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Gohberg-Sigal theory

Gohberg-Sigal theory: Generalize the argument principle and Rouché’s
theorem to operator-valued functions.

® Argument principle and Rouché theorem.

Generalization to matrix-valued functions.

® Generalization to infinite-dimensional spaces.
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Gohberg-Sigal theory

® Argument principle:
e f: holomorphic and has a zero of order n at zj:
f(z) = (z — 20)"g(2)
g: holomorphic and nowhere vanishing in a neighborhood of
2. =
fz)_ n ()

fz) z-2 g(2)

= f’/f has a simple pole with residue n at z.
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Gohberg-Sigal theory

® Argument principle:

e f: has a pole of order n at z:
f(z) = (z— 20)"h(2)

h: holomorphic and nowhere vanishing in a neighborhood of
Zy. =

f(z) z—2z  h(z)

= f’/f has a simple pole with residue —n at z.

F(z) n W@

® f'/f has simple poles at the zeros and poles of f and the residue is simply
the order of the zero of f or the negative of the order of the pole of f.
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Gohberg-Sigal theory

® Argument principle: V C C: bounded domain with smooth boundary 9V
positively oriented; f(z): meromorphic function in a neighborhood of V;
P and N: the number of poles and zeros of f in V/, counted with their
orders. If f has no poles and never vanishes on 9V, then
1 f'(2)

27 Jo ) E= NP

® Rouché’s theorem [continuity result]: A holomorphic function can be
perturbed slightly without changing the number of its zeros.

® Rouché's theorem: f(z) and g(z): holomorphic in a neighborhood of V.
If |f(2)] > |g(z)| for all z € OV, then f and f + g have the same number
of zeros in V.
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Gohberg-Sigal theory

® Generalization to matrix-valued functions:

e A(z): matrix-valued function holomorphic in a neighborhood
of V and is invertible in V except possibly at zy € V.
e Factorization (by Gauss-Jordan):

A(z) = E(z)D(2)F(z) in V,

E(z), F(z): holomorphic and invertible in V and D(z):

(z— z)k 0
D(z) = -
0 (z—z0)"
ki, ko, ..., k. uniquely determined up to a permutation.
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Gohberg-Sigal theory

® Generalization to matrix-valued functions:

1 1 d
Tmtr/avA(Z) EA(Z) dz

_ ftr/w( (2) —E(z)-i—D(z) %D(Z)JFF(Z)*%F(Z)) dz

1 1 d
5 /av D(z) ED(Z) dz

I
[=d
o
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Gohberg-Sigal theory

® Generalization to infinite-dimensional spaces:

e Fredholm operators.
e Characteristic value and its multiplicities.
e Factorization of operators.
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Gohberg-Sigal theory

® Compact operators:

o L(B,B'): linear bounded operators from B into 5’ (Banach
spaces).

e K e L(B,B'): compact iff K takes any bounded subset of 5 to
a relatively compact subset of B’ (a set with compact closure).

e K: of finite rank if Im(K) (the range of K) is
finite-dimensional.

o Every operator of finite rank is compact.
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Gohberg-Sigal theory

® Fredholm alternative:
e K: compact operator on B. For A € C,\ #£ 0, (A — K):
surjective iff it is injective.
® Fredholm operators:
e Ac L(B,B’): Fredholm if ker A is finite-dimensional and Im A
is closed in B’ and of finite codimension (dim(B’/Im A).
e Fred(B,B’): collection of all Fredholm operators from B into
B
o Fred(B,B’): open in L(B,B’).
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Gohberg-Sigal theory

® Fredholm operators:

e Index of A € Fred(B, B'):
ind A = dim ker A — codim Im A.

e ind: stable under compact perturbations.
e If A: B— B’: Fredholm and K : B — B’: compact, then their
sum A+ K: Fredholm, and

ind (A4 K) = ind A.

e The mapping A — ind A is continuous in Fred(B, B5'); i.e., ind:
constant on each connected component of Fred(B, B’).
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Gohberg-Sigal theory

® §l(z): set of all operator-valued functions in £(B, B’) which are
holomorphic in some neighborhood of zy, except possibly at z.

® 7z characteristic value of A(z) € U(z) if there exists a vector-valued
function ¢(z) with values in B such that

e &(z): holomorphic at zy and ¢(z) # 0,

o A(z)$(z): holomorphic at zy and vanishes at this point.

e ¢(z): root function of A(z) associated with the characteristic
value z.
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Gohberg-Sigal theory

® z: characteristic value of the function A(z) and ¢(z): an associated root.

® There exists a number m(¢$) > 1 and a vector-valued function 9(z) with
values in B’, holomorphic at z:

A(2)p(z) = (z — 20)"(2), ¥(z0) #0.

e m(¢): multiplicity of the root function ¢(z).

® For ¢o € KerA(z), rank(¢o) (the rank of ¢o) = the maximum of the
multiplicities of all root functions ¢(z) with ¢(z0) = ¢o.
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Gohberg-Sigal theory

® Suppose that n = dim KerA(z) < +oo and that the ranks of all vectors
in KerA(z) are finite.

® Canonical system of eigenvectors:

o A system of eigenvectors %,j =1,...,n,: canonical system of
eigenvectors of A(z) associated to zg if for j =1,...,n,
rank(qﬁé) is the maximum of the ranks of all eigenvectors in
the direct complement in KerA(zp) of the linear span of the

vectors @}, ..., qﬁ{fl.

e Null multiplicity of the characteristic value zy of A(z):
N(A(z)) = Zrank(@{)).
j=1

® If z is not a characteristic value of A(z), we put N(A(z)) = 0.

Mathematical methods in photonics Habib Ammari



Gohberg-Sigal theory

® Suppose that A™!(z) exists and is holomorphic in some neighborhood of
Zg, except possibly at zp.

e Multiplicity of z:
M(A(20)) = N(A(20)) — N(A™"(0))-
® |f z is a characteristic value and not a pole of A(z):
M(A(20)) = N(A(2))-
® |f z is a pole and not a characteristic value of A(z):

M(A(20)) = —N(A™(20)).
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Gohberg-Sigal theory

® Finitely meromorphic operator:

e Suppose that z is a pole of A(z) and the Laurent series
expansion of A(z) at z:

A(z) = Z (z— 2 Y A;.

jz=s
e If A_;, j=1,...,s, have finite-dimensional ranges, then A(z)
is finitely meromorphic at z.
® Operator of Fredholm type:

e A(z): of Fredholm type (of index zero) at the point z if the
operator Ap in the Laurent series is Fredholm (of index zero).
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Gohberg-Sigal theory

® Regular point: If A(z) is holomorphic and invertible at z’, then z’ is a
regular point of A(z).

e Normal point: zp: normal point of A(z) if A(z): finitely meromorphic, of
Fredholm type at z, and regular in a neighborhood of z, except at z
itself.
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Gohberg-Sigal theory

® Trace operator:

e A: finite-rank operator acting from B into itself. Suppose that
there exists a finite-dimensional invariant subspace C of A such
that A annihilates some direct complement of C in B.

tr(A) = tr(Ale).

tr A is independent of the choice of C, so that it is well-defined.
tr is linear.
If B is a finite-rank operator from B to itself, then

tr AB = tr BA.

If M is a finite-rank operator from B x B’ to itself:

A B
M = ,
C D
then tr M =tr A+ tr D.



Gohberg-Sigal theory

® (C(z): finitely meromorphic in the neighborhood V of z, which contains
no poles of C(z) except possibly zo, then [, C(z)dz is a finite-rank
operator.

® A(z) and B(z): two operator-valued functions which are finitely
meromorphic in the neighborhood V of z, which contains no poles of
A(z) and B(z) other than z,. Then

r ‘/E;V A(z)B(z) dz = tr /av B(2)A(z) dz.
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Gohberg-Sigal theory

® Factorization of operators:

o A(z) € $U(z) admits a factorization at z if
A(z) = E(2)D(2)F(2),

E(z), F(z): regular at z and
D(z)=Po+» (z—2)"P;.
j=1

P;'s: mutually disjoint projections, Py,..., P, are rank-one

n
operators, and | — Z P; is a finite-rank operator.
j=0
o A(z) € tl(z) admits a factorization at zy iff A(z) is finitely
meromorphic and of Fredholm type of index zero at z.
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Gohberg-Sigal theory

® Factorization of operators:

e A(z) is normal at z; iff A(z) admits a factorization such that

| = Z P;. Moreover,
j=0

M(A(Zo)) = kl + e + k,,.

e Every normal point of A(z) is a normal point of A71(z).
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Gohberg-Sigal theory

® V: a simply connected bounded domain with rectifiable boundary OV
A(z): finitely meromorphic and of Fredholm type in V' and continuous on
av.

A(z) is normal with respect to 9V if A(z) is invertible in V, except for a
finite number of points of V which are normal points of A(z).

A(z) is normal with respect to 9V if it is finitely meromorphic and of
Fredholm type in V, continuous on 9V, and invertible for all z € OV.
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Gohberg-Sigal theory

® A(z): normal with respect to the contour 8V and z, i=1,...,0, are all
its characteristic values and poles lying in V.

e Full multiplicity of A(z) in V:
M(A(2);0V) = Z M(A(z)).

® M(A(z); 0V)= number of characteristic values of A(z) in V, counted
with their multiplicities, minus the number of poles of A(z) in V/, counted
with their multiplicities.

® Generalized argument principle:

M(A(z);0V) = itr/aVAfl(z)EA(z)dz.

2mi
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Gohberg-Sigal theory

® General form of the argument principle:

e A(z): normal with respect to 9V.

e f(z): a scalar function which is analytic in V/ and continuous
in V.

e z;,j=1,...,0, all the points in V which are either poles or
characteristic values of A(z):

1 . d d
— tr /@V f(2)A7}(2) - A(2)dz = ; M(A(z))f(z).

27i
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Gohberg-Sigal theory

® Generalized Rouché’s theorem:

e A(z): normal with respect to JV.
e S5(z): finitely meromorphic in V and continuous on 9V s.t.

A~ (2)S(2)ll sy <1, z€OV.
e = A(z) + S(z): also normal with respect to 9V and

M(A(z);0V) = M(A(z) + S(z); 0V).
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Gohberg-Sigal theory

® Steinberg's theorem:

e K(z): compact operator on a Banach space, which is analytic
in V.
e (I + K(z))~t: meromorphic in V.
® Generalized Steinberg's theorem:
e A(z): finitely meromorphic and of Fredholm type in the
domain V.
e If A(z) is invertible at one point of V/, then A(z) has a

bounded inverse for all z € V, except possibly for certain
isolated points.
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Gohberg-Sigal theory

® Muller's method:
e Compute the characteristic values of A(z). item Discretization
of A(z).
e Compute the zeros of functions on C:
1
(A=1(2)9, )
e ¢ and ¥ fixed random vectors.
e Determine roots (simple or multiple) of a polynomial.

f:z—
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Lecture 2: Cavities and resonators
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Cavities and resonators

e Cavity: D bounded domain of class C*", 5 > 0

e Helmholtz equation in D:
Au+ w?u=0.

e Dirichlet boundary conditions: u =0 on dD;
e Neumann boundary conditions: du/0v = 0 on 9D;
e Robin boundary conditions: du/dv + Au =0 on 9D.

® Resonator:

e Helmholtz equation in RY:
Au+wn(x)u=0 inR9

— jwu

1

= O(|x_(d+1)/2>, |x| = +o0, uniformly in X

o
x| |x

e supp(n(x) —1) =D



Cavities and resonators

® Outgoing fundamental solution T',,(x) to the Helmholtz operator A + w?
in R d =23 (A +w))lu(x) = do(x)

~TH ). d=2
o) =

eiu|x\
PRI d - 31
47|x|

L H((]l): Hankel function of the first kind of order 0.
® Behavior of H((,l) near 0:
IO ]y ~ L E -
THD @I ~ - lx] (A5 In X)) = do(x)].

® Sommerfeld radiation condition:

ﬁ VTw(x) — il (x)

{oux—w), d=2,
o(Ix| ), d=
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Cavities and resonators

® Single- and double-layer potentials: For ¢ € [*(dD),

S8l = [ Fule=y)et)doly). xR,
DEel) = [ ety doty) . xR\ 0D,

® [, (x) outgoing fundamental solution to the Helmholtz operator =

o S3[p] and D[] satisfy the Helmholtz equation
(A+w?)u=0 inDandinR?\D.

o S3[p] and DE[y] satisfy the Sommerfeld radiation condition.
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Cavities and resonators

® Jump relations: For ¢ € L2(8D),

2(5le) CE <i I (ICB)*)[@](X) a.e. x €D,
1
w ) — I+ KY x) a.e. x € 9D,
(31| () (7 37+K8) 100 €

e Kp and (Kp)™:

kol = [P oy) doty)

K8y 1Al = [ eI oty) doty).

e (K3)*: L*-adjoint of K5 (complex inner product).
e % and (K%)*: compact on L*(9D).
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Cavities and resonators

® Three-dimensional case (d = 3): Holomorphic dependence of ', = Kjp:
operator-valued holomorphic function in C.

e Two-dimensional case (d = 2): Holomorphic dependence of Iy, on
C\ /IR~ = Kp: operator-valued holomorphic function on C\ /R™.

e Neumann Eigenvalue characterization: Suppose that D is of class C1" for
some 17 > 0. Let w > 0. Then w?: eigenvalue of —A on D with Neumann
boundary condition iff w: positive real characteristic value of
—(1/2) I + Kp.
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Cavities and resonators

e Suppose w?: eigenvalue of
Au+w?u=0 in D,

ou
% =0 on OD.

Green's formula (multiply by Green's function and integrate by parts over
D):
u(x) = Dplulep](x), x € D.

Jump formula: (—1/2 4+ K3)[ulap] = 0 and u|sp # 0 since otherwise the
unique continuation property for A + w? would imply that u =0 in D.

® w: characteristic value of —(1/2) 1 + Kj.
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Cavities and resonators

® w: characteristic value of —(1/2) 1 4+ Kj3;
® There is a nonzero ) € L?(dD) s.t.

(—%IJrICB) [v] =0.

u = D[] on RY\ D is a solution to the Helmholtz equation with the
boundary condition u|+ = 0 on 9D and satisfies the radiation condition.

® Uniqueness result (exterior Helmholtz equation + radiation condition +
Dirichlet boundary condition) = D[] = 0 in RY\ D.

e 0Dg[¢]/0v exists and has no jump across 9D =
ODp[¥]| _ 9Dp[Y]
ov ‘+ T v ‘_ on 9D.

e DE[y]: a solution of the Helmholtz equation with Neumann boundary
condition; Dj[¢] # 0 in D, since otherwise

v =Dp[¥]|_ - Dsl¥]|, =0.
e 2 an eigenvalue of —A on D with Neumann condition.
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Cavities and resonators

® Steinberg's theorem:
e For d =3: —(1/2) 1 + K%: invertible on L?(OD) for all w € C
except for a discrete set;
e Ford =3: (—(1/2) 1 + K%)~: meromorphic function on C.
e Ford=2: (—(1/2) I + K%)~! has a continuation to an
operator-valued meromorphic function on only C\ /iR™.
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Cavities and resonators

® Eigenvalues of —A on D with Dirichlet boundary condition:

e D of class C1" for some 1 > 0.

e w? (w>0): eigenvalue of —A on D with Dirichlet boundary
condition iff w is a positive real characteristic value of
(1/2) 1+ (Kp)*.

® Eigenvalues of —A on D with the Robin boundary condition:

@—i—)\u:O on 9D, A>0.
v

e D of class C*" for some 1 > 0.

e w? (w > 0): eigenvalue of —A on D with the Robin boundary
condition iff if w is a positive real characteristic value of
—(1/2) 1 + K — \Sg.
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Cavities and resonators

® Zaremba eigenvalues of mixed boundary value problems:

e D of class C1'" for some 7 > 0. o
e [p: subset of D and let Ty = 9D\ I'p.
e w? (w>0): eigenvalue of —A on D with the mixed boundary

conditions:
Au+w?u=0 in D,
u=20 on [p,
0
8—5 =0 on [y,

iff w is a positive real characteristic value of

(1/2)1+ (k) 2D8,
w —
—(1/2)1 + K¢,

_SF;D {r,v
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Cavities and resonators

® Neumann Function:

o 0=y < pp <pz<....the eigenvalues of —A on D with
Neumann conditions on 9D.

o u;: the normalized eigenfunction associated with 1
(lujll 2oy = 1)

e wé {\/Hj}j>1-

e Neumann function N% for A +w? in D corresponding to a
Dirac mass at z:

(A +wWNS(x,z) = —6,  in D,

ONg
ov labp

=0 on 0D.
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Cavities and resonators

® Pointwise spectral decomposition:

= uj(x)u;(z)
N5 (x,z) = § ﬁ x#z€D.
=1 ™

e Consider the function
+oo
f(x) := Zajuj(x), xeD.
j=1

o If (A, + w?)f(x) = —6,(x), then

+oo

D ai(w? = py)uj(x) = —5:(x).

j=1
o Integrate against uy over D and use fD uj Uk = Oj:
ak(w2 — ,uk) = 7Uk(Z).
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Cavities and resonators

® Singularity of the Neumann function Np:

e In two dimensions:
1
N5(x,z) = ~5 In|x — z| + Rg(x,z) for x #z € D;
T
e In dimension d > 3:

1
NE(x,z) = - x — 2>+ R9Y(x,z) forx#zeD;

(d —2)w

e R¥(-,z) € H3%(D) for any z € D.
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Cavities and resonators

® Dirichlet function:

o 0 <<t <73 <...: eigenvalues of —A on D with Dirichlet
conditions on 9D.

e v;: the normalized eigenfunction associated with ;.
e Dirichlet function Gg(x, z):

(A +w)GE(x,2) = —6, in D,
Gy =0 on dD.
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Cavities and resonators

® Pointwise spectral decomposition:

” S 40w (2)
GD(X’Z):Zﬁ’ X#ZGD.
=1

® Singularity of G5:
[ ] d = 2v

1 ~
Gph(x,z) = ~5 In|x — z| + Rg’d(x,z) for x £z € D;
e d>3

1 -
Gy(x,z) = - x — z|* 94+ R (x,2) for x # z € D;

(d —2)w

o R%9(,z) € H¥2(D) for any z € D.
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Cavities and resonators

® Eigenvalues in circular domains:
® Knm: positive zeros of J,(z) (Dirichlet), J/(z) (Neumann), and
J(z) + AJa(2) (Robin).
e Index n=0,1,2,... counts the order of Bessel functions of
first kind J, while m = 1,2, ... counts their positive zeros.
e Rotational symmetry of D = {x : [x| < R} = explicit
representation of the eigenfunctions in polar coordinates:

Kol cos(nf), =1,
X
R sin(nf), =2 (n#0).

Unm/(ra 0) = Jn(

e Eigenvalues of —A on D: 2, /R?.
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Cavities and resonators

® Independent of /; Simple for n = 0 and twice degenerate for n > 0
(eigenfunction is any nontrivial linear combination of upm1 and upm2).

® When the index n is fixed while m increases, the Bessel functions
Jn(#2=7) rapidly oscillate, the amplitude of oscillations decreasing toward
the boundary and the eigenfunctions u,m are mainly localized at the

origin, yielding focusing modes.

® When the index m is fixed while n increases, the Bessel functions
Jn(#2m7) become strongly attenuated near the origin and essentially
localized near the boundary: whispering gallery eigenmodes.
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Cavities and resonators

® Shape derivative of the cavity modes:

e D: bounded domain of class C?;
e D.: e-perturbation of D:

aD. = { %1% = x+eh(x)v(x), x €D }

e heC?D).

® Asymptotic expansions of S and (KCp_ )" as € — 0.
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Cavities and resonators

® a,beR,a< b, X(t):[a, b] — R? arclength parametrization of dD: X is
a C?-function satisfying |X’(t)| = 1 for all t € [a, b] and

oD = {X = X(t), t € [a, b]}
e Qutward unit normal to 9D:

v(x) = R X'(1),

R_r/>: rotation by —m /2, the tangential vector at x, T(x) = X’(t), and
X'(t) L X"(t).

e Curvature 7(x):
X" (t) = 7(x)v(x).

® Parametrization of 0D;:

X(t) = X(t) + eh(t)v(x) = X(t) + eh(t)R_ 2 X' (t).
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Cavities and resonators
e Outward unit normal to dD; at X, (%),
R_./2X'(t)
1X'(2)]

(1 - eh(t)T(X))V(X) — el ()X'(2)
\/ezh’(t)z +(1- eh(t)T(x))2

(1 — eh(t)7(x) )v(x) — el (£) T(x)

(%) =

® Uniform expansion of (X):
+o00
7(5) = "W). x oD,
n=0

v™: bounded; The first two terms:
VO(x) = v(x), vW(x)=—H(t)T(x).
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Cavities and resonators

e Uniformly convergent expansion for the length element doc(y):
doe(7) = |X'(s)|ds
= /(1 —e7(5)h(s))? + e2h2(s)ds

=>"€e"d"(y) do(y).

n=0

e 5. bounded functions and
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Cavities and resonators

® Expansion of the kernel H((,l)(w|>"< —y):

+oo
H (w]% = 71) = 3 Hy (x.);

n=0
® Series converges absolutely and uniformly;
® First two terms:

w 1
HE (x.y) = Hy" (wlx = 1)
and

(x =y, h(t)v(x) — h(s)v(y))

HE (x,y) = w(Hg") (wlx — v]) ]

o x=X(t),y = X(s),%x = X(t),y = X(s).
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Cavities and resonators

e V.. diffeomorphism from 9D onto 9D,
V. (x) = x+eh(t)v(x), x=X(t).
® Asymptotic expansion of K5 with respect to e:
B.[1oWe = KBl +eKp, [+ K01+

e Each operator IC(E;)w: bounded on L*(0D).
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Cavities and resonators

® i eigenvalue of —A in D. with Neumann boundary conditions.
o A (w)=—31+K3;

e A, (w): Fredholm analytic with index 0 in C\ /R~;

o (A.) ! (w): meromorphic function.

® If w: real characteristic value of A. (a real pole of (A.)~!(w)), then
there exists j such that w = /p5.
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Cavities and resonators

e Any ,/f; is a simple pole of (Ag) ™ (w).

® let wo = /i and suppose that y; is simple. Then there exists a positive
constant g such that for |§| < do, w +— A-(w) has exactly one
characteristic value in Vj,(wo), where Vs, (wo) is a disk of center wp and
radius do > 0. This characteristic value is analytic with respect to € in
] — €0, o[-

o M(A(w);0Vs,) =1,

o (A) (W) = (w—we) T TLe + Re(w),

o L.: Ker((Ae(we))") = Ker(Ac(w:)),

® R.(w): holomorphic function with respect to (g,w) €] — €o, o[ X Vi, (wo)

® [.: finite-dimensional operator.

Mathematical methods in photonics Habib Ammari



Cavities and resonators

® Application of the generalized argument principle:
o Let wyp = ,/ij and suppose that p; is simple.

o= il

1 ' 4, d
We —wo = 5 tr /(’)V, (w— wp) Az (w) 1%Ag(w)dw.

® Asymptotic expansion of A.:
A (w) = Ao(w) + e (w) + ..

® |eading-order term in the asymptotic expansion of w. — wo:

fi tr Ao(w) A (w)wdw.
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Cavities and resonators

® Neumann series converges uniformly with respect to w in 9Vj,:

—+0co

Ac(@) =3 [Ao(w) " (Ao(w) = Ac())] Ao(w) 7,

p=0

% :thr /8 ) (w—wo) [.Ao(w)_l(Ao(w) - Ag(w))] g Ao(w)_l%Ag(w)dw.

® Trace property: A(z) and B(z) finitely meromorphic in V

tr /av A(z)B(z) dz *tr/av B(z)A(z) dz;

e Differentiation:

L o) =~ Aof) 1

- ) o)™
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Cavities and resonators
°* —

tr/av (w— wo)%% [Ao(w) " (Ao(e) — Ac(w))] do
:tr[ o) [Ao(w)’l(.Ao(w) - As(w))] P do(w)
v i(Ao(w) — A (w))dw

/av (1 — o) [Ao() (o) ~ Ag(w))]pAo(w)_liAo(w)dw}.

® — W, —wo =

T oir Z /(9\/5 (w - “’0)*7 [-AO( )" (Ao(w) —Ae(w))]pdw

+ itr/ (& — wo) Ao(w) - Ao(w)dew.
8V50 dw

2mi
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Cavities and resonators

® wo: simple pole of Ag(w)™! and Ao(w) is analytic =
/ (@ — wo)Ao(w) L Ao(w)du = 0.
3\/50 dw

® — W — Wy =
1 P
. Z /6 . (& — wo) [AO ()(Aofw) — A-())]” .
® Integration by parts:

o= 5 Zf o) o) — A

Vso
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Cavities and resonators

<Ao(w)—1(,40(w) - As(w)))p
=(-1)? Z e" Z i Ao(w) ™  Am () - . - Ao (w) A, (w)w

+o0
A (w) = ZE"A,,(w).
n=0
® = | eading-order term in the asymptotic expansion of w. — wp:

L [ Ao(w) A (w)wdw.

2im Vs,
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Cavities and resonators

e Splitting of multiple eigenvalues:

e Multiple eigenvalues may evolve, under perturbations, as
separated, distinct eigenvalues, and the splitting may only
become apparent at high orders in their Taylor expansions with
respect to the perturbation parameter.

e Splitting problem in the evaluation of the perturbations of the
Neumann eigenvalues due to shape deformations.

e Splitting problem: generalized argument principle.
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Cavities and resonators

® let wo = /p;j and suppose that y; is a multiple Neumann eigenvalue of
—A on D with geometric multiplicity m.

® There exists a positive constant do such that for |§] < do, w — A-(w) has
exactly m characteristic values (counted according to their multiplicity) in
V50 (wo).

* M(A:(w); 0V5,) = iM(As(wi): OVsy) = m,

i=1

o (A)7M(w) = 3w - w) L + Re(w)
i=1
o Ll : Ker((A:(wh))*) = Ker(A:(wl)),
® R.(w): holomorphic function with respect to w € Vi, (wo);

e Ll fori=1,...,n: finite-dimensional operator.
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Cavities and resonators

® For /€N,

a(e)

— tr / (w— wo)/AE(w)fliAE(w)dw.
6V60 dw

® By the generalized argument principle:

a(e) = 2:(0.1'E —wp)' for I €N.

i=1

® Asymptotic expansion as € — 0:

a(e) = = tr / o — wo) M Ao (w) KW (@) dw + O(E2).
2im Jovs,
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Cavities and resonators

® There exists a polynomial-valued function w +— Q. (w) of degree m and of
the form

m—

Q(w)=w"+ale)w™ '+ .. 4w + ..+ cmle)

s.t. the perturbations w’ — wy are precisely its zeros. The polynomial

m

coefficients (¢;)T; are given by the recurrence relation
alym+ adiym-1+...+cma=0 forl=0,1,...,m—1.
® Find a polynomial of degree m s.t. its zeros are precisely the
perturbations w. — wo.

® Computing the Taylor series of the polynomial coefficients = complete
asymptotic expansions of the perturbations in the eigenvalues.

e m e {2,3,4}: explicitly have the expressions of the perturbed eigenvalues
as functions of (a/)iZ;.
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Cavities and resonators

Integral formulation of resonances:

® 1 solution of
{ Au+ w?n(x)u =0,

u satisfies the Sommerfeld radiation condition.

® n— 1: compactly supported in a bounded domain D.

Integral representation formula:
u() +* [ (n(y) = Dulx = y)u(y)dy =0, x € D.
D

® w € C: resonance if there is nontrivial solutions u(x).
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Cavities and resonators

. Ao(w):

Aol = () " [ (nly) = Dot = y)u)e.
o Adjoint A (w):

A5 = V() + () = 1 [ Tlx = vl

® wyp: resonance iff it is a characteristic value of the meromorphic
operator-valued function w — Ao (w).

® Given n(x), by using Muller's method, solve the nonlinear eigenvalue
problem Ag(w)[u] = 0.
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Cavities and resonators

® w € C: a resonance, quality factor Q:

Rw
Qf|@|-

Quality factor: inversely proportional to the decay rate.

e Sensitivity of Q to changes in n(x) by the generalized argument principle.

ne(x) = n(x) + ep(x); p: compactly supported in D; A.(w): associated
with ne..
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Cavities and resonators

® Then there exists a positive constant dg such that for |§]| < do,
w +— A.(w) has exactly one characteristic value in Vs, (wo).

_ 1 _ -1d
We — Wo = i tr /(9\/50 (w o‘-”0)-/45("‘)) dw-Aa(w)dwv

® |eading-order of the expansion of w. — wo:

,i_ tr Ao(w)flA(I”)(w)wdw,
2mi Vs,

. Aﬁ”’:
AP ()] = / 1) (x — y)u(y)dy.

® Fréchet derivative of the quality factor @ with respect to n.

e Given an admissible set of functions n(x), optimal control can be used to
maximize the quality factor of the resonator D.
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Lecture 3: Waves in the quasi-static regime

Habib Ammari

Department of Mathematics, ETH Ziirich
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Waves in the quasi-static regime

® Fundamental solution to the Laplacian:

i|n|x\, d =2,
Fo(x) = 27
T e d>3
(2—d)wd ’ -7

® wy: area of the unit sphere in RY.
Q: bounded domain in ]Rd, d > 2, of class C1'" for some n > 0.

® v(y): outward unit normal to 99 at y.
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Waves in the quasi-static regime

Single- and double-layer potentials of ¢ € L*(99):

SYl(x) = / Fo(x — y)e(y) do(y), x € RY,

DR = [ gesTole=n)e doty) . x € B\ o
o Neumann-Poincaré operator: K3 : L*(9Q) — L*(09):

K4l = o [ I oty do(y),

yl?

(K%)*: [*-adjoint of 3.
K% and (K3)*: compact in L2(09).
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Waves in the quasi-static regime

e Jump relations: For ¢ € L*(99Q),

(PAED]. (0 = (F3/+ K5 ) [l 2. x < 0

Salel

(x) = Sg[go]‘_(x) a.e. x € 0%;

%s&mL(x) - (i%/ + (fc%)*) () ae xe o9,

® For p € [%(09Q), 9D3[¢]/0v exists (in H™'(0R)) and has no jump across

o0
2 pate 1] 2 Dhil|

e For ¢ € [*(09Q),

%s&[w]\fx) - %Sg[w]‘i(X) —p(x) ae x €00
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Waves in the quasi-static regime

e Dirichlet-to-Neumann operator N : L2(9Q) — H™'(9Q):

ou
Nlpl =1 ;
0V |5
® y: solution to
Au=0 inQQ,
u=¢ ondQ,
® |dentity:
D8] = (5 + (K& W]
o9 ® . =4 Q ®l-
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Waves in the quasi-static regime

® Capacity:
e d=2;(pe,a) € L2(0Q) xR
1
oz | Inlx=ylealy)daty) +a =0 on o8
21 Joa

/ pe(y)do(y) = 1.
oQ

o Logarithmic capacity of 9Q: cap(9Q) :=
o d=3; p. € L?(00):

e27ra.

/ vely) =2 do(y) = constant on 99,
oa X =yl

/ pe(y)do(y) = 1.
o0

1 G0
cap(0Q) Saleel
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Waves in the quasi-static regime

® Spectrum of the Neumann—Poincaré Operator:

o (K3 : 12(09) — L2(09).
e Spectrum of (K2)*:

a(K2)*) c (-1/2,1/2].

e (1/2) 1+ KQ: invertible on L2(99).
e —(1/2) 1+ KQ: invertible on L3(9).

o [3(0Q) := {cp € [2(09) : [yqpdo = O}
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Waves in the quasi-static regime

® Proof by contradiction:
e A€ (—00,—1/2]U(1/2,+00); ¢ € L2(0RQ) satisfies

(M — (K9)")lie] = 0 and i # 0
K9[1] =1/2 =

e 1
hAyFW&Mw—AﬂAQW

= faﬂ pdo = 0.

= S83[¢l(x) = O(|x['~7) and VSZ[](x) = O(|x|~9),
|x| = +oo for d > 2.

¢ # 0 = (A, B) cannot be zero:

A:/ |VS3[#]|? dx and B:/ |VS3[]|? dx.
Q RI\Q

By contradiction: if A and B are zero, then S3[] = constant
inQandin R\ Q = ¢ =0.
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Waves in the quasi-static regime

® Divergence theorem =

/ (50BN Shlieldorand B = = | (G1+0cR)" )l Shl dor

o (M —(Kg))lpl=0=
1B-A
T2B+A
® For A € (—o00, —3] U (3, +00), Al — (K3)*: one to one on L*(09).
o If A\ =1/2, then A= 0 = S}[¢] = constant in Q.
° =
e S8[p]: harmonic in RY\ 9Q;
o Splel(x) = O(|x]*~9), x| = +oo (since ¢ € L5(09));
e S8[p]: constant on 9.
o (K)ol = (1/2) ¢ =

B:f/ gosg[ga]dJ:C/ pdo =0,
o0 o

® = p=0= (1/2)/ — (K2)*: one to one on L3(99).
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Waves in the quasi-static regime

e Symmetrization of (K3)*:
e Non-self-adjoint operator (K3)*: can be realized as a
self-adjoint operator on H=/2(9Q) by introducing a new inner

product.
e S in H=1/2(9Q): self-adjoint and —S > 0 on H™/2(09Q).
o (KQ)*: H=Y/2(0Q) — H7Y/2(8Q): compact.
o Calderdn identity =

SS(KL) = K38Y on HTY2(0Q).
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Waves in the quasi-static regime

e Kernel of 83:

o d>3;88: HY/2(0Q) — HY2(9Q) has a bounded inverse.
o d=2; If ¢ € Ker(SY), then u:

u(x) == S3[bo](x), x € R?

satisfies u = 0 on 9 = u(x) =0 for all x € Q.
e Jump condition =

(K8)"[60] = 500 on 09.

o If (x(99), ¢0)1/2,—1/2 = 0, then u(x) — 0 as [x| — o0 =
u(x) =0 for x e R2\ Q = ¢ = 0.

e Eigenfunctions: one dimensional subspace of H=1/2(99Q).

e = Ker(83): of at most one dimension.

e S3: H71/2(0Q) — HY/2(9RQ) has a bounded inverse iff
log cap(0%2) # 0.
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Waves in the quasi-static regime
® d = 3; inner product:
(U, vy = —(S3[v], u)%‘,

e Equivalent: H™Y/2(99Q).

(K2)*: self-adjoint in H*(9Q);

(A, j), J=0,1,2,...: eigenvalue and normalized eigenfunction pair of
(KCQ)* in H*(0Q) with Ao = 1/2.

A € (—3,3) forj > 1with [A| > [X2| > ... = 0as j — oo;

1,
2

Spectral representation formula: for any ¥ € H=*/2(89Q),

(K8) [v] = Z/\ ©is V) me @j -

Jj=0

H(8Q): HY?(6Q) equipped with the equivalent inner product
(v = (v, (=59) ) s
e SJ: isometry between H*(9Q) and H(0RQ).
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Waves in the quasi-static regime

d=2; 8 : H'/2(0Q) — HY?(9Q): not injective (in general).
Substitute:

SHWl i ((0R),u)y =0,

1
2

Salul = {

® o unique eigenfunction of (K%)* associated with eigenvalue 1/2 s.t.
(x(09), o)1 _1 =1.

Sa : HY2(0Q) — HY2(8Q): invertible.
Calderdn identity:

K%gg = «SN‘Q(/C%)*
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Waves in the quasi-static regime
o (K%)*: compact self-adjoint in H*(0Q) equipped with
(us v = —(Salvl,u)y _y -
e (\,p) Jj= 0,1 2 ..,. eigenvalue and normalized eigenfunction pair of
(KQ)* with Xo = 3. Aj € (=3, 3) with [A1] > [Xo| > ... > 0 as j — oo;
e Twin property: For any j > 1, +);: eigenvalues of (ICQ)*;

o H*(0Q) = Hg(02) ® {ppo, pu € C}, where Hg(9R2): zero mean
subspace of H*(9Q);
e For any ¢ € HY?(9Q),

(K2) ] = Z/\ @i, Y)ur i -
j=0
o H(9Q): HY?(d9) equipped with the equivalent inner product:
<U7 V>H = <V7 7551[U]>

11
2'72

® Sq: isometry between H*(8Q) and H(09).
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Waves in the quasi-static regime

® Conductivity problem in free space

e B: bounded smooth domain in R?; O € B.
e 0< k#1<+o0and A(k) :=(k+1)/(2(k—1)).
e h: harmonic function in RY: u:
V- ((1+(k—1)x(B))Vux) =0 inRY,
uk(x) — h(x) = O(|x|*=9) as |x| = +oo.

o Integral representation formula:

() = () + YK — (K)o los)(x) for x € R,
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Waves in the quasi-static regime

® Taylor's formula expansion:

+oo
—1)lel
Fo(x—y) = Z ( a% O To(x)y”, yin a compact set, |x| = +o0.
a,|a|=0 :

® Far-field expansion of (ux — h)(x) as |x| — +oc:

> CTanmono) [ Ami-02)) M vx 0y’ doy).

alpl
lel,|B]=1 B!

® For a multi-index a = (au, ..., aq) € N: 9°f = 97 ... 959f and
a ., a1 ad
XY =Xt xGe
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Waves in the quasi-static regime

e Generalized polarization tensor Mg, o, 8 € N¥:

Mos(A(K), B) == /8 Y 6uy) daly);

® o,:
Pa(y) = (\(K) = (KB)") " [v(x) - Vx"](y), vy €0B.
® For |a| = |B] =1, M = (mpq)4 4—1 polarization tensor
mog = [ a0 = (K8 ) dr (),
® v=(v1,...,V4q).

® Generalized polarization tensors = complete information about the
far-field expansion of u.
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Waves in the quasi-static regime

® From

()1 = (k8)) 1w = > LA

(M, @;): eigenvalues and eigenvectors of (K%)* in H*.

® Decomposition of the entries of the polarization tensor:

> VP:SOJ H* ij,Xq> 11
mpqg(A(K), B) = —%.
y

Jj=1

[ ]
;
=

Q

&)
=
[
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Waves in the quasi-static regime

® From:
(i) 11 = (=N "Gl = (KB))ledxa)
22 303
_ -1 88%[%]
- 1/27,\,< v ’JX">,%,%
_ -t 0%g 01 o — 01,1 or
— o | [ Gesttedo - [ (Axstlel - xasilel) x|
— <VCI7<;0J'>'H*
12—\
° =

_ o (Yo, 0j) 1> (Va, ) 1
Mpg(A(k), B) = ; (1/2 — A?)(A(k) —Kj)'
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Waves in the quasi-static regime

® Properties of the polarization tensor:

M(X(k), B): symmetric;

M(A(k), B): positive definite if k > 1;
M(A(k), B): negative definite if 0 < k < 1.
Optimal bounds:

1
k—1

tr(M\(K). B)) < (1+ 1)|B

and
(1+k)

(k= 1)tr(M(A(k), B)™") < IB]
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Waves in the quasi-static regime

e Conductivity equation with complex coefficients: k € C;
A(K) & o((KB)),
e There exists C independent of k s.t. for any harmonic function
hin RY, the unique solution wuy satisfies

C oh
\Y% — )| 2y < —||ly-1/2 .
[V (uk it (R = dist()\(k).,a((lC%)*)) ”al/HH /2(0B)

e There exists C independent of k s.t. for |k’ — k| small enough,
such that for any harmonic functions h in R
C|k" — k| oh
\Y% — Uy < —||y- .
[V (uk — ux )HLZ(]Rd) < dist()\(k).,a((lC%)*)) ”al/HH 1/2(9B)
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Lecture 4: Periodic and quasi-periodic Green's
functions

Habib Ammari

Department of Mathematics, ETH Ziirich
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Periodic and quasi-periodic Green's functions

® Periodic and quasi-periodic Green's functions:

e Periodic Green's functions for gratings;

e Periodic, and quasi-periodic Green's functions;

e Periodic and quasi-periodic layer potentials for the Laplacian
and the Helmholtz operator.

® Applications:

Diffractive gratings;
Photonic and phononic crystals;
Metasurfaces;

[ )
[ )
[ )
e Metamaterials.
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Periodic and quasi-periodic Green's functions

® Gy: Periodic Green's function for the one-dimensional grating in R

° Gﬁ - R? — C:
AGy(x) =Y do(x + (n,0)).

n€Z

e Explicit formula: x = (x1, x2),

Gi(x) = % In (sinh2(7r><2) + sinz(wxl)).
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Periodic and quasi-periodic Green's functions

® Poisson summation formula:

Z 60()(1 4 n) _ Z ei27-rnx1.

n€Z ne7z

AGy(x)

> " do(x + (n,0))

neZ

= Z 50(X2)(50(X1 + n)

neZ

_ Z 60(X2)ei27rnx1‘

neZ
® Gy: periodic in x; of period 1 =

= Z Bhn (Xg)emmx1 .

n€Z

AGy(x) = Z(ﬁn (x2) + (l27'rn) Bn(x2))e i2mmq

n€Z
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Periodic and quasi-periodic Green's functions

e ODE: .
ﬁn (X2) + (i27’l’n)2ﬂ"(X2) = 50(X2).
e Solution:
1
Bo(x) = §|X2| + c,
.
Bn(XZ) = We 2 In\lxz\, n#0;
Cc: constant.
® Define ¢ := —'"2(:) and use the summation identity:
1 _onnix 1 In(2
Z 5€ 2l cos(27nx) = §|xz| - nZ(w)
neN\{0}

1 . .
2 In (sinh?(mx2) + sin®(mx1)).
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Periodic and quasi-periodic Green's functions

_ 1 1 —2m|n||xz| Ji27wnx
Gﬁ(X) = §|X2|+C— ezz\%o} me 2l @ 1

1 1
= 5|x2| +c— Z e ™l cog(2nx)
neN\{0} n

1 ) . 2
= In (sinh*(7x2) + sin®(mx1)).

® Taylor expansion of Gg:

Gi(x) = " R0

® R: smooth function s.t.

R() = o In(1+ O( — <2)).
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Periodic and quasi-periodic Green's functions

11 .
® Gi(x,y):=Gi(x—y) Qe (- > 5) x R: bounded smooth domain;
® One-dimensional periodic single-layer potential and periodic

Neumann—Poincaré operator:
1

Sas i HH(0Q) —  Hb(R?), H2(09)
o — Saslplx) = / Gl )e)do(y)

for x € R? (or x € 99);
Koy H2(0Q) — H 2(3Q)
* — acﬁ(XLV)
¥ — ’CQ,ﬂ[(p](X) - 29 al/(X) QO(y)dO'(y)

for x € 99.
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Periodic and quasi-periodic Green's functions

® Symmetrization of the periodic Neumann—Poincaré operator g 4
e Forany ¢ € H 2(09), Sa,gle]: harmonic in Q and in
11 —
— =, =) xR\ &
(-5 xm |
Trace formula: For any ¢ € H™2(9Q),

1 . _ O08agle]|
( 5/ + K4 0)e] = oy |

Calderdn identity: KCq Sy = SQ,ﬁ]CS*)’ﬂ; Kay: L?-adjoint of
K&

K&y Hg%(aﬂ) — Hg%(aﬂ): compact self-adjoint equipped
with the inner product:

(u, V>'H6« = —<SQ7u[V], u>%,7%

(Aj,%j), j=1,2,...: eigenvalue and normalized eigenfunction
pair of K3, in H5(0Q); Aj € (—3,3) and Aj — 0 as j — oo.
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Periodic and quasi-periodic Green's functions

Periodic Green's function:

o Effective medium properties of subwavelength resonators;
e Periodic transmission problem for the Laplace operator.

Y =(—1/2,1/2)% unit cell; D C Y.

® Periodic transmission problem: for p=1,...,d,

V- <1+(k— 1)X(D)>Vup =0 inY,

up — xp periodic (in each direction) with period 1,

/u,,dx:O.
Y

® Representation formula for up.
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Periodic and quasi-periodic Green's functions

® | attice sum representation of the periodic Green's function:

i2mn-x

e

nezd\{0}

® In the sense of distributions:

AG’i (X) _ Z ei27-rn-x _ Z ei27rn->< -1 :

nezd\{0} nezd

G; has mean zero: / Gy = 0.
Y

® Poisson’s summation formula:

Z i2mwn-x __ Zdox_n

nezd nezd

AGy(x) = Zéox—n—l

nezd
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Periodic and quasi-periodic Green's functions

® There exists a smooth function Ry(x) in the unit cell Y s.t.

1

5 In|x| + R2(x), d=2,

Gi(x) = 1 1
L S >3,
(2 — d)wq |x]?—2 TR, d23

® Taylor’'s formula expansion of Ry(x) at 0 for d > 2:

Ra(x) = Ra(0) — 55 (¢ + - +56) + O(Ix").
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Periodic and quasi-periodic Green's functions
e Periodic single-layer potential of ¢ € L3(99):
Sh000 = [ Glx =)o) doly). xR,
® Behaviors at the boundary: ¢ € L3(89),

o Shald] (0= (31 + (K8, )lol(x) on 09
+

(K.4)" : L3(09) — L3(0R):

(B[00 = pv. | 505 Glx=y)oly) do(y). x € aD.

If ¢ € L5(09), then S 4[¢]: harmonic in Q and Y \ Q.
If [A| > I, then A/ — (K94)*: invertible on L5(9).
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Periodic and quasi-periodic Green's functions

® Representation formula for the solution of the periodic transmission
problem: up, p=1,...,d,

k+1
up(x) =xp + Cp + 5&;(2

eI E DR D ORLRE

® (,: constant and v,: p-component of the outward unit normal v to 9.
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Periodic and quasi-periodic Green's functions
® u,,p=1,...,d, satisfies

Au,=0 inQU(Y\Q),

Upl+ — up|— =0 on 092,
9up fk% =0 ondQ,
ov |, o |_

up — xp periodic with period 1,
updx =0.
%

® Define V,(x) = Sﬂﬁ((2(kk+ 1) (K?),ﬁ)*)*l[yp](x) inY.

AV,=0 in QU(Y\D),
Vol — Vp|- =0 on 99,
Oy OV

P|+_

= (k —1)v, on 09,

Vp periodic with period 1.
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Periodic and quasi-periodic Green's functions

® Choose G, s.t. [, up dx = 0.
® General periodic lattice in two dimensions:
o r,=ma +na® n=(n,m) ez
e 2 and a® determine the unit cell
Y = {sa® + ta® s, t € (=1/2,1/2)} of the array.
e Reciprocal vector of ry: k,-al) =n;,i=1,2.
e Periodic Green's function of the Laplacian:

AGY =) bo(x— |Y|

nez?

Gi(x+r)=G{(x), Vne z2.
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Periodic and quasi-periodic Green's functions

e Rotate and scale the given lattice in order to satisfy a¥) = (1,0) and
a® = (a,b) with b> 0 =

1
ro = m(1,0)+ m(a,b), ko= m(1, _g) +m(0,5), n=(m,n)eZ’

® Lattice sum representation of Gy':

G=- >

5.
nez2\ {0} a2 (nf + (—5m + 5n2)?)

27 (nyx+(— 2 m+3n2)x2)
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Periodic and quasi-periodic Green's functions

® Quasi-periodic Green's functions:
e For a € (0,27)9, a function u: a-quasi-periodic if e~ "> u:
periodic.

e Lattice sum representation of quasi-periodic Green’s function:
ei(27rn+a)-x

G = — B ——————
a(x) [27tn + a2’
nezd

a € (0,27)7.

° e—i(x-XGa(X): periOdiC in Rd-

AG,(x) = Z So(x — n)e'™" in RY,
nezd

(A +ia-V — |a|2) (e7/**Ga(x)) = Z So(x —n) in R

nezd
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Periodic and quasi-periodic Green's functions

° Sgya,Dg,a, and (IC?M)*: a-quasi-periodic single- and double-layer
potentials and the a-quasi-periodic Neumann—Poincaré operator
associated with G,.

_1 1
® o€ (0,2m)% (K.a)* i Hy 2(0) — H, 2(09): compact self-adjoint

equipped with the following inner product

<U, V>H3 = _<8§%,u[v]7 U>

[

1
3

® (Na,pj,a) j=1,2,...: eigenvalue and normalized eigenfunction pair of
(K&.o)" in Hg(09Q), then Ao € (—1, 1) and Aj o — 0 as j — oco.

® Ewald’'s method: computing periodic and quasi-periodic Green's functions
(series slowly converge).
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Periodic and quasi-periodic Green's functions

® Quasi-periodic layer potentials for the Helmholtz equation:

e «: quasi-momentum variable in the Brillouin zone

= [0,2m)2.
e Two-dimensional quasi-periodic Green's function G*¥:
(A +w?)G**(x,y) = Z(So(x— — n)e™ e,

neZ?
o If w# [27n+ |,V n € Z?, Poisson's summation formula:
§ : i(2mn+a)- § :50 X — n)e:na
n€Z? n€Z?

o = G™¥ can be represented as a sum of augmented plane
waves over the reciprocal lattice:

G y) =

neZ?
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Periodic and quasi-periodic Green's functions

® Representation of G** as a sum of images:

/ in-o,

7 O H (wlx = n—yDe™;
nez?

G (xy) =~

L H((]l): Hankel function of the first kind of order 0.

® Series in the spatial representation of G*' converges uniformly for x, y in
compact sets of R? and w # [27n + o for all n € Z°.

e H"(z) = (2i/m)Inz+ O(1) as z — 0 = G*“(x,y) — (1/27) In|x — y|:
smooth for all x,y € Y.

® Disadvantage of the spectral representation of the Green's function:
singularity as |x — y| — 0 is not explicit.
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Periodic and quasi-periodic Green's functions

® Assumption: w # [27n + «| for all n € Z°.
e D: bounded smooth domain in R?; v: unit outward normal to dD.

® For w > 0; S** and D“*: quasi-periodic single- and double-layer
potentials. associated with G*“ on D;

e Given density p € L?(8D),

S*Lp)(x) = / GS (%, Y)p(y) doly), x € R,

aD
D) = [ P oly)doty), x € B\ 9D,
® S%*[p] and D*[yp] satisfy (A + w?)S*¥[¢] = (A + w?)D**[¢] = 0 in
D and Y\ D.

o S%%[p] and D¥“[p]: a-quasi-periodic.
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Periodic and quasi-periodic Green's functions

e Jump relations: ¢ € L*(9D),

(S “[¢l)
v

(x) = (:I: %I + (Kfa’w)*) [p](x) a.e x€dD,

+

(Da'“[wl)L(x) = (314K )00 e xc oD,

Ko fel) = . | EEZEI () doy)

o (K~**)*: L2-adjoint operator of L™,

() [l = p. [ P o) dot).

K% and (K~**)*: compact on L?(9D);
G*¥(x,y) — (1/27) In|x — y|: smooth for all x, y.
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Periodic and quasi-periodic Green's functions

e Assumption: o # 0 and w?: neither an eigenvalue of —A in D with the
Dirichlet boundary condition on dD nor in Y \ D with the Dirichlet
boundary condition on 9D and the a-quasi-periodic condition on 0Y.

e S [%(dD) — HY(D): invertible.

Mathematical methods in photonics Habib Ammari



Periodic and quasi-periodic Green's functions

e Suppose that ¢ € L*(9D) satisfies S**“[¢] = 0 on AD.
Then u = S**[¢] satisfies (A +w?)u=0in D and in Y\ D.

e % neither an eigenvalue of —A in D with the Dirichlet boundary
condition nor in Y\ D with the Dirichlet boundary condition on 9D and
the quasi-periodic condition on Y = u=0in Y.

¢ =0u/ov|y —Ou/ov|- =0.
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Periodic and quasi-periodic Green's functions

® Define
ei(27‘rn+a)~(x—y)

m fOra#O.

G(x,y) = Galx—y) ==Y
nez?

® Fora=0:

0.0 ei27rn<(xfy)
G*(x,y) = Gx—y)=— > AP
neZ?\ {0}
o G%(x,y) satisfies

NG (x,y) =8, -1 inY

with periodic Dirichlet boundary conditions on 9Y'.
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Periodic and quasi-periodic Green's functions

® Asw — 0, G*¥ can be decomposed as

l(27'rn+a) (x—y)

o,w _ a0 2/
G y) =G (%) — Zw Z|27rn+a|2’+1)7

::—G/O"w(x,y)
for a # 0;
® Fora=0:
+00 i27n-(x—y)
1 e
0,w _ 0,0 2/
G lay) = S+ G0y = 3wt Y ey -
I=1 nez2\{0}
=—G)¥ (x.y)
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Periodic and quasi-periodic Green's functions

e S and (K, “*)*, for I > 0 and a € [0,27)?, layer potentials
associated with the kernel G™*(x,y):

+o0 +o00
Swtw _ SO“O + Zsln,w and (IC:)uw)* _ (KG,O)* + Z(K/—(x,w)*
I=1 =1

o (1/2) 1+ (K~*%* : L>(OD) — L*(OD): invertible.
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Periodic and quasi-periodic Green's functions

® 4 and v: a-quasi-periodic smooth functions =

ou
—vdo=0.
ay al/

[ [ [ e
oy OV oy ov ’
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Periodic and quasi-periodic Green's functions

¢ € L?(0D) satisfy ((1/2) 1 + (K~*°)*)[¢] = 0 on 9D.
If & =0, then [,,¢=0.
For x € D

DO[1](x) = / A, G (x,y)dy = |Y\ D,

| |- volume.
(%/ + K[ = Y\ D| on aD.

IY\D| /aDgZ)da:/aD(%l—&—lCo’o)[l]qbda:/6D(%I+(ICO’O)*)[¢] do =0,
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Periodic and quasi-periodic Green's functions

e For any a € [0,27)?, u = S*°[¢] is a-quasi-periodic and satisfies Au = 0

in Y\ D with
ou _ 1 —a,0y* _
oy =G+ €l =0 onoD.
[ ]
/ |Vu]* = @U—/ gul G-,
Y\D oy OV ap OV,
® u: constant in Y\ D and hence in D =
ou ou
=—| —5| =0.
¢ ov|, Ov|_
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Lecture 5: Fundamental results in wave
propagation

Habib Ammari

Department of Mathematics, ETH Ziirich
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Fundamental results in wave propagation

® Reciprocity;

® Lippman-Schwinger representation formula (filtering effect);

Helmholtz-Kirchhoff Identity (resolution limit);

Optical theorem (energy conservation);

Scattering amplitude and scattering coefficients.
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Fundamental results in wave propagation

® Reciprocity: Important property satisfied by the outgoing fundamental
solution of the Helmholtz equation.

® ;i and e: two piecewise smooth functions s.t. pu(x) = pm and e(x) = en
for |x| > Ro for some positive Ry.

® Ky = W\/Emlim; Yy € RY: Fundamental solution D, (x,¥):
1
w(x)

subject to the Sommerfeld radiation condition:

(V- — W, we(x)) @k (x,y) = “immx),

OPuy _ ikn®y, [ = O r~@™72) a5 r = |x| = 400 uniformly in ay
or |x]
® Forx#y,

d>km(x,y) = d)km(yvx) .
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Fundamental results in wave propagation

® Reciprocity identity: the wave recorded at x when there is a
time-harmonic source at y is equal to the wave recorded at y when there
is a time-harmonic source at x.

e Consider the equations satisfied by the fundamental solution with the
source at y» and with the source at y; (with y1 # y»):

1 2 1
Vi =Vi+wie)d, (x,y2) = —9y,,
( p )P (X, y2) s

1 ) 1
Vi =Vi+we)®, (x,y1) = —6, .
( m )P, (X, 1) e

e Multiply the first equation by ®, (x,y1) and subtract the second
equation multiplied by ®«, (x, y2):

Vi L 04, (6,10 Vi (5, 32) = @ (6, 12) Vi (3, 12)]

= —¢km(x,y2)5y1 + ¢km(x7y1)6y2
= =k, (y1,¥2)0y; + Pr, (y2,¥1)dy, -
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Fundamental results in wave propagation

® |Integrate over the ball Br of center 0 and radius R which contains both
y1 and y» and use the divergence theorem:

[ v [0unt) Ve, (x032) = 01 (332) V20, (53] dr ()
2Bg
= =k, (11, 2) + Ok, (y2, 1) ;

® v = x/|x|: unit outward normal to the ball Bg.

® |f x € 9Br and R — o0, then by the Sommerfeld radiation condition:

. 1
V- Vi@, (x,y) = ikm®r, (x,y) + O(W) .

® R — oo,
=4, (v1, y2) + Pr, (2, 11)
=ik [ [%(X, 1)@ (3, y2) — ¢km(x7y2)¢km(x,y1)} do(x)
8Bg
=0.
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Fundamental results in wave propagation

® Lippmann-Schwinger representation formula for ®y,: For any x # y,
ulxy) = Tulen)+ [(A2 =190 (2.0 Vi (z.y) s

4 [a- Ef))wm(z N ko(2,y) de.
® [ (x,y) =Tk, (x —y): fundamental outgoing solution to the Helmholtz
operator A + k2, in R?; for x #0,

_iHél)(km‘X|)7 d=2,
Tk (x) =

eikmlxl
e d=3
4r|x| ’ ’

] Hél): Hankel function of the first kind of order 0.
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Fundamental results in wave propagation

e Multiply
1
1(x)

by Ik, and subtract the equation satisfied by 'y, multiplied by Hidekm:

(V- oV, we(x)) Pk (x,y) = % (),

v, - [ﬁrkm(z, YIVebi,(2,%) = -0, (2,X) VT k, (2, y)]

1 1
= (ﬁ — M—m)vzd)km(z,X) . vzrkm(z7y)
+w2sm(1 - %’i))q)km(Z’X)rkm(z?y)

+uim(rkm (5,1)8(2) — By (%, ¥)6,(2)) .

® Integrate over Br (with R large enough so that it encloses the support of
W— fm and € — €m) and send R — +o0.

® Divergence theorem 4+ Sommerfeld radiation condition =
Lipmann-Schwinger representation formula.
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Fundamental results in wave propagation

® Lippmann-Schwinger representation representation formula: basis for
expanding the fundamental solution ®,_ when p ~ pm and € & .

® Replace ®y, in the right-hand side by Iy :
Pu(xy) & Tulxy)+ [(AE =DV (2y) - VT (z0) d
[ =L, Gr 0 ae.

® First-order Born approximation for @ .
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Fundamental results in wave propagation

Helmholtz-Kirchhoff theorem: resolution limit in imaging with waves.

0Bg: sphere of radius R and center 0;

alk —_—
mx7 rmz7 _rmx7
[, (Gt -Tuctoy)

8(,5:’" (z,y)) do(y) = 2iS T, (x,2);

Multiply by T, the equation satisfied by Iy, and integrate by parts.

Sommerfeld radiation condition =

. = 1
im [ T bz ) do(y) = = 18T (x,2).
9Bg

R—+o0 m
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Fundamental results in wave propagation

® Helmholtz-Kirchhoff theorem: valid in inhomogeneous media.
® Outgoing fundamental solution &, :
(Vi Vi b we(3) 0k, (x,y) = —0,(x),
(x) fim
subject to the Sommerfeld radiation condition.

® Helmbholtz-Kirchhoff theorem for ®_:

. — 1
im_ [ B n)0u(z1) doly) = — 30 x,2).
lyl=R

R—+o00 m
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Fundamental results in wave propagation

® Second Green's identity and Sommerfeld radiation condition.

e Consider 1
(v)’ : iv)/ + w2‘€)¢km(yvx2) = T&Q )

1
(Vy- ivy + wW’e) P, (v, x) = lTéXl .

e Multiply the first equation by ®,, (y, x1) and subtract the second
equation multiplied by @, (y, x2):

VoL (@ (1,20) V0 (1 2) = iy (20 VP (1,39)]

= =4, (y, %) + Pk, (v, x1)0x,
= =y, (x1,%2)00 + i, (x1,%2) 05, -
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Fundamental results in wave propagation

® Use reciprocity property: @y, (x1,x2) = P, (X2, x1).

® [ntegrate over the ball Br and we the divergence theorem:

[ v (809,000 = S1(y. )9, 85y, 0] do(y)
8Bg

= —®y, (x1, %) + Pr, (x1, %) -
® Green's function also satisfies the Sommerfeld radiation condition:

lim |y|(|§—| Yy = ikn) @i (v, 1) = 0,

ly|—o0

uniformly in all directions y/|y|.

® Substitute ikm®x, (v, x2) for v -V, @y, (y,x) in the surface integral over
OBgr, and —ikn®y,(y, x1) for v - V,® (y,x1) = Helmholtz-Kirchhoff
theorem.
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Fundamental results in wave propagation

® Resolution: determined by the behavior of the imaginary part of the
Green function. Helmholtz-Kirchhoff identity:

Sm Ok, (x, 2) = kn / B (7 2) s (%, ¥)do(y), R — +oo.

ly|I=R

® The sharper is Sm®y,, the better is the resolution.

® |ocal resonant media used to make sharp peaks of Sm®y,.

resolution.
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Fundamental results in wave propagation

D: bounded domain in R with smooth boundary dD;

(€m, pm): pair of electromagnetic parameters (permittivity and
permeability) of R*\ D and (e, pic): of D.

® Permittivity and permeability distributions:
e =enx(R\ D) +2cx(D) and 1= pimx(R?\ D) + pex(D) -

® w: given operating frequency; ke = wy/Ecfic and km = W\/Emfim.

Incident plane wave u'™(x) = e*m&; &: unit vector.
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Fundamental results in wave propagation

® Transmission problem for the Helmholtz equation:

V- iVu—i—wQau:O in Rd,

u° ;= u— u™ satisfies the Sommerfeld radiation condition,

® Sommerfeld radiation condition:
ou®

— ikm s
or IKmUu

= O(r_(d+1)/2> as r = |x| = 400 uniformly in Ea

x|

(A+Kk)u=0 inR?\D,
(A+KHu=0 inD,
u|+:u|, on 9D,

9| _on 8D,

m dl/ ‘+ Te dl/

u° = u — u™ satisfies the Sommerfeld radiation condition.

Mathematical methods in photonics Habib Ammari



Fundamental results in wave propagation

® Integral representation.

e Existence and uniqueness of a solution.

® Scattering coefficients.

® Scattering amplitude.

® Link between the scattering amplitude and scattering coefficients.

e Optical theorem.
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Fundamental results in wave propagation

® [ntegral representation of u:

u(x) = {”i“(X) +SEWIx), xeRI\D,
Sklel(x), xeD.

Assume that k2 is not a Dirichlet eigenvalue for —A on D.
Unique solution (p, %) € L*(9D) x L*(9D):

Skl - Stylwl = v

Lokl | Loskl)| _ 1eun  enoD
pe  Ov Hm OV . " pm Ov

® There exists a constant C = C(kc, km, D) s.t.
llelliz@opy + 191200y < CUIU™ 280y + IV U™ 12050)) -

® (C can be chosen scale independent: There exists dp s.t. if one denotes by
(¢s,1s) the solution of the system of integral equations with k. and kn
respectively replaced by dk. and dkn, then

llesllizopy + 1¥sllizopy < CUIu™ lizpy + VU™ 200)) -



Fundamental results in wave propagation

e Suppose: k2 is not a Dirichlet eigenvalue for —A on D. For each
(F,G) € H(OD) x L*(OD), there exists a unique solution
(f,g) € L?(OD) x L*(dD) to the system of integral equations:

SK1F1 - Strlel = F

1ASEID| _ 1 asyle)| _ " OP
Hc ov _ Mm ov +_

Furthermore, there exists a constant C independent of F and G s.t.
1 l200) + gl 2000y < C(HF||H1(6D) + HG||L2(8D)>~

® Proof for d = 3 and pm # pic.
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Fundamental results in wave propagation

® Rellich’'s lemma:

e Ry >0and Bg = {|x| < R}.
e v: satisfy the Helmholtz equation Av + w?v = 0 for |x| > Ry.
[ ]

R— 400

lim /aBR [v(x)|* do(x) = 0.

e Then, v =0 for |x| > Rp.

® Rellich's lemma does not hold if w is imaginary or w = 0.
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Fundamental results in wave propagation
® Uniqueness of a solution to the transmission problem: If u satisfies
AR iVU +w’eu=0 inRY,
u satisfies the Sommerfeld radiation condition,

then u =0 in RY.
® Proof based on Rellich’'s lemma:

e Br = {|X| < R}, R s.t. D C Bg.
e Multiply Au+ w?u =0 by T and integrate by parts over

Br\ D,
%/ U@dazO.
dBgr 81/

%/ u(auiwu> da:fw/ lul?.
0Bg v 8Bg
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Fundamental results in wave propagation

® Apply the Cauchy-Schwarz inequality,

Ry / E(@ — iwu) do
8Br (91/
— — jwu

1/2
<(f ) (f |5
9Bg 9Bg ov
® Use the radiation condition,
S/ 7<8——Iwu>da §£< )
9Bg ov R aBR

for some positive constant C independent of R.

1/2
9Bg R

and Rellich's lemma = u = 0in R?\ Bk.
e Unique continuation property for A + w? = u = 0.
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Fundamental results in wave propagation

e X :=1%(dD) x L*(dD) and Y := H*(dD) x L*(dD);
® Define T: X — Y by

® Define Ty by

To(f, g) = <Sg[f] SD[ ] 1 8(‘S“D["'])‘ 1 8(SD[g])

ov

)

o 5P 8% 12(8D) — HY(AD) and

%Sg’"\i — Z28p|+ : L2(OD) — L*(9D): compact operators.
® T — Ty: compact operator from X into Y.
e To: X — Y: invertible: To(f,g) = (F,G)

f=g+(Sh)'(F)
Hmlhc 0 \ky—1 1.1 0 \* 0\—1 )
= Ml (\i+ (K <G+——IfIC SS)UFD ) -
g um—uc( (Kbp)") uc(2 (Kp))(Sp)"[F])
® A= (pc + pm)/(2(1te — pim))-



Fundamental results in wave propagation

e Invertibility of Sy and M + (K%)* + Fredholm alternative = it is enough
to prove that T: injective.

® Suppose that T(f, g) = 0. Define u by

u(x) = {Szk)m[g](x) if x e RY\ D,
T SEIAI(x) ifxeD.

u satisfies the transmission problem with v'* =0 = v =0 in R?.
Stnlg] =0 on dD.

(A + Kk2)Sf[g]l = 0in D and k2 is not a Dirichlet eigenvalue for —A on
D = Sfrlg] = 0in D, and hence in RY.

® Jump relation =

_ 3(352[5’]) - a(sgz[g]) ‘_ ~0 ondD.

On the other hand, S f satisfies (A 4 k2)Sk[f] =0 in R?\ D and
SE[f] = 0 on dD.
* SK[fl=0=f=0.
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Fundamental results in wave propagation

Graf’s addition formula:

D(klx = yl) =D HP (kx| Ji(kly)e ™™ for [x| > lyl;

1€Z

x = (|x|,0x) and y = (]y[, 0y) in polar coordinates;

H,(l): Hankel function of the first kind of order / and J;: Bessel function
of order /.

® Asymptotic formula as |x| — oo:

o) = (0 = =3 STHOeub)e™ [ dtkalyle " i(y)daty).

IEZ
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Fundamental results in wave propagation

o (ou,1py) € L2(OD) x [2(OD): solution of the system of integral
equations on 9D:

Stslon] — SE[wr] = Iy (kmlx|)e” ™,

19 skf[w]) 1 0(5k"’[1/1/'])
Lhe ov

L O(Jr (km|x|)e "9)

+_um ov

® Scattering coefficients Wy, I,I' € Z:

Wi = Wi le, p,w] :/ Ji(kmly)e™ " gy (y)do(y) .
oD
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Fundamental results in wave propagation

® Exponential decay of the scattering coefficients: There is a constant C
depending on (g, u,w) s.t.
chn+Ir'|

T forall I,I' € Z\ {0}.

Wi [, p,w]| <

e As /| — o,

(1) /et \II
Ir(®) \/27r\l’|(2|//|) '
® From

. . cl’l
™[l 200y + IV U™ [ 2(00) < 77

for some constant C =

cl’l
||1/J’/ HLZ(('?D) = “,||,/‘

for another constant C.
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Fundamental results in wave propagation

e Completeness relation for cylindrical waves {Ju(km|y|)e™ "% }n:

_ — +oo i
do(r — r0)do(60 — bo) _ 3 %/ £y (tr)Jy (tro) dt €@,
0

r
I'eZ

® Jacobi-Anger expansion of plane waves: x = (|x|,0x) and & = (|¢],0¢) in
the polar coordinates,

e = N e 509 gy (ki x|)e"

I'ez

® |x| = oo,

u(x) — ehm&x — 72 Z Hl(l)(km|x|)e”9X Z Vl/,,/e”,(g*o&) .
1EZ I'eZ
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Fundamental results in wave propagation

® W) : scattering coefficients, £ = (cosfe,sin0¢), and x = (|x]|, 0x),
|x| = o0,

u(x) — emEx = fi ST HD (kmlx|)e™ S wype G709
1€Z I'eZ

e Far-field pattern Ax[e, p, w]: |x| = oo,

u(x) — €% = —iemF S A e, 1, w] (0. 6) + o(Ix| 7).

VIxI

® 0 and &': respectively the incident and scattered direction,

Assle, p,w](0,0") = Z U= gite’ V\////[e.,u,w]e_”/g.
1,I'eZ

® Scattering coefficients: basically the Fourier coefficients of the far-field
pattern.
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Fundamental results in wave propagation
® Ast — oo,

HP(t) ~ ) S,

|x|: large while |y|: bounded,

1

b= yI= x| = Iyl cos(0 = 6,) + O

® |x| — oo,

1 _mi 2 k(X — 0,—0
e ¥ [ 2 gt

® |x| = oo,

oikmlx]

\/8mkm|x| Jop

Judl
7

u(x) — ekmEx o _je g~ Hmly| Cos(exfey)w()/) dao(y)

Acole; 1, w](Oe, ) b lees0=0dy (y) do(y),

1
= — e
vV 871'km /6D

Mathematical methods in photonics Habib Ammari




Fundamental results in wave propagation

® Fourier series of As[e, i, w](0s, -):

Asole, i, w](0e, 0<) = > by(0)e™™.

Iz
[ ]
1 [ Zikmly| cos(6x—8,) il
bi(0¢) = 2 J, BDe Yap(y)do(y) e do,
27
— i/ / e—ikm|y\cos(0>(—€y)e—i19x daxw(y) dO’(ay)
2 Jap Jo
® From
27
1 ekl €050:=00) o =i10x o j (e 1 1eO+E)
2m Jo
° =

b(66) = [ Skl (1) do(6,).
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Fundamental results in wave propagation

® Scattering cross-section: 6’ € [0, 27],

Qo0 = 5 [ @0V - v Ve

® (Q° satisfies
2

Qs[a,,u,w](Q'):/ozﬂ Accle, 11, ](0,07)| do.

® Absorption cross-section: ¢’ € [0, 2],

Qlen0) = 5 [ (@) Velx) ~ u() Va0

® Extinction cross-section: 6’ € [0, 27],
Q™ [e, 11, w](0') := Q%[e, 1, w](0) + Q[e, p, w](8).

® Extinction cross-section Q°*': ratio of the sum of the mean powers
absorbed and scattered by D to the mean intensity power flow in the
incident field.
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Fundamental results in wave propagation

e Optical theorem (d = 2): 9" € [0, 27],

S Ascle 1, (6, 6) foe“[ww] (©).

® W Axle, p,w]: analytic in C*, A, vanishes sufficiently rapidly as
w — +0o0;

o Asle, u, —w] = A e, i, w] for real values of w;

® Real and imaginary parts of the scattering amplitude are connected by
the Kramers-Kronig relations:

GD2Q e, 1, )(E)
(w/)2 — w2

R A, 1 ](6,€) = cap.v. / W)

#pv /*‘X’ R Aoe, 1, '](€,€)
TEmbm - Jo (@) —w?

e LR =1 & = —\/\emlim/(273).

QQXt[Ey 122 W](E) = - dwl )
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Fundamental results in wave propagation

® Limits as w — 0 = sum rules:

+o0o
R Aclz, 1,0](€,€) = &2 pov. / (@) Q™ e, ' 1(E)

Q™[ 11, 0](€)

2 e %Aoo[g,,u»w,](fyf) — %Aoo[gvp’a 0](535) ’
,mp.v./o (W) dw .
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Fundamental results in wave propagation

® Q7 =0 (non absorbing scatterers): ¢’ € [0, 27],

A =1 i(1=1")6"
S E A )W,,/[e,/,a,w]
1LI'EL

I'ez

2
1 ile’

E i~ Wy e, p,w]e .

Iez
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Lecture 6: Scalar wave scattering by small
particles

Habib Ammari

Department of Mathematics, ETH Ziirich
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Scalar wave scattering by small particles

e D: bounded smooth domain in R,

® u and e: piecewise constant functions s.t. p(x) = pum and g(x) = em for
x € R\ D and u(x) = pe and g(x) = e for x € D.

® [im,Em, lhe, and ec: positive.

km = wy\/Emftm and ke = w,/Ecfic.

® Transmission problem for the Helmholtz equation:

V- iVu—i—wQau:O in RY,

u° := u — u™ satisfies the Sommerfeld radiation condition.

e ;' incident wave.

o Sommerfeld radiation condition:
ou® . _ . .
‘ T O(r (d“)/Q) as r = |x| = +oo uniformly in .
ar x|
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Scalar wave scattering by small particles

® Equivalent form:

(A+Kk2)u=0 inR\D,
(A+KHu=0 inD,

uly =ul- ondD,

i@ 1 0u

u° = u — u™ satisfies the Sommerfeld radiation condition.

e Uniqueness result: u™ =0 = u =0 in RY.

Mathematical methods in photonics Habib Ammari



Scalar wave scattering by small particles

® k2: not a Dirichlet eigenvalue for —A on D.

® 4 can be represented using the single-layer potentials Sg’” and Sgcz

(x) = {“m(x) + 8 [WI(x), x€RI\D,
SKlel(x), x€D;

o (p,v) € L2(OD) x L*(8D): unique solution to

S5lel = Sp'l] = u™

1 ASEleD| _ 1 oS _ 1 gun onOD
He ov _ Hm v N - Mm ov
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Scalar wave scattering by small particles

D=6B+z 6§ —0.
® Asymptotic expansion of u as § — 0.
Consider d = 3.

® There exists dg > 0 s.t. for all § < Jp, there exists a constant C
independent of J s.t.

llell 20y + 19l 200y < C(671‘|UmHL2(0D) + HVUH]HLZ((‘)D))-
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Scalar wave scattering by small particles

® Proof:

e Scaling x =z + 6y =

1 .
Sk lps] - SkPlus] = 50

10K )| 1 aSE )| 1 our "0
Le v — m ov N © Spm Ov

* ws(y) = p(z +0y), y € OB, etc

o Sk and Sg°: associated to the fundamental solutions 'y
and [y s, respectively.

e For 6 small enough:

lesllizomy + 1Vl 208y < CO Ui (os):

e C independent of §.
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Scalar wave scattering by small particles

® Fix neN.

® Define .

0= > Doy

[1]=0

® (¢n,,): unique solution of

S len] = Sp"[wnl = un'a

1 ASEled)| 1 ASEWD)| _ 1 our, oD
e ov Hm ov L Hm ov
° (;,; —on ) — 1n): unique solution with the right-hand sides defined by
u™ — upg.
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Scalar wave scattering by small particles

[ ]
lle — wallzapy + 1Y = Ynll 200

< C(YIHUi“ = uniallzgop) + IV (0™ — “inlll)HLz(aD)) :
® Definition of ul%; =
0™ = untall2gop) < CIODIY2|[u™ = uptalli=(op)
< C|8D|l/2(5km)"+2,
and

[V (u™ — uiril)HLz(BD) < C|oD[M? (k)™ .

lle — SDnHLZ(OD) + [l — U’nHLZ(aD) < C(km)‘aD‘l/zénH :
® Representation formula =

u(x) = u'® x) + Sg’"[w,,](x) + ng[l/) —](x), xeKe& R? \ D.
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Scalar wave scattering by small particles

dist(D,K) > o =

sup
xEK, yedD

rk,,,<x—y)' <c

for some constant C.

® For x € K,
. 1/2
- s 2
sivlo =0l <[ [ Fuatx =) dot)] 10 = vnlizon
D
S C|8D‘1/2|OD|1/2(SH+1§ C/5n+d;
e C and C’: independent of x € K and 6.

u(x) = u™(x) + S [¥n](x) + O(3""),  uniformly in x € K .
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Scalar wave scattering by small particles
® For /: multi-index, define (¢, /): unique solution to

Sl = S5 [wil = X'

18K Te])| 1 oSkl _ 1o on 9B
He ov _ Um ov N - Lim v
® For x € 0D,

n+1
[Z 6\/\ 18U (z) (5 ( ))] (X)

[/1=0

= 30 M P (st (57 (x - 2):

[1]=0
® = pu(x) = Z(SM 18”, (2) @i(6 H(x — 2)) and
[1]=0
& - 18u (z)
Unl(x) = Y T TR (67 (x - 2)).

|/|=0
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Scalar wave scattering by small particles
® = uniformly in x € K,
in A |/|—13’Uin(2) K, -1
u() = ")+ D0 MRS (67 (- 2))x)

[11=0

+0(6™7).

Sy w61 (- = 2)I(x) = /aD Ciw (x = Y)(8 (v — 2)) do(y)

_ -1 /93 Fin (x — (3w + 2))91(w) dor(w) .

® For x € K, z€ D, w € 9B, and sufficiently small §:

> s, ,
M (x — (6w + 2)) = Z 5/” AL Th (x — z)w' .

[1]=0

° =
B 1 et 6\/’\+d—1 v v
Spr (6 (=2Ix) = Y 02 T (x — Z)/ w' hi(w) do(w).
/=0 ‘ 0B
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Scalar wave scattering by small particles

e For multi-indices / and I in N, scattering tensors:
Wiy 1:/ w' i (w) do(w).
oB

e Pointwise multipolar expansion in K € RY \ D:

!
bl =L spijgr

u(x) = u"(x)+ 692 Z

[I"]=0 |I]=0

0™ (2)0% Ty (x — z) Wiy

+0(6™%;

e Remainder O(69*"): dominated by C4*" for some C independent of
x € K.
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Scalar wave scattering by small particles

® ¢ and W,/: depend on §.

® Scattering tensors: basic building blocks for the full asymptotic expansion
as § — 0 of the scattering coefficients

Wy ::/ J/(km\y|)eii/6yw/’(}’)dg()’)-
ED)

® Scaling + Taylor expansions: For p,q € N,

1 LG i / i
Wi = 7— Z W!'%al [Jp(}’)epay] |y:oal [JQ(Y)eqey”

y=0"
M1 ens
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Scalar wave scattering by small particles

® Expansion of W/// as 6 — 0:

e Introduce

SK°1F1 - Skl

f
e =] casm) o) | oo
He 61/ Hm 81/ +
e Tgford=0.
d (90/7?/)/)2
1 XI
[ o :| - [I+ Toil(T‘S - TO)] Toil 1 ox/
Py =
[bm OV
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Scalar wave scattering by small particles

® Expand Ts5 — To in a power series of § = (@,,1@) leading-order term in
the expansion of (¢, ):
SBlp1] — Shlin] = X'
1oS3en| 1 o) _ 1ok on9B

pe  Ov | pm O | pm OV

® Take n = 1: find the leading-order term in the asymptotic expansion of
u—utasd—0.

e Dependence of W on 6 for |/| < 1 and |/'| < 1.
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Scalar wave scattering by small particles

e |/| <1
Spl@] — SElv]=x" inB.
°* = R
a(sslel)| _ o(Sslv)| _ ox
o v | ~aw M9

- — R R

e O(SB¥i)) a(Salv)| _ 1_ ox'

Lm ov N ov v
e (K2)*: Neumann—Poincaré operator,

%(%IJr(/C%)*)[@’]_ (_7I+(ICB) >[QZ/]= <1_&>%

°* =
~ 1/ 0x
ar= - ey (5e] )
W |g
® Permeability contrast:
bm 1
o= He
(=)
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Scalar wave scattering by small particles

e |/|=0: ¢ =0 and S3[3/] = 1.
o = ¢ = 0(5) and SE°[pi] =1+ O(9).
o S5k°[p)]: depends on § analytically + (A + k26%)Sk°[] =0 in B =
G=0() and SEfpl=1+0(), I =0.

o [l=1r=1

w r 0yey—1( 0y’

Wy = x (M= (Kg)") | = (x) do(x) 4+ O(9).

aB AP

e Polarization tensor M = (mpq)3 41

My = / v = (K8)") " ) do ()

e v=(v,...,13).
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Scalar wave scattering by small particles

Wy =M+0@), |Il=]|'l=1.
e /[=0or/ =0:

b= a(Sg™ [i)) A(Sg™ [il)
a ov . ov B
1 OSE TR | 0x' O(SE[)
B Mc ov _ ov

® Divergence theorem =

/ X" do = —kfd”;—m / x’/Sgcé[ap/] dx + k,2,,52/x’/8£’"5[¢/] dx
oB c

ox""
g Ov

cim [ ot do
1}

v Jon OV ——Sg’ ] do .

Mathematical methods in photonics Habib Ammari



Scalar wave scattering by small particles

[ )
W, = _k§52%m|3| + 0(6%)= —6%wecpm|B| + O(8%), || =|I'| =0,
Wy =0(8), |ll=1, |II=0,
W/’:O(62)7 ‘/|:07 ‘/l|:1

[ )

SEW](x) = 0(69), uniformly on x € K.
e |/[=2and |/'| =0:

Yrdo = —/ Ax' dx + 0(6?).
oB B

e || =0:

1 P in A7 in in
> 0@ Wi = —Au™(2)|BI + O(8) = kiu"(2)| Bl + O(5%)..
=2 """
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Scalar wave scattering by small particles

® Dipolar approximation: For any x € K,
u(x) = u™(x)
459 (Vui“(z)MVzrkm(x )+ ki(% —1)|B|u™(2)lk, (x — z))
+0(5%™);

® M: polarization tensor.
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Scalar wave scattering by small particles

® Several well-separated particles: D := UL (0Bs + z).
® There exists a positive constant C such that |z, — z/| > C for s # 5.

® Magnetic permeability and electric permittivity of the particle §Bs + zs:
pand e s=1,....m

® Pointwise asymptotic expansion in K:

u(x) = (%)
de2 e g s / d
+o7 Z Z Z A — 0 m(ZS)a rkm( — Zs )Vvlg/s) + O((S’Hr )

s=1|/"|=0 |I|=0

° W,f, : scattering tensor.
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Scalar wave scattering by small particles

® Closely spaced small particles:

o D:=UM (6B + 2).
o First-order dipolar expansion.
e Overall polarization tensor of multiple particles

M = (mpq)g,q:15

Mpq = Zl./as quf)gs)(x) do(x).
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Scalar wave scattering by small particles

° ¢>Ef): solution to the system of m equations

_— 05,1651 .
(sl = (K3,) )65 - Z W = on 8B;
s'#s

® )\, magnetic contrast associated to ugs).

® Forany x € K, as 6 — 0,

u(x) = u™(x)
d i 2 = E(cs) i
4+ (vum(z)/wvzrkm(x —2)+ km(Z(Z —1)|Bs|)u™ (2)[ g, (x — z))
+0(87™).
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Lecture 7: Imaging

Habib Ammari

Department of Mathematics, ETH Ziirich
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Imaging

® Direct Imaging of Small Particles:

o Detect and localize small particles from multi-static
measurements.
e Multistatic imaging:
e Record the waves generated by the particles on an array of
receivers.
e Process the recorded data in order to estimate some relevant
features of the particles.
e Small-volume asymptotic formulas.
e Direct (non-iterative) reconstruction algorithms: MUlItiple
Signal Classification algorithm (MUSIC), reverse-time
migration, and Kirchhoff migration.
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Imaging

® Resolution and stability with respect to noise in the measurements:

e Resolution analysis: estimate the size of the finest detail that
can be reconstructed

o Stability analysis is to quantify the localization error in the
presence of noise.
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Imaging

® Multistatic imaging:

e Bg = {|x| < R}; D: small particle with location at z € Bg
and material parameters €. and pc.
x;,i =1,..., N: equi-distributed points along 9Bg for N > 1.
Array of N elements {x1,...,xn}: used to detect the particle.
{x1,...,xn}: operating both in transmission and in reception.
u7: scattered wave by D corresponding to the incident wave
I_km(x — XJ)
e Small-volume expansion:

u?(x) = 54 (Vzl'km(z — X)MV [y, (x — z)

"Fk,i(jic - 1)|B|rkm(2 - xj)l'km(x — z)) + O(6d+1);

m

e M: polarization tensor associated with the magnetic contrast
the/ Bm-
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Imaging
® MUSIC-type Method:
e Multistatic response matrix: A := (ujs(x,-))l’.\lj:l.
e D: disk. .
e N-dimensional vector fields gU)(z°), for z° € Bg and
i=1,....d
gV (z°)

= 1
\/Z:\’:l ‘ej'vzrkm(ZS—X’-)P
t
X (ej . erkm(ZS _ Xl), N TR vzrkm(z - XN)) ’

(d+1)(55) 1
) = e

t
X (rkm(zs ) rkm(zS — XN)> .

e t: transpose; {ej,...,eq}: orthonormal basis of RY.
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Imaging

e g(z°): N x d matrix whose columns are gV(2°),...,g{¥(z°).
.

AY ~ 7,8(2)g(2) + gD (2)g " (2) ;
T :=2|D|“M‘“C szrkm z—x)),

N
Ec

Te = Ilefn(; — DO IMknl(z =) ) -
m i=1

® P: orthogonal projection onto the range of A¥
o MUSIC algorithm functional:

d+1

T (5,0) = (Y10 - PIEIEE)E)

Jj=1

® Tnu: large peaks only at the locations of the particles
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Imaging
e Backpropagation-type imaging functional: For z° € Bg,
d+1 '
Top(2*,w) = ) u ()0 (%) - 8 (°).
j=1

® For sufficiently large N,

1

N ri(x,—z)rk( —z)~\srk (z—zs)7

&Mz

N z—2° ,z—2°
Z o052 Vi (5=2°)' ~ STk (2-2°) (25 (= 25))

2 \

s sinc(km|z — 2°|) for d =3,
IBP(Z ,w) ~
Jo(km|z = 2°]) for d =2.

® Resolution: of the order of half the wavelength 27/ k.
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Imaging

® Tpp: uses only the diagonal terms of the response matrix A%.
® Kirchhoff migration functional:

d+1
Tin(2°,w) = Y g0(z°) - A" (2°).

Jj=1
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Imaging

® Suppose that pc = pim:
AY — ng("“)(z)g(d“)(z)t.

® 7nu: nonlinear function of Zxw;
Tin(2°,w) = 7o (1 - I&%(zﬂw)) -

® |n the presence of measurement noise (additive measurement noise with
variance k2,02 i)

Aw — ng(d+1)(z)mt —+ O'noisckm W )

® W: complex symmetric Gaussian matrix with mean zero and variance 1.
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Imaging

E and Var: the mean and the variance.

Signal-to-Noise Ratio (SNR) of Zkm:

E[IKM(Z, w)]

SNR(Zxkm) = — 25— .
(Zeem) Var(Zxwm(z, w))1/2
[ ]
SNR(Zxm) = _ T
KmOnoise '
® For the MUSIC algorithm, the peak of Zyy is affected by measurement
noise:
|7—5| |f Te > Onoise
.’Z,—l\/[U(Z7 U.)) = Onoise ’
1 if |TE| < kmgnoise .
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Imaging
® Joint sparse recovery.

® Lippmann-Schwinger representation of u}:
S 1 S
5060 = [ (oo, o) Vg ) A1 x)if 0)) o

® Approximate Vu; and u; in the search domain Q° by either piecewise
constant functions or splines:

Z/ 10‘ (y i)
Vui(y) =

)

E/ 10‘/J (y i)

and

Za/d+1 ¢(d+1) (v, y1)-

e {y}L,, for some L € N, finite sampling points of Q° and ¢(")(y,y,):
basis function of the nth coordinate with n € {1,...,d + 1}.
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Imaging

® Data matrix:

(as,lj))lyj
A =[sM . st
(@41,
e Sensing matrix S = [SM, ..., SE+]:
S(n) _ 1 1 (n)
(== 7-) | (VT O = y) - €)™y, yi)dy

forn=1,...,d, and

Ec
(S, = k(=== 1) /Qs Ciw (i = ¥)0“ ™ (v, yi)dy.

m
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Imaging

1
(@)

X =

i1
(af,j ))/J

® Pairwise joint sparsity: (ozf,lj)), ce (agj.“)) are nonzero at the rows
corresponding to the particle's location.

Joint sparse recovery problem:

mXin [IX]lo subject to |A“ — SX||F < 7.

|| X]lo: number of rows that have nonzero elements in the matrix X; n:
small regularization parameter; || ||: Frobenius norm.
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Imaging
® Super-resolution imaging

® |nverse source problems:
Au+ kzn(x)u =f,
u satisfies the Sommerfeld radiation condition.

® n(x): refractive index; n — 1: compactly supported in a bounded domain
D € RY for d = 2,3; assumed to be known.

® Image from the scattered field u in the far-field f in L>(D) or finite
number of point sources supported in D.

® Outgoing fundamental solution ®«(x, y):
Ax¢k(X7y) + kzn(X)q)k(va) = 5Y(X)7
®, satisfies the Sommerfeld radiation condition.

® Integral representation:

u(x) = Kolfl(x) == / 4 (. Y)F(y) dy.
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Imaging

® |nverse source problem of reconstructing f from u at a fixed frequency:
ill-posed for general sources.

® Methods of reconstructing f from u:

e Time reversal based method;
e Minimum L2-norm solution;
e Minimum L-norm solution.
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Imaging

® Time reversal based method:
Irr(x) = / Si(x,z)u(z) ds(z) = KpKp[f](x),
9Bg

o Kp: L[2(0Bg) — L?(D): adjoint of Kp : L2(D) — L%(9Bkr).

Kp: time-reversing the observed field.

Helmholtz-Kirchhoff identity = resolution:

o
Trax) % — [ 904l )F() dy.
JD

f: point source = resolution limited by S®(x,y).
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Imaging

e Minimum L%-norm solution:

e fel*D),
min ||g]/;2(py subject to Kplg] = u.

® Relaxation in the presence of noise:
min [|g||2(p) subject to [|Kb[g] — ullfz(ry < 6;

® § > 0: given small regularization parameter.

e Singular value decomposition Kp : L>(D) — L*(T):

Kp = ZUIPI;

>0

® o, Ith singular value and P, is the associated projection.

® |ll-posedness of the inverse source problem <= fast decay of the singular
values to zero.
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Imaging

e Minimum L2-norm solution:

16 = 3 P2 K Kol 1)

>0 !

® Regularized solution:

PP .
() = 3 5 K Kolf(),
>0

® «: function of §; chosen by Morozov's discrepancy principle.
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Imaging

e Minimum L'-norm solution:
® f: superposition of separate point sources.

® Minimization problem:

min [gll.1(py subject to KpKplg] = Kp[ul].

Relaxed minimization problem:

min [|g|l.1py subject to [[KpKblg] — KE[u]H%zm < 4.
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Imaging
® (Case of homogeneous medium
e n=1;d=3:
elklx=vyl
Pu(x,y) =Tu(x —y) = TR

e Far-field: kly| = O(1) and k|x| > 1= |x—y| =~ |x| - Xy, & = =

x|

eik\xfy\ . J eik\x\ )2—‘ P
ux)=— _— ~ — X);
() == [ gy W) v — o 8)
e f: Fourier transform of f.
® Measurements on 0Bg:
ikR
e
u(x) =  47R

® Time-reversal method =

F(kR).

1 2 (y—z 1/ sink|z—y
FnE) % g [ Jy OIS0 = g [0
R
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Imaging

® Green function in high-contrast media.

k = 1; Helmholtz equation with a delta source term:

A D(x, x0) + D(x, %) + 7n(x)x(D)(x)P(x, x0) = 6(x — x0) in R?,

x(D): characteristic function of D; n(x) € C*(D): positive function of
order one and 7 > 1: contrast.

®o(x, xo): free-space Green's function ' (x — xo).
o Write ® = v + &g,
Av + v = —7n(x)x(D)(v + do).

v(xo0) = =7 [ )0 (Wy0) + )
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Imaging

® Define i
Kolfl(x) = — / n(y)®o(x, y)F(y) d.

® v = v(x) = v(x, xo) satisfies the integral equation:

(I = 7Kp)[v] = TKo[®(:, x0)I;

V() = (+ ~ Ko) " Ko[®(-,0)]
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Imaging

® Properties of the integral operator Kp:

e Kp: compact from L?(D) to L?(D) < Kp: bounded from
L2(D) to H?*(D).
e Kp: Hilbert-Schmidt operator.
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Imaging

e Spectrum o(Kp) of Kp:
L4 O'(KD) = {0,)\1,)\2,...,)\,,,...};
o M| >|X2| > A3l > ... and A, —= O;
e {0} = o(Kp)\op(Kp); op(Kp): point spectrum of Kp.
® )\ € o(Kp) iff there is a non-trivial solution in HZ (R9) to
(A+1)u(x) = Fn(x)u(x) in D,
(A+1)u=0 in RI\D,

u satisfies the Sommerfeld radiation condition.

® 7{;: generalized eigenspace of the operator Kp for the eigenvalue ),

® For |A\| < 1: resonant modes have sub-wavelength structures in D and
can propagate into the far-field = super-resolution.
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Imaging
® Jordan theory applied to Kp|y; : H; — H,; on the finite dimensional
space H; =

e There exists a basis {uj/«}, 1 </ <mj;,1 < k < nj, for H;
s.t.

Jia
Ko(ujaas - U ) = (U105 -5 Uiy ) :
Jjom;

e J; ;i canonical Jordan matrix of size n;
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Imaging

o I={(, k) eNxNxN;1</<mj1<k<nj,}: setof indices for
the basis functions.

® Gram-Schmidt orthonormalization:

e There exists an orthonormal basis {e, : v € ['} for L?(D) s.t.
€y = Z Ay Uy
v =2y

® a, . constants;
* ay, 70
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Imaging

A ={ay 4}~ er: viewed as a matrix.

® A: upper-triangular and has non-zero diagonal elements.

B = {b, '}, er inverse of A: upper-triangular and has non-zero
diagonal elements.

Uy = § by ey

v =2y

{ey(x)e,/(y)} form a normal basis for the Hilbert space L*(D x D).

® Completeness relation:

8y(x) = ex(x)es (v).

y
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Imaging
o O(x,x) € L}(D x D) for fixed T =
(x,x0) Zav &y (X)&7 (%),

_—
for some constants o, :
2 2
Z vy | = ||¢(X7X0)||L2(D><D) < oo.
Rt

® Analyze the Green function ® <« find the constants o /.

* 1
Po(x,x0) = mKDW(- - x0)]-
P(x,x0) = Po(x,x)+ (1 - KD)*IK,%[a(. —x)]
= (X Xo) —l— Ze,y(xo — = KD) 1K,§[e,y].

e Compute (1 — Kp) 'Kp[e,].

Mathematical methods in photonics Habib Ammari



Imaging

e For z ¢ o(Kp) (z =1/p),

_ 1
(z—Ko) Hujik] = S ikt Ujrk—1+...+

1 1
—Uuj .
Y (z—N)? [CEY) i

(z = Ko) 'Kblujik] =D dy g
,7/

® Expansion of ®(x, x0) in the orthonormal basis {ey}er:

¢(X7Xo) = ¢0(X, Xo) + Z Z a,y_’.y///a(Xo)e,YW(X);

~EF 41" el

(e} " E "1,
vy Xo) Z a””’ LN

/<,Y

® For77' €/ R\ (RNo(Kp)), uniform bound:

Z loy 4> < o0.
v

Mathematical methods in photonics Habib Ammari



Imaging

® Expansion of ®(x, xp) in the basis of resonant modes {uy }er:

D(x,x0) = Po(x,x0) + Z Z Z 6 [~ uy(x )UA/" (x0);

v ery" =y y=y"

ﬁ’y”,'y,'ym = XO) Z ,,,a // dﬁ,,/q,.
e In [2(D x D):

Jim Z DD By ()um(x0) = B(x, x0) — Go(x; X0)-

'Y <"/ ! Ly A1 Lyt
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Imaging
® Expansion of ®o(x,x0) in the orthonormal basis {ey}er:

So(x,30) = D D Gy (x0)eym(x),

~YEr 4/ er
[ ]
Oé’y,'y”/ XO) E E a’Ya"// h'Y " b’y” ",
v =<
=7

e Uniform bound:
D lay ] < € < oo

T d

® Expansions of ®g(x,xp) in the basis of resonant modes {uy }yer:

do(x, x0) Z Z Z Bw”mww uy (X)) (x0);

/// <~ yj’*/”

" "= 3// a_rn h/ .
*87 Y Z YIENT Y

'v<'v
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Imaging

® Resonance expansions of the Green functions in high-contrast media and
in the free space = explanation for the super-resolution phenomenon.

Difference between the coefficients Bw”mv'” and Bw”mv'”: quantities

d,and h, . (a, , are constants).

o If H; are of dimension one:
A2
d = 5 /7J h = 5 T Aj
7Y RL N’ vy vy N
° —
1
dyy = Tl

HAj

® = Contribution to the Green function ® of the sub-wavelength resonant
mode u is amplified when 1/7: close to \;.

Mathematical methods in photonics Habib Ammari



Imaging

® |maginary part of ®: sharper peak than that of ®y due to the excited
sub-wavelength resonant modes.

® When the high contrast is properly chosen, one or several of these
sub-wavelength resonance modes can be excited, and they dominate over
the other ones in the expansion of the Green function .

® |t is those sub-wavelength modes that essentially determine the behavior
of ® and hence the associated resolution in the medium.

® Super-resolution occurs in this case.
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Lecture 8: Maxwell's equations

Habib Ammari

Department of Mathematics, ETH Ziirich
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Maxwell's equations

® | ayer potential formulation for electromagnetic scattering.

® Helmholtz-Kirchhoff theorem.

Optical theorem.

® Scattering by small particles.
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Maxwell's equations

e D: bounded, simply connected, and of class " for > 0;

® Scattering problem of a time-harmonic electromagnetic wave incident on

D.
® D: electric permittivity ec and magnetic permeability ric;

® Homogeneous medium: electric permittivity e, and magnetic
permeability fim;

km = WA/ EmMUm;, kc = Wy/Eclhc,

and

ep = emx(R*\ D) + ecx(D), pp = emx(R*\ D) + ecx(D).
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Maxwell's equations

® Given incident plane wave (E™, H™), solution to the Maxwell equations
in free space

VxE®™ = jupmH™ inR3
V x HY = —jwen,E™ in R3.

® Scattering problem:

V x E = iwupH inR3\ D,
V x H = —iwepE inR3*\ 4D,
vxE|,—vxE| = vxH| —vxH| =0 ondD;

® Silver-Miiller radiation condition:

i (ViR = H00 x 5 = VER(E ~ E7)()) =0

Ix]

uniformly in x/|x|.

Mathematical methods in photonics Habib Ammari



Maxwell's equations

® Dyadic Green (matrix valued) function for the full Maxwell equations:

Gy, (x) = em (rkm(x)/ + %Dﬁ%(x))

2
m

® G, satisfies
V X V x Gy, — k2Gy,, = dol.

® Gy, satisfies the Silver-Miiller radiation condition.
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Maxwell's equations

® Functional spaces: For s = £1/2,
H3(9D) = {(p € (H(0D))*,v ¢ = o} .

® Surface differential operators:

e Surface gradient, surface divergence and Laplace-Beltrami
operator: Vgp, Vyp- and Agp.
e Vectorial surface curl: For ¢ € Hz(dD),
ct;rlapgo = —v X Vapp.

e Scalar surface curl: For ¢ € H?((’“)D),

curlppy = —Voap - (v X ¢).

Mathematical methods in photonics Habib Ammari



Maxwell's equations

3 _1
ANap : HE (OD) — H, 2(0D): invertible.

3 _1
Hz (OD) and H, ?(9D): zero mean subspaces of H%(aD) and H_%((?D).

® \ector identities:

Vop-Vop = Aop,

curlppcurlpp = —Asp,

curlppcurlspp = —App + VapVap- ,

Voo -curlpp = 0,
curlspVep = 0.

® Functional space:
_1 _1
H;2(div,0D) = {go € Hy2(D),Vop - ¢ € H’%(BD)}.
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Maxwell's equations

® Trace theorems:

e uc H(div,D) = {u€ LXD):V-uec L2D)}
u-veH (D).

e uc H(curl, D) := {u € [3(D): V x u € [3(D)}
uxve H7 (D).

e v: outward normal to 9D.
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Maxwell's equations

® Hy(div, D) :={u € H(div,D): u-v =0 on dD}.

® Hy(curl,D) :={u € H(curl, D) : u x v =0 on dD}.
e H}(D):={u€ H(D):u=0ondD}.

® Characterization of H}(D):

Hg (D) = Ho(div, D) N Ho(curl, D).
® Characterization of H'(D):

H*(D) = H(div, D) N H(curl,D)N{u-v € H%(OD) oruxve Hé(@D)}.
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Maxwell's equations

® Helmholtz decomposition:

H;%(div, oD) = VE)DHO% (9D) & cttlopH? (9D).

e Foruce H;%(div,aD): u™® and u® two functions in HO% (0D)
and H2(dD) s.t.

1)

u= VaDu( + chIaDu(z).

e u): uniquely defined and u®: defined up to a constant
function.
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Maxwell's equations

® Boundary integral operators:

[ ]
Shlpl : H7#(9D) — H(ID) or HL (R?)?

o — Shlelx) = /3 il = y)ely)do ()

Mbs[g] - Hy? (div,dD) —s Hy  (div, dD)

o s Mb[o](x) = / v(x) % Vi x (Tlx = y)e(y) do(y)
oD

L[] - H7? (div, D) — H7* (div, D)
o LETA(X) = v(x) x (kZEEM (x) + VSh[Voo - ¢] (x)).
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Maxwell's equations

- _1
e Jump relations for Sj: For ¢ € Hy ?(div,dD),

(v v x S5I)|, = (3! + Mb)iel

(1/ x V x V x 55[@]) ’8D = LE[¢].
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Maxwell's equations

® Relation to the Neumann-Poincaré operator:

e k=0;

o MY H;%(div,BD) — H;%(div,ﬁD): compact;
For ¢ € H2(dD),

MOeurlopp] = curlopKS[el;

For ¢ € H2(OD),

M[Vopy] = —VapAyh(K%) [Aapy] + curlapRplyl;

Rp = —AypcurlgpMEVap.
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Maxwell's equations
e o(MY): spectrum of MY.
e For (¢, ) € (H;%(div, 8D))2 and A\ ¢ o(MY),

(M= MB) 9] = .

® Helmholtz decompositions of 1, ¢ € H;%(div, aD):
o M and ¥ in Hi(8D) and H}(AD) st.

b = Vapt™ + curlppty®.
e ¢ and @ in H (D) and H2(dD) st

Y= VBDQO(]') —+ ch|aDga(2).
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Maxwell's equations

® Assume A # 3,

(A/ - M%) [¥] = ¢.

& (1,42 € 15 (9D) x HH(2D):

M+ A A(KS) Asp 0 P\ @
Rop M —KY @ ] T @ )

::MVD

3
o H(OD) := HZ(OD) x H2(dD), equipped with the inner product

(u, VIngooy = (Bopu™, DopvV)as + (u® vy

3
® Equivalent to the HZ (OD) x H%(E)D)—norm.

e Spectrum o(Mp) = o(—(K%)*) U a((K%)*)\{f%} in H(OD).
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Maxwell's equations

® [ntegral representations:

Fo - E™(X) + pmV X SE[W](x) + V x V x S [4](x),  x € R*\ D,
1V x SE](x) + V x V x Sk [¢](x), x €D,

H(x) = — ;L (V x E)(x), xeR*\aD;
D
_1
* (¢,9) € (Hy ?(div,8D))” satisfies
MTMI + peMEE — M ck — ke
Kk W K
L5 — Ly ( +—>/+#—iMDC Mg

2L 2Um
. v x E™
T | jwr x H®

oD
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Maxwell's equations

_1 _1
e Unique solution on Hy ?(div,dD) x H ?(div,dD);

® There exists there a positive constant C = C(eq, fic,w) s.t.

[l _s 1l -3,
Hy 2 (div,8D) Hy 2 (div,8D)
< C(IE™ xvl| 4 HIH x|y
H 2 (div,8D) Hy 2 (div, aD)
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Maxwell's equations

e Low-frequency asymptotic expansions of layer potentials: M and L as
k — 0.

e Foryp e H;%(div,aD),

o0

MBel(x) = MB[el(x) = > (kY Mp [l (x);

j=2

Mil)(x) = /a ) %ﬂu(x) X Vo % [x — yPYo(y)do(y).

o |Mpl

: uniformly bounded with respect to j.
( d|v aD)) uni y bou wi p J

e Convergence in £(H T%(div.,E)D)) and MJ: analytic in k.
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Maxwell's equations

_1
® For ¢ € H; ?(div,0D),

(L5 — £EIAC) = 3 LA
£plel) = Gule) x ([ 1x =y Poly)do(y)

Ix —yV2(x—y)
_ / EYE A0 - ply)da(y),

o _ V(e — (Vempny ™)
I 4n(j —1)! ’

HE"D : uniformly bounded with respect to j.

HIL(H.;%(div,OD))
_1
e Convergence in £L(Hy ?(div,0D)) and L£f: analytic in k.
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Maxwell's equations

® Helmholtz-Kirchhoff theorem:
e Dyadic outgoing Green function:
1

Gy, (x) =em <ka(x)/ + 2

i () )

e OBg: sphere of radius R and center 0.
o Integration by parts =

8G7km — 0Gy,
[ (B =98ue =)~ Gl =) 52z =) ) dly)
=2i¥ Gy, (x — 2);
e Silver-Miiller radiation condition =

1
lim Gy, (x — )Gy, (z—y)do(y) = ——S Gy, (x — 2).
R—4o0 9Bg km
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Maxwell's equations

® Optical cross-section theorem:
e Incident plane waves: c € R3and d € Ss.t. ¢-d =0,

E™(x) = ce®ndx H(x) = Em 4« celkmdx
V' tim

e Extinction cross-section Q¢<t:

Qt = —12\/“"’%[/ (E'x(H-H)+(E-E')xH)-vdo|.
|C| Em oD

e Scattering amplitude Ax(c, d; %): (X = x/|x])

. eik,,,|x\ R 1
E(x) — E™(x) = mAOO(Q d; %)+ o(—

e Optical theorem:

Qext _ 73

il
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Maxwell's equations

® Electromagnetic scattering by small particles:
® D = z+ §B where B contains the origin and |B| = O(1).

® |eading-order term in the asymptotic expansion of the scattered electric
field E® := E — E™ far-away from the particle:

E(x) = —“Emg G, (x—2)M(\., D)H (2)

Em

—?pmGy, (x — 2)M(X., D)E'(2) + O(8%).

® G, (x — z): Dyadic Green (matrix valued) function for the full Maxwell
equations;

® M(Xu, D) and M(\c, D): polarization tensors associated with D and the
contrasts A\, and A..

N b 41 e L 41
CTa - T AR
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Maxwell's equations

® Spherical particle:

HEm 1 Ec _
M(A,., D) = 32 I, M(X\e,D)=3Z" .
(M7 ) 2+;;7,:v ( ) ) 32+§7;I

® pim = pe, EM(x) = G, (x — x)0;:

E*(x) = 3k3 -7 ¢

e 2 Gk (X = %), (2 = x9)05 + O(8").
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Maxwell's equations

® Direct electromagnetic imaging:
o x;,i =1,..., N: equi-distributed points on 9Bg := {|x| = R}

for N > 1.

e Array of N elements {xi,...,xn}: used to detect the spherical
particle D.

e 0,...,0p: corresponding unit directions of the incident

fields/observation directions.

E™(x) = G, (x — x)0;, x€R>.
e Asymptotic expansion:

Em — Ec
EJ'S(X) = 3kr2nm\D|ka(X — )Gy, (2 — x;)b
+0(5%).

e Measured data: N x N matrix

w . S
A¥ = (EJ (X,') . 9,) .
ij
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Maxwell's equations

e N-dimensional vector fields gU)(z°%), for z° € Bg and j = 1,2,3,

g9(=*) =

1
VN TG (25 =)0 2

3
X (ej . ka(Zs — X1)91, ey, 6 ka(zs — XN)QN) .

® MUSIC, reverse-time migration, Kirchhoff, and joint sparse recovery
algorithms: extended to the electromagnetic case.
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Lecture 9: Diffraction gratings

Habib Ammari

Department of Mathematics, ETH Ziirich
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Diffraction gratings

® Periodic structures with tiny features used as optical devices:

e antireflective interfaces:;
e beam splitters;
® Sensors

Small features: Light propagation governed by diffraction.

® Time-harmonic Maxwell's equations: reduced to two scalar Helmholtz
equations (transverse electric and transverse magnetic modes).

® Two classes of grating structures:

e Linear grating (one-dimensional gratings),
o Crossed gratings (biperiodic or two-dimensional gratings).
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Diffraction gratings

® Time-harmonic electromagnetic fields:

E(x,t) =RE(x)e ™™t
H(x,t) = RH(x)e “*

Operating frequency w > 0; E and H: electric and magnetic fields.

® Time-harmonic Maxwell equations:

VXE = iwuH,
VxH = —iweE.

® ,i: magnetic permeability and e: electric permittivity.
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Diffraction gratings

® Jump conditions (u = po):

e Tangential components of E and H: continuous crossing an
interface;

e Normal components of ¢E and H: continuous crossing an
interface.

® Homogeneous, nonmagnetic, and isotropic medium:

—~AE+V(V-E)=iwuV x H.
—~AE+V(V-E)=weuoE
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Diffraction gratings
® Grating geometry and fundamental polarizations

Incident plane wave

/ Region |
m

Grating geometry.

® A, h, and 6: period, height, and incident angle.

o (e1, e, e3): orthonormal basis of R?.
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Diffraction gratings

® One-dimensional grating:
e(x1 4+ n\, x2) = e(x1,x), né€LZ.
® Two-dimensional grating with period A = (A1, A2):
e(x1 + mAL, x2 + mhz, x3) = e(x1, x2, x3), ¥V ni,m € Z.

® Incident vector: ki(sinf, —cos6,0).

e Fundamental cases of polarization: TE (transverse electric) and TM
(transverse magnetic):
e TE polarization:
E= U(X17X2)€3.
e u: scalar function.
e TM polarization:
H = u(x1,x)es.
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Diffraction gratings

® Perfectly conducting gratings
® u = E3(x1,x2) in TE polarization; = Hz(x1, x2) in TM polarization.
® Grating: x> = f(x1) = u =0 in Region Il (x2 < f(x1)).
® In Region |, u:
Au+ Ku=0if xo > f(x1).
® Boundary condition of u on xo = f(x1):
e v: outward normal to Region I,

vx E=0 onx=f(x).
e In TE polarization: homogeneous Dirichlet boundary condition,
u(xy, f(x1)) = 0.

e In TM polarization: homogeneous Neumann boundary

condition,
ou

Xzif()q)
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Diffraction gratings

e Incident field: u'® = e(®1=52). scattered field: v° = u — u'™.
°
a = kisinf,
B = ki cosf.
[ ]
Au® + ki u® =0 for xo > f(x1).
® Boundary conditions:
e TE polarization: u® = —u'™ on x, = f(x1).
ou® ou™

e TM polarization: o = on xp = f(xq).

ov
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Diffraction gratings

® Radiation condition:

e Assume u®: bounded when x» — +00 and consisted of
outgoing plane waves.

® Quasi—periodic solutions.

® u°(x1,x2)e” "™ periodic function of period A with respect to x; for every
X2
—ial\ _

U (xa+ A x)e u®(x1, x2).
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Diffraction gratings

® Grating formula.

® Define
+27rn Ky sin -+ 27
an=a+ —— = kysin n—-.
" A A
® Fourier series expansion:
s _ iaxy V/ inzTle
u(x,x) = e W(x2)e
n€Z
= E Vi(x2)e' .
n€Z

® Determine V,(x2).

® 1°(x1, x2) satisfies the Helmholtz equation in {x2 > max{f(x1)}} =

Z {M + (ki — Oéi)Vn(X2)} e T — 0,

a2
n€Z

d*Vv,
SVnl) 4 (12— a2Val) =0,
2
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Diffraction gratings

® Define
kX —a2 ki>ad,
Bn =
i/ a2 — k? k? < o
°

Va(x2) = Ane™ 72 + Bne'™m2,

® Radiation condition = A, = 0.

® Rayleigh expansion:
S ’anxl+’ﬁnx2 H
u(x1,x) = B,e outgoing waves
[an| <kg
+ E B,e'@m™1tiBr2  oyanescent waves.
[an| >k
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Diffraction gratings

e U= {n,|an| < ki}: propagating plane wave (or scattered wave in the nth
order).
e If [n|: large (n ¢ U), Bye™PrP2ei@nt: evanescent wave.

® Scattered wave in the nth order:

: : 2_ 2
Un(xa,x) = B,e'omativki—ai 2 o0 n ey,

® Since |an/ki| < 1, angle of diffraction 0,:
Qp . . 2mn T s
_— = 0" = 9 — — = 9,7 —.
K sin sin6 + KA 5 < < 5
® Scattered wave in the nth order:

_ ikq (x1 sin @p+x cos 0,
¢n(X1,X2) = B,e 1( n n)
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Diffraction gratings

® Grating formula:

sin@n:siné)—kn% or kysin, = kysin + HZTW

® )\;: wavelength in Region | and k; = i—’lr
0
0o
01 0_1
0, — 9,

/\/\

Geometric interpretation of the grating formula.
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Diffraction gratings

® Reciprocity property:

e # and 6,: angle of incidence and the angle of diffraction of the
nth order.

e Angle of incidence: 0" = —0, = nth scattered order
propagates in the direction: 0/, = —0.

e ~

/\/\/\/\

Reciprocity theorem.
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Diffraction gratings

® Grating efficiency:

e ¢" and ¢°: fluxes of the Poynting vectors associated with the
incident wave and the nth scattered wave, respectively.
o Measurement of energy in the nth propagating order:

Pn

En - @

* 0
En: Bn2COS n.

81| os 0

® The conservation of energy:

ZE,,:l.

nelU

® [ncident energy = the scattered energy.
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Diffraction gratings

Assume that u; and ws:
Au+ Ku=0

and either a homogeneous Dirichlet or a Neumann boundary condition.
® For any x> > max f(xi),

A
/( %_ 2am)dx1—0
X2

Apply to u and T:

A _
%/0 (g—; —U%) dx; = 0 for x2 > max f(x1)

A a—
{./o ug—XZ}ZOfoer>maxf(x1).

&

L
A
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Diffraction gratings

[ ]
U= eloxi—iBx + Z Bneiann+i6m
neU
+ § B, enx1tiBnx
n
ngU
[ ]
o= efiax1+iﬁx2 + z :E efiocnxlfiﬁnxz
- n
neU
+ § :E e—ianX1—iﬁnX2
n .
ngU
o —
2
B=> BBl
neU

or equivalently >~ E, = 1.

Mathematical methods in photonics Habib Ammari



Diffraction gratings

® Dielectric gratings
® Region I: filled with a material of real permittivity e1;
® Region Il filled with a material of real permittivity 5.
® |n Region |,
Au+ kiu=0 if xo > f(x1).
® In Region II,
Au+kKu=0 if xo < f(x1).
e Outgoing wave conditions satisfied by u® = u — u™ (for x; — +o0) and
by u (for xo = —o0).

® Jump conditions = u: continuous, du/dv: continuous in TE
polarization, and (1/¢)0u/dv: continuous in TM polarization.
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Diffraction gratings
® Quasi-periodicity of the field.
® For x; > maxf(xi),

U(X17 X2 /axl Z Vn(xz)e'" X x1
n€Z

Rayleigh expansion:

U(X1,X2) _ e(l(le—lBXz) + z :Rnela"X1+’B"1X2.

. oz,,zklsian—n%7r and 32, = k? — 2.

If x2 < min f(x1),
U(X1,X2) _ Z T, eianX17i6n2X2

nEZ

2 2 2
Bn? = k2 — Q.

® Expansions contain propagating and evanescent waves depending on n.
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Diffraction gratings

® Forj=1,2 U ={n B3 > 0}.
e Ifne Uy, a? < k2,

an:klsine—&—nz%:hsiné,,l, —g <Om < g,
B = ki cos On1;

o R,e/¥natibnxe. plane wave propagating in the 0,1 direction.

If ne U,

. 2 .
an = szIn9+nWﬂ— = ko sinOpp, fg <Op< g;

Br2 = ko cos On2;

o T,e' 1B transmitted plane wave propagating in the 0, direction.
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Diffraction gratings

® Variational formulations.
® Model problem:
e O ={x=(x,%) €R?:x; > b};
Q= {x=(x,%) €ER?: x < —b};
Q={(x1,x) € R?: —b < x < b}.
e Periodic slab: go(x1 + A, x2) = qo(x1,x2) (g = /Z1o)

ejl in Q UQy,
q(x) =79 a(x) inQ
q> in QQ UQ2.

Mathematical methods in photonics Habib Ammari



Diffraction gratings

® Incoming plane wave

Uin(Xl X2) _ eiwqfiB)Q
s .

V- (%VU) +w’u=0 inR%

o uy(x1,x) = ulxi,x))e M,

o Uy

1
va~(?vaua)+w2uu =0 in R%,

Vo=V +i(a,0).
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Diffraction gratings

® Expand u, in a Fourier series:

2mn
Ua(x1, %) = Z u((x")(xQ)e' AL

n€ZL

(n) 1M —izgn
uy’ (%) = K/ Ua(x1, x2)e”™" A “dxg.
0

® Sets
M={xeR:xx=hb}, Mh={x=—bh}
with 0 < by < bs.t. Qo C {—b1 < x < bi}.

D1:{X€R2:>Q>b1} and D2:{XGR2:X2<—b1}.
® Forj=1,2,

B(a) = VI — a2 = PG — a2 ne

j = arg(kl —a2), 0<~] <2r.
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Diffraction gratings

® Exclude Wood's anomalies:
K} #ah forallneZ,j=1,2.
°
| VB 6
iv/od — ka, kj2 < al.
® Inside D; and Ds: u, can be expressed as a sum of plane waves:

+iBP( 27rn .
Uoz‘D 72 :an iBY(e)xp+i =Rl ><1’ J:1,2

n€eZ

® a]: complex scalars.
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Diffraction gratings

® Radiation condition.

® j3/: real for at most finitely many n = there are only a finite number of
propagating plane waves as |x2| — co.

o ul(x)

ugn)(b)eiﬁf(a)(Xz—b) in Dy for n # 0,
=1 4O (b)ePle—b) 4 o=iP2 _ giBla=20) in D for n=0,
ug’)(_b)e—iﬂé’(a)(xﬁb) in D,.
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Diffraction gratings

® Compute the normal derivative of ug(x2) on I, j =1,2:

Hul™ iB7(c)ul” (b) only forn#0,
816/2 = iﬂu((f)(b) —2iBe P* onTy forn=0,
r iﬁg(a)ug")(—b) on .
° =

L) = B () F o~ 2ipe
v M neZ
Po) = B (~b)e
o M neZ

® Outward normal vector v = (0,1) on I'; and = (0, —1) on I,.
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Diffraction gratings

e Suppose that a2 > k?. Then

U (b) = ul) (by)e T POVERTA,

If a2 > |ko|?, then
|u(")(—b)| _ |u(n)(_b1)|e—(b—b1)Sin(vé’/2) v (02—R(k2))2+(S(K3))? ]

For functions f € H%(Fj) (Sobolev space of A-periodic complex valued
functions),

ToIFa) = i () e R,

nEZ

A 27Tn
f(") = %/ f‘(Xl)eilzT)<1 Xm.
0

® Forj=1,2 T: H%(Fj) — H_%(Fj): continuous.
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Diffraction gratings
e Find u, € H'(Q):

1
Va'(?vaua)Jrofua = 0inQ,
T [ua] — d(,;” = 2iBe " on Ty,
T3 ua] — 88& = 0 onTls.
v

® Equivalent form:

va-(évaﬁa)wm = —finQ,
ar~ 8~a

T O] — 8—L’lj = 0 only,
ar~ a~a

Ty [ua] — Tix = 0 onl>,.

o fc(HYQ)) and Gy = us — o with up a fixed smooth function.
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Diffraction gratings

® Denote Uy by uq.
e Variational form: Given f € (H*(Q))’, find us € H'(Q) s.t.

a(ua, d) = (F,¢), Yo € HY(RQ).
® Sesquilinear form:

a(wi, wo) / —Vw - Vw, — /(w — —)W1W2

1 1 —_—
—ia/ —2(8X1W1)W2+/04/ —5 W10k W2
Q49 Qd

1 _. . 1 _. .
_/ 77—1 [Wl]WQ —/ 7T2 [W1]W2.
r, 91 r, 92

f dual pairing of H™ ( 7) with H2( ).
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Diffraction gratings

® For all but a countable set of frequencies wj, |wj| — 400, the diffraction
problem has a unique solution u, € H'(Q).

o Write a(W17 WQ) = Bl(W17 W2) + UJ2B2(W1, W2).

[ ]
1 _ ot 1 __
Bi(wi,wo) = SVwi - VW +2 [ —wiws —ia [ — (0 wi)W2
ad Q9 Q9
. 1 — 1 _ 1 __
tia [ Swi0gwe — [ S Tim|ws — [ — To[m]ws,
Qd r, 91 r, 42
0(2
Ba(wi, ws) = —/(1+ % s
Q k
° =

1 2 a2 2 1 _—
Bi(u, u) z/—2|Vu| —|—2/ — |u] —2a/ —3(u O u)
ed Qd Q9

1 1
— leuﬁ—/szuﬂ‘
/mﬁ L] r & g
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Diffraction gratings

® Denote %:Euo by o' —ic”.

® Denote by oy — ioh, where o5 > 0 and 0§ > 0.
° =

R{Bi(u,u)} = /Qa/|Vu|2+2/Qa2J'|u|2—2a/ﬂa'$(u o)
1 _ 1 _
—R{ 7T1[u]u+/ — Tolulu}
r, 91 r, g

2

! 1 1
> /%|VU|Z—SR{ —2T1[u]ﬂ+/ — Ta[u]d}.
Q & r, 4

2

—{Bi(u,u = o' |VuP+2 [ o*c” —2a [ o"S(uBgu
1
Q Q Q
1 _ 1 _
+{ — Ti[u]u + - To[u]u}
q r, 92

r, 91

" 1 1
> /U—|Vu|2+%{ —QTl[u]U+/ — Ta[u]d}.
Q 2 r 4 r, 9

1 2
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Diffraction gratings

1 1 on (n
—/ = Ti[u]u —Zj/\lﬁ1|u()|2
r, 91
32 GNP =737 AR

1 1

— | S Tofulu =" S inss|u™ (—b)?
/rztﬁ 2[u] e Ba |u™™ (—b)|

> N3 ||u™ (=b)*ps -

® p, = p, — ip, with

pn = —03 cos(3 /2) + a5 sin(ys /2)
and
pn = azcos(72/2) + 03 sin(v2/2).
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Diffraction gratings

7 = arg(R(k3) — o + iS(k2))
and 0 < 73 < 2.
e = p/ > 0forall nand {n: p;, < 0}: finite.
® |p/| > |ph| for n€ {n: p, < 0}.
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Diffraction gratings

e Fixwé¢ B:
B:={w:B/(w)=0, j=1,2}
[ )
B > C(1+|n)?, j=1,2.
j J
[ )
[Bi(u,u)| > {/|VU| + 2,y + > (o7 | = lpn)) ™ (—b) P
nen
D IATRIEDN
n&ZA
> CL[ IVl +lullipogy + Nullipzg,)]
= o H1/2(Tq) H/2(T2)
> CH”H?—H(Q)
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Diffraction gratings
® Bi: bounded coercive sesquilinear form over H*(Q):
|Bu(u, u)] = Cllullf ).
® | ax-Milgram lemma = existence of a bounded invertible map
Al = Ai(w) : HY(Q) — (HY(Q))' s.t. (A1, v) = Bi(u,v);
e ’: dual space.
e A7 bounded.
o A HY(Q) — (HY(Q)) (Axu,v) = Bs(u, v): compact and independent

of w.
® Fix wo ¢ B;
o Consider A(wo,w) = A1 (wo) + w?As.

® A;: bounded invertible and A: compact = A(wo,w) ™! exists by
Fredholm theory for all w ¢ some discrete set &(wp).

|A1(w) — Ar(wo)|| = 0, as w — wo.
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Diffraction gratings

® ||A(w,w) — A(wo,w)|| = [|A1(w) — A1(wo)]|: small for |w — wo| sufficiently
small.

® Stability of bounded invertibility = A(w,w)_l: exists and bounded for
|w — wo| sufficiently small, w ¢ £(wo).

® wo > 0: arbitrary real number = A(w,w) " exists for all but a discrete
set of points.
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Diffraction gratings

® Boundary integral formulations.
Period A; T = {x> = f(x1)}/(AZ \ {0}).

® Quasi-periodic Green's function for the grating:

(A+ k)G (x,y) = do(x — y — (nA,0))e™".
neZ
[ ]
G (x,y) = —7ZH (k|x — (nA,0) — y|)e™™.
neZ
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Diffraction gratings

® If k # ||,V n € Z Poisson's summation formula

;2mn :
Z 27n Z A
e’( A ta)x — 60(X1 _ n/\)ema 7
neZ n€Z
e Equivalent representation of G
icn(x1—y1)+iBna(x2—y2)

o,k o €
G (va)_z k27(1%

neZ

2 2 2
k? — oz k* > aj,

ﬂn:
Va2 —k2 k<l
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Diffraction gratings

S?’k: quasi-periodic single-layer potential associated with G on T.

Integral representation of u:

uw{ﬂm+$ﬂwm,xeu:m&ym>aML
SeRlel(x), x € {x=(x,%) X < f(x)},

(.)€ L2(1) x L2(T):
S L] - SE ] = of

ST elel)| (ST
ov v

aou' onl.

ov

+

For all but possibly a countable set of frequencies w;, w; = 400, the
system of integral equations has a unique solution
(¢, ) € HTY2(T) x H7Y/(T).
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Photonic crystals

® Photonic crystals (also known as photonic band-gap materials):

o Periodic dielectric structures that have a band gap that forbids
propagation of a certain frequency range of light.

e Band gap calculations: high-contrast materials, periodicity of
the same order as the wavelength; efficient numerical schemes.

e Control light and produce effects that are impossible with
conventional optics.

e Resonant cavities: making point defects in a photonic crystal
— light can be localized, trapped in the defect. The frequency,
symmetry, and other properties of the defect mode can be
easily tuned to anything desired.
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Photonic crystals

® Mathematically speaking:

e Appearance of bandgaps in the spectrum of the associated

operator.
e Spectral techniques to analyze bandgaps:

e High-contrast models.

e Characterization of the bandgap (Floquet theory).

e Sensitivity analysis of the bandgap with respect to material
and geometry of the structure (based on generalized argument
principle).

® Bandgap calculations: involve a family of eigenvalue problems (as the
quasi-periodicity is varying).

® Muller's method.
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Photonic crystals

® Floquet transform: f(x): function decaying sufficiently fast,
U[fl(x,a) = Z f(x— n)eia'".
nezd
® [{: analogue of the Fourier transform for the periodic case.
® a € Brillouin zone RY/(27Z): quasi-momentum.

® Expansion into a direct integral of operators:

D
L= / L(a)da, L(a)[f] = U[LIF]]-
RY /(2mZ)

o . 2 . o
v

@ ré——x B

o o b o
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Photonic crystals

® Spectral theorem for a self-adjoint operator:

o)= U olla)),

a€RY/(2n2)

® o(L): spectrum of L.

e [: elliptic = L(a): compact resolvents — discrete spectra (u()),

(L) = | min (e maxu(a).
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Photonic crystals

® Gohberg-Sigal theory:

e Sensitivity analysis of band gaps with respect to changes of the
coefficients of L.

o Analysis of photonic crystal cavities: defect mode inside the
band gap.

T

photonic band-gap
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Photonic crystals

® Floquet transform:

e Plays in the periodic case the role of the Fourier transform.
e Structure of spectra of periodic elliptic operators.

f(x): function decaying sufficiently fast.
® Floquet transform of f:

UFI(x,0) = Y Flx—n)e™".

nezd

® «: quasi-momentum; analogue of the dual variable in the Fourier
transform.

x shifted by a period m € Z¢ = Floquet condition:

U[Fl(x + m,a) = ei“'mZ/{[f](x, a).
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Photonic crystals

It suffices to know U[f](x, @) on the unit cell Y :=]0,1[¢ in order to
recover it completely as a function of the x-variable.

U[F](x, a): periodic with respect to the quasi-momentum
UIF](x, a + 2rm) = U[f](x,@), meZ°.

® « can be considered as an element of the torus RY /(27 Z).

All information about U[f](x, @): contained in its values for a in the
Brillouin zone B of the dual lattice 27Z¢.
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Photonic crystals

® Analogue of the Plancherel theorem:

e Suppose that the measures da and the dual torus R?/(27Z9)

are normalized;
[ ]

U: L2(RY) — L2(R?/(2rZ9), L2(Y)) : isometric.

e |ts inverse:

U g](x) = / g(x,0) do

JRY /(2r74)

e g(x,a) € L2(RY/(2nZ%), L?(Y)): extended from Y to all
x € R? according to the Floquet condition.
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Photonic crystals

® Spectrum of self-adjoint operators.

® [: linear self-adjoint operator in the Hilbert space H with domain
D(L),D(L) = H.

® Resolvent:

p(l) :={zeC:(zl - L) 'exists as a bounded operator : H — D(L)}.
® Spectrum of L: complement of the resolvent,
o(L) = C\ p(L).

o [: self-adjoint = z € p(L) iff there exists a constant C(z) s.t. for all
u € D(L),
(2 = L)ulln = C(2)]ulln-

e o(L)#0 and o(L) CR.

® Weyl's criteron for characterizing o(/): z € o(L) iff there exists
u, € D(L) s.t.
lim ||(z] — L)un||ln = 0.

—+00
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Photonic crystals

® Point spectrum o,(L) of L:
op(L) :=={zea(L): (zI—L) 'does not exist or equivalently ker(z/ — L) # 0}.

e Continuous spectrum o¢(L) := o(L) \ o,(L).
If z € oc(L), then (zI — L)~ does exist but is not bounded.

® Discrete spectrum spectrum og(L):
oa(L) :={z € op(L) : dimker(z/ — L) < oo and z is isolated in (L)}

e Essential spectrum: oess(L) := o(L) \ o4(L).

L: self-adjoint =

Oess(L) = oc(L)
U{ eigenvalues of infinite multiplicity and their accumulation points }
U{ accumulation points of 4(L)}.
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Photonic crystals

o A family of operators {£(t)}[>° . spectral family (also called resolution

of identity) if the following conditions are satisfied:

E(t): projector for all t € R;
E(t) < &(s) forall t < s;
{&(t)}: right continuous with respect to the strong topology,

lim [|E(s)u—E(t)ullw =0 forall ue H,;

s—t+0

Normalization of {£(t)}:

lim ||E(t)u —uljy =0 forall ue H.
t—+00
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Photonic crystals

u,v € H,(E(t)u, v)p: function of bounded variation with respect to t.

L: self-adjoint operator = unique spectral representation.

® There is a unique spectral family £(t) s.t.

+oo
Lu= / td&(t)u for all ue D(L).

Spectral theorem =

(zI = L)t = /+oo . i ; d&(t) forall z € p(L);

o zcop(L)iff E(z) — E(z—0) #0;

o zco(L)iff E(z) —E(z—0) =0;

e £(z—0):=lim. 04+ &(z — €) in the sense of strong operator
topology.
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Photonic crystals

® C(o(L)): set of continuous functions on o(L).

f(L) := lim P,(L)

n—-+oo

with {P,} being a sequence of polynomials converging uniformly to f as
n — —+00.

® Forany ue€ H, f (u,f(L)u)u: positive linear function on C(o(L)).

® = There exists a unique Radon measure p(u) on o(L) (called the
spectral measure associated to u and L) s.t.

/ Fdu(u) = (u, F(L)uhn for all £ € C(o(L)).
o(L)

= w(u)(o(L)) = (|ullf = p(u): finite measure.
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Photonic crystals

® ,(u): invariant under linear transformations and can be decomposed into
three parts:
:U’(U) = Hac + Msc + Mpp-

® [yt pure point measure;
® i, absolutely continuous;
® Lo singular with respect to the Lebesgue measure.
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Photonic crystals

.
Hep = {u € H: p(u) is pure point },

H.c := {u € H : pu(u) is absolutely continuous },
He := {u € H: p(u) is singulary continuous }.
o H= pr ® Hac ©® Hsc~

® FEach subspace is invariant under L.
°

(L) = Tpp(L) U oac(L) U osc(L);
°

Tpp(L) = 0(Llhyy ), 0ac(L) = o(L|n,c),  and osc(L) = o(L|n),
® Union may not be disjoint.

(u,(z= L) tuyy = / dp(u)(t)

R Z—t

o = du(u)(t) = (dE(t)u, u)y for all t € R.
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Photonic crystals

® [: self-adjoint and compact.

¢ Sequence of eigenvalues \; # 0, € N:
[Xo| > A1 > ... > N[>0

o If there are infinitely many eigenvalues then lim;_, 1o Aj =0
and 0 is the only accumulation point of {\;}jen;

o Multiplicity of A;: finite;

e ;j: normalized eigenvector for \; = {¢; jfg’: orthonormal
basis on R(L) and the spectral theorem =

“+o0

Lu= Z)\j<u,<pj>/_/(pj, ueH.
j=0

e o(L) ={0,X0, A1,...,Aj,...} while 0: not necessarily an
eigenvalue of L.
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Photonic crystals

® Structure of spectra of periodic elliptic operators.

® [(x,0x): linear partial differential operator whose coefficients are periodic
with respect to Z9, d = 2, 3.

® Periodicity = L(x,0x) commutes with the Floquet transform:
U[LF](x, a) = L(x, 0U[F](x, ).

® Va, L(x,dx) now acts on functions satisfying the Floquet condition.

e [(«a) (its domain changes with «);

L: L?(RY) — [*(RY): expanded into the direct integral of operators:

L= /D:B L(e) da.

¢/(2rzd)
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Photonic crystals

® [: self-adjoint =

aEB

L: self-adjoint + elliptic = L(«): compact resolvent = discrete spectra.

L: bounded from below = o(L(a)) accumulates only at +oc.

® () nth eigenvalue of L(«) (counted in increasing order with their
multiplicity).

e Band function function a +— us(a): continuous in B.

® One branch of the dispersion relations.

® (L) consists of the closed intervals (called the spectral bands)

()= {"Li” pn(@), max pin(a) |;

® ming pn(a) = +0o when n — 4o0.
® d > 2: spectral bands do overlap in general.

® Opening gaps in the spectrum of L: high contrast materials.
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Photonic crystals

® Boundary integral formulation:
e d=2; Y :=]0,1[% unit cell; x(Y \ D): indicator function of Y \ D.
® Seek eigenfunctions u of

{ V- -1+ k-)x(Y\D)Vu+w?u=0 inY,

e '“*u: periodic in the whole space.

e Equivalently,

kAu+ w’u=0 in Y\ D,
Au+wPu=0 in D,
uly = ul- on 0D,
ou ou
—| === oD
v ’+ v ‘7 on g%
e~'**y : periodic in the whole space.
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Photonic crystals

® Va, 04(D, k): (discrete) spectrum.
® Spectral band of the photonic crystal:

U oa(D, k).

ae0,27]?

® Investigate behavior of o (D, k) when k — +o0.

® D: invariant under the transformations
(x1,%2) = (=x1, —x2), (x1,x2) = (=x1, x2), (x1,x2) = (x2, x1).
® ( restricted to the reduced Brillouin zone

T = {a:(al,ag):Ogalgw,ogaggal}.

Take a € T rather than a € [0,27]%.
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Photonic crystals

® Assumptions:

e w? not an eigenvalue of —A in Y\ D with the Dirichlet

boundary condition on 9D and the quasi-periodic condition on
ayY,

e w?/k: not an eigenvalue of —A in D with the Dirichlet
boundary condition.

® Representation formula: ¢, € L*(9D),
SH[¢](x), x €D,
u(x) = . _
H(x)+ 8™ Vi[¥l(x).  x€ Y\D,

o H:
o, 9 o,
Hx) = =8, 50 lovl + Dy Vilulovl, x€ Y.
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Photonic crystals

. C ou_
® yu,v: quasi-periodic in Y = (—uv =0.
ay OV

® = H =0 = representation formula:
S*¢[¢], in D,
u= w —
STVE[Y], in Y\D.

e Transmission conditions = (¢,1) € L3(D) x L*(8D) solution to the
system of integral equations:

S*[¢] - SV VA[Y] = 0 on dD,

(- %/ ()Y [o] - k(%l +0C ) )Wl =0 on aD.

e Converse true: (¢,%) € L>(OD) x L*(AD): nonzero solution = w:
eigenvalue.
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Photonic crystals

® Proof of the Representation Formula:

e u: eigenfunction = 3! (¢,9) € L2(OD) x L2(dD) s.t. u has
the representation formula.

e (¢, 1): solution to the system of integral equations.

o u+—> (¢,1): one-to-one.
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Photonic crystals

o S™*¥: [%(9D) — H(OD).
® u: eigenfunction =

ulop L ker(S™™%).
® Proof:

e (A+wHu=0inD =

du

u(x) =D [ulop] (x) — S [31/ _

](x), xeD.

1 Oou
§U|8D = /Ca’w [UlaD] — Sa’w |:81/ _:| .

o ¢ € ker(S™*v). B
e Assumption on w? = S™**[¢] =0in Y \ D.
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Photonic crystals

S [¢] =0,
1 . on OD.
§¢+ (’Cayw) [¢] =0

3 ulao,) = (6" ool o) — (552 |0}
— Culon. (™)' 10]) ~ (34| .57
=~ (tloo, 6) — 0.
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Photonic crystals

e Finding (¢,¢) <

S“[¢] = ulap on OD,
(*) 1 oy du
(=5 + () )6l = 52| onoD,
S™VE[Y] = ulop on AD,

1 —a,ik* 78”
51+ f))[w]fg‘+ on 9D.
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Photonic crystals

® ulop L ker(S™**) = 3po € L*(AD) s.t.

S*“[po+ ¢l = ulop on OD, V¢ € ker(S™¥).

® To show existence of a solution to (x), it suffices to prove that
¢ € ker(S**) s.t.

1 —awyx _ Ou
(= 5!+ (7)) 6+ gol = 5(7 on aD.
° =
I OB
v -
® S™*[¢o] — u: solution to A + w? in D with the Dirichlet boundary
condition = (5o
( [¢0] — U) c ker(sa,w).

ov _
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Photonic crystals

® ¢; and ¢,: two solutions.
® Assumption on w? = S*“[¢1 — 2] =0in Y\ D =

(%/ +(K™*))[d1 — b =0 on dD.

e (- %/ + (K™Y )[¢p1 — ¢2] =0 on OD = ¢1 = ¢o.
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Photonic crystals

e Converse: (¢,1): (nontrivial) solution to the system of integral
equations. One only needs to prove: u given by the representation
formula is not trivial.

® Suppose u=0in Y = S**[¢] =0in D.

e Assumption on w? = S**“[¢] =0in Y\ D = ¢ = 0 on dD. Assumption
on w?/k = 1 =0on dD.
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Photonic crystals

® Suppose a # 0.

Sa,w 78017%
o,k -
ATD=1101 ey} Ly ey
k\2 2
e % eigenvalue corresponding to u with a given quasi-momentum « iff w:
characteristic value of A**.

® For a =0,
SO,w _
A (W) =
1 0,w | * 1 0, =\ %
EI—(IC’) EI-i—(IC’\/?)

® By a change of functions, w: eigenvalue corresponding to u for a = 0 iff
w?: characteristic value of A%,
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Photonic crystals

e Characteristic values of A% and A%*.
A®*: Fredholm analytic with index 0 in C\ /R™.

w > (A“*)7}(w): meromorphic function and its poles are on the real
axis.

Proof: logarithmic behavior of quasi-periodic Green's functions = define
A*Kon C\ iR,
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Photonic crystals

o A*k: Fredholm analytic with index 0 in C\ /iR~ «

Sa,O _Sa,O Suw Sa,O _So‘!% + 80‘70
A w) = | 4 1 o1
a2 Ry ey
= A% + B%(w).

e A%: invertible and B: compact and analytic in w = A%*: Fredholm
analytic with index 0.

® Steinberg's theorem = invertibility of A**(w) at w = 0 shows that
w = (A“*)7}(w): meromorphic function.

Mathematical methods in photonics Habib Ammari



Photonic crystals

® wo: pole of (A**)71(w). Then wo: characteristic value of A%

(¢, 1): root function associated with wo. Define
S*[¢l(x), x€D,
S*A[l(x), xeY\D.

® Integrating by parts =
[ @t = \DYIVAl i [ Juf o0,
Y Y

® — wy: real.

Same result holds for A%
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Photonic crystals

® Numerical approach for band structure calculations:

e Discretization = linear system in the form A%*(w)[x] = 0.
o Unknown vector x: represents point values of the densities ¢
and v on 0D.
e Muller's method for
1

ST MK

e x and y: two fixed random vectors.
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Photonic crystals

® Sensitivity analysis with respect to the contrast and/or the shape of the
inclusion: use of the generalized Rouché’s theorem.

e Asymptotic expansion asymptotic expansion of A% for o # 0 as

k — +oo:
+o0
«@ « 1 «
AT w) = A5 (@) + Y AT (@)
=1
°
S(L,u) _S(L,O
Ag (w) = 1 o
0 EI + (K )
0 .
Af'(w) = 1 B - ;
(57— )) ()
® For/>2,

P 0 —sn
’(w)(o () )
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Photonic crystals

® a#0. w§ €R: characteristic value of A§ iff (wg)?: either an eigenvalue
of —A in D with the Dirichlet boundary condition or an eigenvalue of
—A in Y\ D with the Dirichlet boundary condition on D and the
quasi-periodic condition on 9Y'.

® Proof:

e w=wf € R: characteristic value of AS = 3(¢, ) # 0 s.t.

§[6] ~ O[] =0,
(31+ 0=y )l =0

e = p=0= S*[¢]=0o0n ID.

e ¢ #0, S¥[¢] # 0 either in D orin Y\ D = (w§)?: either an
eigenvalue of —A in D with the Dirichlet boundary condition
or an eigenvalue of —A in Y\ D with the Dirichlet boundary
condition on @D and the quasi-periodic condition on Y/, and
S*%[¢]: associated eigenfunction.

Mathematical methods in photonics Habib Ammari

() on OD.



Photonic crystals

e Converse:

[0}

o (w§)?: eigenvalue of —A in D with the Dirichlet boundary
condition = by Green's representation formula,

ou

ov

e = (xx) holds with (¢, 1) = (0u/dv|sp, 0).
e Other case: treated similarly.

u(x) = —Sa’w[ ‘8D], x e D.
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Photonic crystals

® Generalized Rouché’s theorem:

1 — d

o,k 0 0 ay—1 a,k
W=t - — A% (w)dw.
L] ASyII ptOtiC expansion for the eigenvalue perturbations w“’k - UJO.

Suppose a # 0:

@ 1 ay— «
wek — 0 = ik tr /8V(A0) H(w) AS (w)dw;
) (Sa,w)—l (S(x,W)flsu,O(%l 4 (Ic—u‘())*)—l
(A0) " (w) =

0 (%/ + (K0
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Photonic crystals

Explicit calculations of the leading-order term.

u®: (normalized) eigenvector associated to the simple eigenvalue (w°)?;
@ =0u"/ov|- = u'(x) = —S""“’O[np](x) for x € D.
° =
d a,w
(0 g S lellomun) = =2 [ 10T

® Proof:
A—G™ (X )—l—wQ—G ’ (X )— —2wG (X )
| Y [ Y yY)-

a

de : (X7y):—2w/yG “(x,2)GY(z,y)dz.
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Photonic crystals

o i € L*(0D),
i (L / Gy do(y)

-/ % G™“(x, y)b(y) do(y)

S 2w/y G (x,z) /BD G*“(z,y)d(y) do(y)dz

— o / G (x, 2) 8 [](2) dz.
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Photonic crystals

® From
a,w® . —u° in D,
S [“"]_{o in Y\ D,
° =
B = [ 0 )| dat)

= —2u° / X)/ Ga“’ (x,2)S™ o’ [@](z)dz do(x)
=2 [ [ ] 6267 . 2)pl)ply)dzdo(x) day)

= 2w /
Y

=2 [ 1) 2

= 720.)0/ |u°(2)|? dz.
D
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Photonic crystals

® v<: unique a-quasi-periodic solution to

Av® =0 in Y\ D,
(=98 v _au
= == D.
ov |+ ov |- on 9

® | eading-order term:

[ _1ver
a,k 0 _ 1 Y\D

W —w === —&—O(l) as k — +oo0.
k5 o 02 k2
2w |u”|

D
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Photonic crystals

o ()= -5"[lx) forx e D= (51— (K™Yl = .

e % only simple pole in V of w i+ (S**)™!

- 1 oW
(¥ = T+ Q%

w—wo

=

o O%“: holomorphic in w in V;

o T:12(0D) — span{p}st. TS =5*<"T =0;

d 1
T—8%% = ——{p,")p (orthogonal projection).
a0 | e T Tl 9% :
° 1

(0 455" lells)

® Residue theorem =

1 ay—1 o _ a,
il tr/av(AO) (w)AL (w)dw = tr [TS 0(

2im

1

—a,0ysy—1,1 w0y
SIHET0)) (G I=))
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Photonic crystals

va(x);_s‘“’( I+ (K7*%) 'el(x), xe€Y\D.

® v unique a-quasi-periodic solution to (* * x) and

1 ay—1 a _ a
i 1 () @A ) = (e TV,
* = 1 1
a,k 0 @
w —w = ————(p, TV) + O(—) as k > +oco.
Kol & T 1 00

* 1 1

i V0= g (o).

L <<'0’ TS , [¢]|w:wo>

® Integration by parts =

wm%:f/,WWR
Y\D
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Photonic crystals

® Periodic case (o = 0):
e A: acting on span{x(Y), HY(D)},
—A(u|p) in D,

1 5} . =
|Y\D|/aD(9l/(u|D) in Y\ D.

e Eigenvalue problem for A:

Au =

Au+w?u=0 inD,

1 /
u+ —— u=0 on0D.
[Y\D|Jop

1
B SO,w 7@ .
A= | | e
Y 0,w\* - 0,0 *
S1=(K0)" 21+ (K°)

Mathematical methods in photonics Habib Ammari



Photonic crystals
bl )—(0 - )
o ey )

® Asymptotic expansion of A%k as k — 400

A(w) = B(w) + 1 Aw) + 0(5)

e (@°)? (with @ > 0): not an eigenvalue of —A in Y \ D with Dirichlet
boundary condition on 9D and the periodic condition on 9Y. Then
(@°)?: eigenvalue of A iff &°: characteristic value of AS.

e Suppose o = 0; (@°)? (with &@° > 0): simple eigenvalue of A. There
exists a unique eigenvalue (w®*)? lying in a small complex neighborhood
of (&°)°.

V: small complex neighborhood of &°; Asymptotic expansion:

ok ~o_ 1 0/ \—1 50 1
w W= tr 8V.Ao(w) Aj(w)dw + O( e )
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Photonic crystals

® Characterization of the eigenvalues of A.

® o: characteristic value characteristic value of A3.

® (p,1): root function associated with .
® Set 1
u=8% 9l — = );
] @5 Jap
[ ]
1 1 0,w\*
c= ———— —=+ (K> .
Zvip) 3l

* (3/+K*[1]=|Y\D| =

1
C= = 'l/f;
Wo Jap

¢ = A(u+c)=a3(u+c)in Dand u=0o0ndD.

e = 32 eigenvalue of A.
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Photonic crystals

o Converse:

Assume @3 (with G > 0): an eigenvalue of A associated with u + c,
where u € H3(D), and

et [ b4
|Y'\ D|&§ Jop O
® ¢: solution to
1 _ 0,000 \ * _ @
(51— (C*%))lg] = 52 on OD.

(3 because u/dv: orthogonal in L? to the associated Neumann
eigenvector).
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Photonic crystals

® Set ) 5
_ - 0,0\ —1 l
v -Gy 5.

® Then, (¢,1) satisfies

- 1
SO0 1 / . i’
Wo Jap ( ):0.

1/ — (KO%0) %I + (K007

2

® = (o: characteristic value of AJ.
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Photonic crystals

Photonic band gap opening.
® w;: eigenvalues of —A in D with Dirichlet conditions;

® (;: eigenvalues of A.

® E(u,v):= / Vu - Vv; Min-max characterizations:
D
[ ]
wj2 = min max E(u,u),
Nj - ueN; |lull2p)=1
~ (u,u
2 = min )

J N; uEN,,||uHL2D—1 ‘/ U’

e N;: j -dimensional subspaces of HL(D).
o Interlacing relation:

W‘S&jgwj'+1, _/':1,2,....

e Forany e > O and j, there exist ¢; and ¢, sufficiently small s.t.
wj —e <wy <wj+1 for || < ¢ and k > 1/c.
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Photonic crystals

® 0: eigenvalue of the periodic problem with multiplicity 1 = the spectral
bands converge, as k — 400, to

[O, wl] @] [&71,&)2] U [&2,&)3] U...,

® Band gap iff
wj < wj for some j.

® |dentity holds provided that fD uj # 0 where u;: eigenfunction
corresponding to wf.
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Photonic crystals

Small perturbations in the geometry of the holes.
o D: C°
® D, e-perturbation of D:

oD, = {? i X =x+eh(x)v(x), x € 0D }, h e Cc'(dD).

S5 ~8p.F
1/1 —a,w\* 1 TR\
F(31- o) g oee )
® 3 R*¥(x,y) smooth for all x and y s.t.

A St 207 C)) B
o) U 2 xR

ALt w
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Photonic crystals

® Photonic cavities:
k inY\D, 0<k#1< oo,
k(x) =
1 inD.

® y: solution to

V - k(x)Vu+ w’n(x)u = 0.
® n(x) — 1: compactly supported in a bounded domain Q C R?.
® Q: localized defect inserted into the photonic crystal.

® Introduction of a localized defect does not change the essential spectrum
of the operator.

® Assume that the operator V - k(x)V has a gap in the spectrum and seek
for w inside the bandgap s.t. u: nontrivial solution.

u(x) + o’ /(n(y) —1)Gu(x,y)u(y)dy =0, xeR
Q
® G,.: Green's function of V - k(x)V + w? in R%,
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Photonic crystals

® For frequencies in the band gap, G. is exponentially decaying:

[Gulx,y)| = (e AT HIN) g [ —y| oo,

e (: positive constant and o(—V - k(x)V): spectrum of —V - k(x)V.

® Exponentially localized defect mode.
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Plasmonic nanoparticles

® Gold nano-particles: accumulate selectively in tumor cells; bio-compatible;
reduced toxicity.

® Detection: localized enhancement in radiation dose (strong scattering).
® Ablation: localized damage (strong absorption).

® Functionalization: targeted drugs.

N
= »\\/) S \/

M.A. El-Sayed et al.
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Plasmonic nanoparticles

® Particles with unsual scattering and absorption properties at certain
frequencies (called resonant frequencies).

® Applications: biomedical imaging (nanodetection), nanothermotheraphy,
photonic devices, ...

® Math. modeling: quantify the scattering and absorption enhancement.
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Plasmonic nanoparticles

e D: nanoparticle in RY, d = 2,3; C%* boundary D, a > 0.

ec(w): complex electric permittivity of D; e, > 0: electric permittivity of
the background medium;

® ., magnetic permeability of the background medium and of D;

® Quasi-static resonance: w — 0

e VX E=iwpH =V xE=0;
e VX H=—jweE = V- -¢E =0;
e £ =Vu, u™: harmonic,

{ V- eVu=0 inR3

(u—u™)(x) =0 |x] = +oo.
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Plasmonic nanoparticles

® Permittivity contrast: A(w) = (ec(w) +em)/(2(ec(w) — &m));
® [ntegral representation of u:

8in

u
ov

u=38p(M — Kp) =1

® cc>0= [\ >3} = \—Kp: invertible.
o Re. <0, RA~a(Kp) = (M —Kp)™': large.

® Quasi-static plasmonic resonance: dist(A(w), o(Kp)) minimal

(Rec(w) < 0).
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Plasmonic nanoparticles

e Causality = Kramer-Kronig relations (Hilbert transform),
ec(w) = &' (w) + ie" (w):
, 2 oo sg’(s)
— €00 = ——Pp.V. d
g(w)—c¢ —pv Ny s,

“+oo 7 _
e'(w) = 2—wp.v./ £l(s) — e ds.
0

0 52 — w?

® Drude model for the dielectric permittivity ec(w):

2

m), EI(W) S 0 for w S Wp.

ec(w) =ex(1— «

wp, T: positive constants.
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Plasmonic nanoparticles

® Scalar model for wave propagation.

e ' incident plane wave; Helmholtz equation:

V- (z-:mx(]Rd \ D) + Ec(w)x(ﬁ))Vu +wu =0,

u° = u — u™ satisfies the outgoing radiation condition.

® Uniform small volume expansion with respect to the contrast:
D=z+0B,§—0, |x—z|>2r/kn,

6d+1

v = —M(\w), D)VTk, (x — z) - Vu'™(z) + O(Ww‘(’%))).

e I, : outgoing fundamental solution to A + k2,; ky, 1= W/\/Em;

m -

® Polarization tensor:

M(A(w), D) := / x(Mw)! — K5) M r](x) ds(x).

oD

e Scaling and translation properties: M(A(w), z + 6B) = 69 M(A(w), B).
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Plasmonic nanoparticles

Representation by equivalent ellipses and ellipsoids:
® Nanoparticle's permittivity: ec(w) = &'(w) + ie" (w).

® =/(w) > 0 and &”(w) = 0: canonical representation; equivalent ellipse or
ellipsoid with the same polarization tensor.

® Plasmonic nanoparticles: non Hermitian case.

e IM(A(w), D): equivalent frequency depending ellipse or ellipsoid with the
same imaginary part of the polarization tensor.
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Plasmonic nanoparticles

® Spectral decomposition: (/, m)-entry
S (Vm, i) 3= (Vi i) =
M, m( .
Z:: (1/2 = A)(AMw) = X))
® (vm, o) = 0; po: eigenfunction of K} associated to 1/2.

® Quasi-static far-field approximation: § — 0,

§d+l
dist(A(w), o(Kp))

® Quasi-static plasmonic resonance: dist(A(w), o(Kp)) minimal
(Rec(w) <0).

U = —6M(\(w), B)V.Tk, (x — z) - Vu™(z) + O( ).
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Plasmonic nanoparticles
o MOE).B) = (22 1) [ Sviay

{ V-(me(Rd \ B) + ec(w)x(E))Vv =0,
v(y) =y =0, ly[ = +oo.
e Corrector v:
v(y) =y + Ss(A W) = K) ' [MI(y), y €R?.
® Inner expansion: 6 — 0, |x — z| = O(9),
5

X —2Zz

0

u(x) = u™(z) + ov( ) - Vu(z) + O(

® Monitoring of temperature elevation due to nanoparticle heating:

oT w
{ pCE —V.-7VT = %%(650‘))) |U|2X(D)7

T|t:0 == 0

p: mass density; C: thermal capacity; 7: thermal conductivity.
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Plasmonic nanoparticles

® Scattering amplitude:

ikm | x|

e
v/ 87 km|x|

|x| = oo; 0, 0': incident and scattered directions.

u(x) = —ie” % AsolD,ec,em,w](8,6) + o(|x|2),

® Scattering cross-section:

2
Ao [D, ec,em,w](6,60)| db.

27
Q°[D, ec, em, w](6") ;:/
0

® Enhancement of the absorption and scattering cross-sections Q? and Q°
at plasmonic resonances:

Q7 4+ Q°(= extinction cross-section Q¢) ox & tr(M(\(w), D));

Q° o |tr(M(A(w), D))|*.
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Plasmonic nanoparticles

® Quasi-plasmonic resonances for multiple particles: Dy and D;:
C**-bounded domains; dist(D1, D2) > 0; vV and v®: outward normal
vectors at 9Dy and 9D..

® Neumann-Poincaré operator K, ,p, associated with Dy U Da:

* o
kr . Koo 5w
DyUD, - 2_g K .
9,2 ©D1 Dy

® Symmetrization of Kp, p,.
® Behavior of the eigenvalues of Kp, ,p, as dist(Di1, D2) — 0.

® Blow-up of Vu between the disks at plasmonic resonances.
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Plasmonic nanoparticles

® (m,/)-entry of the polarization tensor M:
0o ag

)
Min(Aw). D) = 3 3y

O ) Ll G ) L AN 1) B
al,m . (1/2 . )‘1) ’ 0517/ 22U, J=1L

® Sum rules for the polarization tensor:

.’ - hy  (d—2
Sal, =amipl ANl =D
j=1 j=1

=1

d

3 G _ (d—4) d
j - — 2
;/\jgal», = T|D\+;/D|VSD[V,H dx.

e  holomorphic function in an open set U C C containing o(Kp):

e}

F(KD) =D FN)( en)m- -

j=t
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Plasmonic nanoparticles

® Upper bound for the averaged extinction cross-section @y, of a randomly
oriented nanoparticle:

_d|\"]|D]
|%(tr(M(>]‘-’D |7 )\//2+4)\/2d A
+—(dx2|D|+( — )|D|

|)\// ‘ (A/Q + 4/\/2)

+Z [ [wsolufas 21422 2’|D|)+0( -

4)\2 + /72 )

=R\ N =S\

Mathematical methods in photonics Habib Ammari



Plasmonic nanoparticles

25
—— Bound
---a/b=2
----a/b=4

Averaged extinction

Wavelength of the incoming plane wave 1077
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Plasmonic nanoparticles

Hadamard's formula for KCp:
® JD: class C%; OD = {x = X(t), t € [a, b]}.
e U, : 9D~ 9D, := {x+nh(t)v(x)}; V,: diffeomorphism.
® Hadamard's formula for Kp:

IKh, [6] 0 Wy — Kp[6] — nK S [llli200) < Cll0]i20m)

C: depends only on ||X||c2 and ||h]|c1; ¢ := do W,
] ICS): explicit kernel.
e Hadamard's formula for the eigenvalues of Kp.

® Shape derivative of plasmonic resonances for nanoparticles.
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Plasmonic nanoparticles

® KCp: scale invariant = Quasi-static plasmonic resonances: size
independent.

® Analytic formula for the first-order correction to quasi-static plasmonic
resonances in terms of the particle’s characteristic size §:

08

06

04

absorbance

02

s ' L L
350 400 450 500 550 600 650 700 750 800

wavelength i Inm

M.A. El-Sayed et al.
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Plasmonic nanoparticles
® Helmbholtz equation:
{ V-(me(Rd \ D)+ sc(w)x(B))Vu +w’u=0,

u* = u — u™ satisfies the outgoing radiation condition.

u™: incident plane wave; km = w\/Em, ke := wy/ec(w).
® |Integral formulation on 9D:
{ Sg [0l - gl = ™,

ee(3 = (KE))I9] = em(5 + (K5))[W] = emdu’/Ov.

® Operator-Valued function ¢ — As(w) € L(H*(0B), H*(0B)):
Ao (w)
* 2 3
As(w) = (Mw)l = Kg) +(wd)" Ar(w) + O((wd)”).

® Quasi-static limit:

oo

Aol = S W o oi, () = 3 (emeelw)) — (celw)—em) N

j=0
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Plasmonic nanoparticles

® Shift in the plasmonic resonance:
.1
arg min |§ (em + ec(w)) — (ec(w) — em)Nj + (wW8)* 7715

® 71 = (A(w)lpjl o)
® Gohberg-Sigal theory.
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Plasmonic nanoparticles

Full Maxwell's equations:
VXV x E—w? (sz(Rd \ D) + ec(w)X(B))E =0,
Ef := E — E™ satisfies the outgoing radiation condition.

® Small-volume expansion:

64

E°(x) = f§3w2ka(X,z)M()\(w),B)Ei“(z)+O(m).

® G,,: fundamental (outgoing) solution to Maxwell's equations in free
space.

e Shift in the plasmonic resonances due to the finite size of the
nanoparticle.
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Plasmonic nanoparticles
® Integral formulation:
I+ Mg — My Lk — L
< ch -y (24K KM — KMy )
® Integral operators:
Mblg] : H;%(div7 D) —» H;%(div,aD) (compact)

0 — /ao v(x) x Vi x Gi(x,y)p(y)ds(y);

£hle]: Hy 2(div,0D) —  H; *(div,dD)
o — v(x)x (k286[so](x) + VSh[Vop - ap](x)).
o Key identities: M5 [curlapg] = curlapKnlg], Ve € H(9D),
ME [Vongl = —VoolspKb[Bong]l + Rolyl,
Rp = —curlapA;pcurlapMpVap, Vi € H%(aD).
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Plasmonic nanoparticles

® (Quasi-static approximation:
~ (=D iKE0ss O
Fig— (e 0

3
H(8B) := HZ (0B) x H2(9B), equipped with the inner product

(u,v)Hos) = (Aasu(l), Aan(l))H* + (u(2), V(z))n,
(U, V)’)-L* = 7(U,SD[V])_% R (U, V)'H — 7(851[U]’V)_

e The spectrum o(Mp) = o(—Kj) U o(Kg)\{—3} in H(OB).

Only o(Kg) can be excited in the quasi-static approximation.

1
’2
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Plasmonic nanaoparticles

® System of weakly coupled plasmonic nanoparticles.

® Size of the nanoparticle § < wavelength 27 /ky; distance between the
nanoparticles of order one.

e 3G’ = 3Gy, + exhibits subwavelength peak with width of order one.

® Break the resolution limit.
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Plasmonic nanoparticles

® Effective medium theory: Y: unit cell; v = emx(Y \ D) + ecx(D);
Tn(x) = 'y(%): periodic with period 7.

e Cell problem:
V-4Vu,=0 inY,

up, — xp periodic with period 1,

/Yup(x) =0.

e Effective material parameter v*:
Yoq = / Y(x)Vup(x) - Vug(x)dx, p,g=1,2,3.
Y

® Asn — 0, ug: valid approximation of u,,

V 4"V =0 inQ.
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Plasmonic nanaoparticles

Maxwell-Garnett formula: Small volume fraction approximation,

f . f8/3
ceit(w) = em (I+M(A(w), B)(I=3 M(A(w), B)) )+o(dm( O 5)-

f: volume fraction; B: rescaled particle (D = n°B).

® cox(w): anisotropic.

Validity of the effective medium theory:

f < dist(A(w), o (Kp))*®.
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Plasmonic nanaoparticles

® High contrast effective medium at plasmonic resonances:

V x V x E—w (sz(Rd \ Q) + aeﬁ(w)x(ﬁ)) E=o0.

e Flg+— /Q(seff(w) —em)E(y)Gkn,(x,y)dy, x€Q.

® Mixing of resonant modes: intrinsic nature of non-hermitian systems.

® Subwavelength resonance modes excited = dominate over the other ones
in the expansion of the Green function.

® Imaginary part of the Green function may have sharper peak than the one
of G due to the excited sub-wavelength resonant modes.

® Subwavelength modes: determine the superesolution.
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Lecture 12: Electromagnetic invisibility

Habib Ammari

Department of Mathematics, ETH Ziirich
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Electromagnetic invisibility

Cloaking: make a target invisible when probed by electromagnetic waves.
® Two schemes:

o Interior cloaking: target interior to the cloaking device;
e Exterior cloaking: target exterior to the cloaking device.

® |Interior cloaking: Polarization tensors/scattering coefficients cancellation
technique.

Exterior cloaking: anomalous resonances.
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Electromagnetic invisibility

® |Interior cloaking:
e Small layered object with vanishing first-order polarization
tensors (in the quasi-static limit) or scattering coefficients;
e Transformation optics;
e Core invisible.
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Electromagnetic invisibility

For a given entire harmonic function u'®, D 30, 0 < k # 1 < 400, consider

{ V~(X(R2 \ D) + kx(D))vU =0 inR?

u(x) — u™(x) = O(1/|x]) as |x| = occ.

® Multipolar approximation:

u(x) = 4" (x +ZZ Iﬁl 20000 T () Mas, x| = oo,

e Multi-indices o, 8 € N* and |\| > 1/2:
Mas(A, D) = / O = K5) 122 (%) do(x).
oD 87/

e {M.g} : generalized polarization tensors (GPTs) associated with D and
A= (k+1)/(2(k - 1)).
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Electromagnetic invisibility

® Cloak a region inside the cloaking device.

e Conductivity problem (quasi-static regime): the Dirichlet-to-Neumann
map is nearly the same as the one associated to the constant conductivity
distribution.

® Change of variable scheme + structures with vanishing generalized
polarization tensors.
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Electromagnetic invisibility

® Dirichlet-to-Neumann map Alo]:

Nol() = oo,

V-oVu=0, in Q,
u=q, on 0.
e [ diffeomorphism of Q which is identity on 092.

® Push-forward of o by F to obtain the anisotropic conductivity:

_ DF(x)o(x)DF(x)* R
Foly) = det(DF(x)) x=F"0)

Alo] = A[F.o].
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Electromagnetic invisibility

F:{x:0<|x| <2} = {x:1 < |x| <2} given by

F(x) = <1+ %) ﬁ

® Perfect cloaking: anything inside the hole {|x| < 1} surround by a
suitable anisotropic conductivity is invisible by the DtN map.

® Transformation optics for electromagnetic cloaking.

® Physically: selective bending of light rays, i.e., a ray is diverted in the
direction of the high conductivity, routed tangentially around |x| = 1, and
then ejected out the other side to continue on its way.

® Drawback: F.1 is singular on |x| =1 (0 in the normal direction, oo in
tangential direction, 2D)
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Near cloaking (regularization)

Blowing-up a small ball

® For a small number p, let

L if [x] < p,
)1 if p<|x| <2

(o1 can be 0 (insulating core) or co (perfect conductor).)
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Near cloaking

® |et

Fo (B )y fesik<2
X
z if 0 < |x| < p.

® [ maps B> onto B and blows up B, onto B;.

® Approximate cloaking:

IA[F.o] - ATL]] < Cp2.

Conductivity in the inner cloaking region: O(p) in the normal direction,
0(1/p) in tangential direction, 2D (product = 1).
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Small volume expansions

e A[F.o] = Ao] and

0

Alol(@)(x) = AlLl(@)(x) + VU(0) - Mo -

V,G(x,0)+ h.ot, x €09,
G: the Dirichlet Green function;

AU=0 in Q,
U=¢ on 09,
M: polarization tensor of B,.

® PT for B, with conductivity o1 (proportional to the volume):

2(”1 )|B |1
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Polarization tensor of a two-phase structure

® Make PT vanish enhances the cloaking.
® Not possible to make PT vanish with two phases.

® Multi-phase structures.
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Hashin's neutral inclusion

M = 0 (GPTs vanishing structure of order 1; a disc with a single coating)
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Enhanced near cloaking
o™ (GPTs vanishing structure of order N)

(o 1
Blow-up of a layered small inclusion

® Estimate:
IA[F-o™] = A[L][| = A[e"] = A[L]|| < Cp*"*2
for some C independent of p and N.

® Keep the conductivity in the inner cloaking O(p) in the normal direction,
0(1/p) in tangential direction, 2D.

® Make the h.o.t. vanish in the asymptotic expansion of the
Dirichlet-to-Neumann map.
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Multiply layered structure

® |let u be the solution to

{v (ox(D) + (R \ D)) Vu =0 in B2,
u(x) — u™(x) = O(|x|™') as |x| = co.

® Theorem: The far-field expansion holds as |x| — oo:

; = 6 in mé
(w—u") ) =- 3 E;Smn:m (M2 + Minah) + S (M5af + Misna3)
m,n=1

where u'™(x) = v (0) + >°°°, r"(a§ cos nf + aj sin nf).
o M M:, My, M. contracted GPTs.
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Multiply layered structure

Disc with multiple coatings:
® For a positive integer N, let 1 = ry11 < rv < ... < nn = 2 and define
Ai={rn<r<rn}, j=1,2,...,N.
® Ay =R?\ By, Any1 = Bi.
® Set g; to be the conductivity of A; for j =1,2,...,N+1, and o¢ = 1.

Let
N+1

o= ZUJX(AJ)'

(on+1 may (or may not) be fixed: ony1 is fixed to be 0 if the core is
insulated.)
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GPTs vanishing structure

e Let My [o], etc, denote the GPTs associated with o. Because of the
symmetry of the disc,

Miolo] = Mi[e] =0 for all m, n,

Mo[o] = M[o] =0 if m# n,

and
Mool = Mo o] for all n.

o Let My=MS, n=1,2,....
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GPTs vanishing structure

® To compute My, we look for solutions uy to
V-oVu=0 inR?

of the form
b
=a¥r*coskf + 2 coskf inA;, j=0,1,....N+1

uk(x) = a;"'r" cos k) + i cos inA;, j=01,....N+1,

with a)) =1 and b{j), = 0.
® Then uy satisfies
. (k)
(ue — ™) (x) = ro—k coskf as |x| — oo.

with 4™ (x) = r* cos k6.

® Hence, My = 727rkb(()k).
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GPTs vanishing structure

® The transmission conditions on the interface {r = r;}:

aj(-k) _ 1 |: oj+ oj-1 (O’j — Uj71)0_2k:| 31(-5)1
b | T 205 [(0 — a-1)r oj + oj1 b

j—1
and hence
=T e o] )
0 1 20’j (O’j—O'jfl)l’jzk oj+oj-1 b(()k) ’
o Let

N+1 _
plk) _ [pﬁ) p§?] 17t [ oitoi1 (o —o5-1)r 2k]'

fi
k k 2
él) §2) ey 20'j (UJ — O'J,1)rj agj + gj—1
Then,

(k)

pk) — _Par

0 (k)

P22
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GPTs vanishing structure

® GPTs vanishing structure of order N: M, =0 for k=1,..., N, or
p21 =0, k=1,...,N.

® Solve the equations for ry < ... < r and oy, ...,01.

e |f N =1, Hashin's neutral inclusion.

® For N =2 3,..., can be solved by hand.

® For arbitrary N, the equation is nonlinear algebraic equation: numerical
optimization.
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GPTs vanishing structure

15 °
5 o ° °
10 L]
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[ ]
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The conductivity of the core is fixed to be 0. N = 3.
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Enhancement of near cloaking

® o: multi-layered structure with n =2 and ry41 = 1; f = Z;“;_oo fkeiw,

oo 2| k| o )
(- = 3 e

o: a GPTs vanishing structure of order N, o™ (x) = a(%x),

216 M o ,
() - 5 AT

|Mi[o]| < 2mk2%* for all k.

Using the transformation blowing up a small ball, we can get a
near-cloaking structure s.t.

IAIe™] = AL | = | AlF.o™] = AlL || < 572,
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Enhancement of near cloaking

Change of variables (sends the annulus [p, 2p] onto a fixed annulus):

4p
X)) for2p<Ix| <2,
(§ 1- p =p) /x|
(§+7 )7| for p < |x| < 2p,
X for |x| < p.

Anisotropic conductivity distributions:

log, 4(c,), alternative blow-up of a 3 layer structure log,(c,,), alternative blow-up of a 6 layer structure

Iﬂ
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Enhancement of near cloaking

log,, of the eigenvalues of A[a(%x)] — A[1] for different values of N:

Perturbation of the eigenvalues of the DiN map

—— hole of radius 1

—=—hole of radius p=0.25

. —e—hole of radius p=0.25+1 layer

—=— hole of radius p=0.25+2 layers

—— hole of radius p=0.25+3 layers
hole of radius p=0.25+4 layers|
hole of radius p=0.25+5 layers

—— hole of radius p=0.25+6 layers

10, (o], 1)

N-layer vanishing GPTs structure: same first N DtN eigenvalues as A[1].
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Electromagnetic invisibility

Helmholtz equation:

V- (amx(Rd \ D)+ acx(5)>Vu +wu=0,

u° := u — u satisfies the outgoing radiation condition.

u': incident plane wave; kn := wW+\/Em, ke 1= wy/zc.

Scattering coefficients:

Wi (D, ec, em, w) :/ Gi(y)dr(wlyl)e™ " ds(y).
oD

® . electric current density on 9D induced by the cylindrical wave
Ji(wlx|)e™.

Ji: Bessel function.
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Electromagnetic invisibility

Sk (1] — Skrlwby] = Ji(w|x|)es,
ee(b = (K5)) 1] — em(h + (Kl ) ) [0] = e 2ALbe™)

o Properties of the scattering coefficients:
o W) decays rapidly:

cli+n’

, 111
W[ < O(w )|/||I\‘/"|/|’7

1,1 e Z;

C: independent of w.
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Electromagnetic invisibility

e Scattering amplitude:

ikm| x|
u®(x) = —ie*TeiAoo[D,ac,am,w](Q, 0') + o(|x]7%),
8 km|x|
|x| = oo; @, €': incident and scattered directions.

e Graf's formula:

OO[D €ca5maw] 0 9/ Z( IIGW[//(D EC gm ) _I'llel'
LI'eZ

e Scattering cross-section:

2

27
Q°[D, 20, e, ] () ::/ A[D, e, emw](0,0)| do.
0
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Electromagnetic invisibility

e Scattering coefficient cancellation technique:
e Small layered object with vanishing first-order scattering
coefficients.
e Transformation optics:

(Fy)- o) = PR VEIPEL )

e Change of variables F, sends the annulus [p, 2p] onto a fixed
annulus.

e Scattering coefficients vanishing structures of order N:
Q[ D, (Fp)(c0W1) emw|(0) = o(p™),  W1,(x) = (1/p)x.

p: size of the small object; N: number of layers.
e Anisotropic permittivity distribution.
e Invisibility at w = invisibility at all frequencies < w.
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Electromagnetic invisibility

Change of variable cloak + 1 layer

Change of variable cloak + 1 layer

Cancellation of the scattered field and the scattering cross-section: 4 orders of
magnitude (with wavelength of order 1, p = 107%, and N = 1).
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Anomalous resonance

e Q: bounded domain in R%; D € Q. Q and D of class C***, 0 < pu < 1.
For a given loss parameter § > 0, the permittivity distribution in R? is

given by
1 in R?\ Q,
es=4—-1+1i in Q\ D,
1 in D.

. Configurationiplasmonic structure): core with permittivity 1 coated by
the shell Q\ D with permittivity —1 + id.
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Anomalous resonance

e For a given function f compactly supported in R? satisfying fR2 fdx =0
(conservation of charge), consider the following dielectric problem:

V-esVVs=af inR?

with the decay condition Vs(x) — 0 as |x| — oo.

® Dielectric problems: models the quasi-static (zero-frequency) transverse
magnetic regime.
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Anomalous resonance

® Fundamental problem: identify f s.t. when a =1
Es .= 5\VV5\2dxHoo as 0 — 0.
Q\D
|Vs(x)] < C, when |x|>a
for some constants C and a independent of §.

® FE;: proportional to the electromagnetic power dissipated into heat by the
time harmonic electrical field averaged over time.

® Infinite amount of energy dissipated per unit time in the limit § — 0:
unphysical.

® Choose o = 1/+/Es: af produces the same power independent of ¢ and
the new associated solution Vs approaches zero outside the radius a.

® Necessary and sufficient condition for CALR (with o = 1) V5 /v/Es goes
to zero outside some radius as § — 0.

Mathematical methods in photonics Habib Ammari



Anomalous resonance

® Using layer potential techniques: we reduce the problem to a singularly
perturbed system of integral equations.

® The system is non-self-adjoint = we introduce a symmetrization
technique in order to express the solution in terms of the eigenfunctions
of a self-adjoint compact operator.

® Symmetrization technique: based on a generalization of a Calderén
identity to the system of integral equations.

® Necessary and sufficient condition on the source term under which the
blowup of the power dissipation takes place given in terms of the
Newtonian potential of the source

1 2
— | —ylf(y)d R
3= [l lf)dy, xe R

which is the solution for the potential in the absence of the plasmonic
structure.
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Anomalous resonance

® In the case of an annulus (D is the disk of radius r; and Q =: B, is the
concentric disk of radius re), it is known (Milton et al.) that there exists
a critical radius (the cloaking radius)

re =/rdri=1.
s.t. any finite collection of dipole sources located at fixed positions within
the annulus B, \ B. is cloaked.

e Sufficient conditions for a source af supported in E to be cloaked. (In
particular, quadrupole source inside the annulus B, \ B.: cloaked).

® Conversely, if the source function f is supported outside B, then no
cloaking occurs.
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Anomalous resonance

® Notation: I'; := 9D . := 09, F Newtonian potential of f;

H=L3) x L(Te); 2 = 5527

® Representation formula:
Vs(x) = F(x) + Sri[@il(x) + Sr.[pe] (%)

® |ntroduce:

oF
Qi 81/,-
o= , =
LDJ & _ OF
Ole

® Singularly perturbed equation:
(251[2 + K*)d) =g.

e K*:H — H Neumann-Poincaré-type operator (compact non-self-adjoint

in general):
* 8
Kt oS
K" := 5 '
%Sri K:re
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Anomalous resonance

® Spectrum of K* C [-1/2,1/2].

® The operator
— Sri Sre
o= o 5]
is self-adjoint and —S > 0 on H.
e Calderdn’s-type identity: SK* = KS.
e K*: Hilbert-Schmidt (in 2D; Schatten-von Neumann in 3D).

e K*: symmetrizable <= there is a bounded self-adjoint operator A on
Range(S) such that Av/—S = /—SK".
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Anomalous resonance

® A self-adjoint = an orthogonal decomposition: H = Ker A @ (Ker A)™,
and (Ker A)™ = RangeA.

® P and Q =/ — P: the orthogonal projections from H onto Ker A and
(Ker A)™*, respectively. Let A1, 2, ... with [A1] > [X2| > ... be the
nonzero eigenvalues of A and W, be the corresponding (normalized)
eigenfunctions. A € Co(H) =

oo
SN < o,
n=1

and

AD = "X (d, W)W, M.

n=1

e If P\/—Sg # 0, then CALR takes place. If Ker(K*) = {0}, then CALR
takes place iff

— oo asd — 0.

|(vV—Sg, V.|
52 /\2+62
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Anomalous resonance

Anomalous resonance in an annulus:
e Eigenvalues \ of A= {£p!"}, p= L
e

® (Blow-up of power dissipation criterion) For a given source f supported
outside B. (with o = 1). If the Fourier coefficients of f—y on e, where
F is the Newton potential of f satisfies a Gap condition (mlld condition),
then

/ SIVVs> 500 asd — 0,
Be\B,

and CALR occurs.

® Quadrupole satisfies the Gap condition.
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Anomalous resonance

Anomalous resonance in an annulus:

® Any source supported outside B,, cannot make the blow-up of the power
dissipation happen and is not cloaked. Indeed, in the limit 6 — 0 the
annulus itself becomes invisible to sources that are sufficiently far away.

e If f is supported in R?\ B,,, then

/ SVVsP < C
Be\Bi

holds for some constant C independent of § (with a = 1). Moreover,

sup |Vs(x) — F(x)] =0 as & —0.

[x|>r«

® Annulus itself becomes invisible to sources that are sufficiently far away.
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Lecture 13: Helmholtz resonators
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Helmholtz resonators

® Photonics: ubwavelength resonator (plasmonic nanoparticle):
low-frequency resonance =
metamaterials/cloaking/super-resolution/high-contrast
materials/metasurfaces.

® Analogue in phononics: Helmholtz resonators/Minnaert bubbles.
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Helmholtz resonators

® Helmholtz resonator:
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Helmholtz resonators

® Finite Hilbert transform
e X°¢ for small e >0,

X = {gp : / Ve — x2|p(x))? dx < +oo}.
® X°: Hilbert space equipped with the norm

el = ([ vE== |so(x)|2dx)l/2.

Introduce
Yo o= {w eC®([—ee]):v e XE}.

1)’: distribution derivative of ).

e Y*: Hilbert space with the norm
1/2
2 2
L (T
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Helmholtz resonators

Le: X — Y .
Llel() = [ inlbx=yle(y) oy
® For all 0 < e < 2, the integral operator L. : X — Y¢: invertible.

For ¢ € X¢, ¢(x) = / In|x — y| ¢(y) dy : differentiable;

® Derivative on (—¢,¢):
U'(x) = Help](x).

He: the finite Hilbert transform

Hlelo) = [ 2 gy torxe -,

J —e€ -
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Helmholtz resonators

® For any x € (—¢,¢),

M) =0, KAV ) =, ] 1) = .

Yy

® No smoothness preserving property:

e+ x
In
— X

He[1](x) =

and

e 92 9 L
HeLAR) ~ 20D 1 2O,
® 7. : X — X satisfies dimker(H.) =1 and Im H. = X°.

® ker(H:): spanned by 1/4/e2 — y2.

e Holder estimate: for ¢ € C%"([—1,1]) with n > 0,
<C HW”(:Om([_l,l]) :

H/ w(y)
Loo(j-1,1])
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® Explicit solution to

Lo]e)(x) = ¥(x) €V, Vxe (—€e).

¥'(x) = He[o](x).

General solution:

ea(x) = >
€ — X

VA —y2w’(y A
_X2 .
® )\: complex constant.

a(y) = P(x) = Le[or=o](x).

® a(1): constant.
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A(¢) Le |y \/621_7}/2:| = a(¢)
° =
Le |:y'—> 21 2:| (x):wln% for all x € (—¢,€).
e —y
" NP )
min(e/2)
° =
L[ /EA() a(v)
Ll =~ e /_ X—y dy+(7r|n(e/2)) Ve —x2

® For e =2, L5: nontrivial kernel.

® For 0 < £ < 2, unique solution: ¥ =0 = L[] = 0.
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R(x,y) € C*"in x and y, for n > 0.
Re: X — Y©

Relel(x) = / " R(x.y) ely) dy,

—€

® There exists a positive constant C, independent of ¢, s.t.

_ C
12 Rel cqve, ey <
[Ine

1L Rell ceace xey = sup  [ILT R[] e

PEXS, [l xe=1
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Helmholtz resonators

® Perturbations of scattering frequencies.
e Q C R? bounded simply connected domain with boundary 9Q € C2.
® ,io: simple eigenvalues of —A in Q with Neumann conditions.

® V: neighborhood of g in C s.t. po: the only eigenvalue in V of —A in Q
with Neumann boundary condition on 0f2.

® Acoustic Helmholtz resonator: surface Q. = 9Q \ X., where 9%.:
obtained from 0Q by making a small opening X, in the boundary with
diameter tending to zero as ¢ — 0.

® Opening connects the interior and the exterior parts of the resonator.
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® 45: Neumann eigenvalue of —A in , the corresponding scattering
problem is to find u° (with Sm pu® > 0) close to o s.t. that there exists a
nontrivial solution to

(A+pS)* =0 in QU(R?\Q),

%L; =0 on 9.,
ou® e -1
ar V—1lpgu®| = O(r™ ") asr=|x| = 4oo.

® Reduce the scattering problem to the study of characteristic values of a
certain operator-valued function, and by means of the generalized Rouché
theorem:

e prove the existence of a scattering frequency u with small
imaginary part which converges to g as ¢ — 0;
o Construct the leading-order term in its asymptotic expansion.
® Assume 0: the center to which the opening can be contracted and the
opening X flat: ¥, = (—¢,¢).
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® ;€ C (with Smp > 0): scattering pole if there exists a nontrivial
solution to the exterior problem

(A+p)v=0 inR?\Q,

ov
W =0 on 99,

/ Iv[]> < +o0.
R2\Q

e Exterior Neumann function N/ _: unique solution to

R2\Q"
(A, +M)Nﬂgﬁ(x,z) =6, in R2\ Q,
ONYVF_
;;\9 ‘an - on 54,
aNR{*\‘ﬁ . .
‘ ar \/—1,LLNR2\§ =0(r ") asr=|x| = +oo.
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€ . . .
(] NQV“ . interior Neumann function.

¢ = Bauy on X..

® Green's formula = ¢° satisfies the integral equation:

/z (N@JrNS\{F)(X,y)LpE(y)dy:O on X..

Define u — A-(u) by

Al = [ (W W) ) ol o

The problem of finding the scattering frequencies: reduced to that of
finding the characteristic values of A. ().
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® Asymptotic formula for perturbations in scattering frequencies.
® Assumptions:

o 1io: simple Neumann eigenvalue of of —A in Q associated with
the normalized eigenfunction uj,

e V: complex neighborhood of pg s.t. (i) uo: the only Neumann
eigenvalue in V of —A in Q and (ii) there is no scattering pole

of in V.
° 1
Nﬂé‘zﬁ(x,z) i In|x —z| + r(x, z, u);
® r(x,z,u): holomorphic with respect to p in V and smooth in x and z.
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Pole-pencil decomposition of A, : X — Y in V' \ {uo}:

KCe
+ Re(p);
o — pu

1
Ac(p) = - Le +

Llelt) = [ Cinlx — yle(y) dy:

—€

Ke: one-dimensional operator

Kelpl(x) = (o, ujo>L2():5) Ujos

€

Re(w)el(x) = / R(u x.y) oly) dy:

—€

® (u,x,y)— R(u,x,y): holomorphic in u and smooth in x and y.
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® Set of characteristic values of u — A.: discrete.

® Proof:

o L.:X°— Y invertible; ||[L7R.| g(xe,xe) — 0 as e — 0.

o = —(1/(m)) Le+Re: X — Y invertible for € small enough.

o Pole-pencil decomposition = A.: finitely meromorphic and of
Fredholm type in V.

e [C.: of finite-dimension = 3 p* € V s.t. A (u*): invertible.

o Generalized Steinberg's theorem = the discreteness of the set
of characteristic values of A, in V.

Mathematical methods in photonics Habib Ammari



Helmholtz resonators

® 1 only one characteristic value of A. in V of uo.
® Proof:

o Define

Ke
fo —
Show that the multiplicity of NV, in V is equal to zero.
Find the characteristic values of AV in V: fist. 39 #£0
satisfying NV2(1)[¢] = 0 on (—¢,¢).
=

Netpe—= No(p) = —%Eer

1 (P, up)
ZL[p] + Ry = 0.
T e[e] + i — o Ujo

e [.: invertible =
1, <35» ujo> -1
— L ] = 0.
- SO + /:\L _ /JO € [UJO]
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® Multiply by uj,,
~ 1 £;1 uj, |, uj
<807 Uj0> < < A[ 10] J0> ) 0

fi — po

o= po—m(L up], i)
e = (p,u;) = 0 would imply that ¢ = 0.

|<£;1[Ujo], up)] — 0 ase—0.

| — po| — 0 ase —0.

® Normalization condition: (p, uj;) = 1 = the root function associated to
this characteristic value ji:

~ [';l[ujo]

T (L )y )
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e Multiplicity of ji as a characteristic value of N: (the order of i as a pole
—1
of N7%).
o N:(1)[¢] = f: equivalent to

_1()0"'_ <S07 uj0>‘c€_1[uj0] — ﬁs—l[f]

™ Ho — p
(¢, ujp) + o — [t = (L 7[f], up)-
©T ( )
oy = T = ) =111 ey,
(s, ujp) = = (L7TF] wip)
° =

Nl = 1 i = —m e+ T ) g

® ji: characteristic value of order one of N-:.

® M. has exactly one pole po and one characteristic value fi in V, each of
order one, and its full multiplicity is equal to zero.
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e Multiplicity of A. in V.

® 1+ N.(u): finitely meromorphic and of Fredholm type at u = po.
e Forall u € V\ {uo, i}, Ne: invertible.

e = AN.: normal in V.

o A (u) — No(p) = Re(p): analytic in V.

aI‘iLnO ||N£_1(M)R6(N)H£(XE,X€) = 07 VN € 8\/

® = i+ A.(p) has, by the generalized Rouché’s theorem, the same full
multiplicity as Az in V.

® o pole = pu— A.(n) admits in V exactly one characteristic value p°.
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e A.(p) has exactly one characteristic value 1° in V. Moreover, the
following asymptotic expansion of u° holds:

pe A o — 7T<[:;1[UJ'0], ujp) + W2<EQIRE(N0)£;1[UJOL Ujp )-

™

5 2
W R o — Ing\uj'o(O)l .

® Proof:

e u°: eigenvalue in V = u°: characteristic value of A, in V.

e (p°: associated root function to u°.

e |+ LZ1R.: invertible for & small enough = (¢°, u;,) #0 =
choose ¢° s.t. (¢, up) = 1.
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e With this choice,
1 <£;1[ujo]’ “jo> -1 € € _
o + 0 — o (L Re(p)[¥7], ujp) = 0.
° =
e = po — 2m (L ug), ujp) + O(|Ine7?).
e But 1[ |
1 1 L [u;
—— 1+ LR (pf 14+ == =9
(~o (W] + =
°* = .
o~ L2 [uj]

<£;l[ujo]v Ujp) .
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® In the three-dimensional case, for o = 0,

1
uS = —ecap(X).
€|

e Capacity of X in the rescaled opening (of arbitrary smooth shape):
cap(X) := _<£1_1[1]: 1>L2():)

® [i: three-dimensional analog to L. with € = 1:
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® Sub-wavelength resonance of a system of weakly coupled Helmholtz
resonators:

M. Fink et al.

® Asymptotic expansion of the Green function (d: size of the resonator
openings; zj: center of aperture for jth resonator; J: number of

resonators; w = O(/9)):

S G (x, x0,w) v Smelx 0| fz &
2r)x — xl FErTTr—t
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