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Instructions.

Duration of examination: 180 minutes. Total points: 65.

Concise answers are desirable, but any “yes” or “no” answer requires explaining.

Write Matlab codes as simple as possible and add essential comments. Features of a code that
have not been asked for will not earn extra points.

Problem 1 and Problem 2 have to be solved on paper, no Matlab files for these problems will be
considered in the correction.

In Problem 3, Problem 4 and Problem 5 only the Matlab files that are requested in the problem
statement will be corrected. The theoretical parts of these problems have to be solved on paper.

In Problem 3 a few Matlab “p-files” are provided. You can use them to skip a subtask and proceed
with the solution of the following ones. They are not available with Octave.

All the requested .m and .eps files (with the correct file names) have to be saved in the folder
/home/exam/resources/Matlab .

Do not save or modify any file outside this folder!

Problem 1 Advantages of conjugate gradient method [8 points]
Give at least four circumstances when the iterative conjugate gradient (CG) solver may be pre-
ferred to a direct solver based on Cholesky decomposition for the symmetric, positive definite
linear system of equations Ax = b, A ∈ Rn,n, b ∈ Rn.

Problem 2 Cholesky and QR decomposition [14 points]
(2a) [4 points] Show that, for every matrix A ∈ Rm,n such that rank(A) = n, the product
matrix ATA admits a Cholesky decomposition.

(2b) [6 points] The following Matlab function is given:

function [Q,R] = altqr(A)
R = chol(A’*A);
Q = (R’\A’)’;

Prove that, for every matrix A as in subtask (2a), altqr(A) and qr(A,0) will produce the
same output, if there are no roundoff errors.
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(2c) [4 points] Let ε denote the machine precision (eps in Matlab ). Why does the command
altqr(A) fail for

A =

 1 1
1
2

√
ε 0

0 1
2

√
ε

 ?

Problem 3 Quadrature [16 points]
Given a smooth, odd function f : [−1, 1]→ R, consider the integral

I :=

∫ 1

−1
arcsin(t) f(t) dt. (1)

We want to approximate this integral using global Gauss quadrature. The nodes (vector x) and the
weights (vector w) of n-point Gaussian quadrature on [−1, 1] can be computed using the provided
Matlab routine [x,w]=gaussquad(n) (in the file gaussquad.m).

(3a) [4 points] Write a Matlab routine

function GaussConv(f hd)

that produces an appropriate convergence plot of the quadrature error versus the number n =
1, . . . , 50 of quadrature points. Here, f hd is a handle to the function f .

Save your convergence plot for f(t) = sinh(t) as GaussConv.eps.

HINT 1: use the Matlab command quad with tolerance eps to compute a reference value of the
integral.

HINT 2: if you cannot implement the quadrature formula, you can resort to the Matlab function

function I = GaussArcSin(f hd, n)

provided in implemented GaussArcSin.p that computes n-points Gauss quadrature for the
integral (1). Again f hd is a function handle to f .

(3b) [1 point] Which kind of convergence do you observe?

(3c) [3 points] Transform the integral (1) into an equivalent one with a suitable change of
variable so that Gauss quadrature applied to the transformed integral converges much faster.

(3d) [4 points] Now, write a Matlab routine

function GaussConvCV(f hd)

which plots the quadrature error versus the number n = 1, . . . , 50 of quadrature points for the
integral obtained in the previous subtask.

Again, choose f(t) = sinh(t) and save your convergence plot as GaussConvCV.eps.

HINT: In case you could not find the transformation, you may rely on the function

function I = GaussArcSinCV(f hd, n)

implemented in GaussArcSinCV.p that applies n-points Gauss quadrature to the transformed
problem.
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(3e) [4 points] Which kind of convergence is achieved? Explain the difference between the
results obtained in subtasks (3a) and (3d).

Problem 4 Exponential integrator [16 points]
A step with size h of the so-called exponential Euler single step method for the ODE ẏ = f(y)
with continuously differentiable f : Rd → Rd reads

y1 = y0 + h ϕ
(
hDf(y0)

)
f(y0), (2)

where Df(y) ∈ Rd,d is the Jacobian of f at y ∈ Rd, and the matrix function ϕ : Rd,d → Rd,d

is defined as ϕ(Z) = (exp(Z) − Id) Z−1. Here exp(Z) is the matrix exponential of Z, a special
function exp : Rd,d → Rd,d.

The function ϕ is implemented in the provided file phim.m.

(4a) [2 points] Show that the exponential Euler single step method defined in (2) solves the
initial value problem

ẏ = A y , y(0) = y0 ∈ Rd , A ∈ Rd,d ,

exactly.

HINT: the solution of the IVP is y(t) = exp(At)y0. You may assume that A is regular.

(4b) [2 points] Write a Matlab function

function y1 = ExpEulStep(y0, f, df, h)

that implements (2). Here f and df are handles to the ODE right-hand side function f : Rd → Rd

and its Jacobian, respectively.

HINT: use the supplied function phim.m.

(4c) [5 points] What is the order of the single step method (2)? To investigate it, write a
Matlab routine

function ExpIntOrder

that applies it to the scalar logistic ODE

ẏ = y (1− y) , y(0) = 0.1 ,

in the time interval [0, 1] and plots the error at the final time against the stepsize h.

Save the convergence plot in ExpIntOrder.eps.

HINT: the exact solution is

y(t) =
y(0)

y(0) +
(
1− y(0)

)
e−t

.

(4d) [4 points] Write a Matlab function

function yOut = ExpIntSys(n, N, T)
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that applies N uniform steps of the exponential Euler method to solve the initial value problem

ẏ = −A y + g(y),

yj(0) := j/d, j = 1, . . . , d,

g : Rd → Rd
(
g(y)

)
j
:= (yj)

3, j = 1, . . . , d,

over [0, T ], where the matrix A ∈ Rd,d is obtained as

A = gallery(′poisson′, n);

and d = n2.

The output variable yOut should be an (N+1)×d-matrix with an approximation of y((j−1) T
N
)

in the j-th row.

Choose T = 1, n = 5 (d = 25), N = 100, and plot the computed state value at the final time
(y(T ))j against j = 1, . . . , d; save the plot as ExpIntSys.eps.

HINT: for Octave users, the Poisson matrix A can be generated by the following commands:

B = spdiags([-ones(n,1),2*ones(n,1),-ones(n,1)],[-1,0,1],n,n);
A = kron(B,speye(n))+kron(speye(n),B);

(4e) [3 points] Write a Matlab routine

function ExpIntErr

that compares the results obtained in the previous subtask with the ones obtained using ode45
with default tolerances. Compute the relative error in 2-norm at time T = 1 with n = 5 (d = 25)
and N = 100 steps of the exponential Euler method, when the result from ode45 is accepted as
“exact solution”.

Problem 5 Matrix least squares in Frobenius norm [11 points]
Consider the following problem:

given z ∈ Rn, g ∈ Rn, find M∗ = argmin
M∈Rn,n, Mz=g

‖M‖F , (3)

where ‖·‖F denotes the Frobenius norm of a matrix.

(5a) [6 points] Reformulate the problem as an equivalent standard constrained least squares
problem

x∗ = argmin
x∈RN , Cx=d

‖Ax− b‖2 ,

for suitable matrices A, C and vectors b and d. These matrices and vectors have to be specified
based on z and g.

(5b) [5 points] Write a Matlab function

function M = MinFrob(z, g)

that computes the solution of the minimization problem (3) given the vectors z,g ∈ Rn.

HINT: the Matlab command kron comes handy.
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