Lecture 1: Gohberg-Sigal theory

Habib Ammari

Department of Mathematics, ETH Zürich

- Gohberg-Sigal theory: Generalize the argument principle and Rouché's theorem to operator-valued functions.
- Argument principle and Rouché theorem.
- Generalization to matrix-valued functions.
- Generalization to infinite-dimensional spaces.

- Argument principle:
 - *f*: holomorphic and has a zero of order *n* at *z*₀:

$$f(z) = (z - z_0)^n g(z)$$

g: holomorphic and nowhere vanishing in a neighborhood of

$$z_0. \Rightarrow$$

$$\frac{f'(z)}{f(z)} = \frac{n}{z - z_0} + \frac{g'(z)}{g(z)}.$$

 $\Rightarrow f'/f$ has a simple pole with residue n at z_0 .

- Argument principle:
 - f: has a pole of order n at z₀:

$$f(z) = (z - z_0)^{-n}h(z)$$

h: holomorphic and nowhere vanishing in a neighborhood of

$$z_0. \Rightarrow$$

$$\frac{f'(z)}{f(z)} = -\frac{n}{z - z_0} + \frac{h'(z)}{h(z)}.$$

 $\Rightarrow f'/f$ has a simple pole with residue -n at z_0 .

 f'/f has simple poles at the zeros and poles of f and the residue is simply the order of the zero of f or the negative of the order of the pole of f.

Argument principle: V ⊂ C: bounded domain with smooth boundary ∂V positively oriented; f(z): meromorphic function in a neighborhood of V;
 P and N: the number of poles and zeros of f in V, counted with their orders. If f has no poles and never vanishes on ∂V, then

$$\frac{1}{2\pi i} \int_{\partial V} \frac{f'(z)}{f(z)} dz = N - P.$$

- Rouché's theorem [continuity result]: A holomorphic function can be perturbed slightly without changing the number of its zeros.
- Rouché's theorem: f(z) and g(z): holomorphic in a neighborhood of V̄.
 If |f(z)| > |g(z)| for all z ∈ ∂V, then f and f + g have the same number of zeros in V.

- Generalization to matrix-valued functions:
 - A(z): matrix-valued function holomorphic in a neighborhood of \overline{V} and is invertible in \overline{V} except possibly at $z_0 \in V$.
 - Factorization (by Gauss-Jordan):

$$A(z) = E(z)D(z)F(z)$$
 in V ,

E(z), F(z): holomorphic and invertible in V and D(z):

$$D(z) = \begin{pmatrix} (z - z_0)^{k_1} & 0 \\ & \ddots & \\ 0 & (z - z_0)^{k_n} \end{pmatrix}.$$

 k_1, k_2, \ldots, k_n : uniquely determined up to a permutation.

Generalization to matrix-valued functions:

$$\frac{1}{2\pi i} \operatorname{tr} \int_{\partial V} A(z)^{-1} \frac{d}{dz} A(z) dz$$

$$= \frac{1}{2\pi i} \operatorname{tr} \int_{\partial V} \left(E(z)^{-1} \frac{d}{dz} E(z) + D(z)^{-1} \frac{d}{dz} D(z) + F(z)^{-1} \frac{d}{dz} F(z) \right) dz$$

$$= \frac{1}{2\pi i} \operatorname{tr} \int_{\partial V} D(z)^{-1} \frac{d}{dz} D(z) dz$$

$$= \sum_{j=1}^{n} k_{j}.$$

- Generalization to infinite-dimensional spaces:
 - Fredholm operators.
 - Characteristic value and its multiplicities.
 - Factorization of operators.

Compact operators:

- $\mathcal{L}(\mathcal{B}, \mathcal{B}')$: linear bounded operators from \mathcal{B} into \mathcal{B}' (Banach spaces).
- K ∈ L(B, B'): compact iff K takes any bounded subset of B to a relatively compact subset of B' (a set with compact closure).
- K: of finite rank if Im(K) (the range of K) is finite-dimensional.
- Every operator of finite rank is compact.

- Fredholm alternative:
 - K: compact operator on \mathcal{B} . For $\lambda \in \mathbb{C}, \lambda \neq 0$, $(\lambda I K)$: surjective iff it is injective.
- Fredholm operators:
 - A ∈ L(B, B'): Fredholm if ker A is finite-dimensional and Im A is closed in B' and of finite codimension (dim(B'/Im A).
 - Fred($\mathcal{B}, \mathcal{B}'$): collection of all Fredholm operators from \mathcal{B} into \mathcal{B}' .
 - Fred($\mathcal{B}, \mathcal{B}'$): open in $\mathcal{L}(\mathcal{B}, \mathcal{B}')$.

- Fredholm operators:
 - Index of $A \in \operatorname{Fred}(\mathcal{B}, \mathcal{B}')$:

$$\operatorname{ind} A = \dim \ker A - \operatorname{codim} \operatorname{Im} A.$$

- ind: stable under compact perturbations.
- If $A: \mathcal{B} \to \mathcal{B}'$: Fredholm and $K: \mathcal{B} \to \mathcal{B}'$: compact, then their sum A + K: Fredholm, and

$$\operatorname{ind}(A+K)=\operatorname{ind}A.$$

• The mapping $A \mapsto \operatorname{ind} A$ is continuous in $\operatorname{Fred}(\mathcal{B}, \mathcal{B}')$; *i.e.*, ind: constant on each connected component of $\operatorname{Fred}(\mathcal{B}, \mathcal{B}')$.

- \$\mathfrak{U}(z_0)\$: set of all operator-valued functions in \$\mathfrak{L}(\mathfrak{B},\mathfrak{B}')\$ which are holomorphic in some neighborhood of \$z_0\$, except possibly at \$z_0\$.
- z_0 characteristic value of $A(z) \in \mathfrak{U}(z_0)$ if there exists a vector-valued function $\phi(z)$ with values in \mathcal{B} such that
 - $\phi(z)$: holomorphic at z_0 and $\phi(z_0) \neq 0$,
 - $A(z)\phi(z)$: holomorphic at z_0 and vanishes at this point.
 - $\phi(z)$: root function of A(z) associated with the characteristic value z_0 .

- z_0 : characteristic value of the function A(z) and $\phi(z)$: an associated root.
- There exists a number $m(\phi) \ge 1$ and a vector-valued function $\psi(z)$ with values in \mathcal{B}' , holomorphic at z_0 :

$$A(z)\phi(z)=(z-z_0)^{m(\phi)}\psi(z),\quad \psi(z_0)\neq 0.$$

- $m(\phi)$: multiplicity of the root function $\phi(z)$.
- For $\phi_0 \in \operatorname{Ker} A(z_0)$, $\operatorname{rank}(\phi_0)$ (the rank of ϕ_0) = the maximum of the multiplicities of all root functions $\phi(z)$ with $\phi(z_0) = \phi_0$.

- Suppose that n = dim KerA(z₀) < +∞ and that the ranks of all vectors in KerA(z₀) are finite.
- Canonical system of eigenvectors:
 - A system of eigenvectors ϕ_0^j , $j=1,\ldots,n$,: canonical system of eigenvectors of A(z) associated to z_0 if for $j=1,\ldots,n$, $\mathrm{rank}(\phi_0^j)$ is the maximum of the ranks of all eigenvectors in the direct complement in $\mathrm{Ker}A(z_0)$ of the linear span of the vectors $\phi_0^1,\ldots,\phi_0^{j-1}$.
- Null multiplicity of the characteristic value z_0 of A(z):

$$\mathcal{N}(A(z_0)) := \sum_{j=1}^n \operatorname{rank}(\phi_0^j).$$

• If z_0 is not a characteristic value of A(z), we put $N(A(z_0)) = 0$.

- Suppose that $A^{-1}(z)$ exists and is holomorphic in some neighborhood of z_0 , except possibly at z_0 .
- Multiplicity of z₀:

$$M(A(z_0)) = N(A(z_0)) - N(A^{-1}(z_0)).$$

• If z_0 is a characteristic value and not a pole of A(z):

$$M(A(z_0)) = N(A(z_0)).$$

• If z_0 is a pole and not a characteristic value of A(z):

$$M(A(z_0)) = -N(A^{-1}(z_0)).$$

- Finitely meromorphic operator:
 - Suppose that z_0 is a pole of A(z) and the Laurent series expansion of A(z) at z_0 :

$$A(z) = \sum_{j \geq -s} (z - z_0)^j A_j.$$

- If A_{-j} , j = 1, ..., s, have finite-dimensional ranges, then A(z) is finitely meromorphic at z_0 .
- Operator of Fredholm type:
 - A(z): of Fredholm type (of index zero) at the point z_0 if the operator A_0 in the Laurent series is Fredholm (of index zero).

- Regular point: If A(z) is holomorphic and invertible at z', then z' is a regular point of A(z).
- Normal point: z₀: normal point of A(z) if A(z): finitely meromorphic, of Fredholm type at z₀, and regular in a neighborhood of z₀ except at z₀ itself.

• Trace operator:

• A: finite-rank operator acting from $\mathcal B$ into itself. Suppose that there exists a finite-dimensional invariant subspace $\mathcal C$ of A such that A annihilates some direct complement of $\mathcal C$ in $\mathcal B$.

$$\operatorname{tr}(A) = \operatorname{tr}(A|_{\mathcal{C}}).$$

- tr A is independent of the choice of C, so that it is well-defined.
- tr is linear.
- If B is a finite-rank operator from \mathcal{B} to itself, then

$$tr AB = tr BA$$
.

• If M is a finite-rank operator from $\mathcal{B} \times \mathcal{B}'$ to itself:

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

then $\operatorname{tr} M = \operatorname{tr} A + \operatorname{tr} D$.

- C(z): finitely meromorphic in the neighborhood \overline{V} of z_0 , which contains no poles of C(z) except possibly z_0 , then $\int_{\partial V} C(z) dz$ is a finite-rank operator.
- A(z) and B(z): two operator-valued functions which are finitely meromorphic in the neighborhood \overline{V} of z_0 , which contains no poles of A(z) and B(z) other than z_0 . Then

$$\operatorname{tr} \int_{\partial V} A(z)B(z) dz = \operatorname{tr} \int_{\partial V} B(z)A(z) dz.$$

- Factorization of operators:
 - $A(z) \in \mathfrak{U}(z_0)$ admits a factorization at z_0 if

$$A(z) = E(z)D(z)F(z),$$

E(z), F(z): regular at z_0 and

$$D(z) = P_0 + \sum_{j=1}^{n} (z - z_0)^{k_j} P_j.$$

 P_j 's: mutually disjoint projections, P_1, \ldots, P_n are rank-one operators, and $I - \sum_{i=0}^n P_j$ is a finite-rank operator.

• $A(z) \in \mathfrak{U}(z_0)$ admits a factorization at z_0 iff A(z) is finitely meromorphic and of Fredholm type of index zero at z_0 .

- Factorization of operators:
 - A(z) is normal at z_0 iff A(z) admits a factorization such that $I = \sum_{i=0}^{n} P_j$. Moreover,

$$M(A(z_0)) = k_1 + \cdots + k_n.$$

• Every normal point of A(z) is a normal point of $A^{-1}(z)$.

- V: a simply connected bounded domain with rectifiable boundary ∂V .
- A(z): finitely meromorphic and of Fredholm type in V and continuous on ∂V .
- A(z) is normal with respect to ∂V if A(z) is invertible in \overline{V} , except for a finite number of points of V which are normal points of A(z).
- A(z) is normal with respect to ∂V if it is finitely meromorphic and of Fredholm type in V, continuous on ∂V , and invertible for all $z \in \partial V$.

- A(z): normal with respect to the contour ∂V and z_i , $i = 1, ..., \sigma$, are all its characteristic values and poles lying in V.
- Full multiplicity of A(z) in V:

$$\mathcal{M}(A(z);\partial V)=\sum_{j=1}^{\sigma}M(A(z_{j})).$$

- M(A(z); \(\partial V\)) = number of characteristic values of A(z) in V, counted with their multiplicities, minus the number of poles of A(z) in V, counted with their multiplicities.
- Generalized argument principle:

$$\mathcal{M}(A(z);\partial V) = \frac{1}{2\pi i} \operatorname{tr} \int_{\partial V} A^{-1}(z) \frac{d}{dz} A(z) dz.$$

- General form of the argument principle:
 - A(z): normal with respect to ∂V .
 - f(z): a scalar function which is analytic in V and continuous in V.
 - z_j , $j = 1, ..., \sigma$, all the points in V which are either poles or characteristic values of A(z):

$$\frac{1}{2\pi i} \operatorname{tr} \int_{\partial V} f(z) A^{-1}(z) \frac{d}{dz} A(z) dz = \sum_{j=1}^{\sigma} M(A(z_j)) f(z_j).$$

- Generalized Rouché's theorem:
 - A(z): normal with respect to ∂V .
 - S(z): finitely meromorphic in V and continuous on ∂V s.t.

$$||A^{-1}(z)S(z)||_{\mathcal{L}(\mathcal{B},\mathcal{B})} < 1, \quad z \in \partial V.$$

• \Rightarrow A(z) + S(z): also normal with respect to ∂V and

$$\mathcal{M}(A(z);\partial V)=\mathcal{M}(A(z)+S(z);\partial V).$$

- Steinberg's theorem:
 - K(z): compact operator on a Banach space, which is analytic in V.
 - $(I + K(z))^{-1}$: meromorphic in V.
- Generalized Steinberg's theorem:
 - A(z): finitely meromorphic and of Fredholm type in the domain V.
 - If A(z) is invertible at one point of V, then A(z) has a bounded inverse for all z ∈ V, except possibly for certain isolated points.

Muller's method:

- Compute the characteristic values of A(z). item Discretization of A(z).
- Compute the zeros of functions on \mathbb{C} :

$$f: z \mapsto \frac{1}{(A^{-1}(z)\phi, \psi)}$$

- ϕ and ψ : fixed random vectors.
- Determine roots (simple or multiple) of a polynomial.

Lecture 2: Cavities and resonators

Habib Ammari

Department of Mathematics, ETH Zürich

- Cavity: D bounded domain of class $C^{1,\eta}, \eta > 0$
 - Helmholtz equation in *D*:

$$\Delta u + \omega^2 u = 0$$

- Dirichlet boundary conditions: u = 0 on ∂D ;
- Neumann boundary conditions: $\partial u/\partial \nu = 0$ on ∂D ;
- Robin boundary conditions: $\partial u/\partial \nu + \lambda u = 0$ on ∂D .
- Resonator:
 - Helmholtz equation in \mathbb{R}^d :

$$\left\{ \begin{array}{l} \Delta u + \omega^2 n(x) u = 0 \quad \text{in } \mathbb{R}^d, \\ \left| \frac{\partial u}{\partial |x|} - i \omega u \right| = O \bigg(|x|^{-(d+1)/2} \bigg), \quad |x| \to +\infty, \text{ uniformly in } \frac{x}{|x|}; \end{array} \right.$$

• supp(n(x) - 1) = D

• Outgoing fundamental solution $\Gamma_{\omega}(x)$ to the Helmholtz operator $\Delta + \omega^2$ in \mathbb{R}^d , d=2,3: $(\Delta_x + \omega^2)\Gamma_{\omega}(x) = \delta_0(x)$

$$\Gamma_{\omega}(x) = \begin{cases} -\frac{i}{4}H_0^{(1)}(\omega|x|), & d = 2, \\ -\frac{e^{i\omega|x|}}{4\pi|x|}, & d = 3, \end{cases}$$

- $H_0^{(1)}$: Hankel function of the first kind of order 0.
- Behavior of $H_0^{(1)}$ near 0:

$$-\frac{i}{4} H_0^{(1)}(\omega|x|) \sim \frac{1}{2\pi} \ln|x| \quad \big[\Delta_x(\frac{1}{2\pi} \ln|x|) = \delta_0(x) \big].$$

• Sommerfeld radiation condition:

$$\left|\frac{x}{|x|}\cdot\nabla\Gamma_{\omega}(x)-i\omega\Gamma_{\omega}(x)\right|=\begin{cases}O(|x|^{-3/2}), & d=2,\\O(|x|^{-2}), & d=3.\end{cases}$$

• Single- and double-layer potentials: For $\varphi \in L^2(\partial D)$,

$$S_D^{\omega}[\varphi](x) = \int_{\partial D} \Gamma_{\omega}(x - y)\varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d,$$

$$\mathcal{D}_D^{\omega}[\varphi](x) = \int_{\partial D} \frac{\partial \Gamma_{\omega}(x - y)}{\partial \nu(y)} \varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d \setminus \partial D,$$

- $\Gamma_{\omega}(x)$ outgoing fundamental solution to the Helmholtz operator \Rightarrow
 - ullet $\mathcal{S}^\omega_D[arphi]$ and $\mathcal{D}^\omega_D[arphi]$ satisfy the Helmholtz equation

$$(\Delta + \omega^2)u = 0$$
 in D and in $\mathbb{R}^d \setminus \overline{D}$.

• $\mathcal{S}_D^{\omega}[\varphi]$ and $\mathcal{D}_D^{\omega}[\varphi]$ satisfy the Sommerfeld radiation condition.

• Jump relations: For $\varphi \in L^2(\partial D)$,

$$\begin{split} \frac{\partial (\mathcal{S}_D^\omega[\varphi])}{\partial \nu}\bigg|_{\pm}(x) &= \bigg(\pm \frac{1}{2}I + (\mathcal{K}_D^\omega)^*\bigg)[\varphi](x) \quad \text{a.e. } x \in \partial D, \\ (\mathcal{D}_D^\omega[\varphi])\bigg|_{\pm}(x) &= \bigg(\mp \frac{1}{2}I + \mathcal{K}_D^\omega\bigg)[\varphi](x) \quad \text{a.e. } x \in \partial D, \end{split}$$

• \mathcal{K}_D^{ω} and $(\mathcal{K}_D^{\omega})^*$:

$$\mathcal{K}_{D}^{\omega}[\varphi](x) = \int_{\partial D} \frac{\partial \Gamma_{\omega}(x - y)}{\partial \nu(y)} \varphi(y) \, d\sigma(y);$$
$$(\mathcal{K}_{D}^{\omega})^{*}[\varphi](x) = \int_{\partial D} \frac{\partial \Gamma_{\omega}(x - y)}{\partial \nu(x)} \varphi(y) \, d\sigma(y).$$

- $(\mathcal{K}_D^{\omega})^*$: L^2 -adjoint of $\mathcal{K}_D^{-\omega}$ (complex inner product).
- \mathcal{K}_D^{ω} and $(\mathcal{K}_D^{\omega})^*$: compact on $L^2(\partial D)$.

- Three-dimensional case (d=3): Holomorphic dependence of $\Gamma_{\omega} \Rightarrow \mathcal{K}_{D}^{\omega}$: operator-valued holomorphic function in \mathbb{C} .
- Two-dimensional case (d=2): Holomorphic dependence of Γ_{ω} on $\mathbb{C}\setminus i\mathbb{R}^- \Rightarrow \mathcal{K}_D^{\omega}$: operator-valued holomorphic function on $\mathbb{C}\setminus i\mathbb{R}^-$.
- Neumann Eigenvalue characterization: Suppose that D is of class $\mathcal{C}^{1,\eta}$ for some $\eta>0$. Let $\omega>0$. Then ω^2 : eigenvalue of $-\Delta$ on D with Neumann boundary condition iff ω : positive real characteristic value of $-(1/2)I + \mathcal{K}_D^\omega$.

• Suppose ω^2 : eigenvalue of

$$\left\{ \begin{array}{ll} \Delta u + \omega^2 u = 0 & \quad \text{in } D, \\ \\ \frac{\partial u}{\partial \nu} = 0 & \quad \text{on } \partial D. \end{array} \right.$$

 Green's formula (multiply by Green's function and integrate by parts over D):

$$u(x) = \mathcal{D}_D^{\omega}[u|_{\partial D}](x), \quad x \in D.$$

- Jump formula: (-I/2 + K^ω_D)[u|_{∂D}] = 0 and u|_{∂D} ≠ 0 since otherwise the unique continuation property for Δ + ω² would imply that u ≡ 0 in D.
- ω : characteristic value of $-(1/2)I + \mathcal{K}_D^{\omega}$.

- ω : characteristic value of $-(1/2)I + \mathcal{K}_D^{\omega}$;
- There is a nonzero $\psi \in L^2(\partial D)$ s.t.

$$\left(-rac{1}{2}I+\mathcal{K}_{D}^{\omega}
ight)\left[\psi
ight]=0.$$

- $u = \mathcal{D}_D^{\omega}[\psi]$ on $\mathbb{R}^d \setminus \overline{D}$ is a solution to the Helmholtz equation with the boundary condition $u|_+ = 0$ on ∂D and satisfies the radiation condition.
- Uniqueness result (exterior Helmholtz equation + radiation condition + Dirichlet boundary condition) ⇒ D^D_{\omega}[\psi] = 0 in ℝ^d \ \overline{\overline{D}}.
- $\partial \mathcal{D}_D^{\omega}[\psi]/\partial \nu$ exists and has no jump across $\partial D \Rightarrow$

$$\frac{\partial \mathcal{D}_D^{\omega}[\psi]}{\partial \nu}\Big|_{+} = \frac{\partial \mathcal{D}_D^{\omega}[\psi]}{\partial \nu}\Big|_{-} \quad \text{on } \partial D.$$

• $\mathcal{D}_{D}^{\omega}[\psi]$: a solution of the Helmholtz equation with Neumann boundary condition; $\mathcal{D}_{D}^{\omega}[\psi] \neq 0$ in D, since otherwise

$$\psi = \mathcal{D}_D^{\omega}[\psi]\big|_{-} - \mathcal{D}_D^{\omega}[\psi]\big|_{+} = 0.$$

• ω^2 : an eigenvalue of $-\Delta$ on D with Neumann condition.

- Steinberg's theorem:
 - For d=3: $-(1/2)I+\mathcal{K}_D^\omega$: invertible on $L^2(\partial D)$ for all $\omega\in\mathbb{C}$ except for a discrete set;
 - For d=3: $(-(1/2)I+\mathcal{K}_D^{\omega})^{-1}$: meromorphic function on \mathbb{C} .
 - For d=2: $(-(1/2)I + \mathcal{K}_D^{\omega})^{-1}$ has a continuation to an operator-valued meromorphic function on only $\mathbb{C} \setminus i\mathbb{R}^-$.

- Eigenvalues of $-\Delta$ on D with Dirichlet boundary condition:
 - D of class $C^{1,\eta}$ for some $\eta > 0$.
 - ω^2 ($\omega > 0$): eigenvalue of $-\Delta$ on D with Dirichlet boundary condition iff ω is a positive real characteristic value of $(1/2) I + (\mathcal{K}_D^\omega)^*$.
- Eigenvalues of $-\Delta$ on D with the Robin boundary condition:

$$\frac{\partial u}{\partial \nu} + \lambda u = 0$$
 on ∂D , $\lambda > 0$.

- D of class $C^{1,\eta}$ for some $\eta > 0$.
- ω^2 ($\omega > 0$): eigenvalue of $-\Delta$ on D with the Robin boundary condition iff if ω is a positive real characteristic value of $-(1/2)I + \mathcal{K}^{\omega}_{D} \lambda \mathcal{S}^{\omega}_{D}$.

- Zaremba eigenvalues of mixed boundary value problems:
 - D of class $C^{1,\eta}$ for some $\eta > 0$.
 - Γ_D : subset of ∂D and let $\Gamma_N = \partial D \setminus \overline{\Gamma_D}$.
 - ω^2 ($\omega > 0$): eigenvalue of $-\Delta$ on D with the mixed boundary conditions:

$$\begin{cases} \Delta u + \omega^2 u = 0 & \text{in } D, \\ u = 0 & \text{on } \Gamma_D, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \Gamma_N, \end{cases}$$

iff ω is a positive real characteristic value of

$$\omega \mapsto \begin{bmatrix} (1/2) I + (\mathcal{K}_{\Gamma_D}^{\omega})^* & \frac{\partial}{\partial \nu} \mathcal{D}_{\Gamma_N}^{\omega} \big|_{\Gamma_D} \\ -\mathcal{S}_{\Gamma_D}^{\omega} \big|_{\Gamma_N} & -(1/2) I + \mathcal{K}_{\Gamma_N}^{\omega} \end{bmatrix}.$$

Neumann Function:

- $0 = \mu_1 < \mu_2 \le \mu_3 \le \dots$: the eigenvalues of $-\Delta$ on D with Neumann conditions on ∂D .
- u_j : the normalized eigenfunction associated with μ_j ($\|u_j\|_{L^2(D)} = 1$).
- $\omega \notin \{\sqrt{\mu_j}\}_{j\geq 1}$.
- Neumann function N_D^ω for $\Delta + \omega^2$ in D corresponding to a Dirac mass at z:

$$\left\{ \begin{array}{ll} \left(\Delta_x + \omega^2\right) N_D^\omega(x,z) = -\delta_z & \quad \text{in } D, \\ \left. \frac{\partial N_D^\omega}{\partial \nu} \right|_{\partial D} = 0 & \quad \text{on } \partial D. \end{array} \right.$$

• Pointwise spectral decomposition:

$$N_D^{\omega}(x,z) = \sum_{j=1}^{+\infty} \frac{u_j(x)u_j(z)}{\mu_j - \omega^2}, \quad x \neq z \in D.$$

Consider the function

$$f(x) := \sum_{j=1}^{+\infty} a_j u_j(x), \quad x \in D.$$

• If $(\Delta_x + \omega^2) f(x) = -\delta_z(x)$, then

$$\sum_{i=1}^{+\infty} a_j(\omega^2 - \mu_j) u_j(x) = -\delta_z(x).$$

• Integrate against u_k over D and use $\int_D u_i u_k = \delta_{ik}$:

$$a_k(\omega^2 - \mu_k) = -u_k(z).$$

- Singularity of the Neumann function N_D^{ω} :
 - In two dimensions:

$$N_D^\omega(x,z) = -rac{1}{2\pi} \ln|x-z| + R_D^\omega(x,z) \quad ext{for } x
eq z \in D;$$

• In dimension $d \ge 3$:

$$N_D^{\omega}(x,z) = \frac{1}{(d-2)\omega_d}|x-z|^{2-d} + R_D^{\omega,d}(x,z) \quad \text{for } x \neq z \in D;$$

• $R_D^{\omega}(\cdot,z) \in H^{3/2}(D)$ for any $z \in D$.

- Dirichlet function:
 - $0 < \tau_1 < \tau_2 \le \tau_3 \le \dots$: eigenvalues of $-\Delta$ on D with Dirichlet conditions on ∂D .
 - v_i : the normalized eigenfunction associated with τ_i .
 - Dirichlet function $G_D^{\omega}(x,z)$:

$$\left\{ \begin{array}{ll} (\Delta_x + \omega^2) G_D^\omega(x,z) = -\delta_z & \quad \text{in } D, \\ \\ G_D^\omega = 0 & \quad \text{on } \partial D. \end{array} \right.$$

• Pointwise spectral decomposition:

$$G_D^{\omega}(x,z) = \sum_{j=1}^{+\infty} \frac{v_j(x)v_j(z)}{\tau_j - \omega^2}, \quad x \neq z \in D.$$

- Singularity of G_D^{ω} :
 - d = 2.

$$G_D^{\omega}(x,z) = -\frac{1}{2\pi} \ln|x-z| + \widetilde{R}_D^{\omega,d}(x,z) \quad \text{for } x \neq z \in D;$$

• d > 3

$$G_D^{\omega}(x,z) = \frac{1}{(d-2)\omega_d}|x-z|^{2-d} + \widetilde{R}_D^{\omega,d}(x,z) \quad \text{for } x \neq z \in D;$$

• $\widetilde{R}_D^{\omega,d}(\cdot,z) \in H^{3/2}(D)$ for any $z \in D$.

- Eigenvalues in circular domains:
 - κ_{nm} : positive zeros of $J_n(z)$ (Dirichlet), $J'_n(z)$ (Neumann), and $J'_n(z) + \lambda J_n(z)$ (Robin).
 - Index n = 0, 1, 2, ... counts the order of Bessel functions of first kind J_n while m = 1, 2, ... counts their positive zeros.
 - Rotational symmetry of $D = \{x : |x| < R\} \Rightarrow$ explicit representation of the eigenfunctions in polar coordinates:

$$u_{nml}(r,\theta) = J_n(\frac{\kappa_{nm}r}{R}) \times \begin{cases} \cos(n\theta), & l = 1, \\ \sin(n\theta), & l = 2 \quad (n \neq 0). \end{cases}$$

• Eigenvalues of $-\Delta$ on D: κ_{nm}^2/R^2 .

- Independent of I; Simple for n = 0 and twice degenerate for n > 0
 (eigenfunction is any nontrivial linear combination of u_{nm1} and u_{nm2}).
- When the index n is fixed while m increases, the Bessel functions $J_n(\frac{\kappa_{nml}}{R})$ rapidly oscillate, the amplitude of oscillations decreasing toward the boundary and the eigenfunctions u_{nml} are mainly localized at the origin, yielding focusing modes.
- When the index m is fixed while n increases, the Bessel functions $J_n(\frac{\kappa_{nm}r}{R})$ become strongly attenuated near the origin and essentially localized near the boundary: whispering gallery eigenmodes.

- Shape derivative of the cavity modes:
 - D: bounded domain of class C²;
 - D_{ε} : ϵ -perturbation of D:

$$\partial D_{\varepsilon} = \left\{ \tilde{x} : \tilde{x} = x + \varepsilon h(x) \nu(x), \ x \in \partial D \right\}.$$

- $h \in C^2(\partial D)$.
- Asymptotic expansions of $\mathcal{S}_{D_{\varepsilon}}^{\omega}$ and $(\mathcal{K}_{D_{\varepsilon}}^{\omega})^*$ as $\varepsilon \to 0$.

• $a, b \in \mathbb{R}, \ a < b, \ X(t) : [a, b] \to \mathbb{R}^2$ arclength parametrization of ∂D : X is a \mathcal{C}^2 -function satisfying |X'(t)| = 1 for all $t \in [a, b]$ and

$$\partial D := \left\{ x = X(t), \ t \in [a, b] \right\}.$$

Outward unit normal to ∂D:

$$\nu(x) = R_{-\pi/2}X'(t),$$

 $R_{-\pi/2}$: rotation by $-\pi/2$, the tangential vector at x, T(x) = X'(t), and $X'(t) \perp X''(t)$.

• Curvature $\tau(x)$:

$$X''(t) = \tau(x)\nu(x).$$

• Parametrization of ∂D_{ε} :

$$\tilde{X}(t) = X(t) + \epsilon h(t)\nu(x) = X(t) + \epsilon h(t)R_{-\pi/2}X'(t).$$

• Outward unit normal to ∂D_{ε} at \tilde{x} , $\tilde{\nu}(\tilde{x})$,

$$\begin{split} \tilde{\nu}(\tilde{x}) &= \frac{R_{-\pi/2}\tilde{X}'(t)}{|\tilde{X}'(t)|} \\ &= \frac{\left(1 - \epsilon h(t)\tau(x)\right)\nu(x) - \epsilon h'(t)X'(t)}{\sqrt{\epsilon^2 h'(t)^2 + \left(1 - \epsilon h(t)\tau(x)\right)^2}} \\ &= \frac{\left(1 - \epsilon h(t)\tau(x)\right)\nu(x) - \epsilon h'(t)T(x)}{\sqrt{\epsilon^2 h'(t)^2 + \left(1 - \epsilon h(t)\tau(x)\right)^2}}. \end{split}$$

• Uniform expansion of $\tilde{\nu}(\tilde{x})$:

$$\tilde{\nu}(\tilde{x}) = \sum_{n=0}^{+\infty} \varepsilon^n \nu^{(n)}(x), \quad x \in \partial D,$$

 $\nu^{(n)}$: bounded; The first two terms:

$$\nu^{(0)}(x) = \nu(x), \quad \nu^{(1)}(x) = -h'(t)T(x).$$

• Uniformly convergent expansion for the length element $d\sigma_{\epsilon}(\tilde{y})$:

$$egin{aligned} d\sigma_{\epsilon}(ilde{y}) &= | ilde{X}'(s)|ds \ &= \sqrt{(1-arepsilon au(s)h(s))^2 + arepsilon^2h'^2(s)}ds \ &= \sum_{n=0}^{+\infty} \epsilon^n \sigma^{(n)}(y)\,d\sigma(y). \end{aligned}$$

• $\sigma^{(n)}$: bounded functions and

$$\sigma^{(0)}(y) = 1, \quad \sigma^{(1)}(y) = -\tau(y)h(y).$$

• Expansion of the kernel $H_0^{(1)}(\omega|\tilde{x}-\tilde{y}|)$:

$$H_0^{(1)}(\omega|\tilde{x}-\tilde{y}|)=\sum_{n=0}^{+\infty}\varepsilon^nH_n^{\omega}(x,y);$$

- Series converges absolutely and uniformly;
- First two terms:

$$H_0^{\omega}(x,y) = H_0^{(1)}(\omega|x-y|)$$

and

$$H_1^{\omega}(x,y) = \omega(H_0^{(1)})'(\omega|x-y|) \frac{\langle x-y, h(t)\nu(x) - h(s)\nu(y)\rangle}{|x-y|}.$$

• $x = X(t), y = X(s), \tilde{x} = \tilde{X}(t), \tilde{y} = \tilde{X}(s).$

• Ψ_{ε} : diffeomorphism from ∂D onto ∂D_{ϵ}

$$\Psi_{\varepsilon}(x) = x + \varepsilon h(t)\nu(x), \quad x = X(t).$$

• Asymptotic expansion of $\mathcal{K}_{D_{\varepsilon}}^{\omega}$ with respect to ε :

$$\mathcal{K}^{\omega}_{D_{\varepsilon}}[\cdot] \circ \Psi_{\varepsilon} = \mathcal{K}^{\omega}_{D}[\cdot] + \varepsilon \mathcal{K}^{(1)}_{D,\omega}[\cdot] + \varepsilon^{2} \mathcal{K}^{(2)}_{D,\omega}[\cdot] + \ldots;$$

• Each operator $\mathcal{K}_{D,\omega}^{(n)}$: bounded on $L^2(\partial D)$.

- μ_i^{ε} eigenvalue of $-\Delta$ in D_{ε} with Neumann boundary conditions.
- $\mathcal{A}_{\varepsilon}(\omega) = -\frac{1}{2}I + \mathcal{K}_{D_{\varepsilon}}^{\omega}$;
- $A_{\varepsilon}(\omega)$: Fredholm analytic with index 0 in $\mathbb{C} \setminus i\mathbb{R}^-$;
- $(A_{\varepsilon})^{-1}(\omega)$: meromorphic function.
- If ω : real characteristic value of $\mathcal{A}_{\varepsilon}$ (a real pole of $(\mathcal{A}_{\varepsilon})^{-1}(\omega)$), then there exists j such that $\omega = \sqrt{\mu_{j}^{\varepsilon}}$.

- Any $\sqrt{\mu_j}$ is a simple pole of $(\mathcal{A}_0)^{-1}(\omega)$.
- Let $\omega_0 = \sqrt{\mu_j}$ and suppose that μ_j is simple. Then there exists a positive constant δ_0 such that for $|\delta| < \delta_0$, $\omega \mapsto \mathcal{A}_{\varepsilon}(\omega)$ has exactly one characteristic value in $V_{\delta_0}(\omega_0)$, where $V_{\delta_0}(\omega_0)$ is a disk of center ω_0 and radius $\delta_0 > 0$. This characteristic value is analytic with respect to ε in $] \varepsilon_0, \varepsilon_0[$.
- $\mathcal{M}(\mathcal{A}_{\varepsilon}(\omega); \partial V_{\delta_0}) = 1$,
- $(A_{\varepsilon})^{-1}(\omega) = (\omega \omega_{\varepsilon})^{-1} \mathcal{L}_{\varepsilon} + \mathcal{R}_{\varepsilon}(\omega),$
- $\mathcal{L}_{\varepsilon}: Ker((\mathcal{A}_{\varepsilon}(\omega_{\varepsilon}))^*) \to Ker(\mathcal{A}_{\varepsilon}(\omega_{\varepsilon})),$
- $\mathcal{R}_{\varepsilon}(\omega)$: holomorphic function with respect to $(\varepsilon,\omega) \in]-\varepsilon_0,\varepsilon_0[\times V_{\delta_0}(\omega_0)]$
- $\mathcal{L}_{\varepsilon}$: finite-dimensional operator.

- Application of the generalized argument principle:
 - Let $\omega_0 = \sqrt{\mu_j}$ and suppose that μ_j is simple.
 - $\omega_{\varepsilon} = \sqrt{\mu_{i}^{\varepsilon}}$:

$$\omega_{\varepsilon} - \omega_{0} = \frac{1}{2\pi i} \operatorname{tr} \int_{\partial V_{\delta_{0}}} (\omega - \omega_{0}) \mathcal{A}_{\varepsilon}(\omega)^{-1} \frac{d}{d\omega} \mathcal{A}_{\varepsilon}(\omega) d\omega.$$

• Asymptotic expansion of A_{ε} :

$$A_{\varepsilon}(\omega) = A_0(\omega) + \varepsilon A_1(\omega) + \ldots;$$

• Leading-order term in the asymptotic expansion of $\omega_{\varepsilon} - \omega_0$:

$$-rac{1}{2i\pi}\operatorname{tr}\int_{\partial V_{\delta lpha}}\mathcal{A}_0(\omega)^{-1}\mathcal{A}_1(\omega)\omega d\omega.$$

• Neumann series converges uniformly with respect to ω in ∂V_{δ_0} :

$$\mathcal{A}_{\varepsilon}(\omega)^{-1} = \sum_{p=0}^{+\infty} \left[\mathcal{A}_0(\omega)^{-1} (\mathcal{A}_0(\omega) - \mathcal{A}_{\varepsilon}(\omega)) \right]^p \mathcal{A}_0(\omega)^{-1},$$

• $\omega_{\varepsilon} - \omega_0 =$

$$\frac{1}{2\pi i} \sum_{p=0}^{+\infty} \operatorname{tr} \int_{\partial V_{\delta_0}} (\omega - \omega_0) \left[\mathcal{A}_0(\omega)^{-1} (\mathcal{A}_0(\omega) - \mathcal{A}_{\varepsilon}(\omega)) \right]^p \mathcal{A}_0(\omega)^{-1} \frac{d}{d\omega} \mathcal{A}_{\varepsilon}(\omega) d\omega.$$

• Trace property: A(z) and B(z) finitely meromorphic in \overline{V}

$$\operatorname{tr} \int_{\partial V} A(z)B(z) dz = \operatorname{tr} \int_{\partial V} B(z)A(z) dz;$$

• Differentiation:

$$\frac{d}{d\omega}\mathcal{A}_0(\omega)^{-1} = -\mathcal{A}_0(\omega)^{-1}\frac{d\mathcal{A}_0}{d\omega}(\omega)\mathcal{A}_0(\omega)^{-1}.$$

$$\bullet \Rightarrow$$

$$\operatorname{tr} \int_{\partial V_{\delta_0}} (\omega - \omega_0) \frac{1}{p} \frac{d}{d\omega} \left[\mathcal{A}_0(\omega)^{-1} (\mathcal{A}_0(\omega) - \mathcal{A}_{\varepsilon}(\omega)) \right]^p d\omega$$

$$= \operatorname{tr} \left[\int_{\partial V_{\delta_0}} (\omega - \omega_0) \left[\mathcal{A}_0(\omega)^{-1} (\mathcal{A}_0(\omega) - \mathcal{A}_{\varepsilon}(\omega)) \right]^{p-1} \mathcal{A}_0(\omega)^{-1} \right]$$

$$\times \frac{d}{d\omega} (\mathcal{A}_0(\omega) - \mathcal{A}_{\varepsilon}(\omega)) d\omega$$

$$- \int_{\partial V_{\delta_0}} (\omega - \omega_0) \left[\mathcal{A}_0(\omega)^{-1} (\mathcal{A}_0(\omega) - \mathcal{A}_{\varepsilon}(\omega)) \right]^p \mathcal{A}_0(\omega)^{-1} \frac{d}{d\omega} \mathcal{A}_0(\omega) d\omega \right].$$

$$\bullet \Rightarrow \omega_{\varepsilon} - \omega_0 =$$

$$\begin{split} \bullet & \Rightarrow \omega_{\varepsilon} - \omega_{0} = \\ & - \frac{1}{2i\pi} \sum_{p=1}^{+\infty} \operatorname{tr} \int_{\partial V_{\delta_{0}}} (\omega - \omega_{0}) \frac{1}{p} \frac{d}{d\omega} \left[\mathcal{A}_{0}(\omega)^{-1} (\mathcal{A}_{0}(\omega) - \mathcal{A}_{\varepsilon}(\omega)) \right]^{p} d\omega \\ & + \frac{1}{2\pi i} \operatorname{tr} \int_{\partial V_{\varepsilon}} (\omega - \omega_{0}) \mathcal{A}_{0}(\omega)^{-1} \frac{d}{d\omega} \mathcal{A}_{0}(\omega) d\omega. \end{split}$$

• ω_0 : simple pole of $\mathcal{A}_0(\omega)^{-1}$ and $\mathcal{A}_0(\omega)$ is analytic \Rightarrow

$$\int_{\partial V_{\delta_0}} (\omega - \omega_0) \mathcal{A}_0(\omega)^{-1} \frac{d}{d\omega} \mathcal{A}_0(\omega) d\omega = 0.$$

• $\Rightarrow \omega_{\varepsilon} - \omega_0 =$

$$-\frac{1}{2\pi i}\sum_{p=1}^{+\infty}\operatorname{tr}\int_{\partial V_{\delta_0}}(\omega-\omega_0)\frac{1}{\rho}\frac{d}{d\omega}\left[\mathcal{A}_0^{-1}(\omega)(\mathcal{A}_0(\omega)-\mathcal{A}_\varepsilon(\omega))\right]^pd\omega.$$

• Integration by parts:

$$\omega_arepsilon - \omega_0 = rac{1}{2\pi i} \sum_{p=1}^{+\infty} rac{1}{p} \operatorname{tr} \int_{\partial V_{\delta_0}} \left[\mathcal{A}_0(\omega)^{-1} (\mathcal{A}_0(\omega) - \mathcal{A}_arepsilon(\omega))
ight]^p d\omega.$$

•

$$\begin{split} \left(\mathcal{A}_0(\omega)^{-1}(\mathcal{A}_0(\omega)-\mathcal{A}_{\varepsilon}(\omega))\right)^p \\ &=(-1)^p\sum_{n=p}^{+\infty}\varepsilon^n\sum_{n_1+\ldots+n_p=n\atop n_i\geq 1}\mathcal{A}_0(\omega)^{-1}\mathcal{A}_{n_1}(\omega)\ldots\mathcal{A}_0(\omega)^{-1}\mathcal{A}_{n_p}(\omega)\omega^n. \end{split}$$

•

$$\mathcal{A}_{\varepsilon}(\omega) = \sum_{n=0}^{+\infty} \varepsilon^n \mathcal{A}_n(\omega).$$

• \Rightarrow Leading-order term in the asymptotic expansion of $\omega_{\varepsilon} - \omega_0$:

$$-rac{1}{2i\pi}\operatorname{tr}\int_{\partial V_{\delta_0}}\mathcal{A}_0(\omega)^{-1}\mathcal{A}_1(\omega)\omega d\omega.$$

- Splitting of multiple eigenvalues:
 - Multiple eigenvalues may evolve, under perturbations, as separated, distinct eigenvalues, and the splitting may only become apparent at high orders in their Taylor expansions with respect to the perturbation parameter.
 - Splitting problem in the evaluation of the perturbations of the Neumann eigenvalues due to shape deformations.
 - Splitting problem: generalized argument principle.

- Let ω₀ = √µ_j and suppose that µ_j is a multiple Neumann eigenvalue of
 -Δ on D with geometric multiplicity m.
- There exists a positive constant δ_0 such that for $|\delta| < \delta_0$, $\omega \mapsto \mathcal{A}_{\varepsilon}(\omega)$ has exactly m characteristic values (counted according to their multiplicity) in $V_{\delta_0}(\omega_0)$.
- $\mathcal{M}(\mathcal{A}_{\varepsilon}(\omega); \partial V_{\delta_0}) = \sum_{i=1}^n \mathcal{M}(\mathcal{A}_{\varepsilon}(\omega_{\varepsilon}^i); \partial V_{\delta_0}) = m,$
- $(\mathcal{A}_{\varepsilon})^{-1}(\omega) = \sum_{i=1}^{n} (\omega \omega_{\varepsilon}^{i})^{-1} \mathcal{L}_{\varepsilon}^{i} + \mathcal{R}_{\varepsilon}(\omega);$
- $\mathcal{L}^i_{\varepsilon}: \mathit{Ker}((\mathcal{A}_{\varepsilon}(\omega^i_{\varepsilon}))^*) o \mathit{Ker}(\mathcal{A}_{\varepsilon}(\omega^i_{\varepsilon})),$
- $\mathcal{R}_{\varepsilon}(\omega)$: holomorphic function with respect to $\omega \in V_{\delta_0}(\omega_0)$;
- $\mathcal{L}^i_{\varepsilon}$ for $i=1,\ldots,n$: finite-dimensional operator.

• For $l \in \mathbb{N}$,

$$a_l(\varepsilon) = rac{1}{2\pi i} \ {
m tr} \ \int_{\partial V_{\delta_0}} (\omega - \omega_0)^l {\cal A}_{\varepsilon}(\omega)^{-1} rac{d}{d\omega} {\cal A}_{\varepsilon}(\omega) d\omega.$$

• By the generalized argument principle:

$$a_I(\varepsilon) = \sum_{i=1}^m (\omega_\varepsilon^i - \omega_0)^I$$
 for $I \in \mathbb{N}$.

• Asymptotic expansion as $\varepsilon \to 0$:

$$a_{I}(\varepsilon) = \frac{\varepsilon}{2i\pi} \operatorname{tr} \int_{\partial V_{\delta_{0}}} I(\omega - \omega_{0})^{I-1} \mathcal{A}_{0}(\omega)^{-1} \mathcal{K}_{D}^{(1)}(\omega) d\omega + O(\varepsilon^{2}).$$

• There exists a polynomial-valued function $\omega \mapsto Q_{\varepsilon}(\omega)$ of degree m and of the form

$$Q_{\varepsilon}(\omega) = \omega^{m} + c_{1}(\varepsilon)\omega^{m-1} + \ldots + c_{i}(\varepsilon)\omega^{m-i} + \ldots + c_{m}(\varepsilon)$$

s.t. the perturbations $\omega_{\varepsilon}^i - \omega_0$ are precisely its zeros. The polynomial coefficients $(c_i)_{i=1}^m$ are given by the recurrence relation

$$a_{l+m} + c_1 a_{l+m-1} + \ldots + c_m a_l = 0$$
 for $l = 0, 1, \ldots, m-1$.

- Find a polynomial of degree m s.t. its zeros are precisely the perturbations ω_εⁱ ω₀.
- Computing the Taylor series of the polynomial coefficients ⇒ complete asymptotic expansions of the perturbations in the eigenvalues.
- m ∈ {2,3,4}: explicitly have the expressions of the perturbed eigenvalues as functions of (a_i)^m_{i-1}.

- Integral formulation of resonances:
- μ: solution of

$$\left\{ \begin{array}{l} \Delta u + \omega^2 \textit{n}(x) u = 0, \\ \\ u \text{ satisfies the Sommerfeld radiation condition.} \end{array} \right.$$

- n-1: compactly supported in a bounded domain D.
- Integral representation formula:

$$u(x) + \omega^2 \int_D (n(y) - 1) \Gamma_\omega(x - y) u(y) dy = 0, \quad x \in D.$$

• $\omega \in \mathbb{C}$: resonance if there is nontrivial solutions u(x).

A₀(ω):

$$\mathcal{A}_0(\omega)[u] = u(x) + \omega^2 \int_D (n(y) - 1) \Gamma_{\omega}(x - y) u(y) dy.$$

• Adjoint $\mathcal{A}_0^*(\omega)$:

$$\mathcal{A}_0^*(\omega)[v] = v(x) + (n(x) - 1)\omega^2 \int_D \Gamma_\omega(x - y)v(y)dy.$$

- ω₀: resonance iff it is a characteristic value of the meromorphic operator-valued function ω → A₀(ω).
- Given n(x), by using Muller's method, solve the nonlinear eigenvalue problem $\mathcal{A}_0(\omega)[u] = 0$.

• $\omega \in \mathbb{C}$: a resonance, quality factor Q:

$$Q=|\frac{\Re\omega}{\Im\omega}|.$$

- Quality factor: inversely proportional to the decay rate.
- Sensitivity of Q to changes in n(x) by the generalized argument principle.
- $n_{\epsilon}(x) = n(x) + \epsilon \mu(x)$; μ : compactly supported in D; $A_{\epsilon}(\omega)$: associated with n_{ϵ} .

• Then there exists a positive constant δ_0 such that for $|\delta| < \delta_0$, $\omega \mapsto \mathcal{A}_{\varepsilon}(\omega)$ has exactly one characteristic value in $\overline{V_{\delta_0}}(\omega_0)$.

•

$$\omega_{\varepsilon} - \omega_0 = \frac{1}{2i\pi} \operatorname{tr} \int_{\partial V_{\delta_0}} (\omega - \omega_0) \mathcal{A}_{\varepsilon}(\omega)^{-1} \frac{d}{d\omega} \mathcal{A}_{\varepsilon}(\omega) d\omega,$$

• Leading-order of the expansion of $\omega_{\varepsilon} - \omega_0$:

$$-\frac{1}{2\pi i}\operatorname{tr}\int_{\partial V_{\delta_0}}\mathcal{A}_0(\omega)^{-1}\mathcal{A}_1^{(\mu)}(\omega)\omega d\omega,$$

• $\mathcal{A}_1^{(\mu)}$:

$$\mathcal{A}_1^{(\mu)}(\omega)[u] = \omega^2 \int_D \mu(y) \Gamma_\omega(x-y) u(y) dy.$$

- Fréchet derivative of the quality factor Q with respect to n.
- Given an admissible set of functions n(x), optimal control can be used to maximize the quality factor of the resonator D.

Lecture 3: Waves in the quasi-static regime

Habib Ammari

Department of Mathematics, ETH Zürich

• Fundamental solution to the Laplacian:

$$\Gamma_0(x) = \begin{cases} \frac{1}{2\pi} \ln |x| , & d = 2, \\ \\ \frac{1}{(2-d)\omega_d} |x|^{2-d} , & d \ge 3, \end{cases}$$

- ω_d : area of the unit sphere in \mathbb{R}^d .
- Ω : bounded domain in \mathbb{R}^d , $d \geq 2$, of class $\mathcal{C}^{1,\eta}$ for some $\eta > 0$.
- $\nu(y)$: outward unit normal to $\partial\Omega$ at y.

• Single- and double-layer potentials of $\varphi \in L^2(\partial\Omega)$:

$$\begin{split} \mathcal{S}^0_{\Omega}[\varphi](x) &:= \int_{\partial \Omega} \Gamma_0(x-y) \varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d, \\ \mathcal{D}^0_{\Omega}[\varphi](x) &:= \int_{\partial \Omega} \frac{\partial}{\partial \nu(y)} \Gamma_0(x-y) \varphi(y) \, d\sigma(y) \;, \quad x \in \mathbb{R}^d \setminus \partial \Omega. \end{split}$$

• Neumann-Poincaré operator: $\mathcal{K}^0_{\Omega}: L^2(\partial\Omega) \to L^2(\partial\Omega)$:

$$\mathcal{K}_{\Omega}^{0}[\varphi](x) := \frac{1}{\omega_{d}} \int_{\partial \Omega} \frac{\langle y - x, \nu(y) \rangle}{|x - y|^{d}} \varphi(y) \, d\sigma(y).$$

- $(\mathcal{K}^0_{\Omega})^*$: L^2 -adjoint of \mathcal{K}^0_{Ω} .
- \mathcal{K}^0_{Ω} and $(\mathcal{K}^0_{\Omega})^*$: compact in $L^2(\partial\Omega)$.

• Jump relations: For $\varphi \in L^2(\partial\Omega)$,

$$\begin{split} \left(\mathcal{D}_{\Omega}^{0}[\varphi]\right)\big|_{\pm}(x) &= \left(\mp\frac{1}{2}I + \mathcal{K}_{\Omega}^{0}\right)[\varphi](x) \quad \text{a.e. } x \in \partial\Omega; \\ \left. \mathcal{S}_{\Omega}^{0}[\varphi]\right|_{+}(x) &= \left.\mathcal{S}_{\Omega}^{0}[\varphi]\right|_{-}(x) \quad \text{a.e. } x \in \partial\Omega; \\ \left. \frac{\partial}{\partial\nu}\mathcal{S}_{\Omega}^{0}[\varphi]\right|_{\pm}(x) &= \left(\pm\frac{1}{2}I + (\mathcal{K}_{\Omega}^{0})^{*}\right)[\varphi](x) \quad \text{a.e. } x \in \partial\Omega, \end{split}$$

• For $\varphi \in L^2(\partial\Omega)$, $\partial \mathcal{D}^0_{\Omega}[\varphi]/\partial \nu$ exists (in $H^{-1}(\partial\Omega)$) and has no jump across $\partial\Omega$:

$$\left. \frac{\partial}{\partial \nu} \mathcal{D}_{\Omega}^{0}[\varphi] \right|_{+} = \left. \frac{\partial}{\partial \nu} \mathcal{D}_{\Omega}^{0}[\varphi] \right|_{-}.$$

• For $\varphi \in L^2(\partial\Omega)$,

$$\left.\frac{\partial}{\partial\nu}\mathcal{S}_{\Omega}^{0}[\varphi]\right|_{\cdot}(x)-\frac{\partial}{\partial\nu}\mathcal{S}_{\Omega}^{0}[\varphi]\right|_{\cdot}(x)=\varphi(x)\quad\text{a.e. }x\in\partial\Omega.$$

• Dirichlet-to-Neumann operator $\mathcal{N}: L^2(\partial\Omega) \to H^{-1}(\partial\Omega)$:

$$\mathcal{N}[\varphi] = \frac{\partial u}{\partial \nu} \bigg|_{\partial \Omega};$$

• *u*: solution to

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{in } \Omega, \\ \\ u = \varphi & \text{on } \partial \Omega, \end{array} \right.$$

• Identity:

$$\left. rac{\partial}{\partial
u} \mathcal{D}_{\Omega}^0[arphi]
ight|_{\pm} = (rac{1}{2} + (\mathcal{K}_{\Omega}^0)^*) \mathcal{N}[arphi].$$

- Capacity:
 - d=2; $(\varphi_e,a)\in L^2(\partial\Omega)\times\mathbb{R}$: $\left\{ \begin{array}{l} \displaystyle \frac{1}{2\pi}\int_{\partial\Omega}\ln|x-y|\varphi_e(y)d\sigma(y)+a=0 \quad \text{on } \partial\Omega, \\ \\ \displaystyle \int_{\partial\Omega}\varphi_e(y)d\sigma(y)=1. \end{array} \right.$
 - Logarithmic capacity of $\partial \Omega$: $\operatorname{cap}(\partial \Omega) := e^{2\pi a}$.
 - d=3; $\varphi_e\in L^2(\partial\Omega)$:

$$\left\{ \begin{array}{l} \displaystyle \int_{\partial\Omega} \frac{\varphi_e(y)}{|x-y|} d\sigma(y) = \text{constant} \quad \text{on } \partial\Omega, \\ \displaystyle \int_{\partial\Omega} \varphi_e(y) d\sigma(y) = 1. \end{array} \right.$$

• Capacity of $\partial\Omega$: $\frac{1}{\operatorname{cap}(\partial\Omega)}:=-\mathcal{S}_{\Omega}^{0}[\varphi_{e}].$

- Spectrum of the Neumann-Poincaré Operator:
 - $(\mathcal{K}^0_\Omega)^* : L^2(\partial\Omega) \to L^2(\partial\Omega)$.
 - Spectrum of $(\mathcal{K}^0_{\Omega})^*$:

$$\sigma(\mathcal{K}^0_{\Omega})^*) \subset (-1/2, 1/2].$$

- $(1/2) I + \mathcal{K}_{\Omega}^0$: invertible on $L^2(\partial \Omega)$.
- $-(1/2)I + \mathcal{K}_{\Omega}^{0}$: invertible on $L_{0}^{2}(\partial\Omega)$.
- $L_0^2(\partial\Omega) := \Big\{ \varphi \in L^2(\partial\Omega) : \int_{\partial\Omega} \varphi \, d\sigma = 0 \Big\}.$

- Proof by contradiction:
 - $\lambda \in (-\infty, -1/2] \cup (1/2, +\infty)$; $\varphi \in L^2(\partial \Omega)$ satisfies $(\lambda I (\mathcal{K}_{\Omega}^0)^*)[\varphi] = 0$ and $\varphi \neq 0$.
 - $\mathcal{K}_{0}^{0}[1] = 1/2 \Rightarrow$

$$0 = \int_{\partial\Omega} (\lambda I - (\mathcal{K}_{\Omega}^{0})^{*}) [\varphi] d\sigma = \int_{\partial\Omega} \varphi(\lambda - \frac{1}{2}) d\sigma.$$

- $\Rightarrow \int_{\partial \Omega} \varphi d\sigma = 0.$
- $\Rightarrow \mathcal{S}_{\Omega}^{0}[\varphi](x) = O(|x|^{1-d})$ and $\nabla \mathcal{S}_{\Omega}^{0}[\varphi](x) = O(|x|^{-d})$, $|x| \to +\infty$ for $d \ge 2$.
- $\varphi \neq 0 \Rightarrow (A, B)$ cannot be zero:

$$A = \int_{\Omega} |\nabla S_{\Omega}^{0}[\varphi]|^{2} dx \text{ and } B = \int_{\mathbb{R}^{d} \setminus \overline{\Omega}} |\nabla S_{\Omega}^{0}[\varphi]|^{2} dx.$$

• By contradiction: if A and B are zero, then $\mathcal{S}^0_{\Omega}[\varphi] = \text{constant}$ in Ω and in $\mathbb{R}^d \setminus \overline{\Omega} \Rightarrow \varphi = 0$.

Divergence theorem ⇒

$$A = \int_{\partial\Omega} (-\frac{1}{2}I + (\mathcal{K}_{\Omega}^0)^*)[\varphi] \; \mathcal{S}_{\Omega}^0[\varphi] \; d\sigma \; \text{and} \; B = -\int_{\partial\Omega} (\frac{1}{2}I + (\mathcal{K}_{\Omega}^0)^*)[\varphi] \; \mathcal{S}_{\Omega}^0[\varphi] \; d\sigma.$$

- $(\lambda I (\mathcal{K}_{\Omega}^{0})^{*})[\varphi] = 0 \Rightarrow$ $\lambda = \frac{1}{2} \frac{B - A}{B + A} \Rightarrow |\lambda| < 1/2 \Rightarrow \text{ contradiction}.$
- For $\lambda \in (-\infty, -\frac{1}{2}] \cup (\frac{1}{2}, +\infty)$, $\lambda I (\mathcal{K}_{\Omega}^{0})^{*}$: one to one on $L^{2}(\partial \Omega)$.
- If $\lambda = 1/2$, then $A = 0 \Rightarrow S_{\Omega}^{0}[\varphi] = \text{constant in } \Omega$.
- ⇒
- $\mathcal{S}_{\Omega}^{0}[\varphi]$: harmonic in $\mathbb{R}^{d} \setminus \partial \Omega$;
- $\mathcal{S}^0_\Omega[\varphi](x) = O(|x|^{1-d}), |x| \to +\infty \text{ (since } \varphi \in L^2_0(\partial\Omega));$
- $\mathcal{S}_{\Omega}^{\overline{0}}[\varphi]$: constant on $\partial\Omega$.
- $(\mathcal{K}_{\Omega}^{0})^{*}[\varphi] = (1/2)\varphi \Rightarrow$

$$B = -\int_{\partial\Omega} \varphi \, S_{\Omega}^{0}[\varphi] \, d\sigma = C \int_{\partial\Omega} \varphi \, d\sigma = 0,$$

• $\Rightarrow \varphi = 0 \Rightarrow (1/2)I - (\mathcal{K}^0_{\Omega})^*$: one to one on $L^2_0(\partial \Omega)$.

- Symmetrization of $(\mathcal{K}^0_{\Omega})^*$:
 - Non-self-adjoint operator $(\mathcal{K}^0_\Omega)^*$: can be realized as a self-adjoint operator on $H^{-1/2}(\partial\Omega)$ by introducing a new inner product.
 - \mathcal{S}_{Ω}^{0} in $H^{-1/2}(\partial\Omega)$: self-adjoint and $-\mathcal{S}_{\Omega}^{0} \geq 0$ on $H^{-1/2}(\partial\Omega)$.
 - $(\mathcal{K}^0_\Omega)^*: H^{-1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega)$: compact.
 - Calderón identity ⇒

$$\mathcal{S}_{\Omega}^{0}(\mathcal{K}_{\Omega}^{0})^{*} = \mathcal{K}_{\Omega}^{0}\mathcal{S}_{\Omega}^{0}$$
 on $H^{-1/2}(\partial\Omega)$.

- Kernel of \mathcal{S}_{Ω}^{0} :
 - $d \geq 3$; $S_{\Omega}^{0}: H^{-1/2}(\partial\Omega) \rightarrow H^{1/2}(\partial\Omega)$ has a bounded inverse.
 - d=2; If $\phi_0\in \operatorname{Ker}(\mathcal{S}^0_\Omega)$, then u:

$$u(x) := \mathcal{S}_{\Omega}^{0}[\phi_{0}](x), \quad x \in \mathbb{R}^{2}$$

satisfies u=0 on $\partial\Omega\Rightarrow u(x)=0$ for all $x\in\Omega$.

Jump condition ⇒

$$(\mathcal{K}_{\Omega}^{0})^{*}[\phi_{0}] = \frac{1}{2}\phi_{0} \quad \text{on } \partial\Omega\,.$$

- If $\langle \chi(\partial\Omega), \phi_0 \rangle_{1/2, -1/2} = 0$, then $u(x) \to 0$ as $|x| \to \infty \Rightarrow u(x) = 0$ for $x \in \mathbb{R}^2 \setminus \Omega \Rightarrow \phi_0 = 0$.
- Eigenfunctions: one dimensional subspace of $H^{-1/2}(\partial\Omega)$.
- \Rightarrow Ker (S_{Ω}^{0}) : of at most one dimension.
- $S_{\Omega}^{0}: H^{-1/2}(\partial\Omega) \to H^{1/2}(\partial\Omega)$ has a bounded inverse iff $\log \operatorname{cap}(\partial\Omega) \neq 0$.

• d = 3; inner product:

$$\langle u, v \rangle_{\mathcal{H}^*} = -\langle \mathcal{S}^0_{\Omega}[v], u \rangle_{\frac{1}{2}, -\frac{1}{2}},$$

- Equivalent: $H^{-1/2}(\partial\Omega)$.
- $(\mathcal{K}^0_{\Omega})^*$: self-adjoint in $\mathcal{H}^*(\partial\Omega)$;
- (λ_j, φ_j) , $j = 0, 1, 2, \ldots$ eigenvalue and normalized eigenfunction pair of $(\mathcal{K}^0_\Omega)^*$ in $\mathcal{H}^*(\partial\Omega)$ with $\lambda_0 = 1/2$.
- $\lambda_j \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ for $j \geq 1$ with $|\lambda_1| \geq |\lambda_2| \geq \ldots \to 0$ as $j \to \infty$;
- Spectral representation formula: for any $\psi \in H^{-1/2}(\partial\Omega)$,

$$(\mathcal{K}_{\Omega}^{0})^{*}[\psi] = \sum_{j=0}^{\infty} \lambda_{j} \langle \varphi_{j}, \psi \rangle_{\mathcal{H}^{*}} \varphi_{j}.$$

• $\mathcal{H}(\partial\Omega)$: $H^{1/2}(\partial\Omega)$ equipped with the equivalent inner product

$$\langle u, v \rangle_{\mathcal{H}} = \langle v, (-S_{\Omega}^{0})^{-1}[u] \rangle_{\frac{1}{2}, -\frac{1}{2}}.$$

• \mathcal{S}_{Ω}^{0} : isometry between $\mathcal{H}^{*}(\partial\Omega)$ and $\mathcal{H}(\partial\Omega)$.

- d=2; $S_{\Omega}^{0}: H^{-1/2}(\partial\Omega) \to H^{1/2}(\partial\Omega)$: not injective (in general).
- Substitute:

$$\widetilde{\mathcal{S}}_{\Omega}[\psi] := \left\{ \begin{array}{ll} \mathcal{S}_{\Omega}^{0}[\psi] & \text{if } \langle \chi(\partial\Omega), \psi \rangle_{\frac{1}{2}, -\frac{1}{2}} = 0 \,, \\ -\chi(\partial\Omega) & \text{if } \psi = \varphi_{0} \,, \end{array} \right.$$

- φ_0 : unique eigenfunction of $(\mathcal{K}^0_\Omega)^*$ associated with eigenvalue 1/2 s.t. $\langle \chi(\partial\Omega), \varphi_0 \rangle_{\frac{1}{2}, -\frac{1}{2}} = 1$.
- $\widetilde{\mathcal{S}}_{\Omega}: H^{-1/2}(\partial\Omega) \to H^{1/2}(\partial\Omega)$: invertible.
- Calderón identity:

$$\mathcal{K}_{\Omega}^{0}\widetilde{\mathcal{S}}_{\Omega}=\widetilde{\mathcal{S}}_{\Omega}(\mathcal{K}_{\Omega}^{0})^{*}.$$

• $(\mathcal{K}^0_\Omega)^*$: compact self-adjoint in $\mathcal{H}^*(\partial\Omega)$ equipped with

$$\langle u, v \rangle_{\mathcal{H}^*} = -\langle \widetilde{\mathcal{S}}_{\Omega}[v], u \rangle_{\frac{1}{2}, -\frac{1}{2}}.$$

- (λ_j, φ_j) , $j = 0, 1, 2, \ldots$; eigenvalue and normalized eigenfunction pair of $(\mathcal{K}^0_\Omega)^*$ with $\lambda_0 = \frac{1}{2}$. $\lambda_j \in (-\frac{1}{2}, \frac{1}{2})$ with $|\lambda_1| \ge |\lambda_2| \ge \ldots \to 0$ as $j \to \infty$;
- Twin property: For any $j \ge 1$, $\pm \lambda_i$: eigenvalues of $(\mathcal{K}_{\Omega}^0)^*$;
- $\mathcal{H}^*(\partial\Omega) = \mathcal{H}^*_0(\partial\Omega) \oplus \{\mu\varphi_0, \ \mu \in \mathbb{C}\}$, where $\mathcal{H}^*_0(\partial\Omega)$: zero mean subspace of $\mathcal{H}^*(\partial\Omega)$;
- For any $\psi \in H^{-1/2}(\partial\Omega)$,

$$(\mathcal{K}_{\Omega}^{0})^{*}[\psi] = \sum_{j=0}^{\infty} \lambda_{j} \langle \varphi_{j}, \psi \rangle_{\mathcal{H}^{*}} \varphi_{j}.$$

• $\mathcal{H}(\partial\Omega)$: $H^{1/2}(\partial\Omega)$ equipped with the equivalent inner product:

$$\langle u, v \rangle_{\mathcal{H}} = \langle v, -\widetilde{\mathcal{S}}_{\Omega}^{-1}[u] \rangle_{\frac{1}{2}, -\frac{1}{2}}.$$

• $\widetilde{\mathcal{S}}_{\Omega}$: isometry between $\mathcal{H}^*(\partial\Omega)$ and $\mathcal{H}(\partial\Omega)$.

- Conductivity problem in free space
 - B: bounded smooth domain in \mathbb{R}^d ; $O \in B$.
 - $0 < k \neq 1 < +\infty$ and $\lambda(k) := (k+1)/(2(k-1))$.
 - h: harmonic function in \mathbb{R}^d ; u:

$$\begin{cases} \nabla \cdot ((1+(k-1)\chi(B))\nabla u_k) = 0 & \text{in } \mathbb{R}^d, \\ u_k(x) - h(x) = O(|x|^{1-d}) & \text{as } |x| \to +\infty. \end{cases}$$

• Integral representation formula:

$$u_k(x) = h(x) + \mathcal{S}_B^0(\lambda(k)I - (\mathcal{K}_B^0)^*)^{-1} [\frac{\partial h}{\partial \nu}|_{\partial B}](x) \quad \text{for } x \in \mathbb{R}^d.$$

• Taylor's formula expansion:

$$\Gamma_0(x-y) = \sum_{\alpha, |\alpha|=0}^{+\infty} \frac{(-1)^{|\alpha|}}{\alpha!} \partial_x^{\alpha} \Gamma_0(x) y^{\alpha}, \quad y \text{ in a compact set,} \quad |x| \to +\infty.$$

• Far-field expansion of $(u_k - h)(x)$ as $|x| \to +\infty$:

$$\sum_{|\alpha|,|\beta|=1}^{+\infty} \frac{(-1)^{|\alpha|}}{\alpha!\beta!} \partial_x^{\alpha} \Gamma_0(x) \partial^{\beta} h(0) \int_{\partial B} (\lambda(k)I - (\mathcal{K}_B^0)^*)^{-1} \big[\nu(x) \cdot \nabla x^{\alpha} \big](y) y^{\beta} d\sigma(y).$$

• For a multi-index $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$: $\partial^{\alpha} f = \partial_1^{\alpha_1} \dots \partial_d^{\alpha_d} f$ and $x^{\alpha} := x_1^{\alpha_1} \dots x_d^{\alpha_d}$.

• Generalized polarization tensor $M_{\alpha\beta}$, $\alpha, \beta \in \mathbb{N}^d$:

$$M_{\alpha\beta}(\lambda(k),B) := \int_{\partial B} y^{\beta} \phi_{\alpha}(y) \, d\sigma(y);$$

• ϕ_{α} :

$$\phi_{\alpha}(y) := (\lambda(k)I - (\mathcal{K}_{B}^{0})^{*})^{-1} \big[\nu(x) \cdot \nabla x^{\alpha}\big](y), \quad y \in \partial B.$$

• For $|\alpha| = |\beta| = 1$, $M = (m_{pq})_{p,q=1}^d$ polarization tensor

$$m_{pq} := \int_{\partial B} y_q(\lambda(k)I - (\mathcal{K}_B^0)^*)^{-1} [\nu_p](y) d\sigma(y),$$

- $\nu = (\nu_1, \ldots, \nu_d)$.
- Generalized polarization tensors ⇒ complete information about the far-field expansion of u.

From

$$(\lambda(k)I - (\mathcal{K}_B^0)^*)^{-1}[\psi] = \sum_{i=0}^{\infty} \frac{\langle \psi, \varphi_i \rangle_{\mathcal{H}^*} \varphi_i}{\lambda(k) - \lambda_i},$$

- (λ_j, φ_j) : eigenvalues and eigenvectors of $(\mathcal{K}_B^0)^*$ in \mathcal{H}^* .
- Decomposition of the entries of the polarization tensor:

$$m_{pq}(\lambda(k),B) = \sum_{j=1}^{\infty} \frac{\langle \nu_p, \varphi_j \rangle_{\mathcal{H}^*} \langle \varphi_j, x_q \rangle_{-\frac{1}{2},\frac{1}{2}}}{\lambda(k) - \lambda_j}.$$

• $\langle \nu_p, \chi(\partial B) \rangle_{-\frac{1}{2}, \frac{1}{2}} = 0$. $\lambda_0 = 1/2 \Rightarrow \langle \nu_p, \varphi_0 \rangle_{\mathcal{H}^*} = 0$.

• From:

$$\begin{split} &\langle \varphi_{j}, x_{q} \rangle_{-\frac{1}{2}, \frac{1}{2}} = \left\langle \left(\frac{1}{2} - \lambda_{j}\right)^{-1} \left(\frac{1}{2}I - (\mathcal{K}_{B}^{0})^{*}\right) [\varphi_{j}], x_{q} \right\rangle_{-\frac{1}{2}, \frac{1}{2}} \\ &= \frac{-1}{1/2 - \lambda_{j}} \left\langle \frac{\partial \mathcal{S}_{B}^{0}[\varphi_{j}]}{\partial \nu} \Big|_{-}, x_{q} \right\rangle_{-\frac{1}{2}, \frac{1}{2}} \\ &= \frac{-1}{1/2 - \lambda_{j}} \left[\int_{\partial B} \frac{\partial x_{q}}{\partial \nu} \mathcal{S}_{B}^{0}[\varphi_{j}] d\sigma - \int_{B} \left(\Delta x_{q} \mathcal{S}_{B}^{0}[\varphi_{j}] - x_{q} \Delta \mathcal{S}_{B}^{0}[\varphi_{j}] \right) dx \right] \\ &= \frac{\langle \nu_{q}, \varphi_{j} \rangle_{\mathcal{H}^{*}}}{1/2 - \lambda_{j}} \end{split}$$

• ⇒

$$m_{pq}(\lambda(k),B) = \sum_{j=1}^{\infty} \frac{\langle \nu_p, \varphi_j \rangle_{\mathcal{H}^*} \langle \nu_q, \varphi_j \rangle_{\mathcal{H}^*}}{(1/2 - \lambda_j)(\lambda(k) - \lambda_j)}.$$

- Properties of the polarization tensor:
 - $M(\lambda(k), B)$: symmetric;
 - $M(\lambda(k), B)$: positive definite if k > 1;
 - $M(\lambda(k), B)$: negative definite if 0 < k < 1.
 - Optimal bounds:

$$\frac{1}{k-1}\operatorname{tr}(M(\lambda(k),B))<(1+\frac{1}{k})|B|$$

and

$$(k-1)\operatorname{tr}(M(\lambda(k),B)^{-1}) \leq \frac{(1+k)}{|B|}.$$

- Conductivity equation with complex coefficients: k ∈ C;
 λ(k) ∉ σ((K_B⁰)*),
 - There exists C independent of k s.t. for any harmonic function h in \mathbb{R}^d , the unique solution u_k satisfies

$$\|\nabla(u_k-h)\|_{L^2(\mathbb{R}^d)} \leq \frac{C}{\operatorname{dist}(\lambda(k),\sigma((\mathcal{K}_B^0)^*))} \|\frac{\partial h}{\partial \nu}\|_{H^{-1/2}(\partial B)}.$$

• There exists C independent of k s.t. for |k'-k| small enough, such that for any harmonic functions h in \mathbb{R}^d

$$\|\nabla(u_k-u_{k'})\|_{L^2(\mathbb{R}^d)}\leq \frac{C|k'-k|}{\operatorname{dist}(\lambda(k),\sigma((\mathcal{K}_B^0)^*))}\|\frac{\partial h}{\partial \nu}\|_{H^{-1/2}(\partial B)}.$$

Lecture 4: Periodic and quasi-periodic Green's functions

Habib Ammari

Department of Mathematics, ETH Zürich

- Periodic and quasi-periodic Green's functions:
 - Periodic Green's functions for gratings;
 - Periodic, and quasi-periodic Green's functions;
 - Periodic and quasi-periodic layer potentials for the Laplacian and the Helmholtz operator.
- Applications:
 - Diffractive gratings;
 - Photonic and phononic crystals;
 - Metasurfaces:
 - Metamaterials.

- G_{\sharp} : Periodic Green's function for the one-dimensional grating in \mathbb{R}^2 :
 - $G_{\mathbb{H}}: \mathbb{R}^2 \to \mathbb{C}$:

$$\Delta G_{\sharp}(x) = \sum_{n \in \mathbb{Z}} \delta_0(x + (n, 0)).$$

• Explicit formula: $x = (x_1, x_2)$,

$$G_{\sharp}(x) = \frac{1}{4\pi} \ln \left(\sinh^2(\pi x_2) + \sin^2(\pi x_1) \right).$$

Poisson summation formula:

$$\sum_{n\in\mathbb{Z}}\delta_0(x_1+n)=\sum_{n\in\mathbb{Z}}e^{i2\pi nx_1}.$$

• ⇒

$$\Delta G_{\sharp}(x) = \sum_{n \in \mathbb{Z}} \delta_{0}(x + (n, 0))$$

$$= \sum_{n \in \mathbb{Z}} \delta_{0}(x_{2}) \delta_{0}(x_{1} + n)$$

$$= \sum_{n \in \mathbb{Z}} \delta_{0}(x_{2}) e^{i2\pi n x_{1}}.$$

• G_{t} : periodic in x_1 of period $1 \Rightarrow$

$$G_{\sharp}(x) = \sum_{n \in \mathbb{Z}} \beta_n(x_2) e^{i2\pi nx_1}.$$

$$\Delta G_{\sharp}(x) = \sum_{n \in \mathbb{Z}} (\beta_{n}^{"}(x_{2}) + (i2\pi n)^{2}\beta_{n}(x_{2}))e^{i2\pi nx_{1}}.$$

ODE:

$$\beta_n''(x_2) + (i2\pi n)^2 \beta_n(x_2) = \delta_0(x_2).$$

Solution:

$$eta_0(x_2) = rac{1}{2}|x_2| + c,$$

 $eta_n(x_2) = rac{-1}{4\pi|n|}e^{-2\pi|n||x_2|}, \quad n \neq 0;$

c: constant.

• Define $c := -\frac{\ln(2)}{2\pi}$ and use the summation identity:

$$\begin{split} \sum_{n \in \mathbb{N} \setminus \{0\}} \frac{1}{2\pi n} e^{-2\pi n |x_2|} \cos(2\pi n x_1) &= \frac{1}{2} |x_2| - \frac{\ln(2)}{2\pi} \\ &- \frac{1}{4\pi} \ln \left(\sinh^2(\pi x_2) + \sin^2(\pi x_1) \right). \end{split}$$

•

$$\begin{split} G_{\sharp}(x) &= \frac{1}{2}|x_{2}| + c - \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{4\pi|n|} e^{-2\pi|n||x_{2}|} e^{i2\pi n x_{1}} \\ &= \frac{1}{2}|x_{2}| + c - \sum_{n \in \mathbb{N} \setminus \{0\}} \frac{1}{2\pi n} e^{-2\pi n|x_{2}|} \cos(2\pi n x_{1}) \\ &= \frac{1}{4\pi} \ln\left(\sinh^{2}(\pi x_{2}) + \sin^{2}(\pi x_{1})\right). \end{split}$$

• Taylor expansion of G_{\sharp} :

$$G_{\sharp}(x) = \frac{\ln|x|}{2\pi} + R(x);$$

• R: smooth function s.t.

$$R(x) = \frac{1}{4\pi} \ln(1 + O(x_2^2 - x_1^2)).$$

- $G_{\sharp}(x,y):=G_{\sharp}(x-y);\ \Omega\Subset \left(-\frac{1}{2},\frac{1}{2}\right) imes\mathbb{R}$: bounded smooth domain;
- One-dimensional periodic single-layer potential and periodic Neumann-Poincaré operator:

$$\begin{array}{ccc} \mathcal{S}_{\Omega,\sharp}: H^{-\frac{1}{2}}(\partial\Omega) & \longrightarrow & H^1_{\mathrm{loc}}(\mathbb{R}^2), H^{\frac{1}{2}}(\partial\Omega) \\ \varphi & \longmapsto & \mathcal{S}_{\Omega,\sharp}[\varphi](x) = \int_{\partial\Omega} G_{\sharp}(x,y)\varphi(y)d\sigma(y) \end{array}$$

for $x \in \mathbb{R}^2$ (or $x \in \partial\Omega$);

$$\mathcal{K}_{\Omega,\sharp}^*: H^{-\frac{1}{2}}(\partial\Omega) \longrightarrow H^{-\frac{1}{2}}(\partial\Omega)$$

$$\varphi \longmapsto \mathcal{K}_{\Omega,\sharp}^*[\varphi](x) = \int_{\partial\Omega} \frac{\partial G_{\sharp}(x,y)}{\partial\nu(x)} \varphi(y) d\sigma(y)$$

for $x \in \partial \Omega$.

- Symmetrization of the periodic Neumann–Poincaré operator $\mathcal{K}^*_{\Omega,\sharp}$:
 - For any $\varphi \in H^{-\frac{1}{2}}(\partial\Omega)$, $\mathcal{S}_{\Omega,\sharp}[\varphi]$: harmonic in Ω and in $\left(-\frac{1}{2},\frac{1}{2}\right) \times \mathbb{R} \setminus \overline{\Omega}$;
 - Trace formula: For any $\varphi \in H^{-\frac{1}{2}}(\partial\Omega)$,

$$(-\frac{1}{2}I + \mathcal{K}_{\Omega,\sharp}^*)[\varphi] = \frac{\partial \mathcal{S}_{\Omega,\sharp}[\varphi]}{\partial \nu}\Big|_{-};$$

- Calderón identity: $\mathcal{K}_{\Omega,\sharp}\mathcal{S}_{\Omega,\sharp} = \mathcal{S}_{\Omega,\sharp}\mathcal{K}_{\Omega,\sharp}^*$; $\mathcal{K}_{\Omega,\sharp}$: L^2 -adjoint of $\mathcal{K}_{\Omega,\sharp}^*$;
- $\mathcal{K}^*_{\Omega,\sharp}: H_0^{-\frac{1}{2}}(\partial\Omega) \to H_0^{-\frac{1}{2}}(\partial\Omega)$: compact self-adjoint equipped with the inner product:

$$\langle u, v \rangle_{\mathcal{H}_0^*} = -\langle \mathcal{S}_{\Omega, \sharp}[v], u \rangle_{\frac{1}{2}, -\frac{1}{2}}$$

• (λ_j, φ_j) , $j = 1, 2, \ldots$ eigenvalue and normalized eigenfunction pair of $\mathcal{K}^*_{\Omega,\sharp}$ in $\mathcal{H}^*_0(\partial\Omega)$; $\lambda_j \in (-\frac{1}{2}, \frac{1}{2})$ and $\lambda_j \to 0$ as $j \to \infty$.

- Periodic Green's function
 - Effective medium properties of subwavelength resonators;
 - Periodic transmission problem for the Laplace operator.
- $Y = (-1/2, 1/2)^d$: unit cell; $\overline{D} \subset Y$.
- Periodic transmission problem: for p = 1, ..., d,

c transmission problem: for
$$p=1,\ldots,d$$
,
$$\left\{ \begin{array}{l} \nabla \cdot \left(1+(k-1)\chi(D)\right) \nabla u_p = 0 \quad \text{in } Y \;, \\ \\ u_p-x_p \quad \text{periodic (in each direction) with period 1} \;, \\ \\ \int_Y u_p \, dx = 0 \;. \end{array} \right.$$

Representation formula for u_p .

• Lattice sum representation of the periodic Green's function:

$$G_{\sharp}(x) = -\sum_{n \in \mathbb{Z}^d \setminus \{0\}} \frac{e^{i2\pi n \cdot x}}{4\pi^2 |n|^2}.$$

• In the sense of distributions:

$$\Delta G_{\sharp}(x) = \sum_{n \in \mathbb{Z}^d \setminus \{0\}} e^{i2\pi n \cdot x} = \sum_{n \in \mathbb{Z}^d} e^{i2\pi n \cdot x} - 1;$$

- G_{\sharp} has mean zero: $\int_{Y} G_{\sharp} = 0$.
- Poisson's summation formula:

$$\sum_{n\in\mathbb{Z}^d} e^{i2\pi n\cdot x} = \sum_{n\in\mathbb{Z}^d} \delta_0(x-n),$$

• ⇒

$$\Delta G_{\sharp}(x) = \sum_{x \in \mathbb{Z}^d} \delta_0(x-n) - 1.$$

• There exists a smooth function $R_d(x)$ in the unit cell Y s.t.

$$G_{\sharp}(x) = \begin{cases} \frac{1}{2\pi} \ln|x| + R_2(x), & d = 2, \\ \frac{1}{(2-d)\omega_d} \frac{1}{|x|^{d-2}} + R_d(x), & d \geq 3. \end{cases}$$

• Taylor's formula expansion of $R_d(x)$ at 0 for $d \ge 2$:

$$R_d(x) = R_d(0) - \frac{1}{2d}(x_1^2 + \ldots + x_d^2) + O(|x|^4).$$

• Periodic single-layer potential of $\phi \in L_0^2(\partial\Omega)$:

$$S^0_{\Omega,\sharp}[\phi](x) := \int_{\partial\Omega} G_\sharp(x-y)\phi(y)\,d\sigma(y),\quad x\in\mathbb{R}^2.$$

• Behaviors at the boundary: $\phi \in L_0^2(\partial\Omega)$,

$$\frac{\partial}{\partial \nu} \mathcal{S}^0_{\Omega,\sharp}[\phi] \bigg|_{+} (x) = (\pm \frac{1}{2} I + (\mathcal{K}^0_{\Omega,\sharp})^*)[\phi](x) \text{ on } \partial \Omega;$$

• $(\mathcal{K}^0_{\Omega,\sharp})^* : L^2_0(\partial\Omega) \to L^2_0(\partial\Omega)$:

$$(\mathcal{K}_{\Omega,\sharp}^0)^*[\phi](x) = \text{p.v. } \int_{\partial\Omega} \frac{\partial}{\partial\nu(x)} G_{\sharp}(x-y)\phi(y) \, d\sigma(y), \quad x \in \partial D.$$

- If $\phi \in L^2_0(\partial\Omega)$, then $\mathcal{S}^0_{\Omega,\sharp}[\phi]$: harmonic in Ω and $Y \setminus \overline{\Omega}$.
- If $|\lambda| \geq \frac{1}{2}$, then $\lambda I (\mathcal{K}_{\Omega,\sharp}^0)^*$: invertible on $L_0^2(\partial\Omega)$.

• Representation formula for the solution of the periodic transmission problem: u_p , p = 1, ..., d,

$$u_p(x) = x_p + C_p + S_{\Omega,\sharp}^0(\frac{k+1}{2(k-1)}I - (\mathcal{K}_{\Omega,\sharp}^0)^*)^{-1}[\nu_p](x)$$
 in Y ;

• C_p : constant and ν_p : p-component of the outward unit normal ν to $\partial\Omega$.

• $u_p, p = 1, \ldots, d$, satisfies

$$\left\{ \begin{array}{l} \Delta u_p = 0 \quad \text{in } \Omega \cup \left(Y \setminus \overline{\Omega} \right), \\ u_p|_+ - u_p|_- = 0 \quad \text{on } \partial \Omega, \\ \left. \frac{\partial u_p}{\partial \nu} \right|_+ - k \frac{\partial u_p}{\partial \nu} \right|_- = 0 \quad \text{on } \partial \Omega, \\ u_p - x_p \quad \text{periodic with period } 1, \\ \int_Y u_p \, dx = 0. \end{array} \right.$$

$$\begin{split} \bullet \ \, \mathsf{Define} \ \, V_{\rho}(x) &= \mathcal{S}_{\Omega,\sharp}^0((\frac{k+1}{2(k-1)}I - (\mathcal{K}_{\Omega,\sharp}^0)^*)^{-1}[\nu_{\rho}](x) \quad \mathsf{in} \ Y \,. \\ & \left\{ \begin{array}{l} \Delta V_{\rho} &= 0 \quad \mathsf{in} \ \, \Omega \cup (Y \setminus \overline{D}) \,, \\ V_{\rho}|_{+} - V_{\rho}|_{-} &= 0 \quad \mathsf{on} \ \, \partial \Omega \,, \\ \\ \frac{\partial V_{\rho}}{\partial \nu}|_{+} - k \frac{\partial V_{\rho}}{\partial \nu}|_{-} &= (k-1)\nu_{\rho} \ \, \mathsf{on} \ \, \partial \Omega \,, \\ V_{\rho} \ \, \mathsf{periodic} \ \, \mathsf{with} \ \, \mathsf{period} \ \, 1 \,. \end{split} \right.$$

- Choose C_p s.t. $\int_Y u_p dx = 0$.
- General periodic lattice in two dimensions:
 - $r_n = n_1 a^{(1)} + n_2 a^{(2)}, n = (n_1, n_2) \in \mathbb{Z}^2.$
 - $a^{(1)}$ and $a^{(2)}$ determine the unit cell $Y := \{sa^{(1)} + ta^{(2)}, s, t \in (-1/2, 1/2)\}$ of the array.
 - Reciprocal vector of r_n : $k_n \cdot a^{(i)} = n_i, i = 1, 2$.
 - Periodic Green's function of the Laplacian:

$$\begin{cases} \Delta G_{\sharp}^{a} = \sum_{n \in \mathbb{Z}^{2}} \delta_{0}(x - r_{n}) - \frac{1}{|Y|}, \\ G_{\sharp}^{a}(x + r_{n}) = G_{\sharp}^{a}(x), \quad \forall n \in \mathbb{Z}^{2}. \end{cases}$$

• Rotate and scale the given lattice in order to satisfy $a^{(1)} = (1,0)$ and $a^{(2)} = (a,b)$ with $b > 0 \Rightarrow$

$$r_n = n_1(1,0) + n_2(a,b), \quad k_n = n_1(1,-\frac{a}{b}) + n_2(0,\frac{1}{b}), \quad n = (n_1,n_2) \in \mathbb{Z}^2.$$

Lattice sum representation of G_#^a:

$$G_{\sharp}^{\mathfrak{s}}(x) = -\sum_{n \in \mathbb{Z}^2 \setminus \{0\}} \frac{e^{i2\pi(n_1x_1 + (-\frac{\mathfrak{s}}{b}n_1 + \frac{1}{b}n_2)x_2)}}{4\pi^2 \big(n_1^2 + (-\frac{\mathfrak{s}}{b}n_1 + \frac{1}{b}n_2)^2\big)^2}.$$

- Quasi-periodic Green's functions:
 - For $\alpha \in (0, 2\pi)^d$, a function u: α -quasi-periodic if $e^{-i\alpha \cdot x}u$: periodic.
 - Lattice sum representation of quasi-periodic Green's function:

$$G_{\alpha}(x) = -\sum_{n \in \mathbb{Z}^d} \frac{e^{i(2\pi n + \alpha) \cdot x}}{|2\pi n + \alpha|^2}, \quad \alpha \in (0, 2\pi)^d.$$

• $e^{-i\alpha \cdot x} G_{\alpha}(x)$: periodic in \mathbb{R}^d .

$$\Delta G_{\alpha}(x) = \sum_{n \in \mathbb{Z}^d} \delta_0(x - n) e^{i\alpha \cdot n}$$
 in \mathbb{R}^d ,

$$\left(\Delta + i\alpha \cdot \nabla - |\alpha|^2\right) \left(e^{-i\alpha \cdot x} G_{\alpha}(x)\right) = \sum_{n \in \mathbb{Z}^d} \delta_0(x - n) \quad \text{in } \mathbb{R}^d.$$

- $\mathcal{S}^0_{\Omega,\alpha}, \mathcal{D}^0_{\Omega,\alpha}$, and $(\mathcal{K}^0_{\Omega,\alpha})^*$: α -quasi-periodic single- and double-layer potentials and the α -quasi-periodic Neumann–Poincaré operator associated with G_{α} .
- $\alpha \in (0, 2\pi)^2$; $(\mathcal{K}_{\Omega, \alpha}^0)^* : H_0^{-\frac{1}{2}}(\partial \Omega) \to H_0^{-\frac{1}{2}}(\partial \Omega)$: compact self-adjoint equipped with the following inner product

$$\langle u, v \rangle_{\mathcal{H}_0^*} = -\langle S_{\Omega,\alpha}^0[v], u \rangle_{\frac{1}{2},-\frac{1}{2}}$$

- $(\lambda_{j,\alpha}, \varphi_{j,\alpha})$, $j=1,2,\ldots$: eigenvalue and normalized eigenfunction pair of $(\mathcal{K}^0_{\Omega,\alpha})^*$ in $\mathcal{H}^*_0(\partial\Omega)$, then $\lambda_{j,\alpha}\in(-\frac{1}{2},\frac{1}{2})$ and $\lambda_{j,\alpha}\to 0$ as $j\to\infty$.
- Ewald's method: computing periodic and quasi-periodic Green's functions (series slowly converge).

- Quasi-periodic layer potentials for the Helmholtz equation:
 - α : quasi-momentum variable in the Brillouin zone $B = [0, 2\pi)^2$.
 - Two-dimensional quasi-periodic Green's function $G^{\alpha,\omega}$:

$$(\Delta + \omega^2)G^{\alpha,\omega}(x,y) = \sum_{n \in \mathbb{Z}^2} \delta_0(x-y-n)e^{in\cdot\alpha}.$$

• If $\omega \neq |2\pi n + \alpha|, \forall n \in \mathbb{Z}^2$, Poisson's summation formula:

$$\sum_{n\in\mathbb{Z}^2}e^{i(2\pi n+\alpha)\cdot x}=\sum_{n\in\mathbb{Z}^2}\delta_0(x-n)e^{in\cdot\alpha}.$$

• \Rightarrow $G^{\alpha,\omega}$ can be represented as a sum of augmented plane waves over the reciprocal lattice:

$$G^{\alpha,\omega}(x,y) = \sum_{n \in \mathbb{Z}^2} \frac{e^{i(2\pi n + \alpha) \cdot (x - y)}}{\omega^2 - |2\pi n + \alpha|^2}.$$

• Representation of $G^{\alpha,\omega}$ as a sum of images:

$$G^{\alpha,\omega}(x,y) = -\frac{i}{4} \sum_{n \in \mathbb{Z}^2} H_0^{(1)}(\omega|x-n-y|) e^{in\cdot\alpha};$$

- $H_0^{(1)}$: Hankel function of the first kind of order 0.
- Series in the spatial representation of $G^{\alpha,\omega}$ converges uniformly for x,y in compact sets of \mathbb{R}^2 and $\omega \neq |2\pi n + \alpha|$ for all $n \in \mathbb{Z}^2$.
- $H_0^{(1)}(z) = (2i/\pi) \ln z + O(1)$ as $z \to 0 \Rightarrow G^{\alpha,\omega}(x,y) (1/2\pi) \ln |x-y|$: smooth for all $x, y \in Y$.
- Disadvantage of the spectral representation of the Green's function: singularity as |x - y| → 0 is not explicit.

- Assumption: $\omega \neq |2\pi n + \alpha|$ for all $n \in \mathbb{Z}^2$.
- D: bounded smooth domain in \mathbb{R}^2 ; ν : unit outward normal to ∂D .
- For $\omega > 0$; $\mathcal{S}^{\alpha,\omega}$ and $\mathcal{D}^{\alpha,\omega}$: quasi-periodic single- and double-layer potentials. associated with $G^{\alpha,\omega}$ on D;
- Given density $\varphi \in L^2(\partial D)$,

$$S^{\alpha,\omega}[\varphi](x) = \int_{\partial D} G^{\alpha}_{\omega}(x,y)\varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^{2},$$

$$\mathcal{D}^{\alpha,\omega}[\varphi](x) = \int_{\partial D} \frac{\partial G^{\alpha}_{\omega}(x,y)}{\partial \nu(y)} \varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^{2} \setminus \partial D.$$

- $\mathcal{S}^{\alpha,\omega}[\varphi]$ and $\mathcal{D}^{\alpha,\omega}[\varphi]$ satisfy $(\Delta + \omega^2)\mathcal{S}^{\alpha,\omega}[\varphi] = (\Delta + \omega^2)\mathcal{D}^{\alpha,\omega}[\varphi] = 0$ in D and $Y \setminus \overline{D}$.
- $S^{\alpha,\omega}[\varphi]$ and $\mathcal{D}^{\alpha,\omega}[\varphi]$: α -quasi-periodic.

• Jump relations: $\varphi \in L^2(\partial D)$,

$$\begin{split} \frac{\partial (\mathcal{S}^{\alpha,\omega}[\varphi])}{\partial \nu}\bigg|_{\pm}(x) &= \bigg(\pm \frac{1}{2}I + (\mathcal{K}^{-\alpha,\omega})^*\bigg)[\varphi](x) \quad \text{a.e. } x \in \partial D, \\ (\mathcal{D}^{\alpha,\omega}[\varphi])\bigg|_{\pm}(x) &= \bigg(\mp \frac{1}{2}I + \mathcal{K}^{\alpha,\omega}\bigg)[\varphi](x) \quad \text{a.e. } x \in \partial D, \end{split}$$

• $\mathcal{K}^{\alpha,\omega}$:

$$\mathcal{K}^{\alpha,\omega}[\varphi](x) = \text{p.v.} \int_{\partial D} \frac{\partial G^{\alpha,\omega}(x,y)}{\partial \nu(y)} \varphi(y) \, d\sigma(y)$$

• $(\mathcal{K}^{-\alpha,\omega})^*$: L^2 -adjoint operator of $\mathcal{K}^{-\alpha,\omega}$,

$$(\mathcal{K}^{-\alpha,\omega})^*[\varphi](x) = \text{p.v.} \int_{\partial D} \frac{\partial G^{\alpha,\omega}(x,y)}{\partial \nu(x)} \varphi(y) \, d\sigma(y).$$

- $\mathcal{K}^{\alpha,\omega}$ and $(\mathcal{K}^{-\alpha,\omega})^*$: compact on $L^2(\partial D)$;
- $G^{\alpha,\omega}(x,y) (1/2\pi) \ln |x-y|$: smooth for all x, y.

- Assumption: $\alpha \neq 0$ and ω^2 : neither an eigenvalue of $-\Delta$ in D with the Dirichlet boundary condition on ∂D nor in $Y \setminus \overline{D}$ with the Dirichlet boundary condition on ∂D and the α -quasi-periodic condition on ∂Y .
- $S^{\alpha,\omega}: L^2(\partial D) \to H^1(\partial D)$: invertible.

- Suppose that $\phi \in L^2(\partial D)$ satisfies $S^{\alpha,\omega}[\phi] = 0$ on ∂D .
- Then $u = S^{\alpha,\omega}[\phi]$ satisfies $(\Delta + \omega^2)u = 0$ in D and in $Y \setminus \overline{D}$.
- ω^2 : neither an eigenvalue of $-\Delta$ in D with the Dirichlet boundary condition nor in $Y\setminus \overline{D}$ with the Dirichlet boundary condition on ∂D and the quasi-periodic condition on $\partial Y\Rightarrow u=0$ in Y.
- $\phi = \partial u/\partial \nu|_{+} \partial u/\partial \nu|_{-} = 0.$

Define

$$G^{\alpha,0}(x,y):=G_{\alpha}(x-y)=-\sum_{n\in\mathbb{Z}^2}rac{e^{i(2\pi n+lpha)\cdot(x-y)}}{|2\pi n+lpha|^2}\quad ext{for }lpha
eq 0.$$

• For $\alpha = 0$:

$$G^{0,0}(x,y) := G_{\sharp}(x-y) = -\sum_{n \in \mathbb{Z}^2 \setminus \{0\}} \frac{e^{i2\pi n \cdot (x-y)}}{4\pi^2 |n|^2},$$

• $G^{0,0}(x,y)$ satisfies

$$\Delta_x G^{0,0}(x,y) = \delta_y - 1 \quad \text{in } Y$$

with periodic Dirichlet boundary conditions on ∂Y .

• As $\omega \to 0$, $G^{\alpha,\omega}$ can be decomposed as

$$G^{\alpha,\omega}(x,y) = G^{\alpha,0}(x,y) - \sum_{l=1}^{+\infty} \underbrace{\omega^{2l} \sum_{n \in \mathbb{Z}^2} \frac{e^{i(2\pi n + \alpha) \cdot (x-y)}}{|2\pi n + \alpha|^{2(l+1)}}}_{:=-G_l^{\alpha,\omega}(x,y)},$$

for $\alpha \neq 0$;

• For $\alpha = 0$:

$$G^{0,\omega}(x,y) = \frac{1}{\omega^2} + G^{0,0}(x,y) - \sum_{l=1}^{+\infty} \underbrace{\omega^{2l} \sum_{n \in \mathbb{Z}^2 \setminus \{0\}} \frac{e^{i2\pi n \cdot (x-y)}}{(4\pi^2)^{l+1} |n|^{2(l+1)}}}_{:=-G_l^{0,\omega}(x,y)}.$$

• $S_l^{\alpha,\omega}$ and $(K_l^{-\alpha,\omega})^*$, for $l \ge 0$ and $\alpha \in [0,2\pi)^2$, layer potentials associated with the kernel $G_l^{\alpha,\omega}(x,y)$:

$$\mathcal{S}^{\alpha,\omega} = \mathcal{S}^{\alpha,0} + \sum_{l=1}^{+\infty} \mathcal{S}^{\alpha,\omega}_l \quad \text{and} \quad (\mathcal{K}^{\alpha,\omega})^* = (\mathcal{K}^{\alpha,0})^* + \sum_{l=1}^{+\infty} (\mathcal{K}^{-\alpha,\omega}_l)^*.$$

• $(1/2) I + (\mathcal{K}^{-\alpha,0})^* : L^2(\partial D) \to L^2(\partial D)$: invertible.

• u and v: α -quasi-periodic smooth functions \Rightarrow

$$\int_{\partial Y} \frac{\partial u}{\partial \nu} \overline{\nu} \, d\sigma = 0.$$

 \Leftarrow

$$\int_{\partial Y} \frac{\partial u}{\partial \nu} \overline{v} = \int_{\partial Y} \left[\frac{\partial (u e^{-i\alpha \cdot x})}{\partial \nu} + i\alpha \cdot \nu u e^{-i\alpha \cdot x} \right] \overline{e^{-i\alpha \cdot x} v}.$$

- $\phi \in L^2(\partial D)$ satisfy $((1/2)I + (\mathcal{K}^{-\alpha,0})^*)[\phi] = 0$ on ∂D .
- If $\alpha = 0$, then $\int_{\partial D} \phi = 0$.
- For $x \in D$

$$\mathcal{D}^{0,0}[1](x) = -\int_{Y\setminus \overline{D}} \Delta_y G^{0,0}(x,y) dy = |Y\setminus \overline{D}|,$$

• | |: volume.

•

$$(\frac{1}{2}I + \mathcal{K}^{0,0})[1] = |Y \setminus \overline{D}| \quad \text{on } \partial D.$$

$$|Y \setminus \overline{D}| \int_{\partial D} \phi \, d\sigma = \int_{\partial D} (\frac{1}{2}I + \mathcal{K}^{0,0})[1] \, \phi \, d\sigma = \int_{\partial D} (\frac{1}{2}I + (\mathcal{K}^{0,0})^*)[\phi] \, d\sigma = 0.$$

• For any $\alpha \in [0, 2\pi)^2$, $u = S^{\alpha,0}[\phi]$ is α -quasi-periodic and satisfies $\Delta u = 0$ in $Y \setminus \overline{D}$ with

$$\frac{\partial u}{\partial \nu}\Big|_{+} = (\frac{1}{2}I + (\mathcal{K}^{-\alpha,0})^*)[\phi] = 0 \quad \text{on } \partial D.$$

•

$$\int_{Y\setminus \overline{D}} |\nabla u|^2 = \int_{\partial Y} \frac{\partial u}{\partial \nu} \overline{u} - \int_{\partial D} \frac{\partial u}{\partial \nu} \bigg|_{+} \overline{u} = 0.$$

• u: constant in $Y \setminus \overline{D}$ and hence in $D \Rightarrow$

$$\phi = \frac{\partial u}{\partial \nu} \bigg|_{\perp} - \frac{\partial u}{\partial \nu} \bigg|_{\perp} = 0.$$

Lecture 5: Fundamental results in wave propagation

Habib Ammari

Department of Mathematics, ETH Zürich

- Reciprocity;
- Lippman-Schwinger representation formula (filtering effect);
- Helmholtz-Kirchhoff Identity (resolution limit);
- Optical theorem (energy conservation);
- Scattering amplitude and scattering coefficients.

- Reciprocity: Important property satisfied by the outgoing fundamental solution of the Helmholtz equation.
- μ and ε : two piecewise smooth functions s.t. $\mu(x) = \mu_m$ and $\varepsilon(x) = \varepsilon_m$ for $|x| \ge R_0$ for some positive R_0 .
- $k_m = \omega \sqrt{\varepsilon_m \mu_m}$; $y \in \mathbb{R}^d$; Fundamental solution $\Phi_{k_m}(x, y)$:

$$(\nabla_x \cdot \frac{1}{\mu(x)} \nabla_x + \omega^2 \varepsilon(x)) \Phi_{k_m}(x, y) = \frac{1}{\mu_m} \delta_y(x),$$

subject to the Sommerfeld radiation condition:

$$\left|\frac{\partial \Phi_{k_m}}{\partial r} - i k_m \Phi_{k_m}\right| = O\left(r^{-(d+1)/2}\right) \quad \text{as } r = |x| \to +\infty \quad \text{uniformly in } \frac{x}{|x|}.$$

• For $x \neq y$,

$$\Phi_{k_m}(x,y) = \Phi_{k_m}(y,x).$$

- Reciprocity identity: the wave recorded at x when there is a time-harmonic source at y is equal to the wave recorded at y when there is a time-harmonic source at x.
- Consider the equations satisfied by the fundamental solution with the source at y₂ and with the source at y₁ (with y₁ ≠ y₂):

$$\begin{split} &(\nabla_{\mathbf{x}} \cdot \frac{1}{\mu} \nabla_{\mathbf{x}} + \omega^{2} \varepsilon) \Phi_{k_{m}}(\mathbf{x}, \mathbf{y}_{2}) = \frac{1}{\mu_{m}} \delta_{\mathbf{y}_{2}} \,, \\ &(\nabla_{\mathbf{x}} \cdot \frac{1}{\mu} \nabla_{\mathbf{x}} + \omega^{2} \varepsilon) \Phi_{k_{m}}(\mathbf{x}, \mathbf{y}_{1}) = \frac{1}{\mu_{m}} \delta_{\mathbf{y}_{1}} \,. \end{split}$$

• Multiply the first equation by $\Phi_{k_m}(x, y_1)$ and subtract the second equation multiplied by $\Phi_{k_m}(x, y_2)$:

$$\nabla_{x} \cdot \frac{\mu_{m}}{\mu} \Big[\Phi_{k_{m}}(x, y_{1}) \nabla_{x} \Phi_{k_{m}}(x, y_{2}) - \Phi_{k_{m}}(x, y_{2}) \nabla_{x} \Phi_{k_{m}}(x, y_{1}) \Big]$$

$$= -\Phi_{k_{m}}(x, y_{2}) \delta_{y_{1}} + \Phi_{k_{m}}(x, y_{1}) \delta_{y_{2}}$$

$$= -\Phi_{k_{m}}(y_{1}, y_{2}) \delta_{y_{1}} + \Phi_{k_{m}}(y_{2}, y_{1}) \delta_{y_{2}}.$$

 Integrate over the ball B_R of center 0 and radius R which contains both y₁ and y₂ and use the divergence theorem:

$$\int_{\partial B_R} \nu \cdot \left[\Phi_{k_m}(x, y_1) \nabla_x \Phi_{k_m}(x, y_2) - \Phi_{k_m}(x, y_2) \nabla_x \Phi_{k_m}(x, y_1) \right] d\sigma(x)$$

$$= -\Phi_{k_m}(y_1, y_2) + \Phi_{k_m}(y_2, y_1);$$

- $\nu = x/|x|$: unit outward normal to the ball B_R .
- If $x \in \partial B_R$ and $R \to \infty$, then by the Sommerfeld radiation condition:

$$\nu \cdot \nabla_{\mathbf{x}} \Phi_{k_m}(\mathbf{x}, \mathbf{y}) = i k_m \Phi_{k_m}(\mathbf{x}, \mathbf{y}) + O\left(\frac{1}{R^{(d+1)/2}}\right).$$

ullet $R o\infty$,

$$\begin{aligned} & -\Phi_{k_m}(y_1, y_2) + \Phi_{k_m}(y_2, y_1) \\ &= i k_m \int_{\partial B_R} \left[\Phi_{k_m}(x, y_1) \Phi_{k_m}(x, y_2) - \Phi_{k_m}(x, y_2) \Phi_{k_m}(x, y_1) \right] d\sigma(x) \\ &= 0. \end{aligned}$$

• Lippmann-Schwinger representation formula for Φ_{k_m} : For any $x \neq y$,

$$\Phi_{k_m}(x,y) = \Gamma_{k_m}(x,y) + \int (\frac{\mu_m}{\mu(z)} - 1) \nabla \Phi_{k_m}(z,x) \cdot \nabla \Gamma_{k_m}(z,y) dz$$
$$+ k_m^2 \int (1 - \frac{\varepsilon(z)}{\varepsilon_m}) \Phi_{k_m}(z,x) \Gamma_{k_m}(z,y) dz.$$

• $\Gamma_{k_m}(x,y) := \Gamma_{k_m}(x-y)$: fundamental outgoing solution to the Helmholtz operator $\Delta + k_m^2$ in \mathbb{R}^d ; for $x \neq 0$,

$$\Gamma_{k_m}(x) = \begin{cases} -\frac{i}{4} H_0^{(1)}(k_m|x|), & d = 2, \\ -\frac{e^{ik_m|x|}}{4\pi|x|}, & d = 3, \end{cases}$$

• $H_0^{(1)}$: Hankel function of the first kind of order 0.

Multiply

$$(\nabla_x \cdot \frac{1}{\mu(x)} \nabla_x + \omega^2 \varepsilon(x)) \Phi_{k_m}(x, y) = \frac{1}{\mu_m} \delta_y(x),$$

by Γ_{k_m} and subtract the equation satisfied by Γ_{k_m} multiplied by $\frac{1}{\mu_m}\Phi_{k_m}$:

$$\begin{split} &\nabla_{z} \cdot \left[\frac{1}{\mu(z)} \Gamma_{k_{m}}(z, y) \nabla_{z} \Phi_{k_{m}}(z, x) - \frac{1}{\mu_{m}} \Phi_{k_{m}}(z, x) \nabla_{z} \Gamma_{k_{m}}(z, y) \right] \\ &= \left(\frac{1}{\mu(z)} - \frac{1}{\mu_{m}} \right) \nabla_{z} \Phi_{k_{m}}(z, x) \cdot \nabla_{z} \Gamma_{k_{m}}(z, y) \\ &+ \omega^{2} \varepsilon_{m} \left(1 - \frac{\varepsilon(z)}{\varepsilon_{m}} \right) \Phi_{k_{m}}(z, x) \Gamma_{k_{m}}(z, y) \\ &+ \frac{1}{\mu_{m}} \left(\Gamma_{k_{m}}(x, y) \delta_{x}(z) - \Phi_{k_{m}}(x, y) \delta_{y}(z) \right). \end{split}$$

- Integrate over B_R (with R large enough so that it encloses the support of $\mu \mu_m$ and $\varepsilon \varepsilon_m$) and send $R \to +\infty$.
- Divergence theorem + Sommerfeld radiation condition ⇒ Lipmann-Schwinger representation formula.

- Lippmann-Schwinger representation representation formula: basis for expanding the fundamental solution Φ_{k_m} when $\mu \approx \mu_m$ and $\varepsilon \approx \varepsilon_m$.
- Replace Φ_{k_m} in the right-hand side by Γ_{k_m} :

$$\Phi_{k_m}(x,y) \approx \Gamma_{k_m}(x,y) + \int (\frac{\mu_m}{\mu(z)} - 1) \nabla \Gamma_{k_m}(z,y) \cdot \nabla \Gamma_{k_m}(z,x) dz$$
$$+ k_m^2 \int (1 - \frac{\varepsilon(z)}{\varepsilon_m}) \Gamma_{k_m}(z,y) \Gamma_{k_m}(z,x) dz.$$

• First-order Born approximation for Φ_{k_m} .

- Helmholtz-Kirchhoff theorem: resolution limit in imaging with waves.
- ∂B_R : sphere of radius R and center 0;

$$\int_{\partial B_R} \left(\frac{\partial \overline{\Gamma_{k_m}}}{\partial \nu}(x,y) \Gamma_{k_m}(z,y) - \overline{\Gamma_{k_m}}(x,y) \frac{\partial \Gamma_{k_m}}{\partial \nu}(z,y) \right) d\sigma(y) = 2i \Im \Gamma_{k_m}(x,z);$$

- Multiply by $\overline{\Gamma_{k_m}}$ the equation satisfied by Γ_{k_m} and integrate by parts.
- Sommerfeld radiation condition ⇒

$$\lim_{R\to +\infty} \int_{\partial B_R} \overline{\Gamma_{k_m}}(x,y) \Gamma_{k_m}(z,y) \, d\sigma(y) = -\frac{1}{k_m} \Im \Gamma_{k_m}(x,z) \, .$$

- Helmholtz-Kirchhoff theorem: valid in inhomogeneous media.
- Outgoing fundamental solution Φ_{k_m} :

$$(\nabla_{x} \cdot \frac{1}{\mu(x)} \nabla_{x} + \omega^{2} \varepsilon(x)) \Phi_{k_{m}}(x, y) = \frac{1}{\mu_{m}} \delta_{y}(x),$$

subject to the Sommerfeld radiation condition.

• Helmholtz-Kirchhoff theorem for Φ_{k_m} :

$$\lim_{R\to+\infty}\int_{|y|=R}\overline{\Phi_{k_m}}(x,y)\Phi_{k_m}(z,y)\,d\sigma(y)=-\frac{1}{k_m}\Im\Phi_{k_m}(x,z)\,.$$

- Second Green's identity and Sommerfeld radiation condition.
- Consider

$$\begin{split} &(\nabla_{y} \cdot \frac{1}{\mu} \nabla_{y} + \omega^{2} \varepsilon) \Phi_{k_{m}}(y, x_{2}) &= \frac{1}{\mu_{m}} \delta_{x_{2}}, \\ &(\nabla_{y} \cdot \frac{1}{\mu} \nabla_{y} + \omega^{2} \varepsilon) \Phi_{k_{m}}(y, x_{1}) &= \frac{1}{\mu_{m}} \delta_{x_{1}}. \end{split}$$

• Multiply the first equation by $\overline{\Phi_{k_m}}(y, x_1)$ and subtract the second equation multiplied by $\Phi_{k_m}(y, x_2)$:

$$\begin{split} \nabla_{y} \frac{\mu_{m}}{\mu} \cdot \left[\overline{\Phi_{k_{m}}}(y, x_{1}) \nabla_{y} \Phi_{k_{m}}(y, x_{2}) - \Phi_{k_{m}}(y, x_{2}) \nabla_{y} \overline{\Phi_{k_{m}}}(y, x_{1}) \right] \\ &= -\Phi_{k_{m}}(y, x_{2}) \delta_{x_{1}} + \overline{\Phi_{k_{m}}}(y, x_{1}) \delta_{x_{2}} \\ &= -\Phi_{k_{m}}(x_{1}, x_{2}) \delta_{x_{1}} + \overline{\Phi_{k_{m}}}(x_{1}, x_{2}) \delta_{x_{2}} \,. \end{split}$$

- Use reciprocity property: $\Phi_{k_m}(x_1, x_2) = \Phi_{k_m}(x_2, x_1)$.
- Integrate over the ball B_R and we the divergence theorem:

$$\begin{split} &\int_{\partial B_R} \nu \cdot \left[\overline{\Phi_{k_m}}(y, x_1) \nabla_y \Phi_{k_m}(y, x_2) - \Phi_{k_m}(y, x_2) \nabla_y \overline{\Phi_{k_m}}(y, x_1) \right] d\sigma(y) \\ &= -\Phi_{k_m}(x_1, x_2) + \overline{\Phi_{k_m}}(x_1, x_2) \,. \end{split}$$

Green's function also satisfies the Sommerfeld radiation condition:

$$\lim_{|y|\to\infty}|y|\Big(\frac{y}{|y|}\cdot\nabla_y-ik_m\Big)\Phi_{k_m}(y,x_1)=0\,,$$

uniformly in all directions y/|y|.

• Substitute $ik_m \Phi_{k_m}(y, x_2)$ for $\nu \cdot \nabla_y \Phi_{k_m}(y, x_2)$ in the surface integral over ∂B_R , and $-ik_m \overline{\Phi_{k_m}(y, x_1)}$ for $\nu \cdot \nabla_y \overline{\Phi_{k_m}(y, x_1)} \Rightarrow$ Helmholtz-Kirchhoff theorem.

 Resolution: determined by the behavior of the imaginary part of the Green function. Helmholtz-Kirchhoff identity:

$$\Im m \, \Phi_{k_m}(x,z) = k_m \int_{|y|=R} \overline{\Phi_{k_m}(y,z)} \Phi_{k_m}(x,y) d\sigma(y), \quad R \to +\infty.$$

- The sharper is $\Im m \Phi_{k_m}$, the better is the resolution.
- Local resonant media used to make sharp peaks of Sm Φ_{km}.
 resolution.

- D: bounded domain in \mathbb{R}^d with smooth boundary ∂D ;
- (ε_m, μ_m) : pair of electromagnetic parameters (permittivity and permeability) of $\mathbb{R}^2 \setminus \overline{D}$ and (ε_c, μ_c) : of D.
- Permittivity and permeability distributions:

$$\varepsilon = \varepsilon_m \chi(\mathbb{R}^d \setminus \overline{D}) + \varepsilon_c \chi(D)$$
 and $\mu = \mu_m \chi(\mathbb{R}^d \setminus \overline{D}) + \mu_c \chi(D)$.

- ω : given operating frequency; $k_c = \omega \sqrt{\varepsilon_c \mu_c}$ and $k_m = \omega \sqrt{\varepsilon_m \mu_m}$.
- Incident plane wave $u^{\text{in}}(x) = e^{ik_m \xi \cdot x}$; ξ : unit vector.

• Transmission problem for the Helmholtz equation:

$$\left\{ \begin{array}{l} \nabla \cdot \frac{1}{\mu} \nabla u + \omega^2 \varepsilon u = 0 \quad \text{in } \mathbb{R}^d, \\ u^s := u - u^{\text{in}} \text{ satisfies the Sommerfeld radiation condition,} \end{array} \right.$$

Sommerfeld radiation condition:

$$\left|\frac{\partial u^s}{\partial r} - ik_m u^s\right| = O\bigg(r^{-(d+1)/2}\bigg) \quad \text{as } r = |x| \to +\infty \quad \text{uniformly in } \frac{x}{|x|}.$$

$$\begin{cases} (\Delta + k_m^2)u = 0 & \text{in } \mathbb{R}^d \setminus \overline{D}, \\ (\Delta + k_c^2)u = 0 & \text{in } D, \\ u|_+ = u|_- & \text{on } \partial D, \\ \frac{1}{\mu_m} \frac{\partial u}{\partial \nu}|_+ = \frac{1}{\mu_c} \frac{\partial u}{\partial \nu}|_- \text{on } \partial D, \\ u^s := u - u^{\text{in}} \text{ satisfies the Sommerfeld radiation condition.} \end{cases}$$

- Integral representation.
- Existence and uniqueness of a solution.
- Scattering coefficients.
- Scattering amplitude.
- Link between the scattering amplitude and scattering coefficients.
- Optical theorem.

• Integral representation of *u*:

$$u(x) = \begin{cases} u^{\text{in}}(x) + \mathcal{S}_D^{k_m}[\psi](x), & x \in \mathbb{R}^d \setminus \overline{D}, \\ \mathcal{S}_D^{k_c}[\varphi](x), & x \in D. \end{cases}$$

- Assume that k_m^2 is not a Dirichlet eigenvalue for $-\Delta$ on D.
- Unique solution $(\varphi, \psi) \in L^2(\partial D) \times L^2(\partial D)$:

$$\left\{ \begin{array}{l} \mathcal{S}_{D}^{k_{c}}[\varphi] - \mathcal{S}_{D}^{k_{m}}[\psi] = u^{\mathrm{in}} \\ \left. \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{D}^{k_{c}}[\varphi])}{\partial \nu} \right|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{D}^{k_{m}}[\psi])}{\partial \nu} \right|_{+} = \frac{1}{\mu_{m}} \frac{\partial u^{\mathrm{in}}}{\partial \nu} \quad \text{on } \partial D. \end{array} \right.$$

• There exists a constant $C = C(k_c, k_m, D)$ s.t.

$$\|\varphi\|_{L^2(\partial D)} + \|\psi\|_{L^2(\partial D)} \le C(\|u^{\mathrm{in}}\|_{L^2(\partial D)} + \|\nabla u^{\mathrm{in}}\|_{L^2(\partial D)}).$$

• C can be chosen scale independent: There exists δ_0 s.t. if one denotes by $(\varphi_\delta, \psi_\delta)$ the solution of the system of integral equations with k_c and k_m respectively replaced by δk_c and δk_m , then

$$\|\varphi_{\delta}\|_{L^{2}(\partial D)} + \|\psi_{\delta}\|_{L^{2}(\partial D)} \leq C(\|u^{\mathrm{in}}\|_{L^{2}(\partial D)} + \|\nabla u^{\mathrm{in}}\|_{L^{2}(\partial D)}).$$

• Suppose: k_m^2 is not a Dirichlet eigenvalue for $-\Delta$ on D. For each $(F,G) \in H^1(\partial D) \times L^2(\partial D)$, there exists a unique solution $(f,g) \in L^2(\partial D) \times L^2(\partial D)$ to the system of integral equations:

$$\begin{cases} \mathcal{S}_{D}^{k_{c}}[f] - \mathcal{S}_{D}^{k_{m}}[g] = F \\ \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{D}^{k_{c}}[f])}{\partial \nu} \Big|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{D}^{k_{m}}[g])}{\partial \nu} \Big|_{+} = G \end{cases}$$
 on ∂D .

Furthermore, there exists a constant C independent of F and G s.t.

$$||f||_{L^2(\partial D)} + ||g||_{L^2(\partial D)} \le C \bigg(||F||_{H^1(\partial D)} + ||G||_{L^2(\partial D)} \bigg).$$

• Proof for d=3 and $\mu_m \neq \mu_c$.

- Rellich's lemma:
 - $R_0 > 0$ and $B_R = \{|x| < R\}$.
 - v: satisfy the Helmholtz equation $\Delta v + \omega^2 v = 0$ for $|x| > R_0$.

•

$$\lim_{R\to+\infty}\int_{\partial B_R}|v(x)|^2\,d\sigma(x)=0.$$

- Then, $v \equiv 0$ for $|x| > R_0$.
- Rellich's lemma does not hold if ω is imaginary or $\omega = 0$.

Uniqueness of a solution to the transmission problem: If u satisfies

$$\left\{ \begin{array}{l} \nabla \cdot \frac{1}{\mu} \nabla u + \omega^2 \varepsilon u = 0 \quad \text{in } \mathbb{R}^d, \\ \\ u \text{ satisfies the Sommerfeld radiation condition,} \end{array} \right.$$

then $u \equiv 0$ in \mathbb{R}^d .

- Proof based on Rellich's lemma:
 - $B_R = \{ |x| < R \}; R \text{ s.t. } D \subset B_R.$
 - Multiply $\Delta u + \omega^2 u = 0$ by \overline{u} and integrate by parts over $B_R \setminus \overline{D}$,

$$\Im \int_{\partial B_{P}} \overline{u} \frac{\partial u}{\partial \nu} d\sigma = 0.$$

• *⇒*

$$\Im \int_{\partial B_R} \overline{u} \left(\frac{\partial u}{\partial \nu} - i \omega u \right) d\sigma = -\omega \int_{\partial B_R} |u|^2.$$

• Apply the Cauchy-Schwarz inequality,

$$\begin{split} &\left|\Im\int_{\partial B_R} \overline{u} \left(\frac{\partial u}{\partial \nu} - i\omega u\right) d\sigma \right| \\ &\leq \left(\int_{\partial B_R} |u|^2\right)^{1/2} \left(\int_{\partial B_R} \left|\frac{\partial u}{\partial \nu} - i\omega u\right|^2 d\sigma\right)^{1/2}. \end{split}$$

• Use the radiation condition,

$$\left|\Im \int_{\partial B_R} \overline{u} \left(\frac{\partial u}{\partial \nu} - i\omega u \right) d\sigma \right| \leq \frac{C}{R} \left(\int_{\partial B_R} |u|^2 \right)^{1/2},$$

for some positive constant C independent of R.

Estimate

$$\left(\int_{\partial B_R} |u|^2\right)^{1/2} \le \frac{C}{R},$$

and Rellich's lemma $\Rightarrow u \equiv 0$ in $\mathbb{R}^d \setminus \overline{B_R}$.

• Unique continuation property for $\Delta + \omega^2 \Rightarrow u \equiv 0$.

- $X := L^2(\partial D) \times L^2(\partial D)$ and $Y := H^1(\partial D) \times L^2(\partial D)$;
- Define $T: X \to Y$ by

$$T(f,g) := \left(\mathcal{S}_{D}^{k_c}[f] - \mathcal{S}_{D}^{k_m}[g], \frac{1}{\mu_c} \frac{\partial (\mathcal{S}_{D}^{k_c}[f])}{\partial \nu} \bigg|_{-} - \frac{1}{\mu_m} \frac{\partial (\mathcal{S}_{D}^{k_m}[g])}{\partial \nu} \bigg|_{+} \right).$$

• Define T_0 by

$$T_0(f,g) := \left(\mathcal{S}_D^0[f] - \mathcal{S}_D^0[g], \frac{1}{\mu} \frac{\partial (\mathcal{S}_D^0[f])}{\partial \nu} \Big|_{-} - \frac{1}{\mu_m} \frac{\partial (\mathcal{S}_D^0[g])}{\partial \nu} \Big|_{+} \right).$$

- $\mathcal{S}_{D}^{k_0} \mathcal{S}_{D}^{0} : L^2(\partial D) \to H^1(\partial D)$ and $\frac{\partial}{\partial \nu} \mathcal{S}_{D}^{k_m}|_{\pm} \frac{\partial}{\partial \nu} \mathcal{S}_{D}^{0}|_{\pm} : L^2(\partial D) \to L^2(\partial D)$: compact operators.
- $T T_0$: compact operator from X into Y.
- $T_0: X \to Y$: invertible: $T_0(f,g) = (F,G)$

$$f = g + (\mathcal{S}_D^0)^{-1}(F)$$

$$g = \frac{\mu_m \mu_c}{\mu_m - \mu_c} (\lambda I + (\mathcal{K}_D^0)^*)^{-1} \left(G + \frac{1}{\mu_c} (\frac{1}{2} I - (\mathcal{K}_D^0)^*) ((\mathcal{S}_D^0)^{-1} [F]) \right).$$

• $\lambda = (\mu_c + \mu_m)/(2(\mu_c - \mu_m)).$

- Invertibility of S_D^0 and $\lambda I + (\mathcal{K}_D^0)^* + \text{Fredholm alternative} \Rightarrow \text{it is enough}$ to prove that T: injective.
- Suppose that T(f,g) = 0. Define u by

$$u(x) := \begin{cases} S_D^{k_m}[g](x) & \text{if } x \in \mathbb{R}^d \setminus \overline{D}, \\ S_D^{k_c}[f](x) & \text{if } x \in D. \end{cases}$$

- u satisfies the transmission problem with $u^{\mathrm{in}}=0 \Rightarrow u \equiv 0$ in \mathbb{R}^d .
- $\mathcal{S}_{D}^{k_m}[g] = 0$ on ∂D .
- $(\Delta + k_m^2)S_D^{k_m}[g] = 0$ in D and k_m^2 is not a Dirichlet eigenvalue for $-\Delta$ on $D \Rightarrow S_D^{k_m}[g] = 0$ in D, and hence in \mathbb{R}^d .
- Jump relation ⇒

$$g = \frac{\partial (\mathcal{S}_{D}^{k_m}[g])}{\partial \nu}\bigg|_{+} - \frac{\partial (\mathcal{S}_{D}^{k_m}[g])}{\partial \nu}\bigg|_{-} = 0 \quad \text{on } \partial D.$$

- On the other hand, $\mathcal{S}_D^{k_c} f$ satisfies $(\Delta + k_c^2) \mathcal{S}_D^{k_c} [f] = 0$ in $\mathbb{R}^d \setminus \overline{D}$ and $\mathcal{S}_D^{k_c} [f] = 0$ on ∂D .
- $\mathcal{S}_{D}^{k_c}[f] = 0 \Rightarrow f = 0.$

Graf's addition formula:

$$H_0^{(1)}(k|x-y|) = \sum_{l \in \mathbb{Z}} H_l^{(1)}(k|x|) e^{il\theta_x} J_l(k|y|) e^{-il\theta_y} \quad \text{for } |x| > |y|;$$

- $x = (|x|, \theta_x)$ and $y = (|y|, \theta_y)$ in polar coordinates;
- H_I⁽¹⁾: Hankel function of the first kind of order I and J_I: Bessel function of order I.
- Asymptotic formula as $|x| \to \infty$:

$$u(x)-u^{\mathrm{in}}(x)=-\frac{i}{4}\sum_{I\in\mathbb{Z}}H_I^{(1)}(k_m|x|)e^{il\theta_x}\int_{\partial D}J_I(k_m|y|)e^{-il\theta_y}\psi(y)d\sigma(y).$$

• $(\varphi_{l'}, \psi_{l'}) \in L^2(\partial D) \times L^2(\partial D)$: solution of the system of integral equations on ∂D :

$$\left\{ \begin{array}{l} \mathcal{S}_{D}^{k_{c}}[\varphi_{l'}] - \mathcal{S}_{D}^{k_{m}}[\psi_{l'}] = J_{l'}(k_{m}|x|)e^{il'\theta_{x}}, \\ \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{D}^{k_{c}}[\varphi_{l'}])}{\partial \nu} \bigg|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{D}^{k_{m}}[\psi_{l'}])}{\partial \nu} \bigg|_{+} = \frac{1}{\mu_{m}} \frac{\partial (J_{l'}(k_{m}|x|)e^{il'\theta_{x}})}{\partial \nu}. \end{array} \right.$$

• Scattering coefficients $W_{ll'}$, $I, I' \in \mathbb{Z}$:

$$W_{ll'} = W_{ll'}[\varepsilon, \mu, \omega] := \int_{\partial D} J_l(k_m|y|) e^{-il\theta_y} \psi_{l'}(y) d\sigma(y).$$

• Exponential decay of the scattering coefficients: There is a constant C depending on $(\varepsilon, \mu, \omega)$ s.t.

$$|W_{ll'}[\varepsilon,\mu,\omega]| \leq \frac{C^{|I|+|I'|}}{|I||I||I'||I'|} \quad \text{for all } I,I' \in \mathbb{Z} \setminus \{0\} \,.$$

• As $I' \to \infty$,

$$J_{l'}(t) \sim rac{{{{\left({ - 1}
ight)}^{l'}}}}{{\sqrt {2\pi |l'|} }}{{{\left({rac{{et}}{{2|l'|}}}
ight)}^{|l'|}}}.$$

From

$$\|u^{\text{in}}\|_{L^2(\partial D)} + \|\nabla u^{\text{in}}\|_{L^2(\partial D)} \le \frac{C^{|I'|}}{|I'|^{|I'|}}$$

for some constant $C \Rightarrow$

$$\|\psi_{l'}\|_{L^2(\partial D)} \leq \frac{C^{|l'|}}{|l'|^{|l'|}}$$

for another constant C.

• Completeness relation for cylindrical waves $\{J_n(k_m|y|)e^{-in\theta_y}\}_n$:

$$\frac{\delta_0(r-r_0)\delta_0(\theta-\theta_0)}{r} = \sum_{l' \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{+\infty} t J_{l'}(tr) J_{l'}(tr_0) \ dt \ e^{il'(\theta-\theta_0)}.$$

• Jacobi-Anger expansion of plane waves: $x = (|x|, \theta_x)$ and $\xi = (|\xi|, \theta_\xi)$ in the polar coordinates,

$$e^{ik_m\xi\cdot x}=\sum_{l'\in\mathbb{Z}}e^{il'(\frac{\pi}{2}-\theta_\xi)}J_{l'}(k_m|x|)e^{il'\theta_x}.$$

• $|x| \to \infty$,

$$u(x) - e^{ik_m \xi \cdot x} = -\frac{i}{4} \sum_{l \in \mathbb{Z}} H_l^{(1)}(k_m | x|) e^{il\theta_x} \sum_{l' \in \mathbb{Z}} W_{ll'} e^{il'(\frac{\pi}{2} - \theta_{\xi})}.$$

• $W_{ll'}$: scattering coefficients, $\xi = (\cos \theta_{\xi}, \sin \theta_{\xi})$, and $x = (|x|, \theta_{x})$, $|x| \to \infty$,

$$u(x) - e^{ik_m \xi \cdot x} = -\frac{i}{4} \sum_{I \in \mathbb{Z}} H_I^{(1)}(k_m |x|) e^{il\theta_x} \sum_{I' \in \mathbb{Z}} W_{II'} e^{il'(\frac{\pi}{2} - \theta_\xi)} .$$

• Far-field pattern $A_{\infty}[\varepsilon,\mu,\omega]$: $|x|\to\infty$,

$$u(x) - e^{ik_m\xi \cdot x} = -ie^{-\frac{\pi i}{4}} \frac{e^{ik_m|x|}}{\sqrt{|x|}} \mathbf{A}_{\infty}[\varepsilon, \mu, \omega](\theta_{\xi}, \theta_{x}) + o(|x|^{-\frac{1}{2}}).$$

• θ and θ' : respectively the incident and scattered direction,

$$A_{\infty}[\varepsilon,\mu,\omega](\theta,\theta') = \sum_{l,l'\in\mathbb{Z}} i^{(l'-l)} e^{il\theta'} W_{ll'}[\varepsilon,\mu,\omega] e^{-il'\theta}.$$

 Scattering coefficients: basically the Fourier coefficients of the far-field pattern.

• As $t \to \infty$,

$$H_0^{(1)}(t) \sim \sqrt{\frac{2}{\pi t}} e^{i(t-\frac{\pi}{4})}.$$

• |x|: large while |y|: bounded,

$$|x - y| = |x| - |y| \cos(\theta_x - \theta_y) + O(\frac{1}{|x|}).$$

• $|x| \to \infty$,

$$H_0^{(1)}(k_m|x-y|) \sim e^{-\frac{\pi i}{4}} \sqrt{\frac{2}{\pi k_m|x|}} e^{ik_m(|x|-|y|\cos(\theta_x-\theta_y))}$$
.

• $|x| \to \infty$,

$$u(x) - e^{ik_m \xi \cdot x} \sim -ie^{-\frac{\pi i}{4}} \frac{e^{ik_m|x|}}{\sqrt{8\pi k_m|x|}} \int_{\partial D} e^{-ik_m|y|\cos(\theta_x - \theta_y)} \psi(y) \ d\sigma(y)$$

•

$$A_{\infty}[\varepsilon,\mu,\omega](\theta_{\xi},\theta_{x}) = \frac{1}{\sqrt{8\pi k_{m}}} \int_{\partial D} \mathrm{e}^{-\mathrm{i}k_{m}|y|\cos(\theta_{x}-\theta_{y})} \psi(y) \ d\sigma(y) \,,$$

• Fourier series of $A_{\infty}[\varepsilon, \mu, \omega](\theta_{\xi}, \cdot)$:

$$A_{\infty}[\varepsilon,\mu,\omega](\theta_{\xi},\theta_{x}) = \sum_{l\in\mathbb{Z}} b_{l}(\theta_{\xi})e^{il\theta_{x}}.$$

•

$$\begin{split} b_l(\theta_\xi) &= \frac{1}{2\pi} \int_0^{2\pi} \int_{\partial D} e^{-ik_m|y|\cos(\theta_x - \theta_y)} \psi(y) \, d\sigma(y) \, e^{-il\theta_x} \, d\theta_x \\ &= \frac{1}{2\pi} \int_{\partial D} \int_0^{2\pi} e^{-ik_m|y|\cos(\theta_x - \theta_y)} e^{-il\theta_x} \, d\theta_x \, \psi(y) \, d\sigma(\theta_y) \, . \end{split}$$

• From

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-ik_m|y|\cos(\theta_x - \theta_y)} e^{-il\theta_x} d\theta_x = J_l(k_m|y|) e^{-il(\theta_y + \frac{\pi}{2})},$$

$$b_{l}(\theta_{\xi}) = \int_{\partial D} J_{l}(k_{m}|y|) e^{-il(\theta_{y} + \frac{\pi}{2})} \psi(y) d\sigma(\theta_{y}).$$

• Scattering cross-section: $\theta' \in [0, 2\pi]$,

$$Q^{s}[\varepsilon,\mu,\omega](\theta') := -\frac{i}{2k_{m}} \int_{\partial B_{D}} \left[\overline{u}^{s}(x) \nabla u^{s}(x) - u^{s}(x) \nabla \overline{u}^{s}(x) \right];$$

Q^s satisfies

$$Q^{\mathrm{s}}[arepsilon,\mu,\omega](heta') = \int_0^{2\pi} \left|A_{\infty}[arepsilon,\mu,\omega](heta, heta')
ight|^2 d heta\,.$$

• Absorption cross-section: $\theta' \in [0, 2\pi]$,

$$Q^{\mathrm{a}}[\varepsilon,\mu,\omega](\theta') := \frac{i}{2} \int_{\partial B_{R}} \left[\overline{u}(x) \nabla u(x) - u(x) \nabla \overline{u}(x) \right];$$

• Extinction cross-section: $\theta' \in [0, 2\pi]$,

$$Q^{\rm ext}[\varepsilon,\mu,\omega](\theta') := Q^{\rm a}[\varepsilon,\mu,\omega](\theta') + Q^{\rm s}[\varepsilon,\mu,\omega](\theta').$$

 Extinction cross-section Q^{ext}: ratio of the sum of the mean powers absorbed and scattered by D to the mean intensity power flow in the incident field.

• Optical theorem (d = 2): $\theta' \in [0, 2\pi]$,

$$\Im A_{\infty}[\varepsilon,\mu,\omega](\theta',\theta') = -\sqrt{\frac{k_m}{8\pi}} Q^{\rm ext}[\varepsilon,\mu,\omega](\theta').$$

- $\omega \mapsto A_{\infty}[\varepsilon, \mu, \omega]$: analytic in \mathbb{C}^+ , A_{∞} vanishes sufficiently rapidly as $\omega \to +\infty$;
- $A_{\infty}[\varepsilon, \mu, -\omega] = \overline{A_{\infty}[\varepsilon, \mu, \omega]}$ for real values of ω ;
- Real and imaginary parts of the scattering amplitude are connected by the Kramers-Kronig relations:

$$\Re A_{\infty}[\varepsilon,\mu,\omega](\xi,\xi) = c_d \text{ p.v.} \int_0^{+\infty} \frac{(\omega')^{(d+1)/2} Q^{\text{ext}}[\varepsilon,\mu,\omega'](\xi)}{(\omega')^2 - \omega^2} d\omega',$$

$$Q^{\rm ext}[\varepsilon,\mu,\omega](\xi) = -\frac{2}{\pi\sqrt{\varepsilon_m\mu_m}} \text{ p.v.} \int_0^{+\infty} \frac{\Re A_{\infty}[\varepsilon,\mu,\omega'](\xi,\xi)}{(\omega')^2 - \omega^2} d\omega',$$

• $\xi \in \mathbb{R}^2, |\xi| = 1; c_2 = -\sqrt{\sqrt{\varepsilon_m \mu_m}/(2\pi^3)}$.

• Limits as $\omega \to 0 \Rightarrow$ sum rules:

$$\begin{split} \Re\,A_{\infty}[\varepsilon,\mu,0](\xi,\xi) &= c_2\,\mathrm{p.v.} \int_0^{+\infty} \left(\omega'\right)^{-1/2} Q^{\mathrm{ext}}[\varepsilon,\mu,\omega'](\xi)\,d\omega'\,, \\ Q^{\mathrm{ext}}[\varepsilon,\mu,0](\xi) &= -\frac{2}{\pi\sqrt{\varepsilon_m\mu_m}}\,\mathrm{p.v.} \int_0^{+\infty} \frac{\Re\,A_{\infty}[\varepsilon,\mu,\omega'](\xi,\xi) - \Re\,A_{\infty}[\varepsilon,\mu,0](\xi,\xi)}{(\omega')^2}\,d\omega'\,. \end{split}$$

• $Q^a = 0$ (non absorbing scatterers): $\theta' \in [0, 2\pi]$, $\Im \sum_{l,l' \in \mathbb{Z}} i^{l'-l} e^{i(l-l')\theta'} W_{ll'}[\varepsilon, \mu, \omega]$ $= -\sqrt{\frac{\pi k_m}{2}} \sum_{l' \in \mathbb{Z}} \left| \sum_{l \in \mathbb{Z}} i^{-l} W_{ll'}[\varepsilon, \mu, \omega] e^{il\theta'} \right|^2.$

Lecture 6: Scalar wave scattering by small particles

Habib Ammari

Department of Mathematics, ETH Zürich

- D: bounded smooth domain in \mathbb{R}^d .
- μ and ε : piecewise constant functions s.t. $\mu(x) = \mu_m$ and $\varepsilon(x) = \varepsilon_m$ for $x \in \mathbb{R}^d \setminus \overline{D}$ and $\mu(x) = \mu_c$ and $\varepsilon(x) = \varepsilon_c$ for $x \in D$.
- $\mu_m, \varepsilon_m, \mu_c$, and ε_c : positive.
- $k_m = \omega \sqrt{\varepsilon_m \mu_m}$ and $k_c = \omega \sqrt{\varepsilon_c \mu_c}$.
- Transmission problem for the Helmholtz equation:

$$\left\{ \begin{array}{l} \nabla \cdot \frac{1}{\mu} \nabla u + \omega^2 \varepsilon u = 0 \quad \text{in } \mathbb{R}^d, \\ \\ u^s := u - u^{\text{in}} \text{ satisfies the Sommerfeld radiation condition.} \end{array} \right.$$

- u^{in} : incident wave.
- Sommerfeld radiation condition:

$$\left|\frac{\partial u^s}{\partial r} - ik_m u^s\right| = O\bigg(r^{-(d+1)/2}\bigg) \quad \text{as } r = |x| \to +\infty \quad \text{uniformly in } \frac{x}{|x|}.$$

• Equivalent form:

$$\left\{ \begin{array}{l} (\Delta + k_m^2) u = 0 \quad \text{in } \mathbb{R}^d \setminus \overline{D}, \\ (\Delta + k_c^2) u = 0 \quad \text{in } D, \\ u|_+ = u|_- \quad \text{on } \partial D, \\ \frac{1}{\mu_m} \frac{\partial u}{\partial \nu}|_+ = \frac{1}{\mu_c} \frac{\partial u}{\partial \nu}|_- \text{on } \partial D, \\ u^s := u - u^{\text{in}} \text{ satisfies the Sommerfeld radiation condition.} \end{array} \right.$$

• Uniqueness result: $u^{in} = 0 \Rightarrow u \equiv 0$ in \mathbb{R}^d .

- k_m^2 : not a Dirichlet eigenvalue for $-\Delta$ on D.
- u can be represented using the single-layer potentials $\mathcal{S}_D^{k_m}$ and $\mathcal{S}_D^{k_c}$:

$$u(x) = \begin{cases} u^{\text{in}}(x) + \mathcal{S}_D^{k_m}[\psi](x), & x \in \mathbb{R}^d \setminus \overline{D}, \\ \mathcal{S}_D^{k_c}[\varphi](x), & x \in D; \end{cases}$$

• $(\varphi, \psi) \in L^2(\partial D) \times L^2(\partial D)$: unique solution to

$$\left\{ \begin{array}{l} \mathcal{S}_{D}^{k_{c}}[\varphi] - \mathcal{S}_{D}^{k_{m}}[\psi] = u^{\mathrm{in}} \\ \left. \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{D}^{k_{c}}[\varphi])}{\partial \nu} \right|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{D}^{k_{m}}[\psi])}{\partial \nu} \right|_{+} = \frac{1}{\mu_{m}} \frac{\partial u^{\mathrm{in}}}{\partial \nu} \quad \text{on } \partial D. \end{array} \right.$$

- $D = \delta B + z$; $\delta \rightarrow 0$.
- Asymptotic expansion of u as $\delta \to 0$.
- Consider d = 3.
- There exists δ₀ > 0 s.t. for all δ ≤ δ₀, there exists a constant C independent of δ s.t.

$$\|\varphi\|_{L^{2}(\partial D)} + \|\psi\|_{L^{2}(\partial D)} \le C \bigg(\delta^{-1} \|u^{\mathrm{in}}\|_{L^{2}(\partial D)} + \|\nabla u^{\mathrm{in}}\|_{L^{2}(\partial D)} \bigg).$$

- Proof:
 - Scaling $x = z + \delta v \Rightarrow$

$$\begin{cases} \mathcal{S}_{B}^{k_{c}\delta}[\varphi_{\delta}] - \mathcal{S}_{B}^{k_{m}\delta}[\psi_{\delta}] = \frac{1}{\delta}u_{\delta}^{\mathrm{in}} \\ \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{B}^{k_{c}\delta}[\varphi_{\delta}])}{\partial \nu} \Big|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{B}^{k_{m}\delta}[\psi_{\delta}])}{\partial \nu} \Big|_{+} = \frac{1}{\delta\mu_{m}} \frac{\partial u_{\delta}^{\mathrm{in}}}{\partial \nu} \end{cases} \quad \text{on } \partial B \, ;$$

- $\varphi_{\delta}(y) = \varphi(z + \delta y)$, $y \in \partial B$, etc; $\mathcal{S}_{R}^{k_{c}\delta}$ and $\mathcal{S}_{R}^{k_{m}\delta}$: associated to the fundamental solutions $\Gamma_{k_{c}\delta}$ and $\Gamma_{k_m\delta}$, respectively.
- For δ small enough:

$$\|\varphi_{\delta}\|_{L^2(\partial B)} + \|\psi_{\delta}\|_{L^2(\partial B)} \le C\delta^{-1}\|u_{\delta}^{\mathrm{in}}\|_{H^1(\partial B)};$$

• C independent of δ .

- Fix $n \in \mathbb{N}$.
- Define

$$u_n^{\mathrm{in}}(x) = \sum_{|I|=0}^n \frac{\partial^I u^{\mathrm{in}}(z)}{I!} (x-z)^I.$$

• (φ_n, ψ_n) : unique solution of

$$\begin{cases} \mathcal{S}_{D}^{k_{c}}[\varphi_{n}] - \mathcal{S}_{D}^{k_{m}}[\psi_{n}] = \mathbf{u}_{n+1}^{\mathrm{in}} \\ \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{D}^{k_{c}}[\varphi_{n}])}{\partial \nu} \bigg|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{D}^{k_{m}}[\psi_{n}])}{\partial \nu} \bigg|_{+} = \frac{1}{\mu_{m}} \frac{\partial \mathbf{u}_{n+1}^{\mathrm{in}}}{\partial \nu} \end{cases} \quad \text{on } \partial D.$$

• $(\varphi - \varphi_n, \psi - \psi_n)$: unique solution with the right-hand sides defined by $u^{\text{in}} - u^{\text{in}}_{n+1}$.

$$\begin{split} \bullet & \|\varphi - \varphi_n\|_{L^2(\partial D)} + \|\psi - \psi_n\|_{L^2(\partial D)} \\ & \leq C \left(\delta^{-1} \|u^{\text{in}} - u^{\text{in}}_{n+1}\|_{L^2(\partial D)} + \|\nabla (u^{\text{in}} - u^{\text{in}}_{n+1})\|_{L^2(\partial D)} \right). \end{split}$$

• Definition of $u_{n+1}^{\text{in}} \Rightarrow$

$$||u^{\text{in}} - u^{\text{in}}_{n+1}||_{L^{2}(\partial D)} \le C|\partial D|^{1/2}||u^{\text{in}} - u^{\text{in}}_{n+1}||_{L^{\infty}(\partial D)}$$

$$\le C|\partial D|^{1/2}(\delta k_{m})^{n+2},$$

and

$$\|\nabla(u^{\mathrm{in}}-u^{\mathrm{in}}_{n+1})\|_{L^2(\partial D)}\leq C|\partial D|^{1/2}(\delta k_m)^{n+1}.$$

• ⇒

$$\|\varphi - \varphi_n\|_{L^2(\partial D)} + \|\psi - \psi_n\|_{L^2(\partial D)} \le C(k_m)|\partial D|^{1/2}\delta^{n+1}.$$

• Representation formula ⇒

$$u(x) = u^{\text{in}}(x) + \mathcal{S}_D^{k_m}[\psi_n](x) + \mathcal{S}_D^{k_m}[\psi - \psi_n](x), \quad x \in K \in \mathbb{R}^d \setminus \overline{D}.$$

• $\operatorname{dist}(D,K) \geq c_0 \Rightarrow$

$$\sup_{x \in K, y \in \partial D} \left| \Gamma_{k_m}(x - y) \right| \le C$$

for some constant C.

• For $x \in K$.

$$\left| \mathcal{S}_{D}^{k_{m}} [\psi - \psi_{n}](x) \right| \leq \left[\int_{\partial D} |\Gamma_{k_{m}}(x - y)|^{2} d\sigma(y) \right]^{1/2} \|\psi - \psi_{n}\|_{L^{2}(\partial D)}$$
$$\leq C |\partial D|^{1/2} |\partial D|^{1/2} \delta^{n+1} \leq C' \delta^{n+d};$$

• C and C': independent of $x \in K$ and δ .

 $u(x)=u^{ ext{in}}(x)+\mathcal{S}^{k_m}_D[\psi_n](x)+rac{\mathcal{O}(\delta^{n+d})}{n}\,,\quad ext{uniformly in }x\in\mathcal{K}\,.$

• For I: multi-index, define (φ_I, ψ_I) : unique solution to

$$\begin{cases} \mathcal{S}_{\mathcal{B}}^{k_c\delta}[\varphi_l] - \mathcal{S}_{\mathcal{B}}^{k_m\delta}[\psi_l] = \mathbf{x}^l \\ \frac{1}{\mu_c} \frac{\partial (\mathcal{S}_{\mathcal{B}}^{k_c\delta}[\varphi_l])}{\partial \nu} \bigg|_{-} - \frac{1}{\mu_m} \frac{\partial (\mathcal{S}_{\mathcal{B}}^{k_m\delta}[\psi_l])}{\partial \nu} \bigg|_{+} = \frac{1}{\mu_m} \frac{\partial \mathbf{x}^l}{\partial \nu} \qquad \text{on } \partial \mathcal{B} \, . \end{cases}$$

• For $x \in \partial D$,

$$\mathcal{S}_{D}^{k_{m}} \left[\sum_{|I|=0}^{n+1} \delta^{|I|-1} \frac{\partial^{I} u^{\text{in}}(z)}{I!} \varphi_{I}(\delta^{-1}(\cdot - z)) \right] (x)$$

$$= \sum_{|I|=0}^{n+1} \delta^{|I|} \frac{\partial^{I} u^{\text{in}}(z)}{I!} (\mathcal{S}_{B}^{k_{m}\delta}[\varphi_{I}]) (\delta^{-1}(x - z));$$

•
$$\Rightarrow \varphi_n(x) = \sum_{|I|=0}^{n+1} \delta^{|I|-1} \frac{\partial^I u^{\text{in}}(z)}{I!} \varphi_I(\delta^{-1}(x-z))$$
 and

$$\psi_n(x) = \sum_{|I|=0}^{n+1} \delta^{|I|-1} \frac{\partial^I u^{\text{in}}(z)}{I!} \psi_I(\delta^{-1}(x-z)).$$

• \Rightarrow uniformly in $x \in K$,

$$u(x) = u^{\text{in}}(x) + \sum_{|I|=0}^{n+1} \delta^{|I|-1} \frac{\partial^{I} u^{\text{in}}(z)}{I!} \mathcal{S}_{D}^{k_{m}} [\psi_{I}(\delta^{-1}(\cdot - z))](x) + O(\delta^{n+d}).$$

•

$$\begin{split} \mathcal{S}_{D}^{k_{m}}[\psi_{l}(\delta^{-1}(\cdot-z))](x) &= \int_{\partial D} \Gamma_{k_{m}}(x-y)\psi_{l}(\delta^{-1}(y-z)) d\sigma(y) \\ &= \delta^{d-1} \int_{\partial B} \Gamma_{k_{m}}(x-(\delta w+z))\psi_{l}(w) d\sigma(w) \,. \end{split}$$

• For $x \in K$, $z \in D$, $w \in \partial B$, and sufficiently small δ :

$$\Gamma_{k_m}(x-(\delta w+z))=\sum_{|l'|=0}^{\infty}\frac{\delta^{|l'|}}{l'!}\partial_z^{l'}\Gamma_{k_m}(x-z)w^{l'}.$$

• ⇒

$$\mathcal{S}_{D}^{k_{m}}[\psi_{l}(\delta^{-1}(\cdot-z))](x) = \sum_{\lfloor l' \rfloor = 0}^{\infty} \frac{\delta^{\lfloor l' \rfloor + d - 1}}{l'!} \partial_{z}^{l'} \Gamma_{k_{m}}(x - z) \int_{\partial \mathcal{B}} w^{l'} \psi_{l}(w) \, d\sigma(w).$$

• For multi-indices I and I' in \mathbb{N}^d , scattering tensors:

$$\widetilde{W}_{ll'} := \int_{\partial B} w^{l'} \psi_l(w) \, d\sigma(w) \,.$$

• Pointwise multipolar expansion in $K \subseteq \mathbb{R}^d \setminus \overline{D}$:

$$u(x) = u^{\text{in}}(x) + \delta^{d-2} \sum_{|l'|=0}^{n+1} \sum_{|l'|=0}^{n-|l'|+1} \frac{\delta^{|l|+|l'|}}{|l|l'|} \partial^l u^{\text{in}}(z) \partial_z^{l'} \Gamma_{k_m}(x-z) \widetilde{W}_{ll'} + O(\delta^{n+d});$$

• Remainder $O(\delta^{d+n})$: dominated by $C\delta^{d+n}$ for some C independent of $x \in K$.

- ψ_l and $\widetilde{W}_{ll'}$: depend on δ .
- Scattering tensors: basic building blocks for the full asymptotic expansion as $\delta \to 0$ of the scattering coefficients

$$W_{ll'}:=\int_{\partial D}J_l(k_m|y|)e^{-il\theta_y}\psi_{l'}(y)d\sigma(y).$$

• Scaling + Taylor expansions: For $p, q \in \mathbb{N}$,

$$W_{pq} = \frac{1}{k_m} \sum_{l,l' \in \mathbb{N}^3} \frac{\widetilde{W}_{ll'}}{\widetilde{U}_{ll'}!} \frac{(\delta k_m)^{|l|+|l'|+1}}{l!l'!} \partial^l \left[J_p(y) e^{ip\theta_y} \right] \Big|_{y=0} \partial^{l'} \left[J_q(y) e^{iq\theta_y} \right] \Big|_{y=0}.$$

- Expansion of $\widetilde{W}_{ll'}$ as $\delta \to 0$:
 - Introduce

$$T_{\delta} \left[\begin{array}{c} f \\ g \end{array} \right] := \left[\begin{array}{c} \mathcal{S}_{B}^{k_{c}\delta}[f] - \mathcal{S}_{B}^{k_{m}\delta}[g] \\ \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{B}^{k_{c}\delta}[f])}{\partial \nu} \bigg|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{B}^{k_{m}\delta}[g])}{\partial \nu} \bigg|_{+} \end{array} \right] \text{ on } \partial B;$$

- T_0 for $\delta = 0$.
- (φ_I, ψ_I) :

$$\begin{bmatrix} \varphi_I \\ \psi_I \end{bmatrix} = \begin{bmatrix} I + T_0^{-1} (T_\delta - T_0) \end{bmatrix}^{-1} T_0^{-1} \begin{bmatrix} x^I \\ \frac{1}{\mu_m} \frac{\partial x^I}{\partial \nu} \end{bmatrix}.$$

• Expand $T_{\delta} - T_0$ in a power series of $\delta \Rightarrow (\widehat{\varphi}_l, \widehat{\psi}_l)$ leading-order term in the expansion of (φ_l, ψ_l) :

$$\begin{cases} \mathcal{S}_{B}^{0}[\widehat{\varphi}_{l}] - \mathcal{S}_{B}^{0}[\widehat{\psi}_{l}] = x' \\ \frac{1}{\mu_{c}} \frac{\partial (\mathcal{S}_{B}^{0}[\widehat{\varphi}_{l}])}{\partial \nu} \Big|_{-} - \frac{1}{\mu_{m}} \frac{\partial (\mathcal{S}_{B}^{0}[\widehat{\psi}_{l}])}{\partial \nu} \Big|_{+} = \frac{1}{\mu_{m}} \frac{\partial x'}{\partial \nu} & \text{on } \partial B. \end{cases}$$

- Take n=1: find the leading-order term in the asymptotic expansion of $u-u^{\rm in}$ as $\delta \to 0$.
- Dependence of $\widetilde{W}_{ll'}$ on δ for $|I| \leq 1$ and $|I'| \leq 1$.

|I| ≤ 1:

$$\mathcal{S}_B^0[\widehat{\varphi}_I] - \mathcal{S}_B^0[\widehat{\psi}_I] = x^I \text{ in } B.$$

• **⇒**

$$\left.\frac{\partial (\mathcal{S}_B^0[\widehat{\varphi}_l])}{\partial \nu}\right|_- - \frac{\partial (\mathcal{S}_B^0[\widehat{\psi}_l])}{\partial \nu}\right|_- = \frac{\partial x^l}{\partial \nu} \quad \text{on } \partial B\,.$$

• =

$$\left. \frac{\mu_{\rm c}}{\mu_{\rm m}} \frac{\partial (\mathcal{S}_{\rm B}^0[\widehat{\psi}_{\rm I}])}{\partial \nu} \right|_+ - \left. \frac{\partial (\mathcal{S}_{\rm B}^0[\widehat{\psi}_{\rm I}])}{\partial \nu} \right|_- = \left(1 - \frac{\mu_{\rm c}}{\mu_{\rm m}}\right) \frac{\partial {\bf x}^{\rm I}}{\partial \nu} \,. \label{eq:mu_constraint}$$

• $(K_B^0)^*$: Neumann–Poincaré operator,

$$\frac{\mu_c}{\mu_m} \left(\frac{1}{2} I + (\mathcal{K}_B^0)^* \right) [\widehat{\psi}_I] - \left(-\frac{1}{2} I + (\mathcal{K}_B^0)^* \right) [\widehat{\psi}_I] = \left(1 - \frac{\mu_c}{\mu_m} \right) \frac{\partial x^I}{\partial \nu}.$$

• =

$$\widehat{\psi}_I = (\lambda I - (\mathcal{K}_B^0)^*)^{-1} \left(\frac{\partial x^I}{\partial \nu} \Big|_{\partial B} \right);$$

• Permeability contrast:

$$\lambda:=rac{rac{\mu_m}{\mu_c}+1}{2(rac{\mu_m}{\mu_c}-1)}$$
 .

- |I| = 0: $\widehat{\psi}_I = 0$ and $\mathcal{S}_B^0[\widehat{\varphi}_I] = 1$.
- $\Rightarrow \psi_I = O(\delta)$ and $\mathcal{S}_B^{k_c\delta}[\varphi_I] = 1 + O(\delta)$.
- $\mathcal{S}^{k_c\delta}_B[\varphi_l]$: depends on δ analytically $+ (\Delta + k_c^2 \delta^2) \mathcal{S}^{k_c\delta}_B[\varphi_l] = 0$ in $B \Rightarrow$

$$\psi_I = O(\delta) \quad ext{and} \quad \mathcal{S}_B^{k_C\delta}[arphi_I] = 1 + O(\delta^2) \,, \quad |I| = 0 \,.$$

• |I| = |I'| = 1:

$$\widetilde{W}_{ll'} = \int_{\partial B} x^{l'} (\lambda I - (\mathcal{K}_B^0)^*)^{-1} \left(\frac{\partial y^l}{\partial \nu} \Big|_{\partial B} \right) (x) \, d\sigma(x) + O(\delta).$$

• Polarization tensor $M = (m_{pq})_{p,q=1}^3$:

$$m_{pq} := \int_{\partial B} y_q (\lambda I - (\mathcal{K}_B^0)^*)^{-1} [\nu_p](y) d\sigma(y);$$

• $\nu = (\nu_1, \ldots, \nu_3).$

•

$$\widetilde{W}_{ll'}=M+O(\delta)\;,\quad |I|=|I'|=1\,.$$

• I = 0 or I' = 0:

$$\psi_{l} = \frac{\partial(\mathcal{S}_{B}^{k_{m}\delta}[\psi_{l}])}{\partial\nu}\bigg|_{+} - \frac{\partial(\mathcal{S}_{B}^{k_{m}\delta}[\psi_{l}])}{\partial\nu}\bigg|_{-}$$

$$= \frac{\mu_{m}}{\mu_{c}} \frac{\partial(\mathcal{S}_{B}^{k_{c}\delta}[\varphi_{l}])}{\partial\nu}\bigg|_{-} - \frac{\partial x^{l}}{\partial\nu} - \frac{\partial(\mathcal{S}_{B}^{k_{m}\delta}[\psi_{l}])}{\partial\nu}\bigg|_{-}.$$

Divergence theorem ⇒

$$\begin{split} \int_{\partial B} x^{l'} \psi_{l} \, d\sigma &= -k_{c}^{2} \delta^{2} \frac{\mu_{m}}{\mu_{c}} \int_{B} x^{l'} \mathcal{S}_{B}^{k_{c} \delta} [\varphi_{l}] \, dx + k_{m}^{2} \delta^{2} \int_{B} x^{l'} \mathcal{S}_{B}^{k_{m} \delta} [\psi_{l}] \, dx \\ &+ \frac{\mu_{m}}{\mu_{c}} \int_{\partial B} \frac{\partial x^{l'}}{\partial \nu} \mathcal{S}_{B}^{k_{c} \delta} [\varphi_{l}] \, d\sigma - \int_{\partial B} \frac{\partial x^{l'}}{\partial \nu} \mathcal{S}_{B}^{k_{m} \delta} [\psi_{l}] \, d\sigma \, . \end{split}$$

•

$$\begin{split} \widetilde{W}_{ll'} &= -k_c^2 \delta^2 \frac{\mu_m}{\mu_c} |B| + O(\delta^3) = -\delta^2 \omega^2 \varepsilon_c \mu_m |B| + O(\delta^3) \;, \quad |I| = |I'| = 0 \;, \\ \widetilde{W}_{ll'} &= O(\delta^2) \;, \quad |I| = 1 \;, \; |I'| = 0 \;, \\ \widetilde{W}_{ll'} &= O(\delta^2) \;, \quad |I| = 0 \;, \; |I'| = 1 \;. \end{split}$$

•

$$\mathcal{S}^{k_m}_D[\psi](x) = O(\delta^d) \;, \quad \text{uniformly on } x \in \mathcal{K} \,.$$

• |I| = 2 and |I'| = 0:

$$\int_{\partial B} \psi_I \, d\sigma = - \int_B \Delta x^I \, dx + O(\delta^2) \,.$$

• |I'| = 0:

$$\sum_{|I|=2} \frac{1}{|I|I'|} \frac{1}{\partial I'} u^{\mathrm{in}}(z) \widetilde{W}_{II'} = -\Delta u^{\mathrm{in}}(z) |B| + O(\delta^2) = k_m^2 u^{\mathrm{in}}(z) |B| + O(\delta^2).$$

• Dipolar approximation: For any $x \in K$,

$$\begin{split} u(x) &= u^{\mathrm{in}}(x) \\ &+ \delta^d \bigg(\nabla u^{\mathrm{in}}(z) M \nabla_z \Gamma_{k_m}(x-z) + k_m^2 (\frac{\varepsilon_c}{\varepsilon_m} - 1) |B| u^{\mathrm{in}}(z) \Gamma_{k_m}(x-z) \bigg) \\ &+ O(\delta^{d+1}); \end{split}$$

M: polarization tensor.

- Several well-separated particles: $D := \bigcup_{s=1}^{m} (\delta B_s + z_s)$.
- There exists a positive constant C such that $|z_s z_{s'}| \ge C$ for $s \ne s'$.
- Magnetic permeability and electric permittivity of the particle $\delta B_s + z_s$: $\mu_c^{(s)}$ and $\varepsilon_c^{(s)}$, $s = 1, \ldots, m$.
- Pointwise asymptotic expansion in K:

$$u(x) = u^{\text{in}}(x)$$

$$+ \delta^{d-2} \sum_{s=1}^{m} \sum_{|I'|=0}^{n+1} \sum_{|I|=0}^{n+1-|I'|} \frac{\delta^{|I|+|I'|}}{I!I'!} \frac{\partial^{l} u^{\text{in}}(z_{s}) \partial_{z}^{I'} \Gamma_{k_{m}}(x-z_{s}) W_{ll'}^{(s)}}{(z_{s})^{d}} + O(\delta^{n+d}).$$

• $W_{ll'}^{(s)}$: scattering tensor.

- Closely spaced small particles:
 - $D:=\cup_{s=1}^m(\delta B_s+z).$
 - First-order dipolar expansion.
 - Overall polarization tensor of multiple particles $M = (m_{pq})_{p,q=1}^d$:

$$m_{pq} := \sum_{s=1}^m \int_{\partial B_s} x_p \phi_q^{(s)}(x) \, d\sigma(x).$$

• $\phi_q^{(s)}$: solution to the system of *m* equations

$$(\lambda_s I - (\mathcal{K}_{B_s}^0)^*)[\phi_q^{(s)}] - \sum_{s' \neq s} \frac{\partial \mathcal{S}_{B_{s'}}^0[\phi_q^{(s')}]}{\partial \nu^{(s)}} = \nu_q^{(s)} \quad \text{on } \partial B_s;$$

- λ_s : magnetic contrast associated to $\mu_c^{(s)}$.
- For any $x \in K$, as $\delta \to 0$,

$$u(x) = u^{\text{in}}(x)$$

$$+ \delta^{d} \left(\nabla u^{\text{in}}(z) M \nabla_{z} \Gamma_{k_{m}}(x-z) + k_{m}^{2} \left(\sum_{s=1}^{m} \left(\frac{\varepsilon_{c}^{(s)}}{\varepsilon_{m}} - 1 \right) |B_{s}| \right) u^{\text{in}}(z) \Gamma_{k_{m}}(x-z) \right)$$

$$+ O(\delta^{d+1}).$$

Lecture 7: Imaging

Habib Ammari

Department of Mathematics, ETH Zürich

- Direct Imaging of Small Particles:
 - Detect and localize small particles from multi-static measurements.
 - Multistatic imaging:
 - Record the waves generated by the particles on an array of receivers.
 - Process the recorded data in order to estimate some relevant features of the particles.
 - Small-volume asymptotic formulas.
 - Direct (non-iterative) reconstruction algorithms: MUltiple Signal Classification algorithm (MUSIC), reverse-time migration, and Kirchhoff migration.

- Resolution and stability with respect to noise in the measurements:
 - Resolution analysis: estimate the size of the finest detail that can be reconstructed
 - Stability analysis is to quantify the localization error in the presence of noise.

- Multistatic imaging:
 - $B_R := \{|x| < R\}$; D: small particle with location at $z \in B_R$ and material parameters ε_c and μ_c .
 - $x_i, i = 1, ..., N$: equi-distributed points along ∂B_R for $N \gg 1$.
 - Array of *N* elements $\{x_1, \ldots, x_N\}$: used to detect the particle.
 - $\{x_1, \ldots, x_N\}$: operating both in transmission and in reception.
 - u_j^s : scattered wave by D corresponding to the incident wave $\Gamma_{k_m}(x-x_i)$.
 - Small-volume expansion:

$$u_{j}^{s}(x) = \delta^{d} \left(\nabla_{z} \Gamma_{k_{m}}(z - \mathbf{x}_{j}) M \nabla_{z} \Gamma_{k_{m}}(x - z) + k_{m}^{2} \left(\frac{\varepsilon_{c}}{\varepsilon_{m}} - 1 \right) |B| \Gamma_{k_{m}}(z - \mathbf{x}_{j}) \Gamma_{k_{m}}(x - z) + O(\delta^{d+1});$$

• *M*: polarization tensor associated with the magnetic contrast μ_c/μ_m .

- MUSIC-type Method:
 - Multistatic response matrix: $A^{\omega} := \left(u_j^s(x_i)\right)_{i,j=1}^N$.
 - D: disk.
 - *N*-dimensional vector fields $g^{(j)}(z^S)$, for $z^S \in B_R$ and j = 1, ..., d,

$$\begin{split} g^{(j)}(z^S) &= \frac{1}{\sqrt{\sum_{i=1}^N |e_j \cdot \nabla_z \Gamma_{k_m}(z^S - x_i)|^2}} \\ &\times \left(e_j \cdot \nabla_z \Gamma_{k_m}(z^S - x_1), \dots, e_j \cdot \nabla_z \Gamma_{k_m}(z - x_N) \right)^t, \\ g^{(d+1)}(z^S) &= \frac{1}{\sqrt{\sum_{i=1}^N |\Gamma_{k_m}(z^S - x_i)|^2}} \\ &\quad \times \left(\Gamma_{k_m}(z^S - x_1), \dots, \Gamma_{k_m}(z^S - x_N) \right)^t. \end{split}$$

• t: transpose; $\{e_1, \ldots, e_d\}$: orthonormal basis of \mathbb{R}^d .

• $g(z^S)$: $N \times d$ matrix whose columns are $g^{(1)}(z^S), \dots, g^{(d)}(z^S)$.

$$\mathcal{A}^{\omega}pprox au_{\mu}g(z)\overline{g(z)}^{t}+ au_{arepsilon}g^{(d+1)}(z)\overline{g^{(d+1)}(z)}^{t}$$
 ;

•

$$\tau_{\mu} := 2|D| \frac{\mu_{m} - \mu_{c}}{\mu_{m} + \mu_{c}} \left(\sum_{i=1}^{N} |\nabla_{z} \Gamma_{k_{m}} (z - x_{i})|^{2} \right),$$

$$\tau_{\varepsilon} := |D| k_m^2 \left(\frac{\varepsilon_c}{\varepsilon_m} - 1\right) \left(\sum_{i=1}^N |\Gamma_{k_m}(z - x_i)|^2\right).$$

- P: orthogonal projection onto the range of A^{ω} .
- MUSIC algorithm functional:

$$\mathcal{I}_{\mathrm{MU}}(z^{S},\omega) := \Big(\sum_{i=1}^{d+1} \|(I-P)[g^{(j)}](z^{S})\|^{2}\Big)^{-1/2}.$$

ullet $\mathcal{I}_{\mathrm{MU}}$: large peaks only at the locations of the particles.

• Backpropagation-type imaging functional: For $z^S \in B_R$,

$$\mathcal{I}_{\mathrm{BP}}(z^{S},\omega) := \sum_{j=1}^{d+1} u_{j}^{s}(x_{j}) \overline{g^{(j)}(z^{S})} \cdot g^{(j)}(z^{S}).$$

• For sufficiently large N,

$$\frac{1}{N}\sum_{i=1}^{N}\overline{\Gamma_{k_m}}(x_j-z^S)\Gamma_{k_m}(x_j-z^S)\sim\Im\Gamma_{k_m}(z-z^S),$$

$$\frac{1}{N}\sum_{j=1}^{N}\nabla_{z}\overline{\Gamma_{k_{m}}}(x_{j}-z^{S})\cdot\nabla_{z}\Gamma_{k_{m}}(x_{j}-z^{S})^{t}\sim\Im\Gamma_{k_{m}}(z-z^{S})\frac{z-z^{S}}{|z-z^{S}|}(\frac{z-z^{S}}{|z-z^{S}|})^{t}.$$

•

$$\mathcal{I}_{\mathrm{BP}}(z^{\mathcal{S}},\omega) \sim \left\{ egin{array}{ll} \mathrm{sinc}(k_m|z-z^{\mathcal{S}}|) & \mathrm{for} \ d=3\,, \ \\ J_0(k_m|z-z^{\mathcal{S}}|) & \mathrm{for} \ d=2. \end{array}
ight.$$

• Resolution: of the order of half the wavelength $2\pi/k_m$.

- \mathcal{I}_{BP} : uses only the diagonal terms of the response matrix A^{ω} .
- Kirchhoff migration functional:

$$\mathcal{I}_{\mathrm{KM}}(z^{\mathsf{S}},\omega) = \sum_{j=1}^{d+1} \overline{g^{(j)}(z^{\mathsf{S}})} \cdot {\color{blue} {\mathsf{A}}^{\omega}} g^{(j)}(z^{\mathsf{S}}) \,.$$

• Suppose that $\mu_c = \mu_m$:

$$A^{\omega} = \tau_{\varepsilon} g^{(d+1)}(z) \overline{g^{(d+1)}(z)}^{t}.$$

• $\mathcal{I}_{\mathrm{MU}}$: nonlinear function of $\mathcal{I}_{\mathrm{KM}}$;

$$\mathcal{I}_{\mathrm{KM}}(z^{\mathcal{S}},\omega) = au_{arepsilon}igg(1 - \mathcal{I}_{\mathrm{MU}}^{-2}(z^{\mathcal{S}},\omega)igg)\,.$$

• In the presence of measurement noise (additive measurement noise with variance $k_m^2 \sigma_{\text{noise}}^2$):

$$A^{\omega} = au_{\varepsilon} g^{(d+1)}(z) \overline{g^{(d+1)}(z)}^t + \sigma_{\text{noise}} k_m W;$$

• W: complex symmetric Gaussian matrix with mean zero and variance 1.

- \bullet \mathbb{E} and Var: the mean and the variance.
- Signal-to-Noise Ratio (SNR) of \mathcal{I}_{KM} :

$$\mathrm{SNR}(\mathcal{I}_{\mathrm{KM}}) = \frac{\mathbb{E}[\mathcal{I}_{\mathrm{KM}}(z,\omega)]}{\mathrm{Var}(\mathcal{I}_{\mathrm{KM}}(z,\omega))^{1/2}}$$
.

•

$$\mathrm{SNR}(\mathcal{I}_{\mathrm{KM}}) = rac{ au_{arepsilon}}{k_m \sigma_{\mathrm{noise}}} \,.$$

 \bullet For the MUSIC algorithm, the peak of $\mathcal{I}_{\mathrm{MU}}$ is affected by measurement noise:

- Joint sparse recovery.
- Lippmann-Schwinger representation of u_i^s :

$$u_j^s(x) = \int_D \left(\left(\frac{1}{\mu_c} - \frac{1}{\mu_m} \right) \nabla_y \Gamma_{k_m}(x - y) \cdot \nabla_z u_j^s(y) + k_m^2 \left(\frac{\varepsilon_c}{\varepsilon_m} - 1 \right) \Gamma_{k_m}(x - y) u_j^s(y) \right) dy,$$

• Approximate ∇u_j^s and u_j^s in the search domain Ω^s by either piecewise constant functions or splines:

$$\nabla u_{j}^{s}(y) = \begin{bmatrix} \sum_{l=1}^{L} \alpha_{l,j}^{(1)} \phi^{(1)}(y, y_{l}) \\ \vdots \\ \sum_{l=1}^{L} \alpha_{l,j}^{(d)} \phi^{(d)}(y, y_{l}) \end{bmatrix},$$

and

$$u_j^s(y) = \sum_{l=1}^L \alpha_{l,j}^{(d+1)} \phi^{(d+1)}(y, y_l).$$

• $\{y_l\}_{l=1}^L$, for some $L \in \mathbb{N}$, finite sampling points of Ω^S and $\phi^{(n)}(y,y_l)$: basis function of the *n*th coordinate with $n \in \{1,\ldots,d+1\}$.

• Data matrix:

$$\mathcal{A}^\omega = [S^{(1)},\ldots,S^{(d+1)}] egin{bmatrix} (lpha_{l,j}^{(1)})_{l,j} \ dots \ (lpha_{l,j}^{(d+1)})_{l,j} \end{bmatrix}.$$

• Sensing matrix $S = [S^{(1)}, \dots, S^{(d+1)}]$:

$$(S^{(n)})_{i,l} = (\frac{1}{\mu_c} - \frac{1}{\mu_m}) \int_{\Omega^S} (\nabla_y \Gamma_{k_m}(x_i - y) \cdot e_n) \phi^{(n)}(y, y_l) dy$$

for $n = 1, \ldots, d$, and

$$(S^{(d+1)})_{i,l} = k_m^2 \left(\frac{\varepsilon_c}{\varepsilon_m} - 1\right) \int_{\Omega^S} \Gamma_{k_m}(x_i - y) \phi^{(d+1)}(y, y_l) dy.$$

$$\bullet X = \begin{bmatrix} (\alpha_{l,j}^{(1)})_{l,j} \\ \vdots \\ (\alpha_{l,j}^{(d+1)})_{l,j} \end{bmatrix}.$$

- Pairwise joint sparsity: $(\alpha_{l,j}^{(1)}), \ldots, (\alpha_{l,j}^{(d+1)})$ are nonzero at the rows corresponding to the particle's location.
- Joint sparse recovery problem:

$$\min_{X} \|X\|_0$$
 subject to $\|A^{\omega} - SX\|_F^2 \le \eta$.

• $||X||_0$: number of rows that have nonzero elements in the matrix X; η : small regularization parameter; $|| ||_F$: Frobenius norm.

- Super-resolution imaging
- Inverse source problems:

$$\left\{ \begin{array}{l} \Delta u + k^2 n(x) u = f, \\ \\ u \text{ satisfies the Sommerfeld radiation condition.} \end{array} \right.$$

- n(x): refractive index; n-1: compactly supported in a bounded domain $D \in \mathbb{R}^d$ for d=2,3; assumed to be known.
- Image from the scattered field u in the far-field f in L²(D) or finite number of point sources supported in D.
- Outgoing fundamental solution $\Phi_k(x, y)$:

$$\left\{ \begin{array}{l} \Delta_x \Phi_k(x,y) + k^2 n(x) \Phi_k(x,y) = \delta_y(x), \\ \Phi_k \text{ satisfies the Sommerfeld radiation condition.} \end{array} \right.$$

• Integral representation:

$$u(x) = K_D[f](x) := \int_D \Phi_k(x, y) f(y) dy.$$

- Inverse source problem of reconstructing f from u at a fixed frequency: ill-posed for general sources.
- Methods of reconstructing f from u:
 - Time reversal based method;
 - Minimum L²-norm solution;
 - Minimum L¹-norm solution.

Time reversal based method:

$$\mathcal{I}_{\mathrm{TR}}(x) := \int_{\partial B_R} \overline{\Phi_k(x,z)} u(z) \, ds(z) = K_D^* K_D[f](x),$$

- $K_D^*: L^2(\partial B_R) \mapsto L^2(D)$: adjoint of $K_D: L^2(D) \mapsto L^2(\partial B_R)$.
- K_D^{*}: time-reversing the observed field.
- Helmholtz-Kirchhoff identity ⇒ resolution:

$$\mathcal{I}_{\mathrm{TR}}(x) \approx -\frac{1}{k} \int_{D} \Im \Phi_{k}(x, y) f(y) \, dy.$$

• f: point source \Rightarrow resolution limited by $\Im \Phi_k(x, y)$.

- Minimum L²-norm solution:
- $f \in L^2(D)$,

$$\min \|g\|_{L^2(D)}$$
 subject to $K_D[g] = u$.

• Relaxation in the presence of noise:

$$\min \|g\|_{L^{2}(D)}$$
 subject to $\|K_{D}[g] - u\|_{L^{2}(\Gamma)}^{2} < \delta;$

- $\delta > 0$: given small regularization parameter.
- Singular value decomposition $K_D: L^2(D) \to L^2(\Gamma)$:

$$K_D = \sum_{l>0} \sigma_l P_l;$$

- σ_I : Ith singular value and P_I is the associated projection.
- III-posedness of the inverse source problem ← fast decay of the singular values to zero.

Minimum L²-norm solution:

$$I(x) = \sum_{l>0} \frac{P_l^* P_l}{\sigma_l^2} K_D^* K_D[f](x).$$

• Regularized solution:

$$I_{\alpha}(x) = \sum_{l \geq 0} \frac{P_l^* P_l}{\sigma_l^2 + \alpha} K_D^* K_D[f](x),$$

• α : function of δ ; chosen by Morozov's discrepancy principle.

- Minimum L¹-norm solution:
- *f*: superposition of separate point sources.
- Minimization problem:

$$\min \|g\|_{L^1(D)}$$
 subject to $K_D^*K_D[g] = K_D^*[u]$.

• Relaxed minimization problem:

$$\min \|g\|_{L^1(D)} \ \ \text{subject to} \ \ \|K_D^*K_D[g] - K_D^*[u]\|_{L^2(\Gamma)}^2 < \delta.$$

- Case of homogeneous medium
- $n \equiv 1$; d = 3:

$$\Phi_k(x,y) = \Gamma_k(x-y) = -\frac{e^{ik|x-y|}}{4\pi|x-y|}.$$

• Far-field: k|y| = O(1) and $k|x| \gg 1 \Rightarrow |x-y| \approx |x| - \hat{x} \cdot y$, $\hat{x} = \frac{x}{|x|} \Rightarrow 0$

$$u(x) = -\int_{D} \frac{e^{ik|x-y|}}{4\pi|x-y|} f(y) \, dy \approx -\frac{e^{ik|x|}}{4\pi|x|} \hat{f}(k\hat{x});$$

- \hat{f} : Fourier transform of f.
- Measurements on ∂B_R :

$$u(x) = -\frac{e^{ikR}}{4\pi R}\hat{f}(k\hat{x}).$$

Time-reversal method ⇒

$$\mathcal{I}_{\mathrm{TR}}(z) \approx \frac{1}{16\pi^2 R^2} \int_{\partial B_R} \int_D e^{ik\hat{x}\cdot(y-z)} f(y) \, dy \, ds(x) = \frac{1}{4\pi} \int_D f(y) \frac{\sin k|z-y|}{k|z-y|} \, dy.$$

- Green function in high-contrast media.
- k = 1; Helmholtz equation with a delta source term:

$$\Delta_x \Phi(x, x_0) + \Phi(x, x_0) + \tau n(x) \chi(D)(x) \Phi(x, x_0) = \delta(x - x_0) \quad \text{in } \mathbb{R}^d,$$

- χ(D): characteristic function of D; n(x) ∈ C¹(D̄): positive function of order one and τ ≫ 1: contrast.
- $\Phi_0(x, x_0)$: free-space Green's function $\Gamma_1(x x_0)$.
- Write $\Phi = \nu + \Phi_0$,

$$\Delta v + v = -\tau n(x)\chi(D)(v + \Phi_0).$$

• ⇒

$$v(x,x_0) = -\tau \int_D n(y) \Phi_0(x,y) \bigg(v(y,x_0) + \Phi_0(y,x_0) \bigg) dy.$$

Define

$$K_D[f](x) := -\int_D n(y)\Phi_0(x,y)f(y)\,dy.$$

• $v = v(x) = v(x, x_0)$ satisfies the integral equation:

$$(I - \tau K_D)[v] = \tau K_D[\Phi(\cdot, x_0)];$$

• ⇒

$$v(x) = (\frac{1}{\tau} - K_D)^{-1} K_D[\Phi(\cdot, x_0)].$$

- Properties of the integral operator K_D :
 - K_D : compact from $L^2(D)$ to $L^2(D) \Leftarrow K_D$: bounded from $L^2(D)$ to $H^2(D)$.
 - *K_D*: Hilbert-Schmidt operator.

- Spectrum $\sigma(K_D)$ of K_D :
 - $\sigma(K_D) = \{0, \lambda_1, \lambda_2, \dots, \lambda_n, \dots\};$
 - $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots$ and $\lambda_n \to 0$;
 - $\{0\} = \sigma(K_D) \setminus \sigma_p(K_D)$; $\sigma_p(K_D)$: point spectrum of K_D .
- $\lambda \in \sigma(K_D)$ iff there is a non-trivial solution in $H^2_{loc}(\mathbb{R}^d)$ to

$$\left\{ \begin{array}{ll} (\Delta+1)u(x)=\frac{1}{\lambda}\textit{n}(x)u(x) & \text{in } D, \\ (\Delta+1)u=0 & \text{in } \mathbb{R}^d\backslash D, \\ u \text{ satisfies the Sommerfeld radiation condition.} \end{array} \right.$$

• \mathcal{H}_j : generalized eigenspace of the operator K_D for the eigenvalue λ_j ,

$$L^2(D) = \overline{\bigcup_{j=1}^{\infty} \mathcal{H}_j}.$$

 For |λ| < 1: resonant modes have sub-wavelength structures in D and can propagate into the far-field ⇒ super-resolution.

- Jordan theory applied to $K_D|_{\mathcal{H}_j}:\mathcal{H}_j\to\mathcal{H}_j$ on the finite dimensional space $\mathcal{H}_i\Rightarrow$
 - There exists a basis $\{u_{j,l,k}\}$, $1 \le l \le m_j, 1 \le k \le n_{j,l}$ for \mathcal{H}_j s.t.

$$K_D(u_{j,1,1},\ldots,u_{j,m_j,n_{j,m_j}})=(u_{j,1,1},\ldots,u_{j,m_j,n_{j,m_j}})\begin{pmatrix} J_{j,1} & & & \\ & \ddots & & \\ & & J_{j,m_j} \end{pmatrix};$$

• $J_{j,l}$: canonical Jordan matrix of size $n_{j,l}$

- $\Gamma = \{(j, l, k) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}; 1 \le l \le m_j, 1 \le k \le n_{j,l}\}$: set of indices for the basis functions.
- Gram-Schmidt orthonormalization:
 - There exists an orthonormal basis $\{e_{\gamma}: \gamma \in \Gamma\}$ for $L^2(D)$ s.t.

$$e_{\gamma} = \sum_{\gamma' \preceq \gamma} a_{\gamma,\gamma'} u_{\gamma'};$$

- $a_{\gamma,\gamma'}$: constants;
- $a_{\gamma,\gamma} \neq 0$.

- $A = \{a_{\gamma,\gamma'}\}_{\gamma,\gamma' \in \Gamma}$: viewed as a matrix.
- A: upper-triangular and has non-zero diagonal elements.
- $B = \{b_{\gamma,\gamma'}\}_{\gamma,\gamma' \in \Gamma}$ inverse of A: upper-triangular and has non-zero diagonal elements.

$$u_{\gamma} = \sum_{\gamma' \preceq \gamma} b_{\gamma,\gamma'} e_{\gamma'}.$$

- $\{e_{\gamma}(x)\overline{e_{\gamma'}(y)}\}\$ form a normal basis for the Hilbert space $L^2(D\times D)$.
- Completeness relation:

$$\delta_y(x) = \sum_{\gamma} e_{\gamma}(x) \overline{e_{\gamma}(y)}.$$

• $\Phi(x, x_0) \in L^2(D \times D)$ for fixed $\tau \Rightarrow$

$$\Phi(x,x_0) = \sum_{\gamma,\gamma'} \alpha_{\gamma,\gamma'} e_{\gamma}(x) \overline{e_{\gamma'}}(x_0),$$

for some constants $\alpha_{\gamma,\gamma'}$:

$$\sum_{\gamma,\gamma'} |\alpha_{\gamma,\gamma'}|^2 = \|\Phi(x,x_0)\|_{L^2(D\times D)}^2 < \infty.$$

Analyze the Green function Φ ← find the constants α_{γ,γ'}.

•

$$\Phi_0(x, x_0) = \frac{1}{n(x_0)} K_D[\delta(\cdot - x_0)].$$

•

$$\begin{array}{lcl} \Phi(\mathbf{x}, \mathbf{x}_0) & = & \Phi_0(\mathbf{x}, \mathbf{x}_0) + (\frac{1}{\tau} - K_D)^{-1} K_D^2 [\delta(\cdot - \mathbf{x}_0)] \\ & = & \Phi_0(\mathbf{x}, \mathbf{x}_0) + \frac{1}{n(\mathbf{x}_0)} \sum_{\gamma} \overline{e_{\gamma}} (\mathbf{x}_0) (\frac{1}{\tau} - K_D)^{-1} K_D^2 [e_{\gamma}]. \end{array}$$

• Compute $(\frac{1}{\tau} - K_D)^{-1} K_D^2 [e_{\gamma}]$.

• For $z \notin \sigma(K_D)$ $(z = 1/\mu)$,

$$(z-K_D)^{-1}[u_{j,l,k}] = \frac{1}{z-\lambda_j}u_{j,l,k} + \frac{1}{(z-\lambda_j)^2}u_{j,l,k-1} + \ldots + \frac{1}{(z-\lambda_j)^k}u_{j,l,1}.$$

 $(z-\mathcal{K}_D)^{-1}\mathcal{K}_D^2[u_{j,l,k}] = \sum_{\gamma'} \frac{\mathsf{d}_{\gamma,\gamma'} u_{\gamma'}}{\mathsf{d}_{\gamma,\gamma'} u_{\gamma'}}.$

• Expansion of $\Phi(x, x_0)$ in the orthonormal basis $\{e_{\gamma}\}_{{\gamma} \in \Gamma}$:

$$\Phi(x,x_0) = \Phi_0(x,x_0) + \sum_{\gamma \in \Gamma} \sum_{\gamma''' \in \Gamma} \alpha_{\gamma,\gamma'''} \overline{e_{\gamma}}(x_0) e_{\gamma'''}(x);$$

•

$$\alpha_{\gamma,\gamma'''} = \frac{1}{\mathit{n}(\mathsf{x}_0)} \sum_{\gamma' \prec \gamma} \sum_{\gamma'' \prec \gamma'} \mathit{a}_{\gamma,\gamma'} \frac{\mathsf{d}_{\gamma',\gamma''}}{\mathsf{d}_{\gamma'',\gamma''}} \mathit{b}_{\gamma'',\gamma'''} \,.$$

• For $\tau^{-1} \in I \subseteq \mathbb{R} \setminus (\mathbb{R} \cap \sigma(K_D))$, uniform bound:

$$\sum_{\gamma,\gamma'} |\alpha_{\gamma,\gamma'}|^2 < \infty.$$

• Expansion of $\Phi(x, x_0)$ in the basis of resonant modes $\{u_\gamma\}_{\gamma \in \Gamma}$:

$$\Phi(x,x_0) = \Phi_0(x,x_0) + \sum_{\gamma'' \in \Gamma} \sum_{\gamma''' \preceq \gamma''} \sum_{\gamma \preceq \gamma''} \beta_{\gamma'',\gamma,\gamma'''} u_{\gamma}(x) \overline{u_{\gamma'''}}(x_0);$$

•

$$\beta_{\gamma'',\gamma,\gamma'''} = \frac{1}{n(x_0)} \sum_{\gamma' \preceq \gamma''} \overline{a}_{\gamma'',\gamma''} a_{\gamma'',\gamma'} \frac{\mathsf{d}_{\gamma',\gamma}}{\mathsf{d}_{\gamma',\gamma}}.$$

• In $L^2(D \times D)$:

$$\lim_{\gamma_0 \to \infty} \sum_{\gamma'' \leq \gamma_0} \sum_{\gamma' \leq \gamma''} \sum_{\gamma''' \leq \gamma''} \beta_{\gamma'',\gamma,\gamma'''} u_{\gamma}(x) \overline{u_{\gamma'''}}(x_0) = \Phi(x,x_0) - \Phi_0(x,x_0).$$

• Expansion of $\Phi_0(x, x_0)$ in the orthonormal basis $\{e_\gamma\}_{\gamma \in \Gamma}$:

$$\Phi_0(x,x_0) = \sum_{\gamma \in \Gamma} \sum_{\gamma''' \in \Gamma} \tilde{\alpha}_{\gamma,\gamma'''} \overline{e_{\gamma}}(x_0) e_{\gamma'''}(x),$$

•

$$\tilde{\alpha}_{\gamma,\gamma'''} = \frac{1}{n(x_0)} \sum_{\gamma' \preceq \gamma} \sum_{\gamma'' \prec \gamma'} a_{\gamma,\gamma'} h_{\gamma',\gamma''} b_{\gamma'',\gamma'''}.$$

• Uniform bound:

$$\sum_{\gamma,\gamma'} |\tilde{\alpha}_{\gamma,\gamma'}|^2 < C < \infty.$$

• Expansions of $\Phi_0(x,x_0)$ in the basis of resonant modes $\{u_\gamma\}_{\gamma\in\Gamma}$:

$$\Phi_0(x,x_0) = \sum_{\gamma'' \in \Gamma} \sum_{\gamma''' \prec \gamma''} \sum_{\gamma \prec \gamma''} \tilde{\beta}_{\gamma'',\gamma,\gamma'''} \, u_{\gamma}(x) \overline{u_{\gamma'''}}(x_0);$$

•

$$\widetilde{\beta}_{\gamma'',\gamma,\gamma'''} = \frac{1}{n(x_0)} \sum_{\gamma' \prec \gamma''} \overline{a}_{\gamma'',\gamma'''} a_{\gamma'',\gamma'} \frac{h_{\gamma',\gamma}}{h_{\gamma',\gamma}}.$$

- Resonance expansions of the Green functions in high-contrast media and in the free space ⇒ explanation for the super-resolution phenomenon.
- Difference between the coefficients $\beta_{\gamma'',\gamma,\gamma'''}$ and $\tilde{\beta}_{\gamma'',\gamma,\gamma'''}$: quantities $d_{\gamma,\gamma'}$ and $h_{\gamma,\gamma'}$ ($a_{\gamma'',\gamma'}$ are constants).
- If \mathcal{H}_i are of dimension one:

$$d_{\gamma,\gamma'} = \delta_{\gamma,\gamma'} \frac{\lambda_j^2}{z - \lambda_j}, \quad h_{\gamma,\gamma'} = \delta_{\gamma,\gamma'} \lambda_j,$$

• ⇒

$$d_{\gamma,\gamma'}=rac{1}{rac{1}{\mu\lambda_i}-1}h_{\gamma,\gamma'}.$$

• \Rightarrow Contribution to the Green function Φ of the sub-wavelength resonant mode u_{γ} is amplified when $1/\tau$: close to λ_{j} .

- Imaginary part of Φ: sharper peak than that of Φ₀ due to the excited sub-wavelength resonant modes.
- When the high contrast is properly chosen, one or several of these sub-wavelength resonance modes can be excited, and they dominate over the other ones in the expansion of the Green function Φ.
- It is those sub-wavelength modes that essentially determine the behavior of Φ and hence the associated resolution in the medium.
- Super-resolution occurs in this case.

Lecture 8: Maxwell's equations

Habib Ammari

Department of Mathematics, ETH Zürich

- Layer potential formulation for electromagnetic scattering.
- Helmholtz-Kirchhoff theorem.
- Optical theorem.
- Scattering by small particles.

- D: bounded, simply connected, and of class $C^{1,\eta}$ for $\eta > 0$;
- Scattering problem of a time-harmonic electromagnetic wave incident on D.
- D: electric permittivity ε_c and magnetic permeability μ_c ;
- Homogeneous medium: electric permittivity ε_m and magnetic permeability μ_m ;

•

$$k_m = \omega \sqrt{\varepsilon_m \mu_m}, \quad k_c = \omega \sqrt{\varepsilon_c \mu_c},$$

and

$$\varepsilon_D = \varepsilon_m \chi(\mathbb{R}^3 \setminus \overline{D}) + \varepsilon_c \chi(D), \quad \mu_D = \varepsilon_m \chi(\mathbb{R}^3 \setminus \overline{D}) + \varepsilon_c \chi(D).$$

 Given incident plane wave (Eⁱⁿ, Hⁱⁿ), solution to the Maxwell equations in free space

$$\left\{ \begin{array}{lll} \nabla \times {\it E}^{\rm in} & = & i\omega \mu_m {\it H}^{\rm in} & {\rm in} \ \mathbb{R}^3, \\ \nabla \times {\it H}^{\rm in} & = & -i\omega \varepsilon_m {\it E}^{\rm in} & {\rm in} \ \mathbb{R}^3. \end{array} \right.$$

Scattering problem:

$$\begin{cases} \nabla \times E &= i\omega \mu_D H \text{ in } \mathbb{R}^3 \setminus \partial D, \\ \nabla \times H &= -i\omega \varepsilon_D E \text{ in } \mathbb{R}^3 \setminus \partial D, \\ \nu \times E|_+ - \nu \times E|_- &= \nu \times H|_+ - \nu \times H|_- = 0 \text{ on } \partial D; \end{cases}$$

Silver-Müller radiation condition:

$$\lim_{|x|\to\infty}|x|\bigg(\sqrt{\mu_m}(H-H^{\rm in})(x)\times\frac{x}{|x|}-\sqrt{\varepsilon_m}(E-E^{\rm in})(x)\bigg)=0$$

uniformly in x/|x|.

• Dyadic Green (matrix valued) function for the full Maxwell equations:

$$\mathbf{G}_{k_m}(x) = \varepsilon_m \left(\Gamma_{k_m}(x) I + \frac{1}{k_m^2} D_x^2 \Gamma_{k_m}(x) \right)$$

• G_{k_m} satisfies

$$\nabla \times \nabla \times \mathbf{G}_{k_m} - k_m^2 \mathbf{G}_{k_m} = \delta_0 \mathbf{I}.$$

• G_{k_m} satisfies the Silver-Müller radiation condition.

• Functional spaces: For $s = \pm 1/2$,

$$H_T^s(\partial D) = \left\{ \varphi \in \left(H^s(\partial D) \right)^3, \nu \cdot \varphi = 0 \right\}.$$

- Surface differential operators:
 - Surface gradient, surface divergence and Laplace-Beltrami operator: $\nabla_{\partial D}$, $\nabla_{\partial D}$ and $\Delta_{\partial D}$.
 - Vectorial surface curl: For $\varphi \in H^{\frac{1}{2}}(\partial D)$,

$$\vec{\operatorname{curl}}_{\partial D}\varphi = -\nu \times \nabla_{\partial D}\varphi.$$

• Scalar surface curl: For $\varphi \in H^{\frac{1}{2}}_{\overline{Z}}(\partial D)$,

$$\operatorname{curl}_{\partial D} \varphi = -\nabla_{\partial D} \cdot (\nu \times \varphi).$$

- $\Delta_{\partial D}: H_0^{\frac{3}{2}}(\partial D) \to H_0^{-\frac{1}{2}}(\partial D)$: invertible.
- $H_0^{\frac{3}{2}}(\partial D)$ and $H_0^{-\frac{1}{2}}(\partial D)$: zero mean subspaces of $H^{\frac{3}{2}}(\partial D)$ and $H^{-\frac{1}{2}}(\partial D)$.
- Vector identities:

$$\begin{array}{rcl} \nabla_{\partial D} \cdot \nabla_{\partial D} & = & \Delta_{\partial D}, \\ \operatorname{curl}_{\partial D} \operatorname{curl}_{\partial D} & = & -\Delta_{\partial D}, \\ \operatorname{curl}_{\partial D} \operatorname{curl}_{\partial D} & = & -\Delta_{\partial D} + \nabla_{\partial D} \nabla_{\partial D} \cdot , \\ \nabla_{\partial D} \cdot \operatorname{curl}_{\partial D} & = & 0, \\ \operatorname{curl}_{\partial D} \nabla_{\partial D} & = & 0. \end{array}$$

• Functional space:

$$H_{T}^{-\frac{1}{2}}(\operatorname{div},\partial D) \quad = \quad \left\{ \varphi \in H_{T}^{-\frac{1}{2}}(\partial D), \nabla_{\partial D} \cdot \varphi \in H^{-\frac{1}{2}}(\partial D) \right\}.$$

Trace theorems:

•
$$u \in H(\operatorname{div}, D) := \{ u \in L^2(D) : \nabla \cdot u \in L^2(D) \}$$

$$u \cdot \nu \in H^{-\frac{1}{2}}(\partial D).$$

•
$$u \in H(\operatorname{curl}, D) := \{ u \in L^2(D) : \nabla \times u \in L^2(D) \}$$

$$u \times \nu \in H_T^{-\frac{1}{2}}(\partial D).$$

• ν : outward normal to ∂D .

- $H_0(\operatorname{div}, D) := \{ u \in H(\operatorname{div}, D) : u \cdot v = 0 \text{ on } \partial D \}.$
- $H_0(\operatorname{curl}, D) := \{ u \in H(\operatorname{curl}, D) : u \times v = 0 \text{ on } \partial D \}.$
- $H_0^1(D) := \{ u \in H^1(D) : u = 0 \text{ on } \partial D \}.$
- Characterization of $H_0^1(D)$:

$$H_0^1(D) = H_0(\operatorname{div}, D) \cap H_0(\operatorname{curl}, D).$$

Characterization of H¹(D):

$$H^1(D) = H(\operatorname{div}, D) \cap H(\operatorname{curl}, D) \cap \{u \cdot v \in H^{\frac{1}{2}}(\partial D) \text{ or } u \times v \in H^{\frac{1}{2}}(\partial D)\}.$$

• Helmholtz decomposition:

$$H_T^{-\frac{1}{2}}(\mathsf{div},\partial D) = \nabla_{\partial D} H_0^{\frac{3}{2}}(\partial D) \oplus \vec{\mathrm{curl}}_{\partial D} H^{\frac{1}{2}}(\partial D).$$

• For $u \in H_T^{-\frac{1}{2}}(\text{div}, \partial D)$: $u^{(1)}$ and $u^{(2)}$ two functions in $H_0^{\frac{3}{2}}(\partial D)$ and $H^{\frac{1}{2}}(\partial D)$ s.t.

$$u = \nabla_{\partial D} u^{(1)} + \vec{\operatorname{curl}}_{\partial D} u^{(2)}.$$

• $u^{(1)}$: uniquely defined and $u^{(2)}$: defined up to a constant function.

Boundary integral operators:

•

$$\begin{split} \vec{\mathcal{S}}_D^k[\varphi] : H_T^{-\frac{1}{2}}(\partial D) &\longrightarrow & H_T^{\frac{1}{2}}(\partial D) \text{ or } H_{\mathrm{loc}}^1(\mathbb{R}^3)^3 \\ \varphi &\longmapsto & \vec{\mathcal{S}}_D^k[\varphi](x) = \int_{\partial D} \Gamma_k(x-y)\varphi(y)d\sigma(y); \end{split}$$

•

$$\mathcal{M}_{D}^{k}[\varphi]: H_{T}^{-\frac{1}{2}}(\operatorname{div}, \partial D) \longrightarrow H_{T}^{-\frac{1}{2}}(\operatorname{div}, \partial D)$$

$$\varphi \longmapsto \mathcal{M}_{D}^{k}[\varphi](x) = \int_{\partial D} \nu(x) \times \nabla_{x} \times \left(\Gamma_{k}(x - y)\varphi(y)\right) d\sigma(y);$$

•

$$\mathcal{L}_{D}^{k}[\varphi]: H_{T}^{-\frac{1}{2}}(\operatorname{div}, \partial D) \longrightarrow H_{T}^{-\frac{1}{2}}(\operatorname{div}, \partial D)$$

$$\varphi \longmapsto \mathcal{L}_{D}^{k}[\varphi](x) = \nu(x) \times \left(k^{2} \vec{\mathcal{S}}_{D}^{k}[\varphi](x) + \nabla \mathcal{S}_{D}^{k}[\nabla_{\partial D} \cdot \varphi](x)\right).$$

• Jump relations for $\vec{\mathcal{S}}_D^k$: For $\varphi \in H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D)$,

$$\left(\nu \times \nabla \times \vec{\mathcal{S}}_D^k[\varphi]\right)\Big|_{\pm} = \left(\mp \frac{1}{2}I + \mathcal{M}_D^k\right)[\varphi];$$

$$\left. \left(\nu \times \nabla \times \nabla \times \vec{\mathcal{S}}_D^k[\varphi] \right) \right|_{\partial D} = \mathcal{L}_D^k[\varphi].$$

- Relation to the Neumann-Poincaré operator:
 - k = 0:
 - $\mathcal{M}_D^0: H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D) \longrightarrow H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D)$: compact;
 - For $\varphi \in H^{\frac{1}{2}}(\partial D)$,

$$\mathcal{M}_{D}^{0}[\overrightarrow{\operatorname{curl}}_{\partial D}\varphi] = \overrightarrow{\operatorname{curl}}_{\partial D}\mathcal{K}_{D}^{0}[\varphi];$$

• For $\varphi \in H^{\frac{3}{2}}(\partial D)$,

$$\mathcal{M}_{D}^{0}[\nabla_{\partial D}\varphi] = -\nabla_{\partial D}\Delta_{\partial D}^{-1}(\mathcal{K}_{D}^{0})^{*}[\Delta_{\partial D}\varphi] + \vec{\operatorname{curl}}_{\partial D}\mathcal{R}_{D}[\varphi];$$

•

$$\mathcal{R}_D = -\Delta_{\partial D}^{-1} \mathrm{curl}_{\partial D} \mathcal{M}_D^0 \nabla_{\partial D}.$$

- $\sigma(\mathcal{M}_D^0)$: spectrum of \mathcal{M}_D^0 .
- For $(\psi, \varphi) \in (H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D))^2$ and $\lambda \notin \sigma(\mathcal{M}_D^0)$,

$$\left(\lambda I - \mathcal{M}_D^0\right)[\psi] = \varphi.$$

- Helmholtz decompositions of $\psi, \varphi \in H_T^{-\frac{1}{2}}(\text{div}, \partial D)$:
 - $\psi^{(1)}$ and $\psi^{(2)}$ in $H_0^{\frac{3}{2}}(\partial D)$ and $H^{\frac{1}{2}}(\partial D)$ s.t.

$$\psi = \nabla_{\partial D} \psi^{(1)} + \vec{\operatorname{curl}}_{\partial D} \psi^{(2)}.$$

• $\varphi^{(1)}$ and $\varphi^{(2)}$ in $H_0^{\frac{3}{2}}(\partial D)$ and $H^{\frac{1}{2}}(\partial D)$ s.t.

$$\varphi = \nabla_{\partial D} \varphi^{(1)} + \vec{\operatorname{curl}}_{\partial D} \varphi^{(2)}.$$

• Assume $\lambda \neq \frac{1}{2}$,

$$\left(\lambda I - \mathcal{M}_D^0\right)[\psi] = \varphi.$$

 $\Leftrightarrow (\psi^{(1)},\psi^{(2)}) \in H_0^{\frac{3}{2}}(\partial D) \times H^{\frac{1}{2}}(\partial D):$

$$\underbrace{\left(\begin{array}{cc} \lambda I + \Delta_{\partial D}^{-1} (\mathcal{K}_D^0)^* \Delta_{\partial D} & 0 \\ \mathcal{R}_D & \lambda I - \mathcal{K}_D^0 \end{array}\right)}_{:=\widetilde{\mathcal{M}}_D} \left(\begin{array}{c} \psi^{(1)} \\ \psi^{(2)} \end{array}\right) = \left(\begin{array}{c} \varphi^{(1)} \\ \varphi^{(2)} \end{array}\right).$$

• $H(\partial D):=H_0^{\frac{3}{2}}(\partial D)\times H^{\frac{1}{2}}(\partial D)$, equipped with the inner product

$$\langle u, v \rangle_{H(\partial D)} = \langle \Delta_{\partial D} u^{(1)}, \Delta_{\partial D} v^{(1)} \rangle_{\mathcal{H}^*} + \langle u^{(2)}, v^{(2)} \rangle_{\mathcal{H}}.$$

- Equivalent to the $H_0^{\frac{3}{2}}(\partial D) \times H^{\frac{1}{2}}(\partial D)$ -norm.
- Spectrum $\sigma(\widetilde{\mathcal{M}}_D) = \sigma(-(\mathcal{K}_D^0)^*) \cup \sigma((\mathcal{K}_D^0)^*) \setminus \{-\frac{1}{2}\}$ in $H(\partial D)$.

• Integral representations:

$$E(x) = \begin{cases} E^{\text{in}}(x) + \mu_m \nabla \times \vec{\mathcal{S}}_D^{k_m}[\psi](x) + \nabla \times \nabla \times \vec{\mathcal{S}}_D^{k_m}[\phi](x), & x \in \mathbb{R}^3 \setminus \overline{D}, \\ \mu_c \nabla \times \vec{\mathcal{S}}_D^{k_c}[\psi](x) + \nabla \times \nabla \times \vec{\mathcal{S}}_D^{k_c}[\phi](x), & x \in D, \end{cases}$$

$$H(x) = -\frac{i}{\omega \mu_D} (\nabla \times E)(x), \quad x \in \mathbb{R}^3 \setminus \partial D;$$

• $(\phi, \psi) \in (H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D))^2$ satisfies

$$\left(\begin{array}{ccc} \frac{\mu_c + \mu_m}{2} I + \mu_c \mathcal{M}_D^{k_c} - \mu_m \mathcal{M}_D^{k_m} & \mathcal{L}_D^{k_c} - \mathcal{L}_D^{k_m} \\ \mathcal{L}_D^{k_c} - \mathcal{L}_D^{k_m} & \left(\frac{k_c^2}{2\mu_c} + \frac{k_m^2}{2\mu_m} \right) I + \frac{k_c^2}{\mu_c} \mathcal{M}_D^{k_c} - \frac{k_m^2}{\mu_m} \mathcal{M}_D^{k_m} \\ & = \left[\begin{array}{c} \nu \times \mathcal{E}^{\mathrm{in}} \\ i\omega\nu \times \mathcal{H}^{\mathrm{in}} \end{array} \right] \bigg|_{\partial D} .$$

- Unique solution on $H_T^{-\frac{1}{2}}(\operatorname{div},\partial D) \times H_T^{-\frac{1}{2}}(\operatorname{div},\partial D)$;
- There exists there a positive constant $C = C(\varepsilon_c, \mu_c, \omega)$ s.t.

$$\begin{split} \|\psi\|_{H_{\mathcal{T}}^{-\frac{1}{2}(\operatorname{div},\partial D)}} + \|\phi\|_{H_{\mathcal{T}}^{-\frac{1}{2}}(\operatorname{div},\partial D)} \\ & \leq C \big(\|E^{\operatorname{in}} \times \nu\|_{H_{\mathcal{T}}^{-\frac{1}{2}}(\operatorname{div},\partial D)} + \|H^{\operatorname{in}} \times \nu\|_{H_{\mathcal{T}}^{-\frac{1}{2}}(\operatorname{div},\partial D)} \big). \end{split}$$

- Low-frequency asymptotic expansions of layer potentials: \mathcal{M}_D^k and \mathcal{L}_D^k as $k \to 0$.
 - For $\varphi \in H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D)$,

$$\mathcal{M}_D^k[\varphi](x) = \mathcal{M}_D^0[\varphi](x) - \sum_{j=2}^{\infty} (ik)^j \mathcal{M}_D^j[\varphi](x);$$

•

$$\mathcal{M}_D^j[\varphi](x) = \int_{\partial D} \frac{1}{4\pi j!} \nu(x) \times \nabla_x \times |x - y|^{j-1} \varphi(y) d\sigma(y).$$

- $\|\mathcal{M}_D^j\|_{\mathcal{L}(H_{\tau}^{-\frac{1}{2}}(\text{div},\partial D))}$: uniformly bounded with respect to j.
- Convergence in $\mathcal{L}(H_T^{-\frac{1}{2}}(\text{div},\partial D))$ and \mathcal{M}_D^k : analytic in k.

• For $\varphi \in H_T^{-\frac{1}{2}}(\operatorname{div}, \partial D)$,

$$(\mathcal{L}_D^{k_c} - \mathcal{L}_D^{k_m})[\varphi](x) = \sum_{i=1}^{\infty} \omega^{j+1} \mathcal{L}_D^j[\varphi](x);$$

•

$$\mathcal{L}_{D}^{j}[\varphi](x) = C_{j}\nu(x) \times \Big(\int_{\partial D} |x - y|^{j-2}\varphi(y)d\sigma(y) - \int_{\partial D} \frac{|x - y|^{j-2}(x - y)}{j+1} \nabla_{\partial D} \cdot \varphi(y)d\sigma(y)\Big),$$

•

$$C_{j} = \frac{(i)^{j}((\sqrt{\varepsilon_{c}\mu_{c}})^{j+1} - (\sqrt{\varepsilon_{m}\mu_{m}})^{j+1})}{4\pi(j-1)!}.$$

- $\|\mathcal{L}_D^j\|_{\mathcal{L}\left(H_-^{-\frac{1}{2}}(\operatorname{div},\partial D)\right)}$: uniformly bounded with respect to j.
- Convergence in $\mathcal{L}(H_T^{-\frac{1}{2}}(\text{div},\partial D))$ and \mathcal{L}_D^k : analytic in k.

- Helmholtz-Kirchhoff theorem:
 - Dyadic outgoing Green function:

$$\mathbf{G}_{k_m}(x) = \varepsilon_m \left(\Gamma_{k_m}(x) I + \frac{1}{k_m^2} D_x^2 \Gamma_{k_m}(x) \right)$$

- ∂B_R : sphere of radius R and center 0.
- Integration by parts ⇒

$$\int_{\partial B_R} \left(\frac{\partial \overline{\mathbf{G}_{k_m}}}{\partial \nu} (x - y) \mathbf{G}_{k_m} (z - y) - \overline{\mathbf{G}_{k_m}} (x - y) \frac{\partial \mathbf{G}_{k_m}}{\partial \nu} (z - y) \right) d\sigma(y)$$

$$= 2i \Im \mathbf{G}_{k_m} (x - z);$$

Silver-Müller radiation condition ⇒

$$\lim_{R\to+\infty}\int_{\partial B_n}\overline{\mathbf{G}_{k_m}}(x-y)\mathbf{G}_{k_m}(z-y)\,d\sigma(y)=-\frac{1}{k_m}\Im\,\mathbf{G}_{k_m}(x-z)\,.$$

- Optical cross-section theorem:
 - Incident plane waves: $c \in \mathbb{R}^3$ and $d \in S$ s.t. $c \cdot d = 0$,

$$E^{\mathrm{in}}(x) = c e^{ik_m d \cdot x}, \quad H^{\mathrm{in}}(x) = \sqrt{\frac{\varepsilon_m}{\mu_m}} d \times c e^{ik_m d \cdot x}.$$

• Extinction cross-section Q^{ext}:

$$Q^{\text{ext}} := -\frac{1}{|c|^2} \sqrt{\frac{\mu_m}{\varepsilon_m}} \Re \bigg[\int_{\partial D} \big(\overline{E^i} \times (H - H^i) + (E - E^i) \times \overline{H^i} \big) \cdot \nu \, d\sigma \bigg].$$

• Scattering amplitude $A_{\infty}(c,d;\hat{x})$: $(\hat{x}=x/|x|)$

$$E(x) - E^{\mathrm{in}}(x) = \frac{e^{ik_m|x|}}{k_m|x|} A_{\infty}(c, d; \hat{x}) + o(\frac{1}{|x|}), \quad |x| \to +\infty.$$

• Optical theorem:

$$Q^{\text{ext}} = \frac{4\pi}{k_m} \Im\left[\frac{c \cdot A_{\infty}(c, d; d)}{|c|^2}\right].$$

- Electromagnetic scattering by small particles:
- $D = z + \delta B$ where B contains the origin and |B| = O(1).
- Leading-order term in the asymptotic expansion of the scattered electric field $E^s := E E^{in}$ far-away from the particle:

$$E^{s}(x) = -\frac{i\omega\mu_{m}}{\varepsilon_{m}}\nabla \times \mathbf{G}_{k_{m}}(x-z)M(\lambda_{\mu},D)H^{i}(z)$$
$$-\omega^{2}\mu_{m}\mathbf{G}_{k_{m}}(x-z)M(\lambda_{\varepsilon},D)E^{i}(z) + O(\delta^{4}).$$

- G_{k_m}(x z): Dyadic Green (matrix valued) function for the full Maxwell equations;
- $M(\lambda_{\mu}, D)$ and $M(\lambda_{\varepsilon}, D)$: polarization tensors associated with D and the contrasts λ_{μ} and λ_{ε} .

•

$$\lambda_{\mu} := \frac{\frac{\mu_m}{\mu_c} + 1}{2(\frac{\mu_m}{\mu_c} - 1)} \,, \quad \lambda_{\epsilon} := \frac{\frac{\epsilon_c}{\epsilon_m} + 1}{2(\frac{\epsilon_c}{\epsilon_m} - 1)} \,.$$

Spherical particle:

$$M(\lambda_{\mu},D) = 3 \frac{\frac{\mu_{m}}{\mu_{c}} - 1}{2 + \frac{\mu_{m}}{\mu_{c}}} I, \quad M(\lambda_{\varepsilon},D) = 3 \frac{\frac{\varepsilon_{c}}{\varepsilon_{m}} - 1}{2 + \frac{\varepsilon_{c}}{\varepsilon_{m}}} I.$$

 $\bullet \ \mu_m = \mu_c, \ E^{\mathrm{in}}(x) = \mathbf{G}_{k_m}(x - x_j)\theta_j$:

$$E^{s}(x) = 3k_{m}^{2} \frac{\varepsilon_{m} - \varepsilon_{c}}{2\varepsilon_{m} + \varepsilon_{c}} \mathbf{G}_{k_{m}}(x - x_{j}) \mathbf{G}_{k_{m}}(z - x_{j}) \theta_{j} + O(\delta^{4}).$$

- Direct electromagnetic imaging:
 - x_i , i = 1, ..., N: equi-distributed points on $\partial B_R := \{|x| = R\}$ for $N \gg 1$.
 - Array of N elements $\{x_1, \dots, x_N\}$: used to detect the spherical particle D.
 - θ₁,...,θ_N: corresponding unit directions of the incident fields/observation directions.

 ${f E}^{
m in}(x) = {f G}_{k_m}(x-x_j) heta_j, \quad x \in \mathbb{R}^3.$

Asymptotic expansion:

$$E_{j}^{s}(x) = 3k_{m}^{2} \frac{\varepsilon_{m} - \varepsilon_{c}}{2\varepsilon_{m} + \varepsilon_{c}} |D| \mathbf{G}_{k_{m}}(x - z) \mathbf{G}_{k_{m}}(z - x_{j}) \theta_{j} + O(\delta^{4}).$$

Measured data: N × N matrix

$$\mathbf{A}^\omega := \left(E^s_j(\mathsf{x}_i) \cdot heta_i
ight)_{i,j}$$
 .

• N-dimensional vector fields $g^{(j)}(z^S)$, for $z^S \in B_R$ and j = 1, 2, 3,

$$\begin{split} g^{(j)}(z^S) &= \frac{1}{\sqrt{\sum_{i=1}^N |e_j \cdot \mathbf{G}_{k_m}(z^S - x_i)\theta_i|^2}} \\ &\times \left(e_j \cdot \mathbf{G}_{k_m}(z^S - x_1)\theta_1, \dots, e_j \cdot \mathbf{G}_{k_m}(z^S - x_N)\theta_N \right)^t. \end{split}$$

 MUSIC, reverse-time migration, Kirchhoff, and joint sparse recovery algorithms: extended to the electromagnetic case.

Lecture 9: Diffraction gratings

Habib Ammari

Department of Mathematics, ETH Zürich

- Periodic structures with tiny features used as optical devices:
 - antireflective interfaces:
 - beam splitters;
 - sensors
- Small features: Light propagation governed by diffraction.
- Time-harmonic Maxwell's equations: reduced to two scalar Helmholtz equations (transverse electric and transverse magnetic modes).
- Two classes of grating structures:
 - Linear grating (one-dimensional gratings),
 - Crossed gratings (biperiodic or two-dimensional gratings).

• Time-harmonic electromagnetic fields:

$$E(x,t) = \Re E(x)e^{-i\omega t},$$

$$H(x,t) = \Re H(x)e^{-i\omega t}$$

- Operating frequency $\omega > 0$; E and H: electric and magnetic fields.
- Time-harmonic Maxwell equations:

$$\nabla \times \mathbf{E} = i\omega \mu \mathbf{H},$$

$$\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}.$$

• μ : magnetic permeability and ε : electric permittivity.

•

$$\nabla \cdot (\varepsilon E) = 0,$$

$$\nabla \cdot (\mu H) = 0.$$

- Jump conditions ($\mu = \mu_0$):
 - Tangential components of E and H: continuous crossing an interface;
 - Normal components of εE and H: continuous crossing an interface.
- Homogeneous, nonmagnetic, and isotropic medium:

$$-\Delta E + \nabla(\nabla \cdot E) = i\omega \mu_0 \nabla \times H.$$

• ⇒

$$-\Delta E + \nabla(\nabla \cdot E) = \omega^2 \varepsilon \mu_0 E$$

• Grating geometry and fundamental polarizations

- Λ , h, and θ : period, height, and incident angle.
- (e_1, e_2, e_3) : orthonormal basis of \mathbb{R}^3 .

• One-dimensional grating:

$$\varepsilon(x_1 + n\Lambda, x_2) = \varepsilon(x_1, x_2), \quad n \in \mathbb{Z}.$$

• Two-dimensional grating with period $\Lambda = (\Lambda_1, \Lambda_2)$:

$$\varepsilon(x_1 + n_1\Lambda_1, x_2 + n_2\Lambda_2, x_3) = \varepsilon(x_1, x_2, x_3), \forall n_1, n_2 \in \mathbb{Z}.$$

- Incident vector: $k_1(\sin \theta, -\cos \theta, 0)$.
- Fundamental cases of polarization: TE (transverse electric) and TM (transverse magnetic):
 - TE polarization:

$$E = u(x_1, x_2)e_3.$$

- u: scalar function.
- TM polarization:

$$H = u(x_1, x_2)e_3$$
.

- Perfectly conducting gratings
- $u = E_3(x_1, x_2)$ in TE polarization; $= H_3(x_1, x_2)$ in TM polarization.
- Grating: $x_2 = f(x_1) \Rightarrow u = 0$ in Region II $(x_2 < f(x_1))$.
- In Region I, u:

$$\Delta u + k^2 u = 0 \text{ if } x_2 > f(x_1).$$

- Boundary condition of u on $x_2 = f(x_1)$:
 - ν : outward normal to Region II,

$$\nu \times E = 0$$
 on $x_2 = f(x_1)$.

• In TE polarization: homogeneous Dirichlet boundary condition,

$$u(x_1, f(x_1)) = 0.$$

In TM polarization: homogeneous Neumann boundary condition.

$$\left. \frac{\partial u}{\partial \nu} \right|_{x_2 = f(x_1)} = 0$$

• Incident field: $u^{\text{in}} = e^{i(\alpha x_1 - \beta x_2)}$; scattered field: $u^s = u - u^{\text{in}}$.

•

$$\begin{cases} \alpha = k_1 \sin \theta, \\ \beta = k_1 \cos \theta. \end{cases}$$

•

$$\Delta u^s + k_1^2 u^s = 0 \text{ for } x_2 > f(x_1).$$

- Boundary conditions:
 - TE polarization: $u^s = -u^{in}$ on $x_2 = f(x_1)$.
 - TM polarization: $\frac{\partial u^s}{\partial \nu} = -\frac{\partial u^{\text{in}}}{\partial \nu}$ on $x_2 = f(x_1)$.

- Radiation condition:
 - Assume u^s: bounded when x₂ → +∞ and consisted of outgoing plane waves.
- Quasi-periodic solutions.
- $u^s(x_1, x_2)e^{-i\alpha x_1}$: periodic function of period Λ with respect to x_1 for every x_2 :

$$u^s(x_1+\Lambda,x_2)e^{-i\alpha\Lambda}=u^s(x_1,x_2).$$

- Grating formula.
- Define

$$\alpha_n = \alpha + \frac{2\pi n}{\Lambda} = k_1 \sin \theta + n \frac{2\pi}{\Lambda}.$$

• Fourier series expansion:

$$u^{s}(x_{1}, x_{2}) = e^{i\alpha x_{1}} \sum_{n \in \mathbb{Z}} V_{n}(x_{2}) e^{in\frac{2\pi}{\Lambda}x_{1}}$$
$$= \sum_{n \in \mathbb{Z}} V_{n}(x_{2}) e^{i\alpha_{n}x_{1}}.$$

- Determine $V_n(x_2)$.
- $u^s(x_1, x_2)$ satisfies the Helmholtz equation in $\{x_2 > \max\{f(x_1)\}\} \Rightarrow$

$$\sum_{n \in \mathbb{Z}} \left[\frac{d^2 V_n(x_2)}{dx_2^2} + (k_1^2 - \alpha_n^2) V_n(x_2) \right] e^{in\frac{2\pi}{\hbar}x_1} = 0.$$

• =

$$\frac{d^2V_n(x_2)}{dx_2^2} + (k_1^2 - \alpha_n^2)V_n(x_2) = 0.$$

• Define

$$\beta_n = \begin{cases} \sqrt{k_1^2 - \alpha_n^2} & k_1^2 > \alpha_n^2, \\ i\sqrt{\alpha_n^2 - k_1^2} & k_1^2 \le \alpha_n^2. \end{cases}$$

•

$$V_n(x_2) = A_n e^{-i\beta_n x_2} + B_n e^{i\beta_n x_2}.$$

- Radiation condition $\Rightarrow A_n = 0$.
- Rayleigh expansion:

$$u^s(x_1, x_2) = \sum_{|\alpha_n| < k_1} B_n e^{i\alpha_n x_1 + i\beta_n x_2}$$
 outgoing waves
$$+ \sum_{|\alpha_n| \ge k_1} B_n e^{i\alpha_n x_1 + i\beta_n x_2}$$
 evanescent waves.

- U = {n, |α_n| < k₁}: propagating plane wave (or scattered wave in the nth order).
- If |n|: large $(n \notin U)$, $B_n e^{-|\beta_n|x_2} e^{i\alpha_n x_1}$: evanescent wave.
- Scattered wave in the *n*th order:

$$\psi_n(x_1, x_2) = B_n e^{i\alpha_n x_1 + i\sqrt{k_1^2 - \alpha_n^2} x_2}$$
 for $n \in U$.

• Since $|\alpha_n/k_1| < 1$, angle of diffraction θ_n :

$$\frac{\alpha_n}{k_1} = \sin \theta_n = \sin \theta + \frac{2\pi n}{k_1 \Lambda}, \quad -\frac{\pi}{2} < \theta_n < \frac{\pi}{2}.$$

Scattered wave in the nth order:

$$\psi_n(x_1,x_2) = B_n e^{ik_1(x_1 \sin \theta_n + x_2 \cos \theta_n)}.$$

• Grating formula:

$$\sin \theta_n = \sin \theta + n \frac{\lambda_1}{\Lambda} \text{ or } k_1 \sin \theta_n = k_1 \sin \theta + \frac{n2\pi}{\Lambda}.$$

• λ_1 : wavelength in Region I and $k_1 = \frac{2\pi}{\lambda_1}$.

Geometric interpretation of the grating formula.

- Reciprocity property:
 - θ and θ_n: angle of incidence and the angle of diffraction of the nth order.
 - Angle of incidence: $\theta' = -\theta_n \Rightarrow n$ th scattered order propagates in the direction: $\theta'_n = -\theta$.

- Grating efficiency:
 - ϕ^{in} and ϕ_n^s : fluxes of the Poynting vectors associated with the incident wave and the *n*th scattered wave, respectively.
 - Measurement of energy in the *n*th propagating order:

$$E_n = \frac{\phi_n^s}{\phi^{\rm in}}.$$

•

$$E_n = |B_n|^2 \frac{\cos \theta_n}{\cos \theta}.$$

• The conservation of energy:

$$\sum_{n\in U} E_n = 1.$$

• Incident energy = the scattered energy.

• Assume that u_1 and u_2 :

$$\Delta u + k^2 u = 0$$

and either a homogeneous Dirichlet or a Neumann boundary condition.

• For any $x_2 > \max f(x_1)$,

$$\int_0^{\Lambda} \left(u_1 \frac{\partial u_2}{\partial x_2} - u_2 \frac{\partial u_1}{\partial x_2}\right) dx_1 = 0.$$

• Apply to u and \overline{u} :

$$\frac{1}{\Lambda} \int_0^{\Lambda} \left(\frac{\partial \overline{u}}{\partial x_2} - \overline{u} \frac{\partial u}{\partial x_2} \right) dx_1 = 0 \text{ for } x_2 > \max f(x_1)$$

• *⇒*

$$\frac{1}{\Lambda}\Im\left\{\int_0^{\Lambda} u \frac{\partial \overline{u}}{\partial x_2}\right\} = 0 \text{ for } x_2 > \max f(x_1).$$

•

$$u = e^{i\alpha x_1 - i\beta x_2} + \sum_{n \in U} B_n e^{i\alpha_n x_1 + i\beta_n x_2} + \sum_{n \notin U} B_n e^{i\alpha_n x_1 + i\beta_n x_2}$$

$$\overline{u} = e^{-i\alpha x_1 + i\beta x_2} + \sum_{n \in U} \overline{B}_n e^{-i\alpha_n x_1 - i\beta_n x_2} + \sum_{n \notin U} \overline{B}_n e^{-i\alpha_n x_1 - i\beta_n x_2}.$$

• ⇒

$$\beta = \sum_{n \in U} \beta_n |B_n|^2,$$

or equivalently $\sum_{n \in U} E_n = 1$.

- Dielectric gratings
- Region I: filled with a material of real permittivity ε_1 ;
- Region II: filled with a material of real permittivity ε_2 .
- In Region I,

$$\Delta u + k_1^2 u = 0$$
 if $x_2 > f(x_1)$.

• In Region II,

$$\Delta u + k_2^2 u = 0$$
 if $x_2 < f(x_1)$.

- Outgoing wave conditions satisfied by $u^s = u u^{\text{in}}$ (for $x_2 \to +\infty$) and by u (for $x_2 \to -\infty$).
- Jump conditions $\Rightarrow u$: continuous, $\partial u/\partial \nu$: continuous in TE polarization, and $(1/\varepsilon)\partial u/\partial \nu$: continuous in TM polarization.

- Quasi-periodicity of the field.
- For $x_2 > \max f(x_1)$,

$$u(x_1,x_2)=e^{i\alpha x_1}\sum_{n\in\mathbb{Z}}V_n(x_2)e^{in\frac{2\pi}{\Lambda}x_1}.$$

Rayleigh expansion:

$$u(x_1,x_2)=e^{(i\alpha x_1-i\beta x_2)}+\sum R_n e^{i\alpha_n x_1+i\beta_{n1}x_2}.$$

- $\alpha_n = k_1 \sin \theta + n \frac{2\pi}{\Lambda}$ and $\beta_{n1}^2 = k_1^2 \alpha_n^2$.
- If $x_2 < \min f(x_1)$,

$$u(x_1,x_2)=\sum_{n\in\mathbb{Z}}T_n\ e^{i\alpha_nx_1-i\beta_{n2}x_2}$$

•

$$\beta_{n2}^2 = k_2^2 - \alpha_n^2$$

• Expansions contain propagating and evanescent waves depending on n.

- For j = 1, 2, $U_j = \{n, \beta_{nj}^2 > 0\}$.
- If $n \in U_1$, $\alpha_n^2 < k_1^2$,

$$\alpha_n = k_1 \sin \theta + n \frac{2\pi}{\Lambda} = k_1 \sin \theta_{n1}, \qquad -\frac{\pi}{2} < \theta_{n1} < \frac{\pi}{2},$$

•

$$\beta_{n1} = k_1 \cos \theta_{n1};$$

- $R_n e^{i\alpha_n x_1 + i\beta_{n1} x_2}$: plane wave propagating in the θ_{n1} direction.
- If $n \in U_2$.

$$\alpha_n = k_2 \sin \theta + n \frac{2\pi}{\Lambda} = k_2 \sin \theta_{n2}, \quad -\frac{\pi}{2} < \theta_{n2} < \frac{\pi}{2};$$

•

$$\beta_{n2} = k_2 \cos \theta_{n2}$$
;

• $T_n e^{i\alpha_n x_1 - i\beta_{n2} x_2}$: transmitted plane wave propagating in the θ_{n2} direction.

- Variational formulations.
- Model problem:

•
$$\Omega_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_2 > b\};$$

 $\Omega_2 = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_2 < -b\};$
 $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : -b < x_2 < b\}.$

• Periodic slab: $q_0(x_1 + \Lambda, x_2) = q_0(x_1, x_2) \ (q = \sqrt{\varepsilon \mu_0})$

$$q(x) = \left\{ \begin{array}{ll} q_1 & \text{in } \Omega_1 \cup \overline{\Omega}_1, \\ q_0(x) & \text{in } \Omega, \\ q_2 & \text{in } \Omega_2 \cup \overline{\Omega}_2. \end{array} \right.$$

• Incoming plane wave

$$u^{\mathrm{in}}(x_1,x_2)=e^{i\alpha x_1-i\beta x_2}.$$

•

$$\nabla \cdot (\frac{1}{q^2} \nabla u) + \omega^2 u = 0 \quad \text{in } \mathbb{R}^2.$$

- $u_{\alpha}(x_1, x_2) = u(x_1, x_2)e^{-i\alpha x_1}$.
- u_α:

$$\nabla_{\alpha} \cdot \left(\frac{1}{\sigma^2} \nabla_{\alpha} u_{\alpha}\right) + \omega^2 u_{\alpha} = 0 \quad \text{in } \mathbb{R}^2.$$

• $\nabla_{\alpha} = \nabla + i(\alpha, 0)$.

• Expand u_{α} in a Fourier series:

$$u_{\alpha}(x_1,x_2)=\sum_{n\in\mathbb{Z}}u_{\alpha}^{(n)}(x_2)e^{i\frac{2\pi n}{\hbar}x_1}.$$

•

$$u_{\alpha}^{(n)}(x_2) = \frac{1}{\Lambda} \int_0^{\Lambda} u_{\alpha}(x_1, x_2) e^{-i\frac{2\pi n}{\Lambda}x_1} dx_1.$$

Sets

$$\Gamma_1' = \{x \in \mathbb{R}^2 : x_2 = b_1\}, \ \Gamma_2' = \{x_2 = -b_1\},$$
 with $0 < b_1 < b$ s.t. $\Omega_0 \subseteq \{-b_1 < x_2 < b_1\}.$

•

$$D_1 = \{x \in \mathbb{R}^2 : x_2 > b_1\}$$
 and $D_2 = \{x \in \mathbb{R}^2 : x_2 < -b_1\}.$

• For j = 1, 2,

$$\beta_i^n(\alpha) = e^{i\gamma_j^n/2} |k_i^2 - \alpha_n^2|^{1/2} = e^{i\gamma_j^n/2} |\omega^2 q_i^2 - \alpha_n^2|^{1/2}, \quad n \in \mathbb{Z}.$$

•

$$\gamma_j^n = \arg(k_j^2 - \alpha_n^2), \quad 0 \le \gamma_j^n < 2\pi.$$

Exclude Wood's anomalies:

$$k_j^2
eq \alpha_n^2$$
 for all $n \in \mathbb{Z}, j = 1, 2$.

•

$$\beta_j^n(\alpha) = \begin{cases} \sqrt{k_j^2 - \alpha_n^2}, & k_j^2 > \alpha_n^2, \\ i\sqrt{\alpha_n^2 - k_j^2}, & k_j^2 < \alpha_n^2. \end{cases}$$

• Inside D_1 and D_2 : u_{α} can be expressed as a sum of plane waves:

$$u_{\alpha}|_{D_j} = \sum_{n \in \mathbb{Z}} a_j^n e^{\pm i\beta_j^n(\alpha)x_2 + i\frac{2\pi n}{\Lambda}x_1}, \quad j = 1, 2.$$

• a_i^n : complex scalars.

- Radiation condition.
- • β_jⁿ: real for at most finitely many n ⇒ there are only a finite number of propagating plane waves as |x₂| → ∞.
- $u_{\alpha}^{(n)}(x_2)$

$$= \left\{ \begin{array}{ll} u_{\alpha}^{(n)}(b) e^{i\beta_1^n(\alpha)(x_2-b)} & \text{in } D_1 & \text{for } n \neq 0, \\ u_{\alpha}^{(0)}(b) e^{i\beta(x_2-b)} + e^{-i\beta x_2} - e^{i\beta(x_2-2b)} & \text{in } D_1 & \text{for } n = 0, \\ u_{\alpha}^{(n)}(-b) e^{-i\beta_2^n(\alpha)(x_2+b)} & \text{in } D_2. \end{array} \right.$$

• Compute the normal derivative of $u_{\alpha}^{n}(x_{2})$ on $\Gamma_{i}, j=1,2$:

$$\left. \frac{\partial u_{\alpha}^{(n)}}{\partial \nu} \right|_{\Gamma_{j}} = \left\{ \begin{array}{ll} i\beta_{1}^{n}(\alpha)u_{\alpha}^{(n)}(b) & \text{on } \Gamma_{1} & \text{for } n \neq 0, \\ i\beta u_{\alpha}^{(0)}(b) - 2i\beta e^{-i\beta b} & \text{on } \Gamma_{1} & \text{for } n = 0, \\ i\beta_{2}^{n}(\alpha)u_{\alpha}^{(n)}(-b) & \text{on } \Gamma_{2}. \end{array} \right.$$

• =

$$\begin{array}{lcl} \left. \frac{\partial u_{\alpha}}{\partial \nu} \right|_{\Gamma_{1}} & = & \sum_{n \in \mathbb{Z}} i\beta_{1}^{n}(\alpha) u_{\alpha}^{(n)}(b) e^{i\frac{2\pi n}{\Lambda}x_{1}} - 2i\beta e^{-i\beta b}; \\ \left. \frac{\partial u_{\alpha}}{\partial \nu} \right|_{\Gamma_{2}} & = & \sum_{n \in \mathbb{Z}} i\beta_{2}^{n}(\alpha) u_{\alpha}^{(n)}(-b) e^{i\frac{2\pi n}{\Lambda}x_{1}}. \end{array}$$

• Outward normal vector $\nu = (0,1)$ on Γ_1 and = (0,-1) on Γ_2 .

• Suppose that $\alpha_n^2 > k_1^2$. Then

$$u_{\alpha}^{(n)}(b) = u_{\alpha}^{(n)}(b_1)e^{-(b-b_1)\sqrt{\alpha_n^2-k_1^2}}.$$

• If $\alpha_n^2 > |\mathbf{k}_2|^2$, then

$$|u_{\alpha}^{(n)}(-b)| = |u_{\alpha}^{(n)}(-b_1)|e^{-(b-b_1)\sin(\gamma_2^n/2)} \sqrt[4]{(\alpha_n^2 - \Re(k_2^2))^2 + (\Im(k_2^2))^2}$$

For functions f ∈ H^{1/2}(Γ_j) (Sobolev space of Λ-periodic complex valued functions),

$$T_j^{\alpha}[f](x_1) = \sum_{n \in \mathbb{Z}} i\beta_j^n(\alpha) f^{(n)} e^{i\frac{2\pi n}{\Lambda}x_1};$$

•

$$f^{(n)} = \frac{1}{\Lambda} \int_0^{\Lambda} f(x_1) e^{-i\frac{2\pi n}{\Lambda}x_1} dx_1.$$

• For $j=1,2,\ T_i^{\alpha}:H^{\frac{1}{2}}(\Gamma_j)\to H^{-\frac{1}{2}}(\Gamma_j)$: continuous.

• Find $u_{\alpha} \in H^1(\Omega)$:

$$\begin{cases} \nabla_{\alpha} \cdot (\frac{1}{q^2} \nabla_{\alpha} u_{\alpha}) + \omega^2 u_{\alpha} &= 0 \text{ in } \Omega, \\ \\ T_1^{\alpha} [u_{\alpha}] - \frac{\partial u_{\alpha}}{\partial \nu} &= 2i\beta e^{-i\beta b} \text{ on } \Gamma_1, \\ \\ T_2^{\alpha} [u_{\alpha}] - \frac{\partial u_{\alpha}}{\partial \nu} &= 0 \text{ on } \Gamma_2. \end{cases}$$

• Equivalent form:

$$\begin{array}{rcl} \nabla_{\alpha} \cdot \big(\frac{1}{q^2} \nabla_{\alpha} \widetilde{u}_{\alpha}\big) + \omega^2 \widetilde{u}_{\alpha} & = & -f \ \ \text{in} \ \Omega, \\ \\ T_1^{\alpha} [\widetilde{u}_{\alpha}] - \frac{\partial \widetilde{u}_{\alpha}}{\partial \nu} & = & 0 \ \ \text{on} \ \Gamma_1, \\ \\ T_2^{\alpha} [\widetilde{u}_{\alpha}] - \frac{\partial \widetilde{u}_{\alpha}}{\partial \nu} & = & 0 \ \ \text{on} \ \Gamma_2. \end{array}$$

• $f \in (H^1(\Omega))'$ and $\widetilde{u}_{\alpha} = u_{\alpha} - u_0$ with u_0 a fixed smooth function.

- Denote \widetilde{u}_{α} by u_{α} .
- Variational form: Given $f \in (H^1(\Omega))'$, find $u_{\alpha} \in H^1(\Omega)$ s.t.

$$a(u_{\alpha}, \phi) = \langle f, \phi \rangle, \quad \forall \phi \in H^{1}(\Omega).$$

· Sesquilinear form:

$$a(w_1, w_2) = \int_{\Omega} \frac{1}{q^2} \nabla w_1 \cdot \nabla \overline{w_2} - \int_{\Omega} (\omega^2 - \frac{\alpha^2}{q^2}) w_1 \overline{w_2}$$
$$-i\alpha \int_{\Omega} \frac{1}{q^2} (\partial_{x_1} w_1) \overline{w_2} + i\alpha \int_{\Omega} \frac{1}{q^2} w_1 \overline{\partial_{x_1} w_2}$$
$$- \int_{\Gamma_1} \frac{1}{q_1^2} T_1^{\alpha} [w_1] \overline{w_2} - \int_{\Gamma_2} \frac{1}{q_2^2} T_2^{\alpha} [w_1] \overline{w_2}.$$

• \int_{Γ_i} : dual pairing of $H^{-\frac{1}{2}}(\Gamma_j)$ with $H^{\frac{1}{2}}(\Gamma_j)$.

- For all but a countable set of frequencies ω_j , $|\omega_j| \to +\infty$, the diffraction problem has a unique solution $u_\alpha \in H^1(\Omega)$.
- Write $a(w_1, w_2) = B_1(w_1, w_2) + \omega^2 B_2(w_1, w_2)$.

•

$$\begin{split} B_1(w_1,w_2) &= \int_{\Omega} \frac{1}{q^2} \nabla w_1 \cdot \nabla \overline{w_2} + 2 \int_{\Omega} \frac{\alpha^2}{q^2} w_1 \overline{w_2} - i\alpha \int_{\Omega} \frac{1}{q^2} (\partial_{x_1} w_1) \overline{w_2} \\ &+ i\alpha \int_{\Omega} \frac{1}{q^2} w_1 \overline{\partial_{x_1} w_2} - \int_{\Gamma_1} \frac{1}{q_1^2} T_1[w_1] \overline{w_2} - \int_{\Gamma_2} \frac{1}{q_2^2} T_2[w_1] \overline{w_2}, \\ B_2(w_1,w_2) &= -\int_{\Omega} (1 + \frac{\alpha^2}{k^2}) w_1 \overline{w_2}. \end{split}$$

• ⇒

$$B_{1}(u,u) = \int_{\Omega} \frac{1}{q^{2}} |\nabla u|^{2} + 2 \int_{\Omega} \frac{\alpha^{2}}{q^{2}} |u|^{2} - 2\alpha \int_{\Omega} \frac{1}{q^{2}} \Im(u \ \overline{\partial_{x_{1}} u})$$
$$- \int_{\Gamma_{1}} \frac{1}{q_{1}^{2}} T_{1}[u] \overline{u} - \int_{\Gamma_{2}} \frac{1}{q_{2}^{2}} T_{2}[u] \overline{u}.$$

- Denote $\frac{1}{q^2} = \frac{1}{\varepsilon \mu_0}$ by $\sigma' i\sigma''$.
- Denote $\frac{1}{q_2^2}$ by $\sigma_2' i\sigma_2''$, where $\sigma_2' > 0$ and $\sigma_2'' \ge 0$.
- ⇒

$$\Re\{B_{1}(u,u)\} = \int_{\Omega} \sigma' |\nabla u|^{2} + 2 \int_{\Omega} \alpha^{2} \sigma' |u|^{2} - 2\alpha \int_{\Omega} \sigma' \Im(u \, \overline{\partial_{x_{1}} u})
- \Re\{\int_{\Gamma_{1}} \frac{1}{q_{1}^{2}} T_{1}[u] \overline{u} + \int_{\Gamma_{2}} \frac{1}{q_{2}^{2}} T_{2}[u] \overline{u}\}
\geq \int_{\Omega} \frac{\sigma'}{2} |\nabla u|^{2} - \Re\{\int_{\Gamma_{1}} \frac{1}{q_{1}^{2}} T_{1}[u] \overline{u} + \int_{\Gamma_{2}} \frac{1}{q_{2}^{2}} T_{2}[u] \overline{u}\}.$$

•

$$\begin{split} -\Im\{B_1(u,u)\} &= \int_{\Omega} \sigma'' |\nabla u|^2 + 2 \int_{\Omega} \alpha^2 \sigma'' |u|^2 - 2\alpha \int_{\Omega} \sigma'' \Im(u \, \overline{\partial_{x_1} u}) \\ &+ \Im\{\int_{\Gamma_1} \frac{1}{q_1^2} \, T_1[u] \overline{u} + \int_{\Gamma_2} \frac{1}{q_2^2} \, T_2[u] \overline{u}\} \\ &\geq \int_{\Omega} \frac{\sigma''}{2} |\nabla u|^2 + \Im\{\int_{\Gamma_1} \frac{1}{q_1^2} \, T_1[u] \overline{u} + \int_{\Gamma_2} \frac{1}{q_2^2} \, T_2[u] \overline{u}\}. \end{split}$$

•

$$\begin{split} -\int_{\Gamma_1} \frac{1}{q_1^2} \, T_1[u] \overline{u} &= -\sum \frac{1}{q_1^2} \Lambda i \beta_1^n |u^{(n)}|^2 \\ &= \sum \frac{1}{q_1^2} \Lambda(\Im \beta_1^n) \, |u^{(n)}|^2 - i \sum \frac{1}{n_1^2} \Lambda \Re \beta_1^n |u^{(n)}|^2. \end{split}$$

•

$$-\int_{\Gamma_2} \frac{1}{q_2^2} T_2[u] \overline{u} = -\sum_{n=0}^{\infty} \frac{1}{q_2^2} i \Lambda \beta_2^n |u^{(n)}(-b)|^2$$
$$= \sum_{n=0}^{\infty} \Lambda |\beta_2^n| |u^{(n)}(-b)|^2 p_n.$$

• $p_n = p'_n - ip''_n$ with

$$p'_n = -\sigma''_2 \cos(\gamma_2^n/2) + \sigma'_2 \sin(\gamma_2^n/2)$$

and

$$p_n'' = \sigma_2' \cos(\gamma_2^n/2) + \sigma_2'' \sin(\gamma_2^n/2).$$

 $\gamma_2^n=\arg(\Re(k_2^2)-\alpha_n^2+i\Im(k_2^2))$ and $0<\gamma_2^n<2\pi.$

- $\Rightarrow p_n'' > 0$ for all n and $\{n : p_n' < 0\}$: finite.
- $|p_n''| > |p_n'|$ for $n \in \{n : p_n' < 0\}$.

• Fix $\omega \notin \mathcal{B}$:

$$\mathcal{B} := \{ \omega : \beta_j^n(\omega) = 0, \ j = 1, 2 \}.$$

•

$$|\beta_j^n| \geq C(1+|n|^2)^{1/2}, \ j=1,2.$$

•

$$|B_{1}(u,u)| \geq C \left[\int_{\Omega} |\nabla u|^{2} + ||u||_{H^{1/2}(\Gamma_{1})}^{2} + \sum_{n \in \Lambda} (|p_{n}''| - |p_{n}'|) |u^{(n)}(-b)|^{2} \right]$$

$$+ \sum_{n \notin \Lambda} |p_{n}''| |u^{(n)}(-b)|^{2}$$

$$\geq C \left[\int_{\Omega} |\nabla u|^{2} + ||u||_{H^{1/2}(\Gamma_{1})}^{2} + ||u||_{H^{1/2}(\Gamma_{2})}^{2} \right]$$

$$\geq C ||u||_{H^{1}(\Omega)}^{2}.$$

• B_1 : bounded coercive sesquilinear form over $H^1(\Omega)$:

$$|B_1(u,u)| \geq C ||u||_{H^1(\Omega)}^2$$
.

- Lax-Milgram lemma \Rightarrow existence of a bounded invertible map $A_1 = A_1(\omega) : H^1(\Omega) \to (H^1(\Omega))'$ s.t. $\langle A_1 u, v \rangle = B_1(u, v)$;
- ': dual space.
- A_1^{-1} : bounded.
- $A_2: H^1(\Omega) \to (H^1(\Omega))' \langle A_2 u, v \rangle = B_2(u, v)$: compact and independent of ω .
- Fix $\omega_0 \notin \mathcal{B}$;
- Consider $A(\omega_0, \omega) = A_1(\omega_0) + \omega^2 A_2$.
- A_1 : bounded invertible and A_2 : compact $\Rightarrow A(\omega_0, \omega)^{-1}$ exists by Fredholm theory for all $\omega \notin \text{some discrete set } \mathcal{E}(\omega_0)$.

•

$$\|A_1(\omega)-A_1(\omega_0)\| \to 0$$
, as $\omega \to \omega_0$.

- $||A(\omega, \omega) A(\omega_0, \omega)|| = ||A_1(\omega) A_1(\omega_0)||$: small for $|\omega \omega_0|$ sufficiently small.
- Stability of bounded invertibility $\Rightarrow A(\omega, \omega)^{-1}$: exists and bounded for $|\omega \omega_0|$ sufficiently small, $\omega \notin \mathcal{E}(\omega_0)$.
- $\omega_0 > 0$: arbitrary real number $\Rightarrow A(\omega, \omega)^{-1}$ exists for all but a discrete set of points.

- Boundary integral formulations.
- Period Λ ; $\Gamma = \{x_2 = f(x_1)\}/(\Lambda \mathbb{Z} \setminus \{0\})$.
- Quasi-periodic Green's function for the grating:

$$(\Delta + k^2)G^{\alpha,k}(x,y) = \sum_{n \in \mathbb{Z}} \delta_0(x - y - (n\Lambda, 0))e^{in\alpha\Lambda}.$$

•

$$G^{\alpha,k}(x,y) = -\frac{i}{4} \sum_{n \in \mathbb{Z}} H_0^{(1)}(k|x - (n\Lambda, 0) - y|) e^{in\alpha\Lambda}.$$

• If $k \neq |\alpha_n|, \forall n \in \mathbb{Z}$ Poisson's summation formula

$$\sum_{n\in\mathbb{Z}}e^{i(\frac{2\pi n}{\Lambda}+\alpha)x_1}=\sum_{n\in\mathbb{Z}}\delta_0(x_1-n\Lambda)e^{in\alpha\Lambda},$$

• Equivalent representation of $G^{\alpha,k}$:

$$G^{\alpha,k}(x,y) = \sum_{n \in \mathbb{Z}} \frac{e^{i\alpha_n(x_1-y_1)+i\beta_n(x_2-y_2)}}{k^2 - \alpha_n^2}.$$

β_n:

$$\beta_n = \begin{cases} \sqrt{k^2 - \alpha_n^2} & k^2 > \alpha_n^2, \\ i\sqrt{\alpha_n^2 - k^2} & k^2 < \alpha_n^2. \end{cases}$$

- $S_{\Gamma}^{\alpha,k}$: quasi-periodic single-layer potential associated with $G^{\alpha,k}$ on Γ .
- Integral representation of *u*:

$$u(x) = \begin{cases} u^{i}(x) + \mathcal{S}_{\Gamma}^{\alpha, k_{1}}[\psi](x), & x \in \{x = (x_{1}, x_{2}) : x_{2} > f(x_{1})\}, \\ \mathcal{S}_{\Gamma}^{\alpha, k_{2}}[\varphi](x), & x \in \{x = (x_{1}, x_{2}) : x_{2} < f(x_{1})\}, \end{cases}$$

• $(\varphi, \psi) \in L^2(\Gamma) \times L^2(\Gamma)$:

$$\left\{ \begin{array}{l} \mathcal{S}_{\Gamma}^{\alpha,k_2}[\varphi] - \mathcal{S}_{\Gamma}^{\alpha,k_1}[\psi] = u^i \\ \left. \frac{\partial (\mathcal{S}_{\Gamma}^{\alpha,k_2}[\varphi])}{\partial \nu} \right|_{-} - \left. \frac{\partial (\mathcal{S}_{\Gamma}^{\alpha,k_1}[\psi])}{\partial \nu} \right|_{+} = \frac{\partial u^i}{\partial \nu} \end{array} \right. \quad \text{on } \Gamma.$$

For all but possibly a countable set of frequencies ω_j, ω_j → +∞, the system of integral equations has a unique solution
 (ω, ψ) ∈ H^{-1/2}(Γ) × H^{-1/2}(Γ).

Lecture 10: Photonic crystals

Habib Ammari

Department of Mathematics, ETH Zürich

- Photonic crystals (also known as photonic band-gap materials):
 - Periodic dielectric structures that have a band gap that forbids propagation of a certain frequency range of light.
 - Band gap calculations: high-contrast materials, periodicity of the same order as the wavelength; efficient numerical schemes.
 - Control light and produce effects that are impossible with conventional optics.
 - Resonant cavities: making point defects in a photonic crystal
 → light can be localized, trapped in the defect. The frequency,
 symmetry, and other properties of the defect mode can be
 easily tuned to anything desired.

- Mathematically speaking:
 - Appearance of bandgaps in the spectrum of the associated operator.
 - Spectral techniques to analyze bandgaps:
 - High-contrast models.
 - Characterization of the bandgap (Floquet theory).
 - Sensitivity analysis of the bandgap with respect to material and geometry of the structure (based on generalized argument principle).
- Bandgap calculations: involve a family of eigenvalue problems (as the quasi-periodicity is varying).
- Muller's method.

• Floquet transform: f(x): function decaying sufficiently fast,

$$\mathcal{U}[f](x,\alpha) = \sum_{n \in \mathbb{Z}^d} f(x-n)e^{i\alpha \cdot n}.$$

- \mathcal{U} : analogue of the Fourier transform for the periodic case.
- $\alpha \in \text{Brillouin zone } \mathbb{R}^d/(2\pi\mathbb{Z}^d)$: quasi-momentum.
- Expansion into a direct integral of operators:

$$L = \int_{\mathbb{R}^d/(2\pi\mathbb{Z}^d)}^{\oplus} L(\alpha) \, d\alpha, \quad L(\alpha)[f] = \mathcal{U}[L[f]].$$

• Spectral theorem for a self-adjoint operator:

$$\sigma(L) = \bigcup_{\alpha \in \mathbb{R}^d / (2\pi \mathbb{Z}^d)} \sigma(L(\alpha)),$$

- $\sigma(L)$: spectrum of L.
- L: elliptic $\to L(\alpha)$: compact resolvents \to discrete spectra $(\mu_l(\alpha))_l$,

$$\sigma(L) = \left[\min_{\alpha} \mu_I(\alpha), \max_{\alpha} \mu_I(\alpha)\right].$$

- Gohberg-Sigal theory:
 - Sensitivity analysis of band gaps with respect to changes of the coefficients of L.
 - Analysis of photonic crystal cavities: defect mode inside the band gap.

- Floquet transform:
 - Plays in the periodic case the role of the Fourier transform.
 - Structure of spectra of periodic elliptic operators.
- f(x): function decaying sufficiently fast.
- Floquet transform of f:

$$\mathcal{U}[f](x,\alpha) = \sum_{n \in \mathbb{Z}^d} f(x-n)e^{i\alpha \cdot n}.$$

- α: quasi-momentum; analogue of the dual variable in the Fourier transform.
- x shifted by a period $m \in \mathbb{Z}^d \Rightarrow \mathsf{Floquet}$ condition:

$$\mathcal{U}[f](x+m,\alpha)=e^{i\alpha\cdot m}\mathcal{U}[f](x,\alpha).$$

- It suffices to know $\mathcal{U}[f](x,\alpha)$ on the unit cell $Y :=]0,1[^d$ in order to recover it completely as a function of the x-variable.
- $\mathcal{U}[f](x,\alpha)$: periodic with respect to the quasi-momentum α :

$$\mathcal{U}[f](x, \alpha + 2\pi m) = \mathcal{U}[f](x, \alpha), \quad m \in \mathbb{Z}^d.$$

- α can be considered as an element of the torus $\mathbb{R}^d/(2\pi\mathbb{Z}^d)$.
- All information about U[f](x, α): contained in its values for α in the Brillouin zone B of the dual lattice 2πZ^d.

- Analogue of the Plancherel theorem:
 - Suppose that the measures $d\alpha$ and the dual torus $\mathbb{R}^d/(2\pi\mathbb{Z}^d)$ are normalized;
 - $\mathcal{U}: L^2(\mathbb{R}^d) o L^2(\mathbb{R}^d/(2\pi\mathbb{Z}^d), L^2(Y)): \textit{isometric}.$
 - Its inverse:

$$\mathcal{U}^{-1}[g](x) = \int_{\mathbb{R}^d/(2\pi\mathbb{Z}^d)} g(x,\alpha) \, d\alpha;$$

• $g(x, \alpha) \in L^2(\mathbb{R}^d/(2\pi\mathbb{Z}^d), L^2(Y))$: extended from Y to all $x \in \mathbb{R}^d$ according to the Floquet condition.

- Spectrum of self-adjoint operators.
- L: linear self-adjoint operator in the Hilbert space H with domain $D(L), \overline{D(L)} = H$.
- Resolvent:

$$ho(L):=ig\{z\in\mathbb{C}:(zI-L)^{-1} ext{exists as a bounded operator }:H o D(L)ig\}.$$

• Spectrum of *L*: complement of the resolvent,

$$\sigma(L) = \mathbb{C} \setminus \rho(L).$$

L: self-adjoint ⇒ z ∈ ρ(L) iff there exists a constant C(z) s.t. for all u ∈ D(L),

$$||(zI-L)u||_H \ge C(z)||u||_H.$$

- $\sigma(L) \neq \emptyset$ and $\sigma(L) \subset \mathbb{R}$.
- Weyl's criteron for characterizing $\sigma(I)$: $z \in \sigma(L)$ iff there exists $u_n \in D(L)$ s.t.

$$\lim_{n\to+\infty}\|(zI-L)u_n\|_H=0.$$

- Point spectrum $\sigma_p(L)$ of L:
 - $\sigma_{\textit{p}}(\textit{L}) := \big\{z \in \sigma(\textit{L}) : (z\textit{I}-\textit{L})^{-1} \text{does not exist or equivalently } \ker(z\textit{I}-\textit{L}) \neq \emptyset \big\}.$
- Continuous spectrum $\sigma_c(L) := \sigma(L) \setminus \sigma_p(L)$. If $z \in \sigma_c(L)$, then $(zI - L)^{-1}$ does exist but is not bounded.
- Discrete spectrum spectrum $\sigma_d(L)$:

$$\sigma_d(L) := \{ z \in \sigma_p(L) : \operatorname{dim} \ker(zI - L) < \infty \text{ and } z \text{ is isolated in } \sigma(L) \}.$$

- Essential spectrum: $\sigma_{ess}(L) := \sigma(L) \setminus \sigma_d(L)$.
- L: self-adjoint ⇒

$$\sigma_{\rm ess}(L) = \overline{\sigma_c(L)}$$

$$\cup \big\{ \text{ eigenvalues of infinite multiplicity and their accumulation points } \big\}$$

$$\cup \big\{ \text{ accumulation points of } \sigma_d(L) \big\}.$$

- A family of operators $\{\mathcal{E}(t)\}_{t=-\infty}^{+\infty}$: spectral family (also called resolution of identity) if the following conditions are satisfied:
 - $\mathcal{E}(t)$: projector for all $t \in \mathbb{R}$;
 - $\mathcal{E}(t) \leq \mathcal{E}(s)$ for all t < s;
 - $\{\mathcal{E}(t)\}$: right continuous with respect to the strong topology,

$$\lim_{s \to t+0} \|\mathcal{E}(s)u - \mathcal{E}(t)u\|_H = 0 \quad \text{for all } u \in H;$$

• Normalization of $\{\mathcal{E}(t)\}$:

$$\lim_{t\to +\infty} \|\mathcal{E}(t)u - u\|_H = 0 \quad \text{for all } u \in H.$$

- $u, v \in H, \langle \mathcal{E}(t)u, v \rangle_H$: function of bounded variation with respect to t.
- L: self-adjoint operator ⇒ unique spectral representation.
- There is a unique spectral family $\mathcal{E}(t)$ s.t.

$$Lu = \int_{-\infty}^{+\infty} t \, d\mathcal{E}(t)u$$
 for all $u \in D(L)$.

Spectral theorem ⇒

•

$$(zI-L)^{-1} = \int_{-\infty}^{+\infty} \frac{1}{z-t} d\mathcal{E}(t)$$
 for all $z \in \rho(L)$;

- $z \in \sigma_p(L)$ iff $\mathcal{E}(z) \mathcal{E}(z-0) \neq 0$;
- $z \in \sigma_c(L)$ iff $\mathcal{E}(z) \mathcal{E}(z-0) = 0$;
- $\mathcal{E}(z-0) := \lim_{\epsilon \to 0+} \mathcal{E}(z-\epsilon)$ in the sense of strong operator topology.

• $C(\sigma(L))$: set of continuous functions on $\sigma(L)$.

•

$$f(L) := \lim_{n \to +\infty} P_n(L)$$

with $\{P_n\}$ being a sequence of polynomials converging uniformly to f as $n \to +\infty$.

- For any $u \in H$, $f \mapsto \langle u, f(L)u \rangle_H$: positive linear function on $\mathcal{C}(\sigma(L))$.
- ⇒ There exists a unique Radon measure μ(u) on σ(L) (called the spectral measure associated to u and L) s.t.

$$\int_{\sigma(L)} f \, d\mu(u) = \langle u, f(L)u \rangle_H \quad \text{for all } f \in \mathcal{C}(\sigma(L)).$$

• $\Rightarrow \mu(u)(\sigma(L)) = ||u||_H^2 \Rightarrow \mu(u)$: finite measure.

• $\mu(u)$: invariant under linear transformations and can be decomposed into three parts:

$$\mu(u) = \mu_{ac} + \mu_{sc} + \mu_{pp}.$$

- μ_{pp} : pure point measure;
- μ_{ac} : absolutely continuous;
- μ_{sc} : singular with respect to the Lebesgue measure.

$$\begin{split} & H_{pp} := \big\{ u \in H : \mu(u) \text{ is pure point } \big\}, \\ & H_{ac} := \big\{ u \in H : \mu(u) \text{ is absolutely continuous } \big\}, \\ & H_{sc} := \big\{ u \in H : \mu(u) \text{ is singulary continuous } \big\}. \end{split}$$

- $H = H_{pp} \oplus H_{ac} \oplus H_{sc}$.
- Each subspace is invariant under L.

•

$$\sigma(L) = \overline{\sigma_{pp}}(L) \cup \sigma_{ac}(L) \cup \sigma_{sc}(L);$$

•

$$\overline{\sigma_{pp}}(L) = \sigma(L|_{H_{pp}}), \sigma_{ac}(L) = \sigma(L|_{H_{ac}}), \quad \text{ and } \sigma_{sc}(L) = \sigma(L|_{H_{sc}}),$$

- Union may not be disjoint.
- •

$$\langle u, (z-L)^{-1}u\rangle_H = \int_{\mathbb{R}} \frac{d\mu(u)(t)}{z-t}.$$

• $\Rightarrow d\mu(u)(t) = \langle d\mathcal{E}(t)u, u \rangle_H$ for all $t \in \mathbb{R}$.

- L: self-adjoint and compact.
 - Sequence of eigenvalues $\lambda_i \neq 0, j \in \mathbb{N}$:

$$|\lambda_0| \geq |\lambda_1| \geq \ldots \geq |\lambda_j| \geq \ldots;$$

- If there are infinitely many eigenvalues then $\lim_{j\to+\infty} \lambda_j = 0$ and 0 is the only accumulation point of $\{\lambda_i\}_{i\in\mathbb{N}}$;
- Multiplicity of λ_i : finite;
- φ_j : normalized eigenvector for $\lambda_j \Rightarrow \{\varphi_j\}_{j=0}^{+\infty}$: orthonormal basis on R(L) and the spectral theorem \Rightarrow

$$Lu = \sum_{i=0}^{+\infty} \lambda_j \langle u, \varphi_j \rangle_H \varphi_j, \quad u \in H.$$

• $\sigma(L) = \{0, \lambda_0, \lambda_1, \dots, \lambda_j, \dots\}$ while 0: not necessarily an eigenvalue of L.

- Structure of spectra of periodic elliptic operators.
- $L(x, \partial_x)$: linear partial differential operator whose coefficients are periodic with respect to \mathbb{Z}^d , d=2,3.
- Periodicity $\Rightarrow L(x, \partial_x)$ commutes with the Floquet transform:

$$\mathcal{U}[Lf](x,\alpha) = L(x,\partial_x)\mathcal{U}[f](x,\alpha).$$

- $\forall \alpha$, $L(x, \partial_x)$ now acts on functions satisfying the Floquet condition.
- $L(\alpha)$ (its domain changes with α);
- $L: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$: expanded into the direct integral of operators:

$$L = \int_{\mathbb{R}^d/(2\pi\mathbb{Z}^d)}^{\oplus} L(\alpha) d\alpha.$$

L: self-adjoint ⇒

$$\sigma(L) = \bigcup_{\alpha \in B} \sigma(L(\alpha)).$$

- L: self-adjoint + elliptic $\Rightarrow L(\alpha)$: compact resolvent \Rightarrow discrete spectra.
- L: bounded from below $\Rightarrow \sigma(L(\alpha))$ accumulates only at $+\infty$.
- μ_n(α): nth eigenvalue of L(α) (counted in increasing order with their multiplicity).
- Band function function $\alpha \mapsto \mu_n(\alpha)$: continuous in B.
- One branch of the dispersion relations.
- $\sigma(L)$ consists of the closed intervals (called the spectral bands)

$$\sigma(L) = \bigcup_{n} \left[\min_{\alpha} \mu_{n}(\alpha), \max_{\alpha} \mu_{n}(\alpha) \right];$$

- $\min_{\alpha} \mu_n(\alpha) \to +\infty$ when $n \to +\infty$.
- $d \ge 2$: spectral bands do overlap in general.
- Opening gaps in the spectrum of L: high contrast materials.

- Boundary integral formulation:
- d=2; $Y:=]0,1[^2:$ unit cell; $\chi(Y\setminus \overline{D}):$ indicator function of $Y\setminus \overline{D}.$
- Seek eigenfunctions *u* of

$$\left\{ \begin{array}{l} \nabla \cdot (1+(k-1)\chi(Y\setminus \overline{D}))\nabla u + \omega^2 u = 0 & \text{ in } Y, \\ \\ e^{-i\alpha \cdot x}u : \text{ periodic in the whole space}. \end{array} \right.$$

• Equivalently,

$$\begin{cases} k\Delta u + \omega^2 u = 0 & \text{in } Y \setminus \overline{D} \\ \Delta u + \omega^2 u = 0 & \text{in } D, \\ u|_+ = u|_- & \text{on } \partial D, \\ k\frac{\partial u}{\partial \nu}|_+ = \frac{\partial u}{\partial \nu}|_- & \text{on } \partial D, \\ e^{-i\alpha \cdot x} u : \text{ periodic in the whole space.} \end{cases}$$

- $\forall \alpha$, $\sigma_{\alpha}(D, k)$: (discrete) spectrum.
- Spectral band of the photonic crystal:

$$\bigcup_{\alpha\in[0,2\pi]^2}\sigma_\alpha(D,k).$$

- Investigate behavior of $\sigma_{\alpha}(D, k)$ when $k \to +\infty$.
- D: invariant under the transformations

$$(x_1, x_2) \mapsto (-x_1, -x_2), \qquad (x_1, x_2) \mapsto (-x_1, x_2), \qquad (x_1, x_2) \mapsto (x_2, x_1).$$

• α restricted to the reduced Brillouin zone

$$T := \left\{ \alpha = (\alpha_1, \alpha_2) : 0 \le \alpha_1 \le \pi, 0 \le \alpha_2 \le \alpha_1 \right\}.$$

• Take $\alpha \in T$ rather than $\alpha \in [0, 2\pi]^2$.

- Assumptions:
 - ω^2 : not an eigenvalue of $-\Delta$ in $Y \setminus \overline{D}$ with the Dirichlet boundary condition on ∂D and the quasi-periodic condition on ∂Y ;
 - ω^2/k : not an eigenvalue of $-\Delta$ in D with the Dirichlet boundary condition.
- Representation formula: $\phi, \psi \in L^2(\partial D)$,

$$u(x) = \begin{cases} S^{\alpha,\omega}[\phi](x), & x \in D, \\ H(x) + S^{\alpha,\frac{\omega}{\sqrt{k}}}[\psi](x), & x \in Y \setminus \overline{D}, \end{cases}$$

H:

$$H(x) = -\mathcal{S}_{Y}^{\alpha, \frac{\omega}{\sqrt{k}}} \left[\frac{\partial u}{\partial \nu} |_{\partial Y} \right] + \mathcal{D}_{Y}^{\alpha, \frac{\omega}{\sqrt{k}}} [u|_{\partial Y}], \quad x \in Y.$$

- u, v: quasi-periodic in $Y \Rightarrow \int_{\partial Y} \frac{\partial u}{\partial \nu} \overline{v} = 0$.
- $\Rightarrow H \equiv 0 \Rightarrow$ representation formula:

$$u = \left\{ \begin{array}{ll} \mathcal{S}^{\alpha,\omega}[\phi], & \text{in } D, \\ \\ \mathcal{S}^{\alpha,\frac{\omega}{\sqrt{k}}}[\psi], & \text{in } Y \setminus \overline{D}. \end{array} \right.$$

 Transmission conditions ⇒ (φ, ψ) ∈ L²(∂D) × L²(∂D) solution to the system of integral equations:

$$\left\{ \begin{array}{l} \mathcal{S}^{\alpha,\omega}[\phi] - \mathcal{S}^{\alpha,\frac{\omega}{\sqrt{k}}}[\psi] = 0 & \text{on } \partial D, \\ \Big(-\frac{1}{2}I + (\mathcal{K}^{-\alpha,\omega})^* \Big)[\phi] - k \Big(\frac{1}{2}I + (\mathcal{K}^{-\alpha,\frac{\omega}{\sqrt{k}}})^* \Big)[\psi] = 0 & \text{on } \partial D. \end{array} \right.$$

• Converse true: $(\phi, \psi) \in L^2(\partial D) \times L^2(\partial D)$: nonzero solution $\Rightarrow \omega$: eigenvalue.

- Proof of the Representation Formula:
 - u: eigenfunction $\Rightarrow \exists ! (\phi, \psi) \in L^2(\partial D) \times L^2(\partial D)$ s.t. u has the representation formula.
 - (ϕ, ψ) : solution to the system of integral equations.
 - $u \longmapsto (\phi, \psi)$: one-to-one.

- $S^{-\alpha,\omega}: L^2(\partial D) \to H^1(\partial D)$.
- u: eigenfunction \Rightarrow

$$u|_{\partial D} \perp \ker(\mathcal{S}^{-\alpha,\omega}).$$

Proof:

•
$$(\Delta + \omega^2)u = 0$$
 in $D \Rightarrow$

$$u(x) = \mathcal{D}^{\alpha,\omega} \left[u|_{\partial D} \right](x) - \mathcal{S}^{\alpha,\omega} \left[\frac{\partial u}{\partial \nu} \Big|_{-} \right](x), \quad x \in D.$$

• **⇒**

$$\frac{1}{2}u|_{\partial D} = \mathcal{K}^{\alpha,\omega}\left[u|_{\partial D}\right] - \mathcal{S}^{\alpha,\omega}\left[\frac{\partial u}{\partial \nu}\Big|_{-}\right].$$

- $\phi \in \ker(S^{-\alpha,\omega})$.
- Assumption on $\omega^2 \Rightarrow S^{-\alpha,\omega}[\phi] = 0$ in $Y \setminus \overline{D}$.

$$\begin{cases} \mathcal{S}^{-\alpha,\omega}[\phi] = 0, \\ \frac{1}{2}\phi + (\mathcal{K}^{\alpha,\omega})^*[\phi] = 0 \end{cases} \text{ on } \partial D.$$

⇒

$$\begin{split} \frac{1}{2}\langle u|_{\partial D}, \phi \rangle &= \langle \mathcal{K}^{\alpha, \omega} \left[u|_{\partial D} \right], \phi \rangle - \left\langle \mathcal{S}^{\alpha, \omega} \left[\frac{\partial u}{\partial \nu} \Big|_{-} \right], \phi \right\rangle \\ &= \langle u|_{\partial D}, (\mathcal{K}^{\alpha, \omega})^* [\phi] \rangle - \left\langle \frac{\partial u}{\partial \nu} \Big|_{-}, \mathcal{S}^{-\alpha, \omega} [\phi] \right\rangle \\ &= -\frac{1}{2} \left\langle u|_{\partial D}, \phi \right\rangle - 0. \end{split}$$

• Finding $(\phi, \psi) \Leftrightarrow$

$$(*) \begin{cases} \mathcal{S}^{\alpha,\omega}[\phi] = u|_{\partial D} & \text{on } \partial D, \\ \left(-\frac{1}{2}I + (\mathcal{K}^{-\alpha,\omega})^* \right)[\phi] = \frac{\partial u}{\partial \nu}\Big|_{-} & \text{on } \partial D, \end{cases}$$
$$\begin{cases} \mathcal{S}^{\alpha,\frac{\omega}{\sqrt{k}}}[\psi] = u|_{\partial D} & \text{on } \partial D, \\ \left(\frac{1}{2}I + (\mathcal{K}^{-\alpha,\frac{\omega}{\sqrt{k}}})^* \right)[\psi] = \frac{\partial u}{\partial \nu}\Big|_{+} & \text{on } \partial D. \end{cases}$$

• $u|_{\partial D} \perp \ker(S^{-\alpha,\omega}) \Rightarrow \exists \phi_0 \in L^2(\partial D) \text{ s.t.}$

$$\mathcal{S}^{\alpha,\omega}[\phi_0 + \phi] = u|_{\partial D}$$
 on ∂D , $\forall \phi \in \ker(\mathcal{S}^{\alpha,\omega})$.

• To show existence of a solution to (*), it suffices to prove that $\exists \phi \in \ker(S^{\alpha,\omega})$ s.t.

$$\left(-\frac{1}{2}I + (\mathcal{K}^{-\alpha,\omega})^*\right)[\phi + \phi_0] = \frac{\partial u}{\partial \nu}\Big|_{-}$$
 on ∂D .

⇒

$$\phi = \frac{\partial \left(\mathcal{S}^{\alpha,\omega}[\phi_0] - u \right)}{\partial \nu} \Big|_{-}.$$

• $S^{\alpha,\omega}[\phi_0] - u$: solution to $\Delta + \omega^2$ in D with the Dirichlet boundary condition \Rightarrow

$$\frac{\partial \left(\mathcal{S}^{\alpha,\omega}[\phi_0] - u\right)}{\partial \nu}\Big|_{-} \in \ker(\mathcal{S}^{\alpha,\omega}).$$

- ϕ_1 and ϕ_2 : two solutions.
- Assumption on $\omega^2 \Rightarrow \mathcal{S}^{\alpha,\omega}[\phi_1 \phi_2] = 0$ in $Y \setminus \overline{D} \Rightarrow$

$$\big(\frac{1}{2}I+(\mathcal{K}^{-\alpha,\omega})^*\big)[\phi_1-\phi_2]=0\quad\text{on }\partial D.$$

•
$$\left(-\frac{1}{2}I + (\mathcal{K}^{-\alpha,\omega})^*\right)[\phi_1 - \phi_2] = 0 \text{ on } \partial D \Rightarrow \phi_1 = \phi_2.$$

- Converse: (ϕ, ψ) : (nontrivial) solution to the system of integral equations. One only needs to prove: u given by the representation formula is not trivial.
- Suppose u = 0 in $Y \Rightarrow S^{\alpha,\omega}[\phi] = 0$ in D.
- Assumption on $\omega^2 \Rightarrow \mathcal{S}^{\alpha,\omega}[\phi] = 0$ in $Y \setminus \overline{D} \Rightarrow \phi = 0$ on ∂D . Assumption on $\omega^2/k \Rightarrow \psi = 0$ on ∂D .

• Suppose $\alpha \neq 0$.

$$\mathcal{A}^{\alpha,k}(\omega) := \left(\begin{array}{cc} \mathcal{S}^{\alpha,\omega} & -\mathcal{S}^{\alpha,\frac{\omega}{\sqrt{k}}} \\ \frac{1}{k} \left(\frac{1}{2} I - (\mathcal{K}^{-\alpha,\omega})^* \right) & \frac{1}{2} I + (\mathcal{K}^{-\alpha,\frac{\omega}{\sqrt{k}}})^* \end{array} \right).$$

- ω^2 : eigenvalue corresponding to u with a given quasi-momentum α iff ω : characteristic value of $\mathcal{A}^{\alpha,k}$.
- For $\alpha = 0$.

$$\widetilde{\mathcal{A}}^{0,k}(\omega) := \left(egin{array}{ccc} \mathcal{S}^{0,\omega} & -rac{1}{k}\mathcal{S}^{0,rac{\omega}{\sqrt{k}}} \ rac{1}{2}I - (\mathcal{K}^{0,\omega})^* & rac{1}{2}I + (\mathcal{K}^{0,rac{\omega}{\sqrt{k}}})^* \end{array}
ight).$$

• By a change of functions, ω : eigenvalue corresponding to u for $\alpha=0$ iff ω^2 : characteristic value of $\widetilde{\mathcal{A}}^{0,k}$.

- Characteristic values of $\mathcal{A}^{\alpha,k}$ and $\widetilde{\mathcal{A}}^{0,k}$.
- $\mathcal{A}^{\alpha,k}$: Fredholm analytic with index 0 in $\mathbb{C} \setminus i\mathbb{R}^-$.
- $\omega \mapsto (\mathcal{A}^{\alpha,k})^{-1}(\omega)$: meromorphic function and its poles are on the real axis.
- Proof: logarithmic behavior of quasi-periodic Green's functions ⇒ define A^{α,k} on C \ iℝ[−].

• $\mathcal{A}^{\alpha,k}$: Fredholm analytic with index 0 in $\mathbb{C} \setminus i\mathbb{R}^- \Leftarrow$

$$\mathcal{A}^{\alpha,k}(\omega) = \begin{pmatrix} \mathcal{S}^{\alpha,0} & -\mathcal{S}^{\alpha,0} \\ \frac{1}{2k}I & \frac{1}{2}I \end{pmatrix} + \begin{pmatrix} \mathcal{S}^{\alpha,\omega} - \mathcal{S}^{\alpha,0} & -\mathcal{S}^{\alpha,\frac{\omega}{\sqrt{k}}} + \mathcal{S}^{\alpha,0} \\ \frac{1}{k}(\mathcal{K}^{-\alpha,\omega})^* & (\mathcal{K}^{-\alpha,\omega})^* \end{pmatrix}$$
$$:= \mathcal{A}^{\alpha} + \mathcal{B}^{\alpha}(\omega).$$

- \mathcal{A}^{α} : invertible and \mathcal{B}^{α} : compact and analytic in $\omega \Rightarrow \mathcal{A}^{\alpha,k}$: Fredholm analytic with index 0.
- Steinberg's theorem \Rightarrow invertibility of $\mathcal{A}^{\alpha,k}(\omega)$ at $\omega = 0$ shows that $\omega \mapsto (\mathcal{A}^{\alpha,k})^{-1}(\omega)$: meromorphic function.

- ω_0 : pole of $(\mathcal{A}^{\alpha,k})^{-1}(\omega)$. Then ω_0 : characteristic value of $\mathcal{A}^{\alpha,k}$.
- (ϕ, ψ) : root function associated with ω_0 . Define

$$u(x) = \begin{cases} S^{\alpha,\omega_0}[\phi](x), & x \in D, \\ S^{\alpha,\frac{\omega_0}{\sqrt{k}}}[\psi](x), & x \in Y \setminus \overline{D}. \end{cases}$$

• Integrating by parts \Rightarrow

$$\int_{Y} (1 + (k-1)\chi(Y \setminus \overline{D})) |\nabla u|^2 - \omega_0^2 \int_{Y} |u|^2 = 0.$$

- $\Rightarrow \omega_0$: real.
- Same result holds for $\widetilde{\mathcal{A}}^{0,k}$.

- Numerical approach for band structure calculations:
 - Discretization \Rightarrow linear system in the form $\mathcal{A}^{\alpha,k}(\omega)[x] = 0$.
 - Unknown vector x: represents point values of the densities ϕ and ψ on ∂D .
 - Muller's method for

$$f(\omega) := \frac{1}{x \cdot \mathcal{A}^{\alpha,k}(\omega)^{-1}[y]};$$

• x and y: two fixed random vectors.

- Sensitivity analysis with respect to the contrast and/or the shape of the inclusion: use of the generalized Rouché's theorem.
- Asymptotic expansion asymptotic expansion of $\mathcal{A}^{\alpha,k}$ for $\alpha \neq 0$ as $k \to +\infty$:

$$\mathcal{A}^{lpha,k}(\omega)=\mathcal{A}^{lpha}_{0}(\omega)+\sum_{l=1}^{+\infty}rac{1}{k^{l}}\mathcal{A}^{lpha}_{l}(\omega).$$

•

$$\mathcal{A}_0^{\alpha}(\omega) = \begin{pmatrix} \mathcal{S}^{\alpha,\omega} & -\mathcal{S}^{\alpha,0} \\ 0 & \frac{1}{2}I + (\mathcal{K}^{-\alpha,0})^* \end{pmatrix};$$

$$\mathcal{A}_1^{\alpha}(\omega) = \begin{pmatrix} 0 & -\mathcal{S}_1^{\alpha,\omega} \\ \left(\frac{1}{2}I - (\mathcal{K}^{-\alpha,\omega})^*\right) & (\mathcal{K}_1^{-\alpha,\omega})^* \end{pmatrix};$$

• For l > 2,

$$\mathcal{A}_{l}^{\alpha}(\omega) = \left(\begin{array}{cc} 0 & -\mathcal{S}_{l}^{\alpha,\omega} \\ 0 & (\mathcal{K}_{l}^{-\alpha,\omega})^{*} \end{array} \right).$$

- $\alpha \neq 0$. $\omega_0^{\alpha} \in \mathbb{R}$: characteristic value of \mathcal{A}_0^{α} iff $(\omega_0^{\alpha})^2$: either an eigenvalue of $-\Delta$ in D with the Dirichlet boundary condition or an eigenvalue of $-\Delta$ in $Y \setminus \overline{D}$ with the Dirichlet boundary condition on ∂D and the quasi-periodic condition on ∂Y .
- Proof:
 - $\omega = \omega_0^{\alpha} \in \mathbb{R}$: characteristic value of $\mathcal{A}_0^{\alpha} \Rightarrow \exists (\phi, \psi) \neq 0$ s.t.

$$(**) \begin{cases} \mathcal{S}^{\alpha,\omega}[\phi] - \mathcal{S}^{\alpha,0}[\psi] = 0, \\ \left(\frac{1}{2}I + (\mathcal{K}^{-\alpha,0})^*\right)[\psi] = 0 \end{cases} \text{ on } \partial D.$$

- $\Rightarrow \psi = 0 \Rightarrow S^{\alpha,\omega}[\phi] = 0 \text{ on } \partial D.$
- $\phi \neq 0$, $\mathcal{S}^{\alpha,\omega}[\phi] \neq 0$ either in D or in $Y \setminus \overline{D} \Rightarrow (\omega_0^{\alpha})^2$: either an eigenvalue of $-\Delta$ in D with the Dirichlet boundary condition or an eigenvalue of $-\Delta$ in $Y \setminus \overline{D}$ with the Dirichlet boundary condition on ∂D and the quasi-periodic condition on ∂Y , and $\mathcal{S}^{\alpha,\omega}[\phi]$: associated eigenfunction.

- Converse:
 - $(\omega_0^{\alpha})^2$: eigenvalue of $-\Delta$ in D with the Dirichlet boundary condition \Rightarrow by Green's representation formula,

$$u(x) = -S^{\alpha,\omega} \left[\frac{\partial u}{\partial \nu} \Big|_{\partial D} \right], \quad x \in D.$$

- \Rightarrow (**) holds with $(\phi, \psi) = (\partial u/\partial \nu|_{\partial D}, 0)$.
- Other case: treated similarly.

Generalized Rouché's theorem:

$$\omega^{\alpha,k} - \omega^0 = \frac{1}{2i\pi} \operatorname{tr} \int_{\partial V} (\omega - \omega^0) (\mathcal{A}_k^{\alpha})^{-1} (\omega) \frac{d}{d\omega} \mathcal{A}^{\alpha,k} (\omega) d\omega.$$

• Asymptotic expansion for the eigenvalue perturbations $\omega^{\alpha,k} - \omega^0$. Suppose $\alpha \neq 0$:

$$\omega^{\alpha,k} - \omega^{0} = \frac{1}{2i\pi k} \operatorname{tr} \int_{\partial V} (\mathcal{A}_{0}^{\alpha})^{-1}(\omega) \mathcal{A}_{1}^{\alpha}(\omega) d\omega;$$

$$(\mathcal{A}_{0}^{\alpha})^{-1}(\omega) = \begin{pmatrix} (\mathcal{S}^{\alpha,\omega})^{-1} & (\mathcal{S}^{\alpha,\omega})^{-1} \mathcal{S}^{\alpha,0} (\frac{1}{2}I + (\mathcal{K}^{-\alpha,0})^{*})^{-1} \\ 0 & (\frac{1}{2}I + (\mathcal{K}^{-\alpha,0})^{*})^{-1} \end{pmatrix}.$$

- Explicit calculations of the leading-order term.
- u^0 : (normalized) eigenvector associated to the simple eigenvalue $(\omega^0)^2$; $\varphi := \partial u^0/\partial \nu|_- \Rightarrow u^0(x) = -\mathcal{S}^{\alpha,\omega^0}[\varphi](x)$ for $x \in D$.
- Proof:

$$\Delta \frac{d}{d\omega} G^{\alpha,\omega}(x,y) + \omega^2 \frac{d}{d\omega} G^{\alpha,\omega}(x,y) = -2\omega G^{\alpha,\omega}(x,y).$$

•
$$\frac{d}{d\omega}G^{\alpha,\omega}(x,y) = -2\omega \int_{\mathcal{X}} G^{\alpha,\omega}(x,z)G^{\alpha,\omega}(z,y)dz.$$

• $\forall \psi \in L^2(\partial D)$,

$$\frac{dS^{\alpha,\omega}[\psi](x)}{d\omega} = \frac{d}{d\omega} \int_{\partial D} G^{\alpha,\omega}(x,y)\psi(y) \, d\sigma(y)$$

$$= \int_{\partial D} \frac{d}{d\omega} G^{\alpha,\omega}(x,y)\psi(y) \, d\sigma(y)$$

$$= -2\omega \int_{Y} G^{\alpha,\omega}(x,z) \int_{\partial D} G^{\alpha,\omega}(z,y)\psi(y) \, d\sigma(y)dz$$

$$= -2\omega \int_{Y} G^{\alpha,\omega}(x,z) S^{\alpha,\omega}[\psi](z)dz.$$

• From

$$\mathcal{S}^{\alpha,\omega^0}[\varphi] = \left\{ egin{array}{ll} -u^0 & ext{in } D, \ 0 & ext{in } Y \setminus \overline{D}, \end{array}
ight.$$

•
$$\Rightarrow$$

$$\langle \varphi, \frac{dS^{\alpha,\omega}[\varphi]}{d\omega} \Big|_{\omega=\omega^{0}} \rangle = \int_{\partial D} \varphi(x) \frac{dS^{-\alpha,\omega}}{d\omega} [\overline{\varphi}](x) \Big|_{\omega=\omega^{0}} d\sigma(x)$$

$$= -2\omega^{0} \int_{\partial D} \varphi(x) \int_{Y} G^{\alpha,\omega^{0}}(x,z) S^{-\alpha,\omega^{0}} [\overline{\varphi}](z) dz d\sigma(x)$$

$$= -2\omega^{0} \int_{\partial D} \int_{\partial D} \int_{Y} G^{\alpha,\omega^{0}}(x,z) G^{-\alpha,\omega^{0}}(y,z) \varphi(x) \overline{\varphi}(y) dz d\sigma(x) d\sigma(y)$$

$$= -2\omega^{0} \int_{Y} \Big| \int_{\partial D} G^{\alpha,\omega^{0}}(x,z) \varphi(x) d\sigma(x) \Big|^{2} dz$$

$$= -2\omega^{0} \int_{Y} \Big| S^{\alpha,\omega^{0}}[\varphi](z) \Big|^{2} dz$$

$$= -2\omega^{0} \int_{S} |u^{0}(z)|^{2} dz.$$

• v^{α} : unique α -quasi-periodic solution to

$$\left(* * * \right) \left\{ \begin{array}{ll} \Delta v^{\alpha} = 0 & \text{in } Y \setminus \overline{D}, \\ \left. \frac{\partial v^{\alpha}}{\partial \nu} \right|_{+} = \frac{\partial u^{0}}{\partial \nu} \right|_{-} & \text{on } \partial D. \end{array} \right.$$

Leading-order term:

$$\omega^{\alpha,k} - \omega^0 = -\frac{1}{k} \frac{\displaystyle\int_{Y \setminus \overline{D}} |\nabla v^\alpha|^2}{2\omega^0 \int_D |u^0|^2} + O(\frac{1}{k^2}) \quad \text{as } k \to +\infty.$$

- $u^0(x) = -S^{\alpha,\omega^0}[\varphi](x)$ for $x \in D \Rightarrow (\frac{1}{2}I (\mathcal{K}^{-\alpha,\omega^0})^*)[\varphi] = \varphi$.
- ω^0 : only simple pole in V of $\omega \mapsto (\mathcal{S}^{\alpha,\omega})^{-1} \Rightarrow$

$$(\mathcal{S}^{\alpha,\omega})^{-1} = \frac{1}{\omega - \omega^0} T + \mathcal{Q}^{\alpha;\omega}.$$

- $\mathcal{Q}^{\alpha,\omega}$: holomorphic in ω in V;
- $T: L^2(\partial D) \to \operatorname{span}\{\varphi\} \text{ s.t. } TS^{\alpha,\omega^0} = S^{\alpha,\omega^0}T = 0;$

$$\left. \mathcal{T} \frac{d}{d\omega} \mathcal{S}^{\alpha,\omega} \right|_{\omega=\omega^0} = \frac{1}{||\varphi||_{L^2}^2} \langle \varphi, \cdot \rangle \varphi \quad \text{(orthogonal projection)}.$$

•

$$T = \frac{1}{\left\langle \varphi, \frac{d}{d\omega} \mathcal{S}^{\alpha,\omega}[\varphi] \right|_{\omega = \omega^0}} \left\langle \varphi, \cdot \right\rangle \varphi.$$

Residue theorem ⇒

$$\frac{1}{2i\pi}\operatorname{tr}\int_{\partial V}(\mathcal{A}_0^{\alpha})^{-1}(\omega)\mathcal{A}_1^{\alpha}(\omega)d\omega=\operatorname{tr}\left[T\mathcal{S}^{\alpha,0}\big(\frac{1}{2}I+(\mathcal{K}^{-\alpha,0})^*\big)^{-1}\big(\frac{1}{2}I-(\mathcal{K}^{-\alpha,\omega^0})^*\big)\right].$$

•

$$v^{lpha}(x):=\mathcal{S}^{lpha,0}ig(rac{1}{2}I+(\mathcal{K}^{-lpha,0})^*ig)^{-1}[arphi](x),\quad x\in Y\setminus\overline{D}.$$

• v^{α} : unique α -quasi-periodic solution to (***) and

$$\frac{1}{2i\pi} \ \mathrm{tr} \ \int_{\partial V} (\mathcal{A}_0^\alpha)^{-1}(\omega) \mathcal{A}_1^\alpha(\omega) d\omega = \frac{1}{||\varphi||_{l^2}^2} \langle \varphi, \mathit{Tv}^\alpha \rangle.$$

• ⇒

$$\omega^{\alpha,k}-\omega^0=-\frac{1}{k||\varphi||_{l^2}^2}\langle\varphi,\mathit{Tv}^\alpha\rangle+\mathit{O}(\frac{1}{k^2})\quad\text{as }k\to+\infty.$$

•

$$\frac{1}{||\varphi||_{L^{2}}^{2}}\langle\varphi, Tv^{\alpha}\rangle = \frac{1}{\langle\varphi, \frac{d}{d}\mathcal{S}^{\alpha,\omega}[\varphi]|_{\omega=\omega^{0}}\rangle}\langle\varphi, v^{\alpha}\rangle.$$

Integration by parts ⇒

$$\langle \varphi, \mathbf{v}^{\alpha} \rangle = - \int_{\mathbf{Y} \setminus \overline{D}} |\nabla \mathbf{v}^{\alpha}|^2.$$

- Periodic case ($\alpha = 0$):
 - $\widetilde{\Delta}$: acting on span $\{\chi(Y), H_0^1(D)\}$,

$$\widetilde{\Delta} u := \left\{ egin{array}{ll} -\Delta(u|_D) & ext{in } D, \ & & & & & & & & \\ rac{1}{|Y\setminus \overline{D}|} \int_{\partial D} rac{\partial}{\partial
u} (u|_D) & ext{in } Y\setminus \overline{D}. \end{array}
ight.$$

• Eigenvalue problem for $\widetilde{\Delta}$:

$$\begin{cases} \Delta u + \omega^2 u = 0 & \text{in } D, \\ u + \frac{1}{|Y \setminus \overline{D}|} \int_D u = 0 & \text{on } \partial D. \end{cases}$$

•

$$\widetilde{\mathcal{A}}_0^0(\omega) = \left(egin{array}{ccc} \mathcal{S}^{0,\omega} & -rac{1}{\omega^2}\int_{\partial D} \cdot \ rac{1}{2}I - (\mathcal{K}^{0,\omega})^* & rac{1}{2}I + (\mathcal{K}^{0,0})^* \end{array}
ight).$$

•

$$\widetilde{\mathcal{A}}_1^0(\omega) = \left(egin{array}{cc} 0 & -\mathcal{S}^{0,0} \ 0 & (\mathcal{K}_1^{0,\omega})^* \end{array}
ight).$$

• Asymptotic expansion of $\widetilde{\mathcal{A}}^{0,k}$ as $k \to +\infty$:

$$\widetilde{\mathcal{A}}^{0,k}(\omega) = \widetilde{\mathcal{A}}_0^0(\omega) + \frac{1}{k}\widetilde{\mathcal{A}}_1^0(\omega) + O(\frac{1}{k^2}).$$

- $(\widetilde{\omega}^0)^2$ (with $\widetilde{\omega}^0 > 0$): not an eigenvalue of $-\Delta$ in $Y \setminus \overline{D}$ with Dirichlet boundary condition on ∂D and the periodic condition on ∂Y . Then $(\widetilde{\omega}^0)^2$: eigenvalue of $\widetilde{\Delta}$ iff $\widetilde{\omega}^0$: characteristic value of $\widetilde{\mathcal{A}}_0^0$.
- Suppose $\alpha=0$; $(\widetilde{\omega}^0)^2$ (with $\widetilde{\omega}^0>0$): simple eigenvalue of $\widetilde{\Delta}$. There exists a unique eigenvalue $(\omega^{0,k})^2$ lying in a small complex neighborhood of $(\widetilde{\omega}^0)^2$.
- V: small complex neighborhood of $\widetilde{\omega}^0$; Asymptotic expansion:

$$\omega^{0,k}-\widetilde{\omega}^0=\frac{1}{2i\pi k} \ {\rm tr} \ \int_{\partial V}\widetilde{\mathcal{A}}_0^0(\omega)^{-1}\widetilde{\mathcal{A}}_1^0(\omega)d\omega+O(\frac{1}{k^2}).$$

- Characterization of the eigenvalues of $\widetilde{\Delta}$.
- $\widetilde{\omega}_0$: characteristic value characteristic value of $\widetilde{\mathcal{A}}^0_0$.
- (ϕ, ψ) : root function associated with $\widetilde{\omega}_0$.
- Set

$$u = \mathcal{S}^{0,\omega}[\phi] - \frac{1}{\widetilde{\omega}_0^2} \int_{\partial D} \psi;$$

•

$$c = \frac{1}{\widetilde{\omega}_0^2 |Y \setminus \overline{D}|} \int_{\partial D} (-\frac{1}{2}I + (\mathcal{K}^{0,\omega})^*) [\phi].$$

• $(\frac{1}{2}I + \mathcal{K}^{0,0})[1] = |Y \setminus \overline{D}| \Rightarrow$

$$c = \frac{1}{\widetilde{\omega}_0^2} \int_{\partial D} \psi;$$

- $\Rightarrow -\Delta(u+c) = \widetilde{\omega}_0^2(u+c)$ in D and u=0 on ∂D .
- $\Rightarrow \widetilde{\omega}_0^2$: eigenvalue of $\widetilde{\Delta}$.

Converse:

Assume $\widetilde{\omega}_0^2$ (with $\widetilde{\omega}_0 > 0$): an eigenvalue of $\widetilde{\Delta}$ associated with u + c, where $u \in H_0^1(D)$, and

$$c = \frac{1}{|Y \setminus \overline{D}|\widetilde{\omega}_0^2} \int_{\partial D} \frac{\partial u}{\partial \nu}.$$

φ: solution to

$$(\frac{1}{2}I - (\mathcal{K}^{0,\widetilde{\omega}_0})^*)[\phi] = \frac{\partial u}{\partial \nu} \quad \text{on } \partial D.$$

(\exists because $\partial u/\partial \nu$: orthogonal in L^2 to the associated Neumann eigenvector).

Set

$$\psi = -\left(\frac{1}{2}I + (\mathcal{K}^{0,0})^*\right)^{-1} \left[\frac{\partial u}{\partial \nu}\right].$$

• Then, (ϕ, ψ) satisfies

$$\left(\begin{array}{cc} \mathcal{S}^{0,\widetilde{\omega}_0} & -\frac{1}{\widetilde{\omega}_0^2} \int_{\partial D} \cdot \\ \\ \frac{1}{2} I - (\mathcal{K}^{0,\widetilde{\omega}_0})^* & \frac{1}{2} I + (\mathcal{K}^{0,0})^* \end{array} \right) \left(\begin{array}{c} \phi \\ \psi \end{array} \right) = 0.$$

• $\Rightarrow \widetilde{\omega}_0$: characteristic value of $\widetilde{\mathcal{A}}_0^0$.

- Photonic band gap opening.
- ω_i : eigenvalues of $-\Delta$ in D with Dirichlet conditions;
- $\widetilde{\omega}_i$: eigenvalues of $\widetilde{\Delta}$.
- $E(u,v) := \int_D \nabla u \cdot \nabla \overline{v}$; Min-max characterizations:

$$\begin{aligned} \omega_j^2 &= \min_{N_j} \max_{u \in N_j, \|u\|_{L^2(D)} = 1} E(u, u), \\ \widetilde{\omega}_j^2 &= \min_{N_j} \max_{u \in N_j, \|\mathbf{u}\|_{L^2(D)} = 1} \frac{E(u, u)}{1 - \left|\int_{D} u\right|^2}. \end{aligned}$$

- N_i : j -dimensional subspaces of $H_0^1(D)$.
- Interlacing relation:

$$\omega_i \leq \widetilde{\omega}_i \leq \omega_{i+1}, \quad j = 1, 2, \ldots$$

• For any $\varepsilon > 0$ and j, there exist c_1 and c_2 sufficiently small s.t. $\widetilde{\omega}_j - \epsilon \le \omega_{j+1}^{\alpha,k} \le \omega_{j+1}$ for $|\alpha| \le c_1$ and $k > 1/c_2$.

• 0: eigenvalue of the periodic problem with multiplicity $1 \Rightarrow$ the spectral bands converge, as $k \to +\infty$, to

$$[0,\omega_1] \cup [\widetilde{\omega}_1,\omega_2] \cup [\widetilde{\omega}_2,\omega_3] \cup \ldots,$$

• Band gap iff

$$\omega_j < \widetilde{\omega}_j$$
 for some j .

• Identity holds provided that $\int_D u_j \neq 0$ where u_j : eigenfunction corresponding to ω_j^2 .

- Small perturbations in the geometry of the holes.
- D: C².
- D_{ε} ϵ -perturbation of D:

$$\partial D_{\varepsilon} = \left\{ \widetilde{x} : \widetilde{x} = x + \varepsilon h(x) \nu(x), \ x \in \partial D \ \right\}, \quad h \in \mathcal{C}^{1}(\partial D).$$

•

$$\mathcal{A}_{\varepsilon}^{\alpha}:\omega\mapsto\left(\begin{array}{cc}\mathcal{S}_{D_{\varepsilon}}^{\alpha,\omega} & -\mathcal{S}_{D_{\varepsilon}}^{\alpha,\frac{\omega}{\sqrt{k}}}\\ \frac{1}{k}\bigg(\frac{1}{2}I-(\mathcal{K}_{D_{\varepsilon}}^{-\alpha,\omega})^{*}\bigg) & \frac{1}{2}I+(\mathcal{K}_{D_{\varepsilon}}^{-\alpha,\frac{\omega}{\sqrt{k}}})^{*}\end{array}\right).$$

• $\exists R^{\alpha,\omega}(x,y)$ smooth for all x and y s.t.

$$\frac{\partial G^{\alpha,\omega}}{\partial \nu(x)}(x,y) = \frac{1}{2\pi} \frac{\langle x-y,\nu(x)\rangle}{|x-y|^2} + R^{\alpha,\omega}(x,y).$$

Photonic crystals

Photonic cavities:

$$k(x) = \left\{ egin{array}{ll} k & ext{in } Y \setminus \overline{D}, & 0 < k
eq 1 < +\infty, \\ 1 & ext{in } D. \end{array} \right.$$

• u: solution to

$$\nabla \cdot k(x)\nabla u + \omega^2 n(x)u = 0.$$

- n(x) 1: compactly supported in a bounded domain $\Omega \subset \mathbb{R}^2$.
- Ω: localized defect inserted into the photonic crystal.
- Introduction of a localized defect does not change the essential spectrum of the operator.
- Assume that the operator $\nabla \cdot k(x) \nabla$ has a gap in the spectrum and seek for ω inside the bandgap s.t. u: nontrivial solution.

•

$$u(x) + \omega^2 \int_{\Omega} (n(y) - 1) G_{\omega}(x, y) u(y) dy = 0, \quad x \in \mathbb{R}^2.$$

• G_{ω} : Green's function of $\nabla \cdot k(x)\nabla + \omega^2$ in \mathbb{R}^2 .

Photonic crystals

• For frequencies in the band gap, G_{ω} is exponentially decaying:

$$|G_{\omega}(x,y)| = O(e^{-C \operatorname{dist}(\omega^2, \sigma(-\nabla \cdot k(x)\nabla))})$$
 as $|x-y| \to \infty$.

- C: positive constant and $\sigma(-\nabla \cdot k(x)\nabla)$: spectrum of $-\nabla \cdot k(x)\nabla$.
- Exponentially localized defect mode.

Lecture 11: Plasmonic nanoparticles

Habib Ammari

Department of Mathematics, ETH Zürich

- Gold nano-particles: accumulate selectively in tumor cells; bio-compatible; reduced toxicity.
- Detection: localized enhancement in radiation dose (strong scattering).
- Ablation: localized damage (strong absorption).
- Functionalization: targeted drugs.

M.A. El-Sayed et al.

- Particles with unsual scattering and absorption properties at certain frequencies (called resonant frequencies).
- Applications: biomedical imaging (nanodetection), nanothermotheraphy, photonic devices, . . .
- Math. modeling: quantify the scattering and absorption enhancement.

- D: nanoparticle in \mathbb{R}^d , d=2,3; $\mathcal{C}^{1,\alpha}$ boundary ∂D , $\alpha>0$.
- ε_c(ω): complex electric permittivity of D; ε_m > 0: electric permittivity of the background medium;
- μ_m : magnetic permeability of the background medium and of D;
- Quasi-static resonance: $\omega \to 0$
 - $\nabla \times E = i\omega \mu H \Rightarrow \nabla \times E = 0$;
 - $\nabla \times H = -i\omega \varepsilon E \Rightarrow \nabla \cdot \varepsilon E = 0$;
 - $E = \nabla u$, u^{in} : harmonic,

$$\left\{ \begin{array}{ll} \nabla \cdot \varepsilon \nabla u = 0 & \text{in } \mathbb{R}^3, \\ (u - u^{\text{in}})(x) \to 0 & |x| \to +\infty. \end{array} \right.$$

- Permittivity contrast: $\lambda(\omega) = (\varepsilon_c(\omega) + \varepsilon_m)/(2(\varepsilon_c(\omega) \varepsilon_m));$
- Integral representation of *u*:

$$u = \mathcal{S}_D(\lambda I - \mathcal{K}_D^*)^{-1} [\frac{\partial u^{\text{in}}}{\partial \nu}];$$

- $\varepsilon_c > 0 \Rightarrow |\lambda| > \frac{1}{2} \Rightarrow \lambda I \mathcal{K}_D^*$: invertible.
- $\Re \varepsilon_c < 0$, $\Re \lambda \sim \sigma(\mathcal{K}_D^*) \Rightarrow (\lambda I \mathcal{K}_D^*)^{-1}$: large.
- Quasi-static plasmonic resonance: $\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_D^*))$ minimal $(\Re \, \varepsilon_c(\omega) < 0)$.

• Causality \Rightarrow Kramer-Krönig relations (Hilbert transform), $\varepsilon_c(\omega) = \varepsilon'(\omega) + i\varepsilon''(\omega)$:

$$arepsilon'(\omega)-arepsilon_{\infty}=-rac{2}{\pi} {
m p.v.} \int_{0}^{+\infty} rac{s arepsilon''(s)}{s^2-\omega^2} ds,$$

$$arepsilon''(\omega) = rac{2\omega}{\pi} \mathrm{p.v.} \int_0^{+\infty} rac{arepsilon'(s) - arepsilon_\infty}{s^2 - \omega^2} ds.$$

• Drude model for the dielectric permittivity $\varepsilon_c(\omega)$:

$$\varepsilon_c(\omega) = \varepsilon_\infty (1 - \frac{\omega_p^2}{\omega^2 + i\tau\omega}), \qquad \varepsilon'(\omega) \le 0 \quad \text{ for } \quad \omega \le \omega_p.$$

 ω_p , τ : positive constants.

- Scalar model for wave propagation.
- u^{in} : incident plane wave; Helmholtz equation:

$$\left\{ \begin{array}{l} \nabla \cdot \left(\varepsilon_{\it m} \chi(\mathbb{R}^d \setminus \bar{D}) + \varepsilon_{\it c}(\omega) \chi(\overline{D}) \right) \nabla u + \omega^2 u = 0, \\ \\ u^{\it s} := u - u^{\rm in} \text{ satisfies the outgoing radiation condition}. \end{array} \right.$$

• Uniform small volume expansion with respect to the contrast: $D = z + \delta B$, $\delta \to 0$, $|x - z| \gg 2\pi/k_m$.

$$u^{s} = -M(\lambda(\omega), D)\nabla_{z}\Gamma_{k_{m}}(x-z)\cdot\nabla u^{\mathrm{in}}(z) + O(\frac{\delta^{d+1}}{\mathrm{dist}(\lambda(\omega), \sigma(\mathcal{K}_{D}^{*}))}).$$

- Γ_{k_m} : outgoing fundamental solution to $\Delta + k_m^2$; $k_m := \omega / \sqrt{\varepsilon_m}$;
- Polarization tensor:

$$M(\lambda(\omega), D) := \int_{\partial D} x(\lambda(\omega)I - \mathcal{K}_D^*)^{-1}[\nu](x) \, ds(x).$$

• Scaling and translation properties: $M(\lambda(\omega), z + \delta B) = \delta^d M(\lambda(\omega), B)$.

Representation by equivalent ellipses and ellipsoids:

- Nanoparticle's permittivity: $\varepsilon_c(\omega) = \varepsilon'(\omega) + i\varepsilon''(\omega)$.
- $\varepsilon'(\omega) > 0$ and $\varepsilon''(\omega) = 0$: canonical representation; equivalent ellipse or ellipsoid with the same polarization tensor.
- Plasmonic nanoparticles: non Hermitian case.
- $\Im M(\lambda(\omega), D)$: equivalent frequency depending ellipse or ellipsoid with the same imaginary part of the polarization tensor.

• Spectral decomposition: (1, m)-entry

$$M_{l,m}(\lambda(\omega),D) = \sum_{j=1}^{\infty} \frac{(\nu_m,\varphi_j)_{\mathcal{H}^*}(\nu_l,\varphi_j)_{\mathcal{H}^*}}{(1/2-\lambda_j)(\lambda(\omega)-\lambda_j)}.$$

- $(\nu_m, \varphi_0)_{\mathcal{H}^*} = 0$; φ_0 : eigenfunction of \mathcal{K}_D^* associated to 1/2.
- Quasi-static far-field approximation: $\delta \to 0$,

$$u^{s} = -\delta^{d} M(\lambda(\omega), B) \nabla_{z} \Gamma_{k_{m}}(x - z) \cdot \nabla u^{\text{in}}(z) + O(\frac{\delta^{d+1}}{\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_{D}^{*}))}).$$

• Quasi-static plasmonic resonance: $\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_D^*))$ minimal $(\Re \varepsilon_c(\omega) < 0)$.

•
$$M(\lambda(\omega), B) = (\frac{\varepsilon_c(\omega)}{\varepsilon_m} - 1) \int_B \nabla v(y) dy$$
:

$$\begin{cases} \nabla \cdot \left(\varepsilon_m \chi(\mathbb{R}^d \setminus \bar{B}) + \varepsilon_c(\omega) \chi(\overline{B})\right) \nabla v = 0, \\ v(y) - y \to 0, \quad |y| \to +\infty. \end{cases}$$

Corrector v:

$$v(y) = y + S_B(\lambda(\omega)I - \mathcal{K}_B^*)^{-1}[\nu](y), \quad y \in \mathbb{R}^d.$$

• Inner expansion: $\delta \to 0$, $|x - z| = O(\delta)$,

$$u(x) = u^{\mathrm{in}}(z) + \delta v(\frac{x-z}{\delta}) \cdot \nabla u^{\mathrm{in}}(z) + O(\frac{\delta^2}{\mathrm{dist}(\lambda(\omega), \sigma(\mathcal{K}_D^*))}).$$

• Monitoring of temperature elevation due to nanoparticle heating:

$$\begin{cases} \rho C \frac{\partial T}{\partial t} - \nabla \cdot \tau \nabla T = \frac{\omega}{2\pi} \Im(\varepsilon_c(\omega)) |u|^2 \chi(D), \\ T|_{t=0} = 0. \end{cases}$$

 ρ : mass density; C: thermal capacity; τ : thermal conductivity.

• Scattering amplitude:

$$u^{s}(x) = -ie^{-\frac{\pi i}{4}} \frac{e^{ik_{m}|x|}}{\sqrt{8\pi k_{m}|x|}} A_{\infty}[D, \varepsilon_{c}, \varepsilon_{m}, \omega](\theta, \theta') + o(|x|^{-\frac{1}{2}}),$$

 $|x| \to \infty$; θ , θ' : incident and scattered directions.

• Scattering cross-section:

$$Q^{s}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta'):=\int_{0}^{2\pi}\left|A_{\infty}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta,\theta')\right|^{2}d\theta.$$

 Enhancement of the absorption and scattering cross-sections Q^a and Q^s at plasmonic resonances:

$$Q^s + Q^s (=$$
 extinction cross-section $Q^e) \propto \Im \operatorname{tr}(M(\lambda(\omega), D));$ $Q^s \propto \big| \operatorname{tr}(M(\lambda(\omega), D)) \big|^2.$

- Quasi-plasmonic resonances for multiple particles: D_1 and D_2 : $\mathcal{C}^{1,\alpha}$ -bounded domains; $\operatorname{dist}(D_1,D_2)>0$; $\nu^{(1)}$ and $\nu^{(2)}$: outward normal vectors at ∂D_1 and ∂D_2 .
- Neumann-Poincaré operator $\mathbb{K}_{D_1 \cup D_2}^*$ associated with $D_1 \cup D_2$:

$$\mathbb{K}_{D_1 \cup D_2}^* := \begin{pmatrix} \mathcal{K}_{D_1}^* & \frac{\partial}{\partial \nu^{(1)}} \mathcal{S}_{D_2} \\ \frac{\partial}{\partial \nu^{(2)}} \mathcal{S}_{D_1} & \mathcal{K}_{D_2}^* \end{pmatrix}.$$

- Symmetrization of $\mathbb{K}_{D_1 \cup D_2}^*$.
- Behavior of the eigenvalues of $\mathbb{K}_{D_1 \cup D_2}^*$ as $\operatorname{dist}(D_1, D_2) \to 0$.
- Blow-up of ∇u between the disks at plasmonic resonances.

• (m, l)-entry of the polarization tensor M:

$$egin{aligned} M_{l,m}(\lambda(\omega),D) &= \sum_{j=1}^{\infty} rac{lpha_{l,m}^{(j)}}{\lambda(\omega)-\lambda_j}, \ lpha_{l,m}^{(j)} &:= rac{(
u_m,arphi_j)_{\mathcal{H}^*}(
u_l,arphi_j)_{\mathcal{H}^*}}{(1/2-\lambda_i)}, \quad lpha_{l,l}^{(j)} \geq 0, \quad j \geq 1. \end{aligned}$$

Sum rules for the polarization tensor:

$$\sum_{j=1}^{\infty} \alpha_{l,m}^{(j)} = \delta_{l,m}|D|; \qquad \sum_{j=1}^{\infty} \lambda_i \sum_{l=1}^{d} \alpha_{l,l}^{(j)} = \frac{(d-2)}{2}|D|.$$

$$\sum_{j=1}^{\infty} \lambda_{j}^{2} \sum_{l=1}^{d} \alpha_{l,l}^{(j)} = \frac{(d-4)}{4} |D| + \sum_{l=1}^{d} \int_{D} |\nabla \mathcal{S}_{D}[\nu_{l}]|^{2} dx.$$

• f holomorphic function in an open set $U \subset \mathbb{C}$ containing $\sigma(\mathcal{K}_D^*)$:

$$f(\mathcal{K}_{\mathcal{D}}^*) = \sum_{j=1}^{\infty} f(\lambda_j)(\cdot, \varphi_j)_{\mathcal{H}^*} \varphi_j.$$

 Upper bound for the averaged extinction cross-section Q_m^e of a randomly oriented nanoparticle:

$$\begin{split} & \left| \Im \big(\text{tr} \big(M(\lambda, D) \big) \big) \right| \leq \frac{d |\lambda''| |D|}{\lambda''^2 + 4\lambda'^2} \\ & + \frac{1}{|\lambda''| (\lambda''^2 + 4\lambda'^2)} \big(d\lambda'^2 |D| + \frac{(d-4)}{4} |D| \\ & + \sum_{l=1}^d \int_D |\nabla \mathcal{S}_D[\nu_l]|^2 dx + 2\lambda' \frac{(d-2)}{2} |D| \big) + O(\frac{\lambda''^2}{4\lambda'^2 + \lambda''^2}). \end{split}$$

$$\lambda' = \Re \lambda, \lambda'' = \Im \lambda.$$

Hadamard's formula for \mathcal{K}_{D}^{*} :

- ∂D : class C^2 ; $\partial D := \{x = X(t), t \in [a, b]\}.$
- $\Psi_{\eta}: \partial D \mapsto \partial D_{\eta} := \{x + \eta h(t)\nu(x)\}; \ \Psi_{\eta}: \ \text{diffeomorphism}.$
- Hadamard's formula for $\mathcal{K}_{\mathcal{D}}^*$:

$$||\mathcal{K}_{D_{\eta}}^{*}[\tilde{\phi}] \circ \Psi_{\eta} - \mathcal{K}_{D}^{*}[\phi] - \eta \mathcal{K}_{D}^{(1)}[\phi]||_{L^{2}(\partial D)} \leq C \eta^{2} ||\phi||_{L^{2}(\partial D)},$$

C: depends only on $||X||_{\mathcal{C}^2}$ and $||h||_{\mathcal{C}^1}$; $\phi:=\tilde{\phi}\circ\Psi_{\eta}$.

- $\mathcal{K}_D^{(1)}$: explicit kernel.
- Hadamard's formula for the eigenvalues of \mathcal{K}_D^* .
- Shape derivative of plasmonic resonances for nanoparticles.

- K_D^{*}: scale invariant ⇒ Quasi-static plasmonic resonances: size independent.
- Analytic formula for the first-order correction to quasi-static plasmonic resonances in terms of the particle's characteristic size δ:

M.A. El-Sayed et al.

Helmholtz equation:

$$\left\{ \begin{array}{l} \nabla \cdot \left(\varepsilon_m \chi(\mathbb{R}^d \setminus \bar{D}) + \varepsilon_c(\omega) \chi(\overline{D}) \right) \nabla u + \omega^2 u = 0, \\ \\ u^s := u - u^{\mathrm{in}} \text{ satisfies the outgoing radiation condition.} \end{array} \right.$$

 u^{in} : incident plane wave; $k_m := \omega \sqrt{\varepsilon_m}, k_c := \omega \sqrt{\varepsilon_c(\omega)}$.

• Integral formulation on ∂D :

$$\left\{ \begin{array}{l} \mathcal{S}_{D}^{k_{c}}[\phi] - \mathcal{S}_{D}^{k_{m}}[\psi] = u^{\mathrm{in}}, \\ \\ \varepsilon_{c}(\frac{1}{2} - (\mathcal{K}_{D}^{k_{c}})^{*})[\phi] - \varepsilon_{m}(\frac{1}{2} + (\mathcal{K}_{D}^{k_{m}})^{*})[\psi] = \varepsilon_{m}\partial u^{i}/\partial\nu. \end{array} \right.$$

• Operator-Valued function $\delta \mapsto \mathcal{A}_{\delta}(\omega) \in \mathcal{L}(\mathcal{H}^*(\partial B), \mathcal{H}^*(\partial B))$:

$$\mathcal{A}_{\delta}(\omega) = \overbrace{(\lambda(\omega)I - \mathcal{K}_{B}^{*})}^{\mathcal{A}_{0}(\omega)} + (\omega\delta)^{2}\mathcal{A}_{1}(\omega) + O((\omega\delta)^{3}).$$

• Quasi-static limit:

$$\mathcal{A}_0(\omega)[\psi] = \sum_{i=0}^{\infty} \tau_j(\omega)(\psi, \varphi_j)_{\mathcal{H}^*} \varphi_j, \quad \tau_j(\omega) := \frac{1}{2} \big(\varepsilon_m + \varepsilon_c(\omega)\big) - \big(\varepsilon_c(\omega) - \varepsilon_m\big) \lambda_j.$$

• Shift in the plasmonic resonance:

$$\arg\min_{\omega}\big|\frac{1}{2}\big(\varepsilon_{\mathit{m}}+\varepsilon_{\mathit{c}}(\omega)\big)-\big(\varepsilon_{\mathit{c}}(\omega)-\varepsilon_{\mathit{m}}\big)\lambda_{\mathit{j}}+(\omega\delta)^{2}\tau_{\mathit{j},\mathbf{1}}\big|;$$

- $\tau_{j,1} := (\mathcal{A}_1(\omega)[\varphi_j], \varphi_j)_{\mathcal{H}^*}$.
- Gohberg-Sigal theory.

• Full Maxwell's equations:

$$\left\{ \begin{array}{l} \nabla\times\nabla\times E - \omega^2 \Big(\varepsilon_m \chi(\mathbb{R}^d\setminus \bar{D}) + \varepsilon_c(\omega)\chi(\overline{D})\Big)E = 0, \\ \\ E^s := E - E^{\mathrm{in}} \text{ satisfies the outgoing radiation condition.} \end{array} \right.$$

• Small-volume expansion:

$$E^{s}(x) = -\delta^{3}\omega^{2}\mathbf{G}_{k_{m}}(x,z)M(\lambda(\omega),B)E^{\mathrm{in}}(z) + O(\frac{\delta^{4}}{\mathrm{dist}(\lambda(\omega),\sigma(\mathcal{K}_{D}^{*}))}).$$

- G_{km}: fundamental (outgoing) solution to Maxwell's equations in free space.
- Shift in the plasmonic resonances due to the finite size of the nanoparticle.

• Integral formulation:

$$\left(\begin{array}{ccc} I + \mathcal{M}_{D}^{k_{c}} - \mathcal{M}_{D}^{k_{m}} & \mathcal{L}_{D}^{k_{c}} - \mathcal{L}_{D}^{k_{m}} \\ \mathcal{L}_{D}^{k_{c}} - \mathcal{L}_{D}^{k_{m}} & \frac{1}{2} (k_{c}^{2} + k_{m}^{2}) I + k_{c}^{2} \mathcal{M}_{D}^{k_{c}} - k_{m}^{2} \mathcal{M}_{D}^{k_{m}} \end{array} \right)$$

• Integral operators:

$$\mathcal{M}_{D}^{k}[\varphi]: H_{T}^{-\frac{1}{2}}(\mathsf{div}, \partial D) \longrightarrow H_{T}^{-\frac{1}{2}}(\mathsf{div}, \partial D) \quad \text{(compact)}$$

$$\varphi \longmapsto \int_{\partial D} \nu(x) \times \nabla_{x} \times \mathbf{G}_{k}(x, y) \varphi(y) ds(y);$$

$$\mathcal{L}_{D}^{k}[\varphi]: H_{T}^{-\frac{1}{2}}(\operatorname{div}, \partial D) \longrightarrow H_{T}^{-\frac{1}{2}}(\operatorname{div}, \partial D)$$

$$\varphi \longmapsto \nu(x) \times \left(k^{2} \mathcal{S}_{D}^{k}[\varphi](x) + \nabla \mathcal{S}_{D}^{k}[\nabla_{\partial D} \cdot \varphi](x)\right).$$

• Key identities: $\mathcal{M}_{D}^{k=0}[\operatorname{curl}_{\partial D}\varphi] = \operatorname{curl}_{\partial D}\mathcal{K}_{D}[\varphi], \quad \forall \varphi \in H^{\frac{1}{2}}(\partial D),$

$$\mathcal{M}_{D}^{k=0}[\nabla_{\partial D}\varphi] \quad = \quad -\nabla_{\partial D}\Delta_{\partial D}^{-1}\mathcal{K}_{D}^{*}[\Delta_{\partial D}\varphi] + \mathcal{R}_{D}[\varphi],$$

$$\mathcal{R}_D = -\mathsf{curl}_{\partial D} \Delta_{\partial D}^{-1} \mathsf{curl}_{\partial D} \mathcal{M}_D \nabla_{\partial D}, \ \forall \varphi \in H^{\frac{3}{2}}(\partial D).$$

• Quasi-static approximation:

$$\widetilde{\mathcal{M}}_{\textit{B}} = \left(\begin{array}{cc} -\Delta_{\partial \textit{B}}^{-1}\mathcal{K}_{\textit{B}}^*\Delta_{\partial \textit{B}} & 0 \\ \mathcal{R}_{\textit{B}} & \mathcal{K}_{\textit{B}} \end{array} \right).$$

• $H(\partial B) := H_0^{\frac{3}{2}}(\partial B) \times H^{\frac{1}{2}}(\partial B)$, equipped with the inner product

$$(u, v)_{\mathcal{H}(\partial B)} = (\Delta_{\partial B} u^{(1)}, \Delta_{\partial B} v^{(1)})_{\mathcal{H}^*} + (u^{(2)}, v^{(2)})_{\mathcal{H}},$$

$$(u, v)_{\mathcal{H}^*} := -(u, \mathcal{S}_D[v])_{-\frac{1}{2}, \frac{1}{2}}, \quad (u, v)_{\mathcal{H}} = -(\mathcal{S}_D^{-1}[u], v)_{-\frac{1}{2}, \frac{1}{2}}.$$

- The spectrum $\sigma(\widetilde{\mathcal{M}}_B) = \sigma(-\mathcal{K}_B^*) \cup \sigma(\mathcal{K}_B^*) \setminus \{-\frac{1}{2}\}$ in $H(\partial B)$.
- Only $\sigma(\mathcal{K}_B^*)$ can be excited in the quasi-static approximation.

- System of weakly coupled plasmonic nanoparticles.
- Size of the nanoparticle $\delta \ll$ wavelength $2\pi/k_m$; distance between the nanoparticles of order one.
- $\Im \mathbf{G}^{\delta} = \Im \mathbf{G}_{k_m} + \text{exhibits subwavelength peak with width of order one.}$
- Break the resolution limit.

- Effective medium theory: Y: unit cell; $\gamma = \varepsilon_m \chi(Y \setminus \overline{D}) + \varepsilon_c \chi(D)$; $\gamma_{\eta}(x) = \gamma(\frac{x}{n})$: periodic with period η .
- Cell problem:

$$\left\{ \begin{array}{l} \nabla \cdot \gamma \nabla u_{p} = 0 \quad \text{in } Y, \\ \\ u_{p} - x_{p} \quad \text{periodic with period } 1, \\ \\ \int_{Y} u_{p}(x) = 0. \end{array} \right.$$

• Effective material parameter γ^* :

$$\gamma_{pq}^* = \int_{\mathcal{X}} \gamma(x) \nabla u_p(x) \cdot \nabla u_q(x) dx, \quad p, q = 1, 2, 3.$$

• As $\eta \to 0$, u_0 : valid approximation of u_{η} ,

$$\nabla \cdot \gamma^* \nabla u_0 = 0$$
 in Ω .

• Maxwell-Garnett formula: Small volume fraction approximation,

$$\varepsilon_{\text{eff}}(\omega) = \varepsilon_m \big(I + fM(\lambda(\omega), B) (I - \frac{f}{3}M(\lambda(\omega), B))^{-1} \big) + O\big(\frac{f^{8/3}}{\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_D^*))^2} \big).$$

- f: volume fraction; B: rescaled particle $(D = \eta^{\beta} B)$.
- $\varepsilon_{\rm eff}(\omega)$: anisotropic.
- Validity of the effective medium theory:

$$f \ll \operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_D^*))^{3/5}$$
.

• High contrast effective medium at plasmonic resonances:

$$abla imes
abla imes
abl$$

- $E|_{\Omega} \mapsto \int_{\Omega} (\varepsilon_{\text{eff}}(\omega) \varepsilon_m) E(y) \mathbf{G}_{k_m}(x, y) \, dy, \quad x \in \Omega.$
- Mixing of resonant modes: intrinsic nature of non-hermitian systems.
- Subwavelength resonance modes excited ⇒ dominate over the other ones in the expansion of the Green function.
- Imaginary part of the Green function may have sharper peak than the one
 of G due to the excited sub-wavelength resonant modes.
- Subwavelength modes: determine the superesolution.

Lecture 12: Electromagnetic invisibility

Habib Ammari

Department of Mathematics, ETH Zürich

- Cloaking: make a target invisible when probed by electromagnetic waves.
- Two schemes:
 - Interior cloaking: target interior to the cloaking device;
 - Exterior cloaking: target exterior to the cloaking device.
- Interior cloaking: Polarization tensors/scattering coefficients cancellation technique.
- Exterior cloaking: anomalous resonances.

- Interior cloaking:
 - Small layered object with vanishing first-order polarization tensors (in the quasi-static limit) or scattering coefficients;
 - Transformation optics;
 - · Core invisible.

For a given entire harmonic function u^{in} , $D \ni 0$, $0 < k \neq 1 < +\infty$, consider

$$\left\{ \begin{array}{l} \displaystyle \nabla \cdot \Big(\chi(\mathbb{R}^2 \setminus \overline{D}) + k \chi(D)\Big) \nabla u = 0 \quad \text{in } \mathbb{R}^2, \\ \\ \displaystyle u(x) - u^{\text{in}}(x) = O(1/|x|) \quad \text{as } |x| \to \infty. \end{array} \right.$$

• Multipolar approximation:

$$u(x) = u^{\mathrm{in}}(x) + \sum_{\alpha} \sum_{\beta} \frac{(-1)^{|\beta|}}{\alpha!\beta!} \partial^{\alpha} u^{\mathrm{in}}(0) \partial^{\beta} \Gamma(x) \underline{\mathsf{M}}_{\alpha\beta}, \quad |x| \to \infty.$$

• Multi-indices $\alpha, \beta \in \mathbb{N}^2$ and $|\lambda| > 1/2$:

$$M_{\alpha\beta}(\lambda,D) := \int_{\partial D} x^{\beta} (\lambda I - \mathcal{K}_{D}^{*})^{-1} [\frac{\partial y^{\alpha}}{\partial \nu}](x) \, d\sigma(x).$$

• $\{M_{\alpha\beta}\}$: generalized polarization tensors (GPTs) associated with D and $\lambda = (k+1)/(2(k-1))$.

- Cloak a region inside the cloaking device.
- Conductivity problem (quasi-static regime): the Dirichlet-to-Neumann map is nearly the same as the one associated to the constant conductivity distribution.
- Change of variable scheme + structures with vanishing generalized polarization tensors.

• Dirichlet-to-Neumann map $\Lambda[\sigma]$:

$$\Lambda[\sigma](\phi) = \sigma \frac{\partial u}{\partial \nu},$$

$$\begin{cases} \nabla \cdot \sigma \nabla u = 0, & \text{in } \Omega, \\ u = \phi, & \text{on } \partial \Omega. \end{cases}$$

- F: diffeomorphism of Ω which is identity on $\partial \Omega$.
- Push-forward of σ by F to obtain the anisotropic conductivity:

$$F_*\sigma(y) = \frac{DF(x)\sigma(x)DF(x)^t}{\det(DF(x))}, \quad x = F^{-1}(y).$$

•

$$\Lambda[\sigma] = \Lambda[F_*\sigma].$$

• $F: \{x: 0 < |x| < 2\} \rightarrow \{x: 1 < |x| < 2\}$ given by

$$F(x) := \left(1 + \frac{|x|}{2}\right) \frac{x}{|x|}.$$

- Perfect cloaking: anything inside the hole $\{|x| < 1\}$ surround by a suitable anisotropic conductivity is invisible by the DtN map.
- Transformation optics for electromagnetic cloaking.
- Physically: selective bending of light rays, i.e., a ray is diverted in the direction of the high conductivity, routed tangentially around |x| = 1, and then ejected out the other side to continue on its way.
- Drawback: F_*1 is singular on |x|=1 (0 in the normal direction, ∞ in tangential direction, 2D)

Near cloaking (regularization)

Blowing-up a small ball

• For a small number ρ , let

$$\sigma = \begin{cases} \sigma_1 & \text{if } |x| < \rho, \\ 1 & \text{if } \rho \le |x| \le 2. \end{cases}$$

(σ_1 can be 0 (insulating core) or ∞ (perfect conductor).)

Near cloaking

Let

$$F(x) = \begin{cases} \left(\frac{2-2\rho}{2-\rho} + \frac{1}{2-\rho}|x|\right) \frac{x}{|x|} & \text{if } \rho \le |x| \le 2, \\ \frac{x}{\rho} & \text{if } 0 \le |x| \le \rho. \end{cases}$$

- F maps B_2 onto B_2 and blows up B_ρ onto B_1 .
- Approximate cloaking:

$$\|\Lambda[F_*\sigma]-\Lambda[1]\|\leq C\rho^2.$$

• Conductivity in the inner cloaking region: $O(\rho)$ in the normal direction, $O(1/\rho)$ in tangential direction, 2D (product = 1).

Small volume expansions

• $\Lambda[F_*\sigma] = \Lambda[\sigma]$ and

$$\Lambda[\sigma](\phi)(x) = \Lambda[1](\phi)(x) + \nabla U(0) \cdot M \frac{\partial}{\partial \nu_x} \nabla_y G(x,0) + \text{h.o.t}, \quad x \in \partial \Omega,$$

G: the Dirichlet Green function;

$$\begin{cases} \Delta U = 0 & \text{in } \Omega, \\ U = \phi & \text{on } \partial \Omega, \end{cases}$$

M: polarization tensor of B_{ρ} .

• PT for B_{ρ} with conductivity σ_1 (proportional to the volume):

$$M=\frac{2(\sigma_1-1)}{\sigma_1+1}|B_{\rho}|I.$$

Polarization tensor of a two-phase structure

- Make PT vanish enhances the cloaking.
- Not possible to make PT vanish with two phases.
- Multi-phase structures.

Hashin's neutral inclusion

M = 0 (GPTs vanishing structure of order 1; a disc with a single coating)

Enhanced near cloaking

 σ^N (GPTs vanishing structure of order N)

Blow-up of a layered small inclusion

Estimate:

$$\|\Lambda[F_*\sigma^N] - \Lambda[1]\| = \|\Lambda[\sigma^N] - \Lambda[1]\| \le C\rho^{2N+2}$$

for some C independent of ρ and N.

- Keep the conductivity in the inner cloaking $O(\rho)$ in the normal direction, $O(1/\rho)$ in tangential direction, 2D.
- Make the h.o.t. vanish in the asymptotic expansion of the Dirichlet-to-Neumann map.

Multiply layered structure

• Let u be the solution to

$$\begin{cases} \nabla \cdot \left(\sigma \chi(D) + \chi(\mathbb{R}^2 \setminus \overline{D})\right) \nabla u = 0 & \text{in } \mathbb{R}^2, \\ u(x) - u^{\text{in}}(x) = O(|x|^{-1}) & \text{as } |x| \to \infty. \end{cases}$$

• **Theorem**: The far-field expansion holds as $|x| \to \infty$:

$$(u - u^{\text{in}})(x) = -\sum_{m,n=1}^{\infty} \left[\frac{\cos m\theta}{2\pi mr^{m}} (M_{mn}^{cc} a_{n}^{c} + M_{mn}^{cs} a_{n}^{s}) + \frac{\sin m\theta}{2\pi mr^{m}} (M_{mn}^{sc} a_{n}^{c} + M_{mn}^{ss} a_{n}^{s}) \right]$$

where
$$u^{\text{in}}(x) = u^{\text{in}}(0) + \sum_{n=1}^{\infty} r^n (a_n^c \cos n\theta + a_n^s \sin n\theta)$$
.

• M_{mn}^{cc} , M_{mn}^{cs} , M_{mn}^{sc} , M_{mn}^{ss} : contracted GPTs.

Multiply layered structure

Disc with multiple coatings:

• For a positive integer N, let $1 = r_{N+1} < r_N < \ldots < r_1 = 2$ and define

$$A_j := \{r_{j+1} < r \le r_j\}, \quad j = 1, 2, \dots, N.$$

- $A_0 = \mathbb{R}^2 \setminus B_2$, $A_{N+1} = B_1$.
- Set σ_j to be the conductivity of A_j for $j=1,2,\ldots,N+1$, and $\sigma_0=1$. Let

$$\sigma = \sum_{i=0}^{N+1} \sigma_j \chi(A_j).$$

 $(\sigma_{N+1} \text{ may (or may not)})$ be fixed: σ_{N+1} is fixed to be 0 if the core is insulated.)

• Let $M_{mn}^{cc}[\sigma]$, etc, denote the GPTs associated with σ . Because of the symmetry of the disc,

$$M_{mn}^{cs}[\sigma] = M_{mn}^{sc}[\sigma] = 0$$
 for all $m, n,$

$$M_{mn}^{cc}[\sigma] = M_{mn}^{ss}[\sigma] = 0$$
 if $m \neq n,$

and

$$M_{nn}^{cc}[\sigma] = M_{nn}^{ss}[\sigma]$$
 for all n .

• Let $M_n = M_{nn}^{cc}$, n = 1, 2, ...

• To compute M_k , we look for solutions u_k to

$$\nabla \cdot \sigma \nabla u = 0 \quad \text{in } \mathbb{R}^2$$

of the form

$$u_k(\mathbf{x}) = a_j^{(k)} r^k \cos k\theta + \frac{b_j^{(k)}}{r^k} \cos k\theta \quad \text{in } A_j, \quad j = 0, 1, \dots, N+1,$$

with $a_0^{(k)} = 1$ and $b_{N+1}^{(k)} = 0$.

• Then u_k satisfies

$$(u_k - u^{\mathrm{in}})(x) = \frac{b_0^{(k)}}{r^k} \cos k\theta \quad \text{as } |\mathbf{x}| \to \infty.$$

with $u^{in}(x) = r^k \cos k\theta$.

• Hence, $M_k = -2\pi k b_0^{(k)}$.

• The transmission conditions on the interface $\{r = r_i\}$:

$$\begin{bmatrix} a_j^{(k)} \\ b_j^{(k)} \end{bmatrix} = \frac{1}{2\sigma_j} \begin{bmatrix} \sigma_j + \sigma_{j-1} & (\sigma_j - \sigma_{j-1})r_j^{-2k} \\ (\sigma_j - \sigma_{j-1})r_j^{2k} & \sigma_j + \sigma_{j-1} \end{bmatrix} \begin{bmatrix} a_{j-1}^{(k)} \\ b_{j-1}^{(k)} \end{bmatrix},$$

and hence

$$\begin{bmatrix} a_{N+1}^{(k)} \\ 0 \end{bmatrix} = \prod_{j=1}^{N+1} \frac{1}{2\sigma_j} \begin{bmatrix} \sigma_j + \sigma_{j-1} & (\sigma_j - \sigma_{j-1})r_j^{-2k} \\ (\sigma_j - \sigma_{j-1})r_j^{2k} & \sigma_j + \sigma_{j-1} \end{bmatrix} \begin{bmatrix} 1 \\ b_0^{(k)} \end{bmatrix}.$$

Let

$$P^{(k)} = \begin{bmatrix} p_{11}^{(k)} & p_{12}^{(k)} \\ p_{21}^{(k)} & p_{22}^{(k)} \end{bmatrix} := \prod_{j=1}^{N+1} \frac{1}{2\sigma_j} \begin{bmatrix} \sigma_j + \sigma_{j-1} & (\sigma_j - \sigma_{j-1})r_j^{-2k} \\ (\sigma_j - \sigma_{j-1})r_j^{2k} & \sigma_j + \sigma_{j-1} \end{bmatrix}.$$

Then,

$$b_0^{(k)} = -\frac{p_{21}^{(k)}}{p_{22}^{(k)}}.$$

• GPTs vanishing structure of order N: $M_k = 0$ for k = 1, ..., N, or

$$p_{21}^{(k)}=0, \quad k=1,\ldots,N.$$

- Solve the equations for $r_N < \ldots < r_2$ and $\sigma_N, \ldots, \sigma_1$.
- If N=1, Hashin's neutral inclusion.
- For N = 2, 3, ..., can be solved by hand.
- For arbitrary N, the equation is nonlinear algebraic equation: numerical optimization.

The conductivity of the core is fixed to be 0. N = 3.

Enhancement of near cloaking

• σ : multi-layered structure with $r_1=2$ and $r_{N+1}=1$; $f=\sum_{k=-\infty}^{\infty}f_ke^{ik\theta}$,

$$\left(\Lambda[\sigma(\frac{1}{\rho}\mathbf{x})] - \Lambda[1]\right)(f) = \sum_{k=-\infty}^{\infty} \frac{2|k|\rho^{2|k|} M_{|k|}[\sigma]}{2\pi|k| - \rho^{2|k|} M_{|k|}[\sigma]} f_k e^{ik\theta}.$$

• σ : a GPTs vanishing structure of order N, $\sigma^N(\mathbf{x}) = \sigma(\frac{1}{\rho}\mathbf{x})$,

$$\left(\Lambda[\sigma^{N}] - \Lambda[1]\right)(f) = \sum_{|k| > N} \frac{2|k|\rho^{2|k|} M_{|k|}[\sigma]}{2\pi|k| - \rho^{2|k|} M_{|k|}[\sigma]} f_{k} e^{ik\theta}.$$

- $|M_k[\sigma]| \leq 2\pi k 2^{2k}$ for all k.
- Using the transformation blowing up a small ball, we can get a near-cloaking structure s.t.

$$\| \Lambda[\sigma^N] - \Lambda[1] \| = \| \Lambda[F_*\sigma^N] - \Lambda[1] \| \le C \rho^{2N+2}.$$

Enhancement of near cloaking

Change of variables (sends the annulus $[\rho, 2\rho]$ onto a fixed annulus):

$$F_{\rho}(\mathbf{x}) := \begin{cases} \left(\frac{3-4\rho}{2(1-\rho)} + \frac{1}{4(1-\rho)}|\mathbf{x}|\right) \frac{\mathbf{x}}{|\mathbf{x}|} & \text{for } 2\rho \leq |\mathbf{x}| \leq 2, \\ \left(\frac{1}{2} + \frac{1}{2\rho}|\mathbf{x}|\right) \frac{\mathbf{x}}{|\mathbf{x}|} & \text{for } \rho \leq |\mathbf{x}| \leq 2\rho, \\ \frac{\mathbf{x}}{\rho} & \text{for } |\mathbf{x}| \leq \rho. \end{cases}$$

Anisotropic conductivity distributions:

Enhancement of near cloaking

 \log_{10} of the eigenvalues of $\Lambda[\sigma(\frac{1}{\rho}\mathbf{x})] - \Lambda[1]$ for different values of N:

N-layer vanishing GPTs structure: same first N DtN eigenvalues as $\Lambda[1]$.

• Helmholtz equation:

$$\left\{ \begin{array}{l} \nabla \cdot \left(\varepsilon_m \chi(\mathbb{R}^d \setminus \bar{D}) + \varepsilon_c \chi(\overline{D}) \right) \nabla u + \omega^2 u = 0, \\ \\ u^s := u - u^i \text{ satisfies the outgoing radiation condition.} \end{array} \right.$$

 u^i : incident plane wave; $k_m := \omega \sqrt{\varepsilon_m}, k_c := \omega \sqrt{\varepsilon_c}$.

Scattering coefficients:

$$W_{ll'}(D,\varepsilon_c,\varepsilon_m,\omega)=\int_{\partial D}\psi_l(y)J_{l'}(\omega|y|)e^{-il'\theta_y}\,ds(y).$$

- ψ_l : electric current density on ∂D induced by the cylindrical wave $J_l(\omega|x|)e^{il\theta_x}$.
- *J_I*: Bessel function.

•

$$\begin{cases} S_D^{k_c}[\phi_I] - S_D^{k_m}[\psi_I] = J_I(\omega|x|)e^{il\theta_x}, \\ \varepsilon_c(\frac{I}{2} - (\mathcal{K}_D^{k_c})^*)[\phi_I] - \varepsilon_m(\frac{I}{2} + (\mathcal{K}_D^{k_m})^*)[\psi_I] = \varepsilon_m \frac{\partial (J_I(\omega|x|)e^{il\theta_x})}{\partial \nu}. \end{cases}$$

- Properties of the scattering coefficients:
 - $W_{II'}$ decays rapidly:

$$|W_{ll'}| \leq O(\omega^{|I|+|I|'}) \frac{C^{|I|+|I|'}}{|I|^{|I|}|I'|^{|I|'}}, \ I, I' \in \mathbb{Z};$$

C: independent of ω .

• Scattering amplitude:

$$u^{s}(x) = -ie^{-\frac{\pi i}{4}} \frac{e^{ik_{m}|x|}}{\sqrt{8\pi k_{m}|x|}} A_{\infty}[D, \varepsilon_{c}, \varepsilon_{m}, \omega](\theta, \theta') + o(|x|^{-\frac{1}{2}}),$$

 $|x| \to \infty$; θ , θ' : incident and scattered directions.

• Graf's formula:

$$A_{\infty}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta,\theta') = \sum_{l,l'\in\mathbb{Z}} (-i)^{l} i^{l'} e^{il\theta} W_{ll'}(D,\varepsilon_{c},\varepsilon_{m},\omega) e^{-il'\theta'}.$$

• Scattering cross-section:

$$Q^{s}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta'):=\int_{0}^{2\pi}\left|A_{\infty}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta,\theta')\right|^{2}d\theta.$$

- Scattering coefficient cancellation technique:
 - Small layered object with vanishing first-order scattering coefficients.
 - Transformation optics:

$$(F_{\rho})_{*}[\phi](y) = \frac{DF_{\rho}(x)\phi(x)DF_{\rho}(x)^{t}}{\det(DF_{\rho}(x))}, \quad x = F_{\rho}^{-1}(y).$$

- Change of variables F_{ρ} sends the annulus $[\rho, 2\rho]$ onto a fixed annulus.
- Scattering coefficients vanishing structures of order N:

$$Q^{s}\Big[D,(F_{\rho})_{*}(\varepsilon\circ\Psi_{\frac{1}{\rho}}),\varepsilon_{m},\omega\Big](\theta')=o(\rho^{4N}),\quad \Psi_{1/\rho}(x)=(1/\rho)x.$$

 ρ : size of the small object; N: number of layers.

- Anisotropic permittivity distribution.
- Invisibility at $\omega \Rightarrow$ invisibility at all frequencies $\leq \omega$.

Cancellation of the scattered field and the scattering cross-section: 4 orders of magnitude (with wavelength of order 1, $\rho = 10^{-1}$, and N = 1).

• Ω : bounded domain in \mathbb{R}^2 ; $D \in \Omega$. Ω and D of class $\mathcal{C}^{1,\mu}$, $0 < \mu < 1$. For a given loss parameter $\delta > 0$, the permittivity distribution in \mathbb{R}^2 is given by

$$arepsilon_{\delta} = egin{cases} 1 & & ext{in } \mathbb{R}^2 \setminus \overline{\Omega}, \ -1 + i\delta & & ext{in } \Omega \setminus \overline{D}, \ 1 & & ext{in } D. \end{cases}$$

• Configuration (plasmonic structure): core with permittivity 1 coated by the shell $\Omega \setminus \overline{D}$ with permittivity $-1 + i\delta$.

• For a given function f compactly supported in \mathbb{R}^2 satisfying $\int_{\mathbb{R}^2} f dx = 0$ (conservation of charge), consider the following dielectric problem:

$$\nabla \cdot \varepsilon_{\delta} \nabla V_{\delta} = \alpha f \quad \text{in } \mathbb{R}^2,$$

with the decay condition $V_{\delta}(x) \to 0$ as $|x| \to \infty$.

 Dielectric problems: models the quasi-static (zero-frequency) transverse magnetic regime.

• Fundamental problem: identify f s.t. when $\alpha = 1$

$$egin{aligned} E_\delta := \int_{\Omega\setminus\overline{D}} \delta |
abla V_\delta|^2 dx &
ightarrow \infty \quad ext{as } \delta
ightarrow 0. \ &|V_\delta(x)| < C, \quad ext{when} \quad |x| > a \end{aligned}$$

for some constants C and a independent of δ .

- E_δ: proportional to the electromagnetic power dissipated into heat by the time harmonic electrical field averaged over time.
- Infinite amount of energy dissipated per unit time in the limit $\delta \to 0$: unphysical.
- Choose α = 1/√E_δ: αf produces the same power independent of δ and the new associated solution V_δ approaches zero outside the radius a.
- Necessary and sufficient condition for CALR (with $\alpha=1$) $V_{\delta}/\sqrt{E_{\delta}}$ goes to zero outside some radius as $\delta \to 0$.

- Using layer potential techniques: we reduce the problem to a singularly perturbed system of integral equations.
- The system is non-self-adjoint ⇒ we introduce a symmetrization technique in order to express the solution in terms of the eigenfunctions of a self-adjoint compact operator.
- Symmetrization technique: based on a generalization of a Calderón identity to the system of integral equations.
- Necessary and sufficient condition on the source term under which the blowup of the power dissipation takes place given in terms of the Newtonian potential of the source

$$\frac{1}{2\pi}\int_{\mathbb{R}^2}\ln|x-y|f(y)dy, \quad x\in\mathbb{R}^2,$$

which is the solution for the potential in the absence of the plasmonic structure.

• In the case of an annulus (D is the disk of radius r_i and $\Omega =: B_e$ is the concentric disk of radius r_e), it is known (Milton et al.) that there exists a critical radius (the cloaking radius)

$$r_* = \sqrt{r_e^3 r_i^{-1}}.$$

s.t. any finite collection of dipole sources located at fixed positions within the annulus $B_{r_*}\setminus \overline{B}_e$ is cloaked.

- Sufficient conditions for a source αf supported in E to be cloaked. (In particular, quadrupole source inside the annulus $B_{r_*} \setminus \overline{B}_e$: cloaked).
- Conversely, if the source function f is supported outside B_{r*} then no cloaking occurs.

- Notation: $\Gamma_i := \partial D \Gamma_e := \partial \Omega$, F Newtonian potential of f; $\mathcal{H} = L^2(\Gamma_i) \times L^2(\Gamma_e)$; $z_\delta = \frac{i\delta}{2(2-i\delta)}$.
- Representation formula:

$$V_{\delta}(x) = F(x) + S_{\Gamma_i}[\varphi_i](x) + S_{\Gamma_e}[\varphi_e](x).$$

• Introduce:

$$\Phi := egin{bmatrix} arphi_i \ arphi_e \end{bmatrix}, \quad oldsymbol{g} := egin{bmatrix} rac{\partial F}{\partial
u_i} \ -rac{\partial F}{\partial
u_e} \end{bmatrix}.$$

• Singularly perturbed equation:

$$(z_{\delta}\mathbb{I}_{2}+\mathbb{K}^{*})\Phi=g.$$

• $\mathbb{K}^*: \mathcal{H} \to \mathcal{H}$ Neumann-Poincaré-type operator (compact non-self-adjoint in general):

$$\mathbb{K}^* := \begin{bmatrix} -\mathcal{K}_{\Gamma_i}^* & -\frac{\partial}{\partial \nu_i} \mathcal{S}_{\Gamma_e} \\ \\ \frac{\partial}{\partial \nu_e} \mathcal{S}_{\Gamma_i} & \mathcal{K}_{\Gamma_e}^* \end{bmatrix}.$$

- Spectrum of $\mathbb{K}^* \subset [-1/2, 1/2]$.
- The operator

$$\mathbb{S} = \begin{bmatrix} \mathcal{S}_{\Gamma_i} & \mathcal{S}_{\Gamma_e} \\ \mathcal{S}_{\Gamma_i} & \mathcal{S}_{\Gamma_e} \end{bmatrix}$$

is self-adjoint and $-\mathbb{S} \geq 0$ on \mathcal{H} .

- Calderón's-type identity: $SK^* = KS$.
- K*: Hilbert-Schmidt (in 2D; Schatten-von Neumann in 3D).
- K*: symmetrizable ← there is a bounded self-adjoint operator A on Range(S) such that A√-S = √-SK*.

- \mathbb{A} self-adjoint \Rightarrow an orthogonal decomposition: $\mathcal{H} = \operatorname{Ker} \mathbb{A} \oplus (\operatorname{Ker} \mathbb{A})^{\perp}$, and $(\operatorname{Ker} \mathbb{A})^{\perp} = \overline{\operatorname{Range} \mathbb{A}}$.
- P and Q = I P: the orthogonal projections from $\mathcal H$ onto Ker $\mathbb A$ and $(\operatorname{Ker} \mathbb A)^\perp$, respectively. Let $\lambda_1, \lambda_2, \ldots$ with $|\lambda_1| \geq |\lambda_2| \geq \ldots$ be the nonzero eigenvalues of $\mathbb A$ and Ψ_n be the corresponding (normalized) eigenfunctions. $\mathbb A \in \mathcal C_2(\mathcal H) \Rightarrow$

$$\sum_{n=1}^{\infty} \lambda_n^2 < \infty,$$

and

$$\mathbb{A}\Phi = \sum_{n=1}^{\infty} \lambda_n \langle \Phi, \Psi_n \rangle \Psi_n, \quad \Phi \in \mathcal{H}.$$

• If $P\sqrt{-\mathbb{S}}g \neq 0$, then CALR takes place. If $Ker(\mathbb{K}^*) = \{0\}$, then CALR takes place iff

$$\delta \sum_n \frac{|\langle \sqrt{-\mathbb{S}}g, \Psi_n \rangle|^2}{\lambda_n^2 + \delta^2} \to \infty \quad \text{ as } \delta \to 0.$$

Anomalous resonance in an annulus:

- Eigenvalues λ of $\mathbb{A} = \{\pm \rho^{|n|}\}$, $\rho = \frac{r_i}{r_0}$.
- (Blow-up of power dissipation criterion) For a given source f supported outside \overline{B}_e (with $\alpha=1$). If the Fourier coefficients of $-\frac{\partial F}{\partial \nu_e}$ on Γ_e , where F is the Newton potential of f satisfies a Gap condition (mild condition), then

$$\int_{B_e \setminus B_i} \delta |\nabla V_\delta|^2 \to \infty \quad \text{as } \delta \to 0,$$

and CALR occurs.

Quadrupole satisfies the Gap condition.

Anomalous resonance in an annulus:

- Any source supported outside B_{r_*} cannot make the blow-up of the power dissipation happen and is not cloaked. Indeed, in the limit $\delta \to 0$ the annulus itself becomes invisible to sources that are sufficiently far away.
- If f is supported in $\mathbb{R}^2 \setminus \overline{B}_{r_*}$, then

$$\int_{B_{\mathbf{e}}\setminus B_{i}}\delta|\nabla V_{\delta}|^{2}< C$$

holds for some constant C independent of δ (with $\alpha = 1$). Moreover,

$$\sup_{|x|>r_*}|V_\delta(x)-F(x)| o 0\quad {\sf as}\quad \delta o 0.$$

• Annulus itself becomes invisible to sources that are sufficiently far away.

Lecture 13: Helmholtz resonators

Habib Ammari

Department of Mathematics, ETH Zürich

- Photonics: ubwavelength resonator (plasmonic nanoparticle): low-frequency resonance ⇒ metamaterials/cloaking/super-resolution/high-contrast materials/metasurfaces.
- Analogue in phononics: Helmholtz resonators/Minnaert bubbles.

• Helmholtz resonator:

- Finite Hilbert transform
- \mathcal{X}^{ϵ} , for small $\epsilon > 0$,

$$\mathcal{X}^{\epsilon} = \left\{ \varphi : \int_{-\varepsilon}^{\varepsilon} \sqrt{\epsilon^2 - x^2} \, |\varphi(x)|^2 \, dx < +\infty \right\}.$$

• \mathcal{X}^{ϵ} : Hilbert space equipped with the norm

$$\|\varphi\|_{\mathcal{X}^{\epsilon}} = \left(\int_{-\varepsilon}^{\varepsilon} \sqrt{\epsilon^2 - x^2} \left|\varphi(x)\right|^2 dx\right)^{1/2}.$$

Introduce

$$\mathcal{Y}^{\epsilon} = \left\{ \psi \in \mathcal{C}^{0}([-\epsilon, \epsilon]) : \psi' \in \mathcal{X}^{\epsilon} \right\}.$$

- ψ' : distribution derivative of ψ .
- \mathcal{Y}^{ϵ} : Hilbert space with the norm

$$\|\psi\|_{\mathcal{Y}^{\epsilon}} = \left(||\psi||_{\mathcal{X}^{\epsilon}}^2 + ||\psi'||_{\mathcal{X}^{\epsilon}}^2\right)^{1/2}.$$

- $\mathcal{L}_{\varepsilon}: \mathcal{X}^{\epsilon} o \mathcal{Y}^{\epsilon}$: $\mathcal{L}_{\varepsilon}[\varphi](x) = \int_{-\epsilon}^{\epsilon} \ln|x y| \, \varphi(y) \, dy.$
- For all $0 < \epsilon < 2$, the integral operator $\mathcal{L}_{\varepsilon} : \mathcal{X}^{\epsilon} \mapsto \mathcal{Y}^{\epsilon}$: invertible.
- For $\varphi \in \mathcal{X}^{\epsilon}$, $\psi(x) = \int_{-\epsilon}^{\epsilon} \ln|x y| \ \varphi(y) \ dy$: differentiable;
- Derivative on $(-\epsilon, \epsilon)$:

$$\psi'(x) = \mathcal{H}_{\varepsilon}[\varphi](x).$$

• $\mathcal{H}_{\varepsilon}$: the finite Hilbert transform

$$\mathcal{H}_{\varepsilon}[\varphi](x) = \int_{-\epsilon}^{\epsilon} \frac{\varphi(y)}{x - y} dy \quad \text{for } x \in (-\epsilon, \epsilon).$$

• For any $x \in (-\varepsilon, \varepsilon)$,

$$\mathcal{H}_{\varepsilon}\left[\frac{1}{\sqrt{\varepsilon^2-y^2}}\right](x)=0, \quad \mathcal{H}_{\varepsilon}\left[\sqrt{\varepsilon^2-y^2}\right](x)=\pi x, \quad \mathcal{H}_{\varepsilon}\left[\frac{y}{\sqrt{\varepsilon^2-y^2}}\right](x)=-\pi.$$

• No smoothness preserving property:

$$\mathcal{H}_{\varepsilon}[1](x) = \ln \frac{\varepsilon + x}{\varepsilon - x}$$

and

$$\mathcal{H}'_{\varepsilon}[\varphi](x) - \frac{\varphi(-\varepsilon)}{\varepsilon + x} + \frac{\varphi(\varepsilon)}{\varepsilon - x} + \mathcal{H}_{\varepsilon}[\varphi'](x).$$

- $\mathcal{H}_{\varepsilon}: \mathcal{X}^{\epsilon} \to \mathcal{X}^{\epsilon}$ satisfies dim $\ker(\mathcal{H}_{\varepsilon}) = 1$ and $\operatorname{Im} \, \mathcal{H}_{\varepsilon} = \mathcal{X}^{\epsilon}$.
- $\ker(\mathcal{H}_{\varepsilon})$: spanned by $1/\sqrt{\varepsilon^2 y^2}$.
- Hölder estimate: for $\varphi \in \mathcal{C}^{0,\eta}([-1,1])$ with $\eta > 0$,

$$\left\| \int_{-1}^{1} \frac{\varphi(y)}{x - y} \ dy \right\|_{L^{\infty}([-1,1])} \le C \left\| \varphi \right\|_{C^{0,\eta}([-1,1])}.$$

Explicit solution to

$$\mathcal{L}_{\varepsilon}[\varphi](x) = \psi(x) \in \mathcal{Y}^{\epsilon}, \quad \forall x \in (-\epsilon, \epsilon).$$

• ⇒

$$\psi'(x) = \mathcal{H}_{\varepsilon}[\varphi](x).$$

General solution:

$$\varphi_{\lambda}(x) = -\frac{1}{\pi^2 \sqrt{\epsilon^2 - x^2}} \int_{-\epsilon}^{\epsilon} \frac{\sqrt{\epsilon^2 - y^2} \psi'(y)}{x - y} \ dy + \frac{\lambda}{\sqrt{\epsilon^2 - x^2}};$$

• λ : complex constant.

•

$$a(\psi) = \psi(x) - \mathcal{L}_{\varepsilon}[\varphi_{\lambda=0}](x).$$

• $a(\psi)$: constant.

•

$$\lambda(\psi) \mathcal{L}_{\varepsilon} \left[y \mapsto \frac{1}{\sqrt{\epsilon^2 - y^2}} \right] = a(\psi).$$

• =

$$\mathcal{L}_{arepsilon}\left[y\mapsto rac{1}{\sqrt{\epsilon^2-y^2}}
ight](x)=\pi\lnrac{\epsilon}{2}\quad ext{for all }x\in\left(-\epsilon,\epsilon
ight).$$

• =

$$\lambda(\psi) = \frac{\mathsf{a}(\psi)}{\pi \ln(\epsilon/2)}.$$

• =

$$\mathcal{L}_{\varepsilon}^{-1}[\psi](x) \,=\, -\frac{1}{\pi^2\sqrt{\epsilon^2-x^2}}\,\int_{-\epsilon}^{\epsilon}\,\frac{\sqrt{\epsilon^2-y^2}\psi'(y)}{x-y}\,\,dy + \frac{\mathsf{a}(\psi)}{\left(\pi\ln(\epsilon/2)\right)\sqrt{\epsilon^2-x^2}}.$$

- For $\varepsilon = 2$, \mathcal{L}_2 : nontrivial kernel.
- For $0 < \varepsilon < 2$, unique solution: $\psi \equiv 0 \Rightarrow \mathcal{L}_{\varepsilon}^{-1}[\psi] \equiv 0$.

- $R(x, y) \in C^{1,\eta}$ in x and y, for $\eta > 0$.
- $\mathcal{R}_{\varepsilon}: \mathcal{X}^{\epsilon} \to \mathcal{Y}^{\epsilon}$

$$\mathcal{R}_{\varepsilon}[\varphi](x) = \int_{-\epsilon}^{\epsilon} R(x, y) \varphi(y) dy,$$

• There exists a positive constant C, independent of ϵ , s.t.

$$\|\mathcal{L}_{\varepsilon}^{-1}\mathcal{R}_{\varepsilon}\|_{\mathcal{L}(\mathcal{X}^{\epsilon},\mathcal{X}^{\epsilon})} \leq \frac{\mathcal{C}}{|\ln \epsilon|};$$

•

$$\|\mathcal{L}_{\varepsilon}^{-1}\mathcal{R}_{\varepsilon}\|_{\mathcal{L}(\mathcal{X}^{\epsilon},\mathcal{X}^{\epsilon})} = \sup_{\varphi \in \mathcal{X}^{\epsilon}, \|\varphi\|_{\mathcal{X}^{\epsilon}} = 1} \|\mathcal{L}_{\varepsilon}^{-1}\mathcal{R}_{\varepsilon}[\varphi]\|_{\mathcal{X}^{\epsilon}}.$$

- Perturbations of scattering frequencies.
- $\Omega \subset \mathbb{R}^2$: bounded simply connected domain with boundary $\partial \Omega \in \mathcal{C}^2$.
- μ_0 : simple eigenvalues of $-\Delta$ in Ω with Neumann conditions.
- V: neighborhood of μ_0 in $\mathbb C$ s.t. μ_0 : the only eigenvalue in V of $-\Delta$ in Ω with Neumann boundary condition on $\partial\Omega$.
- Acoustic Helmholtz resonator: surface $\partial \Omega_{\varepsilon} = \partial \Omega \setminus \Sigma_{\varepsilon}$, where $\partial \Omega_{\varepsilon}$: obtained from $\partial \Omega$ by making a small opening Σ_{ε} in the boundary with diameter tending to zero as $\varepsilon \to 0$.
- Opening connects the interior and the exterior parts of the resonator.

• μ_0 : Neumann eigenvalue of $-\Delta$ in Ω , the corresponding scattering problem is to find μ^{ε} (with $\Im m \mu^{\varepsilon} \geq 0$) close to μ_0 s.t. that there exists a nontrivial solution to

$$\left\{ \begin{array}{l} (\Delta + \mu^{\varepsilon})u^{\varepsilon} = 0 \quad \text{in } \Omega \cup (\mathbb{R}^2 \setminus \overline{\Omega}), \\ \\ \frac{\partial u^{\varepsilon}}{\partial \nu} = 0 \quad \text{on } \partial \Omega_{\varepsilon}, \\ \\ \left| \frac{\partial u^{\varepsilon}}{\partial r} - \sqrt{-1\mu^{\varepsilon}}u^{\varepsilon} \right| = \mathcal{O}(r^{-1}) \quad \text{as } r = |x| \to +\infty. \end{array} \right.$$

- Reduce the scattering problem to the study of characteristic values of a certain operator-valued function, and by means of the generalized Rouché theorem:
 - prove the existence of a scattering frequency μ^{ε} with small imaginary part which converges to μ_0 as $\varepsilon \to 0$;
 - Construct the leading-order term in its asymptotic expansion.
- Assume 0: the center to which the opening can be contracted and the opening Σ_ε flat: Σ_ε = (-ε, ε).

• $\mu \in \mathbb{C}$ (with $\Im m \mu \geq 0$): scattering pole if there exists a nontrivial solution to the exterior problem

$$\left\{ \begin{array}{l} (\Delta + \mu) v = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{\Omega}, \\ \\ \frac{\partial v}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \\ \\ \int_{\mathbb{R}^2 \setminus \overline{\Omega}} |v|^2 < +\infty. \end{array} \right.$$

• Exterior Neumann function $N_{\mathbb{R}^2\setminus\overline{\Omega}}^{\sqrt{\mu}}$: unique solution to

$$\left\{ \begin{array}{l} (\Delta_x + \mu) N_{\mathbb{R}^2 \setminus \overline{\Omega}}^{\sqrt{\mu}}(x,z) = -\delta_z & \text{in } \mathbb{R}^2 \setminus \overline{\Omega}, \\ \\ \frac{\partial N_{\mathbb{R}^2 \setminus \overline{\Omega}}^{\sqrt{\mu}}}{\partial \nu} \Big|_{\partial \Omega} = 0 & \text{on } \partial \Omega, \\ \\ \left| \frac{\partial N_{\mathbb{R}^2 \setminus \overline{\Omega}}^{\sqrt{\mu}}}{\partial r} - \sqrt{-1\mu} N_{\mathbb{R}^2 \setminus \overline{\Omega}}^{\sqrt{\mu}} \right| = O(r^{-1}) & \text{as } r = |x| \to +\infty. \end{array} \right.$$

• $N_0^{\sqrt{\mu^{\varepsilon}}}$: interior Neumann function.

•

$$arphi^arepsilon = rac{\partial u^arepsilon}{\partial
u} \quad ext{on } \Sigma_arepsilon.$$

ullet Green's formula $\Rightarrow \varphi^{arepsilon}$ satisfies the integral equation:

$$\int_{\Sigma_{\varepsilon}} \bigg(\textit{N}_{\mathbb{R}^{2} \backslash \overline{\Omega}}^{\sqrt{\mu^{\varepsilon}}} + \textit{N}_{\Omega}^{\sqrt{\mu^{\varepsilon}}} \bigg) (x,y) \, \varphi^{\varepsilon}(y) \, dy = 0 \quad \text{on } \Sigma_{\varepsilon}.$$

• Define $\mu \mapsto \mathcal{A}_{\varepsilon}(\mu)$ by

$$\mathcal{A}_{\varepsilon}(\mu)[\varphi](x) := \int_{-\epsilon}^{\epsilon} \left(N_{\mathbb{R}^2 \setminus \overline{\Omega}}^{\sqrt{\mu^{\varepsilon}}} + N_{\Omega}^{\sqrt{\mu^{\varepsilon}}} \right) (x, y) \, \varphi(y) \, dy.$$

 The problem of finding the scattering frequencies: reduced to that of finding the characteristic values of A_ε(μ).

- Asymptotic formula for perturbations in scattering frequencies.
- Assumptions:
 - μ_0 : simple Neumann eigenvalue of of $-\Delta$ in Ω associated with the normalized eigenfunction u_{i_0}
 - V: complex neighborhood of μ_0 s.t. (i) μ_0 : the only Neumann eigenvalue in V of $-\Delta$ in Ω and (ii) there is no scattering pole of in V.

•

$$N_{\mathbb{R}^2\setminus\overline{\Omega}}^{\sqrt{\mu}}(x,z)=-rac{1}{2\pi}\ln|x-z|+r(x,z,\mu);$$

• $r(x, z, \mu)$: holomorphic with respect to μ in V and smooth in x and z.

• Pole-pencil decomposition of $\mathcal{A}_{\varepsilon}: \mathcal{X}^{\epsilon} \to \mathcal{Y}^{\epsilon}$ in $V \setminus \{\mu_0\}$:

$$\mathcal{A}_{arepsilon}(\mu) \, = \, -rac{1}{\pi}\,\mathcal{L}_{arepsilon} + rac{\mathcal{K}_{arepsilon}}{\mu_0 - \mu} + \mathcal{R}_{arepsilon}(\mu);$$

•

$$\mathcal{L}_{\varepsilon}[\varphi](x) = \int_{-\epsilon}^{\epsilon} \ln|x-y| \, \varphi(y) \, dy;$$

• $\mathcal{K}_{\varepsilon}$: one-dimensional operator

$$\mathcal{K}_{\varepsilon}[\varphi](x) = \langle \varphi, u_{j_0} \rangle_{L^2(\Sigma_{\varepsilon})} u_{j_0};$$

•

$$\mathcal{R}_{\varepsilon}(\mu)[\varphi](x) = \int_{-\epsilon}^{\epsilon} R(\mu, x, y) \, \varphi(y) \, dy;$$

• $(\mu, x, y) \mapsto R(\mu, x, y)$: holomorphic in μ and smooth in x and y.

- Set of characteristic values of $\mu \mapsto \mathcal{A}_{\varepsilon}$: discrete.
- Proof:
 - $\mathcal{L}_{\varepsilon}: \mathcal{X}^{\epsilon} \to \mathcal{Y}^{\epsilon}$: invertible; $\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{R}_{\varepsilon}\|_{\mathcal{L}(\mathcal{X}^{\epsilon}, \mathcal{X}^{\epsilon})} \to 0$ as $\varepsilon \to 0$.
 - $\Rightarrow -(1/(\pi)) \mathcal{L}_{\varepsilon} + \mathcal{R}_{\varepsilon} : \mathcal{X}^{\epsilon} \to \mathcal{Y}^{\epsilon}$: invertible for ε small enough.
 - Pole-pencil decomposition $\Rightarrow \mathcal{A}_{\varepsilon}$: finitely meromorphic and of Fredholm type in V.
 - $\mathcal{K}_{\varepsilon}$: of finite-dimension $\Rightarrow \exists \ \mu^* \in V \text{ s.t. } \mathcal{A}_{\varepsilon}(\mu^*)$: invertible.
 - Generalized Steinberg's theorem ⇒ the discreteness of the set of characteristic values of A_ε in V.

- \exists only one characteristic value of $\mathcal{A}_{\varepsilon}$ in V of μ_0 .
- Proof:
 - Define

$$\mathcal{N}_{\varepsilon}: \mu \mapsto \mathcal{N}_{\varepsilon}(\mu) = -\frac{1}{\pi}\mathcal{L}_{\varepsilon} + \frac{\mathcal{K}_{\varepsilon}}{\mu_{0} - \mu}.$$

- Show that the multiplicity of $\mathcal{N}_{\varepsilon}$ in V is equal to zero.
- Find the characteristic values of $\mathcal{N}_{\varepsilon}$ in V: $\hat{\mu}$ s.t. $\exists \ \hat{\varphi} \not\equiv 0$ satisfying $\mathcal{N}_{\varepsilon}(\hat{\mu})[\hat{\varphi}] \equiv 0$ on $(-\varepsilon, \varepsilon)$.
- *⇒*

$$rac{1}{\pi}\mathcal{L}_{arepsilon}[\hat{arphi}] + rac{\langle \hat{arphi}, u_{j_0}
angle}{\hat{\mu} - \mu_0} \; u_{j_0} \; = \; 0.$$

• $\mathcal{L}_{\varepsilon}$: invertible \Rightarrow

$$\frac{1}{\pi}\,\hat{\varphi}+\frac{\langle\hat{\varphi},u_{j_0}\rangle}{\hat{\mu}-\mu_0}\,\mathcal{L}_{\varepsilon}^{-1}[u_{j_0}]\,=\,0.$$

• Multiply by u_{j_0} ,

$$\langle \hat{\varphi}, u_{j_0} \rangle \left(\frac{1}{\pi} + \frac{\langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle}{\hat{\mu} - \mu_0} \right) = 0.$$

• =

$$\hat{\mu} = \mu_0 - \pi \langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle.$$

• $\langle \hat{\varphi}, u_{i_0} \rangle = 0$ would imply that $\hat{\varphi} \equiv 0$.

•

$$|\langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle| \longrightarrow 0 \quad \text{as } \varepsilon \to 0.$$

• ⇒

$$|\hat{\mu} - \mu_0| \longrightarrow 0$$
 as $\varepsilon \to 0$.

• Normalization condition: $\langle \hat{\varphi}, u_{j_0} \rangle = 1 \Rightarrow$ the root function associated to this characteristic value $\hat{\mu}$:

$$\hat{\varphi} = \frac{\mathcal{L}_{\varepsilon}^{-1}[u_{j_0}]}{\langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle}.$$

- Multiplicity of $\hat{\mu}$ as a characteristic value of $\mathcal{N}_{\varepsilon}$ (the order of $\hat{\mu}$ as a pole of $\mathcal{N}_{\varepsilon}^{-1}$).
- $\mathcal{N}_{\varepsilon}(\mu)[\varphi] = f$: equivalent to

$$-\frac{1}{\pi}\varphi+\frac{\langle\varphi,u_{j_0}\rangle\mathcal{L}_{\varepsilon}^{-1}[u_{j_0}]}{\mu_0-\mu}=\mathcal{L}_{\varepsilon}^{-1}[f].$$

•

$$\langle \varphi, u_{j_0} \rangle \left[-\frac{1}{\pi} + \frac{\langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle}{\mu_0 - \mu} \right] = \langle \mathcal{L}_{\varepsilon}^{-1}[f], u_{j_0} \rangle.$$

⇒

$$\langle \varphi, u_{j_0} \rangle = \frac{\pi(\mu_0 - \mu)}{\mu - \hat{\mu}} \langle \mathcal{L}_{\varepsilon}^{-1}[f], u_{j_0} \rangle.$$

• ⇒

$$\mathcal{N}_{\varepsilon}(\mu)[\varphi] = f$$
 iff $\varphi = -\pi \mathcal{L}_{\varepsilon}^{-1}[f] + \frac{\pi^2 \langle \mathcal{L}_{\varepsilon}^{-1}[f], u_{j_0} \rangle}{\mu - \hat{\mu}} \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}].$

- $\hat{\mu}$: characteristic value of order one of $\mathcal{N}_{\varepsilon}$.
- $\mathcal{N}_{\varepsilon}$ has exactly one pole μ_0 and one characteristic value $\hat{\mu}$ in V, each of order one, and its full multiplicity is equal to zero.

- Multiplicity of A_{ε} in V.
- $\mu \mapsto \mathcal{N}_{\varepsilon}(\mu)$: finitely meromorphic and of Fredholm type at $\mu = \mu_0$.
- For all $\mu \in V \setminus \{\mu_0, \hat{\mu}\}$, $\mathcal{N}_{\varepsilon}$: invertible.
- $\Rightarrow \mathcal{N}_{\varepsilon}$: normal in V.
- $\mathcal{A}_{\varepsilon}(\mu) \mathcal{N}_{\varepsilon}(\mu) = \mathcal{R}_{\varepsilon}(\mu)$: analytic in V.

•

$$\lim_{\varepsilon \to 0} \| \mathcal{N}_{\varepsilon}^{-1}(\mu) \, \mathcal{R}_{\varepsilon}(\mu) \|_{\mathcal{L}(\mathcal{X}^{\varepsilon}, \mathcal{X}^{\varepsilon})} \, = \, 0, \quad \forall \ \mu \in \partial V.$$

- $\Rightarrow \mu \mapsto \mathcal{A}_{\varepsilon}(\mu)$ has, by the generalized Rouché's theorem, the same full multiplicity as $\mathcal{N}_{\varepsilon}$ in V.
- μ_0 : pole $\Rightarrow \mu \mapsto \mathcal{A}_{\varepsilon}(\mu)$ admits in V exactly one characteristic value μ^{ε} .

• $\mathcal{A}_{\varepsilon}(\mu)$ has exactly one characteristic value μ^{ε} in V. Moreover, the following asymptotic expansion of μ^{ε} holds:

$$\mu^{\varepsilon} \approx \mu_0 - \pi \langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle + \pi^2 \langle \mathcal{L}_{\varepsilon}^{-1} \mathcal{R}_{\varepsilon}(\mu_0) \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle.$$

• ⇒

$$\mu^{\varepsilon} pprox \mu_0 - rac{\pi}{\ln arepsilon} |u_{j_0}(0)|^2.$$

- Proof:
 - μ^{ε} : eigenvalue in $V \Rightarrow \mu^{\varepsilon}$: characteristic value of A_{ε} in V.
 - φ^{ε} : associated root function to μ^{ε} .
 - $I + \mathcal{L}_{\varepsilon}^{-1}\mathcal{R}_{\varepsilon}$: invertible for ε small enough $\Rightarrow \langle \varphi^{\varepsilon}, u_{j_0} \rangle \neq 0 \Rightarrow$ choose φ^{ε} s.t. $\langle \varphi^{\varepsilon}, u_{j_0} \rangle = 1$.

• With this choice,

$$\frac{1}{2\pi} + \frac{\langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle}{\mu^{\varepsilon} - \mu_0} - \langle \mathcal{L}_{\varepsilon}^{-1} \mathcal{R}_{\varepsilon}(\mu^{\varepsilon})[\varphi^{\varepsilon}], u_{j_0} \rangle = 0.$$

$$\mu^{\varepsilon} = \mu_0 - 2\pi \langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle + O(|\ln \varepsilon|^{-2}).$$

• But

$$(-\frac{1}{2\pi}I + \mathcal{L}_{\varepsilon}^{-1}\mathcal{R}_{\varepsilon}(\mu^{\varepsilon}))[\varphi^{\varepsilon}] + \frac{\mathcal{L}_{\varepsilon}^{-1}[u_{j_0}]}{\mu_0 - \mu^{\varepsilon}} = 0.$$

$$\varphi^{\varepsilon} \approx \frac{\mathcal{L}_{\varepsilon}^{-1}[u_{j_0}]}{\langle \mathcal{L}_{\varepsilon}^{-1}[u_{j_0}], u_{j_0} \rangle}.$$

• In the three-dimensional case, for $\mu_0 = 0$,

$$\mu^{\epsilon} pprox rac{1}{|\Omega|} \epsilon \mathrm{cap}(\Sigma).$$

• Capacity of Σ in the rescaled opening (of arbitrary smooth shape):

$$\operatorname{cap}(\Sigma) := -\langle \mathcal{L}_1^{-1}[1], 1 \rangle_{L^2(\Sigma)}.$$

• \mathcal{L}_1 : three-dimensional analog to \mathcal{L}_{ϵ} with $\epsilon = 1$:

$$\mathcal{L}_1: arphi \mapsto rac{1}{\pi} \int_{\overline{\Sigma}} rac{arphi(y)}{|x-y|} dy, \quad x \in \mathbb{R}^3 ackslash \overline{\Sigma}.$$

 Sub-wavelength resonance of a system of weakly coupled Helmholtz resonators:

M. Fink et al.

• Asymptotic expansion of the Green function (δ : size of the resonator openings; z_j : center of aperture for jth resonator; J: number of resonators; $\omega = O(\sqrt{\delta})$):

$$\Im G^{\delta}(x,x_0,\omega) \approx \frac{\sin \omega |x-x_0|}{2\pi |x-x_0|} + \sqrt{\delta} \sum_{j=1}^{J} \frac{c_j}{|x-z_j| |x_0-z_j|}.$$