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Mathematics for photonics

e Control, manipulate, reshape, guide, focus electromagnetic waves at
sub-wavelength length scales (beyond the resolution limit).

® Direct, inverse, and optimal design problems for electromagnetic wave
propagation in complex and resonant media.

® Build mathematical frameworks and develop effective numerical
algorithms for photonic applications.

® Partial differential equations, spectral analysis, integral equations,
computational techniques, and multi-scale analysis.
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Resonances for plasmonic nanoparticles

® Key to super-resolution: push the resolution limit by reducing the focal
spot size; confine light to a length scale significantly smaller than half the

wavelength.
® Resolution: smallest detail that can be resolved.
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Mathematics for photonics

® Mathematical and computational tools:

Diffraction gratings;
Photonic crystals;
Plasmonic resonant nanoparticles;

[ )
[ )
[ )
e Metamaterials and metasurfaces.
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Mathematics for photonics

e Diffraction gratings:

e Scattering by periodic structures: dominated by diffraction;
small features of the structure — small number of propagating
modes (other modes are evanescent).

e Spectroscopic, telecommunications and laser applications.

e Design problem: grating profile that give rise to a specified
diffraction pattern.

Plasmonics Habib Ammari



Mathematics for photonics

® Photonic crystals (also known as photonic band-gap materials):

o Periodic dielectric structures that have a band gap that forbids
propagation of a certain frequency range of light.

e Band gap calculations: high-contrast materials, periodicity of
the same order as the wavelength; efficient numerical schemes.

e Control light and produce effects that are impossible with
conventional optics.

e Resonant cavities: making point defects in a photonic crystal
— light can be localized, trapped in the defect. The frequency,
symmetry, and other properties of the defect mode can be
easily tuned to anything desired.
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Mathematics for photonics

® Plasmonic nanoparticles:

e Sub-wavelength resonance: quasi-static regime.

e Scattering and absorption enhancement.

e Super-resolution: single particle imaging.

e Nanoantenna, concentrate light at sub-wavelength scale.
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Mathematics for photonics

® Metamaterials and metasurfaces:

o Negative material parameters.
o Electromagnetic invisibility and cloaking: make a target
invisible when probed by electromagnetic waves:
® |Interior cloaking: scattering cancellations techniques.
e Exterior cloaking by anomalous resonances.
e Sub-wavelength band gap materials: microstructure periodicity
smaller than the wavelength.

RolH) (doa prsmoters)
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Mathematics for photonics

® Metamaterials and metasurfaces:

e Microstructured materials.
e Building block microstructure: sub-wavelength resonator.
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Mathematics for photonics

e Effective medium theory:

e High contrast materials: for some range of frequencies.
e Super-resolution and super-focusing of electromagnetic waves.

® Unify the mathematical theory of super-resolution, photonic bandgap
materials, metamaterials, and cloaking.
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Mathematics for photonics

® Near-field optics:

e |nteraction between the plasmonic probe and the sample.
e Super-resolution imaging of the sample.
o Mechanism — quantitative imaging.
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Mathematics for photonics

® Spectral analysis and integral equation formulations.

e Green's functions (free space, periodic, quasi-periodic, ...) — eigenvalue
problems reduced to characteristic value problems (nonlinear eigenvalue

problems).
® Gohberg-Sigal theory:
o . Potential

e Generalization of Rouché theorem for zcy:',;.que:;
operator valued function. Spectral Analysis

e Sensitivity analysis (change in the S
shape, material parameters, i
environment, ...) of diffraction
pattern, band gaps, resonance for
plasmonic nanoparticles, ... i
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Mathematics for photonics

® 2014 Kavli Prize in Nanoscience (Norwegian Academy of Science &
Letters): T.W. Ebbesen, S.W. Hell, and J.B. Pendry.

® "for their transformative contributions to the field of nano-optics that
have broken long-held beliefs about the limitations of the resolution limits
of optical microscopy and imaging.

e "for the discovery of the extraordinary transmission of light
through sub-wavelength apertures.

e "for ground-breaking developments that have led to
fluorescence microscopy with nanometre scale resolution,
opening up nanoscale imaging to biological applications.

e "for developing the theory underlying new optical nanoscale
materials with unprecedented properties, such as the negative
index of refraction, allowing for the formation of perfect lenses.

L . 5
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Mathematics for photonics

® Phononics:

e Sound /light.

e Elasticity equations/ Maxwell's equations.

e Sub-wavelength resonances: Helmholtz resonator, Minnaert
bubble/ plasmonic nanoparticle.

® Similar physical mechanisms and mathematical and computational
frameworks to those in photonics:

e Scattering enhancement by sub-wavelength acoustic
resonators.

e Phononic crystals.

e Acoustic metamaterials and metasurfaces, sub-wavelength
phononic band gap materials.

e High contrast acoustic materials, super-resolution and
super-focusing for acoustic waves.
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Mathematics for photonics

® Gohberg-Sigal theory:

e Argument principle: V C C: bounded domain with smooth
boundary 9V positively oriented; f(z): meromorphic function
in a neighborhood of V; P and N: the number of poles and
zeros of f in V, counted with their multiplicities. If f has no
poles and never vanishes on 9V, then

1 f'(2)

= dz=N— P.
2mi 1% f(Z) ‘

 Rouché's theorem: f(z) and g(z): holomorphic in a
neighborhood of V. If |f(z)| > |g(z)| for all z € OV, then f
and f 4+ g have the same number of zeros in V.
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Mathematics for photonics

® L(B,B'): linear bounded operators from B into B’ (Banach spaces).
® {l(z): set of all operator-valued functions in £(B, ') which are

holomorphic in some neighborhood of zy, except possibly at z.

® 7z characteristic value of A(z) € 4(z) if there exists a vector-valued
function ¢(z) with values in B such that
e ¢(z): holomorphic at zy and ¢(z) # 0,
e A(z)¢(z): holomorphic at zy and vanishes at this point.
e ¢(z): root function of A(z) associated with the characteristic
value z.
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Mathematics for photonics
® Generalized argument principle:

M(A(z); 8V) = i.tr/av A_l(z)%A(z)dz.

2mi

e M(A(z); OV): number of characteristic values of A(z) in V, counted
with their multiplicities, minus the number of poles of A(z) in V/, counted
with their multiplicities.

® Generalized Rouché’s theorem :
M(A(z);0V) = M(A(z) + 5(z); 0V).
® S(z): finitely meromorphic in V and continuous on 9V s.t.
||A71(z)5(z)\|g(5,5) <1, zedV.

® Finitely meromorphic operator: coefficients of the principal part of its
Laurent expansion are operators of finite rank.
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Mathematics for photonics

® 0=p1 < pp <....eigenvalues of —A in Q with Neumann conditions,

Au+puu=0 in Q,

% =0 on 09,
® (uj)j>1: orthonormal basis of L?(Q) of normalized eigenvectors.

® w=./1; 83, Dy, KG: single- and double-layer potentials and
Neumann-Poincaré operator associated with the outgoing fundamental
solution G,(x, z) to the Helmholtz operator A + w?:

—iHD(w|x —z]), d=2,
Gu(x,z) := ilx—z|
€ d=3.

CArx — 2|

] H((,l): Hankel function of the first kind of order 0.
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Mathematics for photonics

® Sommerfeld radiation condition: |x| — 4o0,
X O(|X|73/2)7 d =2,
x|

VGu(x, z)—iwGu(x, z) = { -2
O(|X| )7 d=3.

® Layer potentials: ¢ € [*(89),

S8Lel(x) = / G(xy)ely)doly). xR,

0Gu(x,y)
ov(y)

9Gu(x,y)
T(y)cp(y) do(y).

D le](x) = e(y)do(y), xeRI\0Q,

Kale](x) = p.v.
ol

® /fij: characteristic value of w — (1/2)] — K§.

® Muller's method: compute zeros of w — 1/(((1/2)] — K&) ], 1) for
fixed ¢ and 1.
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Mathematics for photonics

® D conductive particle inside 2, D = B + z; k # 1: conductivity
parameter; €: characteristic size; d: space dimension.

e Characteristic values of the operator-valued function A.(w):

1 w w
5/ - K4 -Sp 0

Ok

w— A (w) = DY Sy -8

0

w 1 W\ * 1 % *
e, D8 e(5!+ (K5)") —sk(—§/+(/cDﬂ))

® Generalized argument principle:

_ 1 _ -1d
we —wo = 5~ tr /av% (w — wo)Ae(w) dw.Ag(w)dw.
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Mathematics for photonics
® Eigenvalue expansion:
15— 1y = e'Vui(z) - MVuy(2) + o(e).

® Polarization tensor M = (my):

8X//
my = (k-1 / do.
= ( ) o Clw

{v (14 (k—1)x(B)Vi =0  inRY,
Yi(x) —x = O(|x|1_d) as |x| = +oo.

e FEigenfunction expansion in :

X =2z

0 (x) = u(2) += Y (2w (

=1

) + o(e).

€

£.
o UJ'.
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Mathematics for photonics

® Photonic crystals:

e Floquet transform:

Ulf(x, ) = Z f(x — n)e'™,

nezd

f(x): function decaying sufficiently fast.

U: analogue of the Fourier transform for the periodic case.

« € Brillouin zone RY/(27Z9): quasi-momentum (analogue of
the dual variable in the Fourier transform).

e Expansion of a periodic operator L in L2(R9) into a direct
integral of operators:

@
L= / L(a) da.
RY /(27Z9)

o L()[f] = U[L[f]].
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Mathematics for photonics

® Spectral theorem for a self-adjoint operator:

o)= U olla)),

a€RY/(2n2)

® o(L): spectrum of L.

e [: elliptic = L(a): compact resolvents — discrete spectra (u()),

(L) = | min (e maxu(a).
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Mathematics for photonics

® Gohberg-Sigal theory:
e Sensitivity analysis of band gaps with respect to changes of the
coefficients of L.
o Analysis of photonic crystal cavities: defect mode inside the
band gap.

T

T
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Resonances for plasmonic nanoparticles

® Gold nano-particles: accumulate selectively in tumor cells; bio-compatible;
reduced toxicity.

® Detection: localized enhancement in radiation dose (strong scattering).
® Ablation: localized damage (strong absorption).

® Functionalization: targeted drugs.

N
= »\\/) S \/

M.A. El-Sayed et al.
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Resonances for plasmonic nanoparticles

® Mechanisms of scattering and absorption enhancements and
supreresolution using plasmonic nanoparticles.

® Spectral properties of Neumann-Poincaré operator.
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Resonances for plasmonic nanoparticles

e D: nanoparticle in RY, d = 2,3; C** boundary D, a > 0.

® ¢ (w): complex permittivity of D; e, > 0: permittivity of the background
medium;

® Permittivity contrast: Aw) = (ec(w) +em)/(2(ec(w) — €m)).

e Causality = Kramer-Kronig relations (Hilbert transform),
ec(w) = &' (w) + ie" (w):

+oo "
€' (W) — €0 = 7gp.v./ 526 (5)2 ds,
™ 0

+oo _/ _
e’ (w) = 2—wp.v./ 5(5)7500ds.
0

T 52 —w?

e Drude model for the dielectric permittivity c(w):

2

p ’
m), 3 (UJ) § 0 for w g Wp.

ec(w) = exo(l — “

wp, T: positive constants.
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Resonances for plasmonic nanoparticles

® Fundamental solution to the Laplacian:

2i|n\x| , d=2,
G(x):= T

1
—4—\x|27d , d=3;
T

® Single-layer potential:
Solell) = | Glx=yloly) dsly), xR,
aD
® Neumann-Poincaré operator Kp:

X . oG _
Kelel() = | G02s(x=y)ely)dsly) . x € oD.
v: normal to 9D.
® Kp: compact operator on L?(dD),

[(x =y, vC) C
d — d—1—a’
[x =y [x =yl

x,y € OD.

e Spectrum of Kp, lies in (—3%, 3] (Kellog).
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Resonances for plasmonic nanoparticles

® [} self-adjoint on L2(AD) if and only if D is a disk or a ball.
® Symmetrization technique for Neumann-Poincaré operator Cp:
o Calderdn's identity: KpSp = SpKp;
¢ In three dimensions, K};: self-adjoint in the Hilbert space
H*(OD) = H~2(8D) equipped with

(s V)a= = =(u, Sp[v]) -

11
202

(-,-)1,1: duality pairing between H~=2(dD) and H2(dD).
e In two dimensions: 3@y s.t. Sp[po] = constant on 9D and

(o, 1)—%7% =1. Sp — Sp:
S - d ool if(e1)_11 =0,
Solel = { 1 ifp= .
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Resonances for plasmonic nanoparticles

® Symmetrization technique for Neumann-Poincaré operator Kf:
e Spectrum o(K}) discrete in | —1/2,1/2];

o Ellipse: :i:l(a+b elliptic harmonics (a, b: long and short
axis).

e Ball: 2(21+1) spherical harmonics.

e Twin property in two dimensions;

o (N,j),j=0,1,2,...: eigenvalue and normalized
eigenfunction pair of K}, in H*(8D); A; € (—3, 3] and \; — 0
as j — o0o;

e o eigenfunction associated to 1/2 (o multiple of ¢g);
e Spectral decomposition formula in H=1/2(D),

Bl =Y (¥, ) n- ;-

Jj=0
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Resonances for plasmonic nanoparticles

e ' incident plane wave; Helmholtz equation:

S

V- (&mx(Rd \ D)+ Ec(w)x(ﬁ))Vu +w’u =0,
u° := u — u satisfies the outgoing radiation condition.

® Uniform small volume expansion with respect to the contrast:
D=2z+46B,§—0, |x—z| > 2r/kn,

6d+1

U = —M(Aw), D)V, Gy, (x — z) - Vu'(z) + O(W,U(ICB)))'

® Gy, outgoing fundamental solution to A + k2; kp := w/\/Em;

® Polarization tensor:

M(\w). D) = [

- x(Mw)! = K5) M v](x) ds(x).

e Scaling and translation properties: M(A(w), z + 6B) = 69 M(A(w), B).
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Resonances for plasmonic nanoparticles

Representation by equivalent ellipses and ellipsoids:
® Nanoparticle's permittivity: ec(w) = &'(w) + ie" (w).

® =/(w) > 0 and &”(w) = 0: canonical representation; equivalent ellipse or
ellipsoid with the same polarization tensor.

® Plasmonic nanoparticles: non Hermitian case.

e IM(A(w), D): equivalent frequency depending ellipse or ellipsoid with the
same imaginary part of the polarization tensor.
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Resonances for plasmonic nanoparticles

® Spectral decomposition: (/, m)-entry
M/ m()\ UJ) D Z (V'Th(pj 'H*(VH()DJ)H*
(1/2 = X)(Mw) = A))
® (vm, o) = 0; po: eigenfunction of K} associated to 1/2.

® Quasi-static far-field approximation: § — 0,

6d+1
dist(A(w), o(Kp))

® Quasi-static plasmonic resonance: dist(A(w), o(Kp)) minimal
(Reec(w) <0).

uF = —8M(\w), B)V, Gy, (x — z) - Vu'(z) + O( ).
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Resonances for plasmonic nanoparticles
o MOE).B) = (22 1) [ Sviay

{ V-(me(Rd \ B) + ec(w)x(E))Vv =0,
v(y) =y =0, ly[ = +oo.
e Corrector v:
v(y) =y + Ss(A W) = K) ' [MI(y), y €R?.
® Inner expansion: 6 — 0, |x — z| = O(9),
5

X —2Zz

u(x) = u'(z) + dv( )-Vi'(z) + O(

® Monitoring of temperature elevation due to nanoparticle heating:

oT w
{ pCE —V.-7VT = %%(650‘))) |U|2X(D)7

T|t:0 == 0

p: mass density; C: thermal capacity; 7: thermal conductivity.
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Resonances for plasmonic nanoparticles

® Scattering amplitude:

ikm ||

e
v/ 87 km|x|

|x| = oo; 0, 0': incident and scattered directions.

u(x) = —ie” % AsolD,ec,em,w](8,6) + o(|x|2),

® Scattering cross-section:

2
Ao [D, ec,em,w](6,60)| db.

27
Q[D. ccrem](0)) = /
0

® Enhancement of the absorption and scattering cross-sections Q? and Q°
at plasmonic resonances:

Q7 4+ Q°(= extinction cross-section Q¢) o< Im Trace(M(\(w), D));

Q° o |Trace(M(\(w), D))|.
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Resonances for plasmonic nanoparticles
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Resonances for plasmonic nanoparticles
60
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Norm of the polarization tensor for an elliptic inclusion.
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Resonances for plasmonic nanoparticles
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Resonances for plasmonic nanoparticles
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Norm of the polarization tensor for a flower-shaped.inclusion.
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Resonances for plasmonic nanoparticles

® Quasi-plasmonic resonances for multiple particles: Dy and D;:
Ch*-bounded domains; dist(Di, D») > 0; vV and v®): outward normal
vectors at 0D, and OD:.

® Neumann-Poincaré operator Kp, ,p, associated with D1 U D»:

* a
K - ’CDI EWE) Sb,
D1UD; - 1) S i .
ov(?) Dy D,

® Symmetrization of Kp, p,.

® Behavior of the eigenvalues of Kp, ,p, as dist(Di1, D2) — 0.
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Resonances for plasmonic nanoparticles
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Resonances for plasmonic nanoparticles
® Algebraic domains: finite number of quasi-static plasmonic resonances:
#{ : (w1, pj)n~ # 0} : finite.
® Algebraic domains: zero level sets of polynomials; dense in Hausdorff

metric among all planar domains.

® Blow-up of the polarization tensor for finite number of eigenvalues of the
Neumann-Poincaré operator:

(l/m,(pj (V,QO/) -
M, m(Mw), D) 2(1/24)( (I) 7;,-)'

® Two nearly touching disks: infinite number of quasi-static plasmonic
resonances.

oy L oate g ognni /0 g
)\inze ,€=sinh™( (1+4r)

® r: radius of the disks; :separating distance.

® Separating distance § : estimated from the first plasmonic resonance
(associated to A1).
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Resonances for plasmonic nanoparticles

® Singular nature of the interaction between nearly touching plasmonic
nanoparticles.

® Applications in nanosensing (beyond the resolution limit).
® Blow-up of Vu between the disks at plasmonic resonances:

r —2ljl¢
Vux ———=e .
S(A(w))d
® Accurate scheme for computing the field distribution between an arbitrary
number of nearly touching plasmonic nanospheres: transformation optics
+ method of image charges.
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Resonances for plasmonic nanoparticles

® (m,/)-entry of the polarization tensor M:
0o ag

)
Min(Aw). D) = 3 3y

O ) Ll G ) L AN 1) B
al,m . (1/2 . )‘1) ’ 0517/ 22U, J=1L

® Sum rules for the polarization tensor:

.’ - hy  (d—2
Sal, =amipl ANl =D
j=1 j=1

=1

d

3 G _ (d—4) d
j - — 2
;/\jgal», = T|D\+;/D|VSD[V,H dx.

e  holomorphic function in an open set U C C containing o(Kp):

e}

F(KD) =D FN)( en)m- -

j=t
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Resonances for plasmonic nanoparticles

® Upper bound for the averaged extinction cross-section @y, of a randomly
oriented nanoparticle:

d )\// D
|S(Trace(M(A, D)))| < %
1 d\?|D| + (d_4)ID|

|)\//‘(A//2 + 4/\/2) (
)\//2

-I-Z/ [VSpvi]| dx+2)\'(d 2)|D|) + O(W)

=R\, N = Q.
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Resonances for plasmonic nanoparticles

25
—— Bound
---a/b=2
----a/b=4

Averaged extinction

Wavelength of the incoming plane wave 1077
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Resonances for plasmonic nanoparticles

Hadamard's formula for KCp:
® JD: class C%; OD = {x = X(t), t € [a, b]}.
e U, : 9D~ 9D, := {x+nh(t)v(x)}; V,: diffeomorphism.
® Hadamard's formula for Kp:
1K5, 18] 0 W = Kpl6] = K5 0]l 1200) < C 1612000,
C: depends only on ||X||c2 and ||h]|c1; ¢ := do W,
] ICS): explicit kernel.
e Hadamard's formula for the eigenvalues of Kp.

® Shape derivative of plasmonic resonances for nanoparticles.

® Generalization to 3D.
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Resonances for plasmonic nanoparticles

® KCp: scale invariant = Quasi-static plasmonic resonances: size
independent.

® Analytic formula for the first-order correction to quasi-static plasmonic
resonances in terms of the particle’s characteristic size §:

08|

06 [

absorbance

o4l

o2

350 400 450 500 550 600 650 700 750 800

wavelength i Inm

M.A. El-Sayed et al.
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Resonances for plasmonic nanoparticles
® Helmbholtz equation:

{ V- (smx(Rd \ D) + sc(w)x(B))VU +w’u=0,

U := u — u' satisfies the outgoing radiation condition.

u': incident plane wave; kp, 1= WA/Em, ke = wr/ec(w).
® |Integral formulation on 9D:
{ Slgl - Syl = o,

ec(f = (KE)) D] — em(4 + (K5)*) W] = emdu’ /v

e Operator-Valued function ¢ — As(w) € L(H*(0B), H*(0B)):
Ap(w)
* 2 3
As(w) = (Mw)l — Kg) +(wd)  Ar(w) + O((wd)?).

® Quasi-static limit:

oo

Ao(@)[¥] = > 7(w)(@, e)wps,  Ti(w) = %(em+sc(w))—(ec(w)—sm)Aj.

j=0
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Resonances for plasmonic nanoparticles

® Shift in the plasmonic resonance:
.1 -
arg min ’E (em + ec(w)) = (ec(w) — em) \j + (wd)*7j 1]

® 71 = (Au(w)lpjl o)
® Gohberg-Sigal theory.
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Resonances for plasmonic nanoparticles

Full Maxwell's equations:
VXV xE—w? (EmX(Rd \ D) + gc(w)x(B))E =0,
E* := E — E' satisfies the outgoing radiation condition.

® Small-volume expansion:

64

Es(x) = —63w2ka(x,z)M()\(w),B)Ei(z)+O(m)

® G,: fundamental (outgoing) solution to Maxwell's equations in free
space.

® Shift in the plasmonic resonances due to the finite size of the
nanoparticle.
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Resonances for plasmonic nanoparticles
® Integral formulation:
I+ Mg — My Lk — L
< L — Lk (K2 + k2) + K2MEs — kKA M )

N =

® Integral operators:

M’B[cp]:H;%(div,aD) — H;%(div,BD) (compact)

o /a V) X Ve x Gl )ely)s(y)

£hle] : Hy 2(div,0D) —  H; *(div,dD)
o — v(x)x (k286[so](x) + VSh[Vop - ap](x)).
o Key identities: M5 [curlapg] = curlapKnlg], Ve € H(9D),
ME [Vongl = —VoolspKb[Bong]l + Rolyl,
Rp = —curlapA;pcurlapMpVap, Vi € H%(aD).
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Resonances for plasmonic nanoparticles

® (Quasi-static approximation:

~ (=D iKE0ss O
Mo = ( ~Rosstor 0 ).

3
o H(OB) := HZ(0B) x H(9B), equipped with the inner product

(u, V)Heos) = (AaBu Ang( ))H* + (u(2)7 V(Z))%

(V) o= (. So[V]) 10 (V) = (S5 lulv)

e The spectrum o(Mp) = o(—Kj) U o(Kg)\{—3} in H(OB).

® Only o(K3) can be excited in the quasi-static approximation

11.
2'2
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Scattering coefficients

® Scattering coefficients: cloaking structures and dictionary matching
approach for inverse scattering.

® Mechanism underlying plasmonic resonances in terms of the scattering
coefficients corresponding to the nanoparticle.

® Scattering coefficients of order 1: only scattering coefficients iudcing
the scattering-cross section enhancement.

Plasmonics Habib Ammari



Scattering coefficients

Helmholtz equation:

V- (smx(Rd \ D) + sc(w)x(B))VU +w’u=0,

U := u — u' satisfies the outgoing radiation condition.

u': incident plane wave; kn := w\/Em, ke := wy/ec(w).

® Scattering coefficients:

Winn(D, e, emy0) = /a ) lyDe ds(y).

¥m: electric current density on 0D induced by the cylindrical wave
Im(w|x])e™x.

Jn: Bessel function.
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Scattering coefficients

Properties of the scattering coefficients:

o W,,, decays rapidly:

O(wlml+inly ~ clml+1nl

Wonn| <
| Wonn < min |7j(w)| |m|Iml|n|lnl’

m,n € 7,
C: independent of w; 7; = 3 (em + ec(w)) — (ec(w) — em) A
e Forany z € R?,0 € [0,27),s > 0,

Winn(D?) = >~ I (w|2])J (w]2]) ™ =" Wiy o (D),
m' .’ €L
Wmn(De) _ ei(m—n)@ Wmn(D),
Winn(D*, w) = Wmn(D, sw).
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Scattering coefficients
e Scattering amplitude:

i ikm|x|
US(x) = —ie % ———— A [D, ec,em, w](6,0) + o(|x|2),
8 km| x|
|x| = oo; 6, €' incident and scattered directions.

e Graf's formula:

Aoo[D,gcaEmaw](ea 9’) — Z ( )n -m ln@ nm(D S )e—imG'
nvaZ
e Scattering cross-section:

2

27
Q°[D. e, em w](¢) ::/ AuID, 2erem (0,0 db.
0
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Cloaking: scattering coefficient cancellation

e Cloaking: make a target invisible when probed by
electromagnetic waves.
e Scattering coefficient cancellation technique:
e Small layered object with vanishing first-order scattering
coefficients.
e Transformation optics:

DF,(x)¢(x)DF,(x)* _
Fy)- =L g =F,(y).
( P) [¢](y) det(DFp(X)) ’ X P (y)
e Change of variables F, sends the annulus [p, 2p] onto a fixed

annulus.
e Scattering coefficients vanishing structures of order N:

Q° [D7 (Fp)*(E o \U%),sm,w} (0/) = O(p4N)7 Wl/p(x) = (1/p)X

p: size of the small object; N: number of layers.
e Anisotropic permittivity distribution.

o Invisibility at w = invisibility at all frequencies < w.
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Cloaking: scattering coefficient cancellation

Change of variable cloak + 1 layer

Change of variable cloak + 1 layer

Cancellation of the scattered field and the scattering cross-section: 4 orders of
magnitude (with wavelength of order 1, p = 107%, and N = 1).
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Cloaking: anomalous resonance

e Q: bounded domain in R%; D € Q. Q and D of class C**, 0 < pu < 1.
For a given loss parameter § > 0, the permittivity distribution in R? is

given by
1 in R?\ Q,
es =4 —1+1i6 inQ\b,
1 in D.

. Configurationiplasmonic structure): core with permittivity 1 coated by
the shell Q\ D with permittivity —1 + id.

€ =—1+1i6

Ts
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Dictionary matching approach
Dictionary matching approach:
® Form an image from the echo due to targets.
® |dentify and classify the target, knowing by advance that it belongs to a
learned dictionary of shapes.
e Extract the features from the data.
e Construct invariants with respect to rigid transformations and

scaling.
o Compare the invariants with precomputed ones for the
dictionary.

b Emitted Wave of Bat

Reflected Wave
of Prey

Habib Ammari

Plasmonics



Dictionary matching approach

® [eature extraction:

e Extract W by solving a least-squares method

W = arg min||L(W) — V||.
w

e L is ill-conditioned (W decays rapidly).
e Maximum resolving order K:

KK+1/2 = C(w)SNR.

® Form a multi-frequency shape descriptor.

® Match in a multi-frequency dictionary.
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Dictionary matching approach

700+

600

500~

400

300

200

100

Ellipse Flower A Square E Rectangle  Circle Triangle

Shape descriptor matching in a multi-frequency dictionary.
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Resonances for plasmonic nanoparticles

® Asymptotic expansion of the scattering amplitude:

Ao (ﬁd> = = Wid + 0(w),

Ix|
d: incident direction; x/|x|: observation direction;

Wi — W_11 + Wiy —2Wh f(W1—1 — W—11)
! i(Wl—l - Wfll) —W_y1 — Wiy —2Wh )

® Blow up of the scattering coefficients:

k2 (@5 x[e™™)
Wiigr =+ 4+ T
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Super-resolution

® Super-resolution for plasmonic nanoparticles:

e Sub-wavelength resonators;
e High contrast: effective medium theory;
e Single nanoparticle imaging.
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Super-resolution

® Resolution: determined by the behavior of the imaginary part of the
Green function. Helmholtz-Kirchhoff identity:

Im Gy, (x, x0) = km Gy (¥ %0) Gi (X, ¥)d5(y), R — +oo0.
lyl=R

The sharper is m Gy, the better is the resolution.

® |ocal resonant media used to make shape peaks of Im Gy,,.
® Mechanism of super-resolution in resonant media:

e Interaction of the point source xp with the resonant structure
excites high-modes.

e Resonant modes encode the information about the point
source and can propagate into the far-field.

e Super-resolution: only limited by the resonant structure and
the signal-to-noise ratio in the data.
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Super-resolution

® System of weakly coupled plasmonic nanoparticles.

® Size of the nanoparticle § < wavelength 27 /kp; distance between the
nanoparticles of order one.

e 3G° = Gy, + exhibits sub-wavelength peak with width of order one.

® Break the resolution limit.

S. Nicosia & C. Ciraci, Cover, Science 2012
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Super-resolution

® Sub-wavelength resonator:

® Asymptotic expansion of the Green function (d: size of the resonator
openings; zj: center of aperture for jth resonator; J: number of
resonators; w = O(V/9)):

. J
Sm G (x, x0,w) ~ w+¢gz I R
27|x — xo| [x — zj| |x0 — z
=1 J J
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Super-resolution

Effective medium theory:

-1 £o/3
8eff(w)_3'"(I—*—ﬁ\/l()‘((*‘))vB)(I_§ ()‘(w) )) )+O(d15t( ( ) (K*)) )

® {: volume fraction; B: rescaled particle.

et(w): anisotropic.

Validity of the effective medium theory:

f < dist(A(w), o(Kp))*®.
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Super-resolution

® High contrast effective medium at plasmonic resonances:

V x V x E—w (sz(Rd \ Q) + aeﬁ(w)x(ﬁ)) E=o0.

e Flg+— /Q(seff(w) —em)E(y) G, (x,y)dy, x €.

® Mixing of resonant modes: intrinsic nature of non-hermitian systems.

® Sub-wavelength resonance modes excited = dominate over the other
ones in the expansion of the Green function.

® Imaginary part of the Green function may have sharper peak than the one
of G due to the excited sub-wavelength resonant modes.

® Sub-wavelength modes: determine the super-resolution.
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Super-resolution
® Single nanoparticle imaging:

max /(z°,w)

e /(z°,w): imaging functional; z°: search point.
® Resolution: limited only by the signal-to-noise-ratio.
® Cross-correlation techniques: robustness with respect to medium noise.

Medium without the reflector Vshg x10°

Y

-1 08 06 04 02 0 02
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Plan

® Part I: Mathematical and computational tools

e Gohberg-Sigal theory

e Layer potentials, Green's functions (free space, grating,
quasi-periodic), integral formulations, Helmholtz-Kirchhoff
identities, scattering coefficients, Floquet theory, Muller’s
method, Ewald's method for grating and quasi-periodic
Green's functions.

e Part II: Diffraction gratings and photonic crystals

¢ Diffraction gratings: radiation condition, existence and
uniqueness of a solution, optimal design problem.

e Photonic crystals: sensitivity of band gaps, analysis of
photonic crystal cavities.
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Plan

® Part lll: Sub-wavelength resonators and super-resolution

Plasmonic nanoparticles.

Scattering and absorption enhancement.

Resolution enhancement.

Super-resolution in high contrast media.

Effective medium theory for sub-wavelength resonators.
Near-field optics.

® Part IV: Metamaterials, metasurfaces, and sub-wavelength photonic
crystals

e Metamaterials and cloaking.

e Metasurfaces with superabsorption effect: layers of periodically
distributed plasmonic nanoparticles.

e Sub-wavelength photonic crystals.
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Plan

® Part V: Minnaert bubbles

e Minnaert resonance for bubbles.

e Acoustic metasurfaces.

o Effective medium theory and super-resolution.
e Sub-wavelength phononic crystals.

e Double-negative acoustic metamaterials.
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