Volt),

12 * ground is set to 0V at node 17
13 */

14 ImpedanceMap (double R, double V) : R(R) , V(V) {

15 // TODO: build the matrix A0.

16 // Compute lu factorization of A0.

17 // Store LU factorization in ’lu’.

18 // Compute the right hand side and store it in ’b’.

19 } ;

20

21 /* \brief Compute the impedance given the resistance Rx.

22 * Use SMW formula for low rank perturbations to reuse LU

23 * factorization.

24 * \param Rx Resistence Rx > 0 between node 14 and 15

25 * \return Impedance V/I of the system ARx

26 */

27 double operator () (double Rx) {

28 // TODO: use SMW formula to compute the solution of ARx x = b

29 // Compute and return the impedance of the system.

30 }

31 private :

32 Par t ia lP ivLU <MatrixXd> lu ; //< Store LU decomp. of matrix A.

33 double R, V; //< Resistance R and source voltage W.

34 VectorXd b ; //< R.h.s vector prescribing sink/source voltages.

35 } ;

Get it on GitLab (impedancemap.cpp).

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 31

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CircuitImpedance/templates_nolabels/impedancemap.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

whose operator() returns the impedance of the circuit from Figure 5, when supplied with a concrete

value for Rx. This function should be implemented efficiently using ➜Lemma 2.6.22. The setup phase

of Gaussian elimination should be carried out in the constructor.

Test your class using R = 1, V = 1 and Rx = 1, 2, 4, . . . , 1024.

For Rx = 1024, we obtain an impedance of 2.65744.

See the file impedancemap.cpp.

The impedance of the circuit is the quotient of the voltage at the input node #16 and the current through

the voltage source.

SOLUTION for (2.1.d) → 2.1.4:circimp.pdf N

End Problem 2.1

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 32

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.2: Partitioned Matrix

Based on the block view of matrix multiplication presented in ➜§ 1.3.15, we looked a block elimi-

nation for the solution of block partitioned linear systems of equations in ➜§ 2.6.2. Also of interest

are ➜Rem. 2.3.34 and ➜Rem. 2.3.32 where LU-factorisation is viewed from a block perspective.

Closely related to this problem is ➜Ex. 2.6.5, which you should study again as warm-up to this

problem.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let the matrix A ∈ Rn+1,n+1 be partitioned according to

A =

[
R v

uT 0

]

, (2.0.5)

where v ∈ Rn, u ∈ Rn, and R ∈ Rn×n is upper triangular and regular.

(2.2.a) Give a necessary and sufficient condition for the triangular matrix R to be invertible.

SOLUTION for (2.2.a) → 2.2.1:partinv.pdf N

(2.2.b) Determine expressions for the sub-vectors z ∈ Rn, ξ ∈ R of the solution vector of the linear

system of equations

[
R v

uT 0

][
z
ξ

]

=

[
b
β

]

for arbitrary b ∈ Rn, β ∈ R.

Use block-wise Gaussian elimination as presented in ➜§ 2.6.2.

SOLUTION for (2.2.b) → 2.2.2:partgauss.pdf N

(2.2.c) Show that A is regular if and only if uTR−1v 6= 0.

SOLUTION for (2.2.c) → 2.2.3:partareg.pdf N

(2.2.d) Implement the C++ function

void solvelse(const MatrixXd & R,

const VectorXd & v, const VectorXd & u,

const VectorXd & b, VectorXd & x);

for the efficient computation of the solution of Ax = b (with A as in (2.0.5)). Perform size check on

input matrices and vectors.

Use the decomposition from (2.2.b).

You can rely on the triangularView() function to instruct EIGEN of the triangular structure of R,

see ➜Code 1.2.16.

SOLUTION for (2.2.d) → 2.2.4:partimpl.pdf N

(2.2.e) Test your implementation by comparing with a standard LU-solver provided by EIGEN.

Check the Eigen documentation.

SOLUTION for (2.2.e) → 2.2.5:parttest.pdf N

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 33

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/PartitionedMatrix/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/PartitionedMatrix/solutions_nolabels/
https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(2.2.f) What is the asymptotic complexity of your implementation of solvelse() in terms of problem

size parameter n→ ∞?

SOLUTION for (2.2.f) → 2.2.6:partcmp.pdf N

End Problem 2.2

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 34

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.3: Banded matrix

Banded matrices are an important class of structured matrices; see ➜Section 2.7.6 and Def. 2.7.55.

We will study ways to exploit during computations the knowledge that only some (sub)diagonals of

a matrix are nonzero.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

For n ∈ N, consider the following matrix (ai, bi ∈ R):

A :=
















2 a1 0 0
0 2 a2 0 0

b1 0
. . .

. . .
. . .

...

0 b2
. . .

. . .
. . .

. . .
...

... 0
. . .

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . . an−1

0 0 . . . 0 bn−2 0 2
















∈ R
n×n (2.0.8)

This matrix is an instance of a banded matrix.

(2.3.a) Implement an efficient C++ function multAx for the computation of y = Ax:

template <c lass Vector>

void multAx(const Vector & a, const Vector & b,

const Vector & x, Vector & y);

Vector a and Vector b contain the nonzero entries along the subdiagonals of matrix A (Eq. (2.0.8)).

Vector y and Vector x are the vectors of equation y = Ax (Vector y is the output).

SOLUTION for (2.3.a) → 2.3.1:effbandimpl.pdf N

(2.3.b) Show that A is invertible if ai, bi ∈ [0, 1].

HIDDEN HINT 1 for (2.3.b) → 2.3.2:effbandinvh.pdf

SOLUTION for (2.3.b) → 2.3.2:effbandinv.pdf N

(2.3.c) Assume that bi = 0, ∀i = 1, . . . , n− 2. Implement an efficient C++ function solving Ax = r:

template <c lass Vector>

void solvelseAupper(const Vector & a, const Vector & r, Vector &

x);

Vector a contains the nonzero entries along the upper subdiagonal of matrix A (Eq. (2.0.8)). Vector

r and Vector x are the vectors of the equation r = Ax (Vector x is the output).

HIDDEN HINT 1 for (2.3.c) → 2.3.3:effbandimplh.pdf

SOLUTION for (2.3.c) → 2.3.3:effbandimplsol.pdf N

(2.3.d) For general ai, bi ∈ [0, 1], implement an efficient C++ function that computes the solution of

Ax = r by Gaussian elimination:

template <c lass Vector>

void solvelseA(const Vector & a, const Vector & b, const Vector &

r, Vector & x);

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 35

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/EfficientBankMult/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/EfficientBankMult/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

You must not use any high-level solver routines of EIGEN.

HIDDEN HINT 1 for (2.3.d) → 2.3.4:effbandgaussh.pdf

SOLUTION for (2.3.d) → 2.3.4:effbandhausssol.pdf N

(2.3.e) What is the asymptotic complexity of your implementation of solvelseA for n→ ∞?

HIDDEN HINT 1 for (2.3.e) → 2.3.5:effbandcompl.pdf

SOLUTION for (2.3.e) → 2.3.5:effbandcompls.pdf N

(2.3.f) Implement solvelseAEigen as in (2.3.d), but this time using EIGEN’s sparse elimination

solver.

HIDDEN HINT 1 for (2.3.f) → 2.3.6:effbandsprs.pdf

SOLUTION for (2.3.f) → 2.3.6:effbandsprssol.pdf N

End Problem 2.3

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 36

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.4: Sequential linear systems

Consider a sequence of linear systems when all the linear systems share the same matrix A: Ax =
bi. The computational cost of this problem may be reduced by performing an LU decomposition of

A only once and reusing it for the different systems.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the following pseudocode with input data A ∈ Rn×n and b ∈ Rn:

Algorithm 2.0.13: Code solvepermb

Input: Matrix A ∈ Rn×n, vector b ∈ Rn

Output: Matrix X = [X1, . . . , Xn] ∈ Rn×n, Xi ∈ Rn

while not all cyclic permutations of b tested yet do

b← [bn, b1, b2, . . . , bn−1]
⊤

Xi = A−1b
end while

(2.4.a) What is the worst case asymptotic complexity of the function solvepermb for n→ ∞?

HIDDEN HINT 1 for (2.4.a) → 2.4.1:permch.pdf

SOLUTION for (2.4.a) → 2.4.1:permcs.pdf N

(2.4.b) Port the function solvepermb (Code 2.0.13) to C++ using EIGEN.

HIDDEN HINT 1 for (2.4.b) → 2.4.2:permph.pdf

SOLUTION for (2.4.b) → 2.4.2:permps.pdf N

(2.4.c) Design an efficient C++ implementation of function solvepermb using EIGEN with asymptotic

complexity O(n3).

HIDDEN HINT 1 for (2.4.c) → 2.4.3:permeh.pdf

SOLUTION for (2.4.c) → 2.4.3:permes.pdf N

End Problem 2.4

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 37

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/SolvePermb/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/SolvePermb/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.5: Rank-one perturbations

We consider another application of the Sherman-Morrison-Woodbury formula (see

➜Lemma 2.6.22), after Problem 2.1. Please carefully revise ➜§ 2.6.13 in the lecture notes.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the following pseudocode:

Algorithm 2.0.16: Code rankoneinvit

Input: d ∈ Rn, tol ∈ R, tol > 0
Output: lmin

ev← d
lmin ← 0
lnew ← min|d|
while |lnew − lmin| > tol · lmin do

lmin ← lnew

M← diag(d) + ev · ev⊤

ev← M−1ev
ev← ev/|ev|
lnew ← ev⊤Mev

end while

lmin ← lnew

(2.5.a) Port the function rankoneinvit (Code 2.0.16) to C++ using EIGEN.

The C++ code should perform exactly the same computations. In EIGEN the asDiagonal() method

converts a vector into a diagonal matrix.

Do not expect to understand the purpose of this function.

SOLUTION for (2.5.a) → 2.5.1:smwps.pdf N

(2.5.b) What is the asymptotic complexity of the body of the loop in function rankoneinvit?

HIDDEN HINT 1 for (2.5.b) → 2.5.2:smwch.pdf

SOLUTION for (2.5.b) → 2.5.2:smwcs.pdf N

(2.5.c) Design an efficient C++ implementation of the loop in function rankoneinvit using EIGEN,

possibly with optimal asymptotic complexity. Compare the asymptotic complexity with the previous naive

implementation in C++.

HIDDEN HINT 1 for (2.5.c) → 2.5.3:smweh.pdf

SOLUTION for (2.5.c) → 2.5.3:smwes.pdf N

(2.5.d) What is the asymptotic complexity of the new version of the loop?

SOLUTION for (2.5.d) → 2.5.4:smwecs.pdf N

(2.5.e) Tabulate the runtimes of the two C++ implementations with different vector sizes n = 2p, with

p = 2, 3, . . . , 9. As test vector use:

VectorXd::LinSpaced(n,1,2)

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 38

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/RankOneInvit/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/RankOneInvit/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

How can you show the different asymptotic complexity of the two implementations using these data?

HIDDEN HINT 1 for (2.5.e) → 2.5.5:smwcdh.pdf

SOLUTION for (2.5.e) → 2.5.5:smwcds.pdf N

End Problem 2.5

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 39

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.6: Lyapunov equation

Any linear system of equations with a finite number of unknowns can be written in the “canonical

form” Ax = b with a system matrix A and a right hand side vector b. However, the linear sys-

tem may be given in a different form and it may not be obvious how to extract the system matrix.

We propose an intriguing example and also present an important matrix equation, the so-called

Lyapunov equation.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Given A ∈ Rn×n, consider the equation:

AX + XA⊤ = I (2.0.19)

X ∈ Rn×n is unknown.

(2.6.a) Show that for a fixed matrix A ∈ Rn,n the following mapping is linear:

L :

{
Rn,n → Rn,n

X 7→ AX + XAT

HIDDEN HINT 1 for (2.6.a) → 2.6.1:ly1h.pdf

SOLUTION for (2.6.a) → 2.6.1:ly1s.pdf N

In the following let vec(M) ∈ Rn2
denote the column vector obtained by storing the internal coefficient

array of a matrix M ∈ Rn,n in column major format, i.e. a data array with n2 components (➜Rem. 1.2.23).

In MATLAB, vec(M) would be the column vector obtained by reshape(M,n*n,1) or by M(:). See

➜Rem. 1.2.27 for the implementation with EIGEN.

Equation (2.0.19) is equivalent to the following linear system of equations:

C vec(X) = b (2.0.20)

The system matrix is C ∈ Rn2,n2
and the right-hand side vector b ∈ Rn2

.

(2.6.b) Recall the notion of sparse matrix : see ➜Section 2.7 and, in particular, ➜Notion 2.7.1 and

➜Def. 2.7.3. N

(2.6.c) Determine C and b from Eq. (2.0.20) for n = 2 and

A =

[
2 1
−1 3

]

HIDDEN HINT 1 for (2.6.c) → 2.6.3:ly3h.pdf

SOLUTION for (2.6.c) → 2.6.3:ly3s.pdf N

(2.6.d) Use the Kronecker product to find a general expression for C in terms of A.

SOLUTION for (2.6.d) → 2.6.4:ly4s.pdf N

(2.6.e) Implement a C++ function that builds the EIGEN matrix C from A:

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 40

http://en.wikipedia.org/wiki/Lyapunov_equation
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/Lyapunov/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/Lyapunov/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Eigen::SparseMatrix<double> buildC(const MatrixXd &A)

Make sure that the initialisation is done efficiently using an intermediate triplet format.

HIDDEN HINT 1 for (2.6.e) → 2.6.5:arrmatha.pdf

SOLUTION for (2.6.e) → 2.6.5:arrwc.pdf N

(2.6.f) Implement a C++ function that returns the solution of Eq. (2.0.19), i.e. the n× n-matrix X if

A ∈ Rn,n:

void solveLyapunov(const MatrixXd & A, MatrixXd & X)

HIDDEN HINT 1 for (2.6.f) → 2.6.6:ly6h.pdf

SOLUTION for (2.6.f) → 2.6.6:ly6s.pdf N

(2.6.g) Validate your C++ implementation of buildC and solveLyapunov for n = 5 and:

A =









10 2 3 4 5
6 20 8 9 1
1 2 30 4 5
6 7 8 20 0
1 2 3 4 10









For reference, the 2-norm of the solution X is 0.102809.

SOLUTION for (2.6.g) → 2.6.7:ly7s.pdf N

(2.6.h) Give an upper bound (as sharp as possible) for nnz(C) in terms of nnz(A) (nnz is the

number of nonzero elements). Can C be legitimately regarded as a sparse matrix for large n even if A
is dense?

HIDDEN HINT 1 for (2.6.h) → 2.6.8:ly8h.pdf

SOLUTION for (2.6.h) → 2.6.8:ly8s.pdf N

End Problem 2.6

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 41

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.7: Structured linear systems with pivoting

This problem deals with a block structured system and ways to efficiently implement the solution of

such system. For this problem, you should have understood Gauss elimination with partial pivoting

for the solution of a linear system, see ➜Section 2.3.3.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider a block partitioned linear system of equations

Ax = b , A =

[
D1 C
C D2

]

∈ R
2n,2n ,

where all the n× n-matrices D1, D2 and C are diagonal. Hence, the matrix A can be described through

three n-vectors d1, c and d2, which provide the diagonals of the matrix blocks. These vectors will be

passed as arguments d1, c, and d2 to the C++ codes below.

(2.7.a) Which permutation of rows and columns converts the matrix into a tridiagonal matrix?

SOLUTION for (2.7.a) → 2.7.1:blockrnt.pdf N

(2.7.b) Write an efficient C++ function

VectorXd multA(const VectorXd & d1, const VectorXd & d2,

const VectorXd & c, const VectorXd & x);

that returns y := Ax. The argument x passes a column vector x ∈ R2n.

SOLUTION for (2.7.b) → 2.7.2:blockim.pdf N

(2.7.c)

Compute the LU-factors of A, where you may assume that they exist.

HIDDEN HINT 1 for (2.7.c) → 2.7.3:hblocklu.pdf

SOLUTION for (2.7.c) → 2.7.3:blocklu.pdf N

(2.7.d) Write an efficient C++ function

VectorXd solveA(const VectorXd & d1, const VectorXd & d2,

const VectorXd & c, const VectorXd & x);

that solves Ax = b with Gaussian elimination.

Do not use EIGEN built-in linear solvers. Test for “near singularity” of the matrix.

Test your code with the arguments given in sub-problem Sub-problem (2.7.f). Compare with reference

solution obtained in C++ using EIGEN linear solvers.

HIDDEN HINT 1 for (2.7.d) → 2.7.4:hsmalllse.pdf

SOLUTION for (2.7.d) → 2.7.4:blockim.pdf N

(2.7.e) Analyse the asymptotic complexity of your implementation of solveA in term of the problem

size parameter n→ ∞.

SOLUTION for (2.7.e) → 2.7.5:blockco.pdf N

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 42

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/BlockLSEPivoting/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/BlockLSEPivoting/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(2.7.f) Determine the asymptotic complexity of solveA in a numerical experiment. As test case use

d1 = [1, . . . , n]⊤ = −d2, c = 1 and b = [d1; d1]. Tabulate the runtimes (in seconds, 3 decimal digit,

scientific notation) for meaningful values of n.

SOLUTION for (2.7.f) → 2.7.6:blockrnt.pdf N

End Problem 2.7

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 43

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.8: Structured linear systems

In this problem we come across the example of a structured matrix, for which a linear system can

be solved very efficiently, though this is not obvious.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the linear system Ax = b, where the n× n matrix A has the following structure:

A =











a1 0 0 . . . 0

a1 a2 0
. . .

...

a1 a2 a3
. . .

...
...

. . . 0
a1 a2 a3 . . . an











(2.8.a) Give necessary and sufficient conditions for the vector a = (a1, . . . , an)
⊤ ∈ Rn such that the

matrix A is non-singular.

HIDDEN HINT 1 for (2.8.a) → 2.8.1:structuredLSE1h.pdf

SOLUTION for (2.8.a) → 2.8.1:structuredLSE1s.pdf N

(2.8.b) Write a C++ function that builds the matrix A given the vector a:

MatrixXd buildA(const VectorXd & a);

You can use EIGEN classes for your code.

HIDDEN HINT 1 for (2.8.b) → 2.8.2:structuredLSE2h.pdf

SOLUTION for (2.8.b) → 2.8.2:structuredLSE2s.pdf N

(2.8.c) Implement a function in C++ which solves the linear system Ax = b by means of “structure

oblivious” Gaussian elimination, for which EIGEN’s dedicated classes and methods should be used.

void solveA(const VectorXd & a, const VectorXd & b,

VectorXd & x);

The input is composed of vectors a and b.

Run this function with a and b made of random elements and explore the cases n = 2k, k = 4, . . . , 12.

What is the asymptotic complexity in n of this naive implementation?

HIDDEN HINT 1 for (2.8.c) → 2.8.3:structuredLSE3h.pdf

SOLUTION for (2.8.c) → 2.8.3:structuredLSE3s.pdf N

(2.8.d) Given a generic vector a ∈ Rn, compute symbolically (i.e. by hand) the inverse of matrix A
and the solution x of Ax = b.

HIDDEN HINT 1 for (2.8.d) → 2.8.4:structuredLSE4h.pdf

SOLUTION for (2.8.d) → 2.8.4:structuredLSE4s.pdf N

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 44

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/StructuredLSE/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/StructuredLSE/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(2.8.e) Implement a function in C++ which efficiently solves the linear system Ax = b, using EIGEN

classes. The input is consists of vectors a and b.

HIDDEN HINT 1 for (2.8.e) → 2.8.5:structuredLSE5h.pdf

SOLUTION for (2.8.e) → 2.8.5:structuredLSE5s.pdf N

(2.8.f) Compare the timing of the naive implementation of (2.8.c) with the efficient solution of (2.8.e).

HIDDEN HINT 1 for (2.8.f) → 2.8.6:structuredLSE6h.pdf

SOLUTION for (2.8.f) → 2.8.6:structuredLSE6s.pdf N

End Problem 2.8

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 45

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.9: Triplet format to CRS format

This exercise is about sparse matrices. Make sure you are prepared on the subject by reading

➜Section 2.7 in the lecture notes. In particular, read through the various sparse storage formats

discussed in class (cf. ➜Section 2.7.1).

The ultimate goal is to devise a function that converts a matrix given in triplet (or COOrdinate) list

format (COO, see ➜§ 2.7.6) to the compressed row storage format (CRS, see ➜Ex. 2.7.9). You do

not have to follow the subproblems, if you devise a suitable conversion function and data structures

on your own. You do not need to rely on EIGEN to solve this problem.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

The COO format stores a collection of triplets (i, j, v), with i, j ∈ N, i, j ≥ 0 (the indices) and v ∈ R (the

value in cell (i, j)). Multiple triplets corresponding to the same cell (i, j) are allowed, meaning that multiple

values with the same indices (i, j) should be summed together when fully expressing the matrix.

The CRS format uses three vectors:

1. val, which stores the values of the nonzero cells, one row after the other.

2. col_ind, which stores the column indices of the nonzero cells, one row after the other.

3. row_ptr, which stores the index of the entry in val/col_ind containing the first element of each

row.

The case of rows only made by zero elements require special consideration. The usual convention is

that row_ptr stores two consecutive entries with the same values, meaning that in vectors val and

col_ind the next row begins at the same index of the previous row (which implies that the previous row

must be empty). This convention should be taken into account when e.g. iterating through row_ptr.

However, to simplify things, we always consider matrices without rows only made by zeros.

(2.9.a) Define a C++ structure that stores a matrix of type scalar (template parameter) in COO

format:

template <c lass scalar>

s t r u c t TripletMatrix;

You should store sizes and indices as std::size_t.

HIDDEN HINT 1 for (2.9.a) → 2.9.1:triplettoCRS1h.pdf

SOLUTION for (2.9.a) → 2.9.1:triplettoCRS1s.pdf N

(2.9.b) Define a C++ structure that stores a matrix of type scalar (template parameter) in CRS

format:

template <c lass scalar>

s t r u c t CRSMatrix;

You can store sizes and indices as std::size_t.

HIDDEN HINT 1 for (2.9.b) → 2.9.2:triplettoCRS2h.pdf

SOLUTION for (2.9.b) → 2.9.2:triplettoCRS2s.pdf N

(2.9.c) This subproblem is optional. Implement C++ member functions for TripletMatrix ((2.9.a))

and CRSMatrix ((2.9.b)) that convert your structures to EIGEN dense matrices types:

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 46

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/TripletToCRS/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/TripletToCRS/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Eigen::Matrix<scalar, Eigen::Dynamic, Eigen::Dynamic>

TripletMatrix<scalar>::densify();

Eigen::Matrix<scalar, Eigen::Dynamic, Eigen::Dynamic>

CRSMatrix<scalar>::densify();

HIDDEN HINT 1 for (2.9.c) → 2.9.3:triplettoCRS3h.pdf

SOLUTION for (2.9.c) → 2.9.3:triplettoCRS3s.pdf N

(2.9.d) Write a C++ function that converts a matrix T in COO format to a matrix C in CRS format:

template <c lass scalar>

void tripletToCRS(const TripletMatrix<scalar>& T,

CRSMatrix<scalar>& C);

Try to be as efficient as possible.

HIDDEN HINT 1 for (2.9.d) → 2.9.4:triplettoCRS4h.pdf

SOLUTION for (2.9.d) → 2.9.4:triplettoCRS4s.pdf N

(2.9.e) What is the worst-case complexity of your function tripletToCRS ((2.9.d)) in the number

of triplets?

HIDDEN HINT 1 for (2.9.e) → 2.9.5:triplettoCRS5h.pdf

SOLUTION for (2.9.e) → 2.9.5:triplettoCRS5s.pdf N

(2.9.f) Test the correctness and runtime of your function tripletToCRS.

HIDDEN HINT 1 for (2.9.f) → 2.9.6:triplettoCRS6h.pdf

SOLUTION for (2.9.f) → 2.9.6:triplettoCRS6s.pdf N

End Problem 2.9

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 47

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.10: Sparse matrices in CCS format

Internally, sparse matrices have to be encoded in special formats. It is essential to be familiar with

them when using one of the many routines for handling sparse matrices.

In ➜Ex. 2.7.9 the so-called CRS format (Compressed Row Storage) was introduced. It uses three

arrays (val, col_ind and row_ptr) to store a sparse matrix.

EIGEN can also handle the CCS format (Compressed Column Storage), which is like CRS for the

transposed matrix. It relies on the arrays val, row_ind and col_ptr.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Similarly to Problem 2.9, you can assume that the considered matrices do not have columns with all

elements equal to 0. (Otherwise, it may become problematic to update col_ptr.)

(2.10.a) Implement a C++ function which returns the given square matrix A ∈ Rn×n in CCS format:

void CCS(const MatrixXd & A, VectorXd & val,

VectorXd & row_ind, VectorXd & col_ptr);

While you can use EIGEN classes such as MatrixXd, do not use EIGEN methods to directly access

val, row_ind and col_ptr. In other words, you must not use EIGEN’s class Eigen::SparseMatrix

and simply run makeCompressed().

In this problem you may test for exact equality with 0.0, because zero matrix entries are not supposed

to be results of floating point computations.

HIDDEN HINT 1 for (2.10.a) → 2.10.1:smwch.pdf

SOLUTION for (2.10.a) → 2.10.1:smwps.pdf N

(2.10.b) What is the computational complexity of your CCS function:

• with respect to the matrix size n, where A ∈ Rn×n?

• with respect to nnz, which denotes the number of nonzero elements in A ?

SOLUTION for (2.10.b) → 2.10.2:smwps.pdf N

End Problem 2.10

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 48

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/SparseCCS/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/SparseCCS/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.11: Ellpack sparse matrix format

The number of processing cores of high-performance computers has seen an exponential growth.

However, the increase in memory bandwidth, which is the rate at which data can be read from or

written into memory by a processor, has been slower. Hence, memory bandwidth is a bottleneck for

several algorithms.

Several papers present storage formats to improve the performance of sparse matrix-vector mul-

tiplications. One example is the Ellpack format, where the number of nonzero entries per row is

bounded and shorter rows are padded with zeros.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the template file ellpack.cpp. The following EllpackMat class implements the Ellpack

sparse matrix format for a generic matrix A ∈ Rm,n:

C++11-code 2.0.42: Declaration of EllpackMat class

2 class El lpackMat {

3 public :

4 El lpackMat (const T r i p l e t s & t r i p l e t s , index_t m, index_t n) ;

5

6 double operator () (index_t i , index_t j) const ;

7

8 void mvmult (const VectorXd &x , VectorXd &y) const ;

9

10 void mtvmult (const VectorXd &x , VectorXd &y) const ;

11

12 private :

13 std : : vector <double> va l ; //< Vector containing values

14 // corresponding to entries in ’col’

15 std : : vector <index_t > col ; //< Vector containing column

16 // indices of the entries in ’val’.

17 // The position of a cell in ’val’ and ’col’

18 // is determined by its row number and original position in
’triplets’

19

20 i ndex_ t maxcols ; //< Number of non-empty columns

21 i ndex_ t m, n ; //< Number of rows, number of columns

22 } ;

Get it on GitLab (ellpack.cpp).

In the code above, maxcols is defined as:

maxcols := max
{

#
[
(i, j) | Ai,j 6= 0, j = 1, . . . , n

]
, i = 1, . . . , m

}

The operator() method is implemented as follows:

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 49

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/Ellpack/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/Ellpack/solutions_nolabels/
./Assignments/Codes/SparseMatrix/Ellpack/templates/ellpack.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/Ellpack/solutions_nolabels/ellpack.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

C++11-code 2.0.43: Declaration of operator() method

2 void El lpackMat : : mvmult (const VectorXd &x , VectorXd &y) const {

3 assert (x . size () == n && " I n c o m p a t i b l e v e c t o r x s i z e ! ") ;

4 assert (y . size () == m && " I n c o m p a t i b l e v e c t o r y s i z e ! ") ;

5

6 // TODO: implement operation y = Ax

7 }

Get it on GitLab (ellpack.cpp).

It is well defined for i = 0, . . . , m− 1 and for j = 0, . . . , n− 1.

(2.11.a) Implement an efficient constructor that builds an object of type EllpackMat from data

forming a matrix in triplet format. In other words, implement the constructor with the following signature:

EllpackMat(const Triplets & triplets, index_t m, index_t

n);

triplets is a std::vector of EIGEN triplets (see ➜Section 2.7.3). The arguments m and n represent

the number of rows and columns of the matrix A.

The data in the triplet vector must be compatible with the matrix size provided to the constructor. No

assumption is made on the ordering of the triplets. Values belonging to multiple occurrences of the

same index pair are to be summed up. However, in this subproblem you may assume that duplicate

index pairs do not occur in the triplets vector.

HIDDEN HINT 1 for (2.11.a) → 2.11.1:ellpack1h.pdf

SOLUTION for (2.11.a) → 2.11.1:ellpack1s.pdf N

(2.11.b) Implement an efficient method of class EllpackMat that, given an input n-vector x, returns

the m-vector y from the matrix-vector product Ax:

void mvmult(const Vector &x, Vector &y) const;

A is the matrix represented by *this. The implementation must run with the optimal complexity of

O(nnz(A)).

HIDDEN HINT 1 for (2.11.b) → 2.11.2:ellpack2h.pdf

SOLUTION for (2.11.b) → 2.11.2:ellpack2s.pdf N

(2.11.c) Similarly to (2.11.b), implement now the method mtvmult that computes the matrix-vector

product A⊤x.

HIDDEN HINT 1 for (2.11.c) → 2.11.3:ellpack3h.pdf

SOLUTION for (2.11.c) → 2.11.3:ellpack3s.pdf N

(2.11.d) You can test your solution of (2.11.a), (2.11.b) and (2.11.c) using the code in main(). A

3× 6 matrix A of type Eigen::SparseMatrix<double> is built from the following triplets:

{(1, 2, 4), (0, 0, 5), (1, 2, 6), (2, 5, 7), (0, 4, 8), (1, 3, 9), (2, 2, 10), (2, 1, 11), (1, 0, 12)}

An equivalent matrix E of type EllpackMat is also built. We then use vectors x1 = [4, 5, 6, 7, 8, 9]⊤, x2 =
[1, 2, 3]⊤ and compute products Ax1, Ex1 and A⊤x2, E⊤x2.

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 50

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/Ellpack/solutions_nolabels/ellpack.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Finally, we return the l2-norm of the differences.

SOLUTION for (2.11.d) → 2.11.4:ellpack4s.pdf N

End Problem 2.11

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 51

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.12: Grid functions

This exercise deals with construction of sparse matrices from triplet format, see ➜Section 2.7.3.

This task is relevant for applications like image processing and the numerical solution of partial

differential equations.

[This problem involves implementation in C++]

Consider the following matrix S ∈ R3,3:

S :=





0 1 0
1 −4 1
0 1 0





Denote by si,j the entries of S. Consider the following linear operator from Rn,m to Rn,m:

L : R
n,m → R

n,m,

xi,j 7→
{

∑
3
k,l=1 sk,lxi+k−2,j+l−2 if well-defined

xi,j otherwise

(2.12.a) Show that L is a linear operator.

SOLUTION for (2.12.a) → 2.12.1:grfl.pdf N

(2.12.b) The space Rn,m, as a vector-space, is isomorphic to Rn·m, via the mapping X 7→ vec(X),
see ➜Eq. (1.2.24).

From linear algebra, we know that any linear operator over a finite dimensional (real) vector space can

be represented by a (real) matrix multiplication. We define the matrix A ∈ Rnm,nm s.t.

A · vec(X) = vec(L(X)).

Write down the matrix A for n = m = 3.

SOLUTION for (2.12.b) → 2.12.2:gfrwa.pdf N

(2.12.c) Write a function:

void eval(MatrixXd & X, std::function<double(index_t,index_t)> f);

which, given a matrix X ∈ Rn,m and a function f : N2 → R, fills the matrix X s.t. (X)i,j = f (i, j).

Here index_t denotes an integer type for the indices.

Additionally, in main(), define a lambda function f , with signature double(index_t,index_t),

implementing:

f : N
2 → R,

(i, j) 7→
{

1 i > n/4∧ i < 3n/4∧ j > m/4∧ j < 3m/4

0 otherwise

SOLUTION for (2.12.c) → 2.12.3:gfrwa.pdf N

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 52

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(2.12.d) Implement a function

SparseMatrix<double> build_matrix(const Matrix3d & S,

const shape_t & size);

which, given the stencil matrix S ∈ R3,3 and the size of the matrix X, builds and returns the sparse

matrix A in CRS format. The matrix A is built using intermediate triplet format.

The type shape_t is a type (equivalent to a tuple) representing the size (rows, cols) of the a matrix.

To help you in the endeavour, you can optionally implement a function

i n l i n e index_t to_vector_index(index_t i,

index_t j,

const shape_t & size);

which, given an index pair (i, j) ∈ N2 returns an index I ∈ N s.t. (X)i,j = (vec(X))I . The variable

size passes the size of X.

SOLUTION for (2.12.d) → 2.12.4:gfrwb.pdf N

(2.12.e) Implement a function

void mult(const SparseMatrix<double> & A,

const MatrixXd & X, MatrixXd & Y);

which, given a matrix X and the sparse matrix A, returns the matrix Y s.t. vec(Y) := A vec(X). You

can use objects of type Eigen::Map to “reshape” a matrix into a column vector.

SOLUTION for (2.12.e) → 2.12.5:gfrwm.pdf N

(2.12.f)

Implement a function

void solve(const SparseMatrix<double> & A,

const MatrixXd & Y, MatrixXd & X);

which, given a matrix Y and the sparse matrix A, returns the matrix X s.t. vec(Y) := A vec(X). You

can use objects of type Eigen::Map to “reshape” a matrix into a column vector. Object of this type

are read and write compatible.

SOLUTION for (2.12.f) → 2.12.6:gfrwi.pdf N

End Problem 2.12

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 53

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 2.13: Efficient sparse matrix-matrix multiplication in COO format

The triplet (or COOrdinate) list format works very well for defining a matrix or adding/modifying its

elements. This is however not so true for matrix operations such as matrix-matrix multiplications,

unlike the CSC/CSR storage.

This problem is about (sparse) matrix-matrix multiplication in COO format. We will consider the

following items:

1. The worst case of sparse matrix-matrix multiplication, when one wants to use sparse matrix

storage formats.

2. The most efficient way to tackle this problem with the COO format.

3. The asymptotic complexity of such algorithm (which is, by definition, the complexity under the

worst-case scenario).

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

For simplicity, in the following we will only deal with binary matrices. Binary matrices are only made of 0 or

1. At the same time, we will allow for duplicates in our implementations of the triplet format (see ➜§ 2.7.6).

The matrix entry associated to the pair (i, j) is defined to be the sum of all triplets corresponding to it.

For the subproblems involving coding, we define types Trip = Triplet<double> and TripVec =

std::vector<trip>.

(2.13.a) Consider multiplications between sparse matrices: AB = C. Is the product C guaranteed to

be sparse? Make an example of two sparse matrices which, when multiplied, return a dense matrix.

HIDDEN HINT 1 for (2.13.a) → 2.13.1:matmatCOO1h.pdf

SOLUTION for (2.13.a) → 2.13.1:matmatCOO1s.pdf N

(2.13.b) Implement a C++ function which returns the input matrix A ∈ Rm×n in COO format:

TripVec Mat2COO(const MatrixXd &A);

You can use EIGEN classes.

SOLUTION for (2.13.b) → 2.13.2:matmatCOO2s.pdf N

(2.13.c) Implement a C++ function which computes the product between two matrices in COO format:

TripVec COOprod_naive(const TripVec &A, const TripVec &B);

You can use EIGEN classes.

HIDDEN HINT 1 for (2.13.c) → 2.13.3:matmatCOO3h.pdf

SOLUTION for (2.13.c) → 2.13.3:matmatCOO3s.pdf N

(2.13.d) What is the asymptotic complexity of your naive implementation in (2.13.c)?

HIDDEN HINT 1 for (2.13.d) → 2.13.4:matmatCOO4h.pdf

SOLUTION for (2.13.d) → 2.13.4:matmatCOO4s.pdf N

(2.13.e) Implement a C++ function which computes the product between two matrices in COO format

in an efficient way:

TripVec COOprod_effic(TripVec &A, TripVec &B);

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 54

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/MatMatCOO/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SparseMatrix/MatMatCOO/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

You can use EIGEN classes.

Can you do better than (2.13.c)?

HIDDEN HINT 1 for (2.13.e) → 2.13.5:matmatCOO5h.pdf

SOLUTION for (2.13.e) → 2.13.5:matmatCOO5s.pdf N

(2.13.f) What is the asymptotic complexity of your efficient implementation in (2.13.e)?

HIDDEN HINT 1 for (2.13.f) → 2.13.6:matmatCOO6h.pdf

SOLUTION for (2.13.f) → 2.13.6:matmatCOO6s.pdf N

(2.13.g) Compare the timing of COOprod_naive (2.13.c) and COOprod_effic (2.13.e) for ran-

dom matrices with different dimensions n. Perform the comparison twice: first only for products between

sparse matrices, then for any kind of matrix.

HIDDEN HINT 1 for (2.13.g) → 2.13.7:matmatCOO7h.pdf

SOLUTION for (2.13.g) → 2.13.7:matmatCOO7s.pdf N

End Problem 2.13

2. Direct Methods for Linear Systems of Equations, 2. Direct Methods for Linear Systems of Equations 55

Chapter 3

Direct Methods for Linear Least Squares

Problems

Problem 3.1: Matrix least squares in Frobenius norm

In this problem we look at a particular constrained linear least squares problem. In particular, we will

study the augmented normal equation approach to solve such type of least squares problem, see

➜Section 3.6.1. In this context we refresh our understanding of the Lagrange multiplier technique.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the following problem:

given z ∈ R
n, g ∈ R

n, find M∗ = argmin
M∈Rn,n, Mz=g

‖M‖F , (3.0.1)

where ‖·‖F denotes the Frobenius norm of a matrix as introduced in ➜Def. 3.4.46.

(3.1.a) Reformulate the problem as an equivalent standard linearly constrained least squares problem

x∗ = argminx∈RN , Cx=d‖Ax− b‖2 ,

for suitable matrices A, C and vectors b and d, see ➜Eq. (3.6.1). These matrices and vectors have to

be specified based on z and g.

SOLUTION for (3.1.a) → 3.1.1:lsqfrobe.pdf N

(3.1.b) [depends on Sub-problem (3.1.a)]

State a necessary and sufficient condition for the matrix C found in Sub-problem (3.1.a) to possess full

rank.

SOLUTION for (3.1.b) → 3.1.2:lsqf1.pdf N

(3.1.c) [depends on Sub-problem (3.1.a)]

State the augmented normal equations corresponding to the constrained linear least squares problem

found in Sub-problem (3.1.a) and give necessary and sufficient conditions on g and z that ensure

existence and uniqueness of solutions.

HIDDEN HINT 1 for (3.1.c) → 3.1.3:lsqfh1.pdf

SOLUTION for (3.1.c) → 3.1.3:.pdf N

56

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/LeastSquaresFrobenius/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/LeastSquaresFrobenius/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(3.1.d) [depends on Sub-problem (3.1.c)]

Write a C++ function

MatrixXd min_frob(const VectorXd & Z, const VectorXd & g);

that computes the solution M∗ of the minimization problem Eq. (3.0.1) given the vectors z, g ∈ Rn.

Use the augmented normal equations ➜Eq. (3.6.7) derived in Sub-problem (3.1.c).

You may use

inc lude <unsupported/Eigen/KroneckerProduct>

SOLUTION for (3.1.d) → 3.1.4:lsqfrobi.pdf

N

(3.1.e) Using random vectors z and g, check in a numerical experiment that

M =
gz⊤

‖z‖2
2

(3.0.5)

is a solution to Eq. (3.0.1). To that end write a short code that calls the function min_frob() imple-

mented in Sub-problem (3.1.d), conducts the test and prints the result to stdout.

Run your code and report the output.

SOLUTION for (3.1.e) → 3.1.5:lsqfrobc.pdf

N

(3.1.f) [depends on Sub-problem (3.1.c)]

Now, give a rigorous proof that Eq. (3.0.5) gives a solution of Eq. (3.0.1), provided that z 6= 0.

SOLUTION for (3.1.f) → 3.1.6:lsqfrx.pdf N

So far, we have simply applied the formulas from ➜Section 3.6.1 to Eq. (3.0.1) and its reformulation as

a constrained linear least squares problem. Now we take a closer look at the method of Lagrangian

multipliers, which was used to derive these equations in class.

(3.1.g) As in ➜Eq. (3.6.3) and ➜Eq. (3.6.4) from the lecture notes, find a Lagrangian functional

L : Rn,n ×Rn −→ R such that:

M∗ = argmin
M∈Rn,n

{

max
m∈Rn

[L(M, m)]

}

. (3.0.8)

The matrix M∗ should provide the solution of (3.0.20).

HIDDEN HINT 1 for (3.1.g) → 3.1.7:LSQFrobLagr1h.pdf

SOLUTION for (3.1.g) → 3.1.7:LSQFrobLagr1s.pdf N

(3.1.h) Find the derivative grad Φ ∈ Rn,n of the function Φ defined as:

Φ : R
n,n → R, Φ(X) = ‖X‖2

F (3.0.9)

HIDDEN HINT 1 for (3.1.h) → 3.1.8:LSQFrobLagr2h.pdf

SOLUTION for (3.1.h) → 3.1.8:LSQFrobLagr2s.pdf N

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 57

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(3.1.i) Use the result of Sub-problem (3.1.h) to derive saddle point equations for grad L(M, m) = 0,

for the L obtained in Sub-problem (3.1.g).

HIDDEN HINT 1 for (3.1.i) → 3.1.9:LSQFrobLagr3h.pdf

SOLUTION for (3.1.i) → 3.1.9:LSQFrobLagr3s.pdf N

(3.1.j) Solve the saddle point equations obtained in (3.1.i) in symbolic form.

HIDDEN HINT 1 for (3.1.j) → 3.1.10:LSQFrobLagr4h.pdf

SOLUTION for (3.1.j) → 3.1.10:LSQFrobLagr4s.pdf N

End Problem 3.1

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 58

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.2: Sparse Approximate Inverse (SPAI)

This problem studies the least squares aspects of the SPAI method, a technique used in the nu-

merical solution of partial differential equations. We encounter an “exotic” sparse matrix technique

and rather non-standard least squares problems. Please note that the matrices to which SPAI tech-

niques are applied will usually be huge and extremely sparse, say, of dimension 107× 107 with only

108 non-zero entries. Therefore sparse matrix techniques must be applied.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let A ∈ RN,N, N ∈ N, be a regular sparse matrix with at most n ≪ N non-zero entries per row and

column. We define the space of matrices with the same pattern as A:

P(A) := {X ∈ R
N,N : (A)ij = 0 ⇒ (X)ij = 0} . (3.0.14)

The “primitive” SPAI (sparse approximate inverse) B of A is defined as

B := argmin
X∈P(A)

‖I−AX‖F , (3.0.15)

where ‖·‖F stands for the Frobenius norm. The solution of (3.0.14) can be used as a so-called pre-

conditioner for the acceleration of iterative methods for the solution of linear systems of equations, see

➜Chapter 10.

An extended “self-learning” variant of the SPAI method is presented in

M. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approximate inverses,

SIAM J. Sci. Comput., 18 (1997), pp. 838–853.

(3.2.a) Show that the columns of B can be computed independently of each other by solving linear

least squares problems. In the statement of these linear least squares problems write bi for the columns

of B.

HIDDEN HINT 1 for (3.2.a) → 3.2.1:spaih1.pdf

SOLUTION for (3.2.a) → 3.2.1:spai1.pdf N

(3.2.b) Implement an efficient C++ function

SparseMatrix<double> spai(SparseMatrix<double> & A);

for the computation of B according to (3.0.15). You may rely on the normal equations associated with

the linear least squares problems for the columns of B or you may simply invoke the least squares solver

of EIGEN.

HIDDEN HINT 1 for (3.2.b) → 3.2.2:spai2h.pdf

SOLUTION for (3.2.b) → 3.2.2:spai2s.pdf N

(3.2.c) What is the total asymptotic computational effort of spai in terms of the problem size param-

eters N and n.

SOLUTION for (3.2.c) → 3.2.3:SPAI3.pdf

N

End Problem 3.2

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 59

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SPAI/SPAI/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/SPAI/SPAI/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.3: Constrained least squares and Lagrange multipliers

In ➜Section 3.6.1 we saw how to solve a constrained least squares problem via Lagrange multipli-

ers. In this problem, we will think about the ideas behind the Lagrange multipliers and derivate the

equations solving such problems.

Template: Get it on GitLab.

Solution: Get it on GitLab.

Consider the following linearly constrained quadratic minimization problem that was already considered in

Problem 3.1:

Given z ∈ R
n, g ∈ R

n, find M∗ = argmin
M∈Rn,n, Mz=g

{‖M‖F}. (3.0.20)

Here, ‖·‖F denotes the Frobenius norm of a matrix (see ➜Def. 3.4.46).

We tackle (3.0.20) using Lagrange multipliers (see ➜Section 3.6.1) to take into account the n linear con-

straints imposed by Mz = g.

(3.3.a) As in ➜Eq. (3.6.3) and ➜Eq. (3.6.4) from the lecture notes, find a Lagrangian functional

L : Rn,n ×Rn −→ R such that:

M∗ = argmin
M∈Rn,n

{

max
m∈Rn

[L(M, m)]

}

. (3.0.21)

The matrix M∗ should be the same of (3.0.20).

HIDDEN HINT 1 for (3.3.a) → 3.3.1:LSQFrobLagr1h.pdf

SOLUTION for (3.3.a) → 3.3.1:LSQFrobLagr1s.pdf N

(3.3.b) Find the derivative grad Φ ∈ Rn,n of the function Φ defined as:

Φ : R
n,n → R, Φ(X) = ‖X‖2

F (3.0.22)

HIDDEN HINT 1 for (3.3.b) → 3.3.2:LSQFrobLagr2h.pdf

SOLUTION for (3.3.b) → 3.3.2:LSQFrobLagr2s.pdf N

(3.3.c) Use the result of (3.3.b) to derive saddle point equations for grad L(M, m) = 0, for the L
obtained in (3.3.a).

HIDDEN HINT 1 for (3.3.c) → 3.3.3:LSQFrobLagr3h.pdf

SOLUTION for (3.3.c) → 3.3.3:LSQFrobLagr3s.pdf N

(3.3.d) Solve the saddle point equations obtained in (3.3.c) in symbolic form.

HIDDEN HINT 1 for (3.3.d) → 3.3.4:LSQFrobLagr4h.pdf

SOLUTION for (3.3.d) → 3.3.4:LSQFrobLagr4s.pdf N

End Problem 3.3

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 60

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/LSQFrobLagr/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/LSQFrobLagr/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.4: Hidden linear regression

This problem is about a hidden linear regression: in fact, at first glance it will seem that we are

dealing with a nonlinear system of equations. However, we will be able to reduce the system to a

linear form.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider the function f (t) = αeβt with unknown parameters α > 0, β ∈ R. Given are measurements

(ti, yi), i = 1, . . . , n, 2 < n ∈ N. We want to determine α, β ∈ R such that f (t) fulfills the following

condition “to the best of its ability” (in the least square sense):

f (ti) = yi, with yi > 0, i = 1, . . . , n . (3.0.27)

(3.4.a) Which overdetermined system of nonlinear equations directly stems from (3.0.27)?

SOLUTION for (3.4.a) → 3.4.1:AdaptedLinReg1s.pdf N

(3.4.b) In which overdetermined system of linear equations can you transform the nonlinear system

derived in (3.4.a)?

HIDDEN HINT 1 for (3.4.b) → 3.4.2:AdaptedLinReg2h.pdf

SOLUTION for (3.4.b) → 3.4.2:AdaptedLinReg2s.pdf N

(3.4.c) Determine the normal equations for the overdetermined linear system of (3.4.b).

HIDDEN HINT 1 for (3.4.c) → 3.4.3:AdaptedLinReg3h.pdf

SOLUTION for (3.4.c) → 3.4.3:AdaptedLinReg3s.pdf N

(3.4.d) Consider the data (ti, yi), i = 1, . . . , m, stored in two vectors t and y of equal length.

Implement a C++ function that solves the linear regression problem in the sense of ➜§ 5.7.7 and

➜Ex. 3.1.5 for t and y:

VectorXd linReg(const VectorXd &t, const VectorXd &y);

This function should return the estimated parameters in a vector of length 2. You can use dedicated

EIGEN classes for the solution of linear least squares problems or simply implement the normal equa-

tions from ➜Thm. 3.1.10.

SOLUTION for (3.4.d) → 3.4.4:AdaptedLinReg4s.pdf N

(3.4.e) Consider the data (ti, yi) stored in two vectors t and y of equal length. Implement a C++

function that returns a least squares estimate of α and β, given the nonlinear relationship between t and

y (3.0.27):

VectorXd expFit(const VectorXd &t, const VectorXd &y);

You can use the function linReg() implemented in (3.4.d).

HIDDEN HINT 1 for (3.4.e) → 3.4.5:AdaptedLinReg5h.pdf

SOLUTION for (3.4.e) → 3.4.5:AdaptedLinReg5s.pdf N

End Problem 3.4

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 61

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/AdaptedLinReg/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/AdaptedLinReg/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.5: Estimating a Tridiagonal Matrix

To determine the least squares solution of an overdetermined linear system of equations Ax = b
we minimize the residual norm ‖Ax− b‖2 w.r.t. x. However, we also face a linear least squares

problem when minimizing the residual norm w.r.t. the entries of A.

This is the situation considered in this problem.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let two vectors z, c ∈ Rn, n > 2 ∈ N of measurements be given. α∗ and β∗ are defined as:

(α∗, β∗) = argmin
α,β∈R

∥
∥Tα,βz− c

∥
∥

2
(3.0.30)

Tα,β ∈ Rn×n is the following tridiagonal matrix:

Tα,β =











α β 0 . . . 0

β α β
. . .

...

0 β
. . .

. . . 0
...

. . .
. . . α β

0 . . . 0 β α











(3.0.31)

(3.5.a) Reformulate Eq. (3.0.30) as a linear least squares problem in the usual form:

x∗ = argmin
x∈Rk

‖Ax− b‖2 (3.0.32)

Define suitable A ∈ Rm,k, x ∈ Rk and b ∈ Rm, with m, k ∈ N.

HIDDEN HINT 1 for (3.5.a) → 3.5.1:TridiagLeastSquares1h.pdf

SOLUTION for (3.5.a) → 3.5.1:TridiagLeastSquares1s.pdf N

(3.5.b) Write a C++ function that computes the optimal parameters α∗ and β∗ according to Eq. (3.0.30)

from data vectors z and c (i.e. z and c from Eq. (3.0.30)).

VectorXd lsqEst(const VectorXd &z, const VectorXd &c);

You can use EIGEN classes.

HIDDEN HINT 1 for (3.5.b) → 3.5.2:TridiagLeastSquares2h.pdf

SOLUTION for (3.5.b) → 3.5.2:TridiagLeastSquares2s.pdf N

End Problem 3.5

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 62

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/TridiagLeastSquares/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/TridiagLeastSquares/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.6: Approximation of a circle

In this problem we study how a fitting problem arising in computational geometry can be solved

using least squares in several ways, leading to different results.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let us consider a sequence of N points approximately located on a circle (N = 8):

xi 0.7 3.3 5.6 7.5 6.4 4.4 0.3 -1.1

yi 4.0 4.7 4.0 1.3 -1.1 -3.0 -2.5 1.3

A circle with center (m1, m2) and radius r is described by

(x−m1)
2 + (y−m2)

2 = r2. (3.0.35)

3.6.I: linear algebraic fit

(3.6.a) Plugging the point coordinates (xi, yi) into (3.0.35) we obtain an overdetermined linear system

with three unknowns

m1, m2, c := r2 −m2
1 −m2

2.

Specify the system matrix A and the right-hand side vector b of the corresponding linear least squares

problem ➜Eq. (3.1.38).

SOLUTION for (3.6.a) → 3.6.1:cala1.pdf N

(3.6.b)

Write a C++ function

Vector3d circl_alg_fit(const VectorXd &x, const VectorXd & y);

that receives point coordinates in the vectors x and y and solves the overdetermined system in least

squares sense and returns a 3-dimensional vector (m1, m2, r).

SOLUTION for (3.6.b) → 3.6.2:cala2.pdf N

3.6.II: geometric fit

The algebraic approach lacks an intuitive geometrical meaning: minimising the equation residual of (3.0.35)

in least squares sense does not necessarily yield the best circle fit in aesthetic sense.

A more appealing approach consist in the minimization of the distances between the data points and the

(unknown) circle

di =
∣
∣

√

(m1 − xi)2 + (m2 − yi)2 − r
∣
∣ i = 1, . . . , N,

in the sense of least squares, i.e., determine m1, m2 and r such that the sum ∑
n
i=1 d2

i is minimal. This is

a non-linear least squares problem of the form

z∗ = argmin
z
‖F(z)‖2,

see ➜Section 8.6.

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 63

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/CircleAppr/CircleAppr/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/CircleAppr/CircleAppr/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(3.6.c) Write down the concrete function F : Rn1 → Rn2 for this non-linear least squares problem.

You can use the auxiliary values

Ri =
√

(xi −m1)2 + (yi −m2)2 , i = 1, . . . , N.

SOLUTION for (3.6.c) → 3.6.3:cage1.pdf N

(3.6.d)

Define the functional

Φ(z) :=
1

2
‖F(z)‖2.

Compute the Jacobian DF of F, the gradient grad Φ(z) of Φ and the Hessian HΦ(z).

SOLUTION for (3.6.d) → 3.6.4:cage2.pdf N

(3.6.e) Use C++ to find the circle that fit best the data given in the table above, according to the

distances di. In order to do this, implement a C++ function

Vector3d circl_geo_fit(const VectorXd &x, const VectorXd & y);

that uses the Gauss-Newton method introduced in ➜Section 8.6.2 to minimize the functional Φ.

SOLUTION for (3.6.e) → 3.6.5:cage3.pdf N

(3.6.f) Now solve the same problem using the Newton method for least squares equations as de-

scribed in ➜Section 8.6.1.

SOLUTION for (3.6.f) → 3.6.6:cage4.pdf N

(3.6.g) Compare the convergence of Gauss-Newton and Newton methods implemented in the previ-

ous sub-problems. You can use the parameters determined by the algebraic fit as initial guess.

Measure the error in the parameters in the maximum norm.

SOLUTION for (3.6.g) → 3.6.7:cage5.pdf N

3.6.III: constrained fit using SVD

As you may know, for a 6= 0 the solution set of the quadratic equation

axTx + bTx + c = 0, b ∈ R
2, a, c ∈ R, (3.0.41)

(solved with respect to x ∈ R2) describes a circle.

(3.6.h) Derive an expression in terms of a, b, c for the center m and the radius r of the circle defined

by (3.0.41).

SOLUTION for (3.6.h) → 3.6.8:casvd1.pdf N

(3.6.i) According to equation (3.0.41), the same circle can be defined by different parameter vectors

v = (a, b1, b2, c)T and v′ = (a′, b′1, b′2, c′)T, when v′ = λv, for every λ ∈ R, λ 6= 0. Thus, this

equation, for different data values (xi, yi), can be solved in a least squares sense if supplemented by a

non-linear constraint:

axT
i xi + bTxi + c = 0 i = 1, . . . , N,

∥
∥(a, b1, b2, c)T

∥
∥

2

2
= 1 .

Write a MATLAB function

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 64

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

[m,r] = circ_svd_fit(x,y)

that solves this constrained overdetermined linear system of equations in least squares sense. Use the

data in the table from the previous subtasks.

To learn how to use SVD to solve this problem, study carefully the hyperplane fitting problem ➜Ex. 3.4.35

and ➜Eq. (3.4.31).

SOLUTION for (3.6.i) → 3.6.9:casvd2.pdf N

3.6.IV: comparison of the results

(3.6.j) Draw the data points and the fitted circles computed in the previous subtasks. Compare the

centers and the radii.

SOLUTION for (3.6.j) → 3.6.10:caco.pdf N

End Problem 3.6

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 65

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.7: Shape identification

This problem deals with pattern recognition, a central problem in image processing (e.g. in aerial

photography, self-driving cars, and recognition of pictures of cats). We will deal with a very simplistic

problem.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

A routine within the program of a self driving-car is tasked with the job of identifying road signs. The task

is the following: given a collection of points pi ∈ R2, i = 1, . . . , n, we have to decide whether those point

represent a stop sign, or a “priority road sign”. In this exercise we consider n = 8.

Fig. 11

Example of input points pi.

The shape of the sign can be represented by a 2× 8 matrix with the 8 coordinates in R2 defining the

shape of the sign. We assume that the stop sign resp. the priority road sign are defined by the “model”

points (known a priori) xi
stop ∈ R2 resp. xi

priority ∈ R2 for i = 2, . . . , 15.

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 66

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/ShapeIdent/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LeastSquares/ShapeIdent/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Fig. 12

The 8-points xi
stop defining the model of a stop sign.

Fig. 13

The 8-points xi
priority defining the model of a priority

road sign.

However, in a real case scenario, one can imagine that the photographed shape is not exactly congruent

to the one specified by the “model” points. Instead, one can assume that the points on the photo (pi ∈ R2)

are the result of a linear transformation of the original points xi ∈ R2 for i = 1, . . . , 15; i.e. we can assume

that there exists a matrix A ∈ R2,2, s.t.

pi = Axi, i = 1, . . . , n. (3.0.42)

We do not know whether xi = xi
stop or xi = xi

priority.

Moreover, we have some error in the data, i.e. our points do not represent exactly one of the linearly trans-

formed shapes (it is plausible to imagine that there is some measurement error, and that the photographed

shape is not exactly the same as our “model” shape), i.e. (3.0.42) is satisfied only “approximately”.

With this problem, we will try to use the least square method to find the matrix A and to classify our points,

i.e. to decide whether they represent a stop or a priority road sign.

(3.7.a) For the moment, assume we know the points xi (i.e. we know the shape of our sign). Explicitly

write (3.0.42) as an overdetermined linear system:

w = Bv,

whose least square solution will allow to determine the “best” linear transformation A (in the least

square sense). What is the size and what are the unknown of the system?

SOLUTION for (3.7.a) → 3.7.1:ShapeIdent1.pdf N

(3.7.b) When does the matrix B have full rank? Give a geometric interpretation of this condition.

SOLUTION for (3.7.b) → 3.7.2:si2s.pdf N

(3.7.c) Implement a C++ function

MatrixXd shape_ident_matrix(const MatrixXd & X);

that returns the matrix B. Pass the vectors xi as a 2× n EIGEN matrix X.

SOLUTION for (3.7.c) → 3.7.3:si3s.pdf N

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 67

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(3.7.d) Implement a C++ function

double solve_lsq(const MatrixXd & X,

const MatrixXd & P,

MatrixXd & A);

that computes the matrix A by solving the least squares problem based on the normal equations, see

➜Section 3.2. It should return the Euclidean norm of the residual of the least square solution. Pass the

vectors xi and the vectors pi as a 2× n EIGEN matrix X resp. P.

SOLUTION for (3.7.d) → 3.7.4:si4s.pdf N

(3.7.e) Explain how the norm of the residual of the least square solution can be used to identify the

shape defined by the points pi. Implement a function

enum Shape { Stop, Priority };

Shape identify(const MatrixXd Xstop,

const MatrixXd Xpriority,

const MatrixXd & P,

MatrixXd & A);

that indentifies the shape (either Stop or Priority sign) of the input points pi. The function returns an

enum that classifies the shape of points specified by P. Return the linear transformation in the matrix A.

The “model points” xi
stop resp. xi

priority are passed trough Xstop resp. Xpriority.

SOLUTION for (3.7.e) → 3.7.5:si5s.pdf N

(3.7.f) Use the points provided in the variables P1, P2, and P3 in the main() function to identify the

shape (or: which shape is best suited) of the objects defined by those points.

SOLUTION for (3.7.f) → 3.7.6:si6s.pdf N

End Problem 3.7

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 68

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.8: Properties of Householder reflections

➜Section 3.3.3 describes an orthogonal transformation that can be used to map a vector onto

another vector of the same length: the Householder transformation (3.3.16). In this problem we

examine properties of the “Householder matrices” and construct some of them.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Householder transformation are described by square matrices of the form

H = I− 2vvH with vHv = 1, v ∈ C
n.

We study a few important properties of this class of matrices and delve into the geometric meaning of

Householder reflections.

(3.8.a) Prove the following properties:

i) HH = I.

ii) HHH = I.

iii) |det(H)| = 1.

iv) For every s ∈ Cn perpendicular to v (i.e. vHs = 0): Hs = s.

v) For every z ∈ Cn collinear to v (i.e. z = cv): Hz = −z.

SOLUTION for (3.8.a) → 3.8.1:householder1.pdf N

(3.8.b)

In real space the transformation H can be understood as a reflection across a hyperplane perpendicular

to v. Compute the matrix H and sketch the corresponding transformation for v = 1√
10
[1, 3]T, n = 2.

What is the line of reflection?

SOLUTION for (3.8.b) → 3.8.2:householder2.pdf N

(3.8.c)

The matrix

C =

[
1 4
2 3

]

should be transformed to an upper triangular matrix using the Householder transformation (HC = R).

Compute:

• the vector v that defines H (is it unique?);

• the matrix H;

• the images of the columns of C under the transformation H.

SOLUTION for (3.8.c) → 3.8.3:householder3.pdf N

(3.8.d) Implement a function

void applyHouseholder(VectorXd &x, const VectorXd &v)

that efficiently computes x← Hx, x ∈ Rn, for the Householder matrix (v ∈ Rn)

H = I− 2ww⊤ , w :=
v

‖v‖2

.

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 69

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/Householder/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/Householder/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

What is the asymptotic complexity of your implementation for n→ ∞?

SOLUTION for (3.8.d) → 3.8.4:householder2.pdf N

(3.8.e) As we learned in ➜Rem. 3.3.25, the sequence of Householder transformations H1, . . . , Hn−1

effecting the conversion of an n × n matrix into upper triangular form (→ ➜§ 3.3.15) is represented

by the sequence of their defining unit vectors vi ∈ Rn, also following the convention that (vi)i ≥ 0:

Hi := I− 2viv
⊤
i . The vectors vi are stored in the strictly lower triangular part of another n× n matrix

V ∈ Rn,n. More precisely, we have

vi = [0, . . . , 0, (vi)i, (V)i+1:n,i]
⊤ ∈ R

n , i = 1, . . . , n− 1 .

Write a C++/EIGEN function

template <typename Scalar>

void applyHouseholder(VectorXd Xd &x,

const MatrixBase<Scalar> &V)

that computes x← H−1
n−1 . . . H−1

1 x based on Householder vectors stored in V as described above.

HIDDEN HINT 1 for (3.8.e) → 3.8.5:house:mb.pdf

HIDDEN HINT 2 for (3.8.e) → 3.8.5:house:h1.pdf

SOLUTION for (3.8.e) → 3.8.5:householder2.pdf N

End Problem 3.8

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 70

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.9: Cholesky and QR decomposition

This problem is about the Cholesky and QR decomposition and the relationship between them.

The Cholesky decomposition is explained in ➜§ 2.8.13. The QR decomposition is explained in

➜Section 3.3.3. Please study these topics before tackling this problem.

Template: Get it on GitLab.

Solution: Get it on GitLab.

(3.9.a) Show that, for every matrix A ∈ Rm,n such that rank(A) = n, the product matrix A⊤A
admits a Cholesky decomposition.

HIDDEN HINT 1 for (3.9.a) → 3.9.1:CholeskyQR1h.pdf

SOLUTION for (3.9.a) → 3.9.1:CholeskyQR1s.pdf N

(3.9.b) The following C++ functions with EIGEN are given:

C++11-code 3.0.50: QR-decomposition via Cholesky decomposition

2 void CholeskyQR (const MatrixXd & A, MatrixXd & R, MatrixXd & Q) {

3

4 MatrixXd AtA = A. transpose () ∗ A;

5 LLT<MatrixXd> L = AtA . l l t () ;

6 R = L . matrixL () . transpose () ;

7 Q =

R. transpose () . triangularView <Lower > () . solve (A . transpose ()) . transpose ()

8 // .triangularView() template member only accesses the
triangular part

9 // of a dense matrix and allows to easily solve linear problem

10 }

Get it on GitLab (choleskyQR.cpp).

C++11-code 3.0.51: Standard way to do QR-decomposition in EIGEN

2 void DirectQR (const MatrixXd & A, MatrixXd & R, MatrixXd & Q) {

3

4 size_t m = A. rows () ;

5 size_t n = A. cols () ;

6

7 HouseholderQR<MatrixXd> QR = A. householderQr () ;

8 Q = QR. householderQ () ∗ MatrixXd : : I den t i t y (m, std : : min (m, n)) ;

9 R = MatrixXd : : I den t i t y (std : : min (m, n) , m) ∗
QR. matrixQR () . triangularView <Upper > () ;

10 // If A: m x n, then Q: m x m and R: m x n.

11 // If m > n, however, the extra columns of Q and extra rows of R
are not needed.

12 // Matlab returns this "economy-size" format calling "qr(A,0)",

13 // which does not compute these extra entries.

14 // With the code above, Eigen is smart enough to not compute the
discarded vectors.

15 }

Get it on GitLab (choleskyQR.cpp).

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 71

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CholeskyQR/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CholeskyQR/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CholeskyQR/solutions_nolabels/choleskyQR.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/CholeskyQR/solutions_nolabels/choleskyQR.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Prove that, for every matrix A, CholeskyQR and DirectQR produce the same output matrices Q
and R, if there were no roundoff errors (Such functions are called algebraically equivalent).

HIDDEN HINT 1 for (3.9.b) → 3.9.2:CholeskyQR2h.pdf

SOLUTION for (3.9.b) → 3.9.2:CholeskyQR2s.pdf N

(3.9.c) Let EPS denote the machine precision. Why does the function CholeskyQR from Sub-

problem (3.9.b) fail to return the correct result for A =





1 1
1
2EPS 0

0 1
2EPS



?

HIDDEN HINT 1 for (3.9.c) → 3.9.3:cencel.pdf

HIDDEN HINT 2 for (3.9.c) → 3.9.3:CholeskyQR3h.pdf

SOLUTION for (3.9.c) → 3.9.3:CholeskyQR3s.pdf N

End Problem 3.9

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 72

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 3.10: Low rank approximation of matrices

As explained in the course, large m× n matrices of low rank k ≪ min{m, n} can be stored using

only k(m + n) real numbers when using their SVD factorization/representation as sum of tensor

products ➜Eq. (3.4.8). Thus, low rank matrices are of considerable interest for matrix compression

(see ➜Ex. 3.4.51). Unfortunately, adding two low rank matrices usually leads to an increase of

the rank and entails “recompression” by computing a low-rank best approximation of the sum. This

problems demonstrates an efficient approach to recompression.

This problem discusses how this can be done in an efficient way.

Template: Get it on GitLab.

Solution: Get it on GitLab.

(3.10.a) Show that for a matrix X ∈ Rm,n the following statements are equivalent:

(i) rank(X) = k

(ii) X = AB⊤ for A ∈ Rm,k, B ∈ Rn,k, k ≤ min{m, n}, both full rank.

HIDDEN HINT 1 for (3.10.a) → 3.10.1:LowRankRep1h.pdf

HIDDEN HINT 2 for (3.10.a) → 3.10.1:LowRankRep1h.pdf

SOLUTION for (3.10.a) → 3.10.1:LowRankRep1s.pdf N

(3.10.b) Write a C++ function that factorizes the matrix X with rank(X) = k into AB⊤, as in (3.10.a):

void factorize_X_AB(const MatrixXd & X, s i z e _ t k, MatrixXd

& A, MatrixXd & B);

The function should issue a warning in case rank(X) = k is in doubt. You can use EIGEN classes.

HIDDEN HINT 1 for (3.10.b) → 3.10.2:LowRankRep2h.pdf

SOLUTION for (3.10.b) → 3.10.2:LowRankRep2s.pdf N

(3.10.c) Let A ∈ Rm,k, B ∈ Rn,k, with k ≪ m, n. Write an efficient C++ function that calculates

a singular value decomposition of the product AB⊤ = UΣV⊤, where orthogonal U, V ∈ Rn,k and

Σ ∈ Rk,k:

void svd_AB(const MatrixXd & A, const MatrixXd & B, MatrixXd & U,

MatrixXd & S, MatrixXd & V);

HIDDEN HINT 1 for (3.10.c) → 3.10.3:LowRankRep3h.pdf

HIDDEN HINT 2 for (3.10.c) → 3.10.3:LRRh.pdf

SOLUTION for (3.10.c) → 3.10.3:LowRankRep3s.pdf N

(3.10.d) What is the asymptotic computational cost of the function svd_AB for a small k and m =
n→ ∞? Discuss the effort required by the different steps of your algorithm.

SOLUTION for (3.10.d) → 3.10.4:LowRankRep4s.pdf N

(3.10.e) If X, Y ∈ Rm,n satisfy rank(Y) = rank(X) = k, show that rank(Y + X) ≤ 2k.

SOLUTION for (3.10.e) → 3.10.5:LowRankRep5s.pdf N

(3.10.f) Consider AX, AY ∈ Rm,k, BX, BY ∈ Rn,k, X = AXB⊤X and Y = AYB⊤Y . Find a factorization

of sum X + Y as X + Y = AB⊤, with A ∈ Rm,2k and B ∈ Rn,2k.

HIDDEN HINT 1 for (3.10.f) → 3.10.6:LowRankRep6h.pdf

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 73

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Eigenvalues/LowRankRep/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Eigenvalues/LowRankRep/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

SOLUTION for (3.10.f) → 3.10.6:LowRankRep6s.pdf N

(3.10.g) Rely on the previous subproblems to write the efficient C++ function:

void rank_k_approx(const MatrixXd & Ax, const MatrixXd &

Ay, const MatrixXd & Bx, const MatrixXd & By, MatrixXd

& Az, MatrixXd & Bz);

AZ ∈ Rm,k and BZ ∈ Rn,k are the two terms of the decomposition of Z = AZB⊤Z , the rank-k best

approximation of the sum X + Y = AXB⊤X + AYB⊤Y :

Z = argmin
M∈Rm,n

rank(M)≤k

∥
∥
∥AXB⊤X + AYB⊤Y −M

∥
∥
∥

F

Here AX, AY ∈ Rm,k and BX, BY ∈ Rn,k.

HIDDEN HINT 1 for (3.10.g) → 3.10.7:LowRankRep7h.pdf

SOLUTION for (3.10.g) → 3.10.7:LowRankRep7s.pdf N

(3.10.h) What is the asymptotic computational cost of the function rank_k_approx for a small k
and m = n→ ∞?

SOLUTION for (3.10.h) → 3.10.8:LowRankRep8s.pdf N

End Problem 3.10

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 74

Chapter 4

Filtering Algorithms

Problem 4.1: Autofocus with FFT

In this problem, we will use 2D frequency analysis to find the “best focused” image among a col-

lection of out-of-focus photos. To that end, we will implement an algorithm based on 2D DFT as

introduced in ➜Section 4.2.4.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let a grey-scale image consisting of n×m pixels be given as a matrix P ∈ Rn,m as in ➜Ex. 4.2.56; each

element of the matrix indicates the gray-value of the pixel as a number between 0 and vmax. This image

is regarded as the “perfect image”.

If a camera is poorly focused due to an inadequate arrangement of the lenses, it will record a blurred image

B ∈ Rn,m. As before ➜Eq. (4.2.57), the blurring operation can be modeled through the 2D (periodic)

discrete convolution and can be undone provided that the point spread function (PSF) is known. However,

in this problem we must not assume any knowledge of the PSF.

Assume that the only data available to us is the “black-box” C++ function (declared in autofocus.hpp):

MatrixXd set_focus(double f);

which returns the potentially blurred image B(f), when the focus parameter f is set to a particular value.

The actual operation of set_focus is utterly obscure. The focus parameter can be read as the distance

of the lenses of a camera that can be changed through turning on and off a stepper motor.

The problem of autofocusing is to determine the value of the focus parameter f , which yields an image

B(f) with the least blur. The idea of the autofocusing algorithm is the following: The less the image is

marred by blur, the larger its “high frequency content”. The latter can found out based on the discrete

Fourier transform, more precisely, its 2D version.

To translate the autofocus idea into an algorithm we have to give a quantitative meaning to the notion of

“high frequency content” of a (blurred) image C, which is done by looking at the second moments of its

2D discrete Fourier transform as supplied by the function fft2r found in “FFT/fft.hpp”, see also

➜Code 4.2.48 and Code 4.2.49.

V(C) =
n−1

∑
k1=0

m−1

∑
k2=0

((n

2
−

∣
∣
∣k1 −

n

2

∣
∣
∣

)2
+

(m

2
−

∣
∣
∣k2 −

m

2

∣
∣
∣

)2
)

|Ĉk1,k2
|2 .

Here, Ĉ ∈ Cn,m stand for the 2D DFT of the image C. Hence, the autofocusing policy can be rephrased

as

75

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Autofocus/Autofocus/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Autofocus/Autofocus/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

find f ∈ R such that V(B(f)) becomes maximal.

(4.1.a) Thus sub-problem supplies us with a tool to write an image file from a C++ code. Write a

C++ function

void save_image(double focus);

that saves the image B(f) returned by set_focus for f = 0, 1, 2, 3 in Portable Graymap (PGM)

format.

For this you can use objects of type PGMObject (found in “pgm.hpp”). You can find example of

usages of this class in “examples/pgm_example.cpp”.

SOLUTION for (4.1.a) → 4.1.1:render.pdf

N

(4.1.b) The two-dimensional discrete Fourier transform can be performed using the C++function

fft2r. Write a C++script:

void plot_freq(double focus);

that creates 3D plots of the (modulus of the) 2D DFTs of the images obtained in sub-problem (4.1.a).

Clamp the data between 0 and 8000.

SOLUTION for (4.1.b) → 4.1.2:plotfft2.pdf

N

(4.1.c)

In plots from sub-problem (4.1.b), mark (or explain) the regions corresponding to the high and low

frequencies.

HIDDEN HINT 1 for (4.1.c) → 4.1.3:afh1.pdf

SOLUTION for (4.1.c) → 4.1.3:explain.pdf

N

(4.1.d) Write a C++function

double void high_frequency_content(const MatrixXd & C);

that returns the value V(C) for a given matrix C. Write a C++function

void plotV();

that plots the function V(B(f)) in terms of the focus parameter f . Use 100 equidistantly spaced sam-

pling points in the interval [0, 5].

SOLUTION for (4.1.d) → 4.1.4:plotV.pdf

N

(4.1.e) Write an efficient (you want the auto-focus procedure to take not longer than a few seconds!)

C++function

double autofocus();

that numerically determines optimal focus parameter f0 ∈ [0, 5] for which the 2nd moment V(B(f)) is

maximized. What is the resulting focus parameter f0?

4. Filtering Algorithms, 4. Filtering Algorithms 76

https://en.wikipedia.org/wiki/Netpbm_format#PGM_example

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

To locate the change of slope of V(B(f)) in [0, 5] you should use the bisection algorithm ➜Section 8.3.1

for finding a zero of the derivative ∂V(B(f))/∂ f , which will, hopefully, mark the location of the maximum

of V(f).

The bisection algorithm for finding a zero of a continuous function ϕ : [a, b] → R with ϕ(a) · ϕ(b) < 0
is rather simple and lucidly demonstrated in ➜Code 8.3.2.

Of course, the derivative is not available, so that we have to approximate it crudely by means of a

difference quotient

∂V(f)

∂ f
≈ V(B(f + δ f))−V(B(f − δ f))

2δ f
.

You can assume that the smallest step of the auto-focus mechanism is 0.05 and so the natural choice

for δ f is δ f = 0.05. This maximal resolution also tells you a priori how many bisection steps should be

performed.

Use the structure of the function V(B(f)) that you observed in sub-problem (4.1.d). Use as few evalu-

ations of V(B(f)) as possible!

SOLUTION for (4.1.e) → 4.1.5:bisect.pdf

N

End Problem 4.1

4. Filtering Algorithms, 4. Filtering Algorithms 77

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 4.2: FFT and least squares

This problem deals both with an application of fast Fourier transformation in the context of a least

squares (data fitting) problems.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

A planet orbits the sun in a closed, planar curve. For equispaced polar angles ϕj = 2π
j
n , j = 0, . . . , n, n ∈

N its distance from the sun is measured and found to be dj, j = 0, . . . , n− 1. An approximation of the

planet’s trajectory can be found as follows.

Write PC
m, m ∈ N for the space of real trigonometric polynomials of the form

p(t) =
m

∑
k=0

ck cos(2πkt), ck ∈ R. (4.0.6)

The aim is to approximate the distance from the sun as a function of the angle with a trigonometric

polynomial p∗ ∈ PC
m that solves

p∗ = argmin
p∈PC

m

n−1

∑
j=0

∣
∣
∣
∣
p

(
ϕj

2π

)

− dj

∣
∣
∣
∣

2

.

Throughout, we assume m < n.

(4.2.a) Recast this task as a standard linear least squares problem

x∗ = argmin
x∈Rn

‖Ax− b‖2

with suitable matrix A and vectors b, x.

SOLUTION for (4.2.a) → 4.2.1:relsq.pdf

N

(4.2.b) State the normal equations for this linear least squares problem in explicit form.

With i2 = −1 use the identity cos(2πx) = 1
2(e

2πix + e−2πix) and the geometric series formula

n−1

∑
ℓ=0

qℓ =
1− qn

1− q
.

SOLUTION for (4.2.b) → 4.2.2:normleq.pdf

N

(4.2.c) Write a C++function

VectorXd f i nd_c (const VectorXd & d , unsigned i n t m) ;

that computes the coefficients ck, k = 0, . . . , m of p∗ in the form (4.0.6) for arbitrary inputs dj ∈ R, j =
0, . . . , n− 1. These are passed as vector d. The function must not have asymptotic complexity worse

than O(n log n) in terms of the problem size parameter n.

4. Filtering Algorithms, 4. Filtering Algorithms 78

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/FFTLSQ/FFTLSQ/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/FFTLSQ/FFTLSQ/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Use the provided function VectorXd fftr(const VectorXd &) that realises the discrete Fourier

transform (defined in “FFT/fft.hpp”). Also note the identity

n−1

∑
k=0

e
2πi
n dk =

n−1

∑
k=0

e−
2πi
n jkdk,

where the over-line denotes the complex conjugation.

SOLUTION for (4.2.c) → 4.2.3:implem.pdf

N

(4.2.d) Test your implementation. To that end, test your routine by fitting a trigonometric polynomial of

degree 3 with the data values d found in main() of fftlsq.cpp. (Get it on GitLab (fftlsq.cpp).).

Store the result in the vector g.

As comparison, we obtain the vector g = [0.984988,−0.00113849,−0.00141515] when running our

code. N

End Problem 4.2

4. Filtering Algorithms, 4. Filtering Algorithms 79

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/FFTLSQ/templates_nolabels/fftlsq.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 4.3: Multiplication and division of polynomials based on FFT

In ➜Rem. 4.1.24 we saw that the formula of discrete convolution ➜Def. 4.1.22 also gives the co-

efficients of products of polynomials. Thus, in light of the realization of discrete convolutions by

means of DFT ➜Section 4.2.1, the Fast Fourier Transform (FFT) becomes relevant for efficiently

multiplying polynomials of very high degree.

Template: Get it on GitLab.

Solution: Get it on GitLab.

Let two large numbers m, n≫ 1 and two polynomials

u(x) =
m−1

∑
j=0

αjx
j , v(x) =

n−1

∑
j=0

β jx
j , αj, β j ∈ C (4.0.8)

be given. We consider their product

uv(x) = u(x)v(x) (4.0.9)

The tasks are:

1. Efficiently compute the coefficients of the polynomial uv (with degree m + n − 1) from (4.0.9) is

fulfilled.

2. Given uv and u in terms of their coefficients, find the polynomial v again, if it exists (polynomial

division).

(4.3.a) Given polynomials u and v with degrees m− 1 and n− 1, respectively, their coefficients can

be stored as C++ vectors Eigen::VectorXd u and Eigen::VectorXd v of size m and n (the

known term is stored in position 0).

Write a C++ function that “naively”, i.e. using a simple loop-based implementation, computes the vector

of coefficients of the polynomial which is the multiplication between polynomials u and v:

VectorXd polyMult_naive(const VectorXd & u, const VectorXd

& v);

You can use EIGEN classes. Also determine the asymptotic complexity of your algorithm for mn → ∞

(separately).

HIDDEN HINT 1 for (4.3.a) → 4.3.1:PolyDiv1h.pdf

SOLUTION for (4.3.a) → 4.3.1:PolyDiv1s.pdf N

(4.3.b) Write a C++ function that efficiently computes the vector of coefficients of the polynomial which

is the multiplication between polynomials u and v:

VectorXd polyMult_fast(const VectorXd & u, const VectorXd

& v);

You can use EIGEN classes.

HIDDEN HINT 1 for (4.3.b) → 4.3.2:PolyDiv2h.pdf

SOLUTION for (4.3.b) → 4.3.2:PolyDiv2s.pdf N

(4.3.c) Determine the complexity of your algorithm in (4.3.b).

HIDDEN HINT 1 for (4.3.c) → 4.3.3:PolyDiv3h.pdf

SOLUTION for (4.3.c) → 4.3.3:PolyDiv3s.pdf N

4. Filtering Algorithms, 4. Filtering Algorithms 80

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/PolyDiv/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/PolyDiv/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(4.3.d) What does it mean to apply a discrete Fourier transform to the coefficients of a polynomial? In

other words, what is an equivalent operation that can be performed on a polynomial which leads to the

same result?

HIDDEN HINT 1 for (4.3.d) → 4.3.4:PolyDiv4h.pdf

SOLUTION for (4.3.d) → 4.3.4:PolyDiv4s.pdf N

(4.3.e) Now we will handle with polynomial division.

Consider the division between polynomials uv and u. How can you check whether u divides uv?

HIDDEN HINT 1 for (4.3.e) → 4.3.5:PolyDiv5h.pdf

SOLUTION for (4.3.e) → 4.3.5:PolyDiv5s.pdf N

(4.3.f) Write a C++ function that efficiently computes the vector of coefficients of the polynomial v,

division between polynomials uv and u from the problems above:

VectorXd polyDiv(const VectorXd & uv, const VectorXd & u);

You can use EIGEN classes.

HIDDEN HINT 1 for (4.3.f) → 4.3.6:PolyDiv6h.pdf

SOLUTION for (4.3.f) → 4.3.6:PolyDiv6s.pdf N

End Problem 4.3

4. Filtering Algorithms, 4. Filtering Algorithms 81

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 4.4: Solving triangular Toeplitz systems

In ➜Section 4.5 we learned about Toeplitz matrices, the class of matrices with constant diagonals

➜Def. 4.5.8. Obviously, m × n Toeplitz matrices are data-sparse in the sense that it takes only

m + n− 1 to encode them completely. Therefore, operations with Toeplitz matrices can often be

done with asymptotic computational cost significantly lower than that of the same operations for a

generic matrix of the same size. In ➜Section 4.5.1 we have seen this for FFT-based matrix×vector

multiplication for Toeplitz matrices.

In this problem we study an efficient FFT-based algorithm for solving triangular linear systems of

equations whose coefficient matrix is Toeplitz. Such linear systems are faced, for instance, when

inverting a finite, linear, time-invariant, causal channel (LT-FIR) as introduced in ➜Section 4.1.

Template: Get it on GitLab.

Solution: Get it on GitLab.

In ➜§ 4.1.1 we found that the output operator of a causal finite linear time-invariant filter with impulse

response h = (h0, . . . , hn−1)
⊤ ∈ Rn can be obtained by discrete convolution ➜Eq. (4.1.14); see also

➜Def. 4.1.22. Given an input signal x := (x0, . . . , xn−1)
⊤ ∈ Rn, the first n components (y0, . . . , yn−1)

of the output are obtained by:








y0
...
...

yn−1







=














h0 0 · · · · · · 0

h1 h0 0
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
hn−1 · · · · · · h1 h0














︸ ︷︷ ︸

=:Hn∈Rn,n








x0
...
...

xn−1








(4.0.18)

The matrix Hn ∈ Rn,n is a lower triangular matrix with constant diagonals:

(H)l,j =

{

hl−j if l ≥ j

0 else

This matrix is clearly not circulant: see ➜Def. 4.1.38. At the same time, it still belongs to the class of

Toeplitz matrices, see ➜Def. 4.5.8, which generalizes the class of circulant matrices. (Recall ➜Def. 4.5.8:

T ∈ Km,n is a Toeplitz matrix if there is a vector u = (u−m+1, . . . , un−1) ∈ Km+n−1 such that tij = uj−i

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.)

If you want to recover the input signal from the output (deconvolution), you will face the following cru-

cial task for digital signal processing: solve a lower triangular LSE with a Toeplitz system matrix. Of

course, forward elimination, see ➜Section 2.3, can achieve this with asymptotic complexity O(n2): see

➜Eq. (2.3.6). However, since a Toeplitz matrix merely has an information content ofO(n) numbers, there

might be a more efficient way – which ought to be explored by you in this problem.

(4.4.a) Given a Toeplitz matrix T ∈ Rn,n, find another matrix S ∈ Rn,n such that the following

composed matrix is a circulant matrix:

C =

[
T S
S T

]

∈ R
2n,2n

HIDDEN HINT 1 for (4.4.a) → 4.4.1:Toeplitz1h.pdf

4. Filtering Algorithms, 4. Filtering Algorithms 82

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/Toeplitz/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/Toeplitz/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

SOLUTION for (4.4.a) → 4.4.1:Toeplitz1s.pdf N

(4.4.b) Write the following C++ function:

Eigen::MatrixXd toeplitz(const VectorXd &c, const VectorXd

&r)

This function should take as input column vectors c ∈ Rm and r ∈ Rn and return a Toeplitz matrix

T ∈ Rm,n such that:

(T)i,j =

{

(c)i−j+1 , if i ≥ j

(r)j−i+1 , if j > i
1 ≤ i ≤ m, 1 ≤ j ≤ n

SOLUTION for (4.4.b) → 4.4.2:tplcpp.pdf N

(4.4.c) Show that the following two C++ functions realize the same linear mapping x 7→ y, when

supplied with the same arguments.

C++11-code 4.0.20: Function toepmatmult

2 VectorXd toepmatmult (const VectorXd & c , const VectorXd & r ,

3 const VectorXd & x)

4 {

5 assert (c . size () == r . size () &&

6 c . size () == x . size () &&

7 " c , r , x have d i f f e r e n t l e n g t h s ! ") ;

8

9 MatrixXd T = t o e p l i t z (c , r) ;

10

11 VectorXd y = T∗x ;

12

13 return y ;

14 }

Get it on GitLab (toeplitz.cpp).

C++11-code 4.0.21: Function toepmult

2 VectorXd toepmul t (const VectorXd & c , const VectorXd & r ,

3 const VectorXd & x)

4 {

5 assert (c . size () == r . size () &&

6 c . size () == x . size () &&

7 " c , r , x have d i f f e r e n t l e n g t h s ! ") ;

8 i n t n = c . size () ;

9

10 VectorXcd cr_tmp = c . cast <std : : complex<double > >() ;

11 cr_tmp . conservat iveResize (2∗n) ; cr_tmp . t a i l (n) =

VectorXcd : : Zero (n) ;

12 cr_tmp . t a i l (n−1) . rea l () = r . t a i l (n−1) . reverse () ;

13

14 VectorXcd x_tmp = x . cast <std : : complex<double > >() ;

15 x_tmp . conservat iveResize (2∗n) ; x_tmp . t a i l (n) =

4. Filtering Algorithms, 4. Filtering Algorithms 83

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/Toeplitz/solutions_nolabels/toeplitz.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

VectorXcd : : Zero (n) ;

16

17 VectorXd y = p c o n v f f t (cr_tmp , x_tmp) . rea l () ;

18 y . conservat iveResize (n) ;

19

20 return y ;

21 }

Get it on GitLab (toeplitz.cpp).

Function pconvfft is defined in ➜Section 4.2.1, ➜Code 4.2.25, and toeplitz is the simple C++

function from Sub-problem (4.4.b).

HIDDEN HINT 1 for (4.4.c) → 4.4.3:Toeplitz1h.pdf

SOLUTION for (4.4.c) → 4.4.3:Toeplitz2s.pdf N

(4.4.d) What is the asymptotic complexity of either toepmatmult or toepmult?

SOLUTION for (4.4.d) → 4.4.4:Toeplitz3s.pdf N

(4.4.e) Explain in detail what the following C++ functions are meant for and why they are algebraically

equivalent (i.e. equivalent when ignoring roundoff errors), provided that h.size()= 2^l.

C++11-code 4.0.23: Function ttmatsolve

2 VectorXd t tma tso l ve (const VectorXd & h , const VectorXd & y)

3 {

4 assert (h . size () == y . size () &&

5 " h and y have d i f f e r e n t l e n g t h s ! ") ;

6 i n t n = h . size () ;

7

8 VectorXd h_tmp = VectorXd : : Zero (n) ;

9 h_tmp (0) = h (0) ;

10

11 MatrixXd T = t o e p l i t z (h , h_tmp) ;

12

13 VectorXd x = T . f u l l P i v L u () . solve (y) ;

14

15 return x ;

16 }

Get it on GitLab (toeplitz.cpp).

C++11-code 4.0.24: Function ttrecsolve

2 VectorXd t t r e c s o l v e (const VectorXd & h , const VectorXd & y , i n t l)

3 {

4 assert (h . size () == y . size () &&

5 " h and y have d i f f e r e n t l e n g t h s ! ") ;

6

7 VectorXd x ;

8

9 i f (l == 0) {

4. Filtering Algorithms, 4. Filtering Algorithms 84

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/Toeplitz/solutions_nolabels/toeplitz.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/Toeplitz/solutions_nolabels/toeplitz.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

10 x . resize (1) ;

11 x (0) = y (0) / h (0) ;

12 } else {

13 i n t n = std : : pow(2 , l) ;

14 i n t m = n / 2 ;

15

16 assert (h . size () == n && y . size () == n &&

17 " h and y have l e n g t h d i f f e r e n t f rom 2^ l ! ") ;

18

19 VectorXd x1 = t t r e c s o l v e (h . head (m) , y . head (m) , l −1) ;

20 VectorXd y2 = y . segment (m,m) − toepmul t (h . segment (m,m) ,

21 h . segment (1 ,m) . reverse () , x1) ;

22 VectorXd x2 = t t r e c s o l v e (h . head (m) , y2 , l −1) ;

23

24 x . resize (n) ;

25 x . head (m) = x1 ;

26 x . t a i l (m) = x2 ;

27 }

28

29 return x ;

30 }

Get it on GitLab (toeplitz.cpp).

HIDDEN HINT 1 for (4.4.e) → 4.4.5:Toeplitz4h.pdf

SOLUTION for (4.4.e) → 4.4.5:Toeplitz4s.pdf N

(4.4.f) Why is the algorithm implemented in ttrecsolve called a “divide & conquer” method?

SOLUTION for (4.4.f) → 4.4.6:Toeplitz5s.pdf N

(4.4.g) Perform a timing comparison of ttmatsolve and ttrecsolve for

h = VectorXd::LinSpaced(n,1,n).cwiseInverse();

and n = 2l, l = 3, . . . , 11. Plot the timing results for both functions in double logarithmic scale.

SOLUTION for (4.4.g) → 4.4.7:Toeplitz6s.pdf N

(4.4.h) Derive the asymptotic complexity of both functions ttmatsolve and ttrecsolve in terms

of the problem size parameter n.

SOLUTION for (4.4.h) → 4.4.8:Toeplitz7s.pdf N

(4.4.i) For the case that n = h.size() is not a power of 2, implement a wrapper function for

ttrecsolve that, in the absence of roundoff errors, would behave exactly like ttmatsolve, i.e.

ttsolve(h,y)= ttmatsolve(h,y).

VectorXd ttsolve(const VectorXd & h, const VectorXd & y);

HIDDEN HINT 1 for (4.4.i) → 4.4.9:tplhext.pdf

SOLUTION for (4.4.i) → 4.4.9:Toeplitz8s.pdf N

End Problem 4.4

4. Filtering Algorithms, 4. Filtering Algorithms 85

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/Filtering/Toeplitz/solutions_nolabels/toeplitz.cpp

Chapter 5

Data Interpolation in 1D

Problem 5.1: Evaluating the derivatives of interpolating polynomials

In ➜Ex. 5.1.5 we learned about the importance of data interpolation for obtaining functor rep-

resentations of constitutive relationships t 7→ f (t). Numerical methods like Newton’s method

➜Code 8.3.5 often require information about the derivative f ′ as well. Therfore, we need effi-

cient ways to evaluate the derivatives of interpolants. In this problem we discuss this issue for

polynomial interpolation for (i) monomial representation and (ii) “update-friendly” point evaluation.

We generalize the Horner scheme ➜Rem. 5.2.5 and the Aitken-Neville algorithm ➜§ 5.2.33.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We first deal with polynomial in monomial representation ➜Rem. 5.2.4.

(5.1.a) Using the Horner scheme, write an efficient C++ implementation of a template function which

returns the pair (p(x), p′(x)), where p is a polynomial with coefficients in c:

template <typename CoeffVec>

std::pair<double,double> evaldp(const CoeffVec& c, double

x);

Vector c contains the coefficient of the polynomial in the monomial basis, expressed with the MATLAB

convention (leading coefficient in c(0)).

SOLUTION for (5.1.a) → 5.1.1:Horner1s.pdf N

(5.1.b) For the sake of testing, write a naive C++ implementation of function in (5.1.a) which returns

the same pair (p(x), p′(x)). However, this time p(x) and p′(x) should be calculated with the simple

sums of the monomials constituting the polynomial:

template <typename CoeffVec>

std::pair<double,double> evaldp_naive(const CoeffVec& c,

double x);

SOLUTION for (5.1.b) → 5.1.2:Horner2s.pdf N

(5.1.c) What are the asymptotic complexities of the two functions in (5.1.a) and (5.1.b)?

SOLUTION for (5.1.c) → 5.1.3:Horner3s.pdf N

86

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/EvaluatingDerivatives/EvaluatingDerivatives/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/EvaluatingDerivatives/EvaluatingDerivatives/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(5.1.d) Check the validity of the two functions in (5.1.a) and (5.1.b) and compare the runtimes for

polynomials of degree up to 220 − 1.

HIDDEN HINT 1 for (5.1.d) → 5.1.4:Horner4h.pdf

SOLUTION for (5.1.d) → 5.1.4:Horner4s.pdf N

In ➜Section 5.2.3.2 we learned about an efficient and “update-friendly” scheme for evaluating Lagrange

interpolants at a single or a few points. This so-called Aitken-Neville algorithm, see ➜Code 5.2.35, can

be extended to return the derivative value of the polynomial interpolant as well. This will be explored next.

(5.1.e) Write an efficient C++ function

VectorXd dipoleval(const VectorXd & t,

const VectorXd & y,

const VectorXd & x);

that returns the row vector (p′(x1), . . . , p′(xm)), when the argument x passes (x1, . . . , xm), m ∈ N

small. Here, p′ denotes the derivative of the polynomial p ∈ Pn interpolating the data points (ti, yi),
i = 0, . . . , n, for pairwise different ti ∈ R and data values yi ∈ R.

Differentiate the recursion formula ➜Eq. (5.2.34) and devise an algorithm in the spirit of the Aitken-

Neville algorithm implemented in ➜Code 5.2.35.

SOLUTION for (5.1.e) → 5.1.5:dipoleval.pdf

N

(5.1.f) For validation purposes devise an alternative, less efficient, implementation of dipoleval

(call it dipoleval_alt) based on the following steps:

1. Use the polyfit (find it in “polyfit.hpp”) function to compute the monomial coefficients of

the Lagrange interpolant.

2. Compute the monomial coefficients of the derivative.

3. Use polyval (defined in “polyval.hpp”) to evaluate the derivative at a number of points.

Use dipoleval_alt to verify the correctness of your implementation of dipoleval by computing

the derivative of the 10-th order polynomial interpolating the values (ti, sin(ti)), where ti are equidistant

points in [0, 3]. Evaluate the Euclidean norm of the error of the resulting polynomials, evaluated at 100
equidistant points xi ∈ [0, 3].

SOLUTION for (5.1.f) → 5.1.6:test.pdf

N

End Problem 5.1

Problem 5.2: Piecewise linear interpolation

➜Ex. 5.1.10 introduced piecewise linear interpolation as a simple linear interpolation scheme. It

finds an interpolant in the space spanned by the so-called tent functions, which are cardinal basis

functions. Formulas are given in ➜Eq. (5.1.11).

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 87

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LinearInterpolant/LinearInterpolant/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/LinearInterpolant/LinearInterpolant/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(5.2.a)

Write a C++ class LinearInterpolant representing the piecewise linear interpolant. Make sure

your class has an efficient internal representation of a basis. Provide a constructor and an evaluation

operator() as described in the following template:

C++11-code 5.0.6:

2 class L i n e a r I n t e r p o l a n t {

3 public :

4

5 /*!

6 * \brief LinearInterpolant builds interpolant from data.

7 * Sort the array for the first time:

8 * the data is not assumed to be sorted

9 * sorting is necessary for binary search

10 * \param TODO

11 */

12 L i n e a r I n t e r p o l a n t (/* TODO: pass data here */) ;

13

14 /*!

15 * \brief operator () Evaluation operator.

16 * Return the value of I at x, i.e. I(x).
17 * Performs bound checks (i.e. if x < t0 or x >= tn).

18 * \param x Value x ∈ R.

19 * \return Value I(x).
20 */

21 double operator () (double x) ;

22 private :

23 // TODO: your data there

24 } ;

Get it on GitLab (linearinterpolant.cpp).

SOLUTION for (5.2.a) → 5.2.1:impl.pdf

N

End Problem 5.2

Problem 5.3: Lagrange interpolant

This short problem studies a particular aspect of the Lagrange polynomials introduced in ➜§ 5.2.10.

Template: Get it on GitLab.

Solution: Get it on GitLab.

As in ➜Eq. (5.2.11) we denote by Li the i-th Lagrange polynomial for given nodes tj ∈ R, j = 0, . . . , n,

ti 6= tj, if i 6= j. Then the polynomial Lagrange interpolant p through the data points (ti, yi)
n
i=0 has the

representation

p(x) =
n

∑
i=0

yiLi(x) with Li(x) :=
n

∏
j=0
j 6=i

x− tj

ti − tj
. (5.0.9)

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 88

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/LinearInterpolant/templates_nolabels/linearinterpolant.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/LagrangePoly/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/LagrangePoly/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(5.3.a) Show that

n

∑
i=0

Li(t) = 1 ∀t ∈ R . (5.0.10)

HIDDEN HINT 1 for (5.3.a) → 5.3.1:glgh1.pdf

SOLUTION for (5.3.a) → 5.3.1:glgs1.pdf N

(5.3.b) Show that

n

∑
i=0

Li(0)t
j
i =

{

1 for j = 0 ,

0 for j = 1, . . . , n .
(5.0.11)

(Read ti riased to the power j.)

HIDDEN HINT 1 for (5.3.b) → 5.3.2:glgh1.pdf

SOLUTION for (5.3.b) → 5.3.2:glgs1.pdf N

(5.3.c) Show that p(x) can also be written as

p(x) = ω(x)
n

∑
i=0

yi

(x− ti)ω′(ti)
with ω(t) :=

n

∏
j=0

(t− tj) (5.0.12)

HIDDEN HINT 1 for (5.3.c) → 5.3.3:LagrangePoly1h.pdf

SOLUTION for (5.3.c) → 5.3.3:LagrangePoly1s.pdf N

End Problem 5.3

Problem 5.4: Generalized Lagrange polynomials for Hermite interpolation

➜Rem. 5.2.21 addressed a particular generalization of the Lagrange polynomial interpolation con-

sidered in ➜Section 5.2.2: Hermite interpolation, where beside the usual “nodal” interpolation

conditions also the derivative of the interpolating polynomials is prescribed in the nodes, see

➜Eq. (5.2.22) (for lj = 1 throughout). The associated generalized Lagrange polynomials were

defined in ➜Def. 5.2.24 and in this problem we aim to find concrete formulas for them in the spirit

of ➜Eq. (5.2.11).

Let n+ 1 different nodes ti, i = 0, . . . , n, n ∈ N, be given. For numbers yj, cj ∈ R, j = 0, . . . , n, Hermite

interpolation seeks a polynomial p ∈ P2n+1 satisfying p(ti) = yi and p′(ti) = ci, i = 0, . . . , n. Here p′

designates the derivative of p.

The generalized Lagrange polynomials for Hermite interpolation Li, Ki ∈ P2n+1 satisfy

Li(tj) = δij , L′i(tj) = 0 , (5.0.13a)

Ki(tj) = 0 , K′i(tj) = δij , (5.0.13b)

for i, j ∈ {0, . . . , n}.

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 89

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(5.4.a) Give explicitly the linear system of equations for the basis expansion coefficients of the Hermite

interpolant with respect to the monomial basis of P2n+1.

HIDDEN HINT 1 for (5.4.a) → 5.4.1:gagh0.pdf

SOLUTION for (5.4.a) → 5.4.1:glgs1.pdf N

(5.4.b) Give concrete formulas for K0, K1, L0, L1 for n = 1, t0 = −1, t1 = 1.

HIDDEN HINT 1 for (5.4.b) → 5.4.2:glgh1.pdf

SOLUTION for (5.4.b) → 5.4.2:glgs1.pdf N

(5.4.c) Find the general formula describing all polynomials in t

1. of degree 2 that have a double zero in t = a, a ∈ R,

2. of degree n > 2 that have a double zero in t = a, a ∈ R.

A polynomial p is said to have a double zero in t = a, if p(a) = 0 and p′(a) = 0.

SOLUTION for (5.4.c) → 5.4.3:glgs1.pdf N

(5.4.d) Let g1, . . . , gm, m ∈ N, be functions in C1(I) (space of continuously differentiable functions).

Find a formula for the derivative of h(t) = ∏
m
k=1 g(t).

SOLUTION for (5.4.d) → 5.4.4:glgs1.pdf

N

(5.4.e) Find general formulas for the polynomials Li, Ki as defined through (5.0.13). Of course, these

formulas will involve the nodes ti.

HIDDEN HINT 1 for (5.4.e) → 5.4.5:glgh1.pdf

HIDDEN HINT 2 for (5.4.e) → 5.4.5:glghx.pdf

SOLUTION for (5.4.e) → 5.4.5:glgs1.pdf

N

End Problem 5.4

Problem 5.5: Piecewise linear interpolation with knots different from nodes

In ➜Ex. 5.1.10 we examined piecewise linear interpolation in the case where the interpolation

nodes coincide with the abscissas of the corners of the interpolating polygon. However, that one

is a very special situation. In this problem we consider a more general setting for piecewise linear

interpolation.

We are given two ordered sets of real numbers to be read as points on the real line:

(I) the knots x0 < x1 < x2 < · · · < xn,

(II) the (interpolation) nodes t0 < t1 < · · · < tn, n ∈ N, satisfying x0 ≤ tj ≤ xn, j = 0, . . . , n.

The space of piecewise linear continuous functions with respect to the knot set N := {xj}n
j=0 is defined

as:

S1,N := {s ∈ C0([x0, xn]) : s(t) = γjt + β j for t ∈]xj−1, xj], γj, β j ∈ R i = 1, . . . , n} . (5.0.25)

Compare ➜Ex. 5.1.10 for the special case xj := tj.

On the function space S1,N ⊂ C0(I), I := [x0, xn], we consider the interpolation problem:

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 90

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Find s ∈ S1,N such that s(ti) = yi, i = 0, . . . , n, for given values yi ∈ R.

This fits the general framework of ➜§ 5.1.13.

Below we set I0 := [x0, x1], Ij :=]xj−1, xj+1], j = 1, . . . , n− 1, In := [xn−1, xn].

(5.5.a) Show that the interpolation problem may not have a solution for some values yj if a single

interval [xj, xj+1], j = 0, . . . , n− 1, contains more than 2 nodes ti.

SOLUTION for (5.5.a) → 5.5.1:lips1.pdf N

(5.5.b) Show that the interpolation problem can have a unique solution for any data values yj only if

each interval Ij, j = 0, . . . , n, contains at least one node.

HIDDEN HINT 1 for (5.5.b) → 5.5.2:glgh1.pdf

SOLUTION for (5.5.b) → 5.5.2:lips2.pdf N

(5.5.c) Show that the interpolation problem has a unique solution for all data values yj if each of the

closed intervals]x0, x1[,]x1, x2[,]x2, x3[, . . . ,]xn−1, xn[contains at least one node tj.

HIDDEN HINT 1 for (5.5.c) → 5.5.3:glgh1.pdf

SOLUTION for (5.5.c) → 5.5.3:lips3.pdf N

(5.5.d) Implement a C++ function

VectorXd tentBasCoeff(const VectorXd &x,const VectorXd &t,

const VectorXd &y);

that returns the vector of values s(xj) of the interpolant s of the data points (ti, yi), i = 0, . . . , n in

S1,N in the knots xj, j = 0, . . . , n. The argument vectors x, t, and y pass the xj, tj, and values yj,

respectively.

The function should first check whether the condition formulated in Sub-problem (5.5.c) is satisified. You

must not take for granted that knots or nodes are sorted already.

HIDDEN HINT 1 for (5.5.d) → 5.5.4:glgh1.pdf

SOLUTION for (5.5.d) → 5.5.4:glgs1.pdf N

(5.5.e) Implement a C++ class

c lass PwLinIP {

pub l i c:

PwLinIP(const VectorXd &x, const VectorXd &t, const VectorXd &y);

double opera tor()(double arg) const;

p r i v a t e:

...

};

that realizes an interpolator class in the spirit of ➜Rem. 5.1.19. The meanings of the arguments of the

constructor are the same as for the function tentBasCoeff from Sub-problem (5.5.d). Pay attention

to the efficient implementation of the evaluation operator!

HIDDEN HINT 1 for (5.5.e) → 5.5.5:lipx1.pdf

HIDDEN HINT 2 for (5.5.e) → 5.5.5:lipzz.pdf

SOLUTION for (5.5.e) → 5.5.5:dsfg1.pdf N

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 91

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(5.5.f) Implement a C++ code that creates plots of the cardinal basis functions for interpolation in

S1,N

• with know set N := {0, 1, 2, 3, . . . , 9, 10}
• and for interpolation nodes t0 := 0, tj = j− 1

2 , j = 1, . . . , 10.

Recall that the cardinal basis function bk ∈ S1,N is characterized by the conditions:

bk(tj) = δkj , k, j = 0, . . . , 10 (5.0.30)

HIDDEN HINT 1 for (5.5.f) → 5.5.6:liphx.pdf

SOLUTION for (5.5.f) → 5.5.6:glgs1.pdf N

End Problem 5.5

Problem 5.6: Cardinal basis for trigonometric interpolation

In ➜Section 5.6 we learned about interpolation into the spacePT
2n or trigonometric polynomials from

➜Def. 5.6.3. In this task we investigate the cardinal basis functions for this interpolation operator

and will also obtain a result about its stability.

The (ordered) real trigonometric basis of PT
2n is

BRe :=
{

C0 := t 7→ 1, S1 := t 7→ sin(2πt), C1 := t 7→ cos(2πt), S2 := t 7→ sin(4πt),

C2t 7→ cos(4πt), . . . , Sn : t 7→ sin(2nπt), Cn := t 7→ cos(2nπt)
}

.

(5.0.32)

Another (ordered) basis of PT
2n is

Bexp := {Bk := t 7→ exp(2πkıt) : k = −n, . . . , n} . (5.0.33)

Both bases have 2n + 1 elements, which agrees with the dimension of PT
2n Cor. 5.6.8.

(5.6.a) Give the matrix S ∈ C2n+1,2n+1 that effects the transformation of a coefficient representation

with respect to BRe into a coefficient representation with respect to Bexp.

HIDDEN HINT 1 for (5.6.a) → 5.6.1:trh1.pdf

SOLUTION for (5.6.a) → 5.6.1:trisol1.pdf N

(5.6.b) The shift operator Sτ : C0(R) → C0(R) acts on a function according to Sτ f (t) = f (t− τ),
for τ ∈ R. If c ∈ C2n+1 is the coefficient vector of p ∈ PT

2n with respect to Bexp, what is the coefficient

vector c̃ ∈ C2n+1 of Sτ p?

HIDDEN HINT 1 for (5.6.b) → 5.6.2:tch2.pdf

SOLUTION for (5.6.b) → 5.6.2:trisol2.pdf N

Now we consider the set of interpolation nodes

Tn :=

{
j + 1/2

2n + 1
: j = 0, . . . , 2n

}

. (5.0.34)

The cardinal basis functions b0, . . . , b2n ∈ PT
2n of PT

2n with respect to Tn are defined by

bj(tk) = δkj [Kronecker symbol] , j, k = 0, . . . , 2n (5.0.35)

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 92

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(5.6.c) Use the function trigpolyvalequid, see ➜Code 5.6.21 (can be included from “trigpolyvalequid.hpp

to plot the cardinal basis function t 7→ b0(t) in [0, 1] for n = 5. To that end evaluate b0(t) in 1000

equidistant points k
1000 , k = 0, . . . , 999.

SOLUTION for (5.6.c) → 5.6.3:plotsol.pdf N

(5.6.d) Show that

bk+1 = Sδbk with δ :=
1

2n + 1
. (5.0.37)

HIDDEN HINT 1 for (5.6.d) → 5.6.4:h1.pdf

SOLUTION for (5.6.d) → 5.6.4:trisol1.pdf N

(5.6.e) Describe the entries of the “interpolation matrix”, that is, the system matrix of ➜Eq. (5.1.15),

for the trigonometric interpolation problem with node set Tn and with respect to the basis Bexp of PT
2n.

HIDDEN HINT 1 for (5.6.e) → 5.6.5:tklh1.pdf

HIDDEN HINT 2 for (5.6.e) → 5.6.5:tmp.pdf

SOLUTION for (5.6.e) → 5.6.5:trisol1.pdf N

(5.6.f) What is the inverse of the interpolation matrix found in the previous problem?

HIDDEN HINT 1 for (5.6.f) → 5.6.6:h1.pdf

SOLUTION for (5.6.f) → 5.6.6:trisol1.pdf

N

(5.6.g) Give a closed-form expression for the cardinal basis functions bk defined in (5.0.35).

HIDDEN HINT 1 for (5.6.g) → 5.6.7:h1.pdf

SOLUTION for (5.6.g) → 5.6.7:trisol1.pdf N

(5.6.h) Write a function

double trigIpL(std::s i z e _ t n);

that approximately computes the Lebesgue constant λ(n), see ➜§ 5.2.69, for trigonometric interpola-

tion based on the node set Tn. The Lebesgue constant is available through the formula

λ(n) = sup
y∈C2n+1\{0}

‖Iny‖L∞([0,1])

‖y‖∞

= sup
t∈[0,1]

2n

∑
k=0

|bk(t)| , (5.0.40)

where In : C2n+1 → C0(R) is the trigonometric interpolation operator.

Use sampling in 104 equidistant points to obtain a good guess for the supremum norm of a function on

[0, 1]. Maximum efficiency of the implementation need not be a concern. Use the formula involving sum

of cosines.

SOLUTION for (5.6.h) → 5.6.8:trisol1.pdf

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 93

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Graph of n 7→ λ(n) ✄

Fig. 22 n
0 10 20 30 40 50 60 70 80 90 100

 λ
n

1.5

2

2.5

3

3.5

4

4.5
Lebesgue constant for trigonometric interpolation

N

(5.6.i) The following table gives the values λ(n) for n = 2k, k = 2, 3, . . . , 8.

kk λ(2k)
4 2.7

8 3.07

16 3.46

32 3.89

64 4.32

128 4.75

256 5.18

512 5.62

From these numbers predict the asymptotic behavior of λ(n) for n → ∞. Is it O(log n), O(n),
O(n log n), or O(n2)?

SOLUTION for (5.6.i) → 5.6.9:xtrsol1.pdf N

End Problem 5.6

5. Data Interpolation in 1D, 5. Data Interpolation in 1D 94

Chapter 6

Approximation of Functions in 1D

Problem 6.1: Adaptive polynomial interpolation

In ➜Section 6.1.3 we have seen that the a priori placement of interpolation nodes is key to a good

approximation by a polynomial interpolant. This problem deals with an a posteriori adaptive strategy

that controls the placement of interpolation nodes depending on the interpolant. It employs a greedy

algorithm to grow the node set based on an intermediate interpolant.

This strategy has recently gained prominence for a variety prominence for a wide range of approxi-

mation problems, see V. N. TEMLYAKOV, Greedy approximation, Acta Numer., 17 (2008), pp. 235–

409.

[This problem involves implementation in C++]

A description of the greedy algorithm for adaptive polynomial interpolation is as follows:

Given a function f : [a, b] 7→ R one starts T0 := { 1
2(b + a)}. Based on a fixed finite set

S ⊂ [a, b] of sampling points one augments the set of nodes according to

Tn+1 = Tn ∪
{

argmax
t∈S

| f (t)− ITn
(t)|

}

, (6.0.1)

where ITn
is the polynomial interpolation operator for the node set Tn, until

max
t∈S
| f (t)− ITn

(t)| ≤ tol ·max
t∈S
| f (t)| . (6.0.2)

(6.1.a) Write a C++ function

template <c lass Function>

void adaptivepolyintp(const Function& f,double a, double b,

double tol, i n t N,

Eigen::VectorXd& adaptive_nodes);

that implements the algorithm described above.

The function arguments are: the function handle f, the interval bounds a, b, the relative tolerance tol,

the number N of equidistant sampling points to compute the error (in the interval [a, b]), that is,

S :=

{

a + (b− a)
j

N
, j = 0, . . . , N

}

.

95

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

and t will be used as return parameter for interpolation nodes (i.e. the final Tn).

The type Function defines a function and is supposed to provide an operator double operator()(double)

A suitable lambda function can satisfy this requirement.

A function intpolyval (used in the lecture document) is provided and may be used (though it may

not be the most efficient way to implement the function).

You might need to convert between the types std::vector and Eigen::VectorXd. This can be

done as follows using EIGEN’s Map class:

For Eigen::VectorXd to std::vector<double>, use:

1 Eigen : : VectorXd v ;

2 std : : vector <double> to_s td (v . data () , v . data () + v . size ()) ;

and the other way round (using Eigen::Map):

1 std : : vector <double> v ;

2 Eigen : : Map<Eigen : : VectorXd> to_eigen (v . data () , v . size ()) ;

SOLUTION for (6.1.a) → 6.1.1:solfile.pdf

N

(6.1.b) Extend the function from the previous sub-problem so that it reports the quantity

ǫn := max
t∈S
| f (t)− TTn

(t)| (6.0.3)

for each intermediate set Tn.

SOLUTION for (6.1.b) → 6.1.2:solfile.pdf

N

(6.1.c) For f1(t) := sin(e2t) and f2(t) =
√

t
1+16t2 plot ǫn versus n (the number of interpolation nodes).

Choose plotting styles that reveal the qualitative decay (types of convergence as given in ➜Def. 6.1.38)

of this error norm as the number of interpolation nodes is increased. Use interval [a, b] = [0, 1],
N=1000 sampling points, tolerance tol = 1e-6.

SOLUTION for (6.1.c) → 6.1.3:solfile.pdf

N

End Problem 6.1

Problem 6.2: Piecewise Cubic Hermite Interpolation

In this problem, we will consider (piecewise) cubic Hermite interpolation, which is a (local) general-

ized polynomial interpolation scheme ➜Rem. 5.2.21.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider the cubic Hermite interpolation operator H acting on continuously differentiable function

defined on an interval [a, b] and mapping into the space P3 of polynomials of degree at most 3r:

H : C1([a, b])→ P3 .

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 96

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/FunctionApproximation/PCHI/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/FunctionApproximation/PCHI/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

It is defined by the generalized interpolation conditions, see also ➜Def. 5.4.1,

(H f)(a) = f (a) , (H f)(b) = f (b) , (6.0.6)

(H f)′(a) = f ′(a) , (H f)′(b) = f ′(b) . (6.0.7)

(6.2.a) Assume f ∈ C4([a, b]). Show that for every x ∈]a, b[there exists a τ ∈ [a, b] such that:

(f −H f)(x) =
1

24
f (4)(τ)(x− a)2(x− b)2 . (6.0.8)

HIDDEN HINT 1 for (6.2.a) → 6.2.1:pchh.pdf

SOLUTION for (6.2.a) → 6.2.1:errpr.pdf N

Now, we consider a piecewise cubic Hermite interpolation with exact slopes on a mesh

M := {a = x0 < x1 < · · · < xn = b}

as defined in ➜Section 6.5.2, ➜Def. 6.5.14. By slopes we mean the values of the derivative of the

interpolant imposed at the nodes of the meshM.

(6.2.b) Based on (6.0.8) predict the rate of algebraic convergence of the maximum norm of the

interpolation error of piecewise cubic Hermite interpolation of a function f ∈ C4([a, b]) in terms of the

mesh width hM ofM as hM → 0 (h-convergence).

HIDDEN HINT 1 for (6.2.b) → 6.2.2:pch0.pdf

SOLUTION for (6.2.b) → 6.2.2:pchol2.pdf N

(6.2.c) Now we consider cases, where perturbed or reconstructed slopes are used. For instance, this

was done in the context of monotonicity preserving piecewise cubic Hermite interpolation as discussed

in ➜Section 5.4.2.

Assume that piecewise cubic Hermite interpolation is based on perturbed slopes, that is, the piecewise

cubic function s onM satisfies:

s(xj) = f (xj) , s′(xj) = f ′(xj) + δj,

where the δj may depends onM, too.

Which rate of asymptotic h-convergence of the sup-norm of the approximation error can be expected,

if we know that for all j:

|δj| = O(hβ) , β ∈ N0

for mesh-width h→ 0.

HIDDEN HINT 1 for (6.2.c) → 6.2.3:pchhx.pdf

SOLUTION for (6.2.c) → 6.2.3:pchi1.pdf

N

(6.2.d) Consider the following class declaration that implements a piecewise cubic Hermite interpolant

and provides a corresponding point evaluation operator operator():

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 97

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

C++11-code 6.0.10: Declaration of the class PCHI.

2 /*!

3 * \brief Implements a piecewise cubic Hermite interpolation.

4 * Uses equidistant meshes and various methods of slope

reconstruction.

5 *

6 */

7 class PCHI {

8 public :

9 /*!

10 *! \brief Construct the slopes from the data.

11 *! Use finite-differences or setting s′(xj) = 0.
12 *! \param[in] t Vector of nodes (assumed equidistant and

sorted).

13 *! \param[in] y Vector of values at nodes t.
14 *! \param[in] s Flag to set if you want to reconstruct or set

the slopes to zero.

15 */

16 PCHI (const VectorXd & t ,

17 const VectorXd & y ,

18 Slope s = Slope : : Reconstructed) ;

19

20 /*!

21 *! \brief Evaluate the intepolant at the nodes x.
22 *! The input is assumed sorted, unique and inside the interval

23 *! \param[in] x The vector of points xi where to compute s(xi).
24 *! \return Values of interpolant at x (vector)

25 */

26 VectorXd operator () (const VectorXd & x) const ;

27

28 private :

29 // Provided nodes and values (t, y) to compute spline,

30 // Eigen vectors, c contains slopes

31 // All have the same size n

32 VectorXd t , y , c ;

33 // Difference t(i)− t(i− 1)

34 double h ;

35 // Size of t, y and c.

36 i n t n ;

37 } ;

Get it on GitLab (pchi.cpp).

The enum type Slope will be used later to specify the slope reconstruction for the interpolant.

Give an efficient implementation the evaluation operator.

SOLUTION for (6.2.d) → 6.2.4:pchi2.pdf

N

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 98

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/FunctionApproximation/PCHI/solutions_nolabels/pchi.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(6.2.e) Implement a strange piecewise cubic interpolation scheme in C++ that satisfies:

s(xj) = f (xj) , s′(xj) = 0

and empirically determine its convergence on a sequence of equidistant meshes of [−5, 5] with mesh-

widths h = 2−l, l = 0, . . . , 8 and for the interpoland f (t) := 1
1+t2 .

To that end, implement the correct reconstruction of the slope c in the constructor of the class PCHI,

when the value of s is Slope::Zero.

Compare with the insight gained in (6.2.c).

SOLUTION for (6.2.e) → 6.2.5:pchi2.pdf

N

(6.2.f) Assume equidistant meshes and reconstruction of slopes by a particular averaging. More

precisely, theM-piecewise cubic function s is to satisfy the generalized interpolation conditions

s(xj) = f (xj),

s′(xj) =







− f (x2)+4 f (x1)−3 f (x0)
2h for j = 0 ,

f (xj+1)− f (xj−1)

2h for j = 1, . . . , n− 1 ,
3 f (xn)−4 f (xn−1)+ f (xn−2)

2h for j = n .

(6.0.13)

What will be the rate of h-convergence of this scheme (in sup-norm)?

You can use what you have found in (6.2.c). To find perturbation bounds, rely on the Taylor expansion

formula with remainder, see ➜Ex. 1.5.65.

SOLUTION for (6.2.f) → 6.2.6:pchi3.pdf

N

(6.2.g) Implement the correct reconstruction of the slope c defined in Sub-problem (6.2.f), (6.0.13) in

the constructor of the class PCHI, when the value of s is Slope::Reconstructed.

SOLUTION for (6.2.g) → 6.2.7:pchi4.pdf

N

(6.2.h) In a numerical experiment determine qualitatively and quantitatively the h-convergence of

the maximum norm of the interpolation error for piecewise cubic Hermite interpolation of a function

f ∈ C4([a, b]) based on the slopes from Sub-problem (6.2.f) as given in (6.0.13).

As test case use the setting of Sub-problem (6.2.e) and make sure that your observation matches what

you have found in Sub-problem (6.2.f).

SOLUTION for (6.2.h) → 6.2.8:xtrsol1.pdf N

End Problem 6.2

Problem 6.3: Piecewise linear approximation on graded meshes

One of the main point made in ➜Section 6.1.3 is that the quality of an interpolant depends heavily

on the choice of the interpolation nodes. If the function to be interpolated has a “bad behavior” in a

small part of the domain, for instance it has very large derivatives of high order, more interpolation

points are required in that area of the domain. Commonly used tools to cope with this task are

graded meshes, which will be the topic of this problem.

Template: Get it on GitLab.

Solution: Get it on GitLab.

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 99

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/GradedMeshes/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/GradedMeshes/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Given a mesh T = {0 ≤ t0 < t1 < · · · < tn ≤ 1} on the unit interval I = [0, 1], n ∈ N, we define the

piecewise linear interpolant :

IT : C0(I)→ P1,T = {s ∈ C0(I), s|[tj−1,tj]
∈ P1 ∀ j}, s.t.

(
IT f

)
(tj) = f (tj), j = 0, . . . , n

(6.0.16)

See also ➜Section 5.3.2.

(6.3.a) If we choose the uniform mesh T = {tj}n
j=0 with tj = j/n, given a function f ∈ C2(I) what

is the asymptotic behavior of the error ‖ f − IT f ‖L∞(I) when n→ ∞?

HIDDEN HINT 1 for (6.3.a) → 6.3.1:GradedMeshes1h.pdf

SOLUTION for (6.3.a) → 6.3.1:GradedMeshes1s.pdf N

(6.3.b) What is the regularity of the function f : I → R, f (t) = tα, 0 < α < 2? In other words, for

which k ∈ N do we have f ∈ Ck(I)?

HIDDEN HINT 1 for (6.3.b) → 6.3.2:GradedMeshes2h.pdf

SOLUTION for (6.3.b) → 6.3.2:GradedMeshes2s.pdf N

(6.3.c) Study numerically the h-convergence of the piecewise linear approximation of f (t) = tα

(0 < α < 2) on uniform meshes. Determine the order of convergence using 1D linear regression,

see ➜Rem. 6.1.40 which is implemented, as a special case, in the auxiliary function polyfit, see

➜Code 5.7.20.

SOLUTION for (6.3.c) → 6.3.3:GradedMeshes3s.pdf N

(6.3.d) In which mesh interval do you expect | f − IT f | to attain its maximum?

HIDDEN HINT 1 for (6.3.d) → 6.3.4:GradedMeshes4ha.pdf

HIDDEN HINT 2 for (6.3.d) → 6.3.4:GradedMeshes4hb.pdf

SOLUTION for (6.3.d) → 6.3.4:GradedMeshes4s.pdf N

(6.3.e) Compute by hand the exact value of ‖ f − IT f ‖L∞(I).

Compare the order of convergence obtained with the one observed numerically in (6.3.b).

HIDDEN HINT 1 for (6.3.e) → 6.3.5:GradedMeshes5h.pdf

SOLUTION for (6.3.e) → 6.3.5:GradedMeshes5s.pdf N

(6.3.f) Since the interpolation error is concentrated in the left part of the domain, it seems reasonable

to use a finer mesh only in this part. A common choice is an algebraically graded mesh, defined as

G =
{

tj =
(

j
n

)β
, j = 0, . . . , n

}

for a parameter β > 1. An example is depicted in Fig. 26 for β = 2.

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 100

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Fig. 26

For a fixed parameter α in the definition of f , numerically determine the rate of convergence of the

piecewise linear interpolant IG on the graded mesh G as a function of the parameter β. Try for instance

α = 1/2, α = 3/4 or α = 4/3.

How do you have to choose β in order to recover the optimal rate O(n−2) (if possible)?

SOLUTION for (6.3.f) → 6.3.6:GradedMeshes6s.pdf N

End Problem 6.3

Problem 6.4: Chebyshev polynomials and their properties

Chebyshev polynomials as defined in ➜Def. 6.1.76 are a sequence of orthogonal polynomials,

which can be defined recursively, see ➜Thm. 6.1.77. In this problem we will examine these polyno-

mials and a few of their many properties.

Template: Get it on GitLab.

Solution: Get it on GitLab.

Let Tn ∈ Pn be the n-th Chebyshev polynomial, as defined in ➜Def. 6.1.76 and ξ
(n)
0 , . . . , ξ

(n)
n−1 be the n

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 101

https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/ChebPolyProperties/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/PolynomialInterpolation/ChebPolyProperties/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

zeros of Tn. According to ➜Eq. (6.1.84), these are given by:

ξ
(n)
j = cos

(
2j + 1

2n
π

)

, j = 0, . . . , n− 1 (6.0.22)

We define the family of discrete L2 semi-inner products (i.e. not conjugate symmetric), cf. ➜Eq. (6.2.22):

(f , g)n :=
n−1

∑
j=0

f (ξ
(n)
j)g(ξ

(n)
j), f , g ∈ C0([−1, 1]) (6.0.23)

We also define the special weighted L2 semi-inner product:

(f , g)w :=
∫ 1

−1

1√
1− t2

f (t)g(t) dt f , g ∈ C0([−1, 1]) (6.0.24)

(6.4.a) Show that the Chebyshev polynomials are an orthogonal family of polynomials with respect

to the inner product defined in Eq. (6.0.24) according to ➜Def. 6.2.25, namely (Tk, Tl)w = 0 for every

k 6= l.

HIDDEN HINT 1 for (6.4.a) → 6.4.1:ChebPolyProperties1h.pdf

SOLUTION for (6.4.a) → 6.4.1:ChebPolyProperties1s.pdf N

Consider the following statement:

Theorem 6.0.25.

The family of polynomials {T0, . . . , Tn} is an orthogonal basis (➜Def. 6.2.14) of Pn with respect to

the inner product (,)n+1 defined in Eq. (6.0.23).

(6.4.b) Write a C++ code to test the assertion of Thm. 6.0.25.

HIDDEN HINT 1 for (6.4.b) → 6.4.2:ChebPolyProperties2h.pdf

SOLUTION for (6.4.b) → 6.4.2:ChebPolyProperties2s.pdf N

(6.4.c) Prove Thm. 6.0.25.

HIDDEN HINT 1 for (6.4.c) → 6.4.3:ChebPolyProperties3h.pdf

SOLUTION for (6.4.c) → 6.4.3:ChebPolyProperties3s.pdf N

(6.4.d) Given a function f ∈ C0([−1, 1]), find an expression for the best approximant qn ∈ Pn of f
in the discrete L2-norm:

qn = argmin
p∈Pn

| f − p|n+1 ,

| |n+1 is the norm induced by the scalar product (,)n+1. You should represent qn through an expansion

in Chebychev polynomials of the form:

qn =
n

∑
j=0

αjTj , (6.0.33)

for suitable coefficients αj ∈ R, see also ➜Eq. (6.1.101).

HIDDEN HINT 1 for (6.4.d) → 6.4.4:ChebPolyProperties4h.pdf

SOLUTION for (6.4.d) → 6.4.4:ChebPolyProperties4s.pdf N

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 102

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(6.4.e) Write a C++ function that returns the vector of coefficients (αj)j in Eq. (6.0.33) given a function

f :

template <typename Function>

void bestpolchebnodes(const Function &f, Eigen::VectorXd

&alpha)

Note that the degree of the polynomial is indirectly passed with the length of the output alpha. The

input f is a lambda-function, e.g.:

auto f = [] (double & x) { r e t u r n 1/(pow(5*x,2)+1);};

SOLUTION for (6.4.e) → 6.4.5:ChebPolyProperties5s.pdf N

(6.4.f) Test bestpolchebnodes with the function f (x) = 1
(5x)2+1

and n = 20. Approximate the

supremum norm of the approximation error by sampling on an equidistant grid with 106 points.

HIDDEN HINT 1 for (6.4.f) → 6.4.6:ChebPolyProperties6h.pdf

SOLUTION for (6.4.f) → 6.4.6:ChebPolyProperties6s.pdf N

(6.4.g) Let Lj, j = 0, . . . , n, be the Lagrange polynomials associated with the nodes tj = ξ
(n+1)
j of

the Chebyshev interpolation with n + 1 nodes on [−1, 1] (see ➜Eq. (6.1.84)). Show that:

Lj =
1

n + 1
+

2

n + 1

n

∑
l=1

Tl(ξ
(n+1)
j)Tl

HIDDEN HINT 1 for (6.4.g) → 6.4.7:ChebPolyProperties7h.pdf

SOLUTION for (6.4.g) → 6.4.7:ChebPolyProperties7s.pdf N

End Problem 6.4

6. Approximation of Functions in 1D, 6. Approximation of Functions in 1D 103

Chapter 7

Numerical Quadrature

Problem 7.1: Zeros of orthogonal polynomials

This problem combines elementary methods for finding zeros from ➜Section 8.3 and 3-term recur-

sions satisfied by orthogonal polynomials, cf. ➜Thm. 6.2.32. This will permit us to find the zeros of

Legendre polynomials, the so-called Gauss nodes (see ➜Def. 7.3.29).

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

The zeros of the Legendre polynomial Pn (see Def. 7.3.27) are the n Gauss points ξn
j , j = 1, . . . , n. In

this problem we compute the Gauss points by zero-finding methods applied to Pn. The 3-term recursion

➜Eq. (7.3.33) for Legendre polynomials will play an essential role. Moreover, recall that, by definition, the

Legendre polynomials are L2(]−1, 1[)-orthogonal.

(7.1.a) Prove the following interleaving property of the zeros of the Legendre polynomials. For all

n ∈ N0 we have:

−1 < ξn
j < ξn−1

j < ξn
j+1 < 1, j = 1, . . . , n− 1

HIDDEN HINT 1 for (7.1.a) → 7.1.1:ZerosLegendre1h.pdf

SOLUTION for (7.1.a) → 7.1.1:ZerosLegendre1s.pdf

N

(7.1.b) By differentiating ➜Eq. (7.3.33) derive a combined 3-term recursion for the sequences (Pn)n

and (P′n)n.

SOLUTION for (7.1.b) → 7.1.2:ZerosLegendre2s.pdf

N

(7.1.c) Use the recursions obtained in (7.1.b) to write a C++ function that fills the matrices Lx and

DLx in RN×(n+1) with the values {Pk(xj)}jk and {P′k(xj)}jk, j = 0, . . . , N − 1 and k = 0, . . . , n, for

an input vector x ∈ RN (passed in x):

void legvals(const Eigen::VectorXd& x, Eigen::MatrixXd& Lx,

Eigen::MatrixXd& DLx)

104

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/NumericalQuadrature/ZerosLegendre/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/NumericalQuadrature/ZerosLegendre/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

SOLUTION for (7.1.c) → 7.1.3:ZerosLegendre3s.pdf

N

(7.1.d) We can compute the zeros of Pk, k = 1, . . . , n, by means of the secant rule (see § 8.3.22)

using the endpoints {−1, 1} of the interval and the zeros of the previous Legendre polynomial as initial

guesses; see (7.1.a). We opt for a correction-based termination criterion (see Section 8.1.2) based on

prescribed relative and absolute tolerance (see Code 8.3.25).

Write a C++ function that computes the Gauss points ξk
j ∈ [−1, 1], j = 1, . . . , k and k = 1, . . . , n, using

the zero finding approach outlined above:

Eigen::MatrixXd gaussPts(const i n t n, const double rtol=1e-10,

const double atol=1e-12)

The Gauss points should be returned in an upper triangular n× n-matrix.

HIDDEN HINT 1 for (7.1.d) → 7.1.4:ZerosLegendre4h.pdf

SOLUTION for (7.1.d) → 7.1.4:ZerosLegendre4s.pdf

N

(7.1.e) Validate your implementation of the function gaussPts with n = 8 by computing the values

of the Legendre polynomials in the zeros obtained (use the function legvals). Explain the failure of

the method.

HIDDEN HINT 1 for (7.1.e) → 7.1.5:ZerosLegendre5h.pdf

SOLUTION for (7.1.e) → 7.1.5:ZerosLegendre5s.pdf

N

(7.1.f) Fix your function gaussPts taking into account the above considerations. You should use

the regula falsi, that is a variant of the secant method in which, at each step, we choose the old iterate

to keep depending on the signs of the function. More precisely, given two approximations x(k), x(k−1)

of a zero in which the function f has different signs, compute another approximation x(k+1) as zero of

the secant. Use this as the next iterate, but then chose as x(k) the value z ∈ {x(k), x(k−1)}, for which

sign
[

f
(

x(k+1)
)]

6= sign[f (z)]. This ensures that f has always a different sign in the last two iterates.

The regula falsi variation of the secant method can be easily implemented with a little modification, as

done in the MATLAB code secant_falsi.m on GitLab.

SOLUTION for (7.1.f) → 7.1.6:ZerosLegendre6s.pdf N

End Problem 7.1

Problem 7.2: Efficient quadrature of singular integrands

This problem deals with efficient numerical quadrature of non-smooth integrands with a special

structure. Before you tackle this problem, read about regularization of integrands by transformation,

cf. Rem. 7.3.46. For other problems on the same topic see Problem 7.8 and Problem 7.3.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

7. Numerical Quadrature, 7. Numerical Quadrature 105

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/EffQuadSingInt/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/EffQuadSingInt/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Our task is to develop quadrature formulas for integrals of the form:

W(f) :=
∫ 1

−1

√

1− t2 f (t)dt, (7.0.8)

where f possesses an analytic extension to a complex neighbourhood of [−1, 1].

(7.2.a) The function

QuadRule gauleg(unsigned i n t n);

(contained in gauleg.hpp) returns a structure QuadRule containing nodes (xj) and weights (wj)
of a Gauss-Legendre quadrature (Def. 7.3.29) on [−1, 1] with n nodes. N

(7.2.b) Study § 7.3.38 in order to learn about the convergence of Gauss-Legendre quadrature. What

can you say about the least expected convergence for an integrand f ∈ Cr([a, b])? What about con-

vergence in the case f ∈ C∞([a, b])?

SOLUTION for (7.2.b) → 7.2.2:effs1.pdf

N

(7.2.c) Based on the function gauleg, implement a C++ function

template <c lass Function>

double quadsingint(const Function& f, const unsigned n);

that approximately evaluates W(f) using 2n evaluations of f . An object of type Function must

provide an evaluation operator

double opera tor(double t) const;

Ensure that, as n → ∞, the error of your implementation has asymptotic exponential convergence to

zero.

HIDDEN HINT 1 for (7.2.c) → 7.2.3:h2l.pdf

HIDDEN HINT 2 for (7.2.c) → 7.2.3:h23.pdf

SOLUTION for (7.2.c) → 7.2.3:effs2.pdf N

(7.2.d) Give formulas for the nodes cj and weights w̃j of a 2n-point quadrature rule on [−1, 1], whose

application to the integrand f will produce the same results as the function quadsingint that you

implemented in the previous subproblem.

SOLUTION for (7.2.d) → 7.2.4:effs3.pdf N

(7.2.e) 2 Tabulate the quadrature error:

ǫi := |W(f)− quadsingint(f,n)|

for f (t) := 1
2+exp(3t)

and n = 1, 2, ..., 25. Then describe the type of convergence observed, see

➜Def. 6.1.38.

SOLUTION for (7.2.e) → 7.2.5:effs5.pdf N

End Problem 7.2

7. Numerical Quadrature, 7. Numerical Quadrature 106

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 7.3: Smooth integrand by transformation

In ➜Rem. 7.3.46 we saw how knowledge about the structure of a non-smooth integrand can be

used to restore its smoothness by transformation. The very same idea can be put to use in this

problem. Related problems are Problem 7.2 and Problem 7.8.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Given a smooth, odd function f : [−1, 1]→ R, consider the integral

I :=
∫ 1

−1
arcsin(t) f (t)dt. (7.0.11)

We want to approximate this integral using global Gauss quadrature. The nodes (vector x) and the

weights (vector w) of an n-point Gaussian quadrature on [−1, 1] can be computed using the provided C++

routine gaussquad (found in gaussquad.hpp).

We have the following function:

QuadRule gaussquad(const unsigned n);

QuadRule is a struct containing the quadrature weights w and nodes x:

s t r u c t QuadRule {

Eigen::VectorXd nodes, weight;

};

(7.3.a) Write a C++ routine

template <c lass Function>

void gaussConv(const Function & f);

that produces an appropriate convergence plot of the quadrature error versus the number n = 1, . . . , 50
of quadrature points. Here f is a handle to the function f .

Save your convergence plot for f (t) = sinh(t) as GaussConv.eps.

HIDDEN HINT 1 for (7.3.a) → 7.3.1:hcv.pdf

SOLUTION for (7.3.a) → 7.3.1:gauq1.pdf N

(7.3.b) Describe qualitatively and quantitatively the asymptotic (for n → ∞) convergence of the

quadrature error you observe in (7.3.a).

HIDDEN HINT 1 for (7.3.b) → 7.3.2:h1.pdf

SOLUTION for (7.3.b) → 7.3.2:gauq2.pdf N

(7.3.c) Transform the previous integral into an equivalent one, with a suitable change of variable, so

that the Gauss quadrature applied to the transformed integral can be expected to converge exponentially

if f ∈ C∞([−1, 1]).

Use the transformation t = sin(x).

SOLUTION for (7.3.c) → 7.3.3:gauq3.pdf

N

7. Numerical Quadrature, 7. Numerical Quadrature 107

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/GaussianQuadrature/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/GaussianQuadrature/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(7.3.d) Now, write a C++ function

template <c lass Funct ion >

void gaussConvCV (const Funct ion & f) ;

which plots the quadrature error versus the number n = 1, . . . , 50 of quadrature points for the integral

obtained in the previous subtask.

Again, as in Sub-problem (7.3.a), choose f (t) = sinh(t) and save your convergence plot as GaussConvCV.eps

SOLUTION for (7.3.d) → 7.3.4:gauq4.pdf

N

(7.3.e) Similar question as in Sub-problem (7.3.b): describe qualitatively the asymptotic (for n → ∞)

convergence of the quadrature error you observe in Sub-problem (7.3.d).

SOLUTION for (7.3.e) → 7.3.5:gauq2.pdf N

(7.3.f) Explain the difference between the results obtained in Sub-problem (7.3.a) and Sub-problem (7.3.d).

SOLUTION for (7.3.f) → 7.3.6:gauq5.pdf N

End Problem 7.3

Problem 7.4: Generalize “Hermite-type” quadrature formula

In this exercise we will construct a new quadrature formula and then use it in an application.

You may want to have a look at the methods used in ➜Ex. 7.3.13, as they will come in handy.

(7.4.a) Determine A, B, C, x1 ∈ R such that the quadrature formula

∫ 1

0
f (x)dx ≈ A f (0) + B f ′(0) + C f (x1) (7.0.18)

is exact for polynomials of highest possible degree.

SOLUTION for (7.4.a) → 7.4.1:herm1s.pdf N

(7.4.b) Compute an approximation of z(2) using the quadrature rule of Eq. (7.0.18), where the function

z is defined as the solution of the initial value problem

z′(t) =
t

1 + t2
, z(1) = 1 . (7.0.19)

HIDDEN HINT 1 for (7.4.b) → 7.4.2:herm2h.pdf

SOLUTION for (7.4.b) → 7.4.2:herm2s.pdf N

End Problem 7.4

Problem 7.5: Numerical integration of improper integrals

We want to devise a numerical method for the computation of improper integrals of the form
∫ ∞

−∞
f (t)dt for continuous functions f : R → R that decay sufficiently fast for |t| → ∞ (such

that they are integrable on R).

[This problem involves implementation in C++]

7. Numerical Quadrature, 7. Numerical Quadrature 108

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

A first option is the truncation of the domain to a bounded interval [−b, b], b ≤ ∞, that is, we approxi-

mate:

∫ ∞

−∞
f (t)dt ≈

∫ b

−b
f (t)dt

and then use a standard quadrature rule (like Gauss-Legendre quadrature) on [−b, b].

(7.5.a) For the integrand g(t) := 1/(1 + t2) determine b such that the truncation error ET satisfies:

ET :=

∣
∣
∣
∣

∫ ∞

−∞
g(t)dt−

∫ b

−b
g(t)dt

∣
∣
∣
∣
≤ 10−6 (7.0.22)

SOLUTION for (7.5.a) → 7.5.1:op1sol.pdf N

(7.5.b) What is the algorithmic difficulty faced in the implementation of the truncation approach for a

generic integrand?

SOLUTION for (7.5.b) → 7.5.2:op1dif.pdf N

A second option is the transformation of the improper integral to a bounded domain by substitution. For

instance, we may use the map t = cot(s).

(7.5.c) Into which integral does the substitution t = cot(s) convert
∫ ∞

−∞
f (t)dt?

SOLUTION for (7.5.c) → 7.5.3:op2sub.pdf N

(7.5.d) Write down the transformed integral explicitly for g(t) := 1
1+t2 . Simplify the integrand.

HIDDEN HINT 1 for (7.5.d) → 7.5.4:h1ti.pdf

SOLUTION for (7.5.d) → 7.5.4:op2com.pdf N

(7.5.e) Write a C++ function that uses the previous transformation together with the n-point Gauss-

Legendre quadrature rule to evaluate
∫ ∞

−∞
f (t)dt:

template <typename Function>

double quadinf(i n t n, const Function & f);

f passes an object that provides an evaluation operator of the form:

double opera tor () (double x) const ;

HIDDEN HINT 1 for (7.5.e) → 7.5.5:hlf1.pdf

SOLUTION for (7.5.e) → 7.5.5:op2imp.pdf N

(7.5.f) Study the convergence for n → ∞ of the quadrature method implemented in the previous

subproblem for the integrand h(t) := exp
(
−(t− 1)2

)
(shifted Gaussian). What kind of convergence

do you observe? For the error you can use that
∫ ∞

−∞
h(t)dt =

√
π.

SOLUTION for (7.5.f) → 7.5.6:testsol.pdf N

End Problem 7.5

7. Numerical Quadrature, 7. Numerical Quadrature 109

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 7.6: Nested numerical quadrature

This problem addresses numerical quadrature over a two-dimensional domain. It turns out that this

problem can be reduced to two one-dimensional integrals, which are amenable to the techniques

covered in ➜Chapter 7.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

A laser beam has intensity

I(x, y) := exp(−α((x− p)2 + (y− q)2)) , x, y ∈ R

on the plane orthogonal to the direction of the beam.

(7.6.a) Write down the radiant power absorbed by the triangle

∆ := {(x, y)T ∈ R
2 | x ≥ 0, y ≥ 0, x + y ≤ 1}

as a double integral.

HIDDEN HINT 1 for (7.6.a) → 7.6.1:neq1h.pdf

SOLUTION for (7.6.a) → 7.6.1:neq1s.pdf

N

(7.6.b) Write a C++ function

template <c lass Function>

double evalgaussquad(const double a, const double b,

const Function & f, const QuadRule & Q);

that evaluates the n-point Gaussian quadrature as introduced in ➜Section 7.3 for an integrand passed

in f on domain [a, b]. It should rely on the quadrature rule on the reference interval [−1, 1] that is

supplied through an object of type QuadRule:

s t r u c t QuadRule { Eigen::VectorXd nodes, weight; };

(The vectors weights and nodes denote the weights and nodes of the reference quadrature rule,

respectively.)

Use the function gaussquad from gaussquad.hpp to compute weights and nodes in [−1, 1].

SOLUTION for (7.6.b) → 7.6.2:neq2s.pdf N

(7.6.c) Write a C++ function

template <c lass Function>

double gaussquadtriangle(const Function & f, const unsigned N)

for the computation of the integral
∫

∆
f (x, y) dx dy (7.0.28)

using nested n-point, 1D Gauss quadratures (using the function evalgaussquad of (7.6.b)).

HIDDEN HINT 1 for (7.6.c) → 7.6.3:neq3h1.pdf

HIDDEN HINT 2 for (7.6.c) → 7.6.3:neq3h2.pdf

SOLUTION for (7.6.c) → 7.6.3:neq3s.pdf N

7. Numerical Quadrature, 7. Numerical Quadrature 110

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/NestedQuad/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/NestedQuad/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(7.6.d) Apply the function gaussquadtriangle of (7.6.c) using the parameters α = 1, p =
0, q = 0. Compute the error w.r.t. to the number of nodes n using the “exact” value of the integral

I ≈ 0.366046550000405. What kind of convergence do you observe and why?

HIDDEN HINT 1 for (7.6.d) → 7.6.4:neq4h.pdf

SOLUTION for (7.6.d) → 7.6.4:neq4s.pdf

N

End Problem 7.6

Problem 7.7: Quadrature plots

In this problem, we will try and deduce the type of quadrature and the integrand from an error plot.

We consider three different functions on the interval I = [0, 1]:

function A: fA ∈ C∞(I) , fA /∈ Pk ∀ k ∈ N ;

function B: fB ∈ C0(I) , fB /∈ C1(I) ;

function C: fC ∈ P12 ,

where Pk is the space of the polynomials of degree at most k defined on I. The following quadrature

rules are applied to these functions:

• quadrature rule A is a global Gauss quadrature;

• quadrature rule B is a composite trapezoidal rule;

• quadrature rule C is a composite 2-point Gauss quadrature.

The corresponding absolute values of the quadrature errors are plotted against the number of function

evaluations in the figure below. Notice that only the quadrature errors obtained with an even number of

function evaluations are shown.

7. Numerical Quadrature, 7. Numerical Quadrature 111

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Fig. 34

0 5 10 15 20 25 30 35 40
10

-20

10
-15

10
-10

10
-5

10
0

Plot #3

Number of function evaluations

A
b
s
o
lu

te
 e

rr
o
r

Curve 1

Curve 2

Curve 3

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0

Plot #1

A
b
s
o
lu

te
 e

rr
o
r

Number of function evaluations

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

Plot #2

A
b
s
o
lu

te
 e

rr
o
r

Number of function evaluations

(7.7.a) Match the three plots (plot #1, #2 and #3) with the three quadrature rules (quadrature rule A,

B, and C). Justify your answer.

HIDDEN HINT 1 for (7.7.a) → 7.7.1:plot1h.pdf

SOLUTION for (7.7.a) → 7.7.1:plot1s.pdf N

(7.7.b) The quadrature error curves for a particular function fA, fB and fC are plotted in the same style

(curve 1 as red line with small circles, curve 2 means the blue solid line, curve 3 is the black dashed

line). Which curve corresponds to which function (fA, fB, fC)? Justify your answer.

SOLUTION for (7.7.b) → 7.7.2:plot2s.pdf N

End Problem 7.7

Problem 7.8: Quadrature by transformation

In ➜Rem. 7.3.46 a suitable transformation converted a singular integrand into a smooth one. In this

problem we see another example. Also Problem 7.2 and Problem 7.3 cover this topic.

For f ∈ C([0, 2]) we consider the definite integral with singular integrand

I(f) :=
∫ 2

0

√

2− t

t
f (t)dt .

(7.8.a)

7. Numerical Quadrature, 7. Numerical Quadrature 112

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

For n ∈ N∗, derive a family of 2n-point quadrature formulas

Qn(f) =
2n

∑
j=1

wn
j f (cn

j), f ∈ C([0, 2])

for which Qn(f) converges to I(f) exponentially as n→ ∞, if f ∈ C∞([0, 2]), more precisely, if it has

an analytic extension to a complex neighborhood of [0, 2].

HIDDEN HINT 1 for (7.8.a) → 7.8.1:hsi1.pdf

HIDDEN HINT 2 for (7.8.a) → 7.8.1:hsi5.pdf

SOLUTION for (7.8.a) → 7.8.1:qtf1.pdf

N

(7.8.b) Given n > 0, determine the maximal d ∈ N such that I(p) = Qn(p) for every polynomial

p ∈ Pd−1.

SOLUTION for (7.8.b) → 7.8.2:1tf2ZerosLegendre5s.pdf N

End Problem 7.8

Problem 7.9: Discretization of the integral operator

In this problem we consider a completely new concept, an integral operator of the form

(T f)(x) =
∫

I
k(x, y) f (y)dy , x ∈ I ⊂ R , (7.0.33)

where the kernel k is continuous on I × I, I ⊂ R a closed interval. It maps a function on I to

another function on I. Such integral operators are very common in models of continuous physics.

Of course, their numerical treatment heavily draws on numerical quadrature.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Given f ∈ C0([0, 1]), the integral

g(x) :=
∫ 1

0
e|x−y| f (y) dy

defines a function g ∈ C0([0, 1]). We approximate the integral by means of n-point Gauss quadrature,

which yields a function gn(x).

(7.9.a) Let {ξn
j }n

j=1 be the nodes for the Gauss quadrature on the interval [0, 1]. Assume that the

nodes are ordered, namely ξn
j < ξn

j+1 for every j = 1, . . . , n− 1. We can write

(gn(ξ
n
l))

n
l=1 = M(f (ξn

j))
n
j=1,

for a suitable matrix M ∈ Rn,n. Give a formula for the entries of M.

SOLUTION for (7.9.a) → 7.9.1:ongp1.pdf N

(7.9.b) Implement a function

template <typename Function>

Eigen::VectorXd comp_g_gausspts(Function f, unsigned i n t n)

7. Numerical Quadrature, 7. Numerical Quadrature 113

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/GaussPts/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/DirectLSE/GaussPts/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

that computes the n-vector (gn(ξn
l))

n
l=1 with optimal complexity O(n) (excluding the computation of

the nodes and weights), where f is an object with an evaluation operator, e.g. a lambda function, that

represents the function f .

You may use the provided function

void gaussrule(i n t n, Eigen::VectorXd & w, Eigen::VectorXd & xi)

that computes the weigths w and the ordered nodes xi relative to the n-point Gauss quadrature on the

interval [−1, 1].

SOLUTION for (7.9.b) → 7.9.2:ongp2.pdf N

(7.9.c) Test your implementation by computing g(ξ21
11) for f (y) = e−|0.5−y|. What result do you

expect?

SOLUTION for (7.9.c) → 7.9.3:ongp3.pdf N

End Problem 7.9

7. Numerical Quadrature, 7. Numerical Quadrature 114

Chapter 8

Iterative Methods for Non-Linear Systems of

Equations

Problem 8.1: Order of convergence from error recursion

In ➜Exp. 8.3.26 we have observed fractional orders of convergence (➜Def. 8.1.17) for both the

secant method and the quadratic inverse interpolation method. This is fairly typical for 2-point meth-

ods in 1D and arises from the underlying recursions for error bounds. The analysis is elaborated for

the secant method in ➜Rem. 8.3.27, where a linearised error recursion is given in ➜Eq. (8.3.31).

This problem addresses how to determine the order of convergence from an abstract error recur-

sion.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

(8.1.a) Now we suppose the recursive bound for the norms of the iteration errors to be

‖e(n+1)‖ ≤ ‖e(n)‖
√

‖e(n−1)‖ , (8.0.1)

where e(n) = x(n) − x∗ is the error of n-th iterate.

Guess the maximal order of convergence of the method from a numerical experiment conducted in C++.

HIDDEN HINT 1 for (8.1.a) → 8.1.1:RecursionOrder1h.pdf

SOLUTION for (8.1.a) → 8.1.1:RecursionOrder1s.pdf N

(8.1.b) Find the maximal guaranteed order of convergence of this method through analytical consid-

erations.

HIDDEN HINT 1 for (8.1.b) → 8.1.2:RecursionOrder2ha.pdf

HIDDEN HINT 2 for (8.1.b) → 8.1.2:RecursionOrder2hb.pdf

HIDDEN HINT 3 for (8.1.b) → 8.1.2:RecursionOrder2hc.pdf

SOLUTION for (8.1.b) → 8.1.2:RecursionOrder2s.pdf N

End Problem 8.1

115

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/RecursionOrder/RecursionOrder/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/RecursionOrder/RecursionOrder/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 8.2: Code quiz

A frequently encountered drudgery in scientific computing is the use and modification of poorly

documented code. This makes it necessary to understand the ideas behind the code first. Now we

practice this in the case of a simple iterative method.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

(8.2.a) What is the purpose of the following C++ code?

C++11-code 8.0.6: Undocumented function.

2 double myfunct ion (double x) {

3 double log2 =0.693147180559945;

4 double y =0;

5 while (x>std : : s q r t (2)) { x / = 2 ; y+=log2 ; } //

6 while (x < 1 . / std : : s q r t (2)) { x∗=2; y−=log2 ; } //

7 double z=x−1; //

8 double dz=x∗std : : exp(−z) −1.0;

9 while (std : : abs (dz / z) >std : : numer ic_ l im i t s <double > : : eps i l on ()) {

10 z+=dz ; dz=x∗std : : exp(−z) −1.0;

11 }

12 return y+z+dz ; //

13 }

Get it on GitLab (codequiz.cpp).

N

HIDDEN HINT 1 for (8.2.a) → 8.2.1:Code1ha.pdf

HIDDEN HINT 2 for (8.2.a) → 8.2.1:Code1hb.pdf

SOLUTION for (8.2.a) → 8.2.1:Code1s.pdf

(8.2.b) Explain the rationale behind the first two while loops in the code, Line 5, Line 6, preceding

the main iteration.

SOLUTION for (8.2.b) → 8.2.2:Code2s.pdf N

(8.2.c) Explain the last loop body does.

SOLUTION for (8.2.c) → 8.2.3:Code3s.pdf N

(8.2.d) Explain the conditional expression in the last while loop.

SOLUTION for (8.2.d) → 8.2.4:Code4s.pdf N

(8.2.e) Replace the last while-loop with a fixed number of iterations that, nevertheless, guarantee

that the result has a relative accuracy eps.

SOLUTION for (8.2.e) → 8.2.5:Code5s.pdf N

End Problem 8.2

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

116

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/CodeQuiz/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/CodeQuiz/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/CodeQuiz/solutions_nolabels/codequiz.cpp

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 8.3: Convergent Newton iteration

As explained in ➜Section 8.3.2.1, the convergence of Newton’s method in 1D may only be local.

This problem investigates a particular setting, in which global convergence can be expected.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We recall the notion of a convex function ➜Def. 5.3.5 and its geometric meaning ➜Fig. 176: A differen-

tiable function f : [a, b] 7→ R is convex if and only if its graph lies on or above its tangent at any point.

Equivalently, differentiable function f : [a, b] 7→ R is convex, if and only if its derivative is non-decreasing.

Give a “graphical proof” of the following statement:

Theorem 8.0.10. Global convergence of Newton’s method in 1D for convex monotone func-

tions

If F(x) belongs to C2(R), is strictly increasing, is convex, and has a unique zero, then the Newton

iteration ➜Eq. (8.3.4) for F(x) = 0 is well defined and will converge to the zero of F(x) for any

initial guess x(0) ∈ R.

SOLUTION for (8.3.) → 8.3.0:Conv1s.pdf

End Problem 8.3

Problem 8.4: Modified Newton method

The following problem consists in EIGEN implementation of a modified version of the Newton method

(in one dimension ➜Section 8.3.2.1 and many dimensions ➜Section 8.4) for the solution of a non-

linear system. Refresh yourself on stopping criteria for iterative methods ➜Section 8.1.2.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

For the solution of the non-linear system of equations F(x) = 0 (with F : Rn → Rn), the following iterative

method can be used:

y(k) = x(k) + DF(x(k))−1 F(x(k)) ,

x(k+1) = y(k) − DF(x(k))−1 F(y(k)) ,

where DF(x) ∈ Rn,n is the Jacobian matrix of F evaluated in the point x.

(8.4.a) Show that the iteration is consistent with F(x) = 0 in the sense of ➜Def. 8.2.1, that is, show

that x(k) = x(0) for every k ∈ N if and only if F(x(0)) = 0 and DF(x(0)) is regular.

SOLUTION for (8.4.a) → 8.4.1:Modi1s.pdf N

(8.4.b) Implement a C++ function

template <typename Scalar, c lass Function, c lass Jacobian>

Scalar mod_newt_step_scalar(const Scalar& x,

const Function& f,

const Jacobian& df);

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

117

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/ConvNewtIter/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/ConvNewtIter/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/ModifiedNewton/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/ModifiedNewton/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

that computes a step of the modified Newton method for a scalar function F, that is, for the case n = 1.

Here, f is a function object of type Function passing the function F : R 7→ R and df a function object

of type Jacobian passing the derivative F′ : R 7→ R. Both require an appropriate operator().

SOLUTION for (8.4.b) → 8.4.2:Modi2s.pdf N

(8.4.c) What is the order of convergence of the method?

To investigate it, write a C++function void mod_newt_ord() that:

• uses the function mod_newt_step to the following scalar equation

arctan(x)− 0.123 = 0 ;

• determines empirically the order of convergence, in the sense of ➜Rem. 8.1.19 of the course

slides;

• implements meaningful stopping criteria (➜Section 8.1.2).

Use x0 = 5 as initial guess.

HIDDEN HINT 1 for (8.4.c) → 8.4.3:Modi3ha.pdf

HIDDEN HINT 2 for (8.4.c) → 8.4.3:Modi3hb.pdf

SOLUTION for (8.4.c) → 8.4.3:Modi3s.pdf N

(8.4.d) Write a C++ function void mod_newt_sys() that provides an efficient implementation of

the modified Newton method for the non-linear system

F(x) := Ax +






c1ex1

...

cnexn




 = 0 ,

where A ∈ Rn,n is symmetric positive definite and ci ≥ 0, i = 1, . . . , n. Stop the iteration when the

Euclidean norm of the increment x(k+1)− x(k) relative to the norm of x(k+1) is smaller than the tolerance

passed in tol. Use the zero vector as initial guess. Test your code and report the experimental order

of convergence.

SOLUTION for (8.4.d) → 8.4.4:Modi4s.pdf N

End Problem 8.4

Problem 8.5: The order of convergence of an iterative scheme

➜Rem. 8.1.19 shows how to detect the order of convergence of an iterative method from a numer-

ical experiment. In this problem we study the so-called Steffensen’s method, which is a derivative-

free iterative method for finding zeros of functions in 1D.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let f : [a, b] 7→ R be twice continuously differentiable with f (x∗) = 0 and f ′(x∗) 6= 0. Consider the

iteration defined by

x(n+1) := x(n) − f (x(n))

g(x(n))
, where g(x) =

f (x + f (x))− f (x)

f (x)
. (8.0.16)

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

118

http://en.wikipedia.org/wiki/Steffensen's_method
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/QuadraticConvergence/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/QuadraticConvergence/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(8.5.a) Write a C++ function for the Steffensen’s method:

template <c lass Function>

VectorXd steffensen(Function& f, double x0);

f is a handle to function f , x0 is the initial guess x(0).

HIDDEN HINT 1 for (8.5.a) → 8.5.1:Quad1h.pdf

SOLUTION for (8.5.a) → 8.5.1:Quad1s.pdf N

(8.5.b) Function g(x) contains a term like exex
, therefore it grows very fast in x and the method cannot

start for a large x(0). How can you modify the function f (keeping the same zero) in order to allow the

choice of a larger initial guess?

HIDDEN HINT 1 for (8.5.b) → 8.5.2:Quad2h.pdf

SOLUTION for (8.5.b) → 8.5.2:Quad2s.pdf N

End Problem 8.5

Problem 8.6: Newton’s method for F(x) := arctan x

The merely local convergence of Newton’s method is notorious, see ➜Section 8.4.2 and

➜Ex. 8.4.54. The failure of the convergence is often caused by the overshooting of Newton correc-

tion. In this problem we try to understand the observations made in ➜Ex. 8.4.54.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

(8.6.a) Find an equation satisfied by the smallest positive initial guess x(0) for which Newton’s method

does not converge when it is applied to F(x) = arctan x.

HIDDEN HINT 1 for (8.6.a) → 8.6.1:NewtonArctan1ha.pdf

HIDDEN HINT 2 for (8.6.a) → 8.6.1:NewtonArctan1hb.pdf

SOLUTION for (8.6.a) → 8.6.1:NewtonArctan1s.pdf N

(8.6.b) Use Newton’s method to find an approximation of such x(0) and implement it in C++:

double newton_arctan(double x0_);

SOLUTION for (8.6.b) → 8.6.2:NewtonArctan2s.pdf N

End Problem 8.6

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

119

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/NewtonArctan/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/NewtonArctan/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 8.7: Order-p convergent iterations

In ➜Section 8.1.1 we investigated the speed of convergence of iterative methods for the solution

of a general non-linear problem F(x) = 0 and introduced the notion of convergence of order p ≥
1, see ➜Def. 8.1.17. This problem highlights the fact that for p > 1 convergence may not be

guaranteed, even if the error norm estimate of ➜Def. 8.1.17 may hold for some x∗ ∈ Rn and all

iterates x(k) ∈ Rn.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Given x∗ ∈ Rn, suppose that a sequence x(k) satisfies ➜Def. 8.1.17:

∃C > 0: ‖x(k+1) − x∗‖ ≤ C‖x(k) − x∗‖p ∀k and p > 1 . (8.0.19)

(8.7.a) Determine ǫ0 > 0 as large as possible such that

‖x(0) − x∗‖ ≤ ǫ0 =⇒ lim
k→∞

x(k) = x∗ . (8.0.20)

In other words, ǫ0 tells us which distance of the initial guess from x∗ still guarantees local convergence.

SOLUTION for (8.7.a) → 8.7.1:OrdC1s.pdf N

(8.7.b) Provided that ‖x(0) − x∗‖ < ǫ0 is satisfied with ǫ0 from Sub-problem (8.7.a), determine the

minimal iteration step kmin = kmin(ǫ0, C, p, τ) such that ‖x(k) − x∗‖ < τ.

SOLUTION for (8.7.b) → 8.7.2:OrdC2s.pdf N

(8.7.c) Complete the TODOs in the supplied ordconviter.cpp code and plot kmin(ǫ0, τ) for

the values p = 1.5, C = 2. Test you implementation in the main function for every (ǫ0, τ) ∈
linspace

([

0, C
1

1−p

]2
)

.

SOLUTION for (8.7.c) → 8.7.3:OrdC3s.pdf N

End Problem 8.7

Problem 8.8: Nonlinear electric circuit

In the previous exercises we have discussed electric circuits with elements that give rise to linear

voltage–current dependence, see ➜Ex. 2.1.3 and ➜Ex. 2.8.1. The principles of nodal analysis

were explained in these cases.

However, the electrical circuits encountered in practise usually feature elements with a non-linear

current-voltage characteristic. Then nodal analysis leads to non-linear systems of equations as was

elaborated in ➜Ex. 8.0.1. Please note that transformation to frequency domain is not possible for

non-linear circuits so that we will always study the direct current (DC) situation.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

120

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/OrdConvIter/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/OrdConvIter/solutions_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/NonLinElectr/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/NonLinElectr/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

In this problem we deal with a very simple non-linear

circuit element, a diode. The current through a diode

as a function of the applied voltage can be modelled

by the relationship Ikj = α
(

e
β

Uk−Uj
UT − 1

)

, with suit-

able parameters α, β and the thermal voltage UT.

Now we consider the circuit depicted in Fig. 41 and

assume that all resistors have resistance R = 1.
Fig. 41

(8.8.a) Carry out the nodal analysis of the electric circuit and derive the corresponding non-linear

system of equations F(u) = 0 for the voltages in nodes 1, 2 and 3, cf. ➜Eq. (8.0.2). Note that the

voltages in nodes 4 and 5 are known (input voltage and ground voltage 0).

SOLUTION for (8.8.a) → 8.8.1:NonL1s.pdf N

(8.8.b) Write an EIGEN function

void circuit(const double & alpha, const double & beta, const

VectorXd & Uin, VectorXd & Uout)

that computes the output voltages Uout (at node 1 in Fig. 41) for a sorted vector of input voltages Uin

(at node 4) for a thermal voltage UT = 0.5. The parameters alpha, beta pass the (non-dimensional)

diode parameters.

Use Newton’s method to solve F(u) = 0 with a tolerance of τ = 10−6.

SOLUTION for (8.8.b) → 8.8.2:NonL2s.pdf N

(8.8.c) We are interested in the nonlinear effects introduced by the diode. Calculate Uout = Uout(Uin)
as a function of the variable input voltage Uin ∈ [0, 20] (for non-dimensional parameters α = 8, β = 1
and for a thermal voltage UT = 0.5) and infer the nonlinear effects from the results.

SOLUTION for (8.8.c) → 8.8.3:NonL3s.pdf N

End Problem 8.8

Problem 8.9: Julia Set

Julia sets are famous fractal shapes in the complex plane. They are constructed from the basins of

attraction of zeros of complex functions when the Newton method is applied to find them.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

In the space C of complex numbers the equation

z3 = 1 (8.0.21)

has three solutions: z1 = 1, z2 = − 1
2 +

1
2

√
3i, z3 = − 1

2 − 1
2

√
3i (the cubic roots of unity).

(8.9.a) As you know from the analysis course, the complex plane C can be identified with R2 via

(x, y) 7→ z = x+ iy. Using this identification, convert Eq. (8.0.21) into a system of equations F(x, y) =
0 for a suitable function F : R2 7→ R2.

SOLUTION for (8.9.a) → 8.9.1:JuliaSet1s.pdf N

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

121

http://en.wikipedia.org/wiki/Julia_set
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/JuliaSet/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/JuliaSet/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(8.9.b) Formulate Newton iteration ➜Eq. (8.4.1) for the non-linear equation F(x) = 0 with x = (x, y)T

and F from the previous subproblem.

SOLUTION for (8.9.b) → 8.9.2:JuliaSet2s.pdf N

(8.9.c) Denote by x(k) the iterates produced by Newton method from the previous subproblem with

some initial vector x(0) ∈ R2. Depending on x(0), the sequence x(k) will either diverge or converge to

one of the three cubic roots of unity.

Analyze the behavior of Newton iterations in C++ using the following procedure:

• Use equally spaced points on the domain [−2, 2]2 ⊂ R2 as starting points of Newton iterations.

• Color the starting points differently depending on which of the three roots is the limit of the se-

quence x(k).

Complete the TODOs in the supplied julia.cpp code and plot the results running the main function.

HIDDEN HINT 1 for (8.9.c) → 8.9.3:JuliaSet3h.pdf

SOLUTION for (8.9.c) → 8.9.3:JuliaSet3s.pdf N

End Problem 8.9

Problem 8.10: Solving a quasi-linear system

In ➜§ 8.4.18 we studied Newton’s method for a so-called quasi-linear system of equations, see

➜Eq. (8.4.19). In ➜Ex. 8.4.23 we then dealt with concrete quasi-linear system of equations and

in this problem we will supplement the theoretical considerations from class by implementation in

EIGEN. We will also learn about a simple fixed point iteration for that system, see ➜Section 8.2.

Refresh yourself about the relevant parts of the lecture. You should also try to recall the Sherman-

Morrison-Woodbury formula ➜Lemma 2.6.22.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the nonlinear (quasi-linear) system:

A(x)x = b , (8.0.23)

as in ➜Ex. 8.4.23. Here, A : Rn → Rn,n is a matrix-valued function:

A(x) :=












γ(x) 1
1 γ(x) 1

. . .
. . .

. . .

. . .
. . .

. . .

1 γ(x) 1
1 γ(x)












, γ(x) := 3 + ‖x‖2

where ‖·‖2 is the Euclidean norm.

(8.10.a) A fixed point iteration can be obtained from Eq. (8.0.23) by the “frozen argument technique”;

in a step we take the argument to the matrix valued function from the previous step and just solve a

linear system for the next iterate. State the defining recursion and iteration function for the resulting

fixed point iteration. N

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

122

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/QuasiLinear/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/IterativeMethods/QuasiLinear/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(8.10.b) We consider the fixed point iteration derived in Eq. (8.0.23). Implement a function computing

the iterate x(k+1) from x(k) in EIGEN.

HIDDEN HINT 1 for (8.10.b) → 8.10.2:QuasiLinear2h.pdf

SOLUTION for (8.10.b) → 8.10.2:QuasiLinear2s.pdf N

(8.10.c) Write a routine that finds the solution x∗ with the fixed point method applied to the previous

quasi-linear system. Use x(0) = b as initial guess. Supply it with a suitable correction based stopping

criterion as discussed in ➜Section 8.1.2 and pass absolute and relative tolerance as arguments.

SOLUTION for (8.10.c) → 8.10.3:QuasiLinear3s.pdf N

(8.10.d) Let b ∈ Rn be given. Write the recursion formula for the solution of

A(x)x = b (8.0.26)

with the Newton method.

SOLUTION for (8.10.d) → 8.10.4:QuasiLinear4s.pdf N

(8.10.e) The matrix A(x), being symmetric and tri-diagonal, is cheap to invert. Rewrite the previous

iteration efficiently, exploiting, the Sherman-Morrison-Woodbury inversion formula for rank-one modifi-

cations ➜Lemma 2.6.22.

SOLUTION for (8.10.e) → 8.10.5:QuasiLinear5s.pdf N

(8.10.f) Implement the above step of Newton method in EIGEN.

HIDDEN HINT 1 for (8.10.f) → 8.10.6:QuasiLinear6ha.pdf

HIDDEN HINT 2 for (8.10.f) → 8.10.6:QuasiLinear6hb.pdf

SOLUTION for (8.10.f) → 8.10.6:QuasiLinear6s.pdf N

(8.10.g) Repeat (8.10.f) for the Newton method. As initial guess use x(0) = b.

SOLUTION for (8.10.g) → 8.10.7:QuasiLinear7s.pdf N

End Problem 8.10

8. Iterative Methods for Non-Linear Systems of Equations, 8. Iterative Methods for Non-Linear Systems of

Equations

123

Chapter 9

Eigenvalues

124

Chapter 10

Krylov Methods for Linear Systems of

Equations

125

Chapter 11

Numerical Integration – Single Step Methods

Problem 11.1: Integrating ODEs using the Taylor expansion method

In ➜Chapter 11 of the course we studied single step methods for the integration of initial value

problems for ordinary differential equations ẏ = f(y), ➜Def. 11.3.5. Explicit single step methods

have the advantage that they only rely on point evaluations of the right hand side f.

This problem examines another class of methods that is obtained by the following reasoning: if the

right hand side f : Rn → Rn of an autonomous initial value problem

ẏ = f(y) , y(0) = y0 , (11.0.1)

with solution y : R → Rn is smooth, the solution y(t) will also be regular and it is possible to

expand it into a Taylor sum at t = 0, see ➜Thm. 8.2.15,

y(t) =
m

∑
n=0

y(n)(0)

n!
tn + Rm(t) , (11.0.2)

with remainder term Rm(t) = O(tm+1) for t→ 0.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

A single step method for the numerical integration of Eq. (11.0.1) can be obtained by choosing m = 3 in

Eq. (11.0.2), neglecting the remainder term and taking the remaining sum as an approximation of y(h),
that is

y(h) ≈ y1 := y(0) +
dy(0)

dt
h +

1

2

d2y(0)

dt2
h2 +

1

6

d3y(0)

dt3
h3 .

Subsequently, one uses the ODE and the initial condition to replace the temporal derivatives
diy

dti with

expressions in terms of (derivatives of) f. This yields a single step integration method called Taylor (ex-

pansion) method.

(11.1.a) Express
dy
dt (t) and

d2y

dt2 (t) in terms of f and its Jacobian Df.

HIDDEN HINT 1 for (11.1.a) → 11.1.1:Tayl1h.pdf

SOLUTION for (11.1.a) → 11.1.1:Tayl1s.pdf N

126

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/TaylorODE/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/TaylorODE/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(11.1.b) Verify the formula

d3y

dt3
(0) = D2f(y0)(f(y0), f(y0)) + Df(y0)

2f(y0) . (11.0.3)

HIDDEN HINT 1 for (11.1.b) → 11.1.2:Tayl0h.pdf

HIDDEN HINT 2 for (11.1.b) → 11.1.2:Tayl2h.pdf

HIDDEN HINT 3 for (11.1.b) → 11.1.2:Tayl24h.pdf

SOLUTION for (11.1.b) → 11.1.2:Tayl2s.pdf N

(11.1.c) We now apply the Taylor expansion method introduced above to the following predator-prey

model, already introduced in ➜Ex. 11.1.9:

ẏ1(t) = (α1 − β1y2(t))y1(t) (11.0.4)

ẏ2(t) = (β2y1(t)− α2)y2(t) (11.0.5)

y(0) = [100, 5]⊤ (11.0.6)

To this aim, in the template file taylorintegrator.hppwrite a header-only C++ class TaylorIntegrator

for the integration of the autonomous ODE of Eq. (11.0.4) using the Taylor expansion method with uni-

form timesteps on the temporal interval [0, 10].

HIDDEN HINT 1 for (11.1.c) → 11.1.3:Tayl3h.pdf

SOLUTION for (11.1.c) → 11.1.3:Tayl3s.pdf N

(11.1.d) With the template file taylorprey.cpp, experimentally determine the order of conver-

gence of the considered Taylor expansion method when it is applied to solve Eq. (11.0.4). Study the

behaviour of the error at final time t = 10 for the initial data y(0) = [100, 5]⊤.

SOLUTION for (11.1.d) → 11.1.4:Tayl4s.pdf N

(11.1.e) What is the disadvantage of the Taylor’s method compared with a Runge-Kutta method?

SOLUTION for (11.1.e) → 11.1.5:Tayl5s.pdf N

End Problem 11.1

Problem 11.2: Linear ODE in spaces of matrices

In this problem we consider initial value problems (IVPs) for linear ordinary differential equations

(ODEs) whose state space is a vector space of n× n matrices. Such ODEs arise when modelling

the dynamics of rigid bodies in classical mechanics.

A related problem is Problem 11.4.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

First we consider the linear matrix differential equation

Ẏ = AY =: f(Y) with A ∈ R
n×n. (11.0.9)

whose solutions are matrix-valued functions Y : R → Rn×n.

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 127

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/MatODE/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/MatODE/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(11.2.a) Show that for skew-symmetric A, i.e. A = −A⊤ we have:

Y(0) orthogonal =⇒ Y(t) orthogonal ∀t .

HIDDEN HINT 1 for (11.2.a) → 11.2.1:MatO1h1.pdf

HIDDEN HINT 2 for (11.2.a) → 11.2.1:MatO1h2.pdf

SOLUTION for (11.2.a) → 11.2.1:MatO1s.pdf N

(11.2.b) Implement three C++ functions

1. a single step of the explicit Euler method, see ➜Section 11.2.1:

1 MatrixXd eeuls tep (const Eigen : : MatrixXd & A,

2 const MatrixXd & Y0 , double h) ;

2. a single step of the implicit Euler method, see ➜Section 11.2.2,

1 MatrixXd i e u l s t e p (const MatrixXd & A,

2 const MatrixXd & Y0 , double h) ;

3. a single step of the implicit mid-point method, see ➜Section 11.2.3.

1 MatrixXd impstep (const MatrixXd & A,

2 const MatrixXd & Y0 , double h) ;

which compute, for a given initial value Y(t0) = Y0 and for given step size h, approximations for

Y(t0 + h) using one step of the corresponding method for the approximation of the ODE (11.0.9)

HIDDEN HINT 1 for (11.2.b) → 11.2.2:MatO2h.pdf

SOLUTION for (11.2.b) → 11.2.2:MatO2s.pdf N

(11.2.c) Investigate numerically, which one of the implemented methods preserves orthogonality for

the ODE (11.0.9) and which one doesn’t. To that end, consider the matrix

M :=





8 1 6
3 5 7
9 9 2





and use the matrix Q arising from the QR-decomposition of M as initial data Y0. As matrix A, use the

skew-symmetric matrix

A =





0 1 1
−1 0 1
−1 −1 0



 .

To that end, perform n = 20 time steps of size h = 0.01 with each method and compute the Frobenius

norm of Y(T)⊤Y(T)− I.

SOLUTION for (11.2.c) → 11.2.3:MatO3s.pdf N

End Problem 11.2

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 128

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 11.3: Explicit Runge-Kutta methods

The most widely used class of numerical integrators for IVPs is that of explicit Runge-Kutta (RK)

methods as defined in ➜Def. 11.4.9. They are usually described by giving their coefficients in the

form of a Butcher scheme ➜Eq. (12.0.18).

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

(11.3.a) In the template file rkintegrator.hpp, code a header-only C++ class RKIntegrator

which implements a generic RK method given by a Butcher scheme to solve the autonomous initial

value problem ẏ = f(y), y(t0) = y0:

template <c lass State>

c lass RKIntegrator;

SOLUTION for (11.3.a) → 11.3.1:RK3P1s.pdf N

(11.3.b) With the template file rk3prey.cpp, test your implementation of the RK methods with the

following data. As autonomous initial value problem, consider the predator/prey model (cf. ➜Ex. 11.1.9):

ẏ1(t) = (α1 − β1y2(t))y1(t) (11.0.15)

ẏ2(t) = (β2y1(t)− α2)y2(t) (11.0.16)

y(0) = [100, 5]⊤ (11.0.17)

with coefficients α1 = 3, α2 = 2, β1 = β2 = 0.1.

Use a Runge-Kutta single step method described by the following Butcher scheme (cf. ➜Def. 11.4.9):

0 0
1
3

1
3 0

2
3 0 2

3 0
1
4 0 3

4

(11.0.18)

Compute an approximated solution up to time T = 10 for the number of steps N = 2j, j = 7, . . . , 14.

As reference solution, use y(10) = [0.319465882659820, 9.730809352326228]⊤.

Tabulate the error and compute the experimental order of algebraic convergence of the method.

SOLUTION for (11.3.b) → 11.3.2:RK3P2s.pdf

N

End Problem 11.3

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 129

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/RK3Prey/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/RK3Prey/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 11.4: Non-linear Evolutions in Spaces of Matrices

In this problem we consider initial value problems (IVPs) for ordinary differential equations whose

state space is a vector space of n× n matrices. Such IVPs occur in mathematical models of discrete

mechanical systems.

Related to this problem is Problem 11.2.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider a non-linear ODE in matrix space and study the associated initial value problem

Ẏ = −(Y− Y⊤)Y =: f (Y) , Y(0) = Y0 ∈ R
n,n, (11.0.20)

whose solution is given by a matrix-valued function t 7→ Y(t) ∈ Rn×n.

(11.4.a) Write a C++ function

Matr ixXd matode (const Matr ixXd & Y0 , double T)

which solves (11.0.20) on [0, T] using the C++ header-only class ode45 (in the file ode45.hpp). The

initial value should be given by a n× n EIGEN matrix Y0. Set the absolute tolerance to 10−10 and the

relative tolerance to 10−8. The output should be an approximation of Y(T) ∈ Rn×n.

The ode45 class works as follows:

1. Call the constructor, and specify the r.h.s. function f and the type for the solution and the initial

data in RhsType, example:

ode45<RhsType> O(f) ;

with, for instance, Eigen::VectorXd as StateType.

2. (optional) Set custom options, modifying the struct options inside ode45, for instance:

O. op t ions . < option_you_want_to_change > = <value >;

3. Solve the IVP and store the solution, e.g.:

s td : : vector <s td : : pa i r <Eigen : : VectorXd , double>> so l = O. so lve (y0 , T) ;

Relative and absolute tolerances for ode45 are defined as rtol resp. atol variables in the struct

options. The return value is a sequence of states and times computed by the adaptive single step

method.

The type RhsType needs a vector space structure implemented with operators *, *, *=, += and

assignment/copy operators. Moreover a norm method must be available. Eigen vector and matrix

types, as well as fundamental types are eligible as RhsType.

SOLUTION for (11.4.a) → 11.4.1:NMatO1s.pdf N

(11.4.b) Show that the function t 7→ Y⊤(t)Y(t) is constant for the exact solution Y(t) of (11.0.20).

HIDDEN HINT 1 for (11.4.b) → 11.4.2:NMatO2h1.pdf

HIDDEN HINT 2 for (11.4.b) → 11.4.2:NMatO2h2.pdf

SOLUTION for (11.4.b) → 11.4.2:NMatO2s.pdf N

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 130

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/MatODE/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/MatODE/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(11.4.c) Write a C++ function

bool check inva r i an t (const Eigen : : Matr ixXd & M, double T) ;

which (numerically) determines if the invariant is preserved, for t = T and for the output of matode.

You must take into account round-off errors. The function’s input should be the same as that of matode.

SOLUTION for (11.4.c) → 11.4.3:NMatO3s.pdf N

(11.4.d) Use the function checkinvariant to test whether the invariant is preserved by ode45 or

not. Use the matrix M defined above and and T = 1.

SOLUTION for (11.4.d) → 11.4.4:NMatO4s.pdf N

End Problem 11.4

Problem 11.5: System of second-order ODEs

In this problem we practise the conversion of a second-order ODE into a first-order system in the

case of a large linear system of ODEs.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Consider the following initial value problem for an (implicit) second-order system of ordinary differential

equations in the time interval [0, T]:

2ü1 − ü2 = u1(u2 + u1) , (11.0.26)

−üi−1 + 2üi − üi+1 = ui(ui−1 + ui+1) , i = 2, . . . , n− 1 , (11.0.27)

2ün − ün−1 = un(un + un−1) , (11.0.28)

ui(0) = u0,i i = 1, . . . , n , (11.0.29)

u̇i(0) = v0,i i = 1, . . . , n . (11.0.30)

Here the notation ẅ designates the second derivative of a time-dependent function t 7→ w(t).

(11.5.a) Write Eq. (11.0.26) as a first-order IVP of the form ẏ = f(y), y(0) = y0.

HIDDEN HINT 1 for (11.5.a) → 11.5.1:Syst1h1.pdf

HIDDEN HINT 2 for (11.5.a) → 11.5.1:Syst1h2.pdf

HIDDEN HINT 3 for (11.5.a) → 11.5.1:Syst1h3.pdf

SOLUTION for (11.5.a) → 11.5.1:Syst1s.pdf N

(11.5.b) Write down the equations for the Runge-Kutta increments ki as stated in ➜Def. 11.4.9 for

the concrete case of the linear ODE ẏ = My, M ∈ Rd,d, and the classical Runge-Kutta method of

order 4, whose Butcher scheme is given in ➜Ex. 11.4.13.

SOLUTION for (11.5.b) → 11.5.2:Syst2s.pdf N

(11.5.c) Implement a C++ function

template <c lass Function, c lass State>

void rk4step(const Function &odefun, double h, const State & y0,

State & y1);

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 131

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/SystemODE/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/SystemODE/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

that performs a single step of stepsize h of the classical Runge-Kutta method of order 4 for the first-order

ODE obtained in Sub-problem (11.5.a) (passed via odefun). y0 contains the state before the step and

the function has to return the state after the step in y1.

SOLUTION for (11.5.c) → 11.5.3:Syst3s.pdf N

(11.5.d) Apply the function errors included in utility header file errors.hpp to the IVP obtained

in the previous subproblem. Use

n = 5 , u0,i = i/n , v0,i = −1 , T = 1 ,

and the classical RK method of order 4. Construct any sparse matrix encountered as a sparse matrix

in EIGEN. Comment on the order of convergence observed.

Function errors is defined as follows:

template <c lass Function>

void errors(const Function &f, const double &T, const VectorXd

&y0, const MatrixXd &A, const VectorXd &b);

This template function approximates the order of convergence of the RK scheme defined by A and b

when applied to the first-order system ẏ = f (y), y(0) = y0. We are interested in the error of the

solution at time T.

SOLUTION for (11.5.d) → 11.5.4:Syst4s.pdf N

End Problem 11.5

Problem 11.6: Order is not everything

In ➜Section 11.3.2 we have seen that Runge-Kutta single step methods when applied to initial value

problems with sufficiently smooth solutions will converge algebraically (with respect to the maximum

error in the mesh points) with a rate given by their intrinsic order, see ➜Def. 11.3.21.

This problem relies on a class implemented in Problem 11.3.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

In this problem we perform empiric investigations of orders of convergence of several explicit Runge-

Kutta single step methods. We rely on two IVPs, one of which has a perfectly smooth solution, whereas

the second has a solution that is merely piecewise smooth. Thus in the second case the smoothness

assumptions of the convergence theory for RK-SSMs might be violated and it is interesting to study the

consequences.

In order to use the class RKIntegrator, you first need to construct an object of this class, passing as

arguments the Butcher tableau matrices A and b, for instance:

RKIntegrator<VectorXd> rk(A,b);

After that, call the methods solve, with parameters: r.h.s. function, fi nal time, initial value and number

of steps. For instance:

rk.solve(f,T,y0,n);

The output of this function will be std::vector<VectorXd> containing the solution at each equidis-

tant time step.

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 132

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/OrdNotAll/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/OrdNotAll/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(11.6.a)

Consider the autonomous ODE

ẏ = f(y), y(0) = y0, (11.0.33)

where f : Rn → Rn and y0 ∈ Rn. Using the class RKIntegrate write a C++ function

template <c lass Function>

void errors(const Function &f, double T,

const VectorXd &y0,

const MatrixXd &A, const VectorXd &b)

that computes an approximated solution yN of (11.0.33) up to time T by means of an explicit Runge-

Kutta method with N = 2k, k = 1, . . . , 15, uniform timesteps. The method is defined by the Butcher

scheme described by the inputs A and b. The input f is an object with an evaluation operator (e.g. a

lambda function) for arguments of type const VectorXd & representing f. The input y0 passes the initial

value y0.

For each k, the function should show the error at the final point EN = |yN(T) − y215(T)|, N = 2k,

k = 1, . . . , 13, accepting y215(T) as exact value. Assuming algebraic convergence for EN ≈ CN−r, at

each step show an approximation of the order of convergence rk (recall that N = 2k). This will be an

expression involving EN and EN/2.

Finally, compute and show an approximate order of convergence by averaging the relevant rNs (namely,

you should take into account the cases before machine precision is reached in the components of

yN(T)− y215(T)).

SOLUTION for (11.6.a) → 11.6.1:OrdN1h.pdf N

(11.6.b) Calculate the analytical solutions of the logistic ODE (see ➜Ex. 11.1.5)

ẏ = (1− y)y, y(0) = 1/2, (11.0.36)

and of the initial value problem

ẏ = |1.1− y|+ 1, y(0) = 1. (11.0.37)

HIDDEN HINT 1 for (11.6.b) → 11.6.2:ONA2s.pdf

HIDDEN HINT 2 for (11.6.b) → 11.6.2:OMA6s.pdf

HIDDEN HINT 3 for (11.6.b) → 11.6.2:OMA8s.pdf

SOLUTION for (11.6.b) → 11.6.2:OrdN2h.pdf N

(11.6.c) Use the function errors with the ODEs (11.0.36) and (11.0.37) and the methods:

• the explicit Euler method ➜Eq. (11.2.7), a RK single step method of order 1,

• the explicit trapezoidal rule ➜Eq. (11.4.6), a RK single step method of order 2,

• an RK method of order 3 given by the Butcher tableau ➜Eq. (12.0.18)

0
1/2 1/2

1 −1 2
1/6 2/3 1/6

• the classical RK method of order 4, see ➜Ex. 11.4.13 for details.

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 133

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Use final time T = 0.1 and initial value y0 = 0.5.

Comment on the calculated order of convergence for the different methods and the two different initial

value problems.

SOLUTION for (11.6.c) → 11.6.3:OrdN3h.pdf N

End Problem 11.6

Problem 11.7: Initial Condition for Lotka-Volterra ODE

In this problem we will face a situation, where we need to compute the derivative of the solution of

an initial value problem with respect to the initial state.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider IVPs for the autonomous ODE

ẏ = f(y) (11.0.41)

with smooth right hand side f : D → Rd, where D ⊆ Rd is the state space. We take for granted that for

all initial states, solutions exist for all times (global solutions, see ➜Ass. 11.1.38).

By its very definition given in ➜Def. 11.1.39, the evolution operator

Φ : R× D→ D, (t, y) 7→ Φ(t, y)

satisfies

∂Φ

∂t
(t, y) = f(Φ(t, y)).

Next, we can differentiate this identity with respect to the state variable y. We assume that all derivatives

can be interchanged, which can be justified by rigorous arguments (which we won’t do here). Thus, by the

chain rule, we obtain, after swapping partial derivatives ∂
∂t and Dy,

∂Dy Φ

∂t
(t, y) = Dy

∂Φ

∂t
(t, y) = Dy(f(Φ(t, y))) = D f(Φ(t, y))Dy Φ(t, y).

Abbreviating W(t, y) := Dy Φ(t, y) we can rewrite this as the non-autonomous ODE

Ẇ = D f(Φ(t, y))W. (11.0.42)

Here, the state y can be regarded as a parameter. Since Φ(0, y) = y, we also know W(0, y) = I
(identity matrix), which supplies an initial condition for (11.0.42). In fact, we can even merge (11.0.41) and

(11.0.42) into the ODE

d

dt
[y(·) , W(·, y0)] = [f(y(t)) , D f(y(t))W(t, y0)] , (11.0.43)

which is autonomous again.

Now let us apply (11.0.42)/(11.0.43). As in ➜Ex. 11.1.9, we consider the following autonomous Lotka-

Volterra differential equation of a predator-prey model

u̇ = (2− v)u
v̇ = (u− 1)v

(11.0.44)

on the state space D = R2
+, R+ = {ξ ∈ R : ξ > 0}. All the solutions of (11.0.44) are periodic and their

period depends on the initial state [u(0), v(0)]T. In this exercise we want to develop a numerical method

which computes a suitable initial condition for a given period.

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 134

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/InitCondLV/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/InitCondLV/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(11.7.a) For fixed state y ∈ D, (11.0.42) represents an ODE. What is its state space?

SOLUTION for (11.7.a) → 11.7.1:Init1h.pdf N

(11.7.b) What is the right hand side function for the ODE (11.0.42), in the case of the ẏ = f(y) given

by the Lotka-Volterra ODE (11.0.44)? You may write u(t), v(t) for solutions of (11.0.44).

SOLUTION for (11.7.b) → 11.7.2:Init2h.pdf N

(11.7.c) From now on we write Φ : R × R2
+ → R2

+ for the evolution operator associated with

(11.0.44). Based on Φ derive a function F : R2
+ → R2

+ which evaluates to zero for the input y0 if

the period of the solution of system (11.0.44) with initial value

y0 =

[
u(0)
v(0)

]

is equal to a given value TP.

SOLUTION for (11.7.c) → 11.7.3:Init4h.pdf N

(11.7.d) We write W(T, y0), T ≥ 0, y0 ∈ R2
+ for the solution of (11.0.42) for the underlying ODE

(11.0.44). Express the Jacobian of F by means of W.

SOLUTION for (11.7.d) → 11.7.4:Init5h.pdf N

(11.7.e) Argue, why the solution of F(y) = 0 will, in gneneral, not be unique. When will it be unique?

HIDDEN HINT 1 for (11.7.e) → 11.7.5:Init1s.pdf

SOLUTION for (11.7.e) → 11.7.5:Init6h.pdf N

A C++ implementation of an adaptive embedded Runge-Kutta method is available, with a functionality

similar to MATLAB’s ode45 see Problem 11.2).

Instructions on the usage of ode45.

The class ode45 is header-only, meaning you just include the file and use it right away (no linking re-

quired). The file ode45.hpp defines class ode45 implementing an emulation of Matlab’s Rosenbrock

method of order 4(3): ode45.

1. Construct an object of ode45 type: create an instance of the class, passing the r.h.s. function f to

constructor:

ode45<StateType > = O(f) ;

Template parameters:

• StateType: type of initial data and solution (state space), the only requirement is that the tpye

possesses a normed vector-space structure;

• RhsType: type of rhs function (automatically deduced).

The function f must be a function handle with

opera tor () (const StateType & vec) −> StateType

2. (optional) Set the integration options: set members of struct ode45.options to configure the

solver:

O. op t ions . < opt ion_you_want_to_set > = <value >

Examples:

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 135

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

• rtol: relative tolerance for error control (default is 10e-6)

• atol: absolute tolerance for error control (default is 10e-8)

e.g.:

O. op t ions . r t o l = 10e−5;

3. Solve stage: call the solver:

s td : : vect ro <std : : pa i r <StateType > so l = O. so lve (y0 , T , norm)

Template parameters:

• NormType: type of norm function, automatically deduced

Arguments:

• y0: initial value in StateType (y(0) = y0)

• T: final time of integration

• norm: (optional) norm function to call on member of StateType, for the computation of the

error

The function returns the solution of the IVP, as a std::vector of std::pair (y(t), t) for every

snapshot.

For more documentation, consult the in-class documentation or the file NumCSE/Utils/README.md.

(11.7.f)

Relying on ode45, implement a C++ function

std : : pa i r <Vector2d , Matr ix2d > PhiAndW(double u0 , double v0 , double T)

that computes Φ(T, [u0, v0]
T) and W(T, [u0, v0]

T). The first component of the output pair should

contain Φ(T, [u0, v0]
T) and the second component the matrix W(T, [u0, v0]

T).

HIDDEN HINT 1 for (11.7.f) → 11.7.6:Init2s.pdf

SOLUTION for (11.7.f) → 11.7.6:Init7h.pdf N

(11.7.g) Using PhiAndW, write a C++ routine that determines initial conditions u(0) and v(0) such

that the solution of the system (11.0.44) has period T = 5. Use the multi-dimensional Newton method

for F(y) = 0 with F. As your initial approximation, use [3, 2]T. Terminate the Newton method as soon as

|F(y)| ≤ 10−5. Validate your implementation by comparing the obtained initial data y with Φ(100, y).

Set relative and absolute tolerances of ode45 to 10−14 and 10−12, respectively.

Remark. The residual based termination criterion recommended above ➜§ 8.1.26 is appropriate for

this particular application and, in general, should not be used for Newton’s method. Better termination

criteria are proposed in ➜Section 8.4.3.

The correct solutions are u(0) ≈ 3.110 and v(0) = 2.081.

SOLUTION for (11.7.g) → 11.7.7:Init8h.pdf N

End Problem 11.7

11. Numerical Integration – Single Step Methods, 11. Numerical Integration – Single Step Methods 136

Chapter 12

Single Step Methods for Stiff Initial Value

Problems

Problem 12.1: Semi-implicit Runge-Kutta SSM

General implicit Runge-Kutta methods as introduced in ➜Section 12.3.3 entail solving systems of

non-linear equations for the increments, see ➜Rem. 12.3.24. Semi-implicit Runge-Kutta single

step methods, also known as Rosenbrock-Wanner (ROW) methods ➜Eq. (12.4.6) just require the

solution of linear systems of equations. This problem deals with a concrete ROW method, its stability

and aspects of implementation.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider the following autonomous ODE:

ẏ = f(y) (12.0.1)

and discretize it with a semi-implicit Runge-Kutta SSM (Rosenbrock method):

Wk1 = f(y0) ,

Wk2 = f(y0 +
1

2
hk1)− ahJk1 ,

y1 = y0 + hk2 ,

(12.0.2)

where

J = Df(y0) , W = I− ahJ , a =
1

2 +
√

2
.

(12.1.a) Compute the stability function S of the Rosenbrock method (12.0.2), that is, compute the

(rational) function S(z), such that

y1 = S(z)y0, z := hλ,

when we apply the method to perform one step of size h, starting from y0, of the linear scalar model

ODE ẏ = λy, λ ∈ C.

SOLUTION for (12.1.a) → 12.1.1:SemI1s.pdf N

137

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/SemImpRK/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/SemImpRK/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(12.1.b) Compute the first 4 terms of the Taylor expansion of S(z) around z = 0. What is the maximal

q ∈ N such that

|S(z)− exp(z)| = O(|z|q)

for |z| → 0? Deduce the maximal possible order of the method Eq. (12.0.2).

HIDDEN HINT 1 for (12.1.b) → 12.1.2:SemI2h.pdf

SOLUTION for (12.1.b) → 12.1.2:SemI2s.pdf N

(12.1.c) Implement a C++ function:

template <c lass Function, c lass Jacobian, c lass StateType>

std::vector <StateType> solveRosenbrock(const Function & f,

const Jacobian & df,

const StateType & y0,

unsigned i n t N, double T);

taking as input function handles for f and Df (e.g., as lambda functions), an initial data (vector or

scalar) y0= y(0), a number of steps N and a final time T. The function returns the sequence of states

generated by the single step method up to t = T, using N equidistant steps of the Rosenbrock method.

SOLUTION for (12.1.c) → 12.1.3:SemI3s.pdf N

(12.1.d) Explore the order of the method Eq. (12.0.2) empirically by applying it to the IVP for the limit

cycle ➜Ex. 12.2.5:

f(y) :=

[
0 −1
1 0

]

y + λ(1− ‖y‖2)y , (12.0.4)

with λ = 1 and initial state y0 = [1, 1]⊤ on [0, 10]. Use uniform timesteps of size h = 2−k, k =
4, . . . , 10 and compute a reference solution yref with timestep size h = 2−12. Monitor the maximal error

on the temporal mesh

max
j
‖yj − yref(tj)‖2 .

SOLUTION for (12.1.d) → 12.1.4:SemI4s.pdf N

In complex analysis you might have hear about the maximum principle for holomorphic/analytic functions.

The following is a special version of it.

Theorem 12.0.5. Maximum principle for holomorphic functions

Let

C
− := {z ∈ C | Re(z) < 0} .

Let f : D ⊂ C → C be non-constant, defined on C−, and analytic in C−. Furthermore, assume

that w := lim|z|→∞ f (z) exists and w ∈ C, then:

∀z ∈ C
−: | f (z)| < sup

τ∈R

| f (iτ)| .

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems138

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(12.1.e)

Appealing to Thm. 12.0.5 show that the method (12.0.2) is L-stable (cf. ➜§ 12.3.37).

HIDDEN HINT 1 for (12.1.e) → 12.1.5:SemI5h.pdf

SOLUTION for (12.1.e) → 12.1.5:SemI5s.pdf N

End Problem 12.1

Problem 12.2: Exponential integrator

The exponential integrators are a modern class of single step methods developed for special initial

value problems (problems that can be regarded as perturbed linear ODEs), see

M. HOCHBRUCK AND A. OSTERMANN, Exponential integrators, Acta Numerica, 19

(2010), pp. 209–286.

These methods fit the concept of single step methods as introduced in ➜Def. 11.3.5 and, usually,

converge algebraically according to ➜Eq. (11.3.20).

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

A step with size h of the so-called exponential Euler single step method for the ODE ẏ = f(y) with

continuously differentiable f : Rd → Rd reads:

y1 = y0 + h ϕ
(
hD f(y0)

)
f(y0), (12.0.6)

where D f(y) ∈ Rd,d is the Jacobian of f at y ∈ Rd, and the matrix function ϕ : Rd,d → Rd,d is

defined as ϕ(Z) = (exp(Z)− Id) Z−1. Here, exp(Z) is the matrix exponential of Z, a special function

exp : Rd,d → Rd,d, see ➜Eq. (12.1.32).

The function ϕ is implemented in the template file as the function MatrixXd phim(const MatrixXd & Z).

When plugging in the exponential series, it is clear that the function z 7→ ϕ(z) :=
exp(z)−1

z is analytic on

C. Thus, ϕ(Z) is well defined for all matrices Z ∈ Rd,d.

(12.2.a) Is the exponential Euler single step method defined in (12.0.6) consistent with the ODE

ẏ = f(y) (see ➜Def. 11.3.10)? Explain your answer.

SOLUTION for (12.2.a) → 12.2.1:Expo1h.pdf N

(12.2.b) Show that the exponential Euler single step method defined in (12.0.6) solves the linear initial

value problem

ẏ = A y , y(0) = y0 ∈ R
d , A ∈ R

d,d ,

exactly.

HIDDEN HINT 1 for (12.2.b) → 12.2.2:Expo1s.pdf

SOLUTION for (12.2.b) → 12.2.2:Expo2h.pdf N

(12.2.c) Determine the region of stability of the exponential Euler single step method defined in

(12.0.6) (see ➜Def. 12.1.49).

SOLUTION for (12.2.c) → 12.2.3:Expo3h.pdf N

(12.2.d) Write a C++ function

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems139

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/ExponentialIntegrator/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/ExponentialIntegrator/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

template <c lass Function, c lass Jacobian>

VectorXd ExpEulStep(const VectorXd & y0,

const Function& f, const Jacobian & df,

double h);

that implements (12.0.6). Here f and df are objects with evaluation operators representing the ODE

right-hand side function f : Rd → Rd and its Jacobian, respectively.

SOLUTION for (12.2.d) → 12.2.4:Expo4h.pdf N

(12.2.e) What is the order of the single step method (12.0.6)?

To investigate it, write a C++ routine that applies the method to the scalar logistic ODE

ẏ = y (1− y) , y(0) = 0.1 ,

in the time interval [0, 1]. Show the error at the final time against the stepsize h = T/N, N = 2k for

k = 1, . . . , 15.For each k compute and show an approximate order of convergence.

HIDDEN HINT 1 for (12.2.e) → 12.2.5:Expo3s.pdf

SOLUTION for (12.2.e) → 12.2.5:Expo5h.pdf N

End Problem 12.2

Problem 12.3: Damped precession of a magnetic needle

This problem deals with a dynamical system from mechanics describing the movement of a rod-like

magnet in a strong magnetic field. This can be modelled by an ODE with a particular invariant that

can become stiff in the case of large friction.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We consider the initial value problem

ẏ = f(y) := a× y + cy× (a× y), y(0) = y0 = [1, 1, 1]⊤, (12.0.9)

where c > 0 and a ∈ R3, |a|2 = 1.

Note: x× y denotes the cross product between the vectors x and y. It is defined by

x× y = [x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1]
⊤.

It satisfies x× y⊥ x. In Eigen, it is available as x.cross(y).

(12.3.a) Show that |y(t)|2 = |y0|2 for every solution y of the ODE.

HIDDEN HINT 1 for (12.3.a) → 12.3.1:Cros1s.pdf

SOLUTION for (12.3.a) → 12.3.1:Cros1h.pdf N

(12.3.b) Compute the Jacobian Df(y). Compute also the spectrum σ(Df(y)) in the stationary state

y = a, for which f(y) = 0. For simplicity, you may consider only the case a = [1, 0, 0]⊤.

SOLUTION for (12.3.b) → 12.3.2:Cros2h.pdf N

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems140

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/CrossProd/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/CrossProd/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(12.3.c)

For a = [1, 0, 0]⊤, (12.0.9) was solved with

the standard MATLAB integrators ode45 and

ode23s up to the point T = 10 (default Tol-

erances). Explain the different dependence of

the total number of steps from the parameter c
observed in the figure.

Fig. 44
0 10 20 30 40 50 60 70 80 90 100

0

200

400

600

800

1000

1200

1400

 c

 A
n

za
h

l Z
ei

ts
ch

ri
tt

e

ode45

ode23s

SOLUTION for (12.3.c) → 12.3.3:Cros3h.pdf N

(12.3.d) Formulate the non-linear equation given by the implicit mid-point rule for the initial value

problem (12.0.9).

SOLUTION for (12.3.d) → 12.3.4:Cros4h.pdf N

(12.3.e) Solve (12.0.9) with a = [1, 0, 0]⊤, c = 1 up to T = 10. Use N = 128 uniform time steps

of the implicit mid-point rule. Tabulate |yk|2 for the sequence of approximate states generated by the

implicit midpoint method. What do you observe?

HIDDEN HINT 1 for (12.3.e) → 12.3.5:CP1h.pdf

SOLUTION for (12.3.e) → 12.3.5:Cros5h.pdf N

(12.3.f) The linear-implicit mid-point rule can be obtained by a simple linearization of the incremental

equation of the implicit mid-point rule around the current solution value.

Give the defining equation of the linear-implicit mid-point rule for the general autonomous differential

equation

ẏ = f(y)

with smooth f .

SOLUTION for (12.3.f) → 12.3.6:Cros6h.pdf N

(12.3.g) Implement the linear–implicit midpoint rule in the function:

std::vector <VectorXd> solve_lin_mid(const Function &f,

const Jacobian &Jf,

double T,

const VectorXd & y0,

unsigned i n t N);

Use this method to solve (12.0.9) with a = [1, 0, 0]⊤, c = 1 up to T = 10 and N = 128. Tabulate |yk|2
for the sequence of approximate states generated by the linear implicit midpoint method. What do you

observe?

SOLUTION for (12.3.g) → 12.3.7:Cros7h.pdf N

End Problem 12.3

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems141

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 12.4: Implicit Runge-Kutta method

This problem addresses the implementation of general implicit Runge-Kutta methods

➜Def. 12.3.18. We will adapt all routines developed for the explicit method to the implicit case.

This problem assumes familiarity with ➜Section 12.3, and, especially, ➜Section 12.3.3 and

➜Rem. 12.3.24.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

Problem 11.6 introduced the class RKIntegrator that implemented the timestepping for a general

explicit Runge-Kutta method according to ➜Def. 11.4.9. Keeping the interface we now extend this class

so that it realizes a general Runge-Kutta timestepping method as given in ➜Def. 12.3.18 for solving the

autonomous initial value problem ẏ = f(y), y(0) = y0.

(12.4.a) Rederive the stage form ➜Eq. (12.3.23) of a general (implicit) Runge-Kutta method from the

increment equations as given in ➜Def. 12.3.18.

SOLUTION for (12.4.a) → 12.4.1:0s.pdf N

(12.4.b) Let gi, i = 1, . . . , s, be the so-called stages of a general Runge-Kutta method as defined

in ➜Eq. (12.3.22). In ➜Rem. 12.3.24 the stages are recovered by solving a non-linear system of

equations F(g) = 0 with a suitable F : Rsd → Rsd. Formulate the Newton iteration for it when only

autonomous ODEs ẏ = f(y) with differentiable right-hand-side functions f are considered.

SOLUTION for (12.4.b) → 12.4.2:0as.pdf N

(12.4.c) By modifying the class RKIntegrator for the implementation of explicit Runge-Kutta meth-

ods, design a similar header-only C++ class implicit_RKIntegrator which implements a gen-

eral implicit RK method given through a Butcher scheme ➜Eq. (12.3.20) to solve the autonomous initial

value problem ẏ = f(y), y(0) = y0. The stages gi as introduced in Sub-problem (12.4.a) are to be

computed with the damped Newton method (see ➜Section 8.4.4) applied to the nonlinear system of

equations satisfied by the stages (see ➜Rem. 12.3.21 and ➜Rem. 12.3.24). Use the provided code

dampnewton.hpp, that is a simplified version of ➜Code 8.4.58. Note that we do not use the simplified

Newton method as discussed in ➜Rem. 12.3.24.

In the code template you will find all the parts that you should implement. In fact, you only have to write

the method step for the implicit RK.

SOLUTION for (12.4.c) → 12.4.3:Impl1h.pdf N

(12.4.d) Examine the code in implicit_rk3prey.cpp. Write down the complete Butcher

scheme according to ➜Eq. (12.3.20) for the implicit Runge-Kutta method defined there. Which method

is it? Is it A-stable ➜Def. 12.3.32, L-stable ➜Def. 12.3.38?

HIDDEN HINT 1 for (12.4.d) → 12.4.4:Impl1s.pdf N

SOLUTION for (12.4.d) → 12.4.4:Impl2h.pdf

(12.4.e) Test your implementation implicit_RKintegrator of general implicit RK SSMs with

the routine provided in the file implicit_rk3prey.cpp and comment on the observed order of

convergence.

SOLUTION for (12.4.e) → 12.4.5:Impl3h.pdf N

End Problem 12.4

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems142

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/ImplRK3Prey/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/ImplRK3Prey/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 12.5: Singly Diagonally Implicit Runge-Kutta Method

SDIRK methods (Singly Diagonally Implicit Runge-Kutta methods) are distinguished by Butcher

schemes of the particular form

c A

bT =

c1 γ · · · 0

c2 a21
. . .

...
...

...
...

...
...

. . .
...

...
...

. . .
...

cs as1 · · · as,s−1 γ
b1 · · · bs−1 bs

, (12.0.18)

with γ 6= 0. In other words, the matrix A of the Butcher scheme is lower triangular with constant

diagonal.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

In this problem the scalar linear initial value problem of second order

ÿ + ẏ + y = 0, y(0) = 1, ẏ(0) = 0 (12.0.19)

should be solved numerically using the SDIRK method described by the Butcher scheme

γ γ 0
1− γ 1− 2γ γ

1/2 1/2

. (12.0.20)

(12.5.a) Explain the benefit of using SDIRK-SSMs compared to using Gauss-Radau RK-SSMs as

introduced in ➜Ex. 12.3.44. In what situations will this benefit matter much?

HIDDEN HINT 1 for (12.5.a) → 12.5.1:SDIR0h.pdf N

(12.5.b) State the equations for the increments k1 and k2 of the Runge-Kutta method Eq. (12.0.20)

applied to the initial value problem corresponding to the differential equation ẏ = f(t, y).

SOLUTION for (12.5.b) → 12.5.2:SDIR1s.pdf N

(12.5.c) Show that the stability function S(z) of the SDIRK method Eq. (12.0.20) is given by

S(z) =
1 + z(1− 2γ) + z2(1/2− 2γ + γ2)

(1− γz)2

and plot the stability domain using the supplied MATLAB’s function stabdomSDIRK.m or C++ code

stabdomSDIRK.cpp.

SOLUTION for (12.5.c) → 12.5.3:SDIR2s.pdf N

(12.5.d) Find out whether for γ = 1 the SDIRK RK-SSM (12.0.20) is

• A–stable,

• L–stable.

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems143

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/SDIRK/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/SDIRK/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

HIDDEN HINT 1 for (12.5.d) → 12.5.4:SDIRxh.pdf

SOLUTION for (12.5.d) → 12.5.4:SDIRxs.pdf N

(12.5.e) Formulate Eq. (12.0.19) as an initial value problem for a linear first order system for the

function z(t) = (y(t), ẏ(t))⊤.

SOLUTION for (12.5.e) → 12.5.5:SDIR3s.pdf N

(12.5.f) Implement a C++ function

template <c lass StateType>

StateType sdirtkStep(const StateType & z0, double h, double gamma);

that realizes the numerical evolution of one step of the method Eq. (12.0.20) for the differential equation

Eq. (12.0.19), starting from the value z0 and returning the value of the next step of size h.

SOLUTION for (12.5.f) → 12.5.6:SDIR4s.pdf N

(12.5.g) Use your C++ code to conduct a numerical experiment, which gives an indication of the order

of the method (with γ = 3+
√

3
6) for the initial value problem from Eq. (12.0.20). Choose y0 = [1, 0]⊤ as

initial value, T=10 as end time and N=20,40,80,...,10240 as steps.

SOLUTION for (12.5.g) → 12.5.7:SDIR5s.pdf N

End Problem 12.5

Problem 12.6: Stability of a Runge-Kutta method

This problem is devoted to an empirical study of stability problems haunting explicit Runge-Kutta

single-step methods, recall the discussion in ➜Section 12.1.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

We focus on a 3-stage Runge-Kutta single step method described by the following Butcher-Tableau:

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

(12.0.25)

We also consider the following concrete case of the prey/predator model as introduced in ➜Ex. 11.1.9:

ẏ1(t) = (1− y2(t))y1(t) ,

ẏ2(t) = (y1(t)− 1)y2(t) .
(12.0.26)

(12.6.a) Create a C++ function

Vector2d predprey(Vector2d y0, double T, unsigned N)

that uses the RK-SSM (12.0.25) to solve an initial value problem for (12.0.26) with initial value y0 and

N equidistant timestep up to final time T > 0. It should return yN ≈ y(T).

SOLUTION for (12.6.a) → 12.6.1:Stab0s.pdf N

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems144

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/StabRK3/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/StabRK3/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(12.6.b)

Write a C++ code to approximate the solution up to time T = 1 of the IVP for (12.0.26) with initial value

y0 = [100, 1]⊤. Use the RK-SSM (12.0.25) and the function from Sub-problem (12.6.a).

Numerically determine the convergence order of the method for uniform steps of size 2−j, j = 2, . . . , 13.

As a reference solution, use an approximation with 214 steps.

What do you notice for big step sizes? Try to find the maximum step size for which blow-up of the

numerical solution can still be avoided.

HIDDEN HINT 1 for (12.6.b) → 12.6.2:Stab1h1.pdf

HIDDEN HINT 2 for (12.6.b) → 12.6.2:Stab1h2.pdf

SOLUTION for (12.6.b) → 12.6.2:Stab1s.pdf N

(12.6.c) Calculate the stability function S(z), with z = hλ and λ ∈ C, of the method given by the

table Eq. (12.0.25).

SOLUTION for (12.6.c) → 12.6.3:Stab2s.pdf N

End Problem 12.6

Problem 12.7: Mono-implicit Runge-Kutta single step method

A so-called s-stage mono-implicit Runge-Kutta single step method (MIRK) for the autonomous ODE

ẏ = f(y), f : D ⊂ Rd → Rd, is defined as:

gi := (1− vi)y0 + viy1 + h
i−1

∑
j=1

di,jf(gj), i = 1, . . . s ,

y1 := y0 + h
s

∑
j=1

bjf(gj)

(12.0.29)

for suitable coefficients vi, bi, di,j ∈ R, fixed to achieve a desired order.

Template: Get it on GitLab. Solution: Get it on GitLab.

[This problem involves implementation in C++]

(12.7.a) Single step methods defined as in Eq. (12.0.29) belong to the class of implicit Runge-Kutta meth-

ods ➜Def. 12.3.18. Write down the corresponding Butcher scheme ➜Eq. (12.3.20) in terms of the

coefficients vi, bi, di,j.

HIDDEN HINT 1 for (12.7.a) → 12.7.1:mirk0.pdf

SOLUTION for (12.7.a) → 12.7.1:MIRK1h.pdf

N

(12.7.b) Compute the stability function of a MIRK scheme defined as in Eq. (12.0.29) for s = 2.

HIDDEN HINT 1 for (12.7.b) → 12.7.2:MIRK1.pdf

SOLUTION for (12.7.b) → 12.7.2:MIRK2h.pdf

N

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems145

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/MIRK/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/MIRK/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

(12.7.c) Now, we consider the special case of a scalar ODE (d = 1) and s = 2. Abbreviating z :=
[g1, g2, y1]

⊤, rewrite Eq. (12.0.29) as a non-linear system of equations in the form F(z) = 0 for an

explicitly specified suitable function F : R3 → R3.

SOLUTION for (12.7.c) → 12.7.3:MIRK3h.pdf

N

(12.7.d) Find the Jacobian DF(z) of the function F (in terms of di,j, vi, bi and the derivative of f) from the

previous sub-problem.

SOLUTION for (12.7.d) → 12.7.4:MIRK4h.pdf N

In the next steps, we will implement the MIRK scheme for d = 1, s = 2.

(12.7.e) Implement a function

template <c lass Func, c lass Jac>

void newton2steps(const Func & F, const Jac & DF,

VectorXd & z);

that approximates the solution of F(z) = 0 by performing two steps of the Newton method applied to

F(z) = 0. Use z to pass the initial guess and to return the approximated solution. Objects of type Func

and Jac have to supply suitable evaluation operators operator().

SOLUTION for (12.7.e) → 12.7.5:MIRK5h.pdf

N

(12.7.f) Consider the particular MIRK scheme given by the coefficients:

v1 = 1, v2 =
344

2025
, d21 = − 164

2025
, b1 =

37

82
, b2 =

45

82
. (12.0.32)

Using the function newton2steps, implement a function

template <c lass Func, c lass Jac>

double MIRKstep(const Func & f, const Jac & df,

double y0, double h);

that realizes one step of the MIRK scheme defined by Eq. (12.0.29) for s = 2 and a scalar ODE, that is,

d = 1. The right hand side function f and its Jacobian are passed through f and df. The solution of the

nonlinear system arising from Eq. (12.0.29) is approximated using two Newton steps, namely by using

the function newton2steps. The initial guess has to be chosen appropriately!

SOLUTION for (12.7.f) → 12.7.6:MIRK6h.pdf N

(12.7.g) Implement a function

template <c lass Func, c lass Jac>

double MIRKsolve(const Func & f, const Jac & df,

double y0, double T, unsigned i n t N);

for the solution of a scalar ODE up to time T, using N equidistant steps of the mono-implicit Runge-Kutta

single step method defined by (12.0.32). The initial value is passed in y0.

SOLUTION for (12.7.g) → 12.7.7:MIRK7h.pdf N

(12.7.h) Apply your implementation to the IVP

ẏ = 1 + y2, y(0) = 0 (12.0.35)

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems146

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

on [0, 1]. The exact solution of (12.0.35) is yex(t) := tan t. Compute the solution yn at T = 1 with

a sequence of uniform temporal meshes with n = 4, . . . , 512 intervals. Compute and output the error

|yn(1)− yex(1)| and determine the rate of convergence of the scheme.

SOLUTION for (12.7.h) → 12.7.8:MIRK8h.pdf N

End Problem 12.7

Problem 12.8: Extrapolation of evolution operators

In ➜§ 11.3.1 we have seen how discrete evolution operators can describe single-step methods

for the numerical integration of ODEs. This task will study a way to combine discrete evolution

operators of known order in order to build a single-step method with increased order. The method

can be generalized to an extrapolation construction of higher-order single-step methods. These can

be used for time-local stepsize control following the policy of ➜Rem. 11.5.16.

Template: Get it on GitLab.

Solution: Get it on GitLab.

[This problem involves implementation in C++]

Let Ψh define the discrete evolution of an order p Runge-Kutta single step methods for the autonomous

ODE ẏ = f(y), f : D ⊆ Rd → Rd. We define a new evolution operator:

Ψ̃h :=
1

1− 2p

(

Ψh − 2p · (Ψh/2 ◦Ψh/2)
)

, (12.0.37)

where ◦ denotes the composition of mappings.

(12.8.a) If Ψh belongs to the explicit Euler methods, give the explicit formulas for Ψ̃h.

SOLUTION for (12.8.a) → 12.8.1:ODESolve1s.pdf N

(12.8.b) Templates relevant for this problem are found in the template file odesolve.cpp. Imple-

ment a C++ function

using Vector = Eigen::VectorXd;

template <c lass DiscEvlOp>

Vector psitilde(const DiscEvlOp& Psi, unsigned i n t p,

double h, const Vector & y0);

that returns Ψ̃hy0 when given the underlying Ψ.

Objects of type DiscEvlOp must provide an evaluation operator:

Vector opera tor()(double h, const Vector &y);

providing the evaluation of Ψh(y). A suitable C++ lambda function satisfies this requirement.

SOLUTION for (12.8.b) → 12.8.2:ODESolve2s.pdf N

(12.8.c) Implement a C++ function

template <c lass DiscEvlOp>

std::vector <Vector> odeintequi(const DiscEvlOp& Psi,

double T, const Vector &y0, unsigned i n t N);

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems147

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/ODESolve/templates_nolabels/
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/Assignments/Codes/ODE/ODESolve/solutions_nolabels/

NumCSE, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

for the computation of an approximated solution given by the application of the evolution operator Ψ

(given as Psi) on N equidistant time steps and with final time T > 0. The function returns the approx-

imated value at each step (including y0: y0, y1, . . .) in a std::vector<Vector>.

HIDDEN HINT 1 for (12.8.c) → 12.8.3:ODESolve3h.pdf

SOLUTION for (12.8.c) → 12.8.3:ODESolve3s.pdf N

(12.8.d) In the case of the IVP

ẏ = 1 + y2, y(0) = 0 , (12.0.40)

with exact solution y(t) = tan(t), determine empirically (using odeintequi) the order of the single

step method induced by Ψ̃h, when Ψ arises from the explicit Euler method. Monitor the error |yn(1)−
yex(1)| at final time T = 1 for N uniforms steps with N = 2q, q = 2, . . . , 12.

HIDDEN HINT 1 for (12.8.d) → 12.8.4:ODESolve4h.pdf

SOLUTION for (12.8.d) → 12.8.4:ODESolve4s.pdf N

(12.8.e) In general, the method defined by Ψ̃h has order p + 1. Thus, it can be used for adaptive

timestep control and prediction.

Complete the implementation of a function

template <c lass DiscEvlOp>

std::vector <Vector> odeintssctrl(const DiscEvlOp& Psi,

double T, const Vector &y0,

double h0, unsigned i n t p,

double reltol, double abstol,

double hmin);

for the approximation of the solution of the IVP by means of adaptive timestepping based on Ψ and Ψ̃,

where Ψ is passed through the argument Psi. Step rejection and stepsize correction and prediction

is to be employed. The argument T supplies the final time, y0 the initial state, h0 an initial stepsize,

p the order of the discrete evolution Ψ, reltol and abstol the respective tolerances, and hmin

a minimal stepsize that will trigger premature termination. Compute the solution obtained using this

function applied to the IVP (12.0.40) up to time T = 1 with the following data: h0 = 1/100, reltol =
10e− 4, abstol = 10e− 4, hmin = 10e− 5. Output the approximated solution at time T = 1.

HIDDEN HINT 1 for (12.8.e) → 12.8.5:EPh.pdf

SOLUTION for (12.8.e) → 12.8.5:ODESolve5s.pdf N

End Problem 12.8

12. Single Step Methods for Stiff Initial Value Problems, 12. Single Step Methods for Stiff Initial Value Problems148

Chapter 13

Structure Preserving Integration

149

Bibliography

[1] W. Hackbusch. Hierarchische Matrizen. Algorithmen und Analysis. Springer, Heidelberg, 2009.

150

	0.1 Current Assignment
	0.2 General Information
	0.2.1 Weekly Homework Assignments
	0.2.2 Importance of Homework
	0.2.3 Corrections and Grading of Assignments
	0.2.4 Codes and Templates
	0.2.5 Hints and Solutions

	1 Computing with Matrices and Vectors
	Problem 1.1: Arrow matrixvector multiplication
	Problem 1.2: Gram-Schmidt orthonormalization with Eigen
	Problem 1.3: Kronecker product
	Problem 1.4: Fast matrix multiplication with Eigen
	Problem 1.5: Householder reflections
	Problem 1.6: Matrix powers
	Problem 1.7: Structured matrix–vector product
	Problem 1.8: Avoiding cancellation
	Problem 1.9: Complexity of a C++ function
	Problem 1.10: Approximating the Hyperbolic Sine
	Problem 1.11: Complex roots
	Problem 1.12: Symmetric Gauss-Seidel iteration

	2 Direct Methods for Linear Systems of Equations
	Problem 2.1: Resistance to impedance map
	Problem 2.2: Partitioned Matrix
	Problem 2.3: Banded matrix
	Problem 2.4: Sequential linear systems
	Problem 2.5: Rank-one perturbations
	Problem 2.6: Lyapunov equation
	Problem 2.7: Structured linear systems with pivoting
	Problem 2.8: Structured linear systems
	Problem 2.9: Triplet format to CRS format
	Problem 2.10: Sparse matrices in CCS format
	Problem 2.11: Ellpack sparse matrix format
	Problem 2.12: Grid functions
	Problem 2.13: Efficient sparse matrix-matrix multiplication in COO format

	3 Direct Methods for Linear Least Squares Problems
	Problem 3.1: Matrix least squares in Frobenius norm
	Problem 3.2: Sparse Approximate Inverse (SPAI)
	Problem 3.3: Constrained least squares and Lagrange multipliers
	Problem 3.4: Hidden linear regression
	Problem 3.5: Estimating a Tridiagonal Matrix
	Problem 3.6: Approximation of a circle
	Problem 3.7: Shape identification
	Problem 3.8: Properties of Householder reflections
	Problem 3.9: Cholesky and QR decomposition
	Problem 3.10: Low rank approximation of matrices

	4 Filtering Algorithms
	Problem 4.1: Autofocus with FFT
	Problem 4.2: FFT and least squares
	Problem 4.3: Multiplication and division of polynomials based on FFT
	Problem 4.4: Solving triangular Toeplitz systems

	5 Data Interpolation in 1D
	Problem 5.1: Evaluating the derivatives of interpolating polynomials
	Problem 5.2: Piecewise linear interpolation
	Problem 5.3: Lagrange interpolant
	Problem 5.4: Generalized Lagrange polynomials for Hermite interpolation
	Problem 5.5: Piecewise linear interpolation with knots different from nodes
	Problem 5.6: Cardinal basis for trigonometric interpolation

	6 Approximation of Functions in 1D
	Problem 6.1: Adaptive polynomial interpolation
	Problem 6.2: Piecewise Cubic Hermite Interpolation
	Problem 6.3: Piecewise linear approximation on graded meshes
	Problem 6.4: Chebyshev polynomials and their properties

	7 Numerical Quadrature
	Problem 7.1: Zeros of orthogonal polynomials
	Problem 7.2: Efficient quadrature of singular integrands
	Problem 7.3: Smooth integrand by transformation
	Problem 7.4: Generalize ``Hermite-type'' quadrature formula
	Problem 7.5: Numerical integration of improper integrals
	Problem 7.6: Nested numerical quadrature
	Problem 7.7: Quadrature plots
	Problem 7.8: Quadrature by transformation
	Problem 7.9: Discretization of the integral operator

	8 Iterative Methods for Non-Linear Systems of Equations
	Problem 8.1: Order of convergence from error recursion
	Problem 8.2: Code quiz
	Problem 8.3: Convergent Newton iteration
	Problem 8.4: Modified Newton method
	Problem 8.5: The order of convergence of an iterative scheme
	Problem 8.6: Newton's method for F(x):=arctanx
	Problem 8.7: Order-p convergent iterations
	Problem 8.8: Nonlinear electric circuit
	Problem 8.9: Julia Set
	Problem 8.10: Solving a quasi-linear system

	9 Eigenvalues
	10 Krylov Methods for Linear Systems of Equations
	11 Numerical Integration – Single Step Methods
	Problem 11.1: Integrating ODEs using the Taylor expansion method
	Problem 11.2: Linear ODE in spaces of matrices
	Problem 11.3: Explicit Runge-Kutta methods
	Problem 11.4: Non-linear Evolutions in Spaces of Matrices
	Problem 11.5: System of second-order ODEs
	Problem 11.6: Order is not everything
	Problem 11.7: Initial Condition for Lotka-Volterra ODE

	12 Single Step Methods for Stiff Initial Value Problems
	Problem 12.1: Semi-implicit Runge-Kutta SSM
	Problem 12.2: Exponential integrator
	Problem 12.3: Damped precession of a magnetic needle
	Problem 12.4: Implicit Runge-Kutta method
	Problem 12.5: Singly Diagonally Implicit Runge-Kutta Method
	Problem 12.6: Stability of a Runge-Kutta method
	Problem 12.7: Mono-implicit Runge-Kutta single step method
	Problem 12.8: Extrapolation of evolution operators

	13 Structure Preserving Integration

