
AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

ETH Lecture 401-0663-00L Advanced Numerical Methods for CSE

Advanced Numerical Methods for
Computational Science and Engineering

Prof. R. Hiptmair, SAM, ETH Zurich
Prof. C. Jerez-Hanckes, SAM, ETH Zurich

Autumn Term 2018
(C) Seminar für Angewandte Mathematik, ETH Zürich

URL: https://people.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSE18.pdf

Always under construction!

The online version will always be work in progress and subject
to change.

(Nevertheless, structure and main contents can be expected to
be stable)

Do not print!

Main source of information: Lecture homepage

Important links:
• Lecture Git repository: https://gitlab.math.ethz.ch/AdvNumCSE/Code

(Clone this repository to get access to most of the C++ codes in the lecture document and
homework problems. ➙ Git guide)
• Lecture recordings: https://www.video.ethz.ch/lectures/d-math/2018/autumn/401-4671-00L.html
• Tablet notes: https://www.sam.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSE18_Notes/
• Homework problems:https://people.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSEProblems.pdf

• Polybox: Share link

, 1

https://people.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSE18.pdf
https://moodle-app2.let.ethz.ch/course/view.php?id=4889
https://git-scm.com/
https://gitlab.math.ethz.ch/AdvNumCSE/Code
https://gitlab.math.ethz.ch/tille/gitlab-introduction/blob/master/git/README.md
https://www.video.ethz.ch/lectures/d-math/2018/autumn/401-4671-00L.html
https://www.sam.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSE18_Notes/
https://people.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSEProblems.pdf
https://polybox.ethz.ch/index.php/s/9LizOMYOcNF7mWH

Contents

0 Introduction 6

0.0.1 Focus of this course . 6
0.0.2 Goals . 6
0.0.3 Reporting errors . 7
0.0.4 Literature . 8

0.1 Specific information . 8
0.1.1 Assistants and exercise classes . 8
0.1.2 Assignments . 9
0.1.3 Information on Examinations . 10

1 Boundary Element Methods (BEM) 12

1.1 Elliptic Model Boundary Value Problem: Electrostatics . 15
1.1.1 The Electric Field . 15
1.1.2 Electric Scalar Potential . 17
1.1.3 Continuity of Fields and Boundary Conditions . 20
1.1.4 Equilibrium Conditions . 24
1.1.5 Variational Equations . 26
1.1.6 Boundary Value Problems . 27
1.1.7 Decay conditions on unbounded domains . 30
1.1.8 Supplement: An energy norm for source charge distributions 32

1.2 Boundary Representation Formulas . 33
1.2.1 Green’s Formulas . 33
1.2.2 Fundamental Solutions . 35

1.2.2.1 Potential of a Point Charge . 35
1.2.2.2 Potential of a Line Charge . 36
1.2.2.3 Distributional View: LG = δ0 . 37

1.2.3 Volume Potential Representation . 42
1.2.4 Boundary Potential Representation . 44
1.2.5 Layer Potentials . 46

1.2.5.1 Single Layer Potential . 47
1.2.5.2 Double Layer Potential . 48

1.2.6 Green’s Functions . 50
1.3 Boundary Integral Equations (BIEs) . 52

1.3.1 Trace Operators . 53
1.3.1.1 Dirichlet Trace . 53
1.3.1.2 Neumann Trace . 58

1.3.2 Mapping Properties of Layer Potentials . 61
1.3.3 Jump Relations for Layer Potentials . 63
1.3.4 Boundary Integral Operators (BIOs) . 66

1.3.4.1 Formal Definition . 66
1.3.4.2 Integral Representations . 68

2

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.3.4.3 Variational Form for Hypersingular BIO 70
1.3.5 Direct Boundary Integral Equations . 73

1.3.5.1 First-kind BIEs . 75
1.3.5.2 Second-kind BIEs . 78

1.3.6 Indirect Boundary Integral Equations . 80
1.4 Boundary Element Methods in Two Dimensions . 82

1.4.1 Abstract Galerkin Discretization . 83
1.4.2 Boundary Element Spaces on Curves . 85

1.4.2.1 Curve Partitionings . 86
1.4.2.2 Piecewise Polynomial Functions on Curves 87
1.4.2.3 Shape Functions . 88
1.4.2.4 Solving Boundary Value Problems via Galerkin BEM 91
1.4.2.5 Approximation of Curves . 94

1.4.3 Computation of BEM-Galerkin Matrix in 2D . 96
1.4.3.1 Panel-oriented Assembly . 96
1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas 102
1.4.3.3 Recapitulated [Hip15, Chapter 7]: Aspects of Numerical Quadrature 111
1.4.3.4 Matrix Entries by Quadrature . 123

1.5 Boundary Element Methods on Closed Surfaces . 132
1.5.1 Surface Meshes . 132
1.5.2 Boundary Element Spaces on Triangulated Surfaces 134

1.5.2.1 Definitions . 134
1.5.2.2 Shape Functions . 136

1.5.3 Assembly of Galerkin Matrices . 139
1.6 BEM: Various Aspects . 144

1.6.1 Convergence . 144
1.6.1.1 Abstract Galerkin Error Estimate . 144
1.6.1.2 Approximation in Boundary Element spaces 145
1.6.1.3 Variational Crimes . 150
1.6.1.4 Pointwise Recovery of Solutions . 151

1.6.2 Mixed Boundary Value Problems . 151
1.6.3 Transmission Problems . 154

1.6.3.1 Two-Domain Setting . 154
1.6.3.2 Multi-Domain Transmission Problem . 159

1.6.4 BEM for Wave Propagation . 159

2 Local Low-Rank Compression of Non-Local Operators 162

2.1 Examples: Non-Local Operators . 163
2.1.1 (Discretized) Integral Operators . 163
2.1.2 Long-Range Interactions in Discrete Models . 164
2.1.3 Kernel Collocation Matrices . 167

2.2 Approximation of Kernel Collocation Matrices . 168
2.2.1 Separable Kernel Approximation . 170

2.2.1.1 Polynomial Expansions . 172
2.2.1.2 Uni-directional Interpolation . 174
2.2.1.3 Bi-directional interpolation . 176

2.2.2 Error Estimates and Admissibility condition for Singular Kernels 179
2.2.2.1 Truncation Error Estimates for Taylor Expansion 179
2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation 182
2.2.2.3 Estimates for Bi-Directional Interpolation 185

2.3 Clustering Techniques . 188

CONTENTS, CONTENTS 3

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.3.1 Local Separable Approximation . 188
2.3.2 Cluster Trees . 196
2.3.3 Far-Field Blocks . 205
2.3.4 Storing Block-Partitioned Kernel Collocation Matrix 211
2.3.5 Matrix×Vector: Efficient Implementation . 218
2.3.6 Panel Clustering . 219

2.4 Hierarchical Matrices . 223
2.4.1 Definition . 223
2.4.2 Low-Rank Matrices: Algorithms . 229
2.4.3 H-Addition of Hierarchical Matrices . 234
2.4.4 H-Multiplication of Hierarchical Matrices . 236
2.4.5 Hierarchical LU-Decomposition . 244
2.4.6 H2-Matrices . 250

3 Convolution Quadrature 258

3.1 Basic Concepts and Tools . 259
3.1.1 Convolution of Causal Functions . 259
3.1.2 Discrete Convolutions . 263
3.1.3 Laplace Transform . 265
3.1.4 Diagonalizing Convolutions . 270

3.2 Convolution Equations: Examples . 278
3.2.1 Tomography: Abel Integral Equation . 278
3.2.2 Impedance Boundary Conditions . 280
3.2.3 Time-Domain Boundary Integral Equations . 282

3.3 Implicit-Euler Convolution Quadrature . 286
3.3.1 Setting and Goal . 286
3.3.2 Derivation . 287
3.3.3 Properties of implicit-Euler Convolution Quadrature 293
3.3.4 Convergence . 295

3.4 Multistep Convolution Quadrature . 298
3.4.1 Multistep Numerical Integrators . 298
3.4.2 Convolution Weights . 298
3.4.3 Convolution Quadrature: Algorithms . 298

3.5 Runge-Kutta Convolution Quadrature . 298
3.6 Fast Oblivious Convolution Quadrature . 298

4 (Algebraic) Multigrid Methods 300

4.1 Solvers for Finite Element Linear Systems . 300
4.1.1 Elliptic Model Boundary Value Problems . 300
4.1.2 Sparse Elimination Solvers . 304
4.1.3 Stationary Linear Iterations . 305
4.1.4 Conjugate Gradient Method (CG) . 310

4.2 Geometric Multigrid Method . 312
4.2.1 Subspace Correction Methods . 314
4.2.2 Coarse-Grid Correction . 317
4.2.3 Multigrid Iteration . 321
4.2.4 Multigrid Preconditioning . 324

4.3 AMG: Matrix-Based Multigrid . 326
4.3.1 AMG Framework . 326
4.3.2 AMG Heuristics . 327
4.3.3 Coarse Grid Selection . 327
4.3.4 AMG Prolongation . 327

CONTENTS, CONTENTS 4

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Index 327

Symbols . 334
Examples . 336

CONTENTS, CONTENTS 5

Chapter 0

Introduction

This course discusses modern numerical methods involving complex algorithms and intricate data struc-
tures that render an efficient implementation non-trivial.

0.0.1 Focus of this course

✄ Boundary element methods for second-order elliptic boundary value problems

✄ Local low-rank compression and hierarchical matrices techniques

✄ Convolution quadrature

✄ Algebraic multigrid methods

Contents

(0.0.1) Prequisites

✦ Familiarity with basic numerical methods (as taught in the course “Numerical Methods for CSE”).

✦ Knowledge about the finite element method for elliptic partial differential equations (as taught in the
course “Numerical Methods for Partial Differential Equations”).

0.0.2 Goals

✦ Appreciation of the interplay of functional analysis, advanced calculus, numerical linear algebra, and
sophisticated data structures in modern computer simulation technology.

✦ Knowledge about the main ideas and mathematical foundations underlying boundary element meth-
ods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods.

✦ Familiarity with the algorithmic challenges arising from these methods and the main ways on how to
tackle them.

6

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✦ Knowledge about the algorithms’ complexity and suitable data structures.

✦ Ability to understand details of given implementations.

✦ Skills concerning the implementation of algorithms and data structures in C++.

Indispensable: Learning by doing (➔ exercises)

0.0.3 Reporting errors

As the documents will always be in a state of flux, they will inevitably and invariably teem with small errors,
mainly typos and omissions.

Please report errors in the lecture material through the Course Webpage!

Please point out errors by leaving a comment in the
Forum at the bottom (“Errors in Lecture Material” sec-
tion).

When reporting an error, please specify the section and the number of the paragraph, remark, equation,
etc. where it hides. You need not give a page number.

0. Introduction, 0. Introduction 7

https://moodle-app2.let.ethz.ch/course/view.php?id=4889

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

0.0.4 Literature

Parts of the following monographs may be used as supplementary reading for this course. References to
relevant sections will be provided in the course material.

Studying extra literature is not important for following this course!

✦ Chapter 1: S. SAUTER AND CH. SCHWAB, Boundary Element Methods, Springer, 2010.

✦ Chapter 1: O. STEINBACH, Numerical approximation methods for elliptic boundary value problems,
Springer, 2008.

✦ Chapter 2 M. BEBENDORF, Hierarchical matrices: A means to efficiently solve elliptic boundary

value problems, Springer, 2008.

✦ Chapter 2 W. HACKBUSCH, Hierarchical Matrices, Springer, 2015.

✦ Chapter 2 S. BOERM, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compres-

sion, Algorithms and Analysis, EMS, 2010.

✦ Chapter 2 S. BOERM, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel, 2017.

✦ Chapter 3: M. HASSELL AND F.-J. SAYAS, Convolution Quadrature for Wave Simulations, Springer,
2016.

✦ Chapter 3: F.-J. SAYAS, Retarded Potentials and Time-Domain Boundary Integral Equations, Springer,
2016.

✦ Chapter 4: K. STÜBEN, An Introduction to Algebraic Multigrid, Appendix A of U. TROTTENBERG, C.
OSTERLEE, AND A. SCHÜLLER, Multigrid, Academic Press, 2001.

✦ Chapter 4: J. XU AND L. ZIKATANOV, Algebraic multigrid methods, Acta Numerica, 26 (2017),
pp. 591–721.

0.1 Specific information

0.1.1 Assistants and exercise classes

Lecturer: Prof. Carlos Jerez-Hanckes HG G 58.3, carlos.jerez@sam.math.ethz.ch

Assistants: Andrea Scapin, HG G 54.1, andrea.scapin@sam.math.ethz.ch
Pratyuksh Bansal, HG G 53.2, pratyuksh.bansal@sam.math.ethz.ch
Fernando Henriquez, fernando.henriquez@sam.math.ethz.ch

Though the assistants email addresses are provided above, their use should be restricted to cases of
emergency:

In general refrain from sending email messages to the lecturer or the assistants. They will not
be answered!

Questions should be asked in class (in public or during the break in private), in the tutorials, or
in the study center hours.

0. Introduction, 0.1. Specific information 8

http://www.sam.math.ethz.ch/~hiptmair

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Lecture hours: Mon, 15.15-17.00 (HG F 1), Tue, 15.15-17.00 (HG F 1)
Exercise class: Thu, 08.15-10.00 (HG E 1.1)
Presence hours: Thu, 12.15-13.00 (HG E 1.1, HG E 27 only when announced)

0.1.2 Assignments

You should expect to spend 4–6 hours per week on trying to solve the homework problems. Since many
involve small coding projects, the time it will take an individual student to arrive at a solution is hard to
predict.

(0.1.1) Homeworks and tutors’ corrections

✦ The weekly assignments will be a few problems from the ADVNCSE Problem Collection available
online as PDF. The particular problems to be solved will be communicated on Friday every week.

Please note that this problem collection is being compiled during this semester. Thus, make sure
that you obtain the most current version every week. The assignment sheets will be also updated
with new problems on the course webpage on Friday every week.

✦ Some or all of the problems of an assignment sheet will be discussed in the tutorial classes on
Thursday 6 days after the problems have been assigned.

✦ If you want your tutor to examine your solution of the current problem sheet, please hand it in to
the tutor during the following exercise class, or put it into the appropriate plexiglass tray in front
of HG G 53/54 by the Thursday after the publication. You should submit your codes using the
online submission interface on the course webpage. This is voluntary, but feedback on your perfor-
mance on homework problems can be important.

✦ Please clearly mark the homework problems that you want your tutor to inspect.

✦ You are encouraged to hand-in incomplete and wrong solutions, you can receive valuable feedback
even on incomplete attempts.

(0.1.2) Git code repository

C++ codes for both the classroom and homework problems are made available through a git repository
also accessible through Gitlab (Link):

0. Introduction, 0.1. Specific information 9

https://people.math.ethz.ch/~grsam/HS18/AdvNumCSE/ADVNCSEProblems.pdf
https://moodle-app2.let.ethz.ch/course/view.php?id=4889
https://moodle-app2.let.ethz.ch/course/view.php?id=4889#section-2
https://gitlab.math.ethz.ch/AdvNumCSE/Code

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The Gitlab toplevel page gives a short introduction into the repository for the course and provides a link to
online sources of information about Git.

Download is possible via Git or as a zip archive. Which method you choose is up to you, but it should be
noted that updating via git is more convenient.

➣ Shell command to download the git repository:

> git clone https://gitlab.math.ethz.ch/AdvNumCSE/Code

Updating the repository to fetch upstream changes is then possible by executing > git pull inside the
Code folder.

Note that by default participants of the course will have read access only. However, if you want to contribute

corrections and enhancements of lecture or homework codes your are invited to submit a merge request.
Beforehand you have to inform your tutor so that a personal Gitlab account can be set up for you.

The Zip-archive download link is here.

For instructions on how to compile assignments or lecture codes see the README file.

0.1.3 Information on Examinations

(0.1.3) Examination during the teaching period

From the ETH course directory:

Students are expected to give a 15-minute oral code review and answer questions concerning
selected programming assignments at a date announced in the beginning of the term. This
review has to be passed in order to be admitted to the main examination.

The oral code review is regarded as a central element and as such is graded on a pass/fail basis.

Admission to the main exam is conditional on passing the code review.

Date of code review: Wed 12th and Fri 14th December, 2018

✦ Registration through a Doodle poll until Nov 30, 2018 is mandatory for taking parts in the code
review:

Link: not_available_yet

Non-registration is considered as opting out of the course and forfeits eligibility for repetition.

✦ The following homework coding problems will be announced as relevant for the code review during
the term:

• Problem

• Problem

• Problem

0. Introduction, 0.1. Specific information 10

https://gitlab.math.ethz.ch/AdvNumCSE/Code/repository/archive.zip?ref=master
https://gitlab.math.ethz.ch/AdvNumCSE/Code/blob/master/README.md
https://ethz.doodle.com/poll/tib4gsyrirmqu9px

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• Problem

• Problem

✦ Candidates for the code review are expected to send their codes until Monday 10th December, 2018.
Please upload all your files as a single .zip archive with different codes in different sub-directories;

Upload link will be published at (Moodle): ➣

✦ The 15-minute exam will center around questions connected with (parts of) the codes supplied by
the candidates.

Make-up code review in Spring Term 2018: ????, 2019

(0.1.4) Main examination during the exam session

✦ 30-minute oral exam in English

✦ Dates will be communicated by the ETH exam office and cannot be negotiated.

✦ Subjects of examination:

All topics, which have been addressed in class or in a homework problem

(0.1.5) Repeating an exam

Main exam.

• The main exam can be repeated once, conditional on failure.

• Any bonus already earned will be taken into account again for the repeated exam.

Code review.

• A failed code review can be repeated once.

0. Introduction, 0.1. Specific information 11

https://moodle-app2.let.ethz.ch/course/view.php?id=???#section-1

Chapter 1

Boundary Element Methods (BEM)

Preface

Boundary element methods (BEM) represent a class of numerical methods for the discretization of bound-
ary integral equations (BIE) arising from boundary value problems (BVPs) for linear partial differential
equations (PDEs) with constant coefficients.

In this chapter we focus on the derivation of various boundary integral equations, the study of their prop-
erties and on Galerkin discretization by means of boundary element methods, which can be regarded a
finite element methods for BIE.

Boundary value problem
for linear PDE

fundamental
solutions

Boundary integral
equations (BIE)

BEM

(Linear) system
of equations (LSE)

Boundary element methods play a significant role in computational engineering, in particular in the fields
of computational electromagnetism and acoustics, and for simulations based on linear elasticity.

(1.0.1) BEM in computational electromagnetics

12

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 1

The plot shows the post-processed re-
sult of an electrostatic field simulation
conducted by Lars Kielhorn for a test
geometry provided by ABB Research,
Baden/Dättwil (The strength of the electric
field is given in units of V

m).

Computations were done by means of a
low-order piecewise polynomials Galerkin
boundary element method based on the
boundary element library BETL [HK12].

The mesh used for the computations is
faintly drawn for the outer casing.

(1.0.2) BEM for acoustic wave propagation

A result from [CHS18]:

Acoustic wave propagation in frequency domain;
scattering of an incident plane acoustic wave Uinc

at a scatterer composed of three different homoge-
neous isotropic parts, of which Ω� is perfectly ab-
sorbing (sound soft). The color scale indicates the
amplitude of the total acoustic pressure field on a sur-
face.

Simulation was based on piecewise constant bound-
ary element applied to a second-kind single trace di-
rect boundary integral equation formulation.

Fig. 2

Contents

1.1 Elliptic Model Boundary Value Problem: Electrostatics 15

1.1.1 The Electric Field . 15
1.1.2 Electric Scalar Potential . 17
1.1.3 Continuity of Fields and Boundary Conditions 20
1.1.4 Equilibrium Conditions . 24
1.1.5 Variational Equations . 26
1.1.6 Boundary Value Problems . 27
1.1.7 Decay conditions on unbounded domains 30
1.1.8 Supplement: An energy norm for source charge distributions 32

1.2 Boundary Representation Formulas . 33

1.2.1 Green’s Formulas . 33
1.2.2 Fundamental Solutions . 35

1.2.2.1 Potential of a Point Charge . 35
1.2.2.2 Potential of a Line Charge . 36
1.2.2.3 Distributional View: LG = δ0 . 37

1.2.3 Volume Potential Representation . 42
1.2.4 Boundary Potential Representation . 44
1.2.5 Layer Potentials . 46

1. Boundary Element Methods (BEM), 1. Boundary Element Methods (BEM) 13

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.2.5.1 Single Layer Potential . 47
1.2.5.2 Double Layer Potential . 48

1.2.6 Green’s Functions . 50
1.3 Boundary Integral Equations (BIEs) . 52

1.3.1 Trace Operators . 53
1.3.1.1 Dirichlet Trace . 53
1.3.1.2 Neumann Trace . 58

1.3.2 Mapping Properties of Layer Potentials . 61
1.3.3 Jump Relations for Layer Potentials . 63
1.3.4 Boundary Integral Operators (BIOs) . 66

1.3.4.1 Formal Definition . 66
1.3.4.2 Integral Representations . 68
1.3.4.3 Variational Form for Hypersingular BIO 70

1.3.5 Direct Boundary Integral Equations . 73
1.3.5.1 First-kind BIEs . 75
1.3.5.2 Second-kind BIEs . 78

1.3.6 Indirect Boundary Integral Equations . 80
1.4 Boundary Element Methods in Two Dimensions 82

1.4.1 Abstract Galerkin Discretization . 83
1.4.2 Boundary Element Spaces on Curves . 85

1.4.2.1 Curve Partitionings . 86
1.4.2.2 Piecewise Polynomial Functions on Curves 87
1.4.2.3 Shape Functions . 88
1.4.2.4 Solving Boundary Value Problems via Galerkin BEM 91
1.4.2.5 Approximation of Curves . 94

1.4.3 Computation of BEM-Galerkin Matrix in 2D 96
1.4.3.1 Panel-oriented Assembly . 96
1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas 102
1.4.3.3 Recapitulated [Hip15, Chapter 7]: Aspects of Numerical Quadrature111
1.4.3.4 Matrix Entries by Quadrature . 123

1.5 Boundary Element Methods on Closed Surfaces 132

1.5.1 Surface Meshes . 132
1.5.2 Boundary Element Spaces on Triangulated Surfaces 134

1.5.2.1 Definitions . 134
1.5.2.2 Shape Functions . 136

1.5.3 Assembly of Galerkin Matrices . 139
1.6 BEM: Various Aspects . 144

1.6.1 Convergence . 144
1.6.1.1 Abstract Galerkin Error Estimate 144
1.6.1.2 Approximation in Boundary Element spaces 145
1.6.1.3 Variational Crimes . 150
1.6.1.4 Pointwise Recovery of Solutions . 151

1.6.2 Mixed Boundary Value Problems . 151
1.6.3 Transmission Problems . 154

1.6.3.1 Two-Domain Setting . 154
1.6.3.2 Multi-Domain Transmission Problem 159

1.6.4 BEM for Wave Propagation . 159

List of acronyms and abbreviations (regularly used in the classroom):

1. Boundary Element Methods (BEM), 1. Boundary Element Methods (BEM) 14

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

BEM = boundary element method
BIE = boundary integral equation
BIO = boundary integral operator
BLF = bilinear form
BVP = boundary value problem
FS = fundamental solution
GalM = Galerkin matrix
GSF = global shape function
LF = linear form
LSE = linear system of equations
LSF = local shape function
PDE = partial differential equation
QF = quadratic functional or quadrature formula (→ Def. 1.4.109)
QMP = quadratic minimization problem
QN = quadrature node (→ Def. 1.4.109)
QR = quadrature rule (→ Def. 1.4.109)
QW = quadrature weight (→ Def. 1.4.109)
RF = representation formula
VF = variational formulation
pwc = piece-wise constant
pwl = piece-wise linear
rhs = right-hand side

1.1 Elliptic Model Boundary Value Problem: Electrostatics

We consider electromagnetism in a stationary setting, that is none of the fields depends on time. In this
case electric and magnetic fields become decoupled. In this section we focus on the electric field as we
did in [Hip16, Section 2.2.2].

1.1.1 The Electric Field

(1.1.1) Domains

We denote by Ω ⊂ R3, called a domain in the sequel, an open subset of 3D Euclidean space with
piecewise smooth Lipschitz boundary. For the intricate mathematical notion of a Lipschitz boundary we
refer to [McL00, pp. 89] and [SS10, Def. 2.2.7]. If Ω is bounded, you may imagine a polyhedron with some
curved faces, see § 1.2.5 below.

As a new aspect we will also consider boundary value problems for fields on unbounded domains, more
precisely, the case when Ω is the (open) complement of a bounded Lipschitz domain ⊂ R3.

✎ Notation: Ω′ := Rd \Ω =̂ complement of a domain Ω ⊂ Rd

The simplest mathematical model for a stationary electric field is that of a vectorfield E : Ω → R3,
assigning a field vector E(x) ∈ R3 to each point x ∈ Ω.

✎ Notation: We write a, . . . , x, y, z for small vectors and points in space.
bold typeface for vector-valued quantities: E, u, j, . . .

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 15

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.1.2) Energy (density) of electric field

Any non-zero electric field contains energy, which determined by both the strength of the electric field and
the dielectric medium penetrated by the field. We restrict ourselves to simple linear media. In this case
the we have the following expression for the energy:

Definition 1.1.3. Electrostatic field energy [Hip16, Eq. (2.2.20)]

The total energy of an electric field E : Ω→ R3 inside Ω is

Jel(E) := 1
2

∫

Ω
(ǫ(x)E(x)) · E(x)dx , (1.1.4)

where ǫ : Ω → R3,3 is the symmetric, bounded, uniformly positive definite dielectric tensor field,
see [Hip16, § 2.2.21].

We call a tensor field, that is, a matrix-valued function α : Ω → Rd,d, d ∈ N, bounded and uniformly
positive definite [Hip16, Def. 2.2.23], if

∃γ−, γ+ > 0: γ−‖z‖2 ≤ z⊤α(x)z ≤ γ+‖z‖2 ∀z ∈ Rd . (1.1.5)

ǫ is a macroscopic material parameter taking into account complex microscopic interactions of electric
fields and matter.

Energy norm

E 7→
√

Jel(E) defines a norm (→ [Hip16, Def. 1.6.4]) on the vector space of electric fields, the
energy norm, cf. [Hip16, § 1.6.8].

Remark 1.1.7 (Scaling of electromagnetic field problems, cf. [Hip16, Rem. 1.2.10])

The physical units of electrostatic quanti-
ties are given beside ✄

Quantity units

Electric field E [E] = 1 V
m

Dielectric tensor ǫ [ǫ] = 1 As
Vm

Charge density ρ [ρ] = 1 As
m3

Field energy [Jel] = 1 VAs = 1 J

There are three “free units”, 1V (unit of voltage), 1m (unit of length), and 1As (unit of charge), which can
be fixed arbitrarily. For instance, one may set the unit of length to the diameter of Ω, if Ω is bounded, and
set the units of voltage and charge to the “maximum expected values”.

Thus, one ends up with non-dimensional equations for electrostatics. In this course we will tacitly assume
that equations heve already been converted into non-dimensional form by suitable scaling.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 16

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.1.2 Electric Scalar Potential

A point charge q in a (continuous) electric field E : Ω → R3 at a point x ∈ Ω experiences a Coulomb

force

f(x) := q E(x) . (1.1.8)

(Note matching physical units [f] = As V
m = J

m = 1 N)

(1.1.9) Vanishing circulation of electric fields

The integration of a force along a directed curve γ : [0, 1] 7→ γ(t) ∈ Ω yields the work required to
move the charge: W = q

∫
γ

E · d~s. Thus, in order to comply with the fundamental principle of energy
conservation we have to demand

∫

γ
E · d~s =

∫ 1

0
E(γ(t)) · dγ

dt
(t)dt= 0 ∀ closed curves γ ⊂ Ω , (1.1.10)

where the curve γ : [0, 1] → Ω is called closed, if γ(0) = γ(1). The non-local property (1.1.10) has an
important local consequence, which can be stated by means of the rotation operator (also knows as curl
operator)

curl v(x) :=




∂v3

∂x2
(x)− ∂v2

∂x3
(x)

∂v1

∂x3
(x)− ∂v3

∂x1
(x)

∂v2

∂x1
(x)− ∂v1

∂x2
(x)




, for v(x) =




v1(x)
v2(x)
v3(x)


 differentiable in x . (1.1.11)

Theorem 1.1.12. Electric fields are irrotational/curl-free

Every differentiable stationary electric field E : Ω→ R3 satisfies curl E = 0 in Ω.

Proof. We assume 0 ∈ Ω and show curl E(0) = 0. Pick i, j ∈ {1, 2, 3}, i 6= j, and consider the closed
curve describing an axes-aligned square of size h > 0:

γ = {t 7→ htei} ∪ {t 7→ hei + the j} ∪ {t 7→ hei + he j − htei} ∪ {t 7→ (1− t)he j} , 0 ≤ t ≤ 1 ,

with ei standing for the i-th Cartesian basis vector. The path integral evaluates to

∫

γ
E · d~s =

1∫

0

hE(htei) · ei + hE(hei + the j) · ej−
hE(he j + h(1− t) · ei)ei − hE(h(1− t)e j) · ej .

We plug in the first-order Taylor expansion of E around 0:

E(x) = E(0) +DE(0)x + O(‖x‖2) for x→ 0 . (1.1.13)

✎ Notation: DE =̂ Jacobian of the (differentiable) vector field E, see [Hip16, Eq. (0.6.5)].
∫

γ
E · d~s = h2

(
1
2DE(0)ei · ei + DE(0)ei · ej +

1
2DE(0)e j · ej − DE(0)e j · ei−

1
2DE(0)ei · ei − 1

2DE(0)e j · ej

)
+ O(h3) for h → 0 .

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 17

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Note that multiplication with unit vectors selects rows/columns of matrices and that (1.1.10) makes the
path integral along γ vanish.

0 =
∫

γ
E · d~s = h2

(
(DE(0))i,j − (DE(0)) j,i

)
+ O(h3) for h → 0 .

This implies (DE(0))i,j = (DE(0)) j,i, the Jacobian DE(0) is symmetric: DE(0) = DE(0)⊤. In light of

the definition (1.1.11) of the rotation operator we see that this is equivalent to curl E(0) = 0.
✷

(1.1.14) Introducing the electrostatic potential

As another consequence of (1.1.10) we note that for an open curve κ the integral
∫

κ
E · d~s will depend

only on the endpoints of the curve (path-independence); connect both endpoints of κ by another curve
of opposite orientation. Therefore, picking an arbitrary point z ∈ Ω we can define an electric potential
through

u(x) = −
∫

κx

E · d~s for some curve κx : [0, 1]→ Ω, κx(0) = z, κx(1) = x, x ∈ Ω . (1.1.15)

Thanks to path-independence of the work integral this is a valid definition.

Now,let us assume 0 ∈ Ω and that Ω is star-shaped with respect to z := 0, that is for every x ∈ Ω we
have [0, x] ⊂ Ω. Then, for every x ∈ Ω we can choose the straight line connecting 0 and x as curve κx

in (1.1.15):

κx(t) = tx , ⇒ u(x) := −
∫ 1

0
E(tx) · x dt . (1.1.16)

By differentiation under the integral we get by the chain rule and the product rule

grad u(x) :=




∂u
∂x1

(x)
∂u
∂x2

(x)
∂u
∂x3

(x)


 = −

∫ 1

0
tDE(tx)⊤x + E(tx)dt .

Applying the same differentiation rules, we also obtain

d
dτ{τ 7→ τE(τx)}τ=t = tDE(tx)x + E(tx) .

Combining both formulas leads to a recovery of the electric field:

grad u(x) = −
∫ 1

0

d
dτ{τ 7→ τE(τx)}τ=t + t

(
DE(tx)⊤ − DE(tx)

)
· x

︸ ︷︷ ︸
=0 by Thm. 1.1.12 !

dt = −τE(τx)|τ=1
τ=0 = −E(x) ,

where we used the fundamental theorem of calculus and that the components of curl E(x) agree with
the off-diagonal entries of DE(tx)⊤ − DE(tx).

Theorem 1.1.17. Existence of electrostatic potential

If a continuous vectorfield E : Ω→ R3 satisfies (1.1.10) (“circulation-free”), then (1.1.15) defines a

differentiable function u : Ω→ R such that E = − grad u.

Obviously, if Ω is connected, then a function u : Ω→ R satisfying grad u = −E for given E is unique up
to a constant.

The function u from Thm. 1.1.17 is called a scalar potential for E. The − in its definition is a convention.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 18

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Assumption 1.1.18. Connected domains

The domain Ω is connected

Remark 1.1.19 (Scalar potentials and work)

By virtue of the very definition (1.1.15) of the scalar potential we conclude that

−q(u(x)− u(y)) is the work required to move a charge q from y ∈ Ω to x ∈ Ω against the
force exerted by the electric field − grad u : Ω→ R3.

Note: positive work is “work done by the electric field” (we harvest energy), negative work amounts to
“work done against the electric field” (we spend energy).

We are still missing two things:

1. A mathematical description of the cause of electromagnetic fields, which are charges,

2. and a criterion for selecting the unique physical electric field induced by charges.

These issues will be tackled next and everything will center around the concept of field energy introduced
in Def. 1.1.3.

(1.1.20) Spaces for electric fields and scalar potentials

Physically admissible electric fields E : Ω → R3 on Ω ⊂ R3 (either bounded or unbounded) have to
satisfy

✦ that their energy content
∫

Ω
ǫ(x)E(x) · E(x)dx is finite, cf. Def. 1.1.3,

✦ and that they are gradients of a scalar potential: E = − grad u for a sufficiently smooth function
u : Ω→ R.

Thus we can switch to a characterization by admissible scalar potentials, which form the set
{

u : Ω→ R:
∫

Ω
ǫ(x) grad u(x) · grad u(x)dx < ∞

}
.

Since ǫ : Ω → R3,3 is uniformly positive definite, this set can be endowed with the structure of a Hilbert
space by completion, see [Hip16, § 2.3.8] and [Hip16, § 2.3.16]. On a bounded domain Ω this yields the
Sobolev space H1(Ω), recall [Hip16, Section 2.3.4].

Definition 1.1.21. Sobolev space H1(Ω), [Hip16, Def. 2.3.25]

For a bounded domain Ω ⊂ Rd, d ∈ N, we define the Sobolev space

H1(Ω) := {v ∈ L2(Ω):
∫

Ω
| grad v(x)|2 dx < ∞}

as a Hilbert space with norm field energy

‖v‖2
H1(Ω) := ‖v‖2

L2(Ω) + |v|2H1(Ω) , |v|2H1(Ω) :=
∫

Ω
| grad v(x)|2 dx.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 19

http://en.wikipedia.org/wiki/Sobolev_space

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The above definition involves the Hilbert space L2(Ω):

Definition 1.1.22. Hilbert space of square integrable functions [Hip16, Def. 2.3.4]

The function space of square integrable functions on Ω ⊂ Rd is

L2(Ω) := {v : Ω→ R integrable:
∫

Ω
|v(x)|2 dx < ∞} ,

a Hilbert space, when endowed with the norm

‖v‖L2(Ω) :=

(∫

Ω
|v(x)|2 dx

)1/2

.

Space for admissible scalar potentials

Meaningful electrostatic scalar potentials on a bounded domain Ω ⊂ R3 belong to the Sobolev
space H1(Ω).

Remark 1.1.24 (Potentials on unbounded domains)

It will turn out that some physically meaningful scalar potentials will not belong to L2(Ω), if Ω ⊂ R3 is
an exterior domain, that is, the open complement of a bounded Lipschitz domain. In this case the proper
space of admissible potentials is [SS10, Eq. (2.148)]

H1(Ω) :=

{
u : Ω→ R: ‖u‖2

H1(Ω) :=
∫

Ω
‖grad u(x)‖2 +

|u(x)|2
1 + ‖x‖2

dx < ∞

}
, (1.1.25)

which is larger than the space on Ω we would get from Def. 1.1.21 When equipped with the norm defined
in (1.1.25) also this space becomes a Hilbert space. Note that (??) still guarantees finite energy of the
electric field.

! Many authors, also [SS10], use Def. 1.1.21 also for exterior domains and introduce special
notation for the space defined in (1.1.25).

1.1.3 Continuity of Fields and Boundary Conditions

Maxwell’s equations and their reduced version, the equations of electrostatics are generically posed on all
of R3. Often, one is interested in the behavior of the fields in a region Ω 6= R3 only and the impact of the
complement Ω′ is taken into account by imposing boundary conditions on the boundary Γ := ∂Ω.

The boundary Γ := ∂Ω is a two-dimensional ori-
entable closed (that is, without a boundary itself) sur-
face.
✎ Notation: n : Γ → R3 is the exterior unit normal

vectorfield on Γ.
(Defined only in the interior of faces for polyhe-
dra)

Fig. 3

Ω

Γ
Ω′

n

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 20

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.1.26) Jump conditions for electric field

Fig. 4

Σ
γ Σ ⊂ R3 =̂ smooth orientable surface (“interface”). Consider

slender closed curve γ aligned with Σ, see Fig. 4. Letting the Σ-
transversal width of γ shrink to zero, (1.1.10) [

∫
γ

E ·d~s = 0] can

be satisfied for any such curve only if the tangential components
of E agree on both sides of Σ.

Continuity of electric fields

The tangential components of an electric field continuous on both sides of an orientable surface are
continuous across that surface.

(1.1.28) Continuity of scalar potentials

If a scalar potential u : Ω → R was only piecewise continuous with a jump across an interface, then
pushing a charge by an “infinitesimally small” distance across the interface could always release fixed
finite amount of energy. This amounted to an infinitely large force acting on the charge, which does not
make physical sense.

Continuity of scalar potentials

A scalar potential that is continuous on both sides of an orientable surface is also C0-continuous
across it.

This finding very well matches our results about the appropriate function spaces for scalar potentials
[Hip16, Thm. 2.3.35].

Theorem 1.1.30. Compatibility conditions for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and Ω2. A function u that is continuously differentiable

in both sub-domains and continuous up to their boundary, belongs to H1(Ω), if and only if u is

continuous on Ω.

We also recall from [Hip16, § 2.3.37] that continuous and piecewise continuously differentiable functions
on Ω belong to H1(Ω):

C1
pw(Ω) ⊂ H1(Ω) . (1.1.31)

We have to define C1
pw on the closed domain Ω in (1.1.31) to make sure that the functions are continuous

up to the boundary.

Be aware that the gradients of functions in C1
pw(Ω) enjoy continuity of their tangential components across

any interface inside Ω. They satisfy the natural jump conditions for electric fields, cf. § 1.1.26.

(1.1.32) Normal and tangential components of a vectorfield on a surface

If nΣ : Σ → R3 is a unit normal vector field on the orientable 2-surface Σ and v a vectorfield continuous
up to Σ, then

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 21

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

the normal component of v in x ∈ Σ is (Tn,Σv)(x) := v(x) · nΣ(x),
the tangential component of v in x ∈ Σ is (Tt,Σv)(x) := v(x)− (v(x) · nΣ(x))nΣ(x),

✎ Notations: Tn,Σ =̂ normal component (trace) of a vector field on Σ

Tt,Σ =̂ tangential component (trace) of a vector field on Σ.
(Subscript indicating the surface may be omitted when clear from the context.)

The mappings Tn,Σ and Tt,Σ are first examples of trace operators, linear mappings from function spaces
on volume domains to function spaces on interfaces or boundaries.

(1.1.33) Boundary conditions on the surface of conductors

A conductor is a region Ωc ⊂ R3 filled with (infinitely many) mobile charge carriers.

The electric field vanishes inside a conductor.

Otherwise the field would cause permanent movement of charges, releasing an infinite amount of energy
in the process.

If u is the electric potential (→ Thm. 1.1.17), then E = − grad u = 0 inside the conductor.

The electric potential is constant inside each connected component of Ωc.

In light of the tangential continuity of the electric field E, E = 0 inside Ωc means that

Tt,∂Ωc
E = 0 on boundaries of conductors . (1.1.34)

Engineers refer to the boundary conditions (1.1.34) as perfectly electrically conducting (PEC)

In mathematics, these PEC boundary conditions belong to the class of Dirichlet boundary conditions, see
[Hip16, Section 2.7].

(1.1.35) Mirror symmetry boundary conditions

Fig. 5

Ω

Σ

xx′

E(x)E(x′)

nΣ

Assume a situation mirror-symmetric with respect
to a plane Σ (through 0) with unit normal nΣ, see
Fig. 5:

x′ = (I− 2nΣn⊤Σ)x ,

E(x′) = (I− 2nΣn⊤Σ)E(x) .
(1.1.36)

Note that the electric field E is completely continu-

ous across Σ, because Σ does not separate different
physical domains (“artificial interface”).

Thus, for x = x′ ∈ Σ we have

E(x) = (I− 2nΣn⊤Σ)E(x) ⇒ Tn,ΣE = E · nΣ = 0 on Σ .

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 22

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Boundary condition for electric fields as symmetry planes

At symmetry planes electric fields have vanishing normal components.
(= homogeneous Neumann boundary conditions [Hip16, Section 2.7])

(1.1.38) Configuration space for electrostatic phenomena

Remember that the configuration space for a physical system is a subset of a vector space. Each element
models a particular state of the system. In electrostatics states are characterized by functions on spatial
domains, the fields.

In § 1.1.20 we saw that the configuration space can be a set of scalar potentials and should be a subspace
of H1(Ω). PEC boundary conditions as introduced in § 1.1.33 will enter the definition of the configuration
space.

Configuration space for electrostatics

Let Γ1, . . . , Γm ⊂ ∂Ω stand for the connected components of the part of ∂Ω corresponding to
surfaces of conductors. Then the scalar potential is sought in the space

V := {u ∈ H1(Ω): u|Γj
≡ const, j = 1, . . . , m} .

We can further restrict the configuration space, if the scalar potential is imposed on all or some connected
components of the conducting part of ∂Ω: Assume that u|Γj

= Uj ∈ R for j = 1, . . . , k, k ≤ m. Then we

can choose

V := {u ∈ H1(Ω): u|Γj
= Uj, j = 1, . . . , k , u|Γj

≡ const, j = k + 1, . . . , m} . (1.1.40)

This configuration space is an affine space. For any some u0 ∈ V it can be written as V = u0 + V0 with
the Hilbert space

V0 := {u ∈ H1(Ω): u|Cj
= 0, j = 1, . . . , k , u|Cj

≡ const, j = k + 1, . . . , m} . (1.1.41)

Terminology: Connected components of the conducting boundary part of Ω where no potential is imposed
are called floating potentals.

Remark 1.1.42 (Fixing the potential)

Since the potential is unique only up to constant, one can always set u|Γ1
= 0 for one connected compo-

nent of the conducting boundary without changing the outcome for the electric field. Then Γ1 is called a
grounded conductor.

Example 1.1.43 (Fixed potential boundary conditions)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 23

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 6 U0

Ω

Γ1

Γ0

u = 0

u = U0

✁ situation with imposed potentials

u = 0 on Γ0 ,

u = U0 on Γ1 .
(1.1.44)

(Metal electrode inside a grounded metal box)

configuration space

V =
{

u ∈ H1(Ω): u satisfies (1.1.44)
}

.

1.1.4 Equilibrium Conditions

As the reader will know, the sources of electric fields are electric charges. Above we have already made
of the construct of a point charge for measuring an electric field through the Coulomb force.

A large number of small “point charges” contained in a volume Ω ⊂ R3 can be modeled by a charge
density ρ : Ω→ R, physical units [ρ] = 1 As

m3 .

Q =
∫

D
ρ(x)dx =̂ total charge in sub-volume D ⊂ Ω . (1.1.45)

(1.1.46) Energy of charges in a field

Assume Ω ⊂ R3 to be bounded that the the scalar potential u : Ω → R satisfies u|∂Ω = 0 (If Ω is
the complement of a bounded set, we may just choose a normalization of the scalar potential that makes
it vanish at large distance: lim‖x‖→∞ u(x) = 0 uniformly, also written as “u(∞) = 0”.). According to

Rem. 1.1.19 it takes the work −qu(x) to move a charge q to x ∈ Ω from ∂Ω.

Now think of a charge density ρ : Ω → R+
0 as composed of many small point charges. The work it takes

to assemble this arrangement of charges is the sum of the work units required for each individual charge,
because we assume a fixed scalar potential not influenced by the presence of the charges. In the limit this
summation becomes integration (→ Riemann integral), and the energy required for setting up the charge
distribution ρ in the presence of a fixed potential is

Jρ(u) = −
∫

Ω
ρ(x) u(x)dx , u ∈ H1(Ω) . (1.1.47)

The notation stresses the dependence of the energy on u, because this will play the role of the unknown.

In the sequel the presence of charges modeled by ρ(x) will engender the fields. Therefore we call ρ as
source charge distribution.

Remark 1.1.48 (Admissible source charge distributions)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 24

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The energy Jρ(u) of a source charge distribution ρ : Ω → R should be finite for all admissible scalar

potentials u. For bounded Ω, applying the Cauchy-Schwarz inequality in L2(Ω) [Hip16, Eq. (2.3.30)] we
get

|Jρ(u)| =
∣∣∣∣
∫

Ω
ρ(x) u(x)dx

∣∣∣∣ ≤
(∫

Ω
ρ(x)2 dx

)1/2(∫

Ω
u(x)2 dx

)1/2

= ‖ρ‖L2(Ω)‖u‖L2(Ω) .

Hence, ρ ∈ L2(Ω) is a sufficient condition for a suitable source charge distribution, cf. [Hip16, Cor. 2.3.32].

If Ω is an exterior domain, we demand that ρ has bounded support in addition (“compactly supported”).

The total energy in a electrostatic situation in a volume Ω is the sum of the energy (1.1.4) of the electric
field and the energy content of the charges given by (1.1.47):

J(u) := Jel(u) + Jρ(u) =
∫

Ω

1
2 ǫ(x) grad u(x) · grad u(x)− ρ(x)u(x)dx , u ∈ V ⊂ H1(Ω) .

(1.1.49)

configuration space, see § 1.1.38

The selection of the scalar potential prevailing in a particular situation relies on a fundamental equilibrium
principle also called virtual work principle, compare [Hip16, Eq. (2.2.29)]:

Equilibrium condition for electrostatic phenomena

Given a (compactly supported) source charge distribution ρ ∈ L2(Ω) and a configuration space
V ⊂ H1(Ω) encoding boundary conditions, the scalar electrostatic potential u minimizes to total
energy

u = argmin
v∈V

J(v) . (1.1.51)

(1.1.52) Total energy as quadratic functional

Let us introduce the following abbreviations:

a(u, v) :=
∫

Ω
ǫ(x) grad u(x) · grad v(x)dx , u, v ∈ H1(Ω) , (1.1.53)

ℓ(v) :=
∫

Ω
ρ(x) v(x)dx , v ∈ L2(Ω) . (1.1.54)

Here, a : H1(Ω) × H1(Ω) → R is a bilinear form and ℓ : H1(Ω) → R is a linear form, see [Hip16,
Def. 1.3.22]. Then the functional J from (1.1.49) can be written as

J(u) = 1
2a(u, u)− ℓ(u) . (1.1.55)

Hence, J is a quadratic functional, see [Hip16, Def. 2.2.32] on V ⊂ H1(Ω) and the scalar potential is
defined as the solution of the quadratic minimization problem (1.1.51).

We remark the obvious fact that the bilinear form a)(·, ·) from (1.1.53) is positive semi-definite [Hip16,
Def. 2.2.45]. This connects to the fact that 1

2a(u, u) tells the energy (norm) (1.1.4) of the electric field
E := − grad u.

By the Cauchy-Schwarz inequality both a and ℓ are continuous on H1(Ω) in the sense of [Hip16, Def. 2.2.61].

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 25

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The next result answer the fundamental question about existence and uniqueness of solutions of the above
quadratic minimization problem. Throughout, V ⊂ H1(Ω) is the configuration space as described above.

Theorem 1.1.56. Existence and uniqueness of energy minimizing potentials

If

Ω ⊂ R3 is bounded and u is fixed on some part of ∂Ω

or

Ω ⊂ R3 is the complement of a bounded domain

then (1.1.51) has a unique solution.

The proof of this theorem requires deep results from the theory of Sobolev spaces (a generalization of
the first Poincaré-Friedrichs inequality [Hip16, Thm. 2.3.31]) and functional analysis (Riesz representation
theorem [Hip16, Thm. 2.3.12]). If Ω is the complement of a bounded domain, then we have to appeal to
[SS10, Prop. 2.10.8].

1.1.5 Variational Equations

Recall the notion of a linear variational problem from [Hip16, Def. 1.4.8]:

Definition 1.1.57. Linear variational problem

A variational problem posed on an affine space V and a vector space V0 of the form

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.58)

is called a linear variational problem, if
• a : V ×V0 7→ R is a bilinear form, that is, linear in both arguments (→ [Hip16, Def. 1.3.22]),
• and ℓ : V0 → R is a linear form.

We will also need fundamental abstract result from [Hip16, Section 2.4.2].

Theorem 1.1.59. Equivalence theorem for quadratic minimization problems

Let V0 be a normed real vector space, V a related affine space and a : V ×V → R, ℓ : V → R a

continuous symmetric positive semi-definite (→ [Hip16, Def. 2.2.42]) bilinear form and continuous

linear form, respectively. Then u ∈ V is a minimizer of the quadratic functional J(v) := 1
2a(v, v)−

ℓ(v), if and only if u solves the linear variational problem

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 .

The assertion of this theorem can concisely be stated as follows: for u ∈ V holds the equivalence

u = argmin
v∈V

1
2a(v, v)− ℓ(v) ⇐⇒ u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.60)

if a is symmetric and positive semi-definite.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 26

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Proof of Thm. 1.1.59. (I) Assume that u ∈ V is a minimizer of J(v) over the affine space V = u + V0.
Then for any v ∈ V0 the smooth auxiliary function

ϕv : R→ R , ϕv(t) := J(u + tv) ,

has a global minimum in t = 0, which means

dϕv

dt
(0) = {t 7→ ta(v, v) + a(u, v) − ℓ(v)}|t=0 = a(u, v) − ℓ(v) = 0 .

Since v ∈ V0 was arbitrary, (1.1.58) follows.

(II) Let u ∈ V satisfy (1.1.58): a(u, v) = ℓ(v) for all v ∈ V0. Then we can rewrite

J(v) = 1
2a(v, v)− a(u, v) = 1

2 a(v− u, v− u)︸ ︷︷ ︸
≥0 !

− 1
2a(u, u) .

Obviously, v = u yields a global minimizer.

Concretely, if the potential u is fixed to agree with a function g : Γ∗ → R on a part ΓD (“Dirichlet part”) of
the boundary ∂Ω, it can be obtained as the solution of the following linear variational problem.★

✧

✥

✦
u ∈ H1(Ω),

u|ΓD
= g

:
∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀ v ∈ H1(Ω),

v|ΓD
= 0

. (1.1.61)

1.1.6 Boundary Value Problems

In [Hip16, Section 2.5] we learned that, under some assumptions on the smoothness of solutions, linear
variational problems like (1.1.61) can be recast as boundary value problems for second-order linear partial
differential equations in strong form. The main tool is Green’s first formula that we recall from [Hip16,
Thm. 2.5.14].

Theorem 1.1.62. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (1.1.63)

The divergence of a vector field v(x) = [v1(x), . . . , vd(x)] is

div v(x) =
∂v1

∂x1
+ · · ·+ ∂vd

∂xd
.

As in [Hip16, Ex. 2.5.23] the derivation of the boundary value problem induced by (1.1.61) proceeds in two
steps. Throughout we assume that u ∈ C2(Ω) so that all manipulations are possible. The source charge
distribution must have compact support in R3.

➊ In (1.1.61) test with v ∈ C∞
0 (Ω) =̂ smooth functions with compact support, vanishing on ∂Ω

∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞

0 (Ω)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 27

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

⇓ ← by Thm. 1.1.62, v|∂Ω = 0!

−
∫

Ω
div(ǫ(x) grad u(x)) v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞

0 (Ω)

⇓ ← density of smooth functions in L2(Ω)

− div(ǫ(x) grad u(x)) = ρ in Ω . (1.1.64)

➋ In (1.1.61) test with v ∈ C∞(Ω) with bounded support in R3, vanishing on ΓD

∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞(Ω)

⇓ ← by Thm. 1.1.62
∫

Ω
− div(ǫ(x) grad u(x))︸ ︷︷ ︸

=ρ(x) by (1.1.64)

v(x)dx +
∫

∂Ω
ǫ(x) grad u · n v(x)dS(x)

=
∫

Ω
ρ(x) v(x)dx ∀v ∈ C∞(Ω)

⇓ ← use (1.1.64)
∫

∂Ω
ǫ(x) grad u · n v(x)dS(x) = 0 ∀v ∈ C∞(Ω), v|ΓD

= 0

⇓← density of smooth functions

ǫ(x) grad u · n = 0 on ΓN := ∂Ω \ ΓD . (1.1.65)

In fact, the boundary conditions on ΓN agree with the symmetry boundary conditions derived in § 1.1.35.

Summing up, the strong form of the boundary value problem related to (1.1.61) is

− div(ǫ(x) grad u(x)) = ρ in Ω , (1.1.66a)

u = g on ΓD (1.1.66b)

ǫ(x) grad u · n = 0 on ΓN . (1.1.66c)

The boundary conditions (1.1.66b), which generalize the PEC boundary conditions from § 1.1.33, are
Dirichlet boundary conditions, whereas (1.1.66c) is called (homogeneous) Neumann boundary conditions
[Hip16, Section 2.10].

Remark 1.1.67 (Gauss’ law)

The partial differential equation − div(ǫ(x) grad u(x)) = ρ is known as Gauss’ law. It holds beyond the
stationary setting in electrodynamics (assuming a “suitable” definition of charge).

The field D(x) := −ǫ(x) grad u(x) is known as displacement current in electrodynamics (physical units
[D] = 1 As

m2).

As a consequence of Gauss’ law and Gauss’ theorem, which is Green’s first formula (1.1.63) with v ≡ 1,
we get

∫

∂D
ǫ(x) grad u(x) · n(x)dS(x) = −

∫

D
ρ(x)dx (1.1.68)

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 28

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

for all “control volumes” D ⊂ Ω.

Remark 1.1.69 (Electrostatics in homogeneous isotropic media)

Homogeneous isotropic media feature a dielectric tensor that is a constant multiple of the identity matrix
ǫ(x) = ǫI for some constant ǫ > 0. In this case by scaling (→ Rem. 1.1.7) we can always obtain the
non-dimensional Poisson equation from (1.1.64):

−∆u = ρ , (1.1.70)

with the Laplace operator

∆ = div ◦ grad =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

(1.1.71) Transmission conditions

From Gauss law we conclude that

div D = div(−ǫ grad u) ∈ L2(Ω) .

Fig. 7

Σ

Ωr

Ωl

n+

n−

D

Let Ω be partitioned Ω = Ωl ∪ Σ ∪Ωr with piecewise smooth
interface Σ, see figure (✁) for cross-section.

Assume that both ǫ and u are smooth both in Ωl and Ωr. Ap-
ply Gauss’ theorem (1.1.68) in a small flat cylindrical box with
“bottom” and “top” face locally aligned with Σ.

Let the height and width of the box tend to zero so that it shrinks
to a point x ∈ Σ. There we find

(
ǫ grad u|Ωr(x)− ǫ grad u|Ωl(x)

)
· n−(x) = σ(x) ,

(1.1.72)

where σ : Σ→ R is a surface charge, that is, a layer of charge
concentrated on Σ (which does not exist in L2(Ω), however).

Continuity of displacement current

If ρ ∈ L2(Ω) and u solves (1.1.66a) and is piecewise smooth, then the normal component of
D := −ǫ grad u is continuous across any interface.

Note that surface charges cannot belong to L2(Ω), because functions in L2(Ω) cannot be restricted to
some surface, cf. [Hip16, Rem. 2.3.6].

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 29

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.1.74) Electrostatics in two dimensions

Fig. 8

Ω̃

x3
x2

x1

We say that a situation possesses translational symmetry, when
✦ there is a Cartesian coordinate system with coordinates

(x1, x2, x3) such that no quantity depends on the x3-
coordinate,

✦ and it is posed on a cylindrical spatial domain of the ten-
sor product form Ω = Ω̃×R, Ω̃ ⊂ R2

Then, (1.1.66) becomes a boundary value problem for ũ(x1, x2) = u(x1, x2, 0) on Ω̃:

− div(ǫ̃ grad ũ) = ρ in Ω̃ , ũ = g̃ on Γ̃D , ǫ̃ grad ũ · ñ = 0 on Γ̃N , (1.1.75)

where, for instance, ǫ̃(x1, x2) = (ǫ(x1, x2, 0))1:2,1:2, grad ũ = [∂ũ
∂x1

, ∂ũ
∂x2

]⊤.

Thus, we naturally arrive at a scalar elliptic boundary value problem in two dimensions.

1.1.7 Decay conditions on unbounded domains

We are concerned with the electrostatic linear variational problem

u ∈ H1(Ω),

u|ΓD
= g

:
∫

Ω
ǫ(x) grad u(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx ∀ v ∈ H1(Ω),

v|ΓD
= 0

. (1.1.61)

posed on the complement Ω of a bounded domain. We face a so-called exterior BVP. We also assume
that ρ(x) = 0 and ǫ(x) = I for ‖x‖ ≥ R and some R≫ 1.

Far away from ∂Ω and supp ρ we expect the electric field to be “radial”:

E(x) = E(‖x‖)x/‖x‖ with E : R+ → R for ‖x‖ → ∞ .

✎ Notation: Br(x) =̂ ball with center x and radius r > 0.

By Gauss’ law and theorem

4πr2E(r) =
∫

∂Br(0)
E(x) · x/‖x‖dS(x) =

∫

Br(0)
ρ(x)dx = const for r → ∞ ,

E(r) = O(r−2) for r → ∞ .

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 30

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

For large ‖x‖ we also expect u(x) = µ(‖x‖), which means grad u(x) = µ′(‖x‖)x/‖x‖. Thus, from the
aymptotic behavior of E we conclude

|µ(r)| ≈
∣∣∣∣
∫ r

0
E(s)ds

∣∣∣∣ ≤ O(r−1) for r → ∞ ,

|u(x)| = O(‖x‖−1) and ‖grad u(x)‖ = O(‖x‖−2) for ‖x‖ → ∞ . (1.1.76)

These decay conditions have to be imposed as “boundary conditions at ∞” for the exterior boundary value
problems of 3D electrostatics.

Note that a smooth potential decaying according to (1.1.76) belongs to H1(Ω) as defined in (1.1.25). To
see this transform the integrals to polar coordinates (→ [Hip16, § 2.4.39]).

Remark 1.1.77 (Necessity of decay conditions)

Considering Ω = R3 it is clear that without imposing decay conditions we cannot expect a unique solution
of −∆u = ρ, because we could always add an unbounded harmonic function like x 7→ x2

1 − x2
2 to u and

would get a different solution.

(1.1.78) Decay conditions in 2D electrostatics

Fig. 9

0

ρ

x3
x2

x1

We consider an x3-translation-invariant setting in whole space
R3 as in § 1.1.74 with a cylindrical source charge distribution
ρ(x) = ρ̃(x1, x2), ρ̃ compactly supported in the x1 − x2 plane
and infinitely extended in x3-direction. ✄

Thought experiment: To compute the electric field in x :=
[x1, x2, 0]⊤ we chop up ρ into many slices and obtain E(x)
by linear superposition of the fields generated by the individual
“charge slices”.

Then send x2
1 + x2

2 → ∞ and take into account the decay con-
dition (1.1.76) for the electric field: the field Eξ caused by the
“charge slice” at x3 = ξ ∈ R will behave like

∥∥Eξ(x1, x2, 0)
∥∥ = O((x2

1 + x2
2 + ξ2)−1)

for x1, x2, ξ → ∞ separately .

Now, letting the thickness of the slices tend to zero, summation can be replaced with integration (“Riemann
summation”, see [Hip16, Eq. (1.2.40)]). Writing x̃ := [x1, x2]

⊤ we get with some constant C > 0

‖E(x1, x2, 0)‖ ≤ C
∫ ∞

−∞

1

‖x̃‖2 + ξ2
dξ =

C

‖x̃‖2

∫ ∞

−∞

1

1 + (ξ/‖x̃‖)2
dξ =

C

‖x̃‖
∫ ∞

−∞

1

1 + ζ2
dζ =

Cπ

2‖x̃‖ .

For ‖x̃‖ → ∞ we can again expect a merely radial dependence of the electric field and scalar potential

E(x1, x2, 0) = Ẽ(‖x̃‖) 1

‖x̃‖

[
x1

x2

]
, u(x1, x2, 0) = µ(‖x̃‖) .

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 31

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

By integrating the electric field in radial direction

|µ(r)| ≤ C
∫ r

1

1

s
ds = O(log r) for r → ∞ ,

|ũ(x̃)| = O(log‖x̃‖) ,
∥∥∥Ẽ(x̃)

∥∥∥ = O(‖x̃‖−1) for ‖x̃‖ → ∞ . (1.1.79)

1.1.8 Supplement: An energy norm for source charge distributions

In Rem. 1.1.48 we have seen that ρ ∈ L2(Ω) makes ρ : Ω→ R a valid source charge distribution on the
domain Ω ⊂ R3. Is L2(Ω) the largest space of possible source charge distributions? In this section we
will identify an even larger space of admissible source charge distributions by introducing a suitable norm
on them.

Definition 1.1.80. Dual norm for source charge distributions

For ρ ∈ L2(Ω) let ρ̃ ∈ L2(R3) be its extension by zero to R3 and define

‖ρ‖H̃−1(Ω) := |u|H1(R3) where u solves

{
−∆u = ρ̃ in R3 ,

u satisfies decay conditions (1.1.76) .
(1.1.81)

The completion of L2(Ω) w.r.t. ‖·‖H̃−1(Ω) yields the Hilbert space H̃−1(Ω).

The norm ‖ρ‖H̃−1(Ω) can be read as the energy of the electric field on R3 engendered by the source

charge distribution ρ (after extension by zero).

The solution u of the “exterior” boundary value problem in (1.1.81) can be obtained as the solution of the
linear variational problem

u ∈ H1(R3):
∫

R3
grad u(x) · grad v(x)dx =

∫

R3
ρ̃(x) v(x)dx ∀v ∈ H1(R3) . (1.1.82)

Remember that H1(R3) is defined through a weighted L2-norm in (1.1.25).

(1.1.83) An embedding of L2(Ω)

From [SS10, Prop. 2.10.8] we learn that

∫

R3

|v(x)|2
1 + ‖x‖2

dx ≤ 4
∫

R3
‖grad v(x)‖2 dx ∀v ∈ H1(R3) . (1.1.84)

Thus, setting v = u in (1.1.82), we obtain for ρ̃ ∈ L2(Ω) that

‖ρ‖2
H̃−1(Ω)

≤ ‖grad u‖2
L2(R3) ≤ ‖ρ̃‖L2(R3)‖u‖L2(R3) ≤ 4

√
1 + R2 ‖ρ‖L2(Ω)‖grad u‖L2(R3) ,

‖ρ‖H̃−1(Ω) ≤ 4 ‖ρ‖L2(Ω) .

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 32

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Thus ‖·‖H̃−1(Ω) is a weaker norm than ‖·‖L2(Ω) and H̃−1(Ω) is a larger space than L2(Ω).

(1.1.85) Duality of H1(Ω) and H̃−1(Ω)

Owing to (1.1.82) we can also characterize the space H̃−1(Ω) and the norm ‖·‖H̃−1(Ω) in an equivalent
way

H̃−1(Ω) := {ρ : Ω→ R :

∣∣∣∣
∫

Ω
ρ(x) u(x)dx

∣∣∣∣ < ∞ for all finite-energy potentials u} , (1.1.86)

‖ρ‖H̃−1(Ω) = sup
u∈H1(Ω)

∫
Ω

ρ(x) u(x)dx

‖u‖H1(Ω)

, ρ ∈ H̃−1(Ω) . (1.1.87)

duality means that the same characterization applies to H1(Ω) and ‖·‖H1(Ω) in a reciprocal fashion:

H1(Ω) := {u ∈ L2(Ω) :

∣∣∣∣
∫

Ω
ρ(x) u(x)dx

∣∣∣∣ < ∞ ∀ρ ∈ H̃−1(Ω)} , (1.1.88)

‖u‖H1(Ω) = sup
ρ∈H̃−1(Ω)

∫
Ω

ρ(x) u(x)dx

‖ρ‖H̃−1(Ω)

, u ∈ H1(Ω) . (1.1.89)

1.2 Boundary Representation Formulas

The focus will be on electrostatic problems in homogeneous isotropic dielectric media so that, after rescal-
ing, we face boundary value problems (BVPs) for the Laplacian −∆ in 2D (→ § 1.1.74) and 3D, as
explained in Rem. 1.1.69.

Most considerations apply to more general linear scalar second-order partial differential operators in di-
vergence form in d ∈ N dimensions and and with constant coefficients

Lu := − div(A grad u) + cu ,
A ∈ Rd,d symmetric positive definite (s.p.d.) ,
c ∈ R .

(1.2.1)

1.2.1 Green’s Formulas

Recall Green’s first formula on Ω ⊂ Rdfrom Thm. 1.1.62: for a vector field j ∈ (C1
pw(Ω))d and a function

v ∈ C1
pw(Ω),

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (1.1.63)

We may set j := grad u for u ∈ C2(Ω) and obtain from ∆ = div grad
∫

Ω
grad u · grad v dx = −

∫

Ω
∆u v dx +

∫

∂Ω
grad u · n v dS . (1.2.2)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 33

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Applying Green’s first formula to the first integral in (1.2.2) yields Green’s second formula [SS10, Thm. 2.7.4]

Theorem 1.2.3. Green’s second formula

For u, v ∈ C2(Ω) holds

∫

Ω
u ∆v− v∆u dx =

∫

∂Ω
u grad v · n− v grad u · n dS(x) . (1.2.4)

These formulas are valid on any bounded Lipschitz domain Ω ⊂ Rd. If Ω is an exterior domain, a
sufficiently fast decay of all functions for ‖x‖ → ∞ has to be assumed.

Since ultimately we are interested in discretization, we restrict our shapes to “engineering geometries” that
can be described (in the context of a Bezier or NURBS model) by a few parameter.

(1.2.5) 2D: Curved Lipschitz polygons [Hip16, § 2.2.3]

= relevant class of planar domains:

Assumption 1.2.6.

The boundary Γ of Ω can be partitioned into
finitely many open edges Γ1, . . . , ΓM, M ∈ N,
such that

✦ Γ = Γ1 ∪ · · · ∪ ΓM,
✦ Γi ∩ Γi = ∅ for i 6= j,
✦ for every j ∈ {1, . . . , M} there is a C2-

function γj : [−1, 1] → Γj ⊂ R2 with
d
dt γ 6= 0 (a smooth parameterization).

We can distinguish corners (•) and edges (—) of Γ✄
Fig. 10

Ω
−1 1

γ1

Γ1

(1.2.7) Curvilinear Lipschitz polyhedra

Eligible 3D domains Ω ⊂ R3:

Fig. 11

Assumption 1.2.8.

The boundary Γ of Ω is Lipschitz and can be partitioned
into finitely many open faces Γ1, . . . , ΓM, M ∈ N, such
that

✦ Γ = Γ1 ∪ · · · ∪ ΓM,
✦ Γi ∩ Γi = ∅ for i 6= j,
✦ for every j ∈ {1, . . . , M} there is an open planar

polygon Πj ⊂ R2 and a bijective C2-function γj :

Πj → Γj ⊂ R3 (a smooth parameterization).

✁ Sphere composed of patches parameterized over squares
(forums.tigsource.com)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 34

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.2.9) Curve and surface integrals

The formulas (1.2.1), (1.2.2), (1.2.4) involve integrals of scalar integrands over Γ := ∂Ω. Calculus supplies
the following formulas:

• 2D (d = 2): Under Ass. 1.2.6 with the notations from there and for a piecewise continuous f : Γ→
R holds

∫

Γ
f (x)dS(x) =

M

∑
j=1

1∫

−1

f (γ j(t))
∥∥∥γ̇j(t)

∥∥∥dt , γ̇j(t) :=
dγj

dt
(t) ∈ R2 , (1.2.10)

where ‖·‖ designates the Euclidean norm of a vector.

• 3D (d = 3): With Ass. 1.2.8 and its notations and f : Γ → R integrable we have [Str09,
Rem. 8.6.1]

∫

Γ
f (x)dS(x) = ∑

M

j=1

∫

Πj

f (γ j(x̂)) gj(x̂)dx̂ , gj(x̂) :=


det

(
Dγ⊤j (x̂)Dγ j(x̂)

)

︸ ︷︷ ︸
∈R2,2




1/2

.

(1.2.11)

The Jacobians Dγj map Πj 7→ R3.2 and the function gj is the Gram determinant of γj.

1.2.2 Fundamental Solutions

1.2.2.1 Potential of a Point Charge

We consider electrostatic in a homogeneous, isotropic, dielectric medium, that is, we assume ǫ ≡ 1
after scaling, recall Rem. 1.1.69. Then the repulsive Coulomb force acting between two unit charges (in
rescaled units) located at x, y ∈ R3 is

f =
1

4π

y− x

‖y− x‖3
. (1.2.12)

Recalling the link between Coulomb force on a point charge and the electric field expressed in (1.1.8), we
conclude that

Ex(y) :=
1

4π

y− x

‖y− x‖3
, y 6= x , (1.2.13)

describes is the electric field engendered by a unit charge at x. Now we are looking for the associated
electric scalar potential (→ § 1.1.14), denoted by y 7→ Gx(y) and satisfying grad Gx = −Ex(y).

✎ Notation: We write LyF(x, y) to indicated that the differential operator L “acts on y” and x is treated as
a mere parameter; generalizes the concept of a partial derivative.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 35

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Gradients of functions depending on ‖x‖ are aligned with the radial direction:

grad{x 7→ ‖x‖} = x

‖x‖ ⇒ grad{x 7→ 1

‖x‖} = −
1

‖x‖2
· x

‖x‖ ,

which reveals that Ex can be expressed as a gradient:

Ex(y) =
1

4π

1

‖y− x‖2

y− x

‖y− x‖ = − grady

{ 1

4π

1

‖y− x‖
}

.

Potential due to a point charge

A point charge at x ∈ R3 generates the potential

y 7→ Gx(y) :=
1

4π

1

‖x− y‖ , y 6= x (1.2.15)

Remark 1.2.16 (Properties of the potential due to a point charge)

From (1.2.15) we read off that the potential Gx x ∈ R3,

✦ is a function of the the distance ‖x− y‖ only,

✦ is smooth away from x: Gx ∈ C∞(R3 \ {x}),
✦ is harmonic: ∆Gx(y) = 0 for all y ∈ R3 \ {x},
✦ satisfies the decay conditions (1.1.76)

|Gx(y)| = O(‖y‖−1) , ‖grad Gx(y)‖ = O(‖y‖−2) for ‖y‖ → ∞ , (1.2.17)

✦ has a singularity at x

|Gx(y)| = O(‖y− x‖−1) , ‖grad Gx(y)‖ = O(‖x− y‖−2) for y→ x , (1.2.18)

✦ and, owing to the singularity in x, Gx 6∈ H1(R3) (→ (1.1.25)): the field generated by a point charge
fails to have finite energy, “point charge” is a non-physical concept (of great usefulness for formal
considerations, however).

1.2.2.2 Potential of a Line Charge

Fig. 12

x3
x2

x1
x̃

We adopt the x3-translation invariant setting underly-
ing 2D electrostatics, see § 1.1.74: a 2D point charge
becomes a 3D infinite line charge concentrated on

{x ∈ R3 :
[

x1
x2

]
= x̃}, x̃ ∈ R2

By linear superposition in 3D we determine the elec-
tric field Ẽx̃(x1, x2) ∈ R2 of the line charge in the
x1 − x2-plane.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 36

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

By symmetry arguments (∗)and suitable substitutions, we compute

Ex̃(ỹ) =
1

4π

∞∫

−∞

[
ỹ
0

]
−
[

x̃
ζ

]

(
‖x̃− ỹ‖2 + ζ2

)3/2
dζ

(∗)
=

1

4π

[
ỹ− x̃

0

] ∞∫

−∞

1
(
‖x̃− ỹ‖2 + ζ2

)3/2
dζ

=
1

4π

[
ỹ− x̃

0

]
1

‖x̃− ỹ‖2

∞∫

−∞

1

(1 + ξ2)
3/2

dξ =
1

2π

[
ỹ−x̃

‖x̃−ỹ‖2

0

]
.

As expected there is no x3-component and we have found

Ẽx̃(ỹ) =
1

2π

ỹ− x̃

‖x̃− ỹ‖2
= − gradỹ

{
− 1

2π
log‖x̃− ỹ‖

}
, ỹ ∈ R2 \ {x̃} . (1.2.19)

Thus we have also identified the associated 2D potential.

Potential of a point charge in 2D

the scalar potential of a point charge at x̃ ∈ R2 is

Gx̃(ỹ) := − 1

2π
log‖x̃− ỹ‖ , ỹ ∈ R2 \ {x̃} . (1.2.21)

Remark 1.2.22 (Properties of the potential of a point charge in 2D)

This echos Rem. 1.2.22. The potential Gx̃ is a smooth harmonic function for y 6= x and

✦ satisfies the decay conditions (1.1.79)

|Gx̃(ỹ)| = O(log‖ỹ‖) , ‖grad Gx̃(ỹ)‖ = O(‖ỹ‖−1) for ‖ỹ‖ → ∞ , (1.2.23)

✦ Gx̃ has a logarithmic singularity at x̃

|Gx̃(ỹ)| = O(log‖ỹ− x̃‖) , ‖grad Gx̃(ỹ)‖ = O(‖x̃− ỹ‖−1) for ỹ→ x̃ , (1.2.24)

✦ and the energy of the electric field of a 2D point charge is not bounded: Gx̃ 6∈ H1(R3).

1.2.2.3 Distributional View: LG = δ0

✎ Notation: For the potentials (1.2.15), (1.2.21) caused by point charges at x ∈ Rd, d = 2, 3, we now
indiscriminately write G∆(x, y) to emphasize the symmetric roles of both arguments.

In both 2D and 3D
∫

Rd
|G∆(x, y)|dy < ∞ ∀x ∈ Rd ,

so that all the integrals below exist as improper integrals [Str09, Sect. 6.4]. For x ∈ Rd and a smooth
compactly supported function w ∈ C∞

0 (Rd) we find by ∆yG∆(x, y) = 0 for x 6= y and Green’s second
formula from Thm. 1.2.3,

∫

Ω
grad u · grad v dx = −

∫

Ω
∆u v dx +

∫

∂Ω
grad u · n v dS , (1.2.2)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 37

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

with v← w and u← {y 7→ G∆(x, y)} that

∫

R3
G∆(x, y)(−∆w)(y)dy = lim

ǫ→0

∫

‖y‖>ǫ
G∆(x, y)(−∆w)(y)dy

= lim
ǫ→0

∫

‖y‖>ǫ
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0
(−∆yG∆)(x, y)w(y)dy−

lim
ǫ→0

∫

‖y‖=ǫ

G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)w(y)dS(y) .

Fig. 13

n

x

y

ǫ

Next, we examine the limit of the surface integral for
d = 3:

In the case d = 3 we have concrete formulas at our
disposal. For y ∈ ∂Bǫ(x) we find

n(y) = ǫ−1(x− y) ,

G∆(x, y) =
1

4π‖x− y‖ =
1

4πǫ
,

grady G∆(x, y) =
1

4π

x− y

‖x− y‖3
=

x− y

4πǫ3
.

We plug this into the surface integral over the ǫ-sphere:

∫

R3
G∆(x, y)(−∆w)(y)dy = lim

ǫ→0

∫

‖y‖=ǫ

− 1

4πǫ
grad w(y) · n(y) + 1

4πǫ2
w(y)dS(y) .

Since w ∈ C∞
0 (R3) is smooth and the area of the sphere shrinks like O(ǫ2) for ǫ → 0, the contribution

of the first term vanishes in the limit.
∫

R3
G∆(x, y)(−∆w)(y)dy = lim

ǫ→0

∫

‖y‖=ǫ

1

4πǫ2
w(y)dS(y) = w(x) . (1.2.25)

The same result holds for d = 2.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 38

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.2.26. Fundamental solution

A function GL : Rd×Rd → R is a fundamental solution for a second-order scalar linear differential
operator L, if

(i) GL is C∞-smooth on {(x, y)Rd ×Rd : x 6= y},
(ii) for all x ∈ Rd: LyGL(x, y) = 0 on Rd \ {x}
(iii) y 7→ GL(x, y) satisfies the appropriate decay conditions (1.1.76)/(1.1.79),
(iv) y 7→ GL(x, y) is integrable on Rd,
(v) for every x ∈ Rd, w ∈ C∞

0 (Rd)

∫

Rd
GL(x, y)(L∗w)(y)dy = w(x) . (1.2.27)

Here L∗ is the (formal) adjoint differential operator of L defined by
∫

Ω
(Lw)(x) v(x)dx =

∫

Ω
w(x) (L∗v)(x)dx ∀w, v ∈ C∞

0 (Rd) . (1.2.28)

For all differential operators of the form Lu := − div(A grad u) + cu with A = A⊤ ∈ Rd,d, c ∈ R, in
particular L = −∆, we easily see from Green’s formulas that L∗ = L.

Remark 1.2.29 (“LyGL = δx”)

“Testing equalities with smooth functions” is the idea underlying the calculus of distributions [RR04, Ch. 5].
Sloppily speaking, a distribution is a linear functional on C∞

0 (Rd), continuous in a particular topology. In
distributional calculus we can concisely rephrase

∫
Rd GL(x, y)(L∗w)(y)dy = w(x) ∀w, x ⇐⇒ LyGL(x, y) = δx in D(Rd)′ ∀x ∈ Rd ,

where δx is the so-called δ-distribution supported in x ∈ Rd, that is, the point-evaluation functional:

∀w ∈ C∞
0 (Rd), x ∈ Rd:

∫

Rd
δx(y)w(y)dy = w(x) . (1.2.30)

✎ Notation: If an equation is supposed to hold in distributional sense, one often writes “in D(Ω)′”.

A mathematical discussion of fundamental solutions can be found in [McL00, pp. 191-197]. Existence and
uniqueness are discussed there.

Theorem 1.2.31. Uniqueness of fundamental solutions

Fundamental solutions according to Def. 1.2.26 for differential operators (1.2.1) are unique.

(1.2.32) Symmetries of fundamental solutions

If a differential operator L

• is symmetric in the sense that L = L∗, then GL(x, y) = GL(y, x) for all x, y ∈ Rd, x 6= y.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 39

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• has constant coefficients (L is translation-invariant in this case), then its fundamental solution de-
pends only on x− y: GL(x, y) = GL(x− y), x 6= y.

• has constant coefficients and is rotation-invariant, then GL(x, y) = GL(‖x− y‖).
Above, “abusing notations”, we used the same symbol GL for different functions.

Definition 1.2.33. Rotation invariance

An operator D : C∞(Rd)→ C∞(Rd) is rotation-invariant, if it “commutes with rotations”

(Dw)(Qx) = (D{x 7→ w(Qx)})(x) ∀w ∈ C∞(Rd) , (1.2.34)

and for all orthogonal matrices Q ∈ Rd,d.

Example 1.2.35 (Computing G∆ in 3D)

The rules from § 1.2.32 pave the way for easy computation of fundamental solutions for rotionally sym-
metric differential operators with constant coefficients by means of separation of variables.

We demonstrate the computation of the fundamental solution G∆ for the Laplacian L := −∆ in 3D using
spherical coordinates




x1

x2

x3


 =




r cos φ sin θ
r sin φ sin θ

r cos θ


 , r ≥ 0, 0 ≤ φ < 2π, 0 ≤ θ < π . (1.2.36)

Also recall the formula for the Laplacian in spherical coordinates

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2 θ

∂2u

∂φ2
+

1

r2

∂2u

∂θ2
+

1

r2
cot θ

∂u

∂θ
. (1.2.37)

The Laplacian −∆ is the most prominent example of a linear differential operator that is both translation-
and rotation-invariant. Thius, from § 1.2.32 we know that G∆(x, y) = G∆(‖x− y‖). So we can set
G∆(x, y) = f (‖x− y‖) and the requirement ∆yG∆(x, y) = 0 leads to the linear second-order ordinary
differential equation

∂2 f

∂r2
+

2

r

∂ f

∂r
= f ′′(r) +

2

r
f ′(r) = 0 .

It has the family of solutions

f (r) = A + Br−1 r 6= 0 , A, B ∈ R .

By the decay conditions for fundamental solutions we know that f (r) = O(r−1) for r → ∞ has to be
satisfied, which entails A = 0. The constant B must be chosen to satisfy (1.2.27). Eventually,

we recover the potential (1.2.15) of a point charge as fundamental solution.

Example 1.2.38 (Fundamental solution for 2nd-order partial differential operator)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 40

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We consider the symmetric second-order scalar differential operator

Lu = − div(A grad u) , A = A⊤ ∈ Rd s.p.d. . (1.2.39)

Its associate fundamental solution GL will be symmetic and of the form GL(x, y) = GL(x− y), and must
fulfill

∫

Rd
GL(x− y)(Lw)(y)dy = w(x) ∀w ∈ C∞

0 (Rd), x ∈ Rd . (1.2.40)

Idea: Try to express GL in terms of the fundamental solution for −∆.

To begin with recall the formulas

div j = Tr(Dj) for j : Rd → Rd , (1.2.41a)

∆w = Tr(D grad w︸ ︷︷ ︸
Hessian of w

) for w : Rd → R , (1.2.41b)

where Tr : Rd,d → R is the trace operator for matrices,

Tr M =
d

∑
j=1

(M)j,j for M ∈ Cd,d , (1.2.42)

that satisfies Tr(XY) = Tr(YX).

We decompose A = CC⊤, which can be achieved by means of a Cholesky-decomposition [Hip15,
§ 2.8.13]. For a function f : Rd → R we define its pullback under the linear mapping induced by C
according to

f̂ (ŷ) := f (Cŷ) ŷ ∈ Rd .

Using the chain rule and (1.2.41b), we obtain for x ∈ Rd

∆û(x) = Tr(D grad{x 7→ u(Cx)}) = TrD{x 7→ C⊤(grad u)(Cx)}
= Tr

(
C⊤(D grad u)(Cx)C

)
= Tr

(
CC⊤(D grad u)(Cx)

)
= Tr

(
D(CC⊤ grad u)

)
(Cx)

= (div(CC⊤ grad u))(Cx) = (div(A grad u))(Cx) = (Lu)(Cx) .

We plug this identity into (1.2.40) and use the transformation formula for multi-dimensional integrals with
ŷ = C−1y.

ŵ(x̂) = w(Cx̂) =
∫

Rd
GL(Cx̂− y)(Lw)(y)dy

=
∫

Rd
GL(Cx̂− Cŷ)(Lw)(Cŷ) |det C|dŷ

=
∫

Rd

√
det A GL(C(x̂− ŷ))︸ ︷︷ ︸

=G∆(x,y)

(−∆ŵ)(ŷ)dŷ ,

for any w ∈ C∞
0 (Rd). By the uniqueness of the fundamental solution we conclude

GL(x, y) =
1√

det A
G∆(C−1(x− y)) , x 6= y , (1.2.43)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 41

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

where G∆ is the fundamental solution for −∆

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 .
(1.2.44)

Eventually, as

∥∥∥C−1(x− y)
∥∥∥

2
= (x− y)⊤C−⊤C−1(x− y) = (x− y)⊤A−1(x− y) ,

we get

GL(x, y) =
1√

det A
·




− 1

2π log
√
(x− y)⊤A−1(x− y) , if d = 2 ,

1

4π

1√
(x− y)A−1(x− y)

, if d = 3 .
(1.2.45)

1.2.3 Volume Potential Representation

We return to L = −∆ (electrostatics in a homogeneous, isotropic medium with ǫ = I), where we have the
fundamental solutions

G∆(x, y) = G∆(x− y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 .
(1.2.44)

Since ∆∗ = ∆, by the very property
∫

Rd
G∆(x, y)(−∆w)(y)dy = w(x) ∀x ∈ Rd, ∀w ∈ C∞

0 (Rd) , (1.2.27)

of the fundamental solution, we conclude that for every smooth compactly supported source charge
distribution ρ ∈ C∞

0 (Rd), if u solves

−∆u = ρ in Rd , u satisfies decay conditions for ‖x‖ → ∞,

then we have the volume potential representation

u(x) =
∫

Rd G∆(x, y)ρ(y)dy , x ∈ R3 . (1.2.46)

The operator on the right-hand side of (1.2.46) is an volume integral operator with kernel G∆. Is has been
given a special name:

Definition 1.2.47. Newton potential

The linear operator

N∆ :

{
C∞

0 (Rd) → C∞
0 (Rd)

ρ 7→
∫

Rd G∆(x− y)ρ(y)dy
(1.2.48)

is the Newton potential for −∆.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 42

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Supplement 1.2.49.

The Newton potential on Rd is a volume integral operator of convolution type.

Definition 1.2.50. Convolution of functions in Rd

The convolution of two functions f , g ∈ L1(Rd) is the function

(f∗g)(x) :=
∫

Rd
f (x− y)g(y)dy =

∫

Rd
f (y)g(x− y)dy .

Using this notation, obviously,

N∆(ρ) = G∆ ∗ ρ , (1.2.51)

becausem by the structure of the fundamental solution,
∫

Rd
G∆(x, y)ρ(y)dy =

∫

Rd
G∆(x− y)ρ(y)dy =

∫

Rd
G∆(y)ρ(x− y)dy .

This last expression also reveals that for ρ ∈ C∞
0 (Rd) also u ∈ C∞(Rd), since y 7→ G∆(y) is integrable

on Rd. △

Theorem 1.2.52. Decay of Newton potential

For compactly supported ρ the function N∆(ρ) complies with the decay conditions (1.1.76),

|N∆(ρ)(x)| = O(‖x‖−1) and ‖grad N∆(ρ)‖ = O(‖x‖−2) for ‖x‖ → ∞ ,

for d = 3 and (1.1.79)

|N∆(ρ)(x)| = O(log‖x‖) , ‖grad N∆(ρ)(x)‖ = O(‖x‖−1) for ‖x‖ → ∞ ,

for d = 2, respectively.

We can immediately conclude this from the decay properties of the fundamental solutions. The next
assertion is clear from the definition of the norm of H̃−1(Rd) given in Def. 1.1.80.

Corollary 1.2.53. Mapping properties of the Newton potential

The Newton potential N∆ as defined in (1.2.48) can be extended to a continuous mapping

H̃−1(Rd)→ H1(Rd) (→ 1.1.8).

The relationship (1.2.46) tells us that the Newton potential provides a solution operator for the Poisson
problem −∆u = ρ (+ decay conditions) in the whole space Rd.

∆(N∆ρ) = ρ ∀ρ ∈ H̃−1(Rd) . (1.2.54)

Remark 1.2.55 (The Newton potential from a physics perspective)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 43

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We can imagine a source charge distribution ρ as being composed of (infinitely) many small point charges:

ρ =
N

∑
j=1

qjδxj
, xj ∈ Rd, qj ∈ R .

The potentials generated by all these point charges can be added up and yield the potential

u(x) =
N

∑
j=1

qjG
∆(x− xj) .

Sending N → ∞ and appealing to “intuitive Riemann integration” yields the Newton potential solution of
−∆u = ρ on Rd.

1.2.4 Boundary Potential Representation

The manipulations in Section 1.2.2.3 that led to (1.2.25) and, in the sequel, to the volume potential repre-
sentation for solutions of −∆u = ρ on Rd,

u(x) =
∫

Rd
G∆(x, y)ρ(y)dy , x ∈ R3 , (1.2.46)

were carried out on the entire space. Now we move them to a bounded Lipschitz domain Ω ⊂ Rd,
d = 2, 3.

Pick x ∈ Ω and w ∈ C2(Ω). Appealing to Green’s second formula
∫

∂Ω
u ∆v− v∆u dx =

∫

∂Ω
u grad v · n− v grad u · n dS(x) . (1.2.4)

from Thm. 1.2.3 with u← w and v← G∆ we get

∫

Ω
G∆(x, y)(−∆w)dy = lim

ǫ→0

∫

‖y−x‖>ǫ
G∆(x, y)(−∆w)(y)dy

= − lim
ǫ→0

∫

‖y−x‖=ǫ

G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)w(y)dS(y)

−
∫

∂Ω
G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)w(y)dS(y)

= w(x)−
∫

∂Ω
G∆(x, y) grad w(y) · n(y)− grady G∆(x, y) · n(y)dS(y)w(y) ,

and, based on the same limit arguments that yielded (1.2.25), we arrive at:

w(x) =
∫

Ω
G∆(x, y)(−∆w)(y) dy +

∫

∂Ω
G∆(x, y) grad w(y) · n(y) dS(y)−

∫

∂Ω
grady G∆(x, y) · n(y)w(y) dS(y) , x ∈ Ω .

(1.2.56)

The derivation was carried out for −∆ for the sake of simplicity, but all arguments carry over to the more
general scalar linear differential operator Lu = − div(A grad u) + cu from (1.2.1), starting from Green’s

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 44

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

first formula with (1.1.63) with j := A grad u. Eventually this yields the following generalization of (1.2.56)
[SS10, Thm. 3.1.6].

Theorem 1.2.57. Integral representation formula

A solution u ∈ C2(Ω) of Lu := − div(A grad u)− cu = ρ in Ω, A, c as in (1.2.1), satisfies

u(x) =
∫

Ω
GL(x, y)ρ(y) dy +

∫

∂Ω
GL(x, y)A grad u(y) · n(y) dS(y)−

∫

∂Ω
A grady GL(x, y) · n(y) u(y) dS(y) , x ∈ Ω ,

(1.2.58)

where GL is the fundamental solution for L, see Def. 1.2.26.

Note that the first term in (1.2.58) is the Newton potential from Def. 1.2.47.

Remark 1.2.59 (Integral representation formula for exterior domains)

Fig. 14

Ω

0

n
n

R

Again, we elaborate the arguments for the Laplacian
L = −∆.

If Ω is an exterior domain, that is, the open comple-
ment of a bounded Lipschitz domain, then we first
apply Thm. 1.2.57 to Ω̂ := Ω ∩ BR(0) with R > 0
large enough such that ∂Ω ⊂ BR(0), see Fig. 14.

Note that ∂Ω̂ = ∂Ω ∪ ∂BR(0), so that (1.2.56) becomes

w(x) =
∫

Ω̂
G∆(x, y)ρ(y)dy+

∫

∂Ω
G∆(x, y) grad w(y) · n(y)dS(y)−

∫

∂Ω
grady G∆(x, y) · n(y)w(y)dS(y)+

∫

‖x‖=R
G∆(x, y) grad w(y) · n(y)dS(y)−

∫

‖x‖=R
grady G∆(x, y) · n(y)w(y)dS(y) .

Consider d = 3 and assume that w satisfies the decay conditions (1.1.76):

|w(x)| = O(‖x‖−1) and ‖grad w(x)‖ = O(‖x‖−2) for ‖x‖ → ∞ .

In this case we have the following behavior of the integrands on ∂BR(0)

G∆(x, y) grad w(y) · n(y) = O(‖y‖−3) ,

grady G∆(x, y) · n(y)w(y) = O(‖y‖−3)
for ‖y‖ → ∞, ‖x‖ = R .

Hence, in the limit R→ ∞, the contributions of ∂BR(0) vanish.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 45

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.2.60. Integral representation formula for 3D exterior domains

If u ∈ C2(Ω) satisfies −∆u = ρ in an exterior domain Ω plus the decay conditions (1.1.76), then

for all x ∈ Ω

u(x) =
∫

Ω
G∆(x, y)ρ(y)dy +

∫

∂Ω
G∆(x, y) grad u(y) · n(y)dS(y)−

∫

∂Ω
grady G∆(x, y) · n(y) u(y)dS(y) ,

(1.2.61)

where G∆ is the fundamental solution for −∆, see (1.2.44).

For d = 2 a faster decay of u than stipulated by (1.1.79) has to be assumed in order to make (1.2.61)
hold.

1.2.5 Layer Potentials

Now we take a closer look at the building blocks of the integral representation formulas (1.2.58)/(1.2.61),
in particular those terms mapping trace data (→ Notion 1.2.62) on the boundary ∂Ω back to the domain
Ω.

Notion 1.2.62. Trace operator

A trace operator is a linear mapping from a function space on the volume domain Ω to a function
space on (parts of) the boundary ∂Ω.

The simplest trace operator is the plain restriction C0(Ω) → C0(∂Ω). We have also seen the tangential
and normal component traces for vector fields in § 1.1.32.

Notion 1.2.63. (Layer) potentials

A (layer) potential is a linear mapping from a function space on ∂Ω into a function space on the
volume domain Ω.

Remark 1.2.64 (Layer potentials and traces)

Obviously, (Layer) potentials (→ Notion 1.2.63) and
trace operators (→ Notion 1.2.62) map into “opposite
directions”

The integral representation formulas (1.2.58) contain
two layer potentials acting on the traces

✦ u|∂Ω =̂ point-wise restriction of the potential u
to the boundary, and

✦ grad u · n|∂Ω the normal component trace of
the displacement current.

Next, we examine the two layer potentials more
closely.

Fig. 15

Ω

trace

potential

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 46

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.2.5.1 Single Layer Potential

The first layer potential occurring in (1.2.58), Thm. 1.2.57, involves the fundamental solution as kernel.
Here, we call kernel a function k : D1× D2 → R that defines an integral operator of the form

f 7→ {x 7→
∫

D2

k(x, y) f (y)dy x ∈ D1} , (1.2.65)

mapping functions on D2 to functions on D1. In this an in the next section we restrict ourselves to the
differential operator −∆, but emphasize that all results carry over to operators L in general divergence
form (1.2.1).

Definition 1.2.66. Single layer potential

The single layer potential for the Laplacian −∆ on ∂Ω is the mapping

ϕ 7→ {x 7→ Ψ∆
SL(ϕ)(x) :=

∫

∂Ω
G∆(x, y)ϕ(y)dS(y), x 6∈ ∂Ω} (1.2.67)

We collect a few classical properties of ΨSL, see [Hac95, Sect. 8.1] for proofs using elementary calculus.

Theorem 1.2.68. Continuity of the single layer potential [Hac95, Sect. 8.1.2]

If ϕ ∈ L∞(∂Ω), then Ψ∆
SL ∈ C0(Rd).

Proof. We recall the asymptotic behavior

G∆(x, y) =

{
O(log‖x− y‖) , if d = 2 ,

O(‖x− y‖−1) , if d = 3 ,
for y→ x .

Note that x 7→ log |x| is integrable on [−1, 1] and x 7→ ‖x‖−1 on B1(0) ⊂ R2. By means of piecewise
smooth parameterizations we can reduce

∫
∂Ω
· · ·dS(y) to integrals over domains in Rd−1 and the type

of the singularities of the integrands will not change. Hence {y 7→ G∆(x, y)ϕ(y)} ∈ L1(∂Ω) with con-
tinuous dependence on x (as mapping Rd → L1(∂Ω)). We conclude by appealing to general theorems
about improper parameter dependent (Lebesgue) integrals.

✷

✎ Notation: L∞(D) =̂ space of (essentially) bounded functions on D, C0
pw(D) ⊂ L∞(D)

L1(D) =̂ space of (improperly) integrable (in Lebesgue sense) functions on D

As a consequence, if Ψ∆
SL is evaluated for a piecewise polynomial function ϕ : ∂Ω → R, it results in a

globally continuous function.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 47

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Lemma 1.2.69. Smoothness of single layer potential

If ϕ ∈ L∞(∂Ω) we have for every compact D ⊂ Ω or D ⊂ Ω′ := Rd \Ω that

(i) Ψ∆
SL(ϕ) ∈ C∞(D) (Ψ∆

SL is smooth away from ∂Ω),

(ii) ∆Ψ∆
SL(ϕ) = 0 on D (Ψ∆

SL is harmonic away from ∂Ω).

Proof. This is a consequence that for any x 6∈ ∂Ω every derivative (w.r.t. x) of the integrand is integrable
on ∂Ω (as a function of y). Thus, on D we can pull any derivative operator under the integral and the
result will be a continuous function on D.

✷

Finally, observe that Ψ∆
SL satisfies the decay conditions (1.1.76) and (1.1.79), respectively, e.g.,

Ψ∆
SL(ϕ)(x) =

{
O(log‖x‖) , if d = 2 ,

O(‖x‖−1) , if d = 3 .
for ‖x‖ → ∞ . (1.2.70)

Remark 1.2.71 (Electrostatic interpretation of ΨSL)

Comparing (1.2.67) and the formula (1.2.48) for the Newton potential

(ΨSL ϕ)(x) =
∫

∂Ω
G∆(x, y) ϕ(y)dS(y) ←→ (N∆ρ)(x) =

∫

Ω
G∆(x, y) ρ(y)dy ,

we deduce that

the single layer potential is the Newton potential applied to a surface charge on ∂Ω.

Recall the physical interpretation of the Newton potential N∆ρ as electrostatic scalar potential caused
by the source charge distribution ρ : Ω → R on Rd, This immediately suggests the following physical
meaning of Ψ∆

SL ϕ.

Ψ∆
SL ϕ is the electrostatic scalar potential induced by the surface charge ϕ on ∂Ω.

1.2.5.2 Double Layer Potential

Now we study the second potential (→ Notion 1.2.63) occurring in (1.2.58) and (1.2.61) (for the case of
L = −∆). Refer to [Hac95, Sect. 8.2] for detailed proofs.

Definition 1.2.72. Double layer potential

For u : Γ→ R we define the double layer potential operator for the Laplacian −∆ by

{x 7→ Ψ∆
DL(u)(x) :=

∫

∂Ω
grady G∆(x, y) · n(y) u(y)dS(y), x 6∈ ∂Ω} (1.2.73)

For the kernel we can compute explicit formulas

d = 2: G∆(x, y) = − 1
2π log‖x− y‖ ⇒ grady G∆(x, y) =

1

2π

x− y

‖x− y‖2
, (1.2.74a)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 48

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Ψ∆
DL(u)(x) =

∫

∂Ω

1

2π

(x− y) · n(y)
‖x− y‖2

u(y)dS(y), x 6∈ ∂Ω ,

d = 3: G∆(x, y) =
1

4π‖x− y‖ ⇒ grady G∆(x, y) =
1

4π

x− y

‖x− y‖3
, (1.2.74b)

Ψ∆
DL(u)(x) =

∫

∂Ω

1

4π

(x− y) · n(y)
‖x− y‖3

u(y)dS(y), x 6∈ ∂Ω .

(1.2.75) Continuity of double layer potential

Since grady G∆(x, y) = O(‖x− y‖−d+1) for y → x, which is a non-integrable singularity in dimension

d− 1, the mapping x 7→ {y 7→ grady G∆(x, y) · n(y)} fails to be a continuous mapping into L1(∂Ω).

So we cannot conclude global continuity of Ψ∆
DLu regardless of the smoothness of u.

In fact, if Ω is bounded, for u ≡ 1, the constant function 1 := {y ∈ ∂Ω→ 1}, from Gauss theorem
∫

∂Ω
grad w(x) · n(x)dx =

∫

Ω
div grad w(x)dx , w ∈ C1

pw(Ω) ,

(Ψ∆
DL1)(x) =

∫

∂Ω
grady G∆(x, y) · n(y)dS(y) =

∫

Ω
∆yG∆(x, y)dx

=

{
0 , if x 6∈ Ω ,

“ −
∫

Ω
δx dx ” = −1 , if x ∈ Ω .

Ψ∆
DL1 =

{
0 in Ω′ := Rd \Ω ,

−1 in Ω
is piecewise constant with a jump across ∂Ω.

Concerning smoothness away from ∂Ω, the double layer potentials enjoy properties similar to those of the
single layer potentials, with analogous proofs.

Lemma 1.2.76. Smoothness of double layer potential

If ϕ ∈ L1(∂Ω) we have for every compact D ⊂ Ω or D ⊂ Ω′ that

(i) Ψ∆
DL(ϕ) ∈ C∞(D) (Ψ∆

DL is smooth away from ∂Ω),

(ii) ∆Ψ∆
DL(ϕ) = 0 on D (Ψ∆

DL is harmonic away from ∂Ω).

Remark 1.2.77 (Electrostatic meaning of Ψ∆
DL)

Assume that Γ := ∂Ω is smooth with exterior unit normal vector field n. Then, formally, for y ∈ Γ

grady G∆(x, y) · n(y) = lim
ǫ→0

G∆x, y + ǫn(y)− G∆(x, y− ǫn(y))

2ǫ
.

Hence, the double layer kernel models the potential of two unit charges of opposite sign at an infinitesi-
mally small distance, an arrangement known as electric dipole. The double layer potential could also be
called a dipole layer.

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 49

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.2.6 Green’s Functions

We consider a bounded domain and a general scalar linear second-order differential operator L as in
(1.2.1). We study generalized fundamental solutions that also satisfy boundary conditions.

Definition 1.2.78. Green’s function

A function GL

Ω : Ω × Ω → R is a Green’s function for a second-order scalar linear differential

operator L on a bounded domain Ω ⊂ Rd, if
(i) GL

Ω is C∞-smooth on {(x, y) ∈ Ω×Ω : x 6= y},
(ii) for all x ∈ Ω: LyGL

Ω(x, y) = 0 on Ω \ {x}
(iii) GL

Ω satisfies homogeneous Dirichlet boundary conditions:

GL

Ω(x, y) = 0 for all y ∈ ∂Ω , x ∈ Ω , (1.2.79)

(iv) y 7→ GL

Ω(x, y) is integrable on Ω for all x ∈ Ω,

(v) for every x ∈ Ω, w ∈ C∞(Ω)

∫

Ω
GL

Ω(x, y)(L∗w)(y)dy = w(x) . (1.2.80)

We can rewrite Item (v) by means of distributional calculus as

LyGL

Ω(x, y) = δx in D(Ω)′ , (1.2.81)

see Rem. 1.2.29.

Now we can pursue the same manipulations as in Section 1.2.4 for the model case of L = −∆. We
choose any x ∈ Ω and w ∈ C2(Ω). Appealing to Green’s first formula from Thm. 1.1.62 we get

∫

Ω
G∆

Ω(x, y)(−∆w)dy = lim
ǫ→0

∫

‖y‖>ǫ
G∆

Ω(x, y)(−∆w)(y)dy

= − lim
ǫ→0

∫

‖y−x‖=ǫ

G∆
Ω(x, y) grad w(y) · n(y)−w(y) grady G∆

Ω(x, y) · n(y)dS(y)+

−
∫

∂Ω
G∆

Ω(x, y) grad w(y) · n(y)−w(y) grady G∆
Ω(x, y) · n(y)dS(y)

= w(x)−
∫

∂Ω
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘

✘
✘
✘
✘✘✿

0

G∆
Ω(x, y) grad w(y) · n(y)−w(y) grady G∆

Ω(x, y) · n(y)dS(y) ,

thanks to Item (iii). This yields a simplified integral representation formula compared to Thm. 1.2.57. For
w ∈ C2(Ω)

w(x) =
∫

Ω
G∆

Ω(x, y)(−∆w)(y)dy−
∫

∂Ω
grady G∆

Ω(x, y) · n(y)w(y)dS(y) . (1.2.82)

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 50

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Corollary 1.2.83. Green’s function integral representations

✦ If u ∈ C2(Ω) solves the boundary value problem

−∆u = ρ ∈ C0(Ω) in Ω , u = 0 on ∂Ω ,

u(x) =
∫

Ω
G∆

Ω(x, y) ρ(y) dy , x ∈ Ω . (1.2.84)

✦ If u ∈ C2(Ω) solves the Dirichlet boundary value problem

−∆u = 0 in Ω , u = g ∈ C0(∂Ω) on ∂Ω ,

u(x) = −
∫

∂Ω
grady G∆

Ω(x, y) · n(y) g(y) dS(y) , x ∈ Ω . (1.2.85)

Comparing with (1.2.54), we notice that the integral operator

ρ 7→
{

x 7→
∫

Ω

G∆
Ω(x, y)ρ(y) dy

}

is the solution operator for the Dirichlet boundary value problem −∆u = ρ in Ω, u = 0 on ∂Ω.

Green’s functions remain elusive for general domains Ω. Only for very special geometries and simple
operators like −∆ they can be computed in closed form. Next we give an example.

Example 1.2.86 (Green’s function for −∆ on a disk)

We compute the Green’s function (→ Def. 1.2.78) for −∆, d = 2, and the unit disk domain Ω = D :=
{x ∈ R2 : ‖x‖ < 1}.

Fig. 16

-10

-5

1

0

5

10

0.5

15

20

0

-0.5
1

0.5
0

-1 -0.5
-1

The derivation is based on the mirror charge ap-
proach and reflection at the unit circle. For x ∈ R2

write x∗ := x/‖x‖2, that is ‖x∗‖ = 1
‖x‖ and x∗ 6∈ D

for x ∈ D. We fix x ∈ D and place a unit charge
at x and a compensating charge at x∗ 6∈ D, which
yields the total potential, cf (1.2.21),

G∆
D(x, y) = − 1

2π log‖x− y‖+
1

2π log‖x∗ − y‖ − 1
2π log‖x∗‖ . (1.2.87)

✁ Plot of y 7→ G∆
D, x =

[
0.5
0

]

For x ∈ D, thanks to x∗ 6∈ D, the properties Item (i), Item (ii), Item (iv), and Item (v) are all inherited
from the first term, which is the fundamental solution for −∆ in 2D, see (1.2.21), and the only term with a
singularity in D. To see Item (iii) note that for ‖y‖ = 1, we have for all x ∈ D

G∆
D(x, y) = 1

4π log

(
‖y− x∗‖2

‖y− x‖2‖x∗‖2

)
= 1

4π log

(
‖x‖2‖y− x∗‖2

‖y− x‖2

)

= − 1
4π log


 1− 2x · y + ‖x‖2

‖x‖2(1− 2 1

‖x‖2 x · y + 1

‖x‖2)


 = − 1

4π log(1) = 0 .

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 51

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 1.2.88 (Poisson integral formula [Hac92, Thm. 2.20])

The Green’s function (1.2.87) combined with Cor. 1.2.83, Section 1.2.6, we get an explicit integral repre-
sentation for solutions of

−∆u = 0 in D , u = g on ∂D := {x ∈ R2 : ‖x‖ < 1} ,

u(x) =
1− ‖x‖2

2π

∫

‖y‖=1

1

‖x− y‖2
g(y)dS(y) , x ∈ D. (1.2.89)

Example 1.2.90 (Green’s function for a half space)

Fig. 17

x2

x

x∗

Ω
In Def. 1.2.78 we assumed a bounded Ω, but Green’s
functions can easily be generalized to non-bounded
domains by simply keeping all the requirements
Item (i)–Item (v), demanding compact support of w
in the latter. For instance, relying on another mirror
charge approach for the half space Ω := {x ∈ R2 :
x2 > 0} we find

G∆
Ω(x, y) = − 1

2π
log‖x− y‖+ 1

2π
log‖x∗ − y‖ , x∗ =

[
x1

−x2

]
, x, y ∈ Ω . (1.2.91)

1.3 Boundary Integral Equations (BIEs)

Throughout this section we consider a Lipschitz domain Ω ⊂ Rd satisfying Ass. 1.2.6 for d = 2 or
Ass. 1.2.8 for d = 3. We write Γ := ∂Ω for its (compact) boundary and n for the exterior unit normal
vector field on Γ.

(1.3.1) Outline

Trace operators (→ Notion 1.2.62) when applied potentials (→ Notion 1.2.63) yield linear mappings taking
functions on Γ to other functions on Γ:

Layer potentials

+
Trace operators

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 52

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✞
✝

☎
✆Boundary integral operators (BIOs)

In particular, we may apply trace operators to layer potential representations formulas for solutions of
second-order scalar PDEs with vanishing source terms, like those given in Thm. 1.2.57 and Thm. 1.2.60
for ρ = 0 (crucial traces of u highlighted, cf. Rem. 1.2.64):

u(x) =
∫

Γ
GL(x, y)A grad u(y) · n(y) dS(y)−

∫

Γ
A grady GL(x, y) · n(y) u(y) dS(y) , (1.3.2)

for x ∈ Ω, where u ∈ C2(Ω) solves Lu := − div(A grad u) − cu = 0 in Ω, A, c as in (1.2.1), and
GL is the fundamental solution for L, see Def. 1.2.26. We point out that using our notations for the layer
potentials, a compact way to write (1.2.58) is

u(x) = ΨL

SL(A grad u(y) · n(y)|Γ)(x)−ΨL

DL(u|Γ)(x) , x ∈ Ω . (1.3.2)

Applying trace operators we should end up with equations linking the traces u|Γ and A grad u(y) · n(y)|Γ.
One of these must be known in the case of well-defined boundary value problems, and we hope to deter-
mine the other through the obtained equations.

Representation formula (1.3.2)

+
Trace operators

✞
✝

☎
✆Boundary integral equations (BIEs)

However, we have to ensure that trace operators can be applied to layer potentials. Adhering to an
“energy-centric” approach, we investigate the continuity of the operators in energy norms.

1.3.1 Trace Operators

Notion 1.2.62 tells us that trace operators map functions on the volume domain Ω to functions on the
boundary Γ. Now examine the continuity properties in energy norms of the two trace operators relevant
for boundary value problems for the Laplacian −∆.

1.3.1.1 Dirichlet Trace

Definition 1.3.3. Dirichlet trace operator

The Dirichlet trace (operator) TD boils down to pointwise restriction for smooth functions:

(TDw)(x) := w(x) ∀x ∈ Γ , w ∈ C∞(Ω) .

Though obvious, we stress the fact that TD maps functions Ω 7→ R to functions Γ 7→ R. Also not that, if
Γ is merely piecewise smooth, even w ∈ C∞(Ω) does imply only TDw ∈ C0(Γ)!

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 53

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.3.4) An energy space for point traces of scalar potentials

Our goal is to extend the Dirichlet trace TD to the energy space H1(Ω) and to identify the strongest norm
on C0(Γ) that will still render TD continuous. Completion (→ [Hip16, § 2.3.16]) with respect to this norm
will yield a suitable trace space, serving range space of TD|H1(Ω).

Let ‖·‖X stand for a norm on C0(Γ). Recall that TD is continuous with respect to this norm, if

∃C > 0: ‖TDu‖X ≤ C‖u‖H1(Ω) ∀u ∈ C∞(Ω) . (1.3.5)

A norm is dubbed “stronger” than another norm on the same space, if (up to a constant) it assigns larger
norm values to every element of the space than this other norm. The strongest possible norm ‖·‖X on
C0(Γ) for which we can still expect the continuity (1.3.5) can formally be defined as follows

‖u‖X := inf
{
‖v‖H1(Ω): v ∈ C∞(Ω), TDv = u

}
, u ∈ C∞(Ω)

∣∣
Γ

. (1.3.6)

The reader is encouraged to verify the norm axioms from [Hip16, Def. 1.6.4] for this ‖·‖X.

Remark 1.3.7 (Density argument)

A fundamental result in the theory of Sobolev spaces [McL00, Thm. 3.25] ensures the density of C∞(Ω) in
H1(Ω). Therefore, when studying TD on H1(Ω), it is sufficient to consider TD|C∞(Ω). Recall the advice
[Hip16, Section 2.3.4] that one should focus on norms in the study of Sobolev spaces and not worry about
the smoothness of the functions too much.

It is easy to establish that (1.3.6) defines a norm. In fact, ‖·‖X is derived from an inner product. Completion
then yields the right trace space.

Definition 1.3.8. Dirichlet trace space

The Dirichlet trace space H
1
2 (Γ) is the Hilbert space obtained by completion of C∞(Ω)

∣∣
Γ

with
respect to the energy norm

‖u‖
H

1
2 (Γ)

:= inf
{
‖v‖H1(Ω): v ∈ C∞(Ω), TDv = u

}
, u ∈ C∞(Ω)

∣∣
Γ

. (1.3.9)

✎ Notation: We write u, v,w for functions in H
1
2 (Γ).

For mathematicians familiar with functional analysis the next result is an immediate consequence of
Def. 1.3.8, thus labelled a corollary. A reader not well versed in functional analysis may just accept it
as a fact.

Corollary 1.3.10. Mapping properties of Dirichlet trace [SS10, Sect. 2.6]

The Dirichlet trace TD according to Def. 1.3.3 can be extended to a continuous and surjective linear

operator TD : H1(Ω)→ H
1
2 (Γ).

In the title of this §H
1
2 (Γ) was said to be an “energy space”. To see the connection look up the equilibrium

condition (1.1.51)again to understand that the minimizer w ∈ H1(Ω) of the expression in (1.3.9) agrees

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 54

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

with the weak solution of the Dirichlet boundary value problem

−∆w = 0 in Ω , w = u on Γ .

In an electrostatic context this is the potential arising in the volume when imposing the potential values u

on Γ. Hence, we arrive a the following “physical interpretation” of ‖·‖
H

1
2 (Γ)

‖u‖
H

1
2 (Γ)

is the electric field energy in Ω due to imposing the potential values u on Γ.

(1.3.12) Smoothness (“regularity”) of functions in H
1
2 (Γ)

Def. 1.3.8 does not yield much insight into H
1
2 (Γ). To understand properties of functions in H

1
2 (Γ) we

recall a first result on continuity properties of TD [Hip16, Thm. 2.10.8].

Theorem 1.3.13. Multiplicative trace inequality [BS08, Thm. 1.6.6]

∃C = C(Ω) > 0: ‖u‖2
L2(Γ) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

Proof.

We demonstrate the proof only for domains Ω with
diam Ω = 1 that are star-shaped w.r.t. a ball Br(0),
0 < r < 1, that is,

∀y ∈ Br(0), x ∈ Ω: [y, x] ⊂ Ω .

In this case

n(x) · x ≥ CΩ , (1.3.14)

for a constant CΩ > 0.

Fig. 18

0

r

x
n

Gauss’ theorem and the product rule show for u ∈ C2(Ω)
∫

Γ
|u(x)|2 dS(x) ≤ C−1

Ω

∫

Γ
n · x |u(x)|2 dS(x) = C−1

Ω

∫

Ω
div(x|u(x)|2)dx

= C−1
Ω

∫

Ω
d|u(x)|2 + 2ux · grad u dx

≤ C−1
Ω

(
d‖u‖2

L2(Ω) + 4‖u‖L2(Ω)|u|2H1(Ω)

)
,

where we used ‖x‖ ≤ 2. A density argument (→ Rem. 1.3.7) as in the proof of [Hip16, Thm. 2.3.31]
establishes the claim.

✷

The next statement is labelled a corollary, that is, considered “obvious”. The reader should be able to
conclude it from Def. 1.3.8 and Thm. 1.3.13 instantly.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 55

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Corollary 1.3.15. Embedding of H
1
2 (Γ)

The space H
1
2 (Γ) is continuously embedded in L2(Γ): ‖u‖L2(Γ) ≤ C‖u‖

H
1
2 (Γ)

for all u ∈ H
1
2 (Γ)

and some C > 0 independent of u.

Example 1.3.16 (“Continuity” of functions in H
1
2 (Γ))

How smooth are functions in H
1
2 (Γ)? For the Sobolev space H1(Ω) we already asked this question in

[Hip16, § 2.3.37].

We consider the unit disk domain Ω = D := {x ∈ R2 : ‖x‖ < 1} and, in polar coordinates (r, ϕ), the
Fourier sums

gn(ϕ) := 4
π

n

∑
k=1

1

2k− 1
sin((2k− 1)ϕ) ∈ L2(Γ) , n ∈ N .

The solutions of

−∆un = 0 in D , TDun = gn on Γ ,

are

un(r, ϕ) = 4
π

n

∑
k=1

1

2k− 1
r2k−1 sin((2k− 1)ϕ) , 0 ≤ r < 1, 0 ≤ ϕ < 2π .

This is a consequence of the fact that ∆{(r varphi) 7→ rℓ sin(ℓϕ)} = 0.

By (1.3.9) the energy norm of un is equivalent to the trace norm of gn:

|un|H1(Ω) ≈ ‖gn‖
H

1
2 (Γ)

with “universal constants”.

From the theory of Fourier series we know

lim
n→∞

gn = g in L2(Γ) , g(ϕ) =

{
−1 for − π ≤ ϕ ≤ 0 ,

1 for 0,< ϕ ≤ π ,

that is the limit of the sequence (gn)n∈N is a piecewise constant, discontinuous function.

Termwise differentiation gives

grad un(r, ϕ) =
n

∑
k=1

r2k−2
(
sin((2k− 1)ϕ)er(r, ϕ) + cos((2k− 1)ϕ)eϕ(r, ϕ)

)
,

where {er, eϕ} is the polar coordinate orthonormal basis, see [Hip16, § 2.4.39].

‖grad un‖2
L2(Ω) =

n

∑
k=1

1∫

0

2π∫

0

r4k−4 sin2((2k− 1)ϕ) + cos2((2k− 1)ϕ)dϕ rdr

=
n

∑
k=1

2π

4k− 3
→ ∞ for n→ ∞ .

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 56

https://en.wikipedia.org/wiki/Fourier_series

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

As a consequence, “‖g‖
H

1
2 (Γ)

= ∞”, g 6∈ H
1
2 (Γ).

C0
pw(Γ) 6⊂ H

1
2 (Γ) !

Example 1.3.17 (Unbounded functions in H
1
2 (Γ))

According to [Hip16, Cor. 2.4.43] the point evalution functional u 7→ u(y), y ∈ Ω, is not bounded on
H1(Ω) for d ≥ 2; there are unbounded functions in H1(Ω) and in [Hip16, Ex. 2.4.37] we found an
example in 2D

v(x) = log | log‖x‖| , ‖x‖ < 1
2 , v ∈ H1(B1

2
(0)) . (1.3.18)

If 0 ∈ Γ, TDv ∈ H
1
2 (Γ) will not be bounded!

As a positive result we note that continous, piecewise smooth functions belong to H
1
2 (Γ), ecause they are

already contained in H1(Γ). Compare with Ex. 1.3.16.

Corollary 1.3.19. Continuous, piecewise-C1 functions in H
1
2 (Γ)

C1
pw(Γ) ⊂ H

1
2 (Γ).

In words, piecewise smooth bounded functions Γ 7→ R belong to H
1
2 (Γ), if and only if they are contin-

uous: for them belonging to H
1
2 (Γ) entails the same compatibility conditions as for H1(Γ), remember

Thm. 1.1.30.

Remark 1.3.20 (Intrinsic norm of H
1
2 (Γ))

As a consequence of extension theorems for H1(Ω) [McL00, Appendix A], Def. 1.3.8 yields equivalent

norms for H
1
2 (Γ), no matter whether we base the definition of ‖·‖

H
1
2 (Γ)

on Ω or Ω′.

In fact, from [SS10, Def. 2.4.1] we learn, that there is an equivalent Γ-intrinsic definition

‖u‖2

H
1
2 (Γ)
≈ ‖u‖2

L2(Γ) +
∫

Γ

∫

Γ

|u(x)− u(y)|2
‖x− y‖d

dS(y)dS(x) , u ∈ H
1
2 (Γ) . (1.3.21)

This expression known as the Sobolev-Slobodeckii norm.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 57

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.3.1.2 Neumann Trace

Now we take a closer look at the normal component trace of the displacement current, in non-dimensional
form grad u · n|Γ.

Definition 1.3.22. Neumann trace operator

For smooth functions the Neumann trace (operator) TN is defined by

(TNw)(x) := grad w · n(x) ∀x ∈ Γ ,w ∈ C∞(Ω) .

Remark 1.3.23 (The Neumann trace is not defined on H1(Ω))

We consider d = 2, Ω = D := {x ∈ R2 : ‖x‖ < 1}, and (in polar coordinates (r, ϕ), see [Hip16,
§ 2.4.39]) the functions

un(r, ϕ) := n−1rn , n ∈ N .

Then grad un(r, ϕ) = rn−1er and we find by simply computing the norms in polar coordinates

‖un‖H1(Ω) → 0 for n→ ∞ whereas TNun = 1 on ∂D .

The message sent by this example is similar to the insight gained in [Hip16, Rem. 2.3.6]:

The Neumann trace TN is not bounded on H1(Ω).

In other words, Neumann boundary conditions cannot be imposed in H1(Ω), analogous to the situation
with the Dirichlet trace and L2(Ω) as discussed in [Hip16, Rem. 2.3.6].

Remark 1.3.24 (Pairing of traces [SS10, Thm. 2.7.7])

It is a straightforward consequence of Green’s first formula from Thm. 1.1.62 (with j := grad u) that
∫

Γ
(TNu)(x) (TDv)(x)dS(x) =

∫

Ω
∆u(x) v(x) + grad u(x) · grad v(x)dx , (1.3.25)

for all u, v ∈ C∞(Ω). If u is harmonic, that is ∆u = 0, then
∫

Γ
(TNu)(x) (TDv)(x)dS(x) =

∫

Ω
grad u(x) · grad v(x)dx . (1.3.26)

In particular, we conclude that for any harmonic function u ∈ H1(Ω) (solving ∆u = 0), the paired Dirichlet
and Neumann traces yield the function’s energy:

∫

Γ
(TNu)(x) (TDu)(x) dS(x) =

∫

Ω
‖grad u(x)‖2 dx . (1.3.27)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 58

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.3.28) An energy norm for Neumann traces

From electrostatic theory we know that the normal component trace of the displacement current at a PEC
boundary part corresponds to a surface charge distribution.

The range space of the Neumann trace operator TN, the Neumann trace space is a space of surface
charge distributions.

Define a norm on the Neumann trace space through the energy of the field induced by
surface charge distribution.

Definition 1.3.29. Neumann trace space

The Neumann trace space H−
1
2 (Γ) is the Hilbert space obtained by the completion of C0(Γ) with

respect to the norm

‖φ‖
H−

1
2 (Γ)

:=
∥∥φ̃
∥∥

H̃−1(Ω)
, (1.3.30)

where ‖·‖H̃−1(Ω) is the norm on source charge distributions introduced in Def. 1.1.80 and φ̃ is the

“extension by zero to Rd” of φ.

Temporarily, we restrict ourselves to d = 3. Given φ ∈ C0(Γ) we define uφ ∈ H1(R3) through

∫

R3
grad uφ · grad v dx =

∫

Γ
φ(x) (TDv)(x)dS(x) ∀v ∈ H1(R3) . (1.3.31)

By virtue of (1.1.84) [SS10, Prop 2.10.8], the bilinear form of this variational problem is H1(R3)-elliptic
and, thus, unique solvability is guaranteed. Then, from the definition of ‖·‖H̃−1(Ω) is immediate that

‖φ‖
H−

1
2 (Γ)

=
∥∥φ̃
∥∥

H̃−1(Ω)
=
∥∥grad uφ

∥∥
L2(R3)

. (1.3.32)

With this in mind, in perfect analogy to § 1.3.4 we can also link the norm on H−
1
2 (Γ) to the energy norm

of fields/potentials:

‖φ‖
H
− 1

2 (Γ)
is the energy of the electric field engendered by the surface charge distribution φ.

(1.3.33) Continuity of Neumann trace

We have seen in Rem. 1.3.23 that the Neumann trace TN is not defined on H1(Ω); we need a function
space with a stronger norm, on which we can then define TN as a continuous linear operator.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 59

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.3.34. Space of function with square-integrable Laplacian

We introduce the Hilbert space

H(∆, Ω) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)} ,

with norm

‖u‖2
H(∆,Ω) := ‖u‖2

H1(Ω) + ‖∆u‖2
L2(Ω) , u ∈ H(∆, Ω) .

Theorem 1.3.35. Continuity of the Neumann trace on H(∆, Ω)

The Neumann trace TN from Def. 1.3.22 can be extended to a continuous mapping

TN : H(∆, Ω)→ H−
1
2 (Γ).

Proof. Given w ∈ C∞(Ω) define uw ∈ H1(Ω) through
∫

R3
grad uw · grad v dx =

∫

Γ
(TNw)(x) (TDv)(x)dS(x) ∀v ∈ H1(R3) . (1.3.36)

Recall from § 1.3.28 that ‖TNw‖
H−

1
2 (Γ)

= ‖grad uw‖L2(R3). Then use the pairing identity

∫

Γ
(TNu)(x) (TDv)(x)dS(x) =

∫

Ω
∆u(x) v(x) + grad u(x) · grad v(x)dx , (1.3.25)

and obtain
∫

Γ
(TNw)(x) (TDuw)(x)dS(x) =

∫

Ω
∆w(x) uw(x) + grad w(x) · grad uw(x)dx . (1.3.37)

Combine (1.3.36) (with v := uw) and (1.3.37) and conclude by means of the Cauchy-Schwarz inequality
in L2(Ω) [Hip16, Eq. (2.3.30)]

‖uw‖2
H1(R3) =

∫

Ω
∆w(x) uw(x) + grad w(x) · grad uw(x)dx ≤ ‖w‖H(∆,Ω)‖uw‖H1(R3) .

We cancel ‖uw‖H1(R3) in this inequality and the observation

‖TNw‖
H−

1
2 (Γ)

= ‖grad uw‖L2(R3) ≤ ‖uw‖H1(R3) ≤ ‖w‖H(∆,Ω) ,

clinches the proof.
✷

By Thm. 1.3.13 the Dirichlet trace TD is continuous as a mapping H1(Ω) → L2(Γ). Then from (1.3.32)
and (1.1.84) the following embedding can be inferred:

Theorem 1.3.38. Embedding of H−
1
2 (Γ)

L2(Γ) is continuously embedded in H−
1
2 (Γ): L2(Γ) ⊂ H−

1
2 (Γ)

(1.3.39) Duality

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 60

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

For φ ∈ H−
1
2 (Γ) we also conclude from

∫

R3
grad uφ · grad v dx =

∫

Γ
φ(x) (TDv)(x)dS(x) ∀v ∈ H1(R3) , (1.3.31)

using the function uφ defined thus, that
∫

Γ
φ(x) (TDuφ)(x)dS(x) =

∥∥grad uφ

∥∥2

L2(R3)
=
∥∥grad uφ

∥∥
L2(R3)

‖φ‖
H−

1
2 (Γ)

, (1.3.40a)
∫

Γ
φ(x) v(x)dS(x) =

∫

R3
grad uφ · grad ṽ dx ≤ ‖φ‖

H−
1
2 (Γ)
‖v‖

H
1
2 (Γ)

(1.3.40b)

for all v ∈ H
1
2 (Γ), where ṽ ∈ H1(R3) is that extension of v ∈ H

1
2 (Γ) for which |ṽ|H1(Ω) = ‖v‖H

1
2 (Γ)

.

The estimates (1.3.40) can be translated into the following deep mathematical statement that holds for
both d = 2, 3. The reader be reassured that grasping the full scope of the theorem is not necessary for
applying it.

Theorem 1.3.41. L2(Γ)-duality between H
1
2 (Γ) and H−

1
2 (Γ)

The bilinear form (ψ, v) 7→
∫

Γ
ψ(x) v(x)dS(x), ψ, v ∈ L2(Γ) induces isomorphisms between

H
1
2 (Γ) and the dual space (H−

1
2 (Γ))′, and between H−

1
2 (Γ) and the dual space (H

1
2 (Γ))′ . In

particular,

∫

Γ
ψ(x) v(x)dS(x) ≤ ‖ψ‖

H−
1
2 (Γ)
· ‖v‖

H
1
2 (Γ)

∀ψ ∈ H−
1
2 (Γ), v ∈ H

1
2 (Γ) . (1.3.42)

In fact, the duality asserted in Thm. 1.3.41 can be used to define H−
1
2 (Γ). Here, without further comment-

ing on the theorem, we state an important consequence:

u, v ∈ H
1
2 (Γ): u = v ⇔

∫

Γ
(u− v)(x) φ(x)dS(x) = 0 ∀φ ∈ H−

1
2 (Γ) , (1.3.43a)

φ, ψ ∈ H−
1
2 (Γ): ψ = φ ⇔

∫

Γ
(ψ− φ)(x) v(x)dS(x) = 0 ∀v ∈ H

1
2 (Γ) . (1.3.43b)

We will see several applications of these relationships below.

Remark 1.3.44 (Co-normal trace)

If we deal with a general differential operator according to (1.2.1), Lu := − div(A grad u)+ cu, A ∈ Rd,d

s.p.d., c ∈ R, then the Neumann trace TN has to be replaced with the co-normal trace u 7→ TL

N :=
A grad u · n|Γ. By and large, the results of this section carry over to TL

N, see [SS10, Sect. 2.7].

1.3.2 Mapping Properties of Layer Potentials

We recall the two layer potentials: the single layer potential ΨSL defined in Def. 1.2.66 and the double layer
potential ΨDL defined in Def. 1.2.72. Above considered them for “sufficiently smooth” argument functions.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 61

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Now we aim to study them as mappings between energy (trace) spaces, similar to what we have already
done for the Newton potential in Cor. 1.2.53.

(1.3.45) Single layer potential

We can relate the single layer potential operator for −∆ (→ Def. 1.2.66)

Ψ∆
SL(φ)(x) :=

∫

Γ
G∆(x− y)φ(y)dS(x), x 6∈ Γ; , (1.2.67)

to the Newton potential (→ Def. 1.2.47)

(N∆ρ)(x) :=
∫

Ω
G∆(x, y)ρ(y)dy . (1.2.48)

For smooth φ ∈ C∞(Ω)
∣∣
Γ
, ρ ∈ C∞(Ω), interchanging integrals (Fubini’s theorem), we get

∫

Ω
(Ψ∆

SLφ)(x) ρ(x)dx =
∫

Ω

∫

Γ
G∆(x, y) φ(y)dS(y) ρ(x)dx

=
∫

Γ

∫

Ω
G∆(x, y) φ(y) ρ(x)dx dS(y)

=
∫

Γ
(TDN∆ρ)(y) φ(y)dS(y)

(1.3.42)
≤ ‖TDN∆ρ‖

H
1
2 (Γ)
‖φ‖

H−
1
2 (Γ)

≤ |N∆ρ|H1(R3) ‖φ‖H−
1
2 (Γ)
≤ ‖ρ‖H̃−1(Ω) ‖φ‖H−

1
2 (Γ)

.

We find that, if ‖φ‖
H−

1
2 (Γ)

< ∞⇔ φ ∈ H−
1
2 (Γ), then

∣∣∣∣
∫

Ω
(Ψ∆

SLφ)(x) ρ(x)dx

∣∣∣∣ < ∞

for every admissible (‖ρ‖H̃−1(Ω) < ∞!) source charge distribution ρ. Next, use the characterization

(1.1.89).

Theorem 1.3.46. Continuity of single layer potential in energy (trace) spaces

The single layer potential operator Ψ∆
SL (→ Def. 1.2.66) can be extended to a continuous mapping

Ψ∆
SL : H−

1
2 (Γ) → H1(Rd) ∩ H(∆, Rd \ Γ) .

The message of this theorem is that we can find a constant C > 0 depending only on Ω such that
∥∥∥Ψ∆

SLφ
∥∥∥

H1(Rd)
+
∥∥∥Ψ∆

SLφ
∥∥∥

H(∆,Ω)
+
∥∥∥Ψ∆

SLφ
∥∥∥

H(∆,Ω′)
≤ C‖φ‖

H−
1
2 (Γ)

.

(1.3.47) Double layer potential

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 62

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

To establish the continuity of the double layer potential operator Ψ∆
DL from Def. 1.2.72, we rely on the

representation formulas (1.2.58) (for L = −∆) or (1.2.61). These can be written in a compact way as

u = N∆(−∆u) + Ψ∆
SL(TNu)−Ψ∆

DL(TDu) ∀u ∈ C2(Ω) .

Pick v ∈ C∞(Ω)
∣∣
Γ

and define u ∈ H1(Ω) as the solution of

−∆u = 0 in Ω , TDu = v on Γ .

By the continuity result for Ψ∆
SL from Thm. 1.3.46 we can plug this u into the representation formula

u = Ψ∆
SL(TNu)−Ψ∆

DL(v) in Ω . (1.3.48)

Then, by Thm. 1.3.46 and Thm. 1.3.35 (∆u = 0!)
∥∥∥Ψ∆

SL(TNu)
∥∥∥

H1(Ω)
≤ C‖TNu‖

H−
1
2 (Γ)
≤ C‖u‖H(∆,Ω) ≤ C‖u‖H1(Ω) ≤ C‖v‖

H
1
2 (Γ)

,

with positive constants with different values at each stage but all independent of v. The △-inequality
combined with (1.3.48) yields

∥∥∥Ψ∆
DL(v)

∥∥∥
H1(Ω)

≤ ‖u‖H1(Ω) +
∥∥∥Ψ∆

SL(TNu)
∥∥∥

H1(Ω)
≤ C‖v‖

H
1
2 (Γ)

.

This argument can also be employed on the complement domain Ω′.

Theorem 1.3.49. Continuity of the double layer potential in energy trace spaces

The double layer potential operator Ψ∆
DL (→ Def. 1.2.72) can be extended to a continuous mapping

Ψ∆
DL : H

1
2 (Γ) → H(∆, Rd \ Γ) .

Remark 1.3.50 (General layer potentials)

All the above arguments and results remain valid for layer potentials derived from fundamental solutions
for general scalar second-order differential operators L in divergence form (1.2.1).

1.3.3 Jump Relations for Layer Potentials

In § 1.2.75 we saw that the double layer potential may have a discontinuity, a jump, across Γ. In this
section we will glean detailed information about jumps and kinks (ie, jumps of derivatives) of potentials.

(1.3.51) Jumps and averages

Let u ∈ L2(Rd) be smooth on both sides of Γ := ∂Ω: u|Ω ∈ C∞(Ω) and u|Ω′ ∈ C∞(Ω′), Ω′ = Rd \Ω.
Then we can apply some trace operator T on both sides and take the difference of the resulting functions,
what we call a jump of Tu.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 63

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Concretely, for the jumps of Dirichlet and Neumann traces introduced in Def. 1.3.3 and Def. 1.3.22, re-
spectively, we write

Jumps: JTDuKΓ := TD(u|Ω′)− TD(u|Ω) ,

JTNuKΓ := TN(u|Ω′)− TN(u|Ω) ,

where in the second difference TN is based on the exterior unit normal for Ω throughout. Jumps adhere
to the convention “outside − inside” and they are functions on Γ. Note that the exterior unit normal for Ω

enters the Neumann jump:

JTNuKΓ(x) = ((grad u|Ω′)(x)− (grad u|Ω)(x)) · n(x) , x ∈ Γ .

Similarly we can define averages of traces:

Averages: {TDu}Γ := 1
2(TD(u|Ω′) + TD(u|Ω)) ,

{TNu}Γ := 1
2(TN(u|Ω′) + TN(u|Ω)) .

(1.3.52) Jump representation formula

Pick u ∈ C∞(Ω)), ∆u = 0 in Ω, and x 6∈ Ω , that is, x is located in the interior of the complement

domain Ω′. Then, by property (ii) of a fundamental solution (→ Def. 1.2.26), y 7→ G∆(x, y) is harmonic
in Ω: ∆yG∆(x, y) = 0. As a consequence of Green’s second formula (1.2.4)

Ψ∆
SL(TNu)(x)−Ψ∆

DL(TDu)(x)

=
∫

Γ
G∆(x, y)(TNu)(y)− grady G∆(x, y) · n(y) (TDu)(y)dS(y)

=
∫

Ω
G∆(x, y)

✘
✘
✘
✘
✘✿0

(∆u)(y)−
✘
✘
✘
✘
✘
✘
✘✘✿

0
(∆yG∆)(x, y) u(y)dy = 0 .

For bounded Ω combining this finding with the “interior” integral representation formula of Thm. 1.2.57 in
the form (1.3.2), we get

Ψ∆
SL(TNu)−Ψ∆

DL(TDu) =

{
u(x) , if x ∈ Ω ,

0 , if x ∈ Ω′ .
(1.3.53)

The same reasoning can be pursued for the “exterior” complement domain Ω′ based on Thm. 1.2.60.
Merging the resulting formulas gives a new version of the representation formula on Rd \ Γ.

Theorem 1.3.54. Jump representation formula [SS10, Thm. 3.1.8]

For u ∈ H(∆, Rd \ Γ), ∆u = 0 in Ω ∪Ω′, holds

u = −Ψ∆
SL(JTNuKΓ) + Ψ∆

DL(JTDuKΓ) in H(∆, Rd \ Γ) . (1.3.55)

We could state this theorem in terms of energy spaces, since from 1.3.2 we know that all traces and layer
potentials are well defined.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 64

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.3.56) Jumps of single layer potential

According to Thm. 1.3.46, for φ ∈ H−
1
2 (Γ) we know Ψ∆

SLφ ∈ H1(Rd). Appealing to the fact that “functions

in H1 must not have discontinuities”, see Thm. 1.1.30, we conclude that
r
TD(Ψ

∆
SLφ)

z
Γ
= 0 ∀φ ∈ H−

1
2 (Γ) . (1.3.57)

We rely on “electrostatic heuristics” to elaborate the Neumann jump of Ψ∆
SLφ, recalling Rem. 1.2.71. From

(1.2.54) we know that the Newton potential

(N∆ρ)(x) :=
∫

Ω
G∆(x, y)ρ(y)dy , x ∈ Rd ,

generates the potential produced by the source charge distribution ρ ∈ H̃−1(R3). It solves the variational
problem

N∆ρ ∈ H1(Rd):
∫

Ω
(grad N∆ρ)(x) · grad v(x)dx =

∫

Ω
ρ(x) v(x)dx , (1.3.58)

for all v ∈ H1(Rd). Match this with the formula

(Ψ∆
SLφ)(x) =

∫

Γ
G∆(x, y) φ(y)dS(y) , x ∈ Rd ,

defining the single layer potential, which gives the electrostatic potential due to the surface charge φ ∈
H−

1
2 (Γ). Adapting (1.3.58), we find that

∫

Ω
(grad Ψ∆

SLφ)(x) · grad v(x)dx =
∫

Γ
φ(x) v(x)dS(x) ∀v ∈ H1(R3) (1.3.59)

The policy demonstrated in 1.1.6 can be used to find the PDE form of the transmission problem encoded
by (1.3.59). First test with smooth v compactly supported inside either Ω or Ω′, which shows

∆Ψ∆
SL(φ) = 0 in Ω ∪Ω′ . (1.3.60)

Then test with v ∈ C∞
0 (Rd), perform integration by parts (Green’s first formula (1.1.63)) both in Ω and

Ω′ and use (1.3.60) to remove all volume integrals. The remaining boundary terms on Γ lead to

r
TNΨ∆

SL(φ)
z

Γ
= −φ . (1.3.61)

(1.3.62) Jumps of double layer potential

For arbitrary u ∈ H(∆, Rd \ Γ) apply the jump operators JTD·KΓ and JTN·KΓ to the jump
representation formula (→ Thm. 1.3.54)

u = −Ψ∆
SL(JTNuKΓ) + Ψ∆

DL(JTDuKΓ) in H(∆, Rd \ Γ) . (1.3.55)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 65

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✦ Apply JTD·KΓ: In light of
q

Ψ∆
SL

y
Γ
= 0, see (1.3.57), we infer

JTDuKΓ =
r
TDΨ∆

DL(JTDuKΓ)
z

Γ
⇔ JTDΨDLvKΓ = v ∀v ∈ H

1
2 (Γ) , (1.3.63)

because any jump JTDuKΓ can be realized by choosing an appropriate u.

✦ Apply JTN·KΓ: By virtue of (1.3.61) we obtain from (1.3.55)

JTNuKΓ = −
r
TNΨ∆

SL(JTNuKΓ)
z

Γ︸ ︷︷ ︸
=−JTNuKΓ

+
r
TNΨ∆

DL(JTDuKΓ)
z

Γ

mr
TNΨ∆

DLv
z

Γ
= 0 ∀v ∈ H

1
2 (Γ) . (1.3.64)

The following theorem summarizes our finding (1.3.57), (1.3.61), (1.3.63), (1.3.64).

Theorem 1.3.65. Jump relations for layer potentials [SS10, Thm. 3.3.1]

The single and double layer potentials Ψ∆
SL and Ψ∆

DL satisfy for all φ ∈ H−
1
2 (Γ) and v ∈ H

1
2 (Γ)

the jump relations

r
TDΨ∆

SLφ
z

Γ
= 0 ,

r
TDΨ∆

DLv
z

Γ
= v in H

1
2 (Γ) ,

r
TNΨ∆

SLφ
z

Γ
= −φ ,

r
TNΨ∆

DLv
z

Γ
= 0 in H−

1
2 (Γ) .

(1.3.66)

1.3.4 Boundary Integral Operators (BIOs)

Boundary integral operators (BIOs) arise from applying traces to layer potentials. By the results of Sec-
tion 1.3.2 this is possible and the continuity properties in energy trace spaces are immediately clear. The
challenge is to establish concrete integral formulas for the BIOs.

We exclusively focus on the Laplace operator, but point out that analogous considerations applyu to all
scalar second-order differential operators with constant coefficients.

1.3.4.1 Formal Definition

As explained in § 1.3.1:

Two traces

{
TD

TN

}
+ two layer potentials

{
Ψ∆

SL
Ψ∆

DL

}
four BIOs !

Layer potentials are defined everywhere in Rd \ Γ. The jump relations of Thm. 1.3.65 teach that traces of
layer potentials may jump. Thus it makes a difference whether we take the trace from inside or outside Ω.
The convention adopted in the literature resorts to the average {T·}Γ of traces to resolve this ambiguity.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 66

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.3.67. Boundary integral operators for −∆

The four boundary integral operators associated with the Laplacian −∆ are defined as follows:

single layer BIO: V(φ) :=
{
TDΨ∆

SL(φ)
}

Γ
, φ ∈ H−

1
2 (Γ) ,

double layer BIO: K(v) :=
{
TDΨ∆

DL(v)
}

Γ
, v ∈ H

1
2 (Γ) ,

adjoint double layer BIO: K′(φ) :=
{
TNΨ∆

SL(φ)
}

Γ
, φ ∈ H−

1
2 (Γ) ,

hypersingular BIO: W(v) := −
{
TNΨ∆

DL(v)
}

Γ
, v ∈ H

1
2 (Γ) .

The mapping properties of BIOs in trace spaces follow immediately from what we know:

Continuity of
trace operators

(Cor. 1.3.10, Thm. 1.3.35)
+

Continuity of
layer potentials

(Thm. 1.3.46, Thm. 1.3.49)

Continuity
of BIOs

The next theorem gives summary.

Theorem 1.3.68. Continuity of boundary integral operators

The following linear operators are continuous:

single layer BIO: V : H−
1
2 (Γ) → H

1
2 (Γ) ,

double layer BIO: K : H
1
2 (Γ) → H

1
2 (Γ) ,

adjoint double layer BIO: K′ : H−
1
2 (Γ) → H−

1
2 (Γ) ,

hypersingular BIO: W : H
1
2 (Γ) → H−

1
2 (Γ) .

Supplement 1.3.69 (Adjointness of double layer potentials).

The reason, why K′ is called the adjoint double layer boundary integral operator is the formula
∫

Γ
(Ku)(x) φ(x)dS(x) =

∫

Γ
u(x) (K′φ)(x)dS(y) , (1.3.70)

which has to be seen from the perspective of the definition (1.2.28) of an adjoint operator. The proof of
the formula makes use of the fact that, if u and v are harmonic in Ω, then

∫

Γ
(TDu)(x) (TNv)(x)dS(x) =

∫

Γ
(TNu)(x) (TDv)(x)dS(x) ,

which is a consequence of (1.3.26). △

(1.3.71) Continuity of BIOs in spaces of higher smoothness

Through Lipschitz parameterization of Γ we can define Sobolev spaces on Γ, see [SS10, Sect 2.4]: A
function f ∈ L2(Γ) belongs to H1(Γ), if its pullback under the parameterization belongs to H1 on the
parameter domain.

As explained in [SS10, Sect. 3.1.2], the trace operators and the layer potentials also enjoy continu-
ity in higher order Sobolev spaces. Hence, this is inherited by the boundary integral operators [SS10,
Rem. 3.1.18], [Ste08, Sect. 6.6.5].

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 67

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.3.72. “Higher” continuity of BIOs

The boundary integral operators from Def. 1.3.67 are continuous as operators mapping between

the following spaces:

single layer BIO: V : L2(Γ) → H1(Γ) ,

double layer BIO: K : L2(Γ) → L2(Γ) ,

adjoint double layer BIO: K′ : L2(Γ) → L2(Γ) ,

hypersingular BIO: W : H1(Γ) → L2(Γ) .

1.3.4.2 Integral Representations

“Integral representations” mean the possibility to write a boundary integral operator applied to a sufficiently

smooth function f : Γ→ R in the form

f 7→ {x 7→
∫

Γ
k(x, y) f (y)dS(y) x ∈ Γ} , (1.3.73)

with a kernel k : Γ × Γ → R. From Def. 1.3.67 it is not immediately clear that this is possible for the
four BIOs. However, for numerical purposes it is essential that such integral representations are at our
disposal.

(1.3.74) Integral representation for single layer BIO

We have already noted

G∆(x, y) =





− 1

2π
log‖x− y‖ , if d = 2 ,

1

4π

1

‖x− y‖ , if d = 3 .
(1.2.44)

This implies that y 7→ G∆(x, y) is integrable even on Γ: {y 7→ G∆(x, y)} ∈ L1(Γ) for any x ∈ Rd.
Hence, for φ ∈ L∞(Γ) we have the integral representation as an improper (due to “G∆(x, x) = ∞”)
integral

(Vφ)(x) =
∫

Γ
G∆(x, y) φ(y)dS(y) . (1.3.75)

The situation is more involved for the remaining BIOs, because their kernels feature stronger singularities
and fail to be integrable on Γ.

(1.3.76) Integral representation for double layer BIOs

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 68

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The kernel of the double layer potential for −∆

(Ψ∆
DLv)(x) =

∫

Γ

x− y

ωd‖x− y‖d
· n(y) v(y)dS(y) , ωd :=

{
2π for d = 2 ,

4π for d = 3 ,
(1.3.77)

is not integrable a priori. On smooth parts of Γ, however, we make the following observation:

Fig. 19

x y

n(y)

Γ

Lemma 1.3.78.

If Γ is C2-smooth in a neighborhood of x ∈ Γ, then

|(x− y) · n(y)| = O(‖x− y‖2) (1.3.79)

for y ∈ Γ→ x.

✁ As y → x on Γ the normal n(y) becomes “more and more
orthogonal” to x− y, see [SS10, Lemma 2.2.14] for a rigor-
ous proof.

Under Ass. 1.2.6/Ass. 1.2.8 (Γ is a curved polygon/polyhedron with smooth faces) the kernel of the
double layer potential behaves like

k(x, y) =
x− y

ωd‖x− y‖d
· n(y) = O(‖x− y‖2−d) for y ∈ Γ→ x ,

for almost all x ∈ Γ.

Hence, for almost all x ∈ Γ we can take for granted the integral representation formulas

K(v)(x) =
∫

Γ

x− y

ωd‖x− y‖d
· n(y) v(y)dS(y) , x ∈ smooth part of Γ , (1.3.80)

K′(φ)(x) =
∫

Γ

y− x

ωd‖x− y‖d
· n(x) φ(y)dS(y) , x ∈ smooth part of Γ . (1.3.81)

A rigorous treatment and a discussion of what happens at edges and corners can be found in [Hac95,
Sect. 8.2] and [SS10, Sect. 3.3.3].

(1.3.82) No integral representation for hypersingular BIO

Formally applying the Neumann trace TN to the double layer potential ΨDL yields

(TNΨDLv)(x) =
∫

Γ

(
n(y) · n(x)
‖x− y‖d

− d
(n(y) · (x− y))(n(x) · (x− y))

‖x− y‖d+2

)
v(y)dS(y)

non-integrable for x ∈ Γ integrable by Lemma 1.3.78

There is no useful surface integral representation for then hypersingular integral operator.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 69

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.3.4.3 Variational Form for Hypersingular BIO

Fortunately, it has been discovered that the hypersingular operator W in weak form is amenable to a
reformulation by integration by parts that curbs the strength of the singularity of the kernel.

Let us first examine that weak form: By Thm. 1.3.68 the hypersingular operator maps continuously W :

H
1
2 (Γ) → H−

1
2 (Γ). Therefore, owing to Thm. 1.3.41, it gives rise to a continuous bilinear form

aW :

{
H

1
2 (Γ)× H

1
2 (Γ) → R

(u, v) 7→
∫

Γ
(Wu)(x) v(x)dS(x)

. (1.3.83)

provided that u, v are “sufficiently smooth”, by “technical manipulations” equivalent expressions for
aW(u, v) can be derived that merely involve improper integrals on Γ.

(1.3.84) Integration by parts on curves

Let γ : [0, 1] → R2 be a C2-parameterization of a curve Σ with endpoints a, b. The arclength derivative
of a function f ∈ C1(Σ) in y ∈ Σ is (̇ tags the derivative of an univariate function)

d f

ds
(y) = Ḟ(t∗) ‖γ̇(t∗)‖−1 , y =: γ(t∗), F(t) := f (γ(t)) , 0 ≤ t, t∗ ≤ 1 . (1.3.85)

As a consequence of the chain rule, the arclength derivative is independent of the parameterization.

Given another function g ∈ C1(Σ), G := g ◦ γ, we find the integration by parts formula for the arclength
derivative:

∫

Σ

d f

ds
(y) g(y)dS(y) =

1∫

0

Ḟ(t)

‖γ̇(t)‖ G(t) ‖γ̇(t)‖dt =

1∫

0

Ḟ(t) G(t)dt

= F(1)G(1) − F(0)G(0) −
1∫

0

F(t) Ġ(t)dt

= f (b)g(b) − f (a)g(b) −
∫

Σ
f (y)

dg

ds
(y)dS(y) .

Let Γ be a closed curved Lipschitz polygon according to Ass. 1.2.6:

Γ = Γ1 ∪ · · · ∪ ΓM , C2-parameterizations γj : [0, 1]→ Γj ,
γj−1(1) = γj(1) ,

γM(1) = γ1(0) .

Then we apply the integration by parts formula for the arclength derivative on each segment and observe
that the endpoint contributions cancel:

Lemma 1.3.86. Arclength integration by parts

With Γ a closed Lipschitz curve satisfying Ass. 1.2.6 for f , g ∈ C1(Γ) we have

∫

Γ

d f

ds
(y) g(y)dS(y) = −

∫

Γ
f (y)

dg

ds
(y)dS(y) . (1.3.87)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 70

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.3.88) Arclength derivative of restrictions

With the notations of the previous §, if f = f̃
∣∣∣
Σ

, where f̃ is a C1-function defined in a neighborhood of Σ,

then, by the chain rule,

d f

ds
(y) = grad f̃ (y) · t(y) , y ∈ Σ , (1.3.89)

with t standing for the unit tangent vector field at Σ:

Fig. 20

y

t(y)

n(y)

Σ

t(y) = n(y)⊥ :=

[−n2(y)
n1(y)

]
,

n(y) =

[
n1(y)
n2(y)

]
=̂ unit normal vector at Σ .

(1.3.90) Integration by parts of aW in 2D

We start from the formula for the double layer potential

(Ψ∆
DLu)(x) =

∫

Γ
grady G∆(x, y) · n(y) u(y)dS(y) ,

for u ∈ C1
pw(Γ) smooth on all segments of Γ. By elementary computations

∂G∆

∂xi
(x, y) = − 1

2π

∂

∂xi
{log‖x− y‖} = − 1

2π

yi − xi

‖x− y‖2
=

1

2π

xi − yi

‖x− y‖2
= −∂G∆

∂yi
(x, y) , x 6= y .

Hence, for y ∈ Γ,

∂

∂xi

(
grady G∆(x, y) · n(y)

)
= − grady

∂

∂yi
G∆(x, y) · n(y) , x 6= y .

d

ds

(
∂G∆

∂y1
(x, y)

)
= n1(y)

∂2G∆

∂y1∂y2
(x, y)− n2(y)

∂2G∆

∂y1
2
(x, y)

(∗)
= n1(y)

∂2G∆

∂y1∂y2
(x, y) + n2(y)

∂2G∆

∂y2
2
(x, y)

= n(y) · grady

(
∂G∆

∂y2
(x, y)

)
,

d

ds

(
∂G∆

∂y2
(x, y)

)
= −n(y) · grady

(
∂G∆

∂y1
(x, y)

)
.

In step (∗) we used that

∆yG∆(x, y) =
∂2G∆

∂y1
2
(x, y) +

∂2G∆

∂y2
2
(x, y) = 0 .

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 71

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Using all these auxiliary results, we obtain for the partial derivatives of the double layer potential

∂Ψ∆
DL(u)

∂x1
(x) =

∫

Γ

∂

∂x1

(
grady G∆(x, y) · n(y)

)
u(y), dS(y)

= −
∫

Γ
grady

{
∂G∆

∂y1
(x, y)

}
· n(y)dS(y)

=
∫

Γ

d

ds

{
∂G∆

∂y2
(x, y)

}
u(y)dS(y)

= −
∫

Γ

∂G∆

∂y2
(x, y)

du

ds
(y)dS(y) ,

∂Ψ∆
DL(u)

∂x2
(x) =

∫

Γ

∂G∆

∂y1
(x, y)

du

ds
(y)dS(y) .

Now we attack the Neumann trace of the double layer potential in x ∈ Γ. We dodge issues of integrability
and and rely on formal manipulations (that can all be justified rigorously, of course). Using the above
expressions for grad Ψ∆

DL(u) we recover another arclength derivative:

(grad Ψ∆
DLu)(x) · n(x) =

∫

Γ

{
−n1(x)

∂G∆

∂y2
(x, y) + n2(x)

∂G∆

∂y1
(x, y)

}
du

ds
(y)dS(y)

∫

Γ

{
n1(x)

∂G∆

∂x2
(x, y)− n2(x)

∂G∆

∂x1
(x, y)

}
du

ds
(y)dS(y)

∫

Γ

d

ds(x)

{
G∆(x, y)

du

ds
(y)

}
dS(y) .

This arclength derivative can be moved onto the second argument of the bilinear form aW:

aW(u, v) = −
∫

Γ
(grad ΨDLu)(x) · n(x) v(x)dS(x)

= −
∫

Γ

∫

Γ

d

ds(x)

{
G∆(x, y)

du

ds
(y)

}
dS(y) v(x)dS(x)

=
∫

Γ

∫

Γ
G∆(x, y)

du

ds
(y)

dv

ds
(x)dS(y)dS(x) .

Finally, we have arrived at an integral operator with the same integrable kernel as V. We traded this
reduction of the singularity of the kernel for the need to differentiate the argument functions.

Theorem 1.3.91. Integral representation of aW in 2D

If d = 2, u, v ∈ C1
pw(Γ), then the bilinear form aW from (1.3.83) induced by the hypersingular

operator W : H
1
2 (Γ) → H−

1
2 (Γ) can be expressed as

aW(u, v) = − 1
2π

∫

Γ

∫

Γ
log‖x− y‖ du

ds
(y)

dv

ds
(x)dS(y)dS(x) , (1.3.92)

where d
ds designates the arclength derivative, see (1.3.85).

(1.3.93) Surface gradient

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 72

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

For the statement of the 3D counterpart of Thm. 1.3.91 we need another tool: Let Σ be an orientable
surface with a C1-parameterization γ : Π ⊂ R2 → R3. For f ∈ C1(Σ) its surface gradient gradΓ f is a
tangential vector field defined as

(gradΓ f)(γ(x̂)) = Dγ(x̂)(grad F)(x̂) , x̂ ∈ Π , F := f ◦ γ . (1.3.94)

The surface gradient does not depend on the parameterization.

(1.3.95) Integration by parts of aW in 3D

Also the hypersingular operator in 3D is amenable to manipulations similar to those in § 1.3.90. Yet, tech-
nicalities are formidable and we refer to [Ste08, pp. 131-136] for the case of W, and to [SS10, Sect. 3.3.4]
for the case of a general scalar second-order differential operator. [Ste08, Thm. 6.17] reads as follows:

Theorem 1.3.96. Integral representation of aW in 3D

If d = 2, u, v ∈ C1
pw(Γ), then the bilinear form aW from (1.3.83) induced by the hypersingular

operator W : H
1
2 (Γ) → H−

1
2 (Γ) can be expressed as

aW(u, v) =
1

4π

∫

Γ

∫

Γ

1

‖x− y‖
(
gradΓ u(y)× n(y)

)
·
(
gradΓ v(x)× n(x)

)
dS(y)dS(x) ,

(1.3.97)

where gradΓ designates the surface gradient, see (1.3.94), and × stands for the vector product.

1.3.5 Direct Boundary Integral Equations

Now we have all the building blocks ready to devise boundary integral equations that permit us to solve
boundary value problems.

The road to boundary integral equations (BIE):

Representation formula (1.3.2)

+
Trace operators TD & TN (→ Def. 1.3.3, Def. 1.3.22)

+
Jump relations, Thm. 1.3.65

✞
✝

☎
✆Boundary integral equations (BIEs)

In Def. 1.3.67 we defined boundary integral operators on Γ := ∂Ω by taking the average Dirichlet- and
Neumann traces of the two layer potentials. To facilitate notations we now tag traces from outside Ω with

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 73

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

“+”: generically T+, specifically T+
N, T+

D. For traces from inside Ω we keep the notations TD, TN, and
only occasionally write T−D, T−N to contrast them with exterior traces. For both T−N/TN and T+

N the normal
vector n points from Ω into Ω′ (exterior unit normal vector for Ω).

Using this new notation we can rewrite the definition of the boundary integral operators:

single layer BIO: V(φ) := 1
2

(
T+

D(Ψ
∆
SL(φ)) + T−D(Ψ

∆
SL(φ))

)
, φ ∈ H−

1
2 (Γ) ,

double layer BIO: K(v) := 1
2

(
T+

D(Ψ
∆
DL(v)) + T−D(Ψ

∆
DL(v))

)
, v ∈ H

1
2 (Γ) ,

adjoint double layer BIO: K′(φ) := 1
2

(
T+

N(Ψ
∆
SL(φ)) + T−N(Ψ

∆
SL(φ))

)
, φ ∈ H−

1
2 (Γ) ,

hypersingular BIO: W(v) := − 1
2

(
T+

N(Ψ
∆
DL(v)) + T−N(Ψ

∆
DL(v))

)
, v ∈ H

1
2 (Γ) .

We combine this with the jump relations of Thm. 1.3.65

T+
D(Ψ

∆
SL(φ))− T−D(Ψ

∆
SL(φ)) = 0 , T+

D(Ψ
∆
DL(v))− T−D(Ψ

∆
DL(v)) = v .

T+
N(Ψ

∆
SL(φ))− T−N(Ψ

∆
SL(φ)) = −φ , T+

N(Ψ
∆
DL(v))− T−N(Ψ

∆
DL(v)) = 0 .

Thus we can easily isolate interior and exterior traces of layer potentials:

T−D(Ψ
∆
SL(φ)) = V(φ) , T+

D(Ψ
∆
SL(φ)) = V(φ) , (1.3.98a)

T−D(Ψ
∆
DL(v)) = − 1

2v+ K(v) , T+
D(Ψ

∆
DL(φ)) =

1
2v+ K(v) , (1.3.98b)

T
−
N(Ψ

∆
SL(φ)) =

1
2φ + K

′(φ) , T
+
N(Ψ

∆
SL(φ)) = − 1

2φ + K
′(φ) , (1.3.98c)

T−N(Ψ
∆
DL(v)) = −W(v) , T+

N(Ψ
∆
DL(φ)) = −W(v) . (1.3.98d)

Thus, when applying the trace operators to the representation formula for harmonic (∆u = 0) functions
in Ω

u(x) = Ψ∆
SL(TNu)−Ψ∆

DL(TDu) , u ∈ H1(Ω), ∆u = 0 , (1.3.99)

we obtain two boundary integral equations

Fundamental BIEs

[apply TD:] TDu = V(TNu)− (− 1
2 Id+ K)(TDu) , (1.3.101a)

[apply TN:] TNu = (1
2 Id+ K′)(TNu) +W(TDu) . (1.3.101b)

The boundary integral equations can be written in various block operator forms using the conventions of
matrix×vector multiplication for operators on function spaces:

[
1
2 Id− K V

W 1
2 Id+ K′

][
TDu
TNu

]
=

[
TDu
TNu

]
⇔

[
1
2 Id+ K −V
−W 1

2 Id− K′

][
TDu
TNu

]
= 0 . (1.3.102)

The next result is the foundation of numerical methods relying on direct boundary integral equations,
because it tells us that solutions of boundary integral equations are in one-to-one relationship to solutions
of boundary value problems.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 74

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.3.103. Characterization of Cauchy data

A pair of functions (u, ψ) ∈ H
1
2 (Γ)× H−

1
2 (Γ) solves the boundary integral equations

[
1
2 Id− K V

W 1
2 Id+ K′

][
u

ψ

]
=

[
u

ψ

]
⇔

[
1
2 Id+ K −V
−W 1

2 Id− K′

][
u

ψ

]
= 0 , (1.3.104)

if and only if there is a function u ∈ H1(Ω) with ∆u = 0 in Ω such that

u = TDu , ψ = TNu . (1.3.105)

Proof. “⇒”: If (u, ψ) ∈ H
1
2 (Γ)× H−

1
2 (Γ) provide a solution of (1.3.104), then choose u according to

u(x) = Ψ∆
SL(ψ)(x)−Ψ∆

DL(u)(x) , x ∈ Ω ,

cf. (1.3.99). Lemma 1.2.69 and Lemma 1.2.76 confirm that we obtain a harmonic function. The trace
matching is a direct consequence of the BIEs (1.3.104) and (1.3.98).

“⇐”: The BIE (1.3.104) are a direct consequence of the representation theorem Thm. 1.3.54 and (1.3.98).

✷

Remark 1.3.106 (BIEs for general second-order scalar differential operators)

All of the above developments and results for −∆ carry over to scalar second-order differential operators
with constant coefficients, cf. (1.2.1), with suitable fundamental solutions and an altered definition of TN,
of course, see Rem. 1.3.44.

1.3.5.1 First-kind BIEs

(1.3.107) Model boundary value problems

Our goal is to solve either of the following two “canonical” boundary value problems (BVPs) for the Lapla-
cian −∆, which we give in strong form, though we usually consider weak (variational) solutions.

✦ Dirichlet BVP: given g ∈ H
1
2 (Γ) find u ∈ H1(Ω) such that

−∆u = 0 in Ω , TDu = g on Γ . (1.3.108)

✦ Neumann BVP: given η ∈ H
− 1

2∗ (Γ) determine u ∈ H1
∗(Ω) such that

−∆u = 0 in Ω , TNu = η on Γ . (1.3.109)

The “∗-spaces” are defined as spaces of functions with vanishing average:

H
− 1

2∗ (Γ) := {φ ∈ H−
1
2 (Γ) :

∫

Γ
φ(x)dS(x) = 0} ,

H1
∗(Ω) := {v ∈ H1(Ω) :

∫

Ω
v dx = 0} .

This choice reflects

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 75

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

➣ the failure of the pure Neumann problem (1.3.109) to possess a unique solution
(adding an arbitrary constant yields another solution),

➣ the corresponding compatibility condition on the Neumann data η [Hip16, Ex. 2.9.10].

Now we formulate BIEs related to these boundary value problems for −∆. Of course, we cannot solve
for the function u ∈ H1(Ω), because BIEs are set in trace spaces. Rather, we consider a BVP solved in
the sense of BIEs, if both the Dirichlet trace TDu and the Neumann trace TNu of the solution have been
found. Then u can be recovered in a post-processing step based on evaluating the representation formula
(1.3.99).

(1.3.110) First-kind BIEs for the Dirichlet problem

In the case of (1.3.108) we have to find the unknown Neumann trace TNu ∈ H−
1
2 (Γ). Since TDu = g is

know, we can get it from the BIE (1.3.101a)

V(TNu) = (1
2 Id+ K)g in H

1
2 (Γ) . (1.3.111)

Due to the mapping property V : H−
1
2 (Γ) → H

1
2 (Γ) and by the L2-duality of H

1
2 (Γ) and H−

1
2 (Γ), see

Thm. 1.3.41 and (1.3.43a),

u, v ∈ H
1
2 (Γ): u = v ⇔

∫

Γ
(u− v)(x) φ(x)dS(x) = 0 ∀φ ∈ H−

1
2 (Γ) , (1.3.43a)

this operator equation has a natural equivalent variational form:

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id+ K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.112)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) . (1.3.113)

The bilinear form aV : H−
1
2 (Γ) × H−

1
2 (Γ) → R is clearly symmetric and bounded by Thm. 1.3.68 and

Thm. 1.3.41. If we can show that it defines an equivalent inner product on H−
1
2 (Γ), also called H−

1
2 (Γ)-

elliptic, then the Riesz representation theorem will guarantee unique solvability of (1.3.112). In 3D the next
theorem confirms this. An in-depth discussion is given in [Ste08, Sect. 6.6.1].

Theorem 1.3.114. Ellipticity of aV in 3D

For d = 3 the bilinear for aV is H−
1
2 (Γ)-elliptic:

∃C > 0: |aV(φ, φ)| ≥ C‖φ‖2

H−
1
2 (Γ)

∀φ ∈ H−
1
2 (Γ) . (1.3.115)

Proof. For d = 3 the decay conditions (1.1.76) satisfied by the single layer potential Ψ∆
SL ensure that

the pairing identity (1.3.37) holds for both domains Ω and Ω′, no matter whether they are bounded or
unbounded:

∫

Γ
(TNΨ∆

SL(φ))(x)(TDΨ∆
SL(φ))(x)dS(x) =

∫

Ω
‖grad ΨSL(φ)(x)‖2 dx . (1.3.116)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 76

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Based on the jump relations for Ψ∆
SL(φ) we deduce from (1.3.116)

∫

Γ
V(φ) φ(x)dS(x) = −

∫

Γ
TD(Ψ

∆
SL(φ))(x)

r
TNΨ∆

SL(φ)
z

Γ
(x)dS(x)

= 1
2

∫

Γ
TD(Ψ

∆
SL(φ))(x)TN(Ψ

∆
SL(φ))(x)− T

+
D(Ψ

∆
SL(φ))(x)T

+
N(Ψ

∆
SL(φ))(x)dS(x)

= 1
2

(∣∣∣Ψ∆
SL(φ)

∣∣∣
2

H1(Ω)
+
∣∣∣Ψ∆

SL(φ)
∣∣∣
2

H1(Ω′)

)
= ‖φ‖2

H−
1
2 (Γ)

,

thanks to Def. 1.3.29, which means

∣∣∣Ψ∆
SL(φ)

∣∣∣
2

H1(Ω)
+
∣∣∣Ψ∆

SL(φ)
∣∣∣
2

H1(Ω′)
=
∥∥φ̃
∥∥2

H̃−1(Ω)
= ‖φ‖2

H−
1
2 (Γ)

. (1.3.117)

Note that T+
N employs a normal vector field oriented opposite to the exterior normal vector field of Ω′.

This explains the flipping of signs in the above manipulations.
✷

The poor decay properties of Ψ∆
SL(φ) in 2D thwart (1.3.116). Nevertheless, the following result is available.

Theorem 1.3.118. Ellipticity of aV in 2D

For d = 2 the bilinear for aV is only H
− 1

2∗ (Γ)-elliptic.

If diam Ω < 1 then aV is H−
1
2 (Γ)-elliptic also for d = 2.

The variational problem

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id− K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.112)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) .

has a unique solution ψ for any g ∈ H
1
2 (Γ), provided that for d = 2 we have diam Ω < 1, because

in this case aV provides an inner product for H−
1
2 (Γ).

(1.3.119) First-kind BIEs for the Neumann problem

In (1.3.109) the Neumann trace η ∈ H
− 1

2∗ (Γ) is given and we seek the unknown Dirichlet trace TDu of
the solution u. From (1.3.101b) we get

W(TDu) = (1
2 Id− K′)η in H−

1
2 (∆) . (1.3.120)

Invoking the duality relationship

φ, ψ ∈ H−
1
2 (Γ): ψ = φ ⇔

∫

Γ
(ψ− φ)(x) v(x)dS(x) = 0 ∀v ∈ H

1
2 (Γ) , (1.3.43b)

an equivalent variational formulation of (1.3.120) is

u ∈ H
1
2∗ (Γ): aW(u, v) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2∗ (Γ) , (1.3.121)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 77

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

aW(u, v) :=
∫

Γ
W(u)(x) v(x)dS(x) ,

where H
1
2∗ (Γ) :=

{
v ∈ H

1
2 (Γ) :

∫
Γ

v(x)dS(x) = 0
}

.

The need to restrict trial and test functions to the space H
1
2∗ (Γ) of functions with vanishing mean is clear

from the representations (1.3.92) and (1.3.97). They imply

aW(u, v) = 0 ∀v ∈ H
1
2 (Γ) ⇔ u ≡ const. . (1.3.122)

On the complement of its kernel aW enjoys ellipticity, see [Ste08, Sect. 6.6.2] for details.

Theorem 1.3.123. Ellipticity of aW

The bilinear form aW induced by the hypersingular boundary integral operator W : H
1
2 (Γ) →

H−
1
2 (Γ) is H

1
2∗ (Γ)-elliptic

∃C > 0: |aW(v, v)| ≥ C‖v‖2

H
1
2 (Γ)

∀v ∈ H
1
2∗ (Γ) . (1.3.124)

The variational problem (1.3.121) has a unique solution u ∈ H
1
2∗ (Γ) for any η ∈ H

− 1
2∗ (Γ).

Remark 1.3.125 (“First-kind”)

Boundary integral equations are of the first kind if the mapping properties of the boundary integral operator
on the left-hand side support a natural variational formulation in energy trace spaces via duality. Examples
are (1.3.111) and (1.3.120).

1.3.5.2 Second-kind BIEs

You might have been wondering why we simply ignored the second equation of (1.3.101) when treating the
Dirichlet problem in § 1.3.110, and why we skipped the first equation in the case of the Neumann problem
in § 1.3.119. The reason was that using these other equations will not result in a first-kind BIE. Now we
study what we get from them.

(1.3.126) Second-kind BIE for the Dirichlet problem

We consider the boundary value problem 1.3.108. Knowing g = TDu we have to determine ψ := TNu.
From (1.3.101b) we extract the BIE

(1
2 Id− K′)ψ = W(g) in H−

1
2 (Γ) . (1.3.127)

In light of the duality of Thm. 1.3.41, (1.3.43), a natural variational formulation of 1.3.127 is

ψ ∈ H−
1
2 (Γ):

∫

Γ
((1

2 Id− K′)ψ)(x) v(x)dS(x) =
∫

Γ
(Wg)(x) v(x)dS(x)[= aW(g, v)] ∀v ∈ H

1
2 (Γ) .

(1.3.128)

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 78

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.3.129) Second-kind BIE for the Neumann problem

We want to solve the Neumann boundary value problem (1.3.109) by finding the unknown Dirichlet data
u := TDu. We use (1.3.101a) and end up with the BIE

(1
2 Id+ K)u = Vη in H

1
2 (Γ) . (1.3.130)

The duality (1.3.43a) yields the equivalent variational equation:

u ∈ H
1
2∗ (Γ):

∫

Γ
((1

2 Id+ K)u)(x) φ(x)dS(x) =
∫

Γ
(Vη)(x) φ(x)dS(x)[aV(η, φ)] ∀φ ∈ H

1
2∗ (Λ) .

(1.3.131)

(1.3.132) Variational formulations in L2(Γ)

Unfortunately the variational formulations (1.3.128) and (1.3.131) share the undesirable (from the point of
view of Galerkin discretization) feature that trial and test spaces do no coincide.

This can be remedied by switching to variational formulations in L2(Γ). We multiply the BIEs (1.3.127)
and (1.3.130) with a test function w ∈ L2(Γ) and integrate over Γ. When also using L2(Γ) as trial space,
we end up with

ψ ∈ L2(Γ):
∫

Γ
((1

2 Id− K′)ψ)(x)w(x)dS(x) =
∫

Γ
(Wg)(x)w(x)dS(x) ∀w ∈ L2(Γ) , (1.3.133)

u ∈ L2
∗(Γ):

∫

Γ
((1

2 Id+ K)u)(x)w(x)dS(x) =
∫

Γ
(Vη)(x)w(x)dS(x) ∀w ∈ L2

∗(Γ) , (1.3.134)

with L2
∗(Γ) := {v ∈ L2(Γ) :

∫
Γ

v(x)dS(x) = 0}. Note that assuming g ∈ H1(Γ), thanks to Thm. 1.3.72

these variational equations are meaningful (right-hand and left-hand sides are continuous on L2(Γ)).
Yet the bilinear forms occurring in (1.3.133) and (1.3.134) are neither symmetric nor elliptic. Results on
existence and uniqueness of solutions of the BIEs (1.3.127) and (1.3.130), and the variational equations
(1.3.133) and (1.3.134) required profound mathematical tools [Ste08, Sect. 6.6.4].

Remark 1.3.135 (“Second-kind”)

Boundary integral equations of the second kind are distinguished by a left-hand side operator of the form
cId+ T, where c 6= 0 and T is a continuous operator in L2. Obviously, the BIEs (1.3.130) and (1.3.131)
are of this type.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 79

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.3.6 Indirect Boundary Integral Equations

In the previous sections we used the fundamental result of Thm. 1.3.103 to obtain (variational) boundary
integral equations. Now we boldly “guess” a formula for the solutions of Dirichlet and Neumann boundary
value problems (1.3.108) and (1.3.109) and justify it a posteriori.

We start by recalling from Lemma 1.2.69 and Lemma 1.2.76 that

✔ ∆Ψ∆
SL = ∆Ψ∆

DL = 0 in Rd \ Γ ,

✔ Ψ∆
SL and Ψ∆

DL satisfy “decay conditions at ∞”.
(1.3.136)

Idea: Use trial expressions based on layer potentials:

u = Ψ∆
SL(φ) or u = Ψ∆

DL(f) (1.3.137)

with unknown functions φ, f : Γ → R for the solution u of the boundary value
problems (1.3.108) and (1.3.109).

Be aware that at this point we have no guarantee that the weak solution u ∈ H1(Ω) of the boundary value
problems allows any of the representations from (1.3.137). Strictly speaking, once we have proposed
a way how to determine φ or f we have to proof that the trial expression really satisfies the boundary
conditions.

(1.3.138) Indirect first-kind BIE for the Dirichlet problem

For the Dirichlet problem: given g ∈ H
1
2 (Γ) find u ∈ H1(Ω) such that

−∆u = 0 in Ω , TDu = g on Γ , (1.3.108)

we try u = Ψ∆
SL(φ) .

We impose the prescribed trace by applying TD and use (1.3.98a), TDΨ∆
SL(φ) = V(φ):

BIE: V(φ) = g in H
1
2 (Γ) . (1.3.139)

By duality we obtain the natural variational formulation of this BIE in energy trace space:

φ ∈ H−
1
2 (Γ): aV(φ, ψ) =

∫

Γ
g(x)ψ(x)dS(x) ∀ψ ∈ H−

1
2 (Γ) . (1.3.140)

Notice that this variational problem is based on the same bilinear form aV as the first-kind variational
formulation (1.3.112).

Theorem 1.3.141. Validity of 1st-kind indirect BIE for Dirichlet problem

In the case d = 2 assume diam(Ω) < 1. Then u = Ψ∆
SL(φ) solves (1.3.108) for the unique

solution φ ∈ H−
1
2 (Γ) of (1.3.140).

Proof. Existence and uniqueness of a solution φ ∈ H−
1
2 (Γ) of (1.3.140) follows from Thm. 1.3.114 and

Thm. 1.3.118. That u complies with the boundary conditions is built into the BIE (1.3.139).
✷

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 80

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.3.142) Indirect first-kind BIE for the Neumann problem

We consider the Neumann problem: given η ∈ H
− 1

2∗ (Γ) determine u ∈ H1∗(Ω) such that

−∆u = 0 in Ω , TNu = η on Γ , (1.3.109)

we try u = Ψ∆
DL(f) .

To enforce the prescribed Neumann trace on u apply TN and use (1.3.98d):

BIE: W(f) = η in H−
1
2 (Γ) . (1.3.143)

Duality yields the natural variational formulation in energy trace spaces

f ∈ H
1
2∗ (Γ): aW(f, v) =

∫

Γ
η(x) v(x)dS(x) ∀v ∈ H

1
2∗ (Γ) . (1.3.144)

Again, we have arrived at a variational formulation involving the same bilinear form aW and trace spaces
as the first-kind variational problem (1.3.121).

Theorem 1.3.145. Validity of 1st-kind indirect BIE for Neumann problem

If f ∈ H
1
2∗ (Γ) is the unique solution of (1.3.144), then u := Ψ∆

DL(f) solves the Neumann problem

(1.3.109).

Proof. The assertion is immediate from Thm. 1.3.123 and the construction of the BIE (1.3.143).
✷

Remark 1.3.146 (Meaning of “density unknowns” φ and v)

The unknown functions φ ∈ H−
1
2 (Γ) in (1.3.139) and v ∈ H

1
2∗ (Γ) in (1.3.143) do not agree with any trace

of the solution u of the related BVP; they are called densities.

However, there is a relationship with traces that we elaborate for (1.3.139). By the jump relations of
Thm. 1.3.65 we have for u = Ψ∆

SL(φ).

➊ JTNuKΓ =
r
TNΨ∆

SL(φ)
z

Γ
= −φ on Γ ,

➋ T−Du = T+
Du = V(φ) = g on Γ .

The solution φ ∈ H−
1
2 (Γ) of the indirect 1st-kind BIE (1.3.139) coincides with the jump across Γ of

the Neumann trace of the solutions of the Dirichlet BPVs (with data g) on Ω and Ω′.

The solution f ∈ H
1
2∗ (Γ) of the indirect 1st-kind BIE (1.3.143) coincides with the jump across Γ of

the Dirichlet trace of the solutions of the Neumann BPVs (with data η) on Ω and Ω′.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 81

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.4 Boundary Element Methods in Two Dimensions

(1.4.1) A C++ 2D BEM code ➺GITLAB

To demonstrate principles of implementation of 2D BEM we rely on a C++ port by C. Urzua (formerly, SAM,
ETH Zurich, now University of Graz, Austria) of the MATLAB BEM code HILBERT [Aur+14] developed in
the group of D. Praetorius at TU Wien.

The C++ library provides functions for the assembly of boundary element Galerkin matrices that will be
used for homework coding projects. Meshes (→ Def. 1.4.16) of a closed connected curve Γ := ∂Ω,
Ω ⊂ R2 are stored in BoundaryMesh objects, see Code 1.4.68. In the sequel let nV ∈ N and nE

denote the number of vertices and panels of the current mesh G.

• void computeV(Eigen::MatrixXd& V,const BoundaryMesh& mesh,double eta)

This function constructs the Galerking matrix V ∈ RnE,nE for the bilinear form aV induced by the
single layer BIO V, using S−1

0 (G) as test and trial space, equipped with the characteristic functions

βi
N ∈ S−1

0 (G), i = 1, . . . , nE, of panels as basis, see Ex. 1.4.28.

(V)ij = aV(β
j
N , βi

N) = −
1

2π

∫

π i

∫

π j

log‖x− y‖dS(y)dS(x) , i, j = 1, . . . , nE . (1.4.2)

Here and below, the input argument eta is the so-called admissibility parameter and defines which
entries are to be computed analytically (as in Section 1.4.3.2) or semi-analytically using numerical
quadrature for some of the integrals. Specifying eta=0.0 selects analytic formulas throughout.

• void computeW(Eigen::MatrixXd& W,const BoundaryMesh& mesh,double eta)

This function builds the Galerking matrix W ∈ RnV ,nV of the bilinear form aW induced by the hy-

persingular BIO W, using S0
1 (G) as test and trial spaces, endowed with the “tent function” basis

{b1
N , . . . , bnV

N }, see Ex. 1.4.30. The matrix entries are

(W)ij = aW(b
j
N , bi

N) = −
1

2π

∫

Γ

∫

Γ
log‖x− y‖db

j
N

ds
(y)

dbi
N

ds
(x)dS(y)dS(x) , (1.4.3)

for i, j = 1, . . . , nV .

• void computeK(Eigen::MatrixXd& K, const BoundaryMesh& mesh, double eta)

This function assembles the Galerking matrix K ∈ RnE,nV of the bilinear form induced by the double

layer BIO K, using S−1
0 (G) and S0

1 (G) as test and trial spaces, respectively. The standard nodal
bases from Ex. 1.4.28 and Ex. 1.4.30 are employed and we get for the matrix entries

(K)ij = aK(b
j
N , βi

N) = −
1

2π

∫

πi

∫

supp b
j
N

x− y

‖x− y‖2
· n(y)bj

N(y)dS(y)dS(x) , (1.4.4)

for i ∈ {1, . . . , nE}, j ∈ {1, . . . , nV}.
• void computeK00(Eigen::MatrixXd& K, const BoundaryMesh& mesh, double eta)

This function assembles the Galerking matrix K ∈ RnE,nE of the bilinear form induced by the double

layer BIO K, using S−1
0 (G) as test and trial space, equipped with the characteristic functions of

panels as basis.

(K0)ij = aK(β
j
N , βi

N) = −
1

2π

∫

πi

∫

π j

x− y

‖x− y‖2
· n(y)dS(y)dS(x) , (1.4.5)

for i, j = 1, . . . , nE.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 82

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert
http://www.asc.tuwien.ac.at/abem/?open=hilbert
http://www.asc.tuwien.ac.at/abem/?open=praetorius

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• void computeM01(Eigen::SparseMatrix<double> &M, const BoundaryMesh& mesh)

This function creates the so-called mass matrix M ∈ RnE,nV as defined in (1.4.50c). (Note that
for this case you need to initialize the matrix passed in M with its size before calling this function).
Please consult [Hip15, Section 2.7.3] to learn about data structures for sparse matrices in EIGEN.

• void computeM00(Eigen::SparseMatrix<double> &M, const BoundaryMesh& mesh)

This function creates another mass matrix M0 ∈ RnE,nE, a Galerkin matrix for the L2(Γ)-inner prod-
uct using S−1

0 (G) as trial and test space (with the standard nodal basis consisting of characteristic
functions of panels). As before, you must initialize the matrix M with its size nE × nE.

We refer to the Doxygen documentation of the library for further details on the implementation of these
methods.

1.4.1 Abstract Galerkin Discretization

Regardless of whether we tackle the first-kind variational boundary integral equations (1.3.112)/(1.3.121)
set in energy trace space or the second-kind versions (1.3.133)/(1.3.134), we face linear variational prob-
lems (→ Def. 1.1.57)

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.58)

posed on function spaces V = V0 on Γ in each case. In this section we recall from [Hip16, Section 3.2] the
policy of Galerkin discretization as an abstract approach for the approximate solution of linear variational
problems on infinite-dimensional spaces.

Galerkin approximation

Idea of Galerkin approximation:
Replace V0 in (1.1.58) with a finite dimensional subspace VN.
(VN ⊂ V0 called Galerkin (or discrete) trial space/test space)

Notation: Twofold nature of symbol “N”, cf. [Hip16, Section 1.5.2]:

✦ N = formal index, tagging “discrete entities” (→ “finite amount of information”)
✦ N = dim VN ∈ N =̂ dimension of Galerkin trial/test space

Discrete variational problem (DVP), cf. [Hip16, Eq. (1.5.9)],

uN ∈ VN : a(uN , vN) = ℓ(vN) ∀vN ∈ VN . (1.4.7)

Galerkin solution

The discrete variational problem is “discrete” in the sense that it involves only a finite number N of degrees
of freedom, but it is still not amenable to direct implementation. To that end, it has to be recast as a linear
system of equations (LSE), which can be accomplished as follows:

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 83

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Second step of Galerkin discretization

Recall from [Hip16, Section 1.5.2]: 2nd step of Galerkin discretization:

Introduce (ordered) basis BN of VN:

BN := {b1
N, . . . , bN

N} ⊂ VN , VN = Span{BN} , N := dim(VN) .

Unique basis expansions:

uN = µ1b1
N + · · ·+ µNbN

N , µi ∈ R

vN = ν1b1
N + · · ·+ νNbN

N , νi ∈ R
: plug into (1.4.7).

Remark 1.4.9 (Affine space V)

In Section 1.1.5 we saw the use of an affine space V = g + V0 with a so-called offset function g (→
[Hip16, Def. 1.3.23]) in order to impose essential boundary conditions in (1.1.61). Since the boundary
integral equations that we have encountered so far do not involve any “essential conditions” to be taken
into account in the trial trace, we will have V = V0 in the sequel.

The derivation of a linear system of equations equivalent to (1.4.7) boils down to inserting the unique basis
expansions into (1.4.7) and exploiting the linearity of both a and ℓ.

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ VN . (1.4.7)

m [
uN = µ1b1

N + · · ·+ µNbN
N ,µi ∈ R

vN = ν1b1
N + · · ·+ νNbN

N ,νi ∈ R
]

N

∑
k=1

N

∑
j=1

µkνja(b
k
N , b

j
N) =

N

∑
j=1

νjℓ(b
j
N) ∀ν1, . . . , νN ∈ R ,

m
N

∑
j=1

νj

(
N

∑
k=1

µka(b
k
N , b

j
N)− ℓ(b

j
N)

)
= 0 ∀ν1, . . . , νN ∈ R ,

m(∗)
N

∑
k=1

µka(b
k
N , b

j
N) = ℓ(b

j
N) for j = 1, . . . , N .

m [~µ = (µ1, . . . , µN)
⊤ ∈ RN]

A linear system of equations

A~µ = ~ϕ , with

A =
(
a(bk

N , b
j
N)
)N

j,k=1
∈ RN,N ,

~ϕ =
(
ℓ(b

j
N)
)N

j=1
.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 84

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Summary: notions connected with Galerkin discretization

Linear discrete variational problem
uN ∈ VN : a(uN , vN) = ℓ(vN) ∀vN ∈ VN

Choosing basis BN−−−−−−−−−−→
Linear system

of equations
A~µ = ~ϕ

Galerkin matrix: A =
(
a(bk

N, b
j
N)
)N

j,k=1
∈ RN,N ,

Right hand side vector: ~ϕ =
(
ℓ(b

j
N)
)N

j=1
∈ RN ,

Coefficient vector: ~µ = (µ1, . . . , µN)
⊤ ∈ RN ,

Recovery of solution: uN = ∑
N

k=1
µk bk

N .

Assuming exact arithmetic, the second step of Galerkin discretization is a “mere aspect of implementation”
and will not affect the quality of the Galerkin solution.

Theorem 1.4.11. Independence of Galerkin solution of choice of basis [Hip16, Thm. 1.5.25]

The choice of the basis B has no impact on the (set of) Galerkin solutions uN of (1.4.7).

1.4.2 Boundary Element Spaces on Curves

Now we are concerned with defining suitable trial and test spaces for the Galerkin discretization of the

variational BIEs We seek “simple” finite-dimensional subspaces of the energy trace spaces H
1
2 (Γ) (→

Def. 1.3.8), H−
1
2 (Γ) (→ Def. 1.3.29) for the first-kind BIEs (1.3.112) and (1.3.121), and of L2(Γ) for the

second-kind BIEs (1.3.133) and (1.3.134).

The new Galerkin trial and test spaces will be called boundary element (BE) spaces and will be of a
“piecewise polynomial type”. The construction of these spaces will rely on many of the principles under-
lying the design of finite element spaces in 1D, see [Hip16, Section 1.5.2]. This reflects a rather general
relationship.

Boundary element methods (BEM)
= Finite element methods (FEM) for variational BIEs on curves and surfaces

(1.4.12) Main ingredients of FEM

In light of the above relationships it is useful to recall the building blocks of FEM from [Hip16, Section 3.5]:

✦ A mesh/triangulation of the computational domain, see [Hip16, Section 3.5.1], in particular [Hip16,
Def. 3.5.2],

✦ local polynomial spaces defined on the cells of the mesh, see [Hip16, Section 3.5.2],

✦ and local and global shape functions (→ [Hip16, Section 3.5.3], [Hip16, Def. 3.5.19]) providing bases
BN of the finite element space VN.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 85

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Another fundamental paradigm in the field of finite element methods is the parametric construction of
finite element spaces based on the pullback under suitable transformations of shape functions defined on
reference elements, see [Hip16, Section 3.8], [Hip16, Def. 3.8.22], and § 1.4.35 below.

1.4.2.1 Curve Partitionings

Now we introduce the counterparts of the building blocks of finite element methods for boundary element
methods on closed curves Γ := ∂Ω, Ω ⊂ R2.

(1.4.13) Curved closed polygons

We assume that Γ is a connected curved closed Lipschitz polygon according to Ass. 1.2.6. There is a
(small) number M ∈ N

Γ = Γ1 ∪ · · · ∪ ΓM , Γi ∩ Γj = ∅ , (1.4.14)

where the Γj, j = 1, . . . , M, are the edges of Γ with C2 parameterizations

γ : [−1, 1]→ Γj , j = 1, . . . , M ,

γj(1) = γj+1(−1) , j = 1, . . . , M− 1 , γ1(−1) = γM(1)︸ ︷︷ ︸
⇒ close curve

. (1.4.15)

We assume that point evaluations of γ and its derivative γ̇ are cheap and, inside a code, provided by
simple function calls.

Definition 1.4.16. Mesh/partitioning of a curve

A mesh/partitioning of a closed curved polygon according to Ass. 1.2.6 is a decomposition

Γ =
M⋃

j=1

Nj⋃

i=1

π
(j)
i , π

(j)
i = γj(]ξ

(j)
i−1, ξ

(j)
i [) , i = 1, . . . , Nj, Nj ∈ N, j = 1, . . . , M , (1.4.17)

induced by grids of the parameter intervals [−1, 1]:

−1 =: ξ
(j)
0 < ξ

(j)
1 < · · · < ξ

(j)
Nj−1 < ξ

(j)
Nj

:= 1 . (1.4.18)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 86

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Mesh/partition of Γ induced by partitions of parame-
ter intervals ✄

Terminology:

• vertices: x
(j)
i = γ(ξ

(j)
i), i = 0, . . . , Nj,

• panels: π
(j)
i = γj(]ξ

(j)
i−1, ξ

(j)
i [),

i = 1, . . . , Nj .
(In the context of FE methods we use the terms
“cells” or “elements” instead of “panels” to denote the
(open) sets forming the mesh partition.)

Fig. 21

Ω

−1 1ξ1

γ1

Γ1

x
(1)
0

x
(1)
1

x
(1)
2

✎ Notation: We write GΓ (or simply G if Γ is clear from the context) to denote a mesh/partitioning of Γ and
also the set of its panels.

We define the size hπ of the panel π ∈ G as its diameter: hπ := diam π = ‖a− b‖, where a, b
are the endpoints of π. Since the parameterizations γj are fixed C2-diffeomorphisms (twice continuously

differentiable, invertible, with also γ−1 twice continuously differentiable), for any mesh GΓ of a given closed
curved polygon Γ we have bi-Lipschitz continuity

∃c, c > 0: c|ξ − η| ≤
∥∥∥γj(ξ)− γj(η)

∥∥∥ ≤ length(γ(]ξ, η[)) ≤ c|ξ − η| ∀ξ, η ∈ [−1, 1] ,

for some constants 0 < c < c. So the size of a panel is “about the same” as the length of its associated
parameter interval.

1.4.2.2 Piecewise Polynomial Functions on Curves

We write Pp = Pp(R1) for the space of univariate polynomials of degree ≤ p, p ∈ N. This is a vector
space of dimension p + 1.

The construction of boundary element spaces will be parametric from the beginning, relying on the local
parameterization of Γ. The reader is advised to refresh his knowledge of parametric finite elements [Hip16,
Section 3.8].

Definition 1.4.19. Pullback from a curve

The pullback γ∗j f of a function f : Γj → R, Γj on an edge of the parameterized curved polygon Γ

according to Ass. 1.2.6, is defined as

γ∗j f :]−1, 1[→ R , γ∗j f (ξ) := f (γ j(ξ)) , −1 < ξ < 1 . (1.4.20)

Adapting the notations for Lagrangian finite element spaces from [Hip16, Section 3.6] we write:

S0
p(G) :=

{
v ∈ C0(Γ) : γ∗j (v|π) ∈ Pp, ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M

}
, p ≥ 1 , (1.4.21)

S−1
p (G) :=

{
v ∈ L2(Γ) : γ∗j (v|π) ∈ Pp, ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M

}
, p ≥ 0 . (1.4.22)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 87

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Notations explained: S0
p(G)

continuous functions, cf. C0(Ω)

locally polynomials of degree p , e.g. Pp(Rd)

S−1
p (G) discontinuous functions

locally polynomials of degree p , e.g. Pp(Rd)

[S stands for “scalar-valued”.]

As a consequence of Cor. 1.3.19 and Thm. 1.3.38 we conclude the following embeddings:

Corollary 1.4.23. Embeddings of boundary element spaces

The boundary element spaces defined in (1.4.21) and (1.4.22) satisfy

S0
p(G) ⊂ C1

pw(Γ) ⊂ H
1
2 (Γ),

S−1
p (G) ⊂ C0

pw(Γ) ⊂ L2(Γ) ⊂ H−
1
2 (Γ),

where “pw” refers to the mesh G.

However note that S−1
p (G) 6⊂ H

1
2 (Γ), as we saw in Ex. 1.3.16.

(1.4.24) Dimensions of boundary element spaces on curves

From dimPp = p + 1 and the fact that the condition S0
p(G) ⊂ C0(Γ) “removes one degree of freedom

per vertex of G”, we deduce the dimensions of boundary element spaces by a counting argument.

Theorem 1.4.25. Dimensions of BE spaces on curves

dimS0
p(G) = p · ♯G, p ≥ 1 and dimS−1

p (G) = (p + 1) · ♯G, p ≥ 0.

✎ Notation: ♯G =̂ no. of panels contained in G

1.4.2.3 Shape Functions

Following the terminology for finite element methods from [Hip16, Section 3.5.3], the elements of an (or-
dered) basis BN := {b1

N, . . . , bN
N} of a boundary element space are called (global) shape functions

(GSF).

✎ Notation: We write BN := {b1
N, . . . , bN

N} for some basis of the boundary element space VN, N :=
dim VN.

The shape functions for boundary element methods have to meet the same requirements as those for
finite element methods:

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 88

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Properties of global shape functions (GSF)

Basis functions b1
N, . . . , bN

N for a boundary element trial/test space VN built on a mesh G must

satisfy:
(a) BN := {b1

N , . . . , bN
N} is a basis of VN ➣ N = dim VN,

(b) each bi
N is associated with a single geometric entity (panel/edge/vertex) of G,

(c) supp(bi
N) =

⋃
{π: π ∈ G, p ∈ π}, if bi

N is associated with the panel/edge/vertex p.

(1.4.27) Local supports of global shape functions

Condition 1.4.26 means that global shape functions have small local supports. Concretely, for a mesh of
a closed curve (→ Def. 1.4.16), which comprises the geometric entities “vertices” and “panels”, we have
that

✦ if bi
N is associated with a vertex x, its support supp bi

N is the union of the panels adjacent to x,

✦ if bi
N is associated with a panel π, then supp bi

N = π.

Example 1.4.28 (A basis for S−1
0 (G))

S−1
0 (G) is the space of piecewise constant functions on the mesh G. As natural global shape functions

we choose the characteristic functions of the panels

βπ
N(x) :=

{
1 , if x ∈ π ,

0 elsewhere on Γ .

which results in the basis (a “nodal basis”)

BN = {βπ
N , π ∈ G} ⊂ S−1

0 (G) , (1.4.29)

with ♯BN = ♯G, matching Thm. 1.4.25.

Example 1.4.30 (Nodal basis for S0
1 (G))

For a mesh G of a closed curve with vertices
V(G) := {x1, . . . , xN}, N ∈ N, we define the
tent function (hat function) associated with a vertex
p ∈ V(G), cf. 1.4.26, as in [Hip16, § 1.5.66] by

b
p
N ∈ S0

1 (G) ,

b
p
N(x) =

{
1 , if x = p ,

0 . if x ∈ V(G) \ {p} .

(1.4.31)

supp b
p
N =

⋃
{π ∈ G : p ∈ π} .

Two tent functions drawn over a surface mesh ✄
Fig. 22

Ω

x

y

bx
N

b
y
N

1

1

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 89

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.4.32) Local shape functions (LSF)

Local shape functions for boundary element spaces are defined in exactly the same way as for finite
element spaces [Hip16, Def. 3.5.19]. Given a panel G of a mesh G of Γ and a boundary element space
VN with basis BN =

{
b1

N , . . . , bN
N

}
, N := dim VN, we define the set of local shape functions (LSF) of

VN associated with the panel π as

{b1
π , . . . , bQ

π} = {bN|π : bN ∈ BN} \ {0} for some Q = Q(π) ∈ N . (1.4.33)

In words, the set of local shape functions for a panel π is the set of non-zero restrictions of global shape
functions to that element. By the very definition of S0

p(G) and S−1
p (G) through pullback, see (1.4.21) and

(1.4.22), we have

∀π ∈ G , π ⊂ Γj: γ∗j (Span{b1
π , . . . , bQ

π}) = Pp , (1.4.34)

if {b1
π , . . . , bQ

π} is the set of local shape functions for S0
p(G) or S−1

p (G) on π. The local shape functions
span full polynomial spaces in this case.

(1.4.35) Parametric construction of local shape functions

For every panel π := γj(]η1, η2[) ⊂ Γj, −1 ≤ η1, η2 ≤ 1, of the mesh G of a closed curve Γ we denote
by

γπ(ξ) := γ
(

1
2((1− ξ)η1 + (ξ + 1)η2

)
, ξ ∈]−1, 1[, (1.4.36)

a parameterization of π over the reference interval Î :=]−1, 1[: π = γπ(Î). For instance, if the panel
is a straight oriented line segment

π = [a, b] , a, b ∈ R2 γπ(ξ) =
1
2(1− ξ)a + 1

2(ξ + 1)b , −1 ≤ ξ ≤ 1 . (1.4.37)

In the parametric approach the set of local shape functions {b1
π , . . . , bQ

π} on π is defined through a given

set of reference shape functions {b̂1, . . . , b̂Q} ⊂ C0(Î) on Î according to [Hip16, Eq. (3.8.18)]

b̂j = γ∗π(b
j
π) , j = 1, . . . Q . (1.4.38)

Be aware that the choice of b̂j has to make sure that the resulting local shape functions can be “glued”
into global shape functions satisfying potential continuity constraints [Hip16, § 3.8.20]. Of course, the b̂j

may depend on π, which was ignored in (1.4.38).

For the boundary element spaces S0
p(G) and S−1

p (G) the reference shape functions do not depend on
the panel and are of the form

S−1
p (G): {β̂1, . . . , β̂p+1}= any basis of Pp , p ≥ 0 , (1.4.39)

S0
p(G): b̂1(ξ) = 1

2(1− ξ) , b̂2(ξ) = 1
2(ξ + 1) , (1.4.40)

b̂j(ξ) = (1− ξ2)qj−3(ξ) , j = 3, . . . , p + 1 , {q0, . . . , qp−2} a basis of Pp−2 . (1.4.41)

In (1.4.40) the choice of b̂1 and b̂2 and the fact that b̂j(−1) = b̂j(1) = 0, j = 3, . . . , p + 1, makes
possible a gluing that respects the constraint bi

N ∈ C0(Γ).

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 90

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Supplement 1.4.42 (Stability of local shape functions).

For larger values of the polynomial degree p stability of the reference shape functions b̂1, . . . , b̂Q becomes
an issue. Following the recommendation of [Hip16, Rem. 1.5.31] a good choice is basis functions derived
from orthogonal polynomials:

for S−1
p (G): β̂j = Pj−1 , j = 1, . . . , p + 1 , (1.4.43)

for S0
p(G): b̂1(ξ) = 1

2(1− ξ) , b̂2(ξ) = 1
2(ξ + 1) , (1.4.44)

b̂j(ξ) =
∫ ξ

−1
Pj−2(τ)dτ , j = 3, . . . , p + 1 .

Here, Pn is the n-th Legendre polynomial [Hip16, Def. 1.5.34]. The higher degree reference shape
functions for S0

p(G) are called integrated Legendre polynomials; b̂j(±1) = 0 for j ≥ 3 follows from the

L2(Î)-orthogonality of the Legendre polynomials. △

1.4.2.4 Solving Boundary Value Problems via Galerkin BEM

This section discusses the use of Galerkin boundary element methods to solve the boundary value prob-
lems introduced in § 1.3.107, the

✦ Dirichlet BVP: given g ∈ H
1
2 (Γ) find u ∈ H1(Ω) such that

−∆u = 0 in Ω , TDu = g on Γ , (1.3.108)

✦ and the Neumann BVP: given η ∈ H
− 1

2∗ (Γ) determine u ∈ H1∗(Ω) such that

−∆u = 0 in Ω , TNu = η on Γ . (1.3.109)

For standard Galerkin discretization we need finite dimensional subspaces of the trace space on which
the variational BIEs are posed:

function space Eligible BE space(s)

H−
1
2 (Γ) S−1

p (G), p ≥ 0 and S0
p(G), p ≥ 1

L2(Γ) S−1
p (G), p ≥ 0 and S0

p(G), p ≥ 1

H
1
2 (Γ) S0

p(G), p ≥ 1, only

G =̂ mesh of Γ

(1.4.45) Approximation of data

For implementation we also need a discrete representation of the data, of g ∈ H
1
2 (Γ) for (1.3.108), and

of η ∈ H−
1
2 (Γ) for (1.3.109).

Assumption 1.4.46. Data in procedural form

The data functions y 7→ g(y) and y 7→ η(y) can be evaluated at any point y ∈ Γ.

For instance, the data functions may be supplied through a function of the signature ➣ CppRef

std::function<double(double)> .

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 91

http://en.cppreference.com/w/cpp/utility/functional/function

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Then we can replace

g with gN ∈ S0
q (G), q ∈ N, obtained by G-piecewise polynomial interpolation of g (always including the

vertices of the mesh into the sets of interpolation nodes),

η with ηN ∈ S−1
q (G), q ∈ N0, obtained by G-piecewise local polynomial interpolation of g on each panel.

(1.4.47) Galerkin BEM for 1st-kind direct BIE for Dirichlet BVP

As explained in § 1.3.110, the Dirichlet BVP (1.3.108) can be solved through the variational BIE

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id+ K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.112)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) .

Using S−1
p (G) ⊂ H−

1
2 (Γ) as Galerkin trial and test space we arrive at the discrete variational problem

ψN ∈ S−1
p (G): aV(ψN , φN) =

∫

Γ
(1

2 Id+ K)gN(x) φN(x)dS(x) ∀φN ∈ S−1
0 (Γ) , (1.4.48)

where the data g have already been approximated by gN ∈ S0
q (G), q ≥ 1. In order to balance accuracy,

the choice q = p + 1 is recommended.

Choosing bases

B−1 = {β1
N , . . . , βN

N}, N := dimS−1
p (G), for S−1

p (G), and

B0 = {b1
N , . . . , bK

N}, K := dimS0
q (G), for S0

q (G),
and writing

~γ ∈ RK, K = dimS0
q (G), for the coefficient vector of gN with respect to B0, and

~ψ ∈ RN, N := dimS−1
p (G), for the coefficient vector of ψN with respect to B−1,

we obtain the linear systems of equations

V~ψ = (1
2 M + K)~γ , (1.4.49)

with the Galerkin matrices

V =
(
aV(β

j
N , βi

N)
)N

i,j=1

=

(
− 1

2π

∫

Γ

∫

Γ
log‖x− y‖ β

j
N(y) βi

N(x)dS(y)dS(x)

)N

i,j=1

∈ RN,N , (1.4.50a)

K =

(∫

Γ
(Kb

j
N)(x) βi

N(x)dS(x)

)

i=1,...,N
j=1,...,K

∈ RN,K , (1.4.50b)

M =

(∫

Γ
βi

N(x) b
j
N(x)dS(x)

)

i=1,...,N
j=1,...,K

∈ RN,K . (1.4.50c)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 92

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.4.51) Galerkin BEM for 1st-kind direct BIE for Neumann BVP

To solve the Neumann BVP (1.3.109) by Galerkin BEM we can start from the variational BIE

u ∈ H
1
2∗ (Γ): aW(u, v) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2∗ (Γ) , (1.3.121)

aW(u, v) :=
∫

Γ
W(u)(x) v(x)dS(x) ,

posed on spaces of functions with vanishing mean. Unfortunately, there is no way to reconcile the zero
mean condition and the advantages of locally supported bases for boundary element spaces. Therefore,
we switch to an augmented variational formulation by explicitly adding the zero mean constraint: We seek

the Dirichlet trace u ∈ H
1
2 (Γ), α ∈ R, such that

aW(u, v) + α
∫

Γ
v(x)dS(x) =

∫

Γ
(1

2 Id− K′)η(x) v(x)dS(x) ∀v ∈ H
1
2 (Γ) ,

∫

Γ
u(x)dS(x) = 0 .

(1.4.52)

Obviously, a vanishing mean value for the solution u is enforced through the second equation. The
unknown α is a so-called Lagrangian multiplier for the scalar zero mean constraint imposed in the second
line of the augmented variational formulation.

As Galerkin trial and test we must use S0
p(G) ⊂ H

1
2 (Γ). After replacing η with an approximation ηN ∈

S−1
q (G) (→ § 1.4.45), we thus get the discrete variational problem: Seek uN ∈ S0

p(G), α ∈ R:

aW(uN, vN) + α
∫

Γ
vN(x)dS(x) =

∫

Γ
(1

2 Id− K′)ηN(x) vN(x)dS(x) ∀vN ∈ S0
p(G) ,

∫

Γ
uN(x)dS(x) = 0 .

(1.4.53)

As above choosing bases

B0 = {b1
N , . . . , bN

N}, N := dimS0
p(G), for S0

p(G), and

B−1 = {β1
N , . . . , βK

N}, K := dimS−1
p (G), for S−1

p (G),
and writing

~η ∈ RK, K = dimS−1
q (G), for the coefficient vector of ηN with respect to B−1, and

~µ ∈ RN, N = dimS0
p(G), for the coefficient vector of uN with respect to B0,

we end up with the linear systems of equations

[
W c

c⊤ 0

][
~µ
α

]
=

[(
1
2M⊤ + K⊤

)
~η

0

]
, (1.4.54)

with the Galerkin matrices M and K from (1.4.50), and

W =
(
aW(b

j
N , bi

N)
)N

i,j=1
=

(
− 1

2π

∫

Γ

∫

Γ
log‖x− y‖ db

j
N

ds
(y)

dbi
N

ds
(x)dS(y)dS(x)

)N

i,j=1

, (1.4.55)

c =

(∫

Γ
b

j
N(x)dS(x)

)N

j=1

∈ RN . (1.4.56)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 93

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Note that we also used that the double layer BIOs are adjoint to each other, see Suppl. 1.3.69,
∫

Γ
(Ku)(x) φ(x)dS(x) =

∫

Γ
u(x) (K′φ)(x)dS(y) , ∀u ∈ H

1
2 (Γ), φ ∈ H−

1
2 (Γ) . (1.4.57)

Therefore, we can reuse the Galerkin matrix K of the double layer boundary integral operator and simply
transpose it to discretize K′.

1.4.2.5 Approximation of Curves

In most BEM codes the curve Φ is represented by a piecewise polynomials model: Instead of relying on
the “exact” parameterization γj of the edge Γj, one uses a piecewise polynomial approximate parameteri-
zation. Here, “piecewise” refers to the partitioning

[−1, 1] = [ξ
(j)
0 , ξ

(j)
1] ∪ [ξ

(j)
1 , ξ

(j)
2] ∪ · · · ∪ [ξ

(j)
Nj−1, ξ

(j)
Nj
] , (1.4.58)

of the parameter interval [−1, 1] induced by the grid

−1 =: ξ
(j)
0 < ξ

(j)
1 < · · · < ξ

(j)
Nj−1 = ξ

(j)
Nj

:= 1 . (1.4.18)

On each parameter grid interval one considers the vector-valued polynomial

γ̃
(j)
i : [ξ

(j)
i−1, ξ

(j)
i]→ R2 , γ̃

(j)
i ∈

(Pp

)2
p ∈ N , (1.4.59)

interpolating γ at the endpoints

γ̃
(j)
i (ξ

(j)
k) = γ(ξ

(j)
k) for k = i− 1, i . (1.4.60)

(1.4.61) Approximation by a polygon

Fig. 23

Ω

x1

x2

x3

x4
x5

xN

xN−1

The simplest case p = 1 amounts to an approxima-
tion of Γ by a polygon.

✁ polygon interpolating a closed curve descibed by
a single paramterization γ1

Setting x
(j)
i := γ(ξ

(j)
i), we get the affine formula

γ̃
(j)
i (ξ) = x

(j)
i−1

ξ
(j)
i − ξ

ξ
(j)
i − ξ

(j)
i−1

+ x
(j)
i

ξ − ξ
(j)
i−1

ξ
(j)
i − ξ

(j)
i−1

,

(1.4.62)

ξi−1 ≤ ξ ≤ ξi , i = 1, . . . , Nj .

The derivative with respect to the parameter is

d

dξ
γ̃
(j)
i (ξ) = x

(j)
i − x

(j)
i−1 . (1.4.63)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 94

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.4.64) Curve approximation by interpolation

The approximate polynomial parameterizations γ̃
(j)
i ∈ (Pp)2 can be constructed by means of polynomial

interpolation of γ on [ξ
(j)
i−1ξ

j
i]: fixing p + 1 interpolation nodes

ξ
(j)
i−1 ≤ ν0 < ν1 < · · · < νp ≤ ξ

(j)
i

by [Hip15, Thm. 5.2.14] we can find a unique interpolating polynomial γ̃
(j)
i ∈ (Pp)2 satisfying the inter-

polation conditions

γ̃
(j)
i (νk) = γ(νk) , k = 0, . . . , p . (1.4.65)

Stability of the interpolation procedure is a major concern, cf. [Hip15, Section 5.2.4], and the use of
Chebychev interpolation is recommended, see [Hip15, Section 6.1.3], in particular [Hip15, Rem. 6.1.90].
It is based on the nodes [Hip15, Eq. (6.1.87)]

νk = ξ
(j)
i−1 +

1
2(ξ

(j)
i − ξ

(j)
i−1)

(
cos

(
2k + 1

2(p + 1)
π

)
+ 1

)
, k = 0, . . . , p . (1.4.66)

We remark that interpolation need not be carried out on the grid intervals (1.4.58) of the parameter
domain. Instead global polynomial interpolation of γj on [−1, 1] is another option.

(1.4.67) Data structure for closed polygon

In the C++ code presented in § 1.4.1 a closed polygon with N vertices is represented by

• a N × 2-matrix whose rows store the coordinates of the corners.

• another N × 2-matrix containing the indices of the endpoints of the panels.

C++11 code 1.4.68: Class for closed polygon (incomplete listing) ➺GITLAB

1 class BoundaryMesh

2 {
3 pr ivate :
4 /// The two coordinates for vertices are stored in the rows of a

matrix
5 typedef Eigen : : Matrix <double , Eigen : : Dynamic , 2> coord_matrix_t ;
6 /// The indices of endpoints of flat panels are stored in the rows of

a matrix
7 typedef Eigen : : Matrix < in t , Eigen : : Dynamic , 2> elem_matrix_t ;
8

9 /// data container for geometric and topological information

10 coord_matrix_t coord inates_ ;
11 elem_matrix_t elements_ ;
12 bool i s I n i t i a l i z e d _ ;
13

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 95

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/BoundaryMesh.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

14 public :
15 // Constructor from raw data

16 BoundaryMesh (const coord_matrix_t& coords ,
17 const elem_matrix_t& elems) ;
18 // Constructor reading the data from file

19 BoundaryMesh (const std : : s t r i n g & f i lename) ;
20 // Straightforward access methods

21 i n t numVertices () const ; // No. of vertices

22 i n t numElements () const ; // No. of panels

23 const coord_matrix_t &getMeshVert ices () const ;
24 const elem_matrix_t &getMeshElements () const ;
25 // Coordinates if i-th vertex

26 Eigen : : Vector2d getVer tex (i n t i) const ;
27 // Coordinates of vertices of i-th element

28 std : : pa i r <Eigen : : Vector2d , Eigen : : Vector2d> getElementVer t ices (i n t

i) const ;
29 // Coordinates of j-th vertex, j = 0, 1 of i-th element

30 i n t getElementVertex (i n t i , i n t j) const ;
31 } ;

Fig. 24

π

n

a

b

The code adopts the following convention about the orientation of the nor-
mal vector

π = [a, b] , a =

[
a1

a2

]
, b =

[
b1

b2

]

⇒ n(x) = (b− a)⊥ =

[
b2 − a2

−(b1 − a1)

]
, x ∈ π .

1.4.3 Computation of BEM-Galerkin Matrix in 2D

1.4.3.1 Panel-oriented Assembly

As setting we consider a boundary element discretization of a linear variational problem (→ Def. 1.1.57)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.58)

that arises from a variational formulation of a first-kind or second kind variational boundary integral equa-
tion like

ψ ∈ H−
1
2 (Γ): aV(ψ, φ) =

∫

Γ
(1

2 Id+ K)g(x) φ(x)dS(x) ∀φ ∈ H−
1
2 (Γ) , (1.3.112)

aV(ψ, φ) :=
∫

Γ
V(ψ)(x) φ(x)dS(x) , (1.3.113)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 96

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

for which V0 = H−
1
2 (Γ)), or

u ∈ H
1
2∗ (Γ): aW(u, v) =

∫

Γ
(1

2 Id− K
′)η(x) v(x)dS(x) ∀v ∈ H

1
2∗ (Γ) , (1.3.121)

aW(u, v) :=
∫

Γ
W(u)(x) v(x)dS(x) ,

where V0 = H
1
2 (Γ). We remark that we could also start from the 2nd-kind variational BIE (1.3.128) and

(1.3.131), for which V0 = L2(Γ).

We equip the curve Γ with a mesh G as in Section 1.4.2.1. For Galerkin discretization (→ Section 1.4.1)
we employ a boundary element space VN ⊂ V0, dim VN = N, concretely

• VN = S−1
p (G) for V0 = H−

1
2 (Γ) and V0 = L2(Γ),

• and VN = S0
p(G) for V0 = H

1
2 (Γ) (→ Section 1.4.2.2).

We endow VN with a basis BN = {b1
N, . . . , bN

N} as in Section 1.4.2.3. As elaborated in Section 1.4.2.3 the
basis functions, also called global shape functions (GSF), are locally supported and parametric piecewise
polynomials composed of contributions of local shape functions (LSF), see § 1.4.32. The standard choice
of global shape functions for S−1

0 (G) and S0
1 (G) is presented in Ex. 1.4.28 and Ex. 1.4.30.

We end up with a linear system of equations

A~µ = ~ϕ , A =
(
a(b

j
N , bi

N)
)N

i,j=1
∈ RN,N , ~ϕ :=

(
ℓ(bi

N)
)N

i=1
∈ RN . (1.4.69)

As in the field of finite element methods [Hip16, Section 3.7.4], also for boundary element methods as-
sembly means the initialization of the Galerkin matrix A ∈ RN,N, and right hand side vector~ϕ ∈ Rn. We
start by writing a(u, v) as a sum of contributions of pairs of panels, e.g., in the case of the bilinear form
induced by the single layer boundary integral operator

aV(ψ, φ) =
♯G
∑
i=1

♯G
∑
j=1

∫

π i

∫

π j

G∆(x, y)ψ(y) φ(x)dS(y)dS(x) . (1.4.70)

This is also possible for all other BIE-related bilinear forms occurring in the variational problems of Sec-
tion 1.3.5:

∫

Γ
(Kv)(x) φ(x)dS(x) =

♯G
∑
i=1

♯G
∑
j=1

∫

π i

∫

π j

grady G∆(x, y) · n(y) v(y) φ(x)dS(y)dS(x) , (1.4.71)

∫

Γ
(K′φ)(x) v(x)dS(x) =

♯G
∑
i=1

♯G
∑
j=1

∫

π i

∫

π j

gradx G∆(x, y) · n(x) φ(y) v(x)dS(y)dS(x) , (1.4.72)

∫

Γ
(Wu)(x) v(x)dS(x) =

♯G
∑
i=1

♯G
∑
j=1

∫

π i

∫

π j

G∆(x, y)
du

ds
(y)

dv

ds
(x)dS(y)dS(x) , (1.4.73)

where d
ds denotes the arclength derivative (1.3.85). More explicit formulas for the integrands are given in

§ 1.3.74 and § 1.3.76.

(1.4.74) Non-locality of variational BIEs

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 97

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The bilinear forms b occurring in variational formulations of partial differential equations (PDEs), for in-
stance in (1.1.61), are local in the sense that

[for PDEs]: vold(supp(u) ∩ supp(v)) = 0 =⇒ b(u, v) = 0 . (1.4.75)

This usually makes it possible to evaluate b(uN , vN) for finite element trial and test functions uN , vN

by summing once over the elements of the finite element mesh, see [Hip16, Section 3.7.4.1]. The prop-
erty (1.4.76) also makes locally supported basis functions spawn sparse Galerkin matrices in the finite

element method see [Hip16, Section 3.4.4].

The situation is fundamentally different in the case of the bilinear forms spawned by boundary integral
operators. The presence of globally supported kernels thwarts any locality of the kind (1.4.76):

[for BIEs]: vold−1(supp(u) ∩ supp(v)) = 0 6=⇒ b(u, v) = 0 . (1.4.76)

This has profound consequences for boundary element methods, particular for data structures and
algorithms:

• boundary element Galerkin matrices will be densely populated,
• the bilinear forms arising from BIE require a double summation of local contributions as in

(1.4.70).

(1.4.77) Local→ global index mapping

The formulas (1.4.70)–(1.4.73) are the starting point for developing algorithms for the assembly of the
Galerkin matrix A and the right-hand side vector ~ϕ from (1.4.69). A key issue will be the algorithmic
representation of the relationship between global shape functions (GSF) and local shape functions (LSF,
→ § 1.4.32). To see why, note that, with βi

N , i = 1, . . . , N, denoting the global and βk
π , k = 1, . . . , Q, the

local shape functions of a boundary element space ⊂ H−
1
2 (Γ), for every pair (j, i) ∈∈ {1, . . . , N}2

aV(β
j
N , βi

N) = ∑
π∈G

∑
π′∈G

∫

π

∫

π ′
G∆(x, y) βk

π ′(y) βℓ
π(x)dS(y)dS(x) ,

for uniquely defined ℓ, k ∈ {1, . . . , Q}. Now we formalize these considerations.

➊ The global shape functions of the basis BN = {b1
N , . . . , bN

N} of a boundary element space VN

are supposed to be ordered and, thus, can be identified through a unique index ∈ {1, . . . , N} (as
already insinuated by the notation bi

N).

➋ We also assume an ordering of the local shape functions bi
π for every panel π ∈ G, also indicated

by indices ∈ {1, . . . , Q}.
➌ Observe that for each π ∈ G and its local shape function bi

π , i = 1, . . . , Q, there is a unique global

shape function b
j
N, j ∈ {1, . . . , N} such that b

j
N

∣∣∣
π
= bi

π

We can define a local→global index map (“d.o.f. mapper”) as [Hip16, Eq. (3.7.61)]

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 98

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

locglobmap : G ×N → N ,

locglobmap(π, i) = j , if b
j
N

∣∣∣
π
= bi

π , i ∈ {1, . . . , Q(π)} .
(1.4.78)

global shape function local shape function

Example 1.4.79 (local→global index map)

We assume that the curve Γ := ∂Ω is connected and
oriented counterclockwise ✄

Vertices (blue) and panels (red) of the mesh G of Γ

are numbered consecutively as in Fig. 25: the i-th
panel, i = 1, . . . , N− 1, has vertices i and i + 1, the
N-th panel vertices N and 1.

We comsider VN = S0
1 (G), tent function basis as in

Ex. 1.4.30, and assume that the i-th basis function is
associated with the i-th vertex, i = 1, . . . , N. Then
the local→global index map from (1.4.78) reads:

locglobmap(k, i) =

{
k , if i = 1 ,

k + 1 , if i = 2 .
(1.4.80)

Fig. 25 1
2

3
4

5

6

7

8

9

10
1213

14

15
16

17

18

19

20

1
2

3
4
5

6

7

8

9
1011

12

13
14

15
16

17

18

19

Ω

Using the local→global index mapping, we can now write in a rigorous way

aV(β
j
N , βi

N) = ∑
π∈G

locglobmap(π,k)=j

∑
π′∈G

locglobmap(π′,ℓ)=i

∫

π

∫

π ′
G∆(x, y) βk

π ′(y) βℓ
π(x)dS(y)dS(x) . (1.4.81)

An efficient implementation of this formula takes into account the constraints locglobmap(π, k) = j and
locglobmap(π ′, ℓ) = i by inverting them, thus distributing the numbers obtained from evaluating the
double integrals to suitable entries of the Galerkin matrix. This leads to panel-oriented assembly.

The following pseudocode demonstrates the implementation of panel-oriented assembly by means of two
nested loops over all panels.

Pseudocode 1.4.82: Outline of panel-oriented assembly of BE matrices for BIOs (same trial

and test space)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 99

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Matrix A(N,N); A = 0; {Initialize dense matrix with zero}

forall panels π ∈ G do {outer loop}

Q := no_of_loc_shape_fns(π);
forall panels π′ ∈ G do {inner loop}

Q’ := no_of_loc_shape_fns(π′);
Matrix Al := get_interaction_matrix(π,π′); {get “local” matrix}

for k=1 to Q do

i = locglobmap(π,k);
for l=1 to Q’ do

j = locglobmap(π′,l);
A(i,j) += Al(k,l); {update of Galerkin matrix}

endfor

endfor

endfor

endfor

As auxiliary functions we need

(I) the local→global index mapping function locglobmap as introduced in § 1.4.77,

(II) a function get_interaction_matrix computing the contribution of a pair of panels π, π′ to
the Galerkin matrix. If Q, Q′ are the number of local shape functions (→ § 1.4.32) on π and π′,
respectively, then this function returns a Q×Q′-matrix Aloc:

(Aloc)kl =
∫

π

∫

π′
k(x, y)bk

π(y) bl
π ′(x)dS(y)dS(x) , (1.4.83)

which we wrote for a general boundary integral operator with kernel k. For instance, in the case of
a = aV, we face the singular kernel k(x, y) = G∆(x, y).

Example 1.4.84 (Assembly of Galerkin matrix for double layer BIO K)

We consider the Galerkin discretization of the bilinear form induced by the double layer boundary integral
operator K

(v, φ) 7→
∫

Γ
(K(v))(x) φ(x)dS(x) , v ∈ H

1
2 (Γ), φ ∈ H−

1
2 (Γ) .

We rely on lowest order/degree piecewise polynomial boundary element spaces

H
1
2 (Γ) → S0

1 (G) ⊂ H
1
2 (Γ) , H−

1
2 (Γ) → S−1

0 (G) ⊂ H−
1
2 (Γ) ,

where G is a mesh of the closed polygon Γ, see Def. 1.4.16.

As bases we use

for S0
1 (G): tent function basis B0 := {b1

N , . . . , bN
N} see (1.4.30) ,

for S−1
0 (G): characteristic function basis B−1 := {β1

N , . . . , βN
N} see (1.4.28) .

supp bi
N is the union of two adjacent panels, supp β

j
N covers only a single panel.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 100

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

For S0
1 (G), Q = 2, for S−1

0 (G), Q = 1, where Q designates the number of local shape functions
per panel, see § 1.4.32

⇒ Aloc ∈ R1,2 (see (1.4.83) for the definition of Aloc).

Since a fully populated matrix has to be initialized we face the following computational cost of assembly:

Cost of assembling a BIO Galerkin matrix

The asymptotic computational effort for assembling the Galerkin matrix discretizing a BIO based on
trial and test spaces with dimensions N and M, respectively, is at least O(MN) for M, n→ ∞.

The following C++ function performs the assembly of the Galerkin matrix for K. Refer to Code 1.4.68 for
explanations on the class BoundaryMesh.

C++11 code 1.4.86: Assembly of Galerkin matrix for double layer BIO K ➺GITLAB

2 void computeK (Eigen : : MatrixXd &K, const BoundaryMesh &mesh , double

eta) {
3 i n t nE = mesh . numElements () ;
4 i n t nC = mesh . numVertices () ;
5 // Matrix returned through reference: resize and initialize matrix

6 K. resize (nE , nC) ;
7 K. setZero () ;
8 double I0 = 0.0 , I1 = 0 .0 ;
9

10 // outer loop: traverse the panels

11 for (i n t j = 0 ; j < nE ; ++ j) {
12 // get vertices indices and coordinates for panel π j = [a, b]

13 i n t aidx = mesh . getElementVertex (j , 0) ;
14 i n t bidx = mesh . getElementVertex (j , 1) ;
15 const Eigen : : Vector2d &a = mesh . getVer tex (a idx) ;
16 const Eigen : : Vector2d &b = mesh . getVer tex (b idx) ;
17

18 // inner loop: traverse the panels

19 for (i n t i = 0 ; i < nE ; ++ i) {
20 // get vertices indices and coordinates for panel π i = [c, d]

21 i n t c idx = mesh . getElementVertex (i , 0) ;
22 i n t didx = mesh . getElementVertex (i , 1) ;
23 const Eigen : : Vector2d &c = mesh . getVer tex (c idx) ;
24 const Eigen : : Vector2d &d = mesh . getVer tex (d idx) ;
25 // Zero contribution for parallel panels !

26 double l indep1 = fabs ((a − c) [0] ∗ (b − a) [1] − (a − c) [1] ∗ (b
− a) [0]) ;

27 double l indep2 = fabs ((a − d) [0] ∗ (b − a) [1] − (a − d) [1] ∗ (b
− a) [0]) ;

28

29 i f (l indep1 > EPS ∗ (a − c) .norm () | |
30 l indep2 > EPS ∗ (a − d) .norm ()) //

31 {

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 101

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/buildK.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

32 // compute entries of 1× 2 interaction matrix

33 // double I0=0.0, I1=0.0;

34 computeKij(& I0 , &I1 , eta , a , b , c , d) ;
35 // distribute values to matrix entries

36 K(j , c idx) += I0 − I1 ; //

37 K(j , d idx) += I0 + I1 ; //

38 } // endif

39 } // endfor

40 } // endfor

41 }

Remarks on Code 1.4.86

• The function computeKij adopts an unusual convention for the reference shape functions (1.4.38)
for the S0

1 (G):

b̂1(ξ̂) = 1
2 , b̂2(ξ̂) = 1

2 ξ , ξ ∈ Î :=]−1, 1[.

This accounts for the linear combinations used in Line 36 and Line 37.

• Note that, if π ‖ π ′ (parallel panels), then

∫

π
(K(v|π′))(x) φ(x)dS(x) =

∫

π

∫

π ′

(y− x) · n(y)
‖y− x‖2

v(y) φ(x)dS(y)dS(x) = 0 ∀v, φ ,

because of the orthogonality (y − x) · n(y) = 0. This is tested in a numerically sound way in
Line 30.

1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas

We consider the case that Γ is or is approximated by a closed connected polygon (with straight edges!),
see § 1.4.61. In this case all panels of a mesh G are line segments.

G = {π1, . . . , πN} , Γ = π1 ∪ · · · ∪πN , πi = [pi, qi] , pi, qi ∈ R2 .

A data structure modeling such meshes is presented in Code 1.4.68.

We restrict ourselves to Galerkin discretization based on lowest degree boundary element spaces S0
1 (G)

and S−1
0 (G), which are implemented in the 2D BEM C++ code introduced in § 1.4.1. We use the standard

bases of “tent functions” and characteristic functions, respectively, for these spaces, see Ex. 1.4.28 and
Ex. 1.4.30.

(1.4.87) Panel interaction matrix for the single layer BIO

The bilinear form

aV(ψ, φ) = − 1

2π

∫

Γ

∫

Γ
log‖x− y‖ψ(y) φ(x)dS(y)dS(x) , ψ, φ ∈ H−

1
2 (Γ) ,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 102

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

is discretized on S−1
0 (G) × S−1

0 (G), the local shape functions have constant value = 1 on each panel.
Therefore, we just have to compute 1× 1 interaction matrices for pairs of panels:

I := aV(β
π
N , βπ ′

N) = − 1

2π

∫

π

∫

π ′
log‖x− y‖ βπ

N(y) βπ ′
N (x)dS(y)dS(x) , π, π′ ∈ G . (1.4.88)

➊ If π = [p1, q1], π′ = [p2, q2], then we can transform the line integrals to the reference interval

Î := [−1, 1] through the parameterizations

[for π]: γ(t) := p1 + (t + 1)1
2(q1− p1) =

1
2(p1 + q1) +

1
2 t(q1 − p1) ,

[for π ′]: γ′(t) := p2 + (t + 1)1
2(q2 − p2) =

1
2(p2 + q2) +

1
2 t(q2 − p2) ,

− 1 ≤ t ≤ 1 ,

which, by the defining formula (1.2.10) for curve integrals

∫

π
f (x)dS(x) =

∫ 1

−1
f (γ(t))‖γ̇(t)‖dt , γ̇ :=

dγ

dt
,

results in

I = − 1

2π

1∫

−1

1∫

−1

log‖su− tv + z‖1
2‖q1 − p1‖ 1

2‖q2 − p2‖dtds . (1.4.89)

with u = 1
2(q1 − p1), v = 1

2(q2 − p2), z := 1
2(p1 + q1 − p2 − q2) . (1.4.90)

The following manipulations mainly rely on the identity

(x̂− c) · gradx̂(log‖M(x̂− c)‖) = (x̂− c) ·M⊤ M(x̂− c)

‖M(x̂− c)‖2
= 1 . (1.4.91)

The reader is encouraged to derive this formula by applying the chain rule twice.

➋ By Green’s first formula Thm. 1.1.62 we conclude for any domain D ⊂ R2

∫

D
log‖M(x̂− c)‖dx̂ =

∫

D

1
2 divx̂{x̂ 7→ (x̂− c)} log‖M(x̂− c)‖dx̂

= − 1
2

∫

D
(x̂− c) · gradx̂ log‖M(x̂− c)‖dx̂

︸ ︷︷ ︸
=vol2(D) by (1.4.91)

+ 1
2

∫

∂D
(x̂− c) · n(x̂) log‖M(x̂− c)‖dS(x̂) .

The boundary integral
∫

∂D is a one-dimensional line integral. Moreover, if D is a polygon the exterior unit
normal n(x̂) is piecewise constant and x̂ 7→ (x̂− c) · n(x̂) will be constant on all edges, cf. Hesse normal
form of a line in R2.

➌ In concrete terms we apply this trick to the integral (1.4.89) with x̂ =
[s

t

]
, M = [u,−v], c =

[
α
−β

]
.

Then, for any α, β ∈ R, u, v ∈ R2 (1.4.91) implies

{
(s + α)

∂

∂s
+ (t− β)

∂

∂t

}
log‖u(s + α)− v(t− β)‖ = 1 . (1.4.92)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 103

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

4 =

1∫

−1

1∫

−1

(s + α)
∂

∂s
log‖u(s + α)− v(t− β)‖dtds+

1∫

−1

1∫

−1

(t− β)
∂

∂t
log‖u(s + α)− v(t− β)‖dtds

=

1∫

−1



[(s + α) log‖. . .‖]s=1

s=−1−
1∫

−1

log‖. . .‖ds



dt+

1∫

−1



[(t− β) log‖. . .‖]s=1

s=−1−
1∫

−1

log‖. . .‖dt



ds ,

where ‖. . .‖ = ‖u(s + α)− v(t− β)‖ and one-dimensional integration by parts has been employed in
a straightforward way. This reduces the integral over log‖. . .‖ to four one-dimensional integrals

1∫

−1

1∫

−1

log‖. . .‖dtds =− 2 +
∫ 1

−1
(1 + α) log‖(1 + α)u− (t− β)v‖dt (I1)

+
∫ 1

−1
(1− α) log‖(−1 + α)u− (t− β)v‖dt (I2)

+
∫ 1

−1
(1− β) log‖(s + α)u− (1− β)v‖ds (I3)

+
∫ 1

−1
(1 + β) log‖(s + α)u− (−1− β)v‖ds . (I4)

➍ Now we return to the computation of

1∫

−1

1∫

−1

log‖su− tv + z‖dtds , (1.4.93)

where we have to distinguish two cases:

Case I: u, v from (1.4.90) are linearly independent. Then there are α, β ∈ R such that z = αu + βv.

1∫

−1

1∫

−1

log‖su− tv + z‖dtds =

1∫

−1

1∫

−1

log‖u(s + α)− v(t− β)‖dtds ,

and we can apply the above formulas, see Code 1.4.98, Line 29–Line 37.

Case II: v = ζu for some ζ 6= 0 (parallel panels). The previous formulas cannot be used, but we can
resort to the identity

ζ
∂

∂s
log‖su− tv + z‖ = ζ

(su− tv + z) · u
‖su− tv + z‖2

= − ∂

∂t
log‖su− tv + z‖ . (1.4.94)

Straightforward integration by parts gives

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 104

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1∫

−1

1∫

−1

log‖su− tv + z‖dtds

=

1∫

−1

{
[t log‖su− tv + z‖]t=1

t=−1−
1∫

−1

t
∂

∂t
log‖su− tv + z‖dt

}
ds

=

1∫

−1

{
log‖su− v + z‖+ log‖su + v + z‖+

1∫

−1

ζt
∂

∂s
log‖su− tv + z‖

}
ds

=

1∫

−1

log‖su− v + z‖+ log‖su + v + z‖ds + ζ

1∫

−1

[log‖su− tv + z‖]s=1
s=−1 dt

=

1∫

−1

log‖su− v + z‖ds +

1∫

−1

log‖su + v + z‖ds+

ζ

1∫

−1

t log‖u− tv + z‖dt + ζ

1∫

−1

t log‖−u− tv + z‖dt .

(1.4.95)

These formulas are implemented in Code 1.4.98, Line 20-Line 28.

➎ Thus, the computations are reduced to evaluating integrals of the form

1∫

−1

tk log‖tu + v‖dt u, v ∈ R2 , t = 0, 1 . (1.4.96)

We elaborate the expressions for k = 0 and point out that the case k > 0 can be reduced to k = 0 by
repeated integration by parts. With

‖tu + v‖2 = αt2 + βt + γ , α := ‖u‖2 , β := 2u · v , γ := ‖v‖2 .

L :=

1∫

−1

log‖tu + v‖dt = 1
2

1∫

−1

log‖tu + v‖2 dt = 1
2

1∫

−1

log(αt2 + βt + γ)dt .

We have to proceed differently, depending on whether the argument of the logarithm has a zero or not.
For the quadratic polynomial in t we examine the discriminant.

Case I: 4αγ− β2 = 0 ⇐⇒ β = 2
√

αγ: argument of logarithm can vanish

L =

1∫

−1

log
(
(
√

αt +
√

γ)2
)

dt = 2

1∫

−1

log
∣∣√αt +

√
γ
∣∣ dt ,

then distinguish cases, α ≥ γ (split interval) and α < γ, and use explicit principal, see Code 1.4.97,
Line 26-Line 33.

Case I: 4αγ − β2 > 0: t 7→ αt2 + βt + γ has no real zero and an explicit principal can be used,
Code 1.4.97, Line 34-Line 41.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 105

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

C++11 code 1.4.97: Evaluating integrals of the form (1.4.96) ➺GITLAB, [Mai08, Sect. 2]

2 Eigen : : VectorXd s l p I t e r a t i v e (i n t k , const Eigen : : Vector2d& u ,
3 const Eigen : : Vector2d& v)
4 {
5 double a = u . squaredNorm () ; // α = ‖u‖2

6 double b = 2. ∗ u . dot (v) ; // β = 2u · v
7 double c = v . squaredNorm () ; // γ = ‖v‖2

8 double D = 0 . ; // discriminant

9 Eigen : : VectorXd val (k+1) ; // return values

10

11 // Ensure one non-zero argument vector

12 double tmp = 4∗a∗c − b∗b ;
13 assert (fabs (u [0]) > EPS | | fabs (u [1]) > EPS
14 | | fabs (v [0]) > EPS | | fabs (v [1]) > EPS) ;
15 // By Cauchy-Schwarz inequality tmp >= 0

16 assert (tmp >= −fabs (EPS∗4∗a∗c)) ;
17

18 // Numerically sound way of testing if discriminant = 0

19 i f (tmp > EPS∗4∗a∗c) D = s q r t (tmp) ;
20 else D = 0 . ;
21

22 // The case k=0: pure logarithmic integrand

23 i f (fabs (u [0]) < EPS && fabs (u [1]) < EPS) { // constant integrand

24 val [0] = 2∗ log (c) ;
25 }
26 else i f (D == 0 .) { // Integrand is logarithm of a pure square

27 tmp = b + 2∗a ;
28 i f (fabs (tmp) > EPS∗a) val [0] = tmp ∗ log (0.25∗ tmp∗tmp / a) ;
29 else val [0] = 0 ;
30 tmp = b − 2∗a ;
31 i f (fabs (tmp) > EPS∗a) val [0] −= tmp ∗ log (0.25∗ tmp∗tmp / a) ;
32 val [0] = 0.5∗ val [0] / a − 4 .0 ;
33 } //

34 else { // case D > 0: argument of logarithm has no zeros

35 tmp = c − a ;
36 i f (fabs (tmp) < EPS∗c) val [0] = 0.5∗M_PI ;
37 else i f (a < c) val [0] = atan (D / tmp) ;
38 else val [0] = atan (D / tmp) + M_PI ;
39

40 val [0] = (0 . 5 ∗ ((b+2∗a) ∗ log (a+b+c)−(b−2∗a) ∗ log (a−b+c)) +
D∗val [0]) / a−4.0;

41 } //

42 i f (k == 0) return val ;

C++11 code 1.4.98: Evaluating integrals of the form (1.4.89) ➺GITLAB, [Mai08, Sect. 3]

2 double computeWi jAnaly t ic (const Eigen : : Vector2d& a ,
3 const Eigen : : Vector2d& b ,
4 const Eigen : : Vector2d& c ,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 106

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

5 const Eigen : : Vector2d& d)
6 {
7 double h i = (b−a) . squaredNorm () ; // length2 of first panel [a, b]

8 double h j = (d−c) . squaredNorm () ; // lendth2 of second panel [c, d]

9 double va l = 0 . ;
10 double lambda , mu;
11 // Vectors defined in (1.4.90)

12 Eigen : : Vector2d x = (b−a) / 2 . ;
13 Eigen : : Vector2d y = (c−d) / 2 . ;
14 Eigen : : Vector2d z = (a+b−c−d) / 2 . ;
15

16 // There hold different recursion formulae when the panels

17 // are parallel (det = 0) or not

18 double det = CrossProd2d (x , y) ;
19

20 i f (fabs (det) <= EPS∗ s q r t (h i ∗h j)) { // parallel panels, Case II

21 i f (fabs (x [0]) < fabs (x [1]))
22 lambda = y [1] / x [1] ;
23 else

24 lambda = y [0] / x [0] ;
25 // Evaluate the four integrals from (1.4.95)

26 va l = 0 .5∗ (lambda ∗ (slp (1 , y , z−x) − slp (1 , y , z+x))
27 + slp (0 , x , z+y) + slp (0 , x , z−y)) ;
28 } //

29 else { // x and y linearly independent, Case I

30 lambda = (z [0]∗ y [1] − z [1]∗ y [0]) / det ;
31 mu = (x [0]∗ z [1] − x [1]∗ z [0]) / det ;
32 // Integrals (I1)-(I4)

33 va l = 0.25 ∗ (−8 + (lambda +1)∗slp (0 , y , z+x) −
34 (lambda−1)∗slp (0 , y , z−x) +
35 (mu+1)∗slp (0 , x , z+y) −
36 (mu−1)∗slp (0 , x , z−y)) ;
37 } //

38 return −0.125∗va l / M_PI ; // = − 1
8π ∗ val

39 }

Note that the test whether x and y are parallel in Line 20 takes into account the presence of roundoff
errors.

(1.4.99) Local analytic formulas for double layer BIO

We consider the bilinear form

(v, φ) 7→ 1

2π

∫

Γ

∫

Γ

(x− y) · n(y)
‖x− y‖2

v(y) φ(x)dS(y)dS(x) , v ∈ H
1
2 (Γ), φ ∈ H−

1
2 (Γ) ,

and its Galerkin discretization based on S0
1 (G) × S−1

0 (G), that is v is G-piecewise linear and φ G-
piecewise constant. For a pair (π, π′) ∈ G × G of panels the entries of the 2× 1 interaction matrix can

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 107

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

be computed from the two integrals

I0 :=
1

2π

∫

π

∫

π′

(x− y) · n(y)
‖x− y‖2

dS(y)dS(x) , (1.4.100)

I1 :=
1

2π

∫

π

∫

π′

(x− y) · n(y)
‖x− y‖2

ℓ(y)dS(y)dS(x) , (1.4.101)

where ℓ is (parametric) linear on π with vanishing mean. In the case of line segments π = [p1, q1],
π ′ = [p2, q2], the unit normal vector field n(y) is constant on π ′ and a transformation to the reference

interval Î =]−1, 1[yields (n =̂ normal to π′)

I0 =
1

8π
‖q1 − p1‖‖q2 − p2‖

1∫

−1

(su− tv + z) · n
‖su− tv + z‖2

dtds , (1.4.102)

I1 =
1

8π
‖q1 − p1‖‖q2 − p2‖

1∫

−1

(su− tv + z) · n
‖su− tv + z‖2

t dtds , (1.4.103)

with u = 1
2(q1 − p1), v = 1

2(q2 − p2), z := 1
2(p1 + q1 − p2 − q2) . (1.4.90)

Also note that both integrals vanish in the case π = π ′.

We exploit an identity similar to (1.4.91). For M ∈ R2,2, c ∈ R2, n ∈ R2,

F(x) :=
M(x− c) · n
‖M(x− c)‖2

⇒ (grad F)(x) = −2(M(x− c) · n)M⊤M(x− c)

‖M(x− c)‖4
+

M⊤n

‖M(x− c)‖2
,

(x− c) · grad F(x) = −F(x) . (1.4.104)

As above we apply Green’s formula from Thm. 1.1.62 on a domain D ⊂ R2

∫

D
G(x)F(x)dx = −

∫

D
G(x) (x− c) · grad F(x)dx

=
∫

D
div(G(x)(x− c)) F(x)dx−

∫

∂D
G(x) (x− c) · n(x) F(x)dS(x) ,

∫

D
(G(x) + grad G(x) · (x− c)) F(x)dx =

∫

∂D
G(x) (x− c) · n(x) F(x)dS(x) . (1.4.105)

for any smooth function G ∈ C1(D). In particular, if G is linear, G(x) = d · x for some d ∈ R2, then the
computation of

∫
D G(x)F(x)dx can be reduced to the case G ≡ 1 up to integrals on ∂D. Note that for

regular M the term under the integral
∫

∂D in (1.4.105) is bounded, since in this case

∃c−, c+ > 0: c−‖x− c‖ ≤ ‖M(x− c)‖ ≤ c+‖x− c‖ ∀x, c ∈ R2 .

As before we observe that if D is a polygon x 7→ (x− c) · n(x) will be constant on all edges of D.

This formula can be applied, if u and v are linearly independent, compare (1.4.92). Conversely, if u ‖ v,
v = ζu for ζ 6= 0, we can use

ζ
∂

∂s
f (s, t) = − ∂

∂t
f (s, t) , f (s, t) :=

(su− tv + z) · n
‖su− tv + z‖2

,

analogously to (1.4.94), e.g. [Mai08, p. 7],

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 108

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1∫

−1

1∫

−1

t f (s, t)dtds=

1∫

−1

{[
t2 f (s, t)

]t=1

t=−1
−

1∫

−1

t2 ∂

∂t
f (s, t)dt

}
ds

=

1∫

−1

{[
t2 f (s, t)

]t=1

t=−1
−

1∫

−1

ζ t2 ∂

∂s
f (s, t)dt

}
ds

=

1∫

−1

(f (s, 1)− f (s,−1))ds + ζ

1∫

−1

t2(f (1, t)− f (−1, t))dt

All these formulas are implemented in Code 1.4.108

Eventually, all two-dimensional integrals are reduced to integrals of rational functions of the form

1∫

−1

tk

‖tp + q2‖ dt , p, q ∈ R2 , (1.4.106)

whose evaluation is done in Code 1.4.107 based on [Mai08, Lemma 2.1].

C++11 code 1.4.107: Evaluating integrals of the form (1.4.106) ➺GITLAB, [Mai08, Sect. 2]

2 double dlp (i n t k , const Eigen : : Vector2d& p , const Eigen : : Vector2d& q)
3 {
4 // The full recursion is not implemented

5 assert (k<=2 && (k>=0)) ;
6

7 double a = p . squaredNorm () ; // a = <p,p>

8 double b = 2 ∗ p . dot (q) ; // b = 2 <p,q>

9 double c = q . squaredNorm () ; // c = <q,q>

10 double D = 4∗a∗c−b∗b ; // Discriminant

11 double root_D = 0 . ;
12 double G0 = 0 . , G1 = 0 . ;
13

14 assert (D>=−EPS∗4∗a∗c) ; // In exact arithmetic, D >= 0

15 i f (D > EPS∗4∗a∗c) { root_D = s q r t (D) ; } else { D = 0 . 0 ; }
16 i f (D == 0 .0) { G0 = 2 . / (c−a) ; } // linearly dependent vectors,

[Mai08, (5)]
17 else // Denominator cannot vanish, integrate rational function

18 {
19 i f (fabs (c−a) < EPS∗ fabs (c)) { G0 = M_PI / root_D ; }
20 else i f (a < c) { G0 = 2.∗ atan (root_D / (c−a)) / root_D ; }
21 else { G0 = 2 .∗ (atan (root_D / (c−a)) +M_PI) / root_D ; }
22 }
23

24 i f (k >= 1) // First step of recursion for k=1

25 {
26 // g−1

1 in [Mai08, Lemma 2.1]

27 G1 = −b∗G0 ;
28 i f (a+b+c > EPS∗a) { G1 += log (a+b+c) ; }
29 i f (a−b+c > EPS∗a) { G1 −= log (a−b+c) ; }
30 G1 /= (2 .∗a) ;

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 109

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/doubleLayerPotential.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

31

32 // g−1
2 in [Mai08, Lemma 2.1]

33 i f (k == 2) { return (2.−b∗G1−c∗G0) / a ; }
34

35 return G1 ;
36 }
37 return G0 ;
38 }

C++11 code 1.4.108: Evaluating integrals (1.4.102) and (1.4.103) ➺GITLAB

2 void computeKi jAna ly t i c (double∗ I0 , double∗ I1 ,
3 const Eigen : : Vector2d& a , const Eigen : : Vector2d& b ,
4 const Eigen : : Vector2d& c , const Eigen : : Vector2d& d)
5 {
6 double h i = (b−a) . squaredNorm () ; // hi = norm(b-a) squared

7 double h j = (d−c) . squaredNorm () ; // hj = norm(d-c) squared

8 Eigen : : Vector2d n = uni tNormal (c , d) ; // normal vector

9

10 Eigen : : Vector2d u = a−b , v = d−c , w = c+d−a−b ;
11 Eigen : : Vector2d wpu = w+u , wmu = w−u ;
12 Eigen : : Vector2d wpv = w+v , wmv = w−v ;
13

14 double dot_u_n = u . dot (n) , dot_w_n = w. dot (n) ;
15 double dot_wpu_n = wpu . dot (n) , dot_wmu_n = wmu. dot (n) ;
16 double det = CrossProd2d (u , v) ;
17

18 double lambda =0.0 , mu=0.0 ;
19 i f (fabs (det) <= EPS∗ s q r t (h i ∗h j)) { // u,v linearly dependent

20 i f (fabs (u [0]) > fabs (u [1])) mu = v [0] / u [0] ;
21 else mu = v [1] / u [1] ;
22

23 ∗ I0 = dot_w_n∗ (dlp (0 ,u , wpv) +dlp (0 ,u ,wmv) +
mu∗ (dlp (1 , v ,wmu)−dlp (1 , v , wpu))) ;

24 ∗ I1 = dot_w_n∗ (dlp (0 ,u , wpv)−dlp (0 ,u ,wmv) +
mu∗ (dlp (2 , v ,wmu)−dlp (2 , v , wpu))) ∗0 .5 ;

25 }
26 else { // u,v linearly independent

27 i f (a [0] == d [0] && a [1] == d [1]) {
28 ∗ I0 = 2∗(

dot_wpu_n∗dlp (0 , v , wpu) +dot_u_n∗dlp (1 ,u ,wmv) +dot_w_n∗dlp (0 ,u ,wmv)
) ;

29 ∗ I1 =
dot_wpu_n∗dlp (1 , v , wpu)−dot_u_n∗dlp (1 ,u ,wmv)−dot_w_n∗dlp (0 ,u ,wmv)

30 + 0.5∗ (∗ I0) ;
31 }
32 else i f (b [0] == c [0] && b [1] == c [1]) {
33 ∗ I0 = 2∗(

dot_wmu_n∗dlp (0 , v ,wmu) +dot_u_n∗dlp (1 ,u , wpv) +dot_w_n∗dlp (0 ,u , wpv)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 110

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

) ;
34 ∗ I1 =

dot_wmu_n∗dlp (1 , v ,wmu) +dot_u_n∗dlp (1 ,u , wpv) +dot_w_n∗dlp (0 ,u , wpv)
35 − 0.5∗ (∗ I0) ;
36 }
37 else {
38 mu = CrossProd2d (w, v) / det ;
39 lambda = CrossProd2d (u ,w) / det ;
40

41 ∗ I0 = (mu+1)∗dot_wpu_n∗dlp (0 , v , wpu) −
(mu−1)∗dot_wmu_n∗dlp (0 , v ,wmu)

42 + (lambda +1) ∗ (dot_u_n∗dlp (1 ,u , wpv) +
dot_w_n∗dlp (0 ,u , wpv))

43 − (lambda−1)∗ (dot_u_n∗dlp (1 ,u ,wmv) +
dot_w_n∗dlp (0 ,u ,wmv)) ;

44 ∗ I1 = 0.5∗ ((mu+1)∗dot_wpu_n∗dlp (1 , v , wpu) −
(mu−1)∗dot_wmu_n∗dlp (1 , v ,wmu)

45 + (lambda +1) ∗ (dot_u_n∗dlp (1 ,u , wpv) +
dot_w_n∗dlp (0 ,u , wpv))

46 + (lambda−1)∗ (dot_u_n∗dlp (1 ,u ,wmv) +
dot_w_n∗dlp (0 ,u ,wmv))

47 − lambda ∗ (∗ I0)) ;
48 }
49 }
50 ∗ I0 ∗= −0.125∗ s q r t (h i ∗h j) / M_PI ;
51 ∗ I1 ∗= −0.125∗ s q r t (h i ∗h j) / M_PI ;
52 }

1.4.3.3 Recapitulated [Hip15, Chapter 7]: Aspects of Numerical Quadrature

Numerical quadrature studies the approximate evaluation of integrals
∫

D f (x)dx for a given domain D ⊂
Rd, d ∈ N, and a function f : D → R, for which at least a routine for point evaluation must be available
(ensured, if f given in procedural form [Hip15, § 7.0.2]).

The simplest approach is the approximation of a one-dimensional integral by a weighted sum of function
values.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 111

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.4.109. 1D Quadrature formula (QF)/quadrature rule (QR)[Hip15, Def. 7.1.1]

An n-point (one-dimensional) quadrature formula (QF)/quadrature rule (QR) on [a, b] provides an
approximation of the value of an integral through a weighted sum of point values of the integrand:

for f : [a, b]→ R:
∫ b

a
f (t)dt ≈ Qn(f) :=

n

∑
j=1

wn
j f (cn

j) . (1.4.110)

Terminology:
wn

j =̂ quadrature weights ∈ R

cn
j =̂ quadrature nodes ∈ [a, b]

Definition 1.4.111. Order of a quadrature rule [Hip15, Def. 7.3.1]

The order of quadrature rule Qn : C0([a, b]) → R is defined as

order(Qn) := max{m ∈ N0: Qn(p) =
∫ b

a
p(t)dt ∀p ∈ Pm}+1 , (1.4.112)

that is, as the maximal degree +1 of polynomials for which the quadrature rule is guaranteed to be
exact.

Given a quadrature formula
(
ĉj, ŵj

)n

j=1
on, e.g., the reference interval [−1, 1], a quadrature formula of the

same order on [a, b] is spawned by affine transformation:

b∫

a

f (t)dt ≈ 1
2(b− a)

n

∑
j=1

ŵj f̂ (ĉj) =
n

∑
j=1

wj f (cj) .

with
quadrature nodes cj =

1
2(1− ĉj)a +

1
2(1 + ĉj)b ,

quadrature weights wj =
1
2(b− a)ŵj .

(1.4.113)

In words, the nodes are just mapped through the affine transformation cj = Φ(ĉj), Φ(τ) := 1
2(1− τ)a +

1
2(τ + 1)b, the weights are scaled by the ratio of lengths of [a, b] and [−1, 1].

Example 1.4.114 (Trapezoidal rule [Hip15, Ex. 7.4.3])

A simple composite quadrature formula of (low) order 2 is the equidistant trapezoidal rule:

b∫

a

f (t)dt ≈ 1

2n
f (a) +

1

n

n−1

∑
k=1

(
a +

b− a

n
k
)
+

1

2n
f (b) , n ∈ N . (1.4.115)

However, in the context of boundary element methods it is mainly global quadrature rules of high order
that are relevant.

(1.4.116) Gauss(-Legendre) quadrature rules [Hip15, Section 7.3]

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 112

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.4.117. Gauss(-Legendre) quadrature

For every n ∈ N there is a unique n-point quadrature rule on [−1, 1] of maximal order 2n, the

Gauss(-Legendre) quadrature rule.

It has positive weights and its nodes coincide with the zeros of the n-th Legendre polynomial Pn ∈
Pn.

Fig. 26
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

16

18

20

Zeros of Legendre polynomials in [−1,1]

t

 N
um

be
r

n
of

 q
ua

dr
at

ur
e

no
de

s

Nodes of Gauss quadrature formulas on [−1, 1]

Fig. 27

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 Gauss−Legendre weights for [−1,1]

t
j

 w
j

n=2

n=4

n=6

n=8

n=10

n=12

n=14

Weights of Gauss quadrature formulas on [−1, 1]

Nodes and weights of n-point Gauss(-Legendre) quadrature rules on [−1, 1] can be computed efficiently
by

✦ solving an n× n dense eigenvalue problem: Golub-Welsch algorithm [Hip15, Rem. 7.3.35],

✦ using Newton’s method for finding the zeros of the Legendre polynomials (with initial guesses from
asymptotic closed-form formulas) and then solving an n× n linear system to determine the weights
[Hip15, Rem. 7.3.6].

In codes nodes and weights are often accessed by simple table look-up.

(1.4.118) “Practical” Clenshaw-Curtis quadrature rules [Tre08]

This is a family of quadrature rules on [−1, 1] based on the quadrature nodes

cn
j := cos(

(j − 1)π

n− 1
) , j = 1, . . . , n . (1.4.119)

These nodes form a set of dilated Chebychev nodes (1.4.66), which are known to be “optimal” for global
polynomial interpolation [Hip15, Section 6.1.3]. T he so-called Clenshaw-Curtis quadrature rules use the
nodes (1.4.119) also for numerical quadrature and fix the weights in order to achieve order ≥ n for the
corresponding n-point quadrature formula.

Theorem 1.4.120. Positivity of Clenshaw-Curtis weights

For all n ∈ N the weights of the n-point Clenshaw-Curtis are positive.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 113

http://en.wikipedia.org/wiki/Clenshaw-Curtis_quadrature

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 28
-1 -0.5 0 0.5 1

t

2

4

6

8

10

12

14

16

18

20

 N
um

be
r

n
of

 q
ua

dr
at

ur
e

no
de

s
Clenshaw-Curtis nodes in [-1,1]

Clenshaw-Curtis nodes (1.4.66) on [−1, 1]

Fig. 29

-1 -0.5 0 0.5 1

t
j

0

0.2

0.4

0.6

0.8

1

 w
j

 Clenshaw-Curtis weights for [-1,1]

n=2

n=4

n=6

n=8

n=10

n=12

n=14

Weights for Clenshaw-Curtis rule on [−1, 1]

The weights of any n-point Clenshaw-Curtis rule can be computed with a computational effort of O(n log n)
using FFT.

(1.4.121) Generalized Gauss quadrature rules

The theory for Gauss(-Legendre) quadrature developed in [Hip15, Section 7.3] heavily relies on orthogo-

nality with respect to the L2([−1, 1]) inner product (u, v) 7→
∫ 1
−1 u(t)v(t)dt. A closer scrutiny reveals

that the considerations remain valid for a large class of weighted L2-inner products.

We fix a weight function w ∈ C0(]−1, 1[) satisfying

w(t) > 0 ∀t ∈]−1, 1[and
∫ 1

−1
w(t)dt < ∞ . (1.4.122)

The weight function w defines an inner product on C0([−1, 1]) through (u, v) 7→
∫ 1
−1 w(t)u(t)v(t) dt.

Thus we can orthogonalize the monomials {t 7→ tk}, k ∈ N0, by means of the Gram-Schmidt algorithm
as in [Hip15, Rem. 7.3.19].

Lemma 1.4.123. Generalized orthogonal polynomials [Han02, Sect. 33]

There exists a unique sequence of polynomials (Un)n∈N0
that fulfills

(i) Un is a polynomial of degree ≤ n: Un ∈ Pn,

(ii) Un has leading coefficient 1: Un(t) = tn + · · · ,
(iii) Un is “w-orthogonal” to all polynomials of smaller degree

∫ 1

−1
w(t)Un(t)p(t)dt = 0 ∀p ∈ Pn−1 .

We used the Legendre polynomials to define the nodes for the Gauss-Legendre quadrature rules, and in
the same vein we can harness the polynomials Un, thus generalizing Thm. 1.4.117.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 114

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.4.124. Generalized Gauss quadrature

For every n ∈ N there exists an n-point (generalized) Gauss quadrature formula with

nodes/weights cn
j /wn

j , j = 1, . . . , n, such that

n

∑
j=1

wn
j p(cn

j) =
∫ 1

−1
w(t)p(t)dt ∀p ∈ P2n−1 .

The nodes cn
j are the zeros of the generalized orthogonal polynomials Un and the weights are

positive.

The generalized orthogonal polynomials satisfy a 3-term recurrence

Un+1(t) = (t + αn)Un(t) + βnUn−1(t) , αn, βn ∈ R .

Explicit formulas for αn and βn are known only for very few special weight functions w, of course for
w ≡ 1 (Legendre polynomials, see [Hip15, Eq. (7.3.33)]). The accurate and stable computation of these
recursion coefficients for general w is a challenging numerical problem [Gau18; Gau04].

(1.4.125) Quadrature error [Hip15, § 7.1.12]

A natural concept for a quadrature rule Qn is the

quadrature error En(f) :=

∣∣∣∣
∫ b

a
f (t) dt −Qn(f)

∣∣∣∣

It is all but impossible to estimate the quadrature error for complicated integrands that may be given only
implicitly. Therefore we have to be content with understanding the asymptotic behavior of the quadrature
error for large numbers of quadrature nodes.

Definition 1.4.126. Asymptotic convergence of quadrature rules, cf. [Hip15, Def. 6.1.38]

Let (Qn)n∈N be a family of n-point quadrature rules for approximating
∫ b

a f (t)dt. For a given
function f : [a, b] → R the quadrature errors En(f) are said to
• converge algebraically with rate p, if En(f) = O(n−p) for some p ∈ N,
• converge exponentially, if En(f) = O(qn) for some 0 ≤ q < 1,

for n→ ∞.

Asymptotically, exponential convergence always beats algebraic convergence

We refer to [Hip15, Rem. 6.1.40] on how to glean qualitative and quantitative information about the asymp-
totic behavior of the quadrature error from errors measured in numerical experiments. We may examine
plots of the quadrature error versus the number of quadrature points:

• Exponential convergence manifests itself through points tracing out lines in semi-logarithmic plots.

• Algebraic convergence leads to points approximately lying on lines in a doubly logarithmic plot.

Experiment 1.4.127 (Behavior of quadrature errors for global quadrature rules)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 115

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We monitor the error of global n-point quadrature rules on [0, 1], n ∈ N

• Newton-Cotes rule with equidistant nodes cn
k = k−1

n−1 , k− 1, . . . , n,

• n-point Gauss(-Legendre) rules according to Thm. 1.4.117,

• n-point Clenshaw-Curtis rule, nodes according to (1.4.119).

We apply these rules to different integrands f ∈ C0([0, 1]) and plot the quadrature errors for n =
1, . . . , 20.

➊ Smooth functions:

f (t) = log(t + 1/10)

Fig. 30

0 5 10 15 20

 Number of quadrature nodes

10
-15

10
-10

10
-5

10
0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Numerical quadrature of function log(t+0.1)

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

f (t) =
1

1 + (5t)2

Fig. 31

0 5 10 15 20

 Number of quadrature nodes

10
-15

10
-10

10
-5

10
0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Numerical quadrature of function log(t+0.1)

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

Observation: Exponential convergence for all quadrature rule, Gauss-Legendre rule fastests.

➋ functions with a (higher order) singularity:

Root f (t) =
√

t

Fig. 32

10
0

10
1

 Number of quadrature nodes

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Numerical quadrature of function sqrt(t)

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

f (t) = t log t

Fig. 33

10
0

10
1

10
2

 Number of quadrature nodes

10
-8

10
-6

10
-4

10
-2

10
0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Numerical quadrature of function t*log t

Equidistant Newton-Cotes quadrature

Clenshaw-Curtis quadrature

Gauss quadrature

Observation: Merely algebraic convergence for all quadrature rules, Gauss-Legendre rule again fastests.

➌ functions with (higher-order) kinks:

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 116

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

bump f (t) =

{
cos2(4t− 2) for |t− 1

2 | < 1
4 ,

0 elsewhere.

Fig. 34

10
0

10
1

10
2

 Number of quadrature nodes

10
-4

10
-3

10
-2

10
-1

10
0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Numerical quadrature of bump function

Clenshaw-Curtis quadrature

Gauss quadrature

tent f (t) =

{
1− |4t− 2| for |t− 1

2 | < 1
4 ,

0 elsewhere.

Fig. 35

10
0

10
1

10
2

 Number of quadrature nodes

10
-4

10
-3

10
-2

10
-1

10
0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Numerical quadrature of tent function

Clenshaw-Curtis quadrature

Gauss quadrature

Observation: We vaguely see algebraic convergence, big impact of presence of kinks.

(1.4.128) Finite smoothness quadrature error estimates

If a quadrature rule is of order q, then the quadrature error does not change when adding a polynomial of
degree < q to the integrand:

En(f) = En(f − q) ∀q ∈ Pq−1 .

In addition, the weights of a quadrature rule have to add up to the length of the interval. These two ideas
plus the△-inequality yield the following result.

Lemma 1.4.129. Quadrature error and best-approximation error [Hip15, Thm. 7.3.39]

If Q is a quadrature formula on [a, b] of order q ∈ N with positive weights, then the quadrature error

can be estimated by

∣∣∣∣
∫ b

a
f (t)dt− Q(f)

∣∣∣∣ ≤ 2|b− a| inf{‖ f − p‖L∞(]a,b[), p ∈ Pq−1} . (1.4.130)

The quadrature error can be estimated by error (in maximum norm) of the polynomial best approxi-
mation.

Therefore polynomial best approximation estimates like [Hip15, Thm. 6.1.15] immediately translate into
quadrature error estimates:

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 117

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.4.131. Quadrature error estimate for integrands with finite smoothness

If f ∈ Cm([a, b]), m ∈ N0, and the quadrature rule Q is of order q > m with positive weights,

then

∣∣∣∣
∫ b

a
f (t)dt− Q(f)

∣∣∣∣ ≤ (4 + 2π2)

∣∣∣∣
b− a

2

∣∣∣∣
m+1 (q− 1−m)!

(q− 1)!

∥∥∥ f (m)
∥∥∥

L∞(]a,b[)

≤ C(m)|b − a|m+1 1

(q− 1)m

∥∥∥ f (m)
∥∥∥

L∞(]a,b[)
,

(1.4.132)

with an increasing function C : N → R+.

Let
(

Qq

)
q∈N

be a family of quadrature rules on [a, b] with positive weights and Qq have order q. If

f ∈ Cm([a, b]) at most, then we expect asymptotic algebraic convergence of the quadrature error
with rate m for q→ ∞:

∣∣∣∣
∫ b

a
f (t)dt−Qq(f)

∣∣∣∣ = O(q−m) for q→ ∞ . (1.4.133)

(1.4.134) Quadrature error estimate for analytic integrands

What does Thm. 1.4.131 mean for f ∈ C∞([a, b])? If its derivatives do not grow “too fast” a very fast
decay of the quadratur error can be predicted as the quadrature order q→ ∞.

Now we meet functions whose derivatives do not grow “too fast” and we call them analytic. Analytic
functions are locally “polynomials of infinite degree”, the class of general functions closest to polynomials:

Definition 1.4.135. Real analytic functions

A function f ∈ C∞([a, b]) is analytic, if for every t ∈ [a, b] its Taylor series converges in a neighbor-
hood of t:

∀t ∈ [a, b]: ∃rt > 0: f (τ) =
∞

∑
k=0

(τ − t)k

k!
f (k)(t) ∀τ : |τ − t| < rt .

Since power series make perfect sense for complex arguments, we can replace t ∈ R with z ∈ C and
obtain a complex-valued function defined on a neighborhood of [a, b] in the complex plane C, an analytic
extension of f .

Fig. 36

R

Im
C

a b

Taylor series for f converge inside disks

Fig. 37

R

Im
C

a b

natural extension of f to C

The analytic extension of f will also have locally convergent Taylor series:

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 118

https://en.wikipedia.org/wiki/Analytic_function

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.4.136. Analyticity of a function in C

Let D ⊂ C be an open set in the complex plane. A function f : D → C is called ana-
lytic/holomorphic in D, if f has a representation as a convergent power series in a neighborhood of
every z ∈ D:

∀z ∈ D: : ∃rz > 0, (ak)k∈N0
, ak ∈ C : f (w) =

∞

∑
k=0

ak(w− z)k ∀w : |z−w| < rz .

Functions f ∈ [a, b] that possess an analytic extension into a sufficiently large C-neighborhood of [a, b]
allow excellent approximation by polynomials, for instance, by their Chebychev interpolants, see [Hip15,
Rem. 6.1.96].

For the reference interval [−1, 1] these particular C-
neighborhoods can be identified as ellipses with foci
−1 and 1:

Eρ := {z ∈ C : |z− 1|+ |z + 1| = ρ + ρ−1}

=





z = 1
2(ρ + ρ−1) cos θ+

ı 1
2(ρ− ρ−1) sin θ ,

0 ≤ θ ≤ 2π



 ,

(1.4.137)

with a parameter ρ > 0 controlling the size of the
ellipse. ✄

Eρ is often called Bernstein ellipse. Fig. 38
−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

ρ=1

ρ=1.2

ρ=1.4

ρ=1.6

ρ=1.8

ρ=2

Theorem 1.4.138. Polynomial approximation of analytic functions, [Hip15, Eq. (6.1.98)]

If f : [−1, 1]→ C possesses an analytic extension f̃ to C beyond the ellipse Eρ for a ρ > 0, then

inf
p∈Pm

‖ f − p‖L∞([−1,1]) ≤
2|Eρ|

π

1

(ρm+1 − 1)(ρ + ρ−1 − 2)
·max

z∈Eρ

| f (z)| , (1.4.139)

for all polynomial degrees m ∈ N0.

Obviously, the bound in (1.4.139) decays exponentially like O(ρm) for m→ ∞. By virtue of Lemma 1.4.129

the same bound holds for the quadrature error of a quadrature rule with positive weights and order
q = m + 1.

Asymptotics of quadrature error for analytic functions

If f : [a, b] → R has an analytic extension to a neighborhood of an ellipse in C with foci a and b,
then the quadrature errors for both Gauss(-Legendre) quadrature and Clenshaw-Curtis quadrature
will decrease exponentially in the number of quadrature points.

Experiment 1.4.141 (Global quadrature of analytic integrand)

We use Gauss-Legendre quadrature (→ Thm. 1.4.117) and Clenshaw-Curtis rules for the numerical

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 119

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

quadrature of

t 7→ log(t + α) , α ∈ {1.05, 1.01, 1.2, 1.4} on [−1, 1] .

Fig. 39

0 5 10 15 20

 Number of quadrature nodes

10 -20

10 -15

10 -10

10 -5

10 0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

Gauss quadrature of t->log(t+) on [-1,1]

=1.4

=1.2

=1.1

=1.05

Fig. 40

0 5 10 15 20

 Number of quadrature nodes

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

 |q
u

ad
ra

tu
re

 e
rr

o
r|

CC quadrature of t->log(t+) on [-1,1]

=1.4

=1.2

=1.1

=1.05

Observation: The smaller α− 1, the slower the exponential convergence of the quadrature error

The (main branch of the) logarithm z 7→ log(z) is analytic on C \R−0 . Hence the domain of analyticity
of z 7→ log(z + α) is Dα := C\]−∞,−α] and the range of ρ for which the ellipse Eρ ⊂ Dα shrinks for
α→ 1. The bound O(ρ−n) from (1.4.139) will predict “flatter” exponential convergence as α→ 1.

Summary: Significance of smoothness of integrand

The maximal smoothness of the integrand determines the quantitative asymptotic behavior of
quadrature errors for increasing quadrature order :

➜ Integrand of class Cm only ✄ algebraic convergence.
➜ Integrand has analytic extension ✄ exponential convergence.

(1.4.143) Adaptive global quadrature

The numerical quadrature of analytic integrands by means of Clenshaw-Curtis rules usually results in
(slightly) larger errors than the use of Gauss(-Legendre) quadrature with the same number of nodes.
Nevertheless, the Clenshaw-Curtis nodes (1.4.119) feature an obvious, but interesting nesting property:

for cn
j from (1.4.119): c2n

2j = cn
j , j = 1 . . . , n .

Thus, successively, using Clenshaw-Curtis rules with n = 2, 4, 8, 16, . . . , sL nodes, L ∈ N, to approxi-

mate
∫ b

a f (t)dt requires only 2L point evaluations of the integrand.

The following pseudo-code implements an adaptive Clenshaw-Curtis quadrature. It assumes that the cor-
responding nodes and weights (cn

j , wn
j) are available already in a table. The quadrature error is estimated

by comparing results obtained for different numbers of quadrature points. Refer to [Hip15, Section 7.5] for
a detailed discussion of ideas underlying adaptive quadrature controlled by specifying a relative tolerance
rtol > 0 and and absolute tolerance atol > 0.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 120

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 1.4.144: Adaptive Clenshaw-Curtis quadrature

n := 3; {Start with 3 nodes}
y[1] = f (c3

1); y[2] = f (c3
2); y[3] = f (c3

3);
I := w3

1y[1] + w3
2y[2] + w3

3y[3]; {evaluate quadrature formula}
repeat {main adaptive loop}

Iold := I;
n := 2 ∗ (n− 1) + 1; {next number of nodes}
y[n] := y[(n− 1)/2 + 1];
for j := (n− 1)/2 downto 1 do

y[2 ∗ j− 1] = y[j]; {reuse previous function values}
y[2 ∗ j] = f (cn

2j); {additional f -evaluations}

endfor

I := ∑
n
k=1 wn

k y[k]; {evaluate quadrature formula}
ǫ := |I − Iold|; {estimate for quadrature error}

{Check termination criterion based on absolute and relative tolerance}
until (ǫ < rtol · I or ǫ < atol or n ≥ nmax);
return(I);

Experiment 1.4.145 (Adaptive Clenshaw-Curtis quadrature)

We test the algorithm of ?? for a family of quadrature problems with a “nearly singular” integrand:
∫ 1

−1
f (t)dt , f (t) = log(t + α) on [−1, 1] , α > 1 .

Fig. 41
1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60

70

n
o
.
o
f
f-

e
v
a
lu

a
ti
o
n
s
 (

*)

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

q
u
a
d
ra

tu
re

 e
rr

o
r

(+
)

Adaptive C.-C. quadrature of log(t+)

✁ For rtol = 10−2, rtol = 10−6, total
number of f -evaluations using the algorithm of
Code 1.4.144.

The adaptive strategy triggers the use of a
higher-order quadrature rule, whenever the
proximity of the singularity might affect accu-
racy.

(1.4.146) Tensor-product quadrature, cf. [Hip16, Ex. 3.7.152]

Nested quadrature formulas can be used to integrate bi-variate functions over tensor-product domains.
Given a quadrature formula

Qn(f) :=
n

∑
j=1

wn
j f (cn

j) ≈
∫ 1

−1
f (t)dt , f ∈ C0([−1, 1]) ,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 121

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

we can use it to approximate integrals over [−1, 1]2: for F ∈ C0([−1, 1]2)

∫ 1

−1

∫ 1

−1
F(s, t)dtds ≈

n

∑
j=1

wn
j

∫ 1

−1
F(cn

j , t)dt ≈
n

∑
j=1

wn
j

n

∑
k=1

wn
k F(cn

j , cn
k) .

Thus we have found the derived two-dimensional tensor-product quadrature formula

∫ 1

−1

∫ 1

−1
F(s, t)dtds ≈

n

∑
j=1

n

∑
k=1

wn
j wn

k F(cn
j , cn

k) =: Qn×n(F) , (1.4.147)

with nodes (cn
j , cn

k) ∈ R2, and weights wn
j wn

k , j, k = 1, . . . , n.

This approach can easily be generalized to even higher dimensions and the combination of different
quadrature formulas with different numbers of points in different directions.

If the underlying one-dimensional quadrature rule has order q, then Qn×n will be exact for tensor product
polynomials of degree ≤ q− 1.

Definition 1.4.148. Tensor-product polynomials

The space of tensor product polynomials of (separate) degree p ∈ N in d dimensions is

T Pp(R
d) := {x 7→ q1(x1) · · · · · qd(xd), qi ∈ Pp, i = 1, . . . , d} .

For tensor-product quadrature formulas we define their order relying on exactness on spaces of tensor-
product polynomials:

order of Qn = m =⇒ Qn×n(q) =
∫ 1

−1

∫ 1

−1
q(s, t)dtds ∀q ∈ T Pm−1(R

2) .

As in one dimension, see Lemma 1.4.129, quadrature error and best approximation error in T Pm(R2)
are closely related: If the one-dimensional quadrature rule Qn is of order m, then

Qn×n(F)−
∫ 1

−1

∫ 1

−1
F(s, t)dtds

≤
(

1 +
(n

∑
k=1

|wn
j |
)2

)
inf{‖F− P‖L∞([−1,1]2), P ∈ T Pm−1(R

2)}

≤ 5 inf{‖F− P‖L∞([−1,1]2), P ∈ T Pm−1(R
2)} , (1.4.149)

if Qn has positive weights.

Without going into details we point out that nested interpolation and approximation estimates make it
possible to exploit Thm. 1.4.138 also in higher dimensions:

If both {t 7→ F(s, t)} and {s 7→ F(s, t)} allow an analytic extension to an ellipse neighborhood
of [−1, 1] in C independent of the other variable, then the quadrature error of Qn×n(F) will decay
exponentially for n→ ∞, provided that Qn has positive weights and order ≈ n.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 122

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.4.3.4 Matrix Entries by Quadrature

We admit a general closed connected curve complying with Ass. 1.2.6: It can be split into M ∈ N edges
Γj, j = 1, . . . , M, each available through a parameterization γj : [−1, 1] → Γj, see also (1.4.15). Every
parameterization fulfills

∃c > 0:
∥∥∥γ̇j(t)

∥∥∥ ≥ c ∀t ∈ [−1, 1], j = 1, . . . , M . (1.4.150)

(1.4.151) Data structure for general parameterization

When the use of a parameterization of an edge or of a single panel in a code is mentioned, one should
read this as the availability of an object of the following type.

C++11 code 1.4.152: Model class representing a smooth parameterization (incomplete list-

ing), ➺GITLAB

1 class CurveParam

2 {
3 public :

4 //
...

5 // Querying the parameter interval

6 std : : pa i r <double , double> ParameterRange (void) const ;
7 // Accessing a point γ(t) on the edge/panel

8 Eigen : : Vector2d operator () (double t) const ;
9 // Retrieving the derivative γ̇(t), a tangent vector

10 Eigen : : Vector2d D e r i v a t i v e (double t) const ;

11 //
...

12 } ;

The parameterizations of edges are supposed to be “maximally smooth”:

Assumption 1.4.153. Analytic parameterization

All parameterizations γj possess an analytic extension (→ § 1.4.134) beyond [−1, 1].

Parlance: When, in the sequel, using the term “analytic” for a function of one or two variables on a bounded
interval, we actually mean the possibility of analytic extension to an ellipse neighborhood of that
interval, cf. Thm. 1.4.138.

Ass. 1.4.153 is obviously satisfied, if γ is a polynomial and for many function systems (NURBS) used in
CAD modeling.

We endow Γ with a mesh G = {π1, . . . , πN} according to Def. 1.4.16. For each panel π ∈ G the
relevant parameterization induces a local parameterization γπ : [−1, 1]→ π as defined in (1.4.36).

Writing k(x, y) for the kernel of some boundary integral operator (single layer BIO V or double layer BIO
K,K′), this section is devoted to the approximate computation of the entries of the interaction matrix

∫

π

∫

π ′
k(x, y)b

j
π ′(y) bi

π(x)dS(y)dS(x) , i, j ∈ {1, . . . , Q} , (1.4.154)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 123

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/2DParametricBEM/Library/src/abstract_parametrized_curve.hpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

where b1
π , . . . , bQ

π are the local shape functions (→ § 1.4.32) associated with the panel π.

(1.4.155) Transformation to reference interval

The first step in the computation of (1.4.154) employs transformation to the reference interval Î =]−1, 1[.

∫

π

∫

π ′

k(x, y)b
j
π ′(y) bi

π(x)dS(y)dS(x)

=

1∫

−1

1∫

−1

k(γπ(s), γπ ′(t)) b̂′
j
(t) b̂i(s) ‖γ̇π′(t)‖ ‖γ̇π(s)‖dtds , (1.4.156)

with reference shape functions b̂′
j
, b̂i as defined in (1.4.38).

We have assumed that γπ and γπ ′ are analytic with , ‖γ̇π‖ and ‖γ̇π ′‖ bounded away from zero on
[−1, 1]. Moreover, for customary boundary element spaces like S0

p(G) or S−1
p (G) the reference shape

functions are simple polynomials, cf. (1.4.39) and (1.4.40). Thus the task amounts to computing inte-
grals

1∫
−1

1∫
−1

k̂(s, t) F(t) G(s)dtds , k̂(s, t) := k(γπ(s), γπ ′(t)) , (1.4.157)

for analytic functions F, G : [−1, 1] → R. Note that the kernel k̂ might inherit the singularities of k, if
π ∩π′ 6= ∅ (touching/overlapping panels).

(1.4.158) Single layer BIO: Identical panels

We consider k = G∆ and π = π′, in which case (1.4.157) becomes

I :=

1∫

−1

1∫

−1

log ‖γπ(s)− γπ(t)‖ F(t)G(s)dtds . (1.4.159)

Using calculus for log we rewrite the kernel:

2 log ‖γπ(s)− γπ(t)‖ = log

(
‖γπ(s)− γπ(t)‖2

(s− t)2

)
+ 2 log |s− t| . (1.4.160)

We examine the first term and, in particular, the “difference quotient” in the argument of the logarithm,

S(s, t) :=





‖γπ(s)− γπ(t)‖2

(s− t)2
for s 6= t ,

‖γ̇π(t)‖2 for s = t .

(1.4.161)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 124

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

In this formula we have already filled the gap at s = t with the norm of the derivative γ̇.

Fig. 42

✁ Plot of S(s, t) for the semi-circle

γ(t) =

[
cos(π t

2)
sin(π t

2)

]
, −1 ≤ t ≤ 1 .

The plot shows a perfectly smooth function nicely
bounded away from zero.

Actually, we find by means of Taylor expansion that for the analytic function γπ the difference quotient
S(s, t) is still analytic in both variables s, t ∈ [−1, 1]. Hence, since ‖γ̇π(t)‖ ≥ c > 0 on [−1, 1], also
(s, t) 7→ log D(s, t) is analytic, and

I =

1∫

−1

1∫

−1

1
2 log(S(s, t)) F(t)G(s)︸ ︷︷ ︸

analytic

dtds +

1∫

−1

1∫

−1

log |t− s| F(t)G(s)︸ ︷︷ ︸
singular

dtds =: I1 + I2 , (1.4.162)

splits into an integral with an analytic integrand and one with a singular. Thus,

an exponentially convergent approximation of I1 is provided by tensor-product Gaussian quadrature
(→ § 1.4.146).

Idea: Move location of singularities of integrands to a coordinate axis by an affine transfor-
mation of the integration domain.

In the second integral in (1.4.162) the singularities of the integrand are located at the diagonal {s = t} of
the square. In the spirit of the policy just described, we tackle I2 by the linear transformation

[z

w

]
:= Φ

−1
[s

t

]
=

[
1 −1
1 1

][
s
t

]
⇔

[s

t

]
= Φ

[z

w

]
=

1

2

[
1 1
−1 1

][
z
w

]
. (1.4.163)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 125

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 43

z s

t

w

−1

−1

−1

−1

1

1

1

1

Φ

Π

Then apply the transformation formula for integrals over D ⊂ R2 [Str09, Sect. 8.5]
∫

D
f (x)dx =

∫

Φ
−1(D)

f (Φ(x̂)) |detDΦ(x̂)|dx̂ , f integrable on D . (1.4.164)

I2 = 2
∫

Φ
−1([−1,1]2)

log |z| F(1
2 (w− z))G(1

2 (w + z))dzdw (1.4.165)

The integral over the square Π := Φ
−1([−1, 1]2) (left in Fig. 43) is split into the left and right half and

then we add the contributions

I2 = 2

2∫

0

log(z)

2−z∫

−2+z

analytic in (z, w)︷ ︸︸ ︷
F(1

2 (w− z))G(1
2 (w + z))− F(1

2 (w + z))G(1
2 (w− z)) dw

︸ ︷︷ ︸
analytic as a function of z

dz . (1.4.166)

The inner integral is amenable to standard Gaussian quadrature. Then we face an integral of the form∫ 2
0 log z f (z)dz with an analytic function f : [0, 2]→ R.

Generalized Gaussian quadrature (→ § 1.4.121) with weight log(z) can approximate I2 with expo-
nential accuracy.

(1.4.167) Single layer BIO: Adjacent panels

We assume π, π′ ∈ G, π 6= π′, π ∩ π′ = {p}. Writing |π|, |π ′| for the length of π and π′, respec-
tively, in this § we will make use of a local arclength parameterization

[for π]: κ : [0, |π|]→ π , ‖κ̇(t)‖ = 1 ∀t ∈ [0, |π|] ,

[for π ′]: κ′ : [0, |π′|]→ π′ ,
∥∥κ̇′(t)

∥∥ = 1 ∀t ∈ [0, |π′|] .
(1.4.168)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 126

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Thus, after transformation to the parameter domain, the entries of the interaction matrix for (π, π′) are
given by integrals

J :=

|π|∫

0

|π′|∫

0

log
∥∥κ(s)− κ′(t)

∥∥ F(t)G(s)dtds , (1.4.169)

with suitable univariate analytic functions F and G.

Fig. 44

π π′

p

−κ̇′(0) −κ̇(0)

Uniform cone condition:

Lipschitz property of Γ entails lower bound on angle enclosed
by π and π′:

κ̇(0) · κ̇′(0) ≤ c∠ < 1 . (1.4.170)

✁ The panels cannot invade the yellow cone.

Taking the cue from (1.4.160) we split the kernel according to

log
∥∥κ(s)− κ′(t)

∥∥ =
1

2

(
log
‖κ(s)− κ′(t)‖2

s2 + t2
+ log(s2 + t2)

)
. (1.4.171)

By Taylor expansion around s = t = 0:

κ(s)− κ′(t) = κ̇(0)s− κ̇′(0)t + O(s2 + t2) for s, t ≈ 0 , (1.4.172)
∥∥κ(s)− κ′(t)

∥∥2
= s2 + t2 − 2stκ̇(0) · κ̇′(0) + O(s4 + t4) for s, t ≈ 0 . (1.4.173)

The prominent presence of s2 + t2 suggests that we introduce polar coordinates (r, ϕ),
see [Hip16, § 2.4.39], according to

s = r cos ϕ , t = r sin ϕ ,

with r, ϕ in a suitable range that makes (s, t) cover D := [0, |π|]× [0, |π′|].
In polar coordinates the result of the above Taylor expansion reads

∥∥κ(s)− κ′(t)
∥∥2

= r2(1− sin(2ϕ)κ̇(0) · κ̇′(0) + O(r2)) for r → 0 .

Due to (1.4.170) we can take for granted that the logarithm of

D(r, ϕ) :=




‖κ(r cos ϕ)− κ′(r sin ϕ)‖2

r2
, if (s, t) 6= (0, 0) ,

1− sin(2ϕ)κ̇(0) · κ̇′(0) ≥ 1− c∠ , if r = 0 ,
(1.4.174)

is analytic on D := [0, |π|]× [0, |π′|].

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 127

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 45

✁ Plot of D(r, ϕ) for the

κ(s) =

[
cos(t)
sin(t)

]
, 0 ≤ t ≤ π

2 ,

κ′(t) =
[

1− t
0

]
, 0 ≤ t ≤ 1 .

The graph looks perfectly smooth, hinting at a benign
dependence of D on the polar coordinates (r, ϕ).

Analogously to (1.4.162) the integral can be split into two summands with “nice” and “nasty” integrands,
respectively.

J = 1
2

∫

D

r log(D(r, ϕ)) F(t cos ϕ)G(r sin ϕ)︸ ︷︷ ︸
analytic

drdϕ +
∫

D

r log r F(s)G(t)︸ ︷︷ ︸
singular

drdϕ (1.4.175)

The first summand is amenable to tensor-product Gauss quadrature The domain D of integration has to
be decomposed in two triangles for integration in polar coordinates.

Fig. 46

s

t

|π|

|π ′|

α

β

ϕ

tan α = |π ′|/|π|, tan β = |π|/|π ′|

|π|∫

0

|π′|∫

0

log
√

s2 + t2 F(s)G(t)︸ ︷︷ ︸
singular

dtds = +

=

α∫

0

|π|/ cos(ϕ)∫

0

r log r

analytic in (r, ϕ)︷ ︸︸ ︷
F(r sin ϕ)G(r cos ϕ) drdϕ

︸ ︷︷ ︸
analytic in ϕ

+

π/2∫

α

|π′|/ sin(ϕ)∫

0

r log r

analytic in (t, ϕ)︷ ︸︸ ︷
F(r sin ϕ)G(r cos ϕ) drdϕ

︸ ︷︷ ︸
analytic in ϕ

.

This suggest that we use

✦ generalized Gaussian quadrature formulas (→ § 1.4.121) with weight r → r log r for the inner
integral,

✦ standard Gaussian quadrature for the outer integral.

(1.4.176) Double layer BIO: Coinciding panels

In the case π = π ′ (local analytic parameterization γπ : [−1, 1] → π), for the double layer BIO K we
have to approximate integrals of the form

K :=

1∫

−1

1∫

−1

(
γπ(s)− γπ(t)

)
· n(γπ(t))

‖γπ(s)− γπ(t)‖2
F(t)G(s)dtds , (1.4.177)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 128

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 47

✁ plot of

(s, t) 7→
(
γπ(s)− γπ(t)

) · n(γπ(t))

‖γπ(s)− γπ(t)‖2

for π a semi-circle of radius 1.

We see the graph of a perfectly smooth function!

To understand, why the integrand in (1.4.177) is smooth, note that n(γπ(t)) · γ̇π(t) = 0 for all −1 ≤ t ≤
1, because γ̇π(t) is tangential to Γ in the point γπ(t). Thus, by power series expansion of the analytic
function γπ for |s− t| sufficiently small

(
γπ(s)− γπ(t)

)
· n(γπ(t)) =

(∞

∑
j=1

(s− t)j

j!
γ
(j)
π (t)

)
· n(γπ(t))

= (s− t)2 ·
∞

∑
j=0

(s− t)j

(j + 2)!
γ
(j)
π · n(γπ(t))

︸ ︷︷ ︸
analytic function of (s, t)

.

By the same arguments

‖γπ(s)− γπ(t)‖2 = (s− t)2 · { smooth function > 0 of (s, t) } .

(s, t) 7→
(
γπ(s)− γπ(t)

) · n(γπ(t))

‖γπ(s)− γπ(t)‖2
is analytic in (s, t) !

Hence, the integrand in (1.4.177) is analytic and we can achieve

exponential convergence of the quadrature error by standard tensor-product Gaussian (→
§ 1.4.146) quadrature of (1.4.177).

(1.4.178) Double layer BIO: Abutting panels

We discuss the situation of § 1.4.167 for the double layer boundary integral operator K. As earlier, we
assume that the panels π, π′ ∈ G have in common exactly one point π ∩ π ′ = {p} and we make use
of the arclength parameterization (1.4.168).

[for π]: κ : [0, |π|]→ π , ‖κ̇(t)‖ = 1 ∀t ∈ [0, |π|] ,

[for π ′]: κ′ : [0, |π′|]→ π′ ,
∥∥κ̇′(t)

∥∥ = 1 ∀t ∈ [0, |π′|] .
(1.4.168)

We are concerned with the numerical evaluation of integrals in the parameter domain of the form

J :=

|π|∫

0

|π′|∫

0

(κ(s)− κ′(t)) · n(κ′(t))
‖κ(s)− κ′(t)‖2

F(t)G(s) dtds . (1.4.179)

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 129

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We can no longer count on the regularizing effect of orthogonality as in § 1.4.176.

Inspired by the success in § 1.4.167, we switch to polar coordinates (r, ϕ) for the domain
in integration: s = r cos ϕ, t = r sin ϕ.

Then, since κ(0) = κ′(0) = p, Taylor expansion around s = t = 0 yields for 0 ≤ s, t sufficiently small

κ(s)− κ′(t) = r ·
∞

∑
j=0

r j

(j + 1)!

(
κ(j+1)(0) cosj+1 ϕ− κ′(j+1)(0) sinj+1 ϕ

)
= rb(r, ϕ) , (1.4.180)

with a (componentwise) analytic function b : R+
0 × [0, 2π] → R2 that satisfies b(0, ϕ) 6= 0 on the

domain of integration, compare (1.4.173). Thus, in polar coordinates

(κ(s)− κ′(t)) · n(κ′(t))
‖κ(s)− κ′(t)‖2

=
1

r
· b(r, ϕ) · n(κ′(r sin ϕ))

‖b(r, ϕ)‖2

︸ ︷︷ ︸
analytic in (r, ϕ)

. (1.4.181)

Thus we can achieve a cancellation of the singular term r 7→ r−1 by the metric factor (dtds → rdrds)
when integrating in polar coordinates, see Fig. 46 for the meaning of α, β,

|π|∫

0

|π′|∫

0

(κ(s)− κ′(t)) · n(κ′(t))
‖κ(s)− κ′(t)‖2

F(t)G(s) dtds =

α∫

0

|π|/ cos(ϕ)∫

0

b(r, ϕ) · n(κ′(r sin ϕ))

‖b(r, ϕ)‖2
drdϕ+

π/2∫

α

|π′|/ sin(ϕ)∫

0

b(r, ϕ) · n(κ′(r sin ϕ))

‖b(r, ϕ)‖2
drdϕ .

For the resulting two integrals

standard tensor-product Gaussian quadrature yields an exponentially convergent numerical approx-
imation.

Remark 1.4.182 (Stable evaluation of integrands)

The functions (s, t) 7→ S(s, t)/D(s, t) introduced in (1.4.161)/(1.4.174) and (r, ϕ) 7→ b(r, ϕ) are defined
as

S(s, t) =
‖γπ(s)− γπ(t)‖2

(s− t)2
for s 6= t , (1.4.183)

D(s, t) =
‖κ(s)− κ′(t)‖2

s2 + t2
for s2 + t2 > 0 , (1.4.184)

b(r, ϕ) =
κ(r cos ϕ)− κ′(r sin ϕ)

r
for r > 0 . (1.4.185)

! Evaluating these expressions for s ≈ t, s2 + t2 ≈ 0, or r ≈ 0, respectively, incurs cancel-
lation.

As explained in [Hip15, Section 1.5.4], cancellation is a massive amplification of roundoff errors due to sub-
tracting numbers of almost the same value. We have to follow the recommendation of [Hip15, Ex. 1.5.65]
and

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 130

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

use truncated Taylor expansions of κ, κ′ to avoid cancellation !

γπ(s)− γπ(t) ≈ (s− t)γ̇π(
1
2(s + t)) for |s− t| <

√
EPS ,

κ(s)− κ′(t) ≈ κ̇(0)s− κ̇′(0)t for r2 = s2 + t2 ≤ EPS .

(EPS =̂ machine precision, see [Hip15, Ass. 1.5.32])

Stable evaluation by means of the expressions

S(s, t) ≈
∥∥∥γ̇π(

1
2(s + t))

∥∥∥
2

for |s− t| <
√

EPS , (1.4.186)

D(s, t) ≈ 1− κ̇(0) · κ̇′(0) 2st

s2 + t2
for s2 + t2 ≤ EPS , (1.4.187)

b(r, ϕ) ≈ κ̇(0) cos ϕ− κ̇′(0) sin ϕ for r <
√

EPS . (1.4.188)

(1.4.189) Treatment of disjoint panels

Now we discuss the situation π ∩ π′ = ∅. We use the standard local parameterizations of π, π′ over
]−1, 1[from (1.4.36). In principle we face only integrals

1∫

−1

1∫

−1

k̂(s, t) F(t) G(s)dtds , k̂(s, t) := k(γπ(s), γπ ′(t)) , (1.4.157)

with analytic integrands, because the singularity of the fundamental solution is avoided. However, if π
and π′ are very close,

the proximity of a singularity will be “felt” by Gaussian quadrature and (exponential) convergence (in
terms of the number of quadrature points) will deteriorate, see Exp. 1.4.141.

Thus we have to link the number of quadrature points to the inverse relative distance of panels

ρ(π, π′) :=
max{|π|, |π′|}

dist(π; π′)
, dist(π; π′) := inf{‖x− y‖, x ∈ π, y ∈ π ′} . (1.4.190)

The following heuristic (supported by the analysis of [SS10, Sect. 5.3.2]) may be implemented:

For (1.4.157) use n× n-point tensor-product Gaussian quadrature on [−1, 1]2with

n = n0 ·max
{

1, 1 + C log

(
ρ(π, π′)

η

)}
, (1.4.191)

where n0 is a small fixed number, n0 ∈ {3, 4, 5}, and C, η > 0 are constants, 1
2 ≤ η < 1,

C ≈??.

Thus, in particular,

if η dist(π; π′) ≥ max{|π|, |π′|} then use fixed n0 × n0-point quadrature .

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 131

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.5 Boundary Element Methods on Closed Surfaces

The first-kind and second-kind boundary integral equations stated in variational form in Section 1.3.5.1/Section 1.3.5.2
and Section 1.3.6 hold for both d = 2, 3, if based on the respective fundamental solutions. The previous
section gave a detailed introduction into the building blocks and algorithmic details of Galerkin boundary
element methods in 2D. It is not surprising that for d = 3 similar principles, constructions and algorithms
will apply. of course, the paradigm of Galerkin discretization elaborated in § 1.4.6 remains unchanged.

Also the other ingredients of boundary element methods remain relevant for surfaces, with slight adapta-
tions to the additional dimension:

✦ meshes, see Section 1.4.2.1 for the 2D case, attain much greater flexibility and will be discussed in
Section 1.5.1,

✦ boundary element spaces, for 2D introduced in Section 1.4.2.2 will again turn out to be “2D finite
element spaces on surfaces”, see Section 1.5.2 below,

✦ shape functions, both global and local will become more complicated than those presented in Sec-
tion 1.4.2.3, but still comply with the same design pattern, see Section 1.5.2.2,

✦ parametric construction as presented in § 1.4.35 will remain a crucial tool for defining and handling
shape functions.

✦ panel-oriented assembly will exactly agree with its 2D counterpart from Section 1.4.3.1.

Because of the similarities some aspects of boundary element methods in 3D will be treated only briefly
with reference to further explanation given in Section 1.4. Also many concepts will be borrowed from
Lagrangian finite element methods in 2D, see [Hip16, Section 3.5] and [Hip16, Section 3.6].

1.5.1 Surface Meshes

If Ω ⊂ R3, then Γ is an orientable two-dimensional manifold, a surface embedded into three-dimensional
Euclidean space R3.

(1.5.1) Γ with smooth faces

Ass. 1.2.8 should still apply: Γ is a curved Lipschitz polyhedron and can be partitioned into M ∈ N

faces

Γ = Γ1 ∪ · · · ∪ ΓM , Γi ∩ Γj = ∅ for i 6= j ,

of which each has a C2-parameterization

γj : Πj → Γj , Πj ⊂ R2 a planar polygon .

Fig. 48
x̂1

x̂2

Πj

Γj

γj

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 132

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(1.5.2) Planar triangulations [Hip16, Section 3.5.1]

Definition 1.5.3. Triangular planar mesh/triangulation, cf. [Hip16, Def. 3.5.2]

A triangular mesh/triangulationM of a polygon Π ⊂ R2 is a finite collection {Ki}N
i=1, N ∈ N, of

open non-degenerate triangles
(A) Π =

⋃
{Ki, i = 1, . . . , M} (covering property),

(B) Ki ∩ Kj = ∅ ⇔ i 6= j (partition property)

(C) for all i, j ∈ {1, . . . , M}, i 6= j, the intersection Ki ∩ K j is either empty or a vertex or edge of
both Ki and Kj.

Fig. 49

Π

A triangular mesh/triangulation

Fig. 50

Π

Inadmissible “hanging nodes”

For the notions of triangles, edges, and vertices as basic constituent parts of a triangulation we appeal to
geometric intuition. The triangles of a mesh may also be called cells.

Putting it simply, surface mesh is the image of compatible triangulations of the paramter domains Πj ⊂
R2under the parameterizations γj.

Definition 1.5.4. Triangular surface mesh/surface triangulation

A triangular surface mesh/surface triangulation G is a partitioning

Γ = π1 ∪ · · · ∪πN , πi ∩π j = ∅ for i 6= j ,

such that
(i) every panel πi is contained in exactly one face,
(ii) the pre-images of the panels contained in Γj under the parameterization γj form a triangula-

tionMj of Πj according to Def. 1.5.3,
(iii) for all πi, π j ∈ G the intersections πi ∩ π j are either empty, a common vertex, or a face of

both panels.

As usual, we identify a surface triangulation G with its set of panels. It should be evident what is meant by

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 133

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

edges and vertices of a surface mesh. The vertices may also be called the nodes of the mesh.

✎ Notation: V(G) =̂ set of vertices (nodes) of G
E(G) =̂ set of edges of G

Fig. 51

Item (iii) ensures that the surface triangulation G is
compatible across the edges separating the faces of
Γ: also there hanging nodes cannot occur.

✁ Surface triangulation covering a polyhedron

Remark 1.5.5 (Surface meshes as traces of volume meshes)

We could also have introduced surface meshes as restrictions of tetrahedral finite element meshes of the
volume domain Ω to the boundary Γ.

Conversely, we may assume that for every surface mesh G there is a generalized tetrahedral meshM of
Ω according to [Hip16, Def. 3.5.2], possibly with curved faces and edges, such that G = M|Γ.

Remark 1.5.6 (More general surface meshes)

Of course, we could have also relied on more general meshes of the parameter domains in our definition
of surface meshes, like quadrilateral meshes or hybrid meshes, see [Hip16, § 3.5.4]. We restrict ourselves
to triangular surface meshes just to simplify the presentation.

1.5.2 Boundary Element Spaces on Triangulated Surfaces

1.5.2.1 Definitions

(1.5.7) Polynomials in R2

Polynomials on Γ are again defined via their pullbacks γ∗ to parameter domains Πj ⊂. The definition of
the pullback Def. 1.4.19 carries over and what is a polynomial on Πj is clear from the following definition
for d = 2:

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 134

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.5.8. Multivariate polynomials

The space of d-variate polynomials of (total) degree p ∈ N0 is

Pp(R
d) := {x ∈ Rd 7→∑α∈Nd

0 , |α|≤p
cαxα , cα ∈ R} .

d = 2: Pp(R
2) =



 ∑

α1,α2≥0
α1+α2≤p

cα1,α2 xα1
1 xα2

2 , cα1,α2 ∈ R





,,

for instance P2(R
2) = Span{1, x1, x2, x2

1, x2
2, x1x2}.

From [Hip16, Lemma 3.5.11] we learn that

dimPp(R
d) =

(
d + p

p

)
dimPp(R

2) = 1
2(p + 2)(p + 1) . (1.5.9)

(1.5.10) Piecewise polynomials on triangulated surfaces

A function f : Γj → R is called a polynomial of degree ≤ p on the face Γj, if its pullback γ∗j f is a

2-variate polynomial of degree ≤ p on Πj ⊂ R2. Thus, the definitions of piecewise polynomial spaces for
Section 1.4.2.2 remain unchanged.

S0
p(G) :=

{
v ∈ C0(Γ) : γ∗j (v|π) ∈ Pp(R

2), ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M
}

, p ≥ 1 , (1.5.11)

S−1
p (G) :=

{
v ∈ L2(Γ) : γ∗j (v|π) ∈ Pp(R

2), ∀π ∈ G, π ⊂ Γj, j = 1, . . . , M
}

, p ≥ 0 . (1.5.12)

The embeddings S0
p(G) ⊂ C1

pw(Γ) ⊂ H
1
2 (Γ), S−1

p (G) ⊂ C0
pw(Γ) ⊂ L2(Γ) ⊂ H−

1
2 (Γ), stated in

Cor. 1.4.23 remain true.

Theorem 1.5.13. Dimensions of BE spaces on triangulated surfaces

✦ dimS0
p(G) = ♯V(G) + (p− 1) · ♯E(G) + 1

2(p− 1)(p− 2) · ♯G, p ≥ 1,

✦ dimS−1
p (G) = ♯G 1

2(p + 1)(p + 2), p ≥ 0.

(negative terms to be set to zero!)

BE spaces from FE spaces

LetMj be the triangular mesh of Πj inducing G|Γj
. Then

S0
p(Mj) = γ∗j S0

p(G)
∣∣∣

Γj

,

S−1
p (Mj) = γ∗j S−1

p (G)
∣∣∣

Γj

,
j = 1, . . . , M , (1.5.15)

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 135

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

where S0
p(Mj) is the p-th degree Lagrangian finite element space on Mj as defined in [Hip16,

Def. 3.6.2], and S−1
p (M) the space ofMj-piecewise polynomials of degree ≤ p.

The relationship (1.5.15) permits us to transfer most concepts from finite element spaces in 2D to surface

boundary element spaces. In particular, this will be done in the next section.

Remark 1.5.16 (Nodal interpolation operators)

The relationship expressed in (1.5.15) permits us to transfer most tools from the world of finite elements
to boundary elements.

Let Mj be the preimage of G|Γj
under γj. For the Lagrangian finite element space S0

p(Mj) there are

nodal interpolation operators I
0,j
p : C0(Πj) → S0

p(Mj) defined through interpolation in special interpola-
tion points. Their locations for different p in 2D are described in [Hip16, Ex. 3.6.3] and [Hip16, ??]. Then
nodal interpolation operators I0p : C0(Γ) → S0

p(G) can be defined by

I0p

∣∣∣
Γj

:=
(
γ−1

j

)∗ ◦ I0,j
p ◦ γ∗j . (1.5.17)

This amounts to “piecewise polynomial interpolation in the mapped interpolation nodes”. For p = 1 the
interpolation nodes coincide with the vertices of G.

Remark 1.5.18 (Approximation of surfaces)

3D boundary element codes often resort to piecewise polynomial approximation of Γ, analogous to what
was done for curves in Section 1.4.2.5.

Given a triangular surface mesh according to Def. 1.5.4, we define approximate piecewise polynomial
parameterizations by

γ̃j := I
0,j
p ◦ γj : Πj → R3 , (1.5.19)

where the nodal interpolation operator I
0,j
p acts on the three components of γj. Then we obtain the

approximate surface

Γ̃ = Γ̃1 ∪ · · · ∪ Γ̃M , Γ̃j := γj(Πj) .

1.5.2.2 Shape Functions

(1.5.20) Global shape functions

Everything from Section 1.4.2.3 can be adapted to triangulated surfaces and the associated boundary
element spaces S0

p(G) of continuous, and S−1
p (G) of discontinuous piecewise polynomials. Again, we

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 136

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

can find bases of the boundary element spaces consisting of locally supported basis functions associated
with geometric entities of the surface mesh G; they satisfy the properties § 1.4.26, § 1.4.26, and § 1.4.26
from 89 and are called global shape functions (GSF). From [Hip16, Ex. 3.5.16] we recall

Fig. 52

Support of vertex-associated
basis function

Fig. 53

Support of edge-associated basis
function

Fig. 54

Support of panel-associated basis
function

(1.5.21) Local shape functions

Restricting global shape functions to individual panels we obtain local shape functions (LSF):

{b1
π , . . . , bQ

π} = {bN|π : bN ∈ BN} \ {0} for some Q = Q(π) ∈ N . (1.4.33)

Also (1.4.34) remains true: If {b1
π , . . . , bQ

π} is the set of local shape functions of S0
p(G) or S−1

p (G) for a
panel π ⊂ Γj then

∀π ∈ G, π ⊂ Γj: γ∗j (Span{b1
π , . . . , bQ

π}) = Pp(R
2) . (1.4.34)

(1.5.22) Reference shape functions

The role of the reference interval Î :=]−1, 1[in 2D is now played by the “unit triangle” K̂ :=
〈[

0
0

]
,
[

1
0

]
.
[

0
1

]〉
,

see [Hip16, Section 3.8.1].

For a panel π ⊂ Γj the local parameterization γπ is built by a two-stage procedure:

➊ Find the unique affine mapping from K̂ to the triangle K := γ−1
j (π):

“Unit triangle”: K̂ =
〈[

0
0

]
,
[

1
0

]
,
[

0
1

]〉

For K =
〈

a1, a2, a3
〉
:

FK =

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
, τK = a1 .

Fig. 55 1

1

K

K̂

ΦK(x̂) = FK x̂ + τK

x̂1

x̂2

a1

a2

a3

➊ ➋

➌

➋ Map from K to π through the paramterization γj

∣∣∣
K

.

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 137

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

These two mappings can be concatenated into a local parameterization of the panel π:

[K̂
ΦK−−−→ K

γj−−−→ π] , γπ := γj ◦ΦK : K̂ → π . (1.5.23)

The pullback of shape functions to K̂ yields reference shape functions:

b̂j = γ∗π(b
j
π) , j = 1, . . . Q . (1.4.38)

For the standard boundary element spaces S0
p(G) and S−1

p (G) on a triangulated surface the reference
shape functions can be chosen independent of the panel π:

• For S−1
p (G), p ≥ 0:

Any basis of Pp(R2) can supply valid reference shape functions.

• For S0
p(G), p ≥ 1:

Reference shape functions ∈ Pp(R2) as Lagrange polynomials for suitable interpolation

nodes on K̂, see [Hip16, Ex. 3.6.3] and [Hip16, Ex. 3.6.7].

In both cases Q = dimPp(R2) = 1
2(p + 1)(p + 2).

The reference shape functions in the lowest-degree cases are straightforward:

Example 1.5.24 (Reference shape functions for S−1
0 (G))

The space P0(R
2) spanned by the reference shape functions has dimension 1 and, therefore, for S−1

0 (G)

β̂1 ≡ 1 on K̂ .

Example 1.5.25 (Reference shape functions for S0
1 (G))

The reference shape functions space the space P1(R
2) of dimension 3. The reference shape functions

are the barycentric coordinate functions λ1, λ2, λ3 on K̂

b̂1(t) = λ1(t) := 1− t1 − t2 [associated with vertex

[
0

0

]
],

b̂2(t) = λ2(t) := t1 [associated with vertex

[
1

0

]
],

b̂3(t) = λ3(t) := t2 [associated with vertex

[
0

0

]
], .

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 138

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.5.3 Assembly of Galerkin Matrices

The entire discussion in Section 1.4.3.1 including Code 1.4.82 carries over to surface boundary elements.
Therefore we completely focus on the computation of entries of the interaction matrices of two panels
π, π′ ∈ G by means of quadrature-based techniques, that is, we present the subject of Section 1.4.3.4
for d = 3. As in Section 1.4.3.4 we assume maximally smooth parameterizations, compare Ass. 1.4.153.

Assumption 1.5.26. Analyticity of local parameterizations

We assume that the local parameterizations γπ according to (1.5.23) can be extended analytically
(→ Def. 1.4.136) to an ellipse neighborhood of [0, 1] in both variables and independently of the
panel π ∈ G.

Also due to the different nature of singularities in the fundamental solutions

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 ,
(1.2.44)

the technical details of the computations will be very different for the different dimensions. In this section
we exclusively focus on the single layer BIO V, that is, the evaluation of integrals of the form

I :=
∫

π

∫

π ′

1

‖x− y‖ b
j
π ′(y) bi

π(x)dS(y)dS(x) ,

for pairs of panels π, π′ ∈ G, where b
j
π are local shape functions, see § 1.5.21.

(1.5.27) Transformation to reference triangle, cf. § 1.4.155

By pullback to the reference triangle K̂ :=
〈[

0
0

]
,
[

1
0

]
,
[

0
1

]〉
we obtain

I =
∫

K̂

∫

K̂

1

‖γπ(s)− γπ′(t)‖
F(t) G(s)dtds , (1.5.28)

with smooth functions F, G ∈ C∞(K̂) that possess an analytic extension beyond K̂ in each variable.
The domain of integration in (1.5.28) is four-dimensional, a tensor-product of two triangles, the convex
polyhedron.

K̂× K̂ =
{
[s1, s2, t1, t2]

⊤ ∈ R4 : t1.t2, s1, ss > 0, t1 + t2 < 1, s1 + s2 < 1
}

.

(1.5.29) Coinciding panels, compare § 1.4.158, [SS10, Sect. 5.2.1]

We deal with the situation π = π′, γπ = γπ ′ =: γ : K̂ → π.

We observe that in (1.5.28) the integrand has a singularity for s = t, which suggests the
following change of coordinates [SS10, Sect. 5.2.1].

[
ŝ
ẑ

]
=

[
s

s− t

]
⇔

[
s
t

]
=

[
ŝ

ŝ− ẑ

]
. (1.5.30)

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 139

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

This is a volume preserving (det = 1) linear transformation and it converts (1.5.28) into

I =
∫ ∫

D

1

‖γ(ŝ)− γ(ŝ− ẑ)‖ F(ŝ− ẑ) G(ŝ)︸ ︷︷ ︸
analytic in (ŝ, ẑ)

dẑdŝ , (1.5.31)

where D ⊂ R4 is the transformed convex polyhedron

D =

{
[ŝ1, ŝ2, ẑ1, ẑ2]

⊤ ∈ R4 :
ŝ1, ŝ2 > 0, ŝ1 − ẑ1 > 0, ŝ2 − ẑ2 > 0,
ŝ1 + ŝ2 − (ẑ1 + ẑ2) < 1

}
. (1.5.32)

Now the singularity has been isolated at ẑ = 0, where the integrand behaves like O(‖ẑ‖1) for ẑ→ 0.

As in § 1.4.178 for the treatment of O(‖ẑ‖−1)-type singularities switch to polar coordinates:
ẑ1 = r cos ϕ, ẑ2 = r sin ϕ, r ≥ 0.

To understand the behavior of the integrand we perform two-dimensional Taylor expansion around ẑ =
0:

γ(ŝ)− γ(ŝ− ẑ) = −Dγ(ŝ)ẑ +
∞

∑
k=1

1

k! ∑
ℓ1+ℓ2=k

Dℓγ(ŝ)(−ẑ)ℓ .

Then we plug in polar coordinates and get

B(ŝ, ẑ) :=
‖γ(ŝ)− γ(ŝ− ẑ)‖2

‖z‖2
=

[
cos ϕ
sin ϕ

]⊤
Dγ(ŝ)⊤Dγ(ŝ)

[
cos ϕ
sin ϕ

]
+ r · {analytic in (ŝ, r, ϕ)} .

Since γ is a parameterization, the smallest eigenvalue of the Gram matrix Dγ⊤Dγ must be uniformly

positive on K̂. Therefore, for sufficiently small r := ‖ẑ‖, B(ŝ, ẑ) will be positive, and

(ŝ, ẑ) ∈ D 7→
√

B(ŝ, ẑ) ∈ R+

will possess an analytic extension beyond D. Hence, we have

I =
∫ ∫

D

1

‖ẑ‖
F(ŝ− ẑ) G(ŝ)√

B(ŝ, ẑ)︸ ︷︷ ︸
analytic in D

dẑdŝ =
∫ ∫

D

F(ŝ− ẑ) G(ŝ)√
B(ŝ, ẑ)

dŝdrdϕ , (1.5.33)

because the volume element dẑdŝ = rdrdϕ cancels the denominator r = ‖ẑ‖. We have achieved an
integral with an analytic integrand, on a complicated domain, however.

Split D into six four-dimensional simplices with a vertex in 0 [SS10, p. 309]!

D = {−1 < ẑ1 < 0, −1 < ẑ2 < ẑ1, −ẑ2 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1}
⋃

{−1 < ẑ1 < 0, ẑ1 < ẑ2 < 0, ẑ1 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{−1 < ẑ1 < 0, 0 < ẑ2 < 1 + ẑ1, ẑ2 − ẑ1 < ŝ1 < 1, 0 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{0 < ẑ1 < 1, −1 + ẑ1 < ẑ2 < 0, −ẑ2 < ŝ1 < 1− ẑ1, −ẑ2 < ŝ2 < ŝ1}
⋃

{0 < ẑ1 < 1, 0 < ẑ2 < ẑ1, 0 < ŝ1 < 1− ẑ1, 0 < ŝ2 < ŝ1}
⋃

{0 < ẑ1 < 1, ẑ1 < ẑ2 < 1, ẑ2 − ẑ1 < ŝ2 < 1− ẑ1, 0, ŝ2 < ẑ1 − ẑ2 + ŝ1}
=: D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 ∪ D6 .

(1.5.34)

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 140

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We have arranged the inequalities defining the sets Di in a way that removes the dependence of the
ẑ-coordinate from ŝ. So we can rewrite

D = {ẑ ∈ △1, −ẑ2 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1}
⋃

{ẑ ∈ △2, ẑ1 < ŝ1 < 1, −ẑ2 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{ẑ ∈ △3, ẑ2 − ẑ1 < ŝ1 < 1, 0 < ŝ2 < ŝ1 + ẑ1 − ẑ2}
⋃

{ẑ ∈ △4, −ẑ2 < ŝ1 < 1− ẑ1, −ẑ2 < ŝ2 < ŝ1}
⋃

{ẑ ∈ △5, 0 < ŝ1 < 1− ẑ1, 0 < ŝ2 < ŝ1}
⋃

{ẑ ∈ △6, ẑ2 − ẑ1 < ŝ2 < 1− ẑ1, 0, ŝ2 < ẑ1 − ẑ2 + ŝ1} ,

(1.5.35)

Fig. 56

1

1

−1

−1

△1

△2

△3

△4

△5

△6

ẑ1

ẑ2

✁ with suitably defined triangles △i in the ẑ1 − ẑ2-
plane.

Refer to Fig. 46 for the representation of triangles in
polar coordinates.

Thus we can express the integral through contributions from simpler domains:

∫ ∫

D
. . . dŝdrdϕ =

∫

△1

1∫

−ẑ2

ŝ1∫

−ẑ2

. . . dŝ2dŝ1drdϕ +
∫

△2

1∫

−ẑ1

ŝ1+ẑ1−ẑ2∫

−ẑ2

. . . dŝ2dŝ1drdϕ+

∫

△3

1∫

ẑ2−ẑ1

ŝ1+ẑ1−ẑ2∫

0

. . . dŝ2dŝ1drdϕ +
∫

△4

1−ẑ1∫

−ẑ2

ŝ1∫

−ẑ2

. . . dŝ2dŝ1drdϕ

∫

△5

1−ẑ1∫

0

ŝ1∫

0

. . . dŝ2dŝ1drdϕ +
∫

△6

1−ẑ1∫

ẑ2−ẑ1

ẑ1−ẑ2+ŝ1∫

0

. . . dŝ2dŝ1drdϕ .

(1.5.36)

For the triangles it is easy to determine the corresponding integration bounds in the (r, ϕ)-domain: make
the radius dependent of the angle as we did in § 1.4.167.

Four-nested Gauss(-Legendre) quadrature rules applied to every integral in (1.5.36) yield an expo-
nentially convergent quadrature approximation.

! Remeber Rem. 1.4.182 and be wary of cancellation that may affect the evaluation of
B(ŝ, ẑ).

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 141

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 1.5.37 (Precomputing complex quadrature formula)

The domain of integration in (1.5.33) does not depend on π, only the smooth integrand does. Hence, for
a fixed order of the four-nested Gauss-Legendre rule used to evaluate the integrals in (1.5.36), all points
at which we have to evaluate the integrand are known in advance and will be independent of π. Thus we
can simply precompute the resulting family of complex quadrature formula on D (in polar coordinates) and
tabulate them.

(1.5.38) Adjacent panels [SS10, Sect. 5.2.2], cf. § 1.4.167

We face the situation π 6= π ′, π ∩ π′ = E, E an edge of G. Given local parameterizations γ := γπ :

K̂ → π and γ′ := γπ ′ : K̂ → π′ we assume that they agree for E:

E = γ([0, 1]× {0}) = γ′([0, 1]× {0}) , γ

([
t

0

])
= γ′

([
t

0

])
, 0 ≤ t ≤ 1 . (1.5.39)

Thus, the integrand in the transformed integral

I =
∫

K̂

∫

K̂

1

‖γπ(s)− γπ′(t)‖
F(t) G(s)dtds , (1.5.28)

has a singularity for t1 = s1!

To deal with the singularity at t1 = s1 we employ the following change of integration vari-
ables [SS10, p. 313]




ŝ1

ẑ
ŝ2

t̂2


 =




s1

s1 − t1

s2

t2


 ⇔




s1

s2

t1

t2


 =




ŝ1

ŝ2

ŝ1 − ẑ

t̂2


 . (1.5.40)

This yields the transformed integral over the pre-image D of K̂× K̂ under this transformation:

I =
∫ ∫

D

1∥∥∥γ(
[

ŝ1
ŝ2

]
)− γ′(

[
ŝ1−ẑ

t̂2

]
)
∥∥∥

F

([
ŝ1 − ẑ

t̂2

])
G

([
ŝ1

ŝ2

])
dŝ1dẑdŝ2dt̂2 , (1.5.41)

with the four-dimensional convex polyhedron

D :=








ŝ1

ẑ
ŝ2

t̂2


 ∈ R4 :

0 < ŝ1 < 1, ŝ1 − 1 < ẑ < ŝ1,

0 < ŝ2 < 1− ŝ1, 0 < t̂2 < 1− ŝ1 + ẑ





. (1.5.42)

To motivate the next transformation, we temporarily focus on the case that both π and π ′ are flat trian-

gles:

π = 〈a, b, c〉 , π′ =
〈

a, b, c′
〉

, a, b, c, c′ ∈ R3 ,

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 142

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

that is E = [a, b].

Fig. 57

1

1

0 s1/t1

s2/t2

γ′

γ

a

b
c

c′

π
π′

E

In this special case the local parameterizations can be chosen as, see Fig. 57:

γ(s) = a + s1u + s2v , γ′(t) = a + t1u + t2v′ ,
u := b− a,
v := c− a,
v′ := c′ − a .

(1.5.43)

We point out the geometric minimal angle conditions for triangles of the mesh and at edges of Γ: with α0

independent of π, π ′

∢(v, v′),∢(u, v),∢(u, v′) > α0 . (1.5.44)

Then we find

∥∥γ(s)− γ′(t)
∥∥2

=
∥∥ŝ1u + ŝ2v− (ŝ1 − ẑ)u + t̂2v′

∥∥2

=
∥∥ŝ2v− ẑu + t̂2v′

∥∥2

= ŝ2
2‖v‖2 + ẑ2‖u‖2 + t̂2

2

∥∥v′
∥∥2− 2ŝ2ẑ(u · v)− 2t̂2ẑ(u · v′) + 2ŝ2t̂2(v · v′) .

This suggests that we use spherical coordinates (r, θ, ϕ) in ẑ− ŝ2 − t̂2-space:

ẑ = r sin θ cos ϕ , ŝ2 = r sin θ sin ϕ , t̂2 = r cos θ , (1.5.45)

r ≥ 0, 0 ≤ ϕ < 2π, 0 < θ < π, for which the volume element is dẑdŝ2dt̂ =
r2 sin θdθdϕdr.

In these new coordinates we obviously have for flat panels

∥∥γ(s)− γ′(t)
∥∥2

= r2 · p(θ, ϕ) ,

where p is a polynomial in sin θ, sin ϕ, cos θ, cos ϕ, uniformly positive in [0, π]× [0, 2π] due to the angle
condition (1.5.44).

In the general case Taylor expansion arguments confirm that for small r ≥ 0

(ŝ1, r, θ, ϕ) 7→ r∥∥∥γ
([

ŝ1
r sin θ sin ϕ

])
− γ′

([
ŝ1−r sin θ cos ϕ

r cos θ

])∥∥∥

is analytic on the pre-image D◦ of D under the spherical coordinate transformation. To write I as nested
integrals

∫ ∫ ∫ ∫
. . . dŝ1drdθdϕ, in analogy to (1.5.34), we split D into five simplices with a single vertex

in 0 each. For details refer to [SS10, pp. 313].

1. Boundary Element Methods (BEM), 1.5. Boundary Element Methods on Closed Surfaces 143

https://en.wikipedia.org/wiki/Spherical_coordinate_system

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Four-nested Gaus(-Legendre) quadrature applied (pieces of) to the (ŝ1, r, θ, ϕ)-transformed integral
I converges exponentially in the number of quadrature nodes.

Pre-computation of the corresponding complex quadrature rule is possible, of course.

(1.5.46) Common vertex [SS10, Sect. 5.2.3]

To deal with the case π ∩ π′ = {p}, p ∈ R3 a point, we assume local parameterizations γ := γπ :

K̂ → π and γ′ := γπ ′ : K̂ → π′ that satisfy γ(0) = γ′(0) = p. Thus the integrand of the transformed
integral

I =
∫

K̂

∫

K̂

1

‖γπ(s)− γπ′(t)‖
F(t) G(s)dtds , (1.5.28)

has a singularity in s = t = 0 only. This can be removed by switching to four-dimensional spherical coordinates.
The arguments are similar to thos elaborated in § 1.5.38.

(1.5.47) Panels at a positive distance

We follow heuristic rules put forth in § 1.4.189 and use Gauss quadrature formulas on K̂ × K̂ with orders
adjusted to the relative distance of the panels according to (1.4.191).

1.6 BEM: Various Aspects

1.6.1 Convergence

As in convergence theory for finite elements we can make statements only about asymptotic convergence
considering families of boundary element trial/test spaces. The reason is that it is usually impossible to
predict the size of the discretization error for general boundary value problems. So we have to settle for
results merely telling the behavior of discretization error under variation of discretization parameters, read
[Hip16, ??], [Hip16, § 5.3.62].

The focus will be on h-refinement, increasing the resolution of the boundary element spaces by using finer
meshes, see [Hip16, Ex. 5.1.20].

1.6.1.1 Abstract Galerkin Error Estimate

We recall a fundamental result of [Hip16, Section 5.1] for the Galerkin discretization of linear variational
problems (→ Def. 1.1.57)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.1.58)

where V0 is a Hilbert space with norm ‖·‖V . Galerkin discretization based on the trial and test space
VN ⊂ V0, N := dim VN < ∞, leads to the discrete variational problem

uN ∈ VN : a(uN , vN) = ℓ(vN) ∀vN ∈ VN , (1.4.7)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 144

https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

with Galerkin solution uN ∈ VN.

Theorem 1.6.1. Cea’s lemma [Hip16, Thm. 5.1.15]

Assume that the bilinear form a : V0 ×V0 → R is continuous and elliptic, that is

∃Ca > 0: |a(u, v)| ≤ Ca ‖u‖V‖v‖V ∀u, v ∈ V0 , (1.6.2)

∃c > 0: |a(v, v)| ≥ c‖v‖2
V ∀v ∈ V0 . (1.6.3)

Then both (1.1.58) and (1.4.7) have unique solutions u ∈ V0 and uN ∈ VN, respectively, that

satisfy

‖u− uN‖V ≤
Ca

c
inf

vN∈VN

‖u− vN‖V . (1.6.4)

The theorem tells us that the norm of the Galerkin discretization error u − uN is bounded by the best-
approximation error times a constant that is independent of VN.

Elliptic first-kind variational BIEs

The assumptions of Thm. 1.6.1 are satisfied for most first-kind variational BIEs

✦ for (1.3.112) with a = aV, V0 = H−
1
2 (Γ) by Thm. 1.3.114/Thm. 1.3.118

(when diam(Ω) < 1 for d = 2),

✦ for (1.3.121) with aW, V0 = H
1
2∗ (Γ) by Thm. 1.3.123.

Remark 1.6.6 (Galerkin error estimates for 2nd-kind BIE)

Estimates for the Galerkin discretization error for the second-kind variational BIEs (1.3.133) and (1.3.134)
on general curved polyhedra have remained elusive up to date.

1.6.1.2 Approximation in Boundary Element spaces

Thanks to Thm. 1.6.1 we can obtain full information about (“energy” trace norms of) the Galerkin discretiza-
tion error for direct first-kind BIEs by studying how well traces of solutions of boundary value problems can
be approximated (in “energy” trace space norms) in boundary element spaces.

(1.6.7) Spaces for functions of higher smoothness on Γ

Aapproximation error estimates require smoothness of the traces, and this smoothness is conveniently
measured in a Sobolev scale, recall [Hip16, Section 5.3.3]. Sobolev spaces of functions on smooth faces
of Γ are defined via pullback (→ Def. 1.4.19).

As before we make Ass. 1.2.6 (d = 2) or Ass. 1.2.8 (d = 3), that is Γ consists of (smooth) faces Γj,

j = 1, . . . , M, with individual parameterizations γj : Πj ⊂ Rd−1 → Γj.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 145

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 1.6.8. Piecewise Sobolev spaces on Γ

For m ∈ N0 and assuming Cm-parameterizations γj we define the piecewise Sobolev space of
order m ∈ N on Γ as

Hm
pw(Γ) := {v ∈ L2(Γ), γ∗j (v|Γj

) ∈ Hm(Πj)} ,

with (Sobolev) norm

‖v‖2
Hm

pw(Γ) :=
M

∑
j=1

∥∥∥γ∗j (v|Γj
)
∥∥∥

2

Hm(Πj)
=

M

∑
j=1

∫

Πj
∑

α∈Nd−1
0

|α|≤m

|Dα γ∗j (v|Γj
)(x)|2 dx , v ∈ Hm

pw(Γ) .

The definition of Hm(D) for domains D ⊂ Rd is also given in [Hip16, Def. 5.3.41].

(1.6.9) Mesh parameters

Approximation estimates for the boundary element spaces S0
p(G) and S−1

p (G) will hinge on properties of
the mesh expressed through fundamental mesh parameters.

Definition 1.6.10. Meshwidth

The meshwidth of G is the size of its largest panel

hG := max
π∈G

diam(π) .

Definition 1.6.11. Minimal angle

For d = 3 we call the minimal angle αmin(G) of G the minimal angle occuring in all triangles of the
2D meshesMj in Def. 1.5.4.

For planar triangulations the minimal angle measures the shape regularity of a mesh [Hip16, § 5.3.36].

(1.6.12) Summary: approximation estimates

The following results from [SS10, Sects. 4.3.4 & 4.3.5] mirror [Hip16, Thm. 5.3.56]. In fact, via the pull-
backs γ∗j they can immediately be inferred from interpolation error estimates for finite element spaces in

dimension d− 1.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 146

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.6.13. Main approximation theorem for S−1
p (G)

With a constant C > 0. depending only on m ∈ N0, the Cm-parameterizations γj, and the minimal

angle αmin(G), for any p ∈ N0 we have the best-approximation estimate

inf
ϕN∈S−1

p (G)
‖u− ϕN‖

H−
1
2 (Γ)
≤ C

(
hG

p + 1

)min{p + 1, m}+ 1
2
‖u‖Hm

pw(Γ) ∀u ∈ Hm
pw(Γ) .

(1.6.14)

rate of alg. cvg. smoothness requirement

Theorem 1.6.15. Main approximation theorem for S0
p(G)

With a constant C > 0 depending only on m ≥ 2, the Cm-parameterizations γj, and the minimal

angle αmin(G), for any p ∈ N we have the best-approximation estimate

inf
vN∈S0

p(G)
‖u− vN‖

H
1
2 (Γ)
≤ C

(
hG
p

)min{p + 1, m} − 1
2
‖u‖Hm

pw(Γ) ∀u ∈ Hm
pw(Γ) ∩ C0(Γ) .

(1.6.16)

rate of alg. cvg. smoothness requirement

Algebraic convergence of best approximation errors

The energy norm of the best approximation error for S−1
p (G), S0

p(G) for fixed polynomial degree
p converges algebraically (→ Def. 1.4.126) for hG → 0, if a uniform minimal angle condition is
satisfied for d = 3.

We can even read off the rates of algebraic convergence in hG → 0:

• S−1
p (G), p ∈ N0 for u ∈ Hm

pw(Γ), m ∈ N0 ➣ rate min{p + 1, m}+ 1
2 in H−

1
2 (Γ)-norm,

• S0
p(G), p ∈ N for u ∈ Hm

pw(Γ), m ≥ 2 ➣ rate min{p + 1, m} − 1
2 in H

1
2 (Γ)-norm.

Combined with Thm. 1.6.1 we immediately conclude asymptotic algebraic convergence of Galerkin bound-
ary element solutions of variational first-kind BIEs in terms of the meshwidth hG → 0.

(1.6.18) Smoothness of solution traces

The smoothness of the unknown trace of the solution of the related boundary value problem imposes a
limit on the achievable rate of algebraic convergence in the meshwidht hG . In turns, this smoothness is
determined by the smoothness of the solution of the boundary value problem.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 147

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 1.6.19. Higher order trace theorem

Let Γ := ∂Ω satisfy Ass. 1.2.6 (d = 2) or Ass. 1.2.8 (d = 3) with C∞-parameterizations γj. Then,

u ∈ Hm(Ω) for m ≥ 1 ⇒ TD(u) ∈ Hm−1
pw (Γ) ∩ C0(Γ) , (1.6.20)

u ∈ Hm(Ω) for m ≥ 2 ⇒ TN(u) ∈ Hm−2
pw (Γ) . (1.6.21)

So, when one uses manufactured solutions u ∈ C∞(Rd) to test a boundary element code, the maximal
rate of convergence as limited by the polynomial degree p should be observed.

However, in actual computations, the inevitable emergence of singularities of the solutions of BVPs on Ω

at corners/edges of Γ will curtail their smoothness, see [Hip16, Section 5.4]. Thus, for non-smooth Γ only
reduced rates of hG -convergence of fixed-degree BEM will be observed.

(1.6.22) Validation of BEM Galerkin matrices for BIOs

If u ∈ H(∆, Ω) satisfies ∆u = 0 in Ω, then Thm. 1.3.103 provides the fundamental relationships
beetween Dirichlet trace TDu and Neumann trace TNu of u:

[
1
2 Id− K V

W 1
2 Id+ K′

][
TDu
TNu

]
=

[
TDu
TNu

]
⇔

[
1
2 Id+ K −V
−W 1

2 Id− K′

][
TDu
TNu

]
= 0 . (1.6.23)

Let us assume that we have a code, allegedly capable of computing the Galerkin matrices

• V ∈ RK,K, K := dimS−1
p−1(G), of aV on S−1

p−1(G)× S−1
p−1(G) ⊂ H−

1
2 (Γ)× H−

1
2 (Γ),

(single layer BIO)

• W ∈ RN,N, N := dimS0
p(G), of aW on S0

p(G)×S0
p(G) ⊂ H

1
2 (Γ)× H

1
2 (Γ),

(hypersingular BIO)

• K ∈ RK,N of (v, ψ) 7→
∫

Γ
(Kv)(x)ψ(x)dS(x) on S0

p(G)× S−1
p−1(G) ⊂ H

1
2 (Γ)× H−

1
2 (Γ),

(double layer BIO)

for some fixed degree p ∈ N. We want to exploit on (1.6.23) to validate the implementation.

Use smooth “manufactured” solution u ∈ C∞(Ω) of ∆u = 0 and check, if its BE inter-
polants satisfy (1.6.23) “up to higher order errors”.

We consider a sequence of meshes (Gh)h∈H, H := {h0, h1, h2, . . .}, where h is the meshwidth of Gh and
Ghk

arises from Ghk−1
by means of uniform dyadic refinement (in the parameter domain), which implies

hk ≈ 1
2 hk−1 and that αmin(Gh) ≥ α0 for all h ∈ H, see Def. 1.6.11. Uniform dyadic refinement amounts

to

• splitting each grid cell]ζ
(j)
i−1, ζ

(j)
i [(→ Def. 1.4.16) into two equal intervals for d = 2,

• subdividing each triangle ofMj (→ Def. 1.5.4) into four congruent ones [Hip16, Fig. 204] for d = 3.

To define “boundary element interpolants” we use

✦ for S0
p(G) the nodal interpolation operators I0p : C0(Γ) → S0

p(G) from Rem. 1.5.16,

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 148

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✦ for S−1
p−1(G) the local L2-projections Q−1

p−1 : L2(Γ) → S−1
p−1(G) defined by

∫

Γ
(Q−1

p−1 f)(x)ψN(x)dS(x) =
∫

Γ
f (x)ψN(x)dS(x) ∀ψN ∈ S−1

p−1(G) . (1.6.24)

Of course, the actual implementation of Q−1
p−1 has to rely on numerical quadrature on the panels

using high-order quadrature formulas.

For smooth u we have TDu,TNu ∈ Hm
pw(Γ) for every m ∈ N. Then we can use the following interpola-

tion error estimates.

Theorem 1.6.25. Asymptotic interpolation/projection error estimates

With constants depending only on m > p, p ∈ N, the Cm-parameterizations γ (and the minimal

angle α0 for d = 3)

∥∥∥u− I0pu
∥∥∥

H
1
2 (Γ)
≤ C h

p+ 1
2

G ‖u‖Hm
pw(Γ) ∀u ∈ Hm

pw(Γ) , (1.6.26)

∥∥∥u−Q
−1
p−1u

∥∥∥
H−

1
2 (Γ)
≤ C h

p+ 1
2

G ‖u‖Hm
pw(Γ) ∀u ∈ Hm

pw(Γ) . (1.6.27)

Appealing to (1.6.23) we expect the residual functionals (they depend on p and the mesh Gh)

rD(ψ) :=
∫

Γ

(
(1

2 Id+ K)Ip(TDu)− V(Q−1
p−1TNu)

)
(x)ψ(x)dS(x)

=
∫

Γ

(
(1

2 Id+ K)(Ip − Id)(TDu)− V((Q−1
p−1 − Id)TNu)

)
(x)ψ(x)dS(x) , ψ ∈ H−

1
2 (Γ) ,

rN(v) :=
∫

Γ

(
−WIp(TDu) + (1

2 Id− K′)Q−1
p−1TNu

)
(x) v(x)dS(x)

=
∫

Γ

(
−W(Ip − Id)(TDu) + (1

2 Id− K
′)(Q−1

p−1 − Id)TNu
)
(x) v(x)dS(x) , v ∈ H

1
2 (Γ) ,

to become “small” as h→ 0. To quantify this, observe that owing to the continuity of the boundary integral
operators (→ Def. 1.3.67) we can conclude from Thm. 1.6.25 that on the mesh Gh

|rD(ψ)| ≤ C hp+ 1
2 · ‖ψ‖

H−
1
2 (Γ)

, ψ ∈ H−
1
2 (Γ) , (1.6.28)

|rN(v)| ≤ C hp+ 1
2 · ‖v‖

H
1
2 (Γ)

, v ∈ H
1
2 (Γ) , (1.6.29)

with constants independent of h. We still have to deal with the presence of the general functions ψ and v.

Replace them with nodal basis functions bi
N, i = 1, . . . , N, and β

j
N , j = 1, . . . , K of

S0
p(G) and S−1

p−1(G), respectively (→ § 1.4.35, § 1.5.22), for which we have rather precise

information about their energy trace norms.

We elaborate this for d = 3, resorting to a heuristic scaling argument. If π is a panel of diameter h and
βi

N a global shape function associated with it, we get from Thm. 1.3.114

∥∥∥βi
N

∥∥∥
2

H−
1
2 (Γ)
≈ aV(β

i
N , βi

N) ≈
∫

π

∫

π

1

1
‖x− y‖ βi

N(y) βi
N(x)dS(x)dS(x)

≈ h2·2
∫

K̂

∫

K̂

1

h‖s− t‖ β̂(s) β̂(t)dtds ,

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 149

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

for some fixed reference shape functions β̂, see (1.4.38). The last step is justified by thinking of the

transformation K̂ → π, K̂ the reference triangle, as simply a scaling by h. Then the powers of h arise
from the transformation formula for d− 1-dimensional integrals. We conclude the asymptotic two-sided
estimate (similar arguments for d = 2)

∥∥∥βi
N

∥∥∥
H
− 1

2 (Γ)
≈ h

d/2 on Gh , (1.6.30)

with constants independent of h.

To determine
∥∥bi

N

∥∥
H

1
2 (Γ)

recall from Thm. 1.3.96 and Thm. 1.3.123

∥∥∥bi
N

∥∥∥
2

H
1
2 (Γ)
≈ aW(bi

N , bi
N) = aV(gradΓ bi

N × n, gradΓ bi
N × n) .

Under scaling pullback to K̂ the surface gradient behaves like ∼ h, Then the same argument as above
confirms

∥∥∥bi
N

∥∥∥
H

1
2 (Γ)
≈ h

d/2−1 on Gh , (1.6.31)

with constants independent of h.

Thus, setting ψ := βi
N in (1.6.28) and v := b

j
N in (1.6.29), the estimates (1.6.30) and (1.6.31) imply

|rD(β
i
N)| ≤ C hp+ 1

2+d/2 , |rD(b
j
N)| ≤ C hp− 1

2+d/2 ,
i = 1, . . . , K ,
j = 1, . . . , N .

(1.6.32)

Thus, defining the residual coefficient vectors

~ρD :=
[
rD(β

i
N)
]K

i=1
= (1

2 M + K)~δ−V~ν ∈ RK ,

~ρN :=
[
rN(b

j
N)
]N

j=1
= −W~δ + (1

2 M⊤ −K⊤)~ν ∈ RN ,
(1.6.33)

based on the basis expansions

~δ ∈ RN ↔ I0p(TDu) ∈ S0
p(G) , ~ν ∈ RK ↔ Q−1

p−1(TNu) ∈ S−1
p−1(G) , ,

we can predict the algebraic decay of the components:

‖~ρD‖∞
= O(hp+ 1

2+d/2) , ‖~ρN‖∞
= O(hp− 1

2+d/2) . (1.6.34)

As we learn from (1.6.33), the vectors~ρD and~ρN can be computed. Then tabulate the norms in (1.6.34)
for sequences of dyadically refined meshes and check whether they exhibit a decay as h → 0 matching
(1.6.34). If this is observed, the Galerkin matrices have passed the test.

1.6.1.3 Variational Crimes

As in the context of finite element methods [Hip16, Section 5.5], also for boundary element methods the
term variational crime also for boundary element methods means that Galerkin discretization is based on
a perturbed variational problem or even a trial/test space not contained in the function space, on which the
orginal variational problem is posed.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 150

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We can distinguish three main categories of vatiational crimes in BEM:

Variational crimes in BEM

➊ Approximation of Γ

(Section 1.4.2.5, Rem. 1.5.18)
➋ Numerical quadrature

(Section 1.4.3.4, Section 1.5.3)
➌ Data approximation

(§ 1.4.45)

We recall from [Hip16, Section 5.5]:

Guideline for acceptable variational crimes

Variational crimes must not interfere with (type and rate) of asymptotic convergence!

For Galerkin boundary element methods based on the piecewise polynomial boundary element

spaces S−1
p−1(G) ⊂ L2(Γ) ⊂ H−

1
2 (Γ), S0

p(G) ⊂ H
1
2 (Γ), p ∈ N,

✦ the degree of polynomial boundary approximation must be linked to p,

✦ the boundary element spaces for data approximation must depend on p,

✦ the order of numerical quadrature must be larger for larger p.

(1.6.36) Quantitative recipes

A very detailed quantitative analysis of variational crimes of type ➊ is conducted in [SS10, Ch. 8] and of
type ➋ in [SS10, Sect. 5.3]. These results and practical experience inspire the following rules of thumb:

If the following trial/test spaces are used for variational BIE in energy trace space

S−1
p−1(G) ⊂ L2(Γ) ⊂ H−

1
2 (Γ) , S0

p(G) ⊂ H
1
2 (Γ) , p ∈ N ,

then do the following:

➊ for the approximation of Γ:

use piecewise polynomial interpolants of degree p,

➋ for computation of entries of Galerkin matrices by means of numerical quadrature

follow (1.4.191), but no clear rule for selecting order of Gauss quadrature rules in general,

➌ for data approximation:

interpolate Dirichlet in S0
p(G), Neumann data in S−1

p−1(G).

1.6.1.4 Pointwise Recovery of Solutions

1.6.2 Mixed Boundary Value Problems

In mixed second-order elliptic boundary value problems both Dirichlet and Neumann boundary conditions
are imposed on different parts ΓD and ΓN of the boundary Γ := ∂Ω of the computational domain Ω ⊂ Rd

[Hip16, Section 2.7], which satisfy

Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ , vold−1(ΓN), vold−1(ΓD) > 0 . (1.6.37)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 151

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The associated mixed BVP for −∆ reads

−∆u = 0 in Ω ,
TDu = g on ΓD ,
TNu = η on ΓN ,1

(1.6.38)

where g : ΓD → R and η : ΓN → R are given data. If Ω is an exterior unbounded domain, we have to
impose additional decay conditions (1.1.76)/(1.1.79).

(1.6.39) Offset technique for BIE

By Thm. 1.3.103 the traces of the solution u satisfy the fundamental boundary integral equations

TDu = V(TNu)− (− 1
2 Id+ K)(TDu) in H

1
2 (Γ) , (1.6.40)

TNu = (1
2 Id+ K

′)(TNu) +W(TDu) in H−
1
2 (Γ) . (1.6.41)

To take into account the fact that both traces are known on some parts of the boundary we introduce
extensions of the data to all of Γ:

g̃ ∈ H
1
2 (Γ): g̃|ΓD

= g ,

η̃ ∈ H−
1
2 (Γ): η̃|ΓN

= η .
(1.6.42)

Offset function technique: We seek the unknown traces as additive corrections of these
extended data, the corrections of course supported on either ΓD or ΓN [SS10, Sect. 3.5.2].

TDu = g̃+ u , u ∈ H
1
2
ΓD
(Γ) := {v ∈ H

1
2 (Γ) : v|ΓD

= 0} ,

TNu = η̃ + ψ , ψ ∈ H
− 1

2
ΓN

(Γ) := {φ ∈ H−
1
2 (Γ) : φ|ΓN

= 0} .
(1.6.43)

The functions g̃ and η̃ serve as offset functions in a context similar to the use of offset functions for
imposing essential boundary conditions in variational formulations of boundary values problems for PDEs
as discussed in [Hip16, § 2.2.38].

Next, we insert (1.6.43) into (1.6.40) and 1.6.41 and get

0 = V(η̃ + ψ)− (1
2 Id+ K)(g̃+ u) in H

1
2 (Γ) , (1.6.44)

0 = (− 1
2 Id+ K′)(η̃ + ψ) +W(g̃+ u) in H−

1
2 (Γ) . (1.6.45)

The unknowns are u ∈ H
1
2
ΓD
(Γ), ψ ∈ H

− 1
2

ΓN
(Γ).

(1.6.46) Variational BIE for correction trace functions

Collecting known and unknown quantities in 1.6.44 and 1.6.45 leads to

−V(ψ) + (1
2 Id+ K)(u) = V(η̃)− (1

2 Id+ K)(g̃) in H
1
2 (Γ) , (1.6.47)

(1
2 Id− K′)(ψ)−W(u) = (− 1

2 Id+ K′)(η̃) +W(g̃) in H−
1
2 (Γ) . (1.6.48)

As usual, a variational formulation arises from invoking duality (1.3.43). Yet, we have to ensure that trial
and test spaces are the same. The trial spaces are the trace spaces for the unknowns u and ψ and those

have to be chosen from H
1
2
ΓD
(Γ) and H

− 1
2

ΓN
(Γ), respectively. Thus, we

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 152

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• do not test (1.6.44) with H−
1
2 (Γ), but with ν ∈ H

− 1
2

ΓN
(Γ),

(“Test (1.6.44) only where TNu is not known”)

• do not test 1.6.45 with H
1
2 (Γ), but with v ∈ H

1
2
ΓD
(Γ).

(“Test 1.6.45 only where TDu is not known”)

This leads to a linear variational problem in H
− 1

2
ΓN

(Γ)× H
1
2
ΓD
(Γ):

ψ ∈ H
− 1

2
ΓN

(Γ): − aV(ψ, ν) +
∫

Γ

(
(1

2 Id+ K)(u)
)
(x) ν(x)dS(x) (1.6.49a)

= aV(η̃, ν)−
∫

Γ

(
(1

2 Id+ K)(g̃)
)
(x) ν(x)dS(x) ∀ν ∈ H

− 1
2

ΓN
(Γ) ,

u ∈ H
1
2
ΓD
(Γ):

∫

Γ

(
(1

2 Id− K′)(ψ)
)
(x) v(x)dS(x)− aW(u, v) (1.6.49b)

=
∫

Γ

(
(− 1

2 Id+ K
′)(η̃)

)
(x) v(x)dS(x) + aW(g̃, v) ∀v ∈ H

1
2
ΓD
(Γ) .

(1.6.50) Boundary element discretization of variational BIE for mixed BVP

We suppose that we are given a mesh G of Γ according to Def. 1.4.16 (d = 2) or Def. 1.5.4 (d = 3) that
resolves the parts ΓD and ΓN of the boundary in the following sense.

Assumption 1.6.51. Mesh compatible with partition

Both ΓD and ΓN are the union of closed panels of the mesh G.

We have to adapt the boundary element spaces S0
p(G) ⊂ H

1
2 (Γ) and S−1

p−1(G) ⊂ H−
1
2 (Γ), degree

p ∈ N, in order to obtain subspaces of H
1
2
ΓD
(Γ) and H

− 1
2

ΓN
(Γ). On the formal level this is straightforward

S0
p,ΓD

(G) := H
1
2
ΓD
(Γ) ∩ S0

p(G) , S−1
p−1,ΓN

(G) := H
− 1

2
ΓN

(Γ) ∩ S−1
p−1(G) . (1.6.52)

In practice,

S0
p,ΓD

(G) and S−1
p−1,ΓN

(G) are obtained by dropping all global shape functions of S0
p(G)/S−1

p−1(G)
whose suppports intersect ΓD or ΓN , respectively.

The construction runs utterly parallel to that of finite element subspaces of H1
0(Ω) from finite element

subspaces of H1(Ω), see [Hip16, § 3.4.14].

Note that the Galerkin matrices for the variational boundary integral operators arising from using the
boundary element spaces S0

p,ΓD
(G) and S−1

p−1,ΓN
(G) are sub-matrices of the Galerkin matrices we get

when using the unconstrained boundary element spaces.

As explained in § 1.4.45, in boundary element computations the data g and η are usually replaced with
approximations. In the case of (1.6.49) this approximation also takes care of extension of the data to all of
Γ:

✦ g̃ is replaced with gN ∈ S0
p(G) obtained by

1. interpolating g in S0
p(G)

∣∣∣
ΓD

(e.g., piecewise linear interpolation in the case of p = 1),

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 153

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2. and then setting the contribution of all shape function supported outside ΓD to zero.

✦ η̃ is replaced with ηN ∈ S−1
p−1(G), obtained by

1. interpolating η in S−1
p−1(G)

∣∣∣
ΓN

(e.g., midpoint interpolation onto piecewise constants for p = 1),

2. and then setting the contribution of all shape function supported outside ΓN to zero.

1.6.3 Transmission Problems

So far we have discussed BEM for scalar elliptic boundary value problems with constant coefficients. This
section will present boundary integral equations related to problems with piecewise constant coefficients
posed on Rd, so-called transmission problems.

1.6.3.1 Two-Domain Setting

Fig. 58

Ω0

Ω1

Γn0

n1

✁ We consider a partition

Rd = Ω0 ∪ Γ ∪Ω1 ,

Γ = ∂Ω0 = ∂Ω1 ,
(1.6.53)

where Γ is a curved Lipschitz polygon (d = 2) or
polyhedron (d = 3), Ω1 is bounded.

Note the opposite orientation of the two normals n0

and n1.

We seek a solution of

− div(A(x) grad u) = 0 in R3 , (1.6.54a)

with A(x) =

{
A1 ∈ Rd,d s.p.d. for x ∈ Ω1 ,

I for x ∈ Ω0 ,
(1.6.54b)

u− uinc satisfies decay conditions (1.1.76)/(1.1.79). (1.6.54c)

Here uinc is a given exciting incident field satisfying ∆uinc = 0 in Rd. For instance, it may represent an
applied external electric field; uinc(x) = E0 · x.

(1.6.55) Reformulation as transmission problem

We can restrict solution u of (1.6.54) to both domains and define

u0 := u|Ω0
−uinc ∈ H(∆, Ω0) , u1 := u|Ω1

∈ H(∆, Ω1) , (1.6.56)

where H(∆, Ω)D has been introduced in Def. 1.3.34. These functions solve

−∆(A1 grad u1) = 0 in Ω1 , − ∆u1 = 0 in Ω0 . (1.6.57)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 154

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

In § 1.1.71 we learned that u0 and u1 are connected by transmission conditions reflecting the continuity
of scalar potentials and the normal continuity of displacement currents. We can state them concisely by
means of Dirichlet and Neumann traces:

T0
Du0 + T0

Duinc = T1
Du1 , T0

Nu0 + T0
Nuinc = −T1

Nu1 , (1.6.58)

where we remind that the coefficients and the normal vectors (responsible for the −-sign) enter the
definition of the Neumann trace

(T0
Nu)(x) = grad u|Ω0

(x) · n0(x) , (T1
Nu)(x) = A1 grad u|Ω1

(x) · n1(x) , x ∈ Γ . (1.6.59)

The partial differential equations (1.6.57) together with the transmission conditions (1.6.58) and decay
conditions for u0 represent a transmission problem.

(1.6.60) First-kind boundary integral equations

In Ex. 1.2.38, (1.2.45) we found the fundamental solution for the general linear, translation-invariant
second-order differential operator Lu := −∆(A grad u) with symmetric positive definite (s.p.d.) matrix
A ∈ Rd,d. Drawing on (1.2.45) we set

G0(x, y) =




− 1

2π log‖x− y‖ , if d = 2 ,
1

4π

1

‖x− y‖ , if d = 3 ,
x 6= y ,

G1(x, y) =
1√

det A1
·





− 1
4π log

(
(x− y)⊤A−1

1 (x− y)
)

, if d = 2 ,

1

4π

1√
(x− y)A−1

1 (x− y)
, if d = 3 , x 6= y .

for the fundamental solutions associated with the PDE in Ω0 and Ω1, respectively. Based on these the
fundamental solutions G0 and G1 we can introduce boundary integral operators V0, K0, K′0, and W0,
and V1, K1, K′1, and W1. The subscript indicates, which fundamental solution and which Neumann trace
operator is used in their definition, for instance, cf. (1.3.80),

(K0v)(x) =
∫

Γ
grady G0(x, y) · n0(y) v(y)dS(y) ,

(K1v)(x) =
∫

Γ
(A1 grady G1(x, y)) · n1(y) v(y)dS(y) ,

x ∈ Γ .

Idea: ➊ Use the fundamental boundary integral identities of Thm. 1.3.103
both in Ω0 and Ω1.

➋ Combine them with the transmission conditions (1.6.58).

➋: (1.3.104) gives us

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Du0

T0
Nu0

]
= 0 , (1.6.61a)

[
1
2 Id+ K1 −V1

−W1
1
2 Id− K′1

][
T1

Du1

T1
Nu1

]
= 0 , (1.6.61b)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 155

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

➋: Eliminate

[
T0

Du0

T0
Nu0

]
by means of the transmission conditions (1.6.58):

[
T0

Du0

T0
Nu0

]
=

[
T1

Du1

−T1
Nu1

]
−
[
T0

Duinc

T0
Nuinc

]
.

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T1

Du1

−T1
Nu1

]
=

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Duinc

T0
Nuinc

]
=:

[
f

ϕ

]
. (1.6.62)

Then subtract the two boundary integral equations:

(1.6.61b) ➣

[
1
2 Id+ K1 −V1

−W1
1
2 Id− K′1

][
T1

Du1

T1
Nu1

]
= 0 ,

(1.6.62) ➣

[
1
2 Id+ K0 V0

W0
1
2 Id− K′0

][
T1

Du1

T1
Nu1

]
=

[
f

−ϕ

]

−
[

K1 − K0 −V1 − V0

−W1 −W0 −K′1 + K′0

][
T1

Du1

T1
Nu1

]
=

[−f
ϕ

]
.

Writing u := T1
Du1 and ψ := T1

Nu1 for the unknown traces we get the following boundary integral
equations for the transmission problem

[
K1 − K0 −V1 − V0

−W1 −W0 −K′1 + K′0

][
u

ψ

]
=

[−f
ϕ

]
. (1.6.63)

If this system of boundary integral equations has a unique solution, then u and ψ will furnish traces on Γ

of the solution u of (1.6.54), see Cor. 1.6.74 below . Thus, (1.6.63) qualifies as a direct BIE formulation.

Remark 1.6.64 (Simplification of right-hand side)

As in Section 1.3.4.1 let V, K, K′, and W denote the four fundamental boundary integral operators for
−∆ on Ω1. Since we have assumed ∆uinc = 0 on Rd, we know that uinc is harmonic in Ω1. Hence,
Thm. 1.3.103 yields the identity

[
1
2 Id− K V

W 1
2 Id+ K′

][
TDuinc

TNuinc

]
=

[
TDuinc

TNuinc

]
. (1.6.65)

Here TN is the “standard” Neumann trace (→ Def. 1.3.22) from within Ω1: TNuinc := grad uinc · n1.
Also note that V, K, K′, and W are based on the same fundamental solution G0 as V0, K0, K′0, and W0,
but on a normal vector with opposite orientation. Therefore, a scrutiny of Def. 1.3.67 reveals that

V = V0 , K = −K0 , K′ = −K′ , W = W0 . (1.6.66)

in addition TDuinc = T0
Duinc and TNuinc = −T0

Nuinc (change of the orientation of normals!), so that we
can rewrite (1.6.65) as

[
1
2 Id+ K0 V0

W0
1
2 Id− K′0

][
T0

Duinc

−T0
Nuinc

]
=

[
T0

Duinc

−T0
Nuinc

]

m
[

1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Duinc

T0
Nuinc

]
=

[
T0

Duinc

T0
Nuinc

]
.

(1.6.67)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 156

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Compare this with the definition

[
f

ϕ

]
:=

[
1
2 Id+ K0 −V0

−W0
1
2 Id− K′0

][
T0

Duinc

T0
Nuinc

] [
f

ϕ

]
=

[
T0

Duinc

T0
Nuinc

]
.

The right hand side of (1.6.63) boils down to simple Dirichlet and Neumann traces of the exciting harmonic
function uinc!

(1.6.68) Variational BIE for transmission problem

We can rewrite (1.6.63) as

(K1 − K0)u − (V1 + V0)ψ = −f in H
1
2 (Γ) ,

−(W1 +W0)u + (−K′1 + K′0)ψ = ϕ in H−
1
2 (Γ) .

The customary approach via duality (1.3.43) gives us an equivalent variational first-kind (→ Rem. 1.3.125)
BIE:

u ∈ H
1
2 (Γ) ,

ψ ∈ H−
1
2 (Γ)

:

aK,1(u, η)− aK,0(u, η) − aV,1(ψ, η) + aV,0(ψ, η) =

−
∫

Γ
f(x) η(x)dS(x) ∀η ∈ H−

1
2 (Γ) ,

−aW,1(u, v)− aW,0(u, v) − aK,1(v, ψ) + aK,0(v, ψ) =∫
Γ

ϕ(x) v(x)dS(x) ∀v ∈ H
1
2 (Γ) ,

(1.6.69)

where we have used the “adjointness” (1.4.57) of Ki and K′i, i = 0, 1. The bilinear forms in (1.6.69) are
defined as, i = 0, 1,

aV,i(ψ, η) :=
∫

Γ
(Viψ)(x) η(x)dS(x), ψ η ∈ H−

1
2 (Γ) , cf. (1.3.112)

aW,i(u, v) :=
∫

Γ
(Wiu)(x) v(x)dS(x), u, v ∈ H

1
2 (Γ) , cf. (1.3.121)

aK,i(v, η) :=
∫

Γ
(Kiv)(x) η(x)dS(x), v ∈ H

1
2 (Γ), η ∈ H−

1
2 (Γ) .

The variational problem (1.6.69) is posed on H
1
2 (Γ)× H−

1
2 (Γ) and can be expressed as

[
u

ψ

]
∈ H

1
2 (Γ)× H−

1
2 (Γ) :

c

([
u

ψ

]
,

[
v

η

])
=
∫

Γ
ϕ(x) v(x)− f(x) η(x)dS(x)

∀
[
v

η

]
∈ H

1
2 (Γ)× H−

1
2 (Γ) . (1.6.70)

with the bilinear form

c

([
u

ψ

]
,

[
v

η

])
:= aK,1(u, η)− aK,0(u, η)− aV,1(ψ, η)− aV,0(ψ, η)−

aW,1(u, v)− aW,0(u, v)− aK,1(v, ψ) + aK,0(v, ψ) .

(1.6.71)

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 157

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Lemma 1.6.72. Ellipticity of c

(Assuming diam(Ω1) < 1 for d = 2,) the bilinear form c from (1.6.71) of the first-kind variational

boundary integral equations for the transmission problem is H
1
2 (Γ)× H−

1
2 (Γ)-elliptic:

∣∣∣∣c
([

v

η

]
,

[
v

η

])∣∣∣∣ ≥ c
(
‖v‖2

H
1
2 (Γ)

+ ‖η‖2

H−
1
2 (Γ)

) ∀v ∈ H
1
2 (Γ), η ∈ H−

1
2 (Γ) , (1.6.73)

with c > 0 depending on Γ and A0.

Proof. Observing the cancellation of all terms contributed by double layer BIOs, the result is an immediate
consequence of Thm. 1.3.114, Thm. 1.3.118, and Thm. 1.3.123.

✷

We immediately conclude uniqueness and existence of a solution
[
u
ψ

]
of (1.6.70). By its derivation these

are the traces of the solution of the transmission problem on Γ.

Corollary 1.6.74. Direct 1st-kind variational BIE for transmission problem

If u solves the transmission problem (1.6.54) and

[
u
ψ

]
solves (1.6.70), then

u = T
1
Du , ψ = T

1
Nu .

(1.6.75) Direct BEM for transmission two-domain problem

Galerkin boundary element discretization of (1.6.70) is straightforward: Given a standard mesh G of Γ we
opt for the natural trial/test spaces from Section 1.4.2/Section 1.5.2

S−1
p−1(G) for H−

1
2 (Γ) , S0

p(G) for H
1
2 (Γ) . (1.6.76)

The resulting discrete version of (1.6.70) will also enjoy existence and uniqueness of solutions. Based on
nodal bases we arrive at the following linear system of equations written in block form

[
W0 + W1 K⊤1 −K⊤0
−K1 + K0 V0 + V1

][
~µ
~ψ

]
=

[−M⊤~κ
M~φ

]
. (1.6.77)

with boundary element Galerkin matrices

• Wi ∈ RN,N, N := dimS0
p(G) for aW,i on S0

p(G)× S0
p(G),

• Vi ∈ RK,K, K := dimS−1
p−1(G) for aV,i on S−1

p−1(G)×S−1
p−1(G),

• Ki ∈ RK,N for aK,i on S0
p(G)×S−1

p−1(G),

• M ∈ RK,N for (v, η) 7→
∫

Γ
v(x) η(x)dS(x) on S0

p(G)× S−1
p−1(G),

and right hand side vectors~κ and ~φ containing the basis expansion coefficients of interpolants (→ “data
approximation”, § 1.4.45) of ϕ and f in S−1

p−1(G) and S0
p(G), respectively.

BEM for direct first-kind BIE for two-domain transmission problems requires only the assembly of
the usual boundary element Galerkin matrices.

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 158

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

1.6.3.2 Multi-Domain Transmission Problem

1.6.4 BEM for Wave Propagation

1. Boundary Element Methods (BEM), 1.6. BEM: Various Aspects 159

Bibliography

[Aur+14] Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-Leite, Thomas Führer, Petra
Goldenits, Michael Karkulik, Markus Mayr, and Dirk Praetorius. “HILBERT—a MATLAB imple-
mentation of adaptive 2D-BEM”. In: Numer. Algorithms 67.1 (2014), pp. 1–32 (cit. on p. 82).

[BS08] S. Brenner and R. Scott. Mathematical theory of finite element methods. 3rd. Texts in Applied
Mathematics. Springer–Verlag, New York, 2008 (cit. on p. 55).

[CHS18] X. Claeys, R. Hiptmair, and E. Spindler. “Second-Kind Boundary Integral Equations for Scatter-
ing at Composite Partly Impenetrable Objects”. In: Comm. Computational Physics 23.1 (2018),
pp. 264–295 (cit. on p. 13).

[Gau18] W. Gautschi. A Software Repository for Orthogonal Polynomials. Philadelphia: SIAM, 2018 (cit.
on p. 115).

[Gau04] Walter Gautschi. Orthogonal polynomials: computation and approximation. Numerical Mathe-
matics and Scientific Computation. Oxford University Press, New York, 2004, pp. x+301 (cit. on
p. 115).

[Hac92] W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment. Vol. 18. Springer
Series in Computational Mathematics. Berlin: Springer, 1992 (cit. on p. 52).

[Hac95] W. Hackbusch. Integral equations. Theory and numerical treatment. Vol. 120. International Se-
ries of Numerical Mathematics. Basel: Birkhäuser, 1995 (cit. on pp. 47, 48, 69).

[Han02] M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen

Rechnens. Mathematische Leitfäden. Stuttgart: B.G. Teubner, 2002 (cit. on p. 114).
[Hip15] R. Hiptmair. Numerical Methods for Computational Science and Engineering. Lecture Slides.

2015 (cit. on pp. 41, 83, 95, 111–115, 117, 119, 120, 130, 131).
[Hip16] R. Hiptmair. Numerical Methods for Partial Differential Equations. Lecture Notes, SAM, ETH

Zürich. 2016 (cit. on pp. 15–17, 19–23, 25–29, 31, 34, 54–58, 60, 76, 83–91, 97, 98, 121, 127,
132–138, 144–146, 148, 150–153).

[HK12] R. Hiptmair and L. Kielhorn. BETL – A generic boundary element template library. Report
2012-36. Switzerland: SAM, ETH Zürich, 2012 (cit. on p. 13).

[Mai08] M. Maischak. The analytical computation of the Galerkin elements for the Laplace, Lamé and

Helmholtz equation in 2D-BEM. Preprint. Germany: IFAM, Universität Hannover, 2008 (cit. on
pp. 106, 108–110).

[McL00] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge, UK: Cam-
bridge University Press, 2000 (cit. on pp. 15, 39, 54, 57).

[RR04] Michael Renardy and Robert C. Rogers. An introduction to partial differential equations. Sec-
ond. Vol. 13. Texts in Applied Mathematics. Springer-Verlag, New York, 2004, pp. xiv+434 (cit.
on p. 39).

[SS10] S. Sauter and C. Schwab. Boundary Element Methods. Vol. 39. Springer Series in Computa-
tional Mathematics. Heidelberg: Springer, 2010 (cit. on pp. 15, 20, 26, 32, 34, 45, 54, 57–59,
61, 64, 66, 67, 69, 73, 131, 139, 140, 142–144, 146, 151, 152).

[Ste08] Olaf Steinbach. Numerical approximation methods for elliptic boundary value problems. New
York: Springer, 2008, pp. xii+386 (cit. on pp. 67, 73, 76, 78, 79).

[Str09] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich. 2009 (cit. on pp. 35, 37, 126).

160

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

[Tre08] Lloyd N. Trefethen. “Is Gauss quadrature better than Clenshaw-Curtis?” In: SIAM Rev. 50.1
(2008), pp. 67–87 (cit. on p. 113).

BIBLIOGRAPHY, BIBLIOGRAPHY 161

Chapter 2

Local Low-Rank Compression of Non-Local

Operators

Contents

2.1 Examples: Non-Local Operators . 163

2.1.1 (Discretized) Integral Operators . 163
2.1.2 Long-Range Interactions in Discrete Models 164
2.1.3 Kernel Collocation Matrices . 167

2.2 Approximation of Kernel Collocation Matrices . 168

2.2.1 Separable Kernel Approximation . 170
2.2.1.1 Polynomial Expansions . 172
2.2.1.2 Uni-directional Interpolation . 174
2.2.1.3 Bi-directional interpolation . 176

2.2.2 Error Estimates and Admissibility condition for Singular Kernels 179
2.2.2.1 Truncation Error Estimates for Taylor Expansion 179
2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation 182
2.2.2.3 Estimates for Bi-Directional Interpolation 185

2.3 Clustering Techniques . 188

2.3.1 Local Separable Approximation . 188
2.3.2 Cluster Trees . 196
2.3.3 Far-Field Blocks . 205
2.3.4 Storing Block-Partitioned Kernel Collocation Matrix 211
2.3.5 Matrix×Vector: Efficient Implementation . 218
2.3.6 Panel Clustering . 219

2.4 Hierarchical Matrices . 223

2.4.1 Definition . 223
2.4.2 Low-Rank Matrices: Algorithms . 229
2.4.3 H-Addition of Hierarchical Matrices . 234
2.4.4 H-Multiplication of Hierarchical Matrices . 236
2.4.5 Hierarchical LU-Decomposition . 244
2.4.6 H2-Matrices . 250

(2.0.1) The need for matrix compression for BEM

The boundary element Galerkin discretizations of boundary integral operators presented in Chapter 1 lead
to densely populated matrices as explained in § 1.4.74.

We consider an (interior) boundary value problem on a bounded domain Ω ⊂ Rd, d = 2, 3, equipped
with a “uniform” finite element meshM with a global meshwidth h.

162

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We assume that a low-order finite element Galerkin discretization onM provides a solution
with an accuracy similar to that achieved by a low-order boundary element Galerkin discretiza-
tion on G := M|Γ, Γ := ∂Ω.

Finite element method (FEM) ←→ Boundary element method (BEM)
No. of degrees of freedom (unknowns):

h−d
M ←→ h−d+1

G
No. of nonzero entries of Galerkin matrices:

h−d
M ←→ h−2d+2

G
Hence, asymptotically for hM, hG → 0 and d = 3, the BEM will require much more memory for storing
the linear system of equations than FEM, O(h−4

G) vs. O(h−3
M). The lower number of unknowns for BEM

becomes irrelevant!

Without matrix compression BEM cannot compete with FEM!

2.1 Examples: Non-Local Operators

Notion 2.1.1. Non-local operator

An operator defined on RN, N ≫ 1, or on a space of functions on Ω ⊂ Rd is non-local, if it maps
locally supported vectors/functions to vectors/functions with global support.

Linear non-local operators in RN can usually be represented only by fully populated matrices.

In mathematical models of physical phenomena, non-locality of operators is often caused by long-range
interactions of spatial components.

2.1.1 (Discretized) Integral Operators

An integral operator on a space X(D) of functions D → R, D ⊂ Rd a domain, is a linear mapping
T : X(D) → Y(D), Y(D) another function space, defined by

(T f)(x) :=
∫

D
k(x, y) f (y)dy , x ∈ D , f ∈ X(D) , (2.1.2)

with a kernel function k : D×D → R. If the support of k is global, then T will be a archetypical non-local
operator, cf. Notion 2.1.1.

Important specimens of non-local integral operators are

• the Newton potential (→ Def. 1.2.47)

(Nρ)(x) :=
∫

Ω
G∆(x, y) ρ(y)dy , ρ ∈ H̃−1(Rd) , (2.1.3)

with the fundamental solution (→ Def. 1.2.26) for the Laplacian

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 ,
(1.2.44)

whose support is Rd ×Rd and obviously unbounded.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 163

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• and the fundamental boundary integral operators of Def. 1.3.67, for instance the single layer bound-
ary integral operator on Γ := ∂Ω for the Laplacian −∆ (→ § 1.3.74)

(Vφ)(x) =
∫

Γ
G∆(x, y) φ(y)dS(y) , φ ∈ H−

1
2 (∂Ω) . (1.3.75)

The Galerkin discretization (→ Section 1.4.1) of an integral operator of the form (2.1.2) based on a basis
{b1

N , . . . , bN
N} ⊂ X(Ω) leads to Galerkin matrices T ∈ RN.N with entries

T =

[∫

D

∫

D
k(x, y) b

j
N(y) bi

N(x)dy dx

]N

i,j=1

. (2.1.4)

If T is non-local then the matrix T will be densely populated even if the basis functions are locally sup-
ported, recall § 1.4.74.

2.1.2 Long-Range Interactions in Discrete Models

In computational physics interactions are classified as short-range, if for each component of a system
(star, particle, molecule, etc.) only the interaction with a fixed small number of “neighbors” matters.

(2.1.5) Gravitational forces in astropysics

The goal is to simulate the dynamics of the n stars in
a galaxy; usually n ≈ 109. This can be done by treat-
ing the stars as “point masses” and solving Newton’s
equations of motion by numerical integration, which
entails computing the gravitational attraction between
every of the 1018 pairs of start.

Let xi ∈ Ri, i = 1, . . . , n, stand for the position of
the i-th star with mass mi > 0. Then the force on the
j-th star is

f j =
G

4π

n

∑
i=1
i 6=j

xi − xj

∥∥xj − xi
∥∥3

mimj , j = 1, . . . , n ,

(2.1.6)

where G is the gravitational constant.
Fig. 59

In terms of vector components (2.1.6) reads

f
j
ℓ =

G

4π

n

∑
i=1
i 6=j

xi
ℓ − x

j
ℓ∥∥xj − xi
∥∥3

mimj , ℓ = 1, 2, 3 , j = 1, . . . , n . (2.1.7)

Collecting all force components in long vectors F
j
ℓ =

[
f 1
ℓ , . . . , f n

ℓ

]⊤
permits us to express (2.1.7) as

matrix×vector-product: for ℓ = 1, 2, 3

Fℓ =
G

4π




m1
. . .

. . .
mn


Mℓ




m1
...
...

mn


 ,

with (Mell)i,j =





xi
ℓ − x

j
ℓ∥∥xj − xi
∥∥3

for i 6= j ,

0 for i = j ,

,

i, j = 1, . . . , n .

(2.1.8)

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 164

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Thus the complete vector of force components Fℓ in every timestep can be obtained from multiplying the
vector of masses with the matrix Mℓ. However, the evaluation of Fℓs for many timesteps is way beyond
the capabilities of even the largest supercomputers, because M is a fully populated matrix with ≈ 1018

entries!

Fortunately, the matrices Mℓ possess a very special structure, they are so-called kernel collocation matri-
ces (→ Def. 2.1.15) associated with a singular, asymptotically smooth kernel function (→ Rem. 2.2.51).
In this chapter we will learn how to realize an approximate matrix×vector product with a computational
effort way smaller than the number of non-zero matrix entries (→ Section 2.3.5)

(2.1.9) Forces on parallel wires

We consider n long straight parallel wires in a plane,
with the j-th wire at location ξ j ∈ R carrying the cur-
rent cj ∈ R. Fig. 60

ξ1 ξ2ξ3 ξ4ξ5 ξ6 ξ7

The (scaled) magnetic force on the j-th wire is

f j =
n

∑
i=1
i 6=j

cicj

|ξi − ξ j|
, j = 1, . . . , n . (2.1.10)

Again, we can collect all forces in one long vector F :=
[

f 1, . . . , f n
]⊤

and rewrite (2.1.10) as a matrix×vector-
product:

F =




c1
. . .

. . .
cn


M




c1
...
...

cn


 , with (M)i,j =





1

|ξ j − ξi|
for i 6= j ,

0 for i = j

, i, j = 1, . . . , n .

(2.1.11)

In a sense, comparing (2.1.11) and (2.1.8), the task to compute the magnetic force on the wires can be
regarded as a one-dimensional counterpart of the challenge to compute gravitational forces in galaxies.

(2.1.12) A glimpse of clustering approximation

We continue § 2.1.5 and describe a heuristic for the efficient approximate evaluation of gravitational inter-
actions. We assume xi ∈ [0, 1[3 for all star positions xi ∈ R3.

To evaluate the force f j replace “remote” clusters of stars with a single massive star in the
center of gravity.

Define clusters through octree decomposition of the spatial box containing the galaxy.
(Choose depth L ∈ N of octree such that a leaf contains a single star at most)

Example in 2D: quadtree decomposition of [0, 1]2, · =̂ stars, * =̂ equivalent stars.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 165

https://en.wikipedia.org/wiki/Octree

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 61
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster boxes at level 1

Fig. 62
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster boxes at level 2

Fig. 63
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster boxes at level 3

The clusters on level ℓ ∈ {0, . . . , L} are (α = (α1, α2, α3))

{
i ∈ {1, . . . , n} : xi ∈ Cℓ

α := hℓ ·
(
[α1, α1 + 1[×[α2, α2 + 1[×[α3, α3 + 1[

)
, αi ∈ {0, . . . , 2ℓ − 1}

}
,

hℓ := 2−ℓ. Each cluster of stars is uniquely characterized by its bounding box Cℓ
α.

In the case of a given threshold for the approximation error it is clear that lumping together
stars will introduce smaller errors, if those stars are farther away from xj:

Heuristics: The larger the distance of a cluster from xj,
the larger can be the size of the bounding box of the cluster.

In quantitative terms this can be expressed by requiring that the admissibility condition

dist(Cℓ
α; xj) ≥ η diam(Cℓ

α) , α ∈ {0, . . . , 2ℓ − 1}3 , η > 0 , (2.1.13)

dist(Cℓ
α; xj) := min{

∥∥∥z− xj
∥∥∥ : z ∈ Cℓ

α} , diam(Cℓ
α) = 2−ℓ ,

has to be satisfied for the cluster Cℓ
α, if its stars are to be replaced with a single equivalent star.

Assumption 2.1.14. Uniform distribution

The stars are uniformly distributed in [0, 1[3 (Constant asmptotic density of stars).

Preprocessing step: for each cluster (stars in a box of the octree decomposition) determine center of
gravity and total mass→ “equivalent star”

cost O(n), for no. n of stars→ ∞

Then we want to compute the force on the star located at xj,

f
j
ℓ =

G

4π

n

∑
i=1
i 6=j

xi
ℓ − x

j
ℓ∥∥xj − xi
∥∥3

mimj , ℓ = 1, 2, 3 , j = 1, . . . , n . (2.1.7)

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 166

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 64
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Admissible clusters for a single star

Example in 2D:
“Stars” randomly by uniformly distributed in]0, 1[2.

Admissibility condition (2.1.13) with η ≈ 0.6

✁ Admissible clusters w.r.t. star •, level ℓ ≥ 3.

Fig. 65

xj

✁ Star at xj is surrounded by at most 9 inadmissible
clusters on level ℓ (magenta lines)

At most 9 clusters on level ℓ+ 1 (blue lines) will be
inadmissible.

■ =̂ admissible clusters on level ℓ+ 1.

There are at most 36 relevant admissible clus-
ters on level ℓ+ 1.

The number of contributing clusters on each
level is bounded: O(1) for n → ∞, of course,
dependent on η.

cost O(log n) for computing f j in the limit n→ ∞

However, except for choosing different parameters η > 0 in the admissibility condition (2.1.13), there is
no way to control the accuracy of the approximation inherent in this approach.

2.1.3 Kernel Collocation Matrices

As a model problem for the treatment of non-local operators we study the approximation of densely popu-
lated matrices of a particular form.

2. Local Low-Rank Compression of Non-Local Operators, 2.1. Examples: Non-Local Operators 167

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 2.1.15. Kernel collocation matrix

We are given
• two bounded domains Dx, Dy ⊂ Rd, d ∈ N,
• a kernel function G : Dx × Dy → R,

• and collocation points xi ∈ Dx, yj ∈ Dy. The matrix M ∈ Rn,m with entries

(M)i,j := G(xi, yj) , i ∈ {1, . . . , n} j ∈ {1, . . . , m} , (2.1.16)

is a kernel collocation matrix.

✎ Notation: If d = 1, we write ξi, i = 1, . . . , n, and ηj, j = 1, . . . , m, for the collocation points and
assume that they are sorted :

ξ1 < ξ2 < · · · < ξn , ξi ∈ Dx ⊂ R , η1 < η2 < · · · < ηm , ηj ∈ Dy ⊂ R , m, n ∈ N .

Example 2.1.17 (Globally supported singular kernel functions)

We are mainly interested in globally supported kernels (x, y) 7→ G(x, y), x ∈ Dx, y ∈ Dy that are
singular for x = y.

Examples are kernels related to fundamental solutions (→ Def. 1.2.26) of scalar linear partial differential
operators with constant coefficients.

G(x, y) =

{
log‖x− y‖ , if x 6= y ,

0 else,
or G(x, y) =

{
1

‖x−y‖ , if x 6= y ,

0 else.
(2.1.18)

Note that these kernel functions are C∞-smooth even analytic (Def. 1.4.135) in every variable on Dx×Dy,

provided that Dx ∩ Dy = ∅.

2.2 Approximation of Kernel Collocation Matrices

(2.2.1) Data-sparse approximate representation

Kernel collocation matrices M ∈ Rn,m (→ Def. 2.1.15) based on kernel functions like those in (2.1.18)
are densely populated.

O(nm) memory/effort for straightforward storage/initialization,

O(nm) computational cost for M×vector

for n, m→ ∞.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 168

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Goal: Find approximation M̃ ∈ Rn,m of M such that we can guarantee a prescribed accuracy
∥∥∥M− M̃

∥∥∥ ≤ ǫ [‖·‖ some matrix norm] , (2.2.2)

with

cost of storage/initialization of M̃

cost(M̃× vector)
= O((m + n) logq(m + n)| logp ǫ| for m, n→ ∞, ǫ→ 0,

for some exponents p, q ∈ N0.

If the kernel function G was locally supported, G(x, y) = 0 for ‖x− y‖ > δ ·min{diam(Dx), diam(Dy)},
δ ≪ 1, then, under an even distribution assumption (→ Ass. 2.1.14) on the collocation points, M would
be a sparse matrix and the above goal could be achieved even without any approximation, see [Hip15,
Section 2.7.1].

Alluding to the efficiency of algorithms for large sparse matrices, data structures with which we can achieve
the above goal are called data sparse. .

(2.2.3) Recalled: Matrix norms [Hip15, § 1.5.69]

Recall that matrix norms can be induced by vector norms as norms of the linear mapping described by the
matrix. If ‖·‖1 is a norm on Rm and ‖·‖2 a norm on Rn, then the associated matrix norm ‖·‖ is [Hip15,
Def. 1.5.76]

M ∈ Rn.m: ‖M‖ := sup
~ξ∈Rm\{0}

∥∥∥M~ξ
∥∥∥

1∥∥∥~ξ
∥∥∥

2

. (2.2.4)

✎ Notation: Matrix norms for quadratic matrices associated with standard vector norms:

‖x‖2 → ‖M‖2 , ‖x‖1 → ‖M‖1 , ‖x‖∞ → ‖M‖∞

For the matrix norms ‖·‖1 and ‖·‖2 there are simple formulas [Hip15, Ex. 1.5.78]:

➢ matrix norm↔ ‖·‖∞ = row sum norm ‖M‖∞ := max
i=1,...,n

m

∑
j=1

|(M)ij| , (2.2.5)

➢ matrix norm↔ ‖·‖1 = column sum norm ‖M‖1 := max
j=1,...,m

n

∑
i=1

|(M)ij| . (2.2.6)

There is no corresponding simple formula for the Euclidean matrix norm ‖·‖2, see [Hip15, Lemma 1.5.81],
[Hip15, Cor. 1.5.82].

Not induced by a vector norm is the Frobeniusnorm [Hip15, Def. 3.4.46]

‖M‖2
F :=

n

∑
i=1

m

∑
j=1

(M)2
i,j , M ∈ Rn,m . (2.2.7)

Note that ‖·‖F provides an upper bound for ‖·‖2.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 169

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.2.1 Separable Kernel Approximation

(2.2.8) Low-rank matrices

There is an important class of fully populated matrices for which exact data-sparse representation is
possible.

Definition 2.2.9. Rank of a matrix [NS02, Sect. 2.4]

The rank of matrix M ∈ Rm,n is the dimension of its image space:

rank(M) := dimR(M) .

We have rank(M) ≤ min{m, n} for every M ∈ Rm,n. A matrix is called low-rank, if rank(M) ≪
min{m, n}.

Lemma 2.2.10. Representation of low-rank matrices

If M ∈ Rn,m satisfies rank(M) = q, then there are matrices U ∈ Rn,q and V ∈ Rm,q such that

M = UV⊤.


 M


 =


 U



[

V⊤
]

.

storage(M) = O(q(n + m)) for n, m→ ∞ . (2.2.11)

Recall from [Hip15, Ex. 1.4.11] the possibilities offered by associative multiplication:

rank(M) = q =⇒ Cost(M× vector) = O(q(n + m)) for n, m→ ∞ . (2.2.12)


 M






~ζ


 =


 U






[

V⊤
]


~ζ







︸ ︷︷ ︸
q scalar products of length m

, ~ζ ∈ Rm . (2.2.13)

(2.2.14) Separable kernel functions

Let us consider a kernel collocation matrix M ∈ Rn,m (→ Def. 2.1.15) based on a separable kernel
function

G : Dx × Dy → R , G(x, y) := g(x)h(y) ,
g : Dx → R ,
h : Dy → R ,

(2.2.15)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 170

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

and the collocation points xi ∈ Dx, yj ∈ Dy, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.
Using the notations of Def. 2.1.15 we observe

M =
[
G(xi, yj)

]
i,j
=
[
g(xi)

]
i=1,...,n

[
h(y j)

]⊤
j=1,...,m

rank(M) = 1 . (2.2.16)

Hence, M is a rank-1 matrix whose factorized form according to Lemma 2.2.10 is immediately available:
According to § 2.4.42, M needs O(m + n) storage and the evaluation of M~ζ,~ζ ∈ Rm incurs computa-
tional cost O(m + n) for m, n→ ∞.

(2.2.17) Separable kernel functions

Generalization to so-called rank-q separable kernel functions

G : Dx × Dy → R , G(x, y) :=
q

∑
ℓ=1

gℓ(x)hℓ(y) ,
gℓ : Dx → R ,
hℓ : Dy → R .

, ℓ = 1, . . . , q , (2.2.18)

q ∈ N, is straightforward; in this case we end up with a rank-q kernel collocation matrix, whose factorized
form according to Lemma 2.2.10 is

M = AB⊤ ,
A ∈ Rn,q , (A)i,ℓ := gℓ(x

i) , i = 1, . . . , n ,

B ∈ Rn,q , (B)j,ℓ := hℓ(y
j) , j = 1, . . . , m ,

ℓ = 1, . . . , q . (2.2.19)

Idea: Obtain data-sparse approximation of a kernel collocation matrix
M =

[
G(xi, yj)

]
i=1,...,n
j=1,...,m

(→ Def. 2.1.15) by a separable approximation of G:

G(x, y) ≈ G̃(x, y) :=
q

∑
ℓ=1

gℓ(x)hℓ(y) M̃ =
[
G̃(xi, yj)

]
i=1,...,n
j=1,...,m

, rank(M̃) = q .

Remark 2.2.20 (Impact of kernel approximation on kernel matrix)

Replacing the kernel function G with an approximation G̃ amounts to perturbing the kernel collocation the

matrix M. This can be quantified by estimating
∥∥∥M− M̃

∥∥∥, ‖·‖ a relevant matrix norm § 2.2.3.

Let M be a kernel collocation matrix according to Def. 2.1.15 based on the kernel function G : Dx×Dy →
R and collocation points xi ∈ Dx, i = 1, . . . , n, yj ∈ Dy, j = 1, . . . , m. From the definition of the matrix
norms we immediately conclude

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
≤ δ

⇓∥∥∥M− M̃
∥∥∥

∞
≤ mδ ,

∥∥∥M− M̃
∥∥∥

1
≤ nδ ,

∥∥∥M− M̃
∥∥∥

F
≤
√

mnδ .

(2.2.21)

The next three sections present different ways how to obtain promising separable approximations with
rather explicit formulas for gℓ and hℓ.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 171

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.2.1.1 Polynomial Expansions

For the sake of clarity we restrict ourselves to one dimension d = 1, Dx, Dy ⊂ R. To understand the

following, recall the Taylor formula in 1D for f ∈ Cm+1([a, b]), a < b, and expansion point x∗ ∈ [a, b]:

f (x) = f (x∗) + (x− x∗) f ′(x∗) + 1
2(x− x∗)2 f ′′(x∗) + . . .

· · ·+ 1

(q− 1)!
(x− x∗)q−1 f (q−1)(x∗) +

∫ x

x∗

1

(q− 1)!
(x− τ)q−1 f (q)(τ)dτ . (2.2.22)

Dropping the remainder term
∫ X

x∗ . . . dτ we obtain an approximation of f in a neighborhood of x∗ by its
Taylor polynomial of degree q− 1. We can apply this approximation to the “1D function” x 7→ G(x, y) and
simply regard y as a parameter.

Idea: Approximate G(x, y) by a truncated Taylor expansion in the x-variable:

G̃(x, y) ≈
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ

︸ ︷︷ ︸
=:gℓ(x)

∂ℓG

∂xℓ
(x∗, y)

︸ ︷︷ ︸
=:hℓ(y)

, x, x∗ ∈ Dx, y ∈ Dy , (2.2.23)

for a “sufficiently” large truncation parameter q ∈ N.

As indicated in (2.2.23), this provides a rank-q separable approximation of G. The number q of terms in

the polynomial expansion can be used to control the accuracy, because we expect G̃ → G for q → ∞.
This will be examined in Section 2.2.2.1.

Example 2.2.24 (Separable approximation by truncated power series)

We consider the globally C∞-smooth kernel function

G(x, y) =
1

1 + (x− y)2
on I × I , I := [−a, a], a ∈ R+ .

We want to approximate it globally by truncated power series expansions around x∗ = 0, which is a
natural choice for symmetry reasons.

The geometric series gives the Taylor series expansion at x∗ = 0, valid for |x− y| < 1:

G(x, y) =
∞

∑
k=0

(
−(x− y)2

)k
=

∞

∑
k=0

(−1)k(x− y)2k =
∞

∑
k=0

(−1)k
2k

∑
ℓ=0

(
2k

ℓ

)
xℓ(−y)2k−ℓ

=
∞

∑
ℓ=0

xℓ ·
∞

∑
k=⌈ℓ/2⌉

(−1)k

(
2k

ℓ

)
(−y)2k−ℓ .

However, this is a double series. We truncate the geometric sum to the first q summands to obtain a
rank-2q separable approximation:

G̃(x, y) =
q−1

∑
k=0

(−1)k
2k

∑
ℓ=0

(
2k

ℓ

)
xℓ(−y)2k−ℓ =

2(q−1)

∑
ℓ=0

xℓ︸︷︷︸
=:gℓ(x)

·
q−1

∑
k=⌈ℓ/2⌉

(−1)k

(
2k

ℓ

)
(−y)2k−ℓ

︸ ︷︷ ︸
=:hℓ(y)

.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 172

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 66

0 5 10 15 20

q

10 -15

10 -10

10 -5

10 0

10 5

er
ro

r(
m

ax
im

um
 n

or
m

)

Kernel approximation by truncated power series

[-0.3,0.3] 2

[-0.4,0.4] 2

[-0.5,0.5] 2

[-0.6,0.6] 2

✁

∥∥∥G− G̃
∥∥∥

L∞(I×I)
for different values of truncation

parameter q and on different intervals I.

Exponential convergence in q for small intervals.

“Exponential divergence” on large intervals.

Global separable kernel approximation based on Taylor expansion/power series is usually possible
only locally (on small domains).

Experiment 2.2.25 (Logarithmic kernel in 1D: Separable approximation by Taylor expansion)

We consider the singular kernel function

G(x, y) = − log |x− y| , x ∈ Dx, y ∈ Dy , Dx, Dy ⊂ R intervals, Dx ∩ Dy = ∅ .

The condition Dx ∩Dy = ∅ avoids the singularity of the kernel. Thus, on Dx ×Dy the kernel function G
is C∞-smooth and amenable to Taylor expansion.

Without loss of generality we assume y > x on Dx × Dy (Dx to the left of Dy).

∂ℓG

∂xℓ
(x, y) = (ℓ− 1)!(y− x)−ℓ for (x, y) ∈ Dx × Dy , ℓ ≥ 1 . (2.2.26)

This yields the Taylor polynomial with expansion point x∗ ∈ Dx:

− log(y− x) ≈ G̃(x, y) =
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ

∂ℓG

∂xℓ
(x∗, y)

= − log(y− x∗) +
q−1

∑
ℓ=0

1

ℓ
(x− x∗)ℓ

︸ ︷︷ ︸
=:gℓ(x)

(y− x∗)−ℓ︸ ︷︷ ︸
=:hℓ(y)

.
(2.2.27)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 173

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
, G̃ as in (2.2.27), sampling ap-

proximation of grid ✄

We observe exponential convergence in truncation
parameter q.

(Would observe “exponential divergence” on larger
intervals)

Same bottom line as in Ex. 2.2.24 applies.

Fig. 67

0 5 10 15 20

no. of summands q

10 -15

10 -10

10 -5

10 0

er
ro

r(
m

ax
im

um
 n

or
m

)

Log kernel approximation by Taylor poynomial

D
x

 = [0.7,1.3]

D
x

 = [0.4,1.6]

D
x

 = [0.2,1.8]

D
x

 = [0.1,1.9]

2.2.1.2 Uni-directional Interpolation

Since the Taylor expansion of the kernel function G is fixed, we have little options to remedy poten-
tially small domains of convergence. Moreover, the Taylor expansion and power series techniques from
Section 2.2.1.1 require knowledge of higher-order partial derivatives of G. Conversely, the interpolation
techniques presented in this section are more flexible and rely on point evaluations of G alone.

(2.2.28) Linear interpolation operators

Let D ⊂ Rd be a closed bounded domain and V ⊂ C0(D) a q-dimensional space of continuous functions.

Given are q distinct interpolation nodes t j ∈ D, j = 1, . . . , q.

Assumption 2.2.29. Unisolvence of interpolation nodes

We assume that for any numbers ϕ1, . . . , ϕq ∈ R there is a unique f ∈ V satisfying the interpola-
tion conditions

f (t j) = ϕj for all j = 1, . . . , q . (2.2.30)

In approximation theory this particular property of the space V and the set
{

t j
}

j
of interpolation nodes is

known as unisolvence.

Definition 2.2.31. Linear interpolation operator

For a unisolvent set of interpolation nodes
{

t j
}q

j=1
, q ∈ N, w.r.t. V ⊂ C0(D), dim V = q, define

the associated linear interpolation operator by

I : C0(D)→ V , I f ∈ V: (I f)(t j) = f (t j) ∀j = 1, . . . , q . (2.2.32)

Lemma 2.2.33. Properties of I

The mapping I according to (2.2.32) is linear, continuous, and surjective.

We can write

I f =
q

∑
ℓ=1

f (t j)bℓ , f ∈ C0(D) , (2.2.34)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 174

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

where the cardinal functions bℓ ∈ V, ℓ = 1, . . . , q, are defined (thanks to Ass. 2.2.29!) by

bℓ(t
j) = δℓ,j :=

{
1 for ℓ = j ,

0 else,
ℓ, j ∈ {1, . . . , q} . (2.2.35)

(2.2.36) Separable approximation by interpolation

Given

✦ a continuous kernel function G : Dx × Dy → R, G ∈ C0(Dx × Dy),

✦ and a linear interpolation operator I : C0(Dx) → V according to Def. 2.2.31 based on interpolation

nodes
{

t j
}q

j=1
and a q-dimensional function space V ⊂ C0(Dx) (satisfying Ass. 2.2.29, of course)

we can build a rank-q separable “approximation” of the kernel function G:

G̃(x, y) :=
q

∑
ℓ=1

bℓ(x)︸ ︷︷ ︸
=:gℓ(x)

G(tℓ, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ Dx × Dy , (2.2.37)

where the bℓ are the cardinal functions for the interpolation into V with nodes t j as defined by the property
(2.2.35). From (2.2.19) we immediately get a special version of the factorization (2.2.19) of the kernel
collocation matrix based on G̃:

M̃ :=
[
G̃(xi, yj)

]
i=1,...,n
j=1,...,m

= A · B⊤ ,

A =
[
bℓ(x

i)
]

i=1,...,n
ℓ=1,...,q

∈ Rn,q ,

B =
[
G(t l, yj)

]
j=1,...,m
ℓ=1,...,q

∈ Rm,q .

(2.2.38) Polynomial interpolation in 1D [Hip15, Section 5.2]

The most important class of interpolation schemes is global polynomial interpolation. For d = 1 and if
D ⊂ R is an interval, it relies on the space of uni-variate polynomials

V := Pq := Span{x 7→ xℓ, ℓ = 0, . . . , q− 1} , q ∈ N ,

of degree ≤ q− 1. By [Hip15, Thm. 5.2.14], any set of q distinct points tj ∈ D enjoys unisolvence with
respect to V, which guarantees Ass. 2.2.29.

As explained in [Hip15, § 5.2.10], the cardinal functions of uni-variate polynomial interpolation in the nodes
t1, . . . , tq are the Lagrange polynomials [Hip15, Eq. (5.2.11)]

Lℓ(x) :=
q

∏
j=1
j 6=ℓ

x− tj

tℓ − tj
, x ∈ R , ℓ = 1, . . . , q . (2.2.39)

Then for G : Dx × Dy → R, Dx, Dy ⊂ R, the separable approximation from (2.2.37) reads

G̃(x, y) :=
q

∑
ℓ=1

Lℓ(x)︸ ︷︷ ︸
=:gℓ(x)

G(tj, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ Dx × Dy . (2.2.40)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 175

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

“Optimal” nodes for polynomial interpolation are the Chebychev nodes, see [Hip15, Section 6.1.3], [Hip15,
Eq. (6.1.87)]. If Dx = [a, b] they are

tj := a + 1
2(b− a)

(
cos

(
2j− 1

2q
π

)
+ 1

)
, j = 1, . . . q . (2.2.41)

(2.2.42) Tensor-product polynomial interpolation

If D ⊂ Rd is a tensor-product domain

D = [a1, b1]× · · · × [ad, bd] , ai < bi , i = 1, . . . , d ,

then we can define a d-dimensional polynomial interpolation into the space of tensor-product polynomials
(→ Def. 1.4.148)

T Pq(R
d) := {x 7→ p1(x1) · · · · · pd(xd), pi ∈ Pq, i = 1, . . . , d} ,

based on uni-variate polynomial interpolation as introduced in § 2.2.38.

Let t1
i , . . . , t

q
i be nodes for uni-variate polynomial interpolation on [ai, bi] into Pq−1. Denote by Li,ℓ,

ℓ = 1, . . . , q, the associated Lagrange polynomials. Then we can define the d-variate tensor-product
polynomial interpolation operator

ID : C0(D)→ T Pq−1(R
d) ,

(ID f)(x) =
q

∑
k1=1

· · ·
q

∑
kd=1

f

([
tk1
1 , . . . , t

kd
d

]⊤)
L1,k1

(x1) · · · · · Ld,kd
(xd) , x ∈ Rd , f ∈ C0(D) .

(2.2.43)

Hence, we have to evaluate f on a grid of qd points, which matches dim T Pq−1(R
d) = qd.

2.2.1.3 Bi-directional interpolation

Many kernel functions (x, y) 7→ G(x, y) are symmetric in their two arguments. However, separable kernel
approximation by means of uni-directional interpolation as introduced in Section 2.2.1.2 treats the x- and
y-coordinates rather differently. Another interpolation approach preserves symmetry.

(2.2.44) General “two-dimensional” interpolation

We assume that we are given

✦ a continuous kernel function G : Dx × Dy → R, G ∈ C0(Dx × Dy),

✦ a linear interpolation operator Ix : C0(Dx) → Vx according to Def. 2.2.31 based on interpolation
nodes t1

x, . . . , t
qx
x ∈ Dx, qx ∈ R, and a qx-dimensional function space Vx ⊂ C0(Dx),

✦ another linear interpolation operator Iy : C0(Dy) → Vy into a qy-dimensional space Vy ⊂ C0(Dy)

with interpolation nodes t1
y, . . . , t

qy
y ∈ Dy.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 176

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We write bx
k , k = 1, . . . , qx, and b

y
j , j = 1, . . . , qy, for the cardinal functions associated with the respective

spaces and sets of interpolation nodes on Dx, Dy.

Then, in the spirit of tensor-product polynomial interpolation from § 2.2.42, we can introduce the tensor-
product interpolation operator

I
x ⊗ I

y : C0(Dx × Dy)→ Vx ⊗Vy ,

(
(Ix ⊗ Iy) f

)
(x, y) :=

qx

∑
k=1

qy

∑
j=1

f (tk
x, t

j
y) bx

k (x) b
y
j (y) , f ∈ C0(Dx × Dy) .

(2.2.45)

Obviously, the tensor-product interpolant is separable. Hence, applying it to G provides a separable
“approximation” (its quality depending on k, Ix, and Iy, of course):

G̃(x, y) :=
(
(Ix ⊗ Iy)G

)
(x, y) =

qx

∑
k=1

qy

∑
ℓ=1

G(tk
x, tℓy) bx

k (x)︸ ︷︷ ︸
=:gk,ℓ(x)

b
y
ℓ (y)︸ ︷︷ ︸

=:hk,ℓ(y)

. (2.2.46)

Note that in order to obtain G̃ we need only evaluate G at qx · qy pairs of interpolation nodes to obtain

the values G(tk
x, t

j
y) ∈ R. Another advantage of (2.2.46) is that it inherits the possible simplicity of the

cardinal functions.

For given collocation points x1, . . . , xn ∈ Dx, y1, . . . , ym ∈ Dy, the approximate kernel collocation matrix

M̃ ∈ Rn,m spawned by G̃ has the special triple-factor form

(
M̃
)

i,j
=

qx

∑
k=1

qy

∑
ℓ=1

G(tk
x, tℓy)b

x
k (x

i)b
y
ℓ
(y j) , i = 1, . . . , n , j = 1, . . . , m

M̃ = U C V⊤ ,

U :=
[
bx

k (x
i)
]

i=1,...,n
k=1,...,qx

∈ Rn.qx ,

C :=
[

G(tk
x, tℓy)

]
k=1,...,qx
ℓ=1,...,qy

∈ Rqx,qy ,

V :=
[
b

y
ℓ (y

j)
]

j=1,...,m
ℓ=1,...,qy

∈ Rm.qy .

(2.2.47)


 M̃


 =


 U



[

C
] [

V⊤
]

.

This implies that rank(M̃) ≤ min{qx, qy}.

Of course the most widely used interpolation operators Ix and Iy are polynomial interpolations, in particular,
Chebychev interpolation [Hip15, Section 6.1.3]. Then the bx

k /b
y
j will also be polynomials, for which efficient

algorithms for evaluation are available, see [Hip15, Section 5.2.3].

Experiment 2.2.48 (Bi-directional interpolation of smooth kernel function)

For d = 1 we consider the globally smooth kernel function

G(x, y) =
1

1 + (x− y)2
on [0, 1]2 ,

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 177

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

- and collocation points ξi = ηi =
i−1

n , i = 1, . . . , n, n ∈ N.

A rank-q2 separable approximation of G on [0, 1]2 is obtained by bi-directional Chebychev interpolation
into tensor-product polynomials T Pq−1(R

2):

G̃ ∈ T Pq−1(R
2): G̃(ti, tj) = G(ti, tj) , i, j ∈ {1, . . . , q} , (2.2.49)

with Chebychev nodes tk as defined in (2.2.41).

Plot of the scaled Frobenius norm of the approxima-
tion error of the kernel collocation matrix,

err :=
1

n

(

∑
i,j

(
G(ξi , ηj)− G̃(ξi , ηj

)2
) 1

2

,

as a function of the degree q − 1 and for n ∈
{100, 200, 400}.

Fig. 68

0 2 4 6 8 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Degree

E
rr

o
r

Error in Frobenius Norm

 n = 100

 n = 500

 n = 1000

Observation: Evidence of exponential convergence of the approximation error for q→ ∞.

The observation matches theoretical interpolation error estimates for Chebychev interpolation: the kernel
(x, y) 7→ G(x, y) is analytic on [0, 1] (→ Def. 1.4.135) both as a function x 7→ G(x, y) and y 7→ G(x, y),
uniformly in the other argument. Thus, the results reported in [Hip15, Rem. 6.1.96] predict exponential

convergence of
∥∥∥G− G̃

∥∥∥
L∞([0,1]2)

, refer to Thm. 1.4.138 for quantitative formulas. Details will be given in

Section 2.2.2.2.

Experiment 2.2.50 (Global bi-directional interpolation of singular kernel)

For d = 1 we apply bi-directional Chebychev interpolation into T Pq−1(R
2) to the singular kernel function

G(x, y) =

{
1
|x−y| , if x 6= y ,

0 , if x = y ,
0 ≤ x, y ≤ 1 ,

in order to obtain a separable approximation G̃.

We use the same collocation points as in Exp. 2.2.48.

Plot of
∥∥∥M− M̃

∥∥∥
F

as a function of the degree q− 1

for n ∈ {100, 500, 1000}. ✄

We observe no convergence at all.

Fig. 69

0 2 4 6 8 10
10

2

10
3

10
4

Degree

E
rr

o
r

Error in Frobenius Norm

 n = 100

 n = 500

 n = 1000

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 178

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.2.2 Error Estimates and Admissibility condition for Singular Kernels

We embark on an analysis of separable approximation of singular kernels like those introduced in Ex. 2.1.17,
with focus on d = 1, the logarithmic kernel

G(x, y) =

{
− log |x− y| , if x 6= y ,

0 else,
x, y ∈ [0, 1] .

and Chebychev polynomial interpolation. We have seen in Exp. 2.2.50 that applying polynomial across
the singularity at x = y is pointless. Conversely, Exp. 2.2.25 sends the message that singular kernels for
d = 1 allow exponentially convergent separable approximations on “boxes” Dx × Dy ⊂ R2 away from

the “diagonal” {(x, y) ∈ R2 : x = y}. Now we estimate truncation and interpolation errors to glean
quantitative information.

Remark 2.2.51 (Asymptotically smooth kernels [Beb08, Sect. 3.2])

The analysis of this section carries over to d > 1 and a larger class of singular kernels, which are asymp-
totically smooth.

A kernel function G : (Rd ×Rd) \ {(x, y) ∈ Rd ×Rd : x = y} → R is called asymptotically smooth, if

(i) G ∈ C∞((Rd ×Rd) \ {(x, y) ∈ Rd ×Rd : x = y}),
(ii) and its derivatives satisfy the decay conditions

∣∣Dα
y G(x, y)

∣∣ ≤ C |α|! γ|α|
|G(x, y)|
‖x− y‖|α|

∀α ∈ Nd
0 ,

∀(x, y) ∈ R2d \ {(x, y) ∈ Rd ×Rd : x = y} ,

(2.2.52)

with constants C > 0, γ > 0 (|α| = |α1|+ · · ·+ |αd|).
Straightforward differentiation, cf. (2.2.26), confirms that the kernels from Ex. 2.1.17 are asymptotically
smooth.

2.2.2.1 Truncation Error Estimates for Taylor Expansion

We focus on the asymptotically smooth logarithmic kernel G(x, y) = − log |x − y| in one dimension,
d = 1.

Fig. 70

x

y

“diagonal” {x = y}
Dy

Dx

B

As in Exp. 2.2.25 we consider its rank-q separable
approximation by means of truncated Taylor expan-
sion on Dx × Dy, where Dx, Dy ⊂ R are disjoint
intervals: Dx ∩ Dy = ∅.

✁ Approximation on a “box” B := Dx × Dy away
from the diagonal.

(Assume that B is above the diagonal: y > x for all
(x, y) ∈ B.)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 179

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Using that for y > x

∂ℓG

∂xℓ
(x, y) = (ℓ− 1)!(y− x)−ℓ for (x, y) ∈ Dx × Dy , ℓ ≥ 1 , (2.2.26)

the formula (2.2.23) for the rank-q separable approximation by Taylor expansion takes the concrete form

G̃(x, y) = − log(y− x∗) +
q−1

∑
ℓ=0

1

ℓ
(x− x∗)ℓ

︸ ︷︷ ︸
=:gℓ(x)

(y− x∗)−ℓ︸ ︷︷ ︸
=:hℓ(y)

, (2.2.53)

We choose x∗ ∈ Dx as the midpoint of Dx: if Dx = [a, b], then x∗ = 1
2(a + b).

(2.2.54) Heuristics based on maximal analytic extension

Appealing to the arguments of [Hip15, Rem. 6.1.72] we find that the domain of analyticity of z 7→ − log(y−
z), y ∈ R, is C \ [y, ∞[, because the complex logarithm is analytic everywhere except R−0 .

Then apply the “rule of thumb” that predicts that

the Taylor series of an analytic function f : D → C, D ⊂ C open (“domain of analyticity”),
around z∗ ∈ D converges inside every disk centered at z∗ that lies completely inside D.

Thus the Taylor series of x 7→ − log(y− x) in x∗ < y

G(x, y) = − log(y− x) =
∞

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ

∂ℓG

∂ℓx
(x∗, y) =:

∞

∑
ℓ=0

γℓ(x− x∗)ℓ for γℓ :=
∂ℓG

∂ℓx
(x∗, y) ,

(2.2.55)

has a radius of convergence ρ = y− x∗. Assume that for |x− x∗| = ρ the terms of the series are still
bounded:

γℓρ
ℓ ≤ C ∀ℓ ∈ N0 . (2.2.56)

Therefore, if |x− x∗| < ρ, we get

|(G− G̃)(x, y)| =
∣∣∣∣∣

∞

∑
ℓ=q

γℓ(x− x∗)ℓ
∣∣∣∣∣ ≤

∞

∑
ℓ=q

∣∣∣∣
x− x∗

ρ

∣∣∣∣
ℓ

γℓρ
ℓ

(2.2.55)
≤ C

∞

∑
ℓ=q

∣∣∣∣
x− x∗

ρ

∣∣∣∣
ℓ

= C

∣∣∣∣
x− x∗

ρ

∣∣∣∣
q ρ

ρ− |x− x∗|

Note that by simple geometric arguments

|x∗ − y| ≥ 1
2 diam(Dx) + dist(Dx; Dy) , |x− x∗| ≤ 1

2 diam(Dx) .∣∣∣∣
x− x∗

ρ

∣∣∣∣ ≤
η

1 + η
,

with the admissibility measure of the box B := Dx × Dy

η = η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.57)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 180

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Hence, for x ∈ Dx we expect exponential convergence (in terms of q→ ∞) of the q-term Taylor expansion
in x with error bounds

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
≤ C

(
η

1 + η

)q

∀q ∈ N . (2.2.58)

(2.2.59) Remainder estimates for Taylor expansion of logarithmic kernel

Now we make rigorous the heuristic arguments of § 2.2.54. Recall the remainder formula for one-
dimensional Taylor expansion of f ∈ Cm+1([a, b]) around x∗ ∈ [a, b] [Str09, Sect. 5.5],

f (x)−
q−1

∑
ℓ=0

1

ℓ!
(x− x∗)ℓ f (ℓ)(x∗) = (x− x∗)q

1∫

0

1

(q− 1)!
(1− τ)q−1 f (q)(x∗ + τ(x− x∗))dτ .

(2.2.60)

Apply this formula to G(x, y) in x-direction only, regarding y as a parameter. The remainder term for
expansion length q ≥ 1 and x∗ chosen as midpoint of Dx reads

G(x, y)− G̃(x, y) =
(x− x∗)q

(q− 1)!

1∫

0

(1− τ)q−1 ∂qG

∂xq (x
∗ + τ(x− x∗), y)dτ

=
(x− x∗)q

(q− 1)!

1∫

0

(1− τ)q−1(q− 1)!|x∗ + τ(x− x∗)− y|−q dτ

=

1∫

0

(1− τ)q−1

(
x− x∗

|x∗ − y + τ(x− x∗)|

)q

dτ .

We estimate the remainder in terms of geometric quantities

|x∗ − y| ≥ 1
2 diam(Dx) + dist(Dx; Dy) ,

|x− x∗| ≤ 1
2 diam(Dx) .

where

dist(Dx; Dy) := max{|x− y| : x ∈ Dx, y ∈ Dy} > 0 .

Hence, for all (x, y) ∈ Dx × Dy,

|G(x, y)− G̃(x, y)| ≤
1∫

0

(1− τ)q−1

(
x− x∗

|x∗ − y| − |τ(x− x∗)|

)q

dτ

≤
1∫

0

(1− τ)q−1

(
1
2 diam(Dx)

dist(Dx; Dy) +
1
2(1− τ)diam(Dx)

)q

dτ

≤
1∫

0

(1− τ)q−1

(η−1 + 1− τ)q
dτ =

1∫

0

σq−1

(η−1 + σ)q
dσ ≤

(
η

1 + η

)q−1 1∫

0

η

1 + ησ
dσ

=

(
η

1 + η

)q−1

log(1 + η) = O(ηq) for q→ ∞ .

(2.2.61)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 181

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Again the admissibility measure η of the box B := Dx × Dy as defined in (2.2.57) crucially enters the
bound for the truncation error and determines the “rate” of exponential convergence for q→ ∞.

On boxes away from the diagonal {x = y} rank-q separable approximation of asymptotically
smooth singular kernels by means of truncated Taylor expansion converges uniformly exponentially
for q→ ∞.
The speed of convergence is determined by the admissibility measure η = η(B).

2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation

We conduct a rigorous analysis for separable approximation by uni-directional interpolation as presented
in Section 2.2.1.2, see (2.2.37). We restrict ourselves to d = 1 and Chebychev interpolation [Hip15,
Section 6.1.3.2].

Specializing (2.2.37), the approximate rank-q separable kernel function is given by

G̃(x, y) = Iq,Dx{x 7→ G(x, y)} =
q

∑
ℓ=1

Lℓ(x)G(tℓ , y) , (2.2.62)

where Iq,Dx : C0(Dx)→ Pq−1 is the q-node Chebychev interpolation operator,

tℓ, ℓ = 1, . . . , q, are the Chebychev nodes in Dx given by (2.2.41), and the functions Lℓ are the
Lagrange polynomials (2.2.39) to these nodes.

(2.2.63) Simple 1D Chebychev interpolation error estimates

Write IT for the well-defined polynomial interpolation operator into Pq−1 based on the node set T :=

{t1, . . . , tq} ⊂ [−1, 1] ⊂ R. The fundamental error respresentation from [Hip15, Thm. 6.1.44] for f ∈
Cq([−1, 1])

(f − IT f)(x) =
f (q)(τ(x))

q!
·

q

∏
k=1

(x− tk) for some τ(x) ∈ [−1, 1] , (2.2.64)

yields the bound of [Hip15, Eq. (6.1.50)]:

‖ f − IT f‖L∞([−1,1]) ≤
1

q!

∥∥∥ f (q)
∥∥∥

L∞([−1,1])
max

t∈[−1,1]
|(t− t1) · · · · · (t− tq)| . (2.2.65)

For the special Chebychev nodes

tj := cos

(
2j− 1

2q
π

)
, j = 1, . . . q , (2.2.41)

which are zeros of the Chebychev polynomial Tq [Hip15, Def. 6.1.76] we know

|(t− t1) · · · · · (t− tq)| = |21−qTq(t)| ≤ 21−q ∀ − 1 ≤ t ≤ 1 . (2.2.66)

Plugging this into (2.2.65), we get

∥∥∥ f − Îq f
∥∥∥

L∞([−1,1])
≤ 21−q

q!

∥∥∥ f (q)
∥∥∥

L∞([−1,1])
, (2.2.67)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 182

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

where we wrote Îq for the Chebychev interpolation operator on the reference interval [−1, 1] based on q
interpolation nodes.

Affine transformation to a general interval [a, b], a < b, [Hip15, Rem. 6.1.30] finally leads to an error
estimate for the q-node Chebychev interpolation.

Lemma 2.2.68. Chebychev interpolation error estimate

For any f ∈ Cq([a, b]) the q-node polynomial Chebychev interpolation operator Iq,[a,b] on the interval

[a, b], a < b admits the error estimate

∥∥∥ f − Iq,[a,b] f
∥∥∥

L∞([a,b])
≤ 21−2q(b− a)q 1

q!

∥∥∥ f (q)
∥∥∥

L∞([a,b])
. (2.2.69)

Now we consider the singular logarithmic kernel G(x, y) = − log |x − y| on a box B := Dx × Dy,
Dx, Dy ⊂ R, Dx ∩ Dy = ∅, see Fig. 70. There we approximate it by Chebychev interpolation in x-
direction, cf. (2.2.37)

G̃(x, y) := Iq,[a,b]{x 7→ − log |x− y|}(x, y) , (x, y) ∈ B . (2.2.70)

Next we apply the estimate of Lemma 2.2.68 to x 7→ − log |x− y|. More precisely, we use Lemma 2.2.68
for abritrary, but fixed y ∈ Dy and

f (x) := G(x, y)
(2.2.26)

| f (q)(x)| =
∣∣∣∣
∂qG

∂xq (x, y)

∣∣∣∣ =
(q− 1)!

|y− x|q , x 6= y .

Plugging this into (2.2.69) and observing that |x− y| ≥ dist(Dx; Dy) and diam(Dx) = b− a yields the
final estimate

∥∥∥G− G̃
∥∥∥

L∞(Dx×Dy)
≤ 2

q

(
diam(Dx)

4 dist(Dx; Dy)

)q

≤ 2

q

(
η(B)

2

)q

, (2.2.71)

where,again, we expressed the bound through the admissibility measure of the box B

η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.57)

Unlike (2.2.57), for large η the above estimate (2.2.71) does not predict exponential convergence. This
can be remedied by stronger estimates that we outline next.

(2.2.72) Interpolation error estimates based on analytic extension

We start with a deep result of approximation theory already given in Thm. 1.4.138. Recall the concept of
“analyticity” of a function D ⊂ C → C from Def. 1.4.136 and the special closed curves in the complex
plane called Bernstein ellipses

Eρ := {z ∈ C : |z− 1|+ |z + 1| = ρ + ρ−1} , ρ > 1 ,

=
{

z = 1
2(ρ + ρ−1) cos θ + ı 1

2(ρ− ρ−1) sin θ, 0 ≤ θ ≤ 2π
}

,
(1.4.137)

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 183

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

see Fig. 38 for a visualization. They wrap around the reference interval [−1, 1], have ±1 as their focal
points, and ρ + ρ−1 and ρ− ρ−1 as lengths of their long and short axes, respectively.

Theorem 2.2.73. Chebychev interpolation of analytic functions [Hip15, Eq. (6.1.98)]

If f : D ⊂ C → C is analytic in the interior of the Bernstein ellipse Eρ, ρ > 1, and bounded on Eρ,

then

inf
p∈Pm

∥∥∥ f − Îm f
∥∥∥

L∞([−1,1])
≤ 8

π

1

(ρm − ρ−1)(ρ + ρ−1− 2)
max
z∈Eρ

| f (z)| for all m ∈ N ,

(2.2.74)

where Îm : C0([−1, 1])→ Pm stands for the Chebychev interpolation operators on [−1, 1].

Again, we point out exponential convergence of the maximum norm of the minimal approximation error
over Pm as the degree m→ ∞.

To apply Thm. 2.2.73 to the Chebychev interpolation of x 7→ − log(y− x) on Dx := [a, b], a < b < y,
we first employ an affine pullback to the reference interval [Hip15, Rem. 6.1.18] and obtain

f (x̂) := −log
(

y− (1
2(b− a)x̂ + 1

2(b + a))
)

, −1 ≤ x̂ ≤ 1 . (2.2.75)

f is analytic on C \ [xs, ∞[with

xs :=
2

b− a
(y− 1

2(b + a)) ≥ 2

diam(Dx)
(dist(Dx; Dy) +

1
2 diam(Dx))

=
2 dist(Dx; Dy)

diam(Dx)
+ 1 ≥ 1

η
+ 1 > 1 ,

where η is the admissibility measure of the box Dx × Dy,

η = η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.57)

Fig. 71 R1−1

xs
✁ domain of analyticity of f .

The range of possible size parameters ρ for the Bernstein ellipses Eρ is

ρ > 1: ρ + ρ−1 < 2xs , satisfied for 1 < ρ <
1 + η +

√
1 + η

η
. (2.2.76)

This confirms exponential convergence of Chebychev interpolation of x 7→ − log(y − x) on Dx with
respect to the polynomial degree, for any y 6∈ Dx, with a rate governed by the admissibility measure η.

For asymptotically smooth singular kernels the admissibility measure η governs the speed of
asymptotic exponential convergence of rank-q separable approximations by uni-directional Cheby-
chev interpolation.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 184

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.2.2.3 Estimates for Bi-Directional Interpolation

For separable approximation by bi-directional interpolation as elaborated in Section 2.2.1.3 we have to
study the interpolation error

G(x, y)− G̃(x, y) = (Id− Ix ⊗ Iy)(x, y) .

(2.2.77) Error estimates for bi-directional interpolation

We revisit the setting of § 2.2.44 for bi-directional interpolation based on two linear interpolation operators
Ix : C0(Dx) → Vx and Iy : C0(Dy)→ Vy with interpolation nodes t1

x, . . . , t
qx
x , qx := dim Vx, t1

y, . . . , t
qy
y ,

qy := dim Vy. Writing bx
k , k = 1, . . . , qx, and b

y
j , j = 1, . . . , qy for the associated cardinal functions we

can express, compare (2.2.34),

(Ixg)(x) =
qx

∑
k=1

g(tk
x) bx

k (x) , g ∈ C0(Dx) , (Iyh)(y) =
qx

∑
j=1

h(t
j
y) b

y
j (y) , h ∈ C0(Dy) . (2.2.78)

Definition 2.2.79. Lebesgue constant [Hip15, Lemma 5.2.71]

The Lebesgue constant of a linear interpolation operator I : C0(D)→ Vx according to Def. 2.2.31
with associated cardinal functions bℓ, ℓ = 1, . . . , q, is the number

λ(I) :=
q

∑
ℓ=1

‖bℓ‖L∞(D) .

As an immediate consequence of the definition and△-inequality we mention

‖I f ‖L∞(D) ≤ λ(I)‖ f‖L∞(D) ∀ f ∈ C0(D) . (2.2.80)

Next we rewrite the tensor-product interpolation operator as a composition of unidirectional interpolation
operators I∗2D : C0(Dx × Dy)→ C0(Dx × Dy), ∗ = x, y. We introduce

(Ix2D f)(x, y) =
qx

∑
k=1

f (tk
x, y) bx

k (x) ,

(I
y
2D f)(x, y) =

qx

∑
k=1

f (x, tk
y) b

y
k (y) ,

f ∈ C0(Dx × Dy) .

(2.2.45) Ix ⊗ Iy = Ix2D ◦ I
y
2D on C0(Dx × Dy) . (2.2.81)

By the very definition of the Lebesgue constant in Def. 2.2.79 we conclude

‖Ix2D f ‖L∞(D) ≤ max
x∈Dx

max
y∈Dy

qx

∑
k=1

∣∣∣ f (tk
x, y) bx

k (x)
∣∣∣

≤
qx

∑
k=1

‖ f‖L∞(Dx×Dy)
‖bx

k‖L∞(Dx)
= λ(Ix) ‖ f‖L∞(Dx×Dy)

.

(2.2.82)

This means that λ(I∗) provides a bound for the (operator) norm of I∗2D.

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 185

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Owing to (2.2.81) we can separate interpolation directions:

I
x ⊗ I

y − Id = I
x
2D ◦ I

y
2D − I

x
2D ◦ Id+ I

x
2D ◦ Id− Id = I

x
2D

(
I
y
2D − Id

)
+ (Ix2D − Id) ◦ Id ,

and the△-inequality gives the following estimate for f ∈ C0(Dx × Dy):

‖(Ix ⊗ Iy − Id) f ‖L∞(Dx×Dy)
≤
∥∥Ix2D

(
I
y
2D − Id

)
f
∥∥

L∞(Dx×Dy)
+ ‖(Ix2D − Id) f‖L∞(Dx×Dy)

≤ λ(Ix)
∥∥(Iy2D − Id

)
f
∥∥

L∞(Dx×Dy)
+ ‖(Ix2D − Id) f ‖L∞(Dx×Dy)

.

Let us elucidate the contribution of uni-directional interpolation errors (highlighted with color)

‖(Ix ⊗ Iy − Id) f ‖L∞(Dx×Dy)
≤ λ(Ix)max

x∈Dx

{
max
y∈Dy

∣∣∣ f (x, y)−
qy

∑
j=1

f (x, t
j
y)b

y
j (y)

∣∣∣
}
+

max
y∈Dy

{
max
x∈Dx

∣∣∣ f (x, y)−
qx

∑
k=1

f (tk
x, y)bx

k (x)
∣∣∣
}

.

(2.2.83)

Hence, estimates of the interpolation error of Ix and Iy when applied to the functions x 7→ f (x, y) and
y 7→ f (x, y), respectively, permit us to estimate the interpolation error for Ix ⊗ Iy, if they are uniform in
the other argument.

Let us apply the estimate (2.2.83) for d = 1 to G(x, y) = log(y − x), x ∈ Dx, y ∈ Dy, y > x, in
the situation of Fig. 70 with well separated intervals Dx and Dy. We rely on one-dimensional q-node
Chebychev interpolation Iq on both Dx and Dy. From [Hip15, Rem. 6.1.90] we recall the deep result that
in this case the Lebesgue constant is bounded as

λ(Iq) ≤
2

π
log(2 + q) + 1 ∀q ∈ N . (2.2.84)

The function x 7→ G(x, y) has an analytic extension to the interior of the Bernstein ellipse Eρ for all

y ∈ Dy, if ρ > 1 is chosen according to (2.2.76). Thus, invoking Thm. 2.2.73, we get exponential
convergence of the interpolation error

∥∥∥{x 7→ ((Id− Ixq)G)(x, y)}
∥∥∥

L∞(Dx)
for q→ ∞ ,

whose speed will be determined by ρ and, indirectly, by the admissibility measure of the box Dx × Dy.

Up to a logarithmic factor in q this will also hold for the total approximation error
∥∥∥G− G̃

∥∥∥
L∞(Dx×Dy)

.

Experiment 2.2.85 (Tensor-product Chebychev interpolation of singular kernel)

For d = 1 we consider the singular asymptotically smooth kernel function

G(x, y) :=
1

|x− y| , x 6= y .

We employ tensor-product Chebychev interpolation of degree q− 1 with q2 interpolation nodes on the
rectangular boxes

Bk := [0.55 + k · 0.05, 0.75+ k · 0.05]× [0.25− k · 0.05, 0.45− k · 0.05] , k ∈ {0, . . . , 5} .

These boxes are shown in Fig. 72 and their admissibility measures η(Bk) according to (2.2.57) are given
in the following table:

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 186

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

k 0 1 2 3 4 5
η(Bk) 2.0 1.0 0.66 0.5 0.4 0.33

Fig. 72

x

y

1

1

Fig. 73

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Degree d

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
in

 t
h

e
 L

∞
 −

 N
o

rm

k=1

k=2

k=3

k=4

k=5

In Fig. 73 we observe exponential convergence of
∥∥∥G− G̃

∥∥∥
L∞(Bk)

in the degree, the faster the larger k,

which also corresponds to smaller admissibility measure of the box.

The previous experiment is repeated with the boxes

Bξ := [1
2(
√

2− 1)ξ + 1
2 , 1

2(
√

2 + 1)ξ + 1
2]× [− 1

2(
√

2− 1)ξ + 1
2 ,− 1

2(
√

2 + 1)ξ + 1
2] ,

ξ ∈ {0.05, 0.09, 0.13, . . . , 0.41} ,

whose size increases with increasing distance from the diagonal, keeping their admissibility measures
η(Bξ) at the constant value

√
2.

Fig. 74
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 x

 y

Fig. 75

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Parameter ξ

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
in

 t
h

e
 L

∞
 −

 N
o

rm

d = 2

d = 4

d = 6

d = 8

d = 10

We observe that the interpolation error
∥∥∥G− G̃

∥∥∥
L∞(Bξ)

is almost constant for a family of rectangles with

about the same admissibility measure. Exponential convergence in the degree is well preserved.

Inspired by the findings of our investigations into the separable approximation of asymptotically smooth
singular kernels we will make a general assumption:

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 187

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Assumption 2.2.86. Rank-q separable approximation on admissible boxes

For the kernel function G : Rd × Rd → R under consideration there is a decreasing function
δ : R+ → [0, 1[such that for any disjoint closed sets Dx, Dy ⊂ Rd, Dx ∩Dy = ∅, there is a family{

G̃q

}
q∈N

of rank-q separable approximations such that

∥∥∥G− G̃q

∥∥∥
L∞(Dx×Dy)

≤ δ(η(Dx × Dy))
q ∀q ∈ N , (2.2.87)

where η is the admissibility measure from (2.2.57).

2.3 Clustering Techniques

In this section we develop an algorithm that paves the way for data-sparse approximations in the sense
of § 2.2.1 of kernel collocation matrices associated with asymptotically smooth (→ Rem. 2.2.51) singular
kernel functions, see Ex. 2.1.17 for examples.

Throughout this section we assume that we are given, cf. Def. 2.1.15,

✦ an asymptotically smooth singular kernel function

G = G(x, y) , G ∈ C∞([0, 1]2d \ {x = y}) ,

allowing point evaluation for any admissible pair of arguments,

✦ collocation points xi ∈ [0, 1]d, i = 1, . . . , n, and yj ∈ [0, 1]d, j = 1, . . . , m, m, n ∈ N.

The kernel function may be available only in procedural form as subroutine providing point evaluations.

2.3.1 Local Separable Approximation

Recall the admissibility measure of a box B := Dx × Dy, Dx, Dy ⊂ [0, 1]d, defined in (2.2.57):

η = η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
. (2.2.57)

The bottom line of Section 2.2.2.1 and Section 2.2.2.2 for d = 1 was that rank-q separable approximation
of asymptotically smooth singular kernel functions is possible with fast asymptotic exponential conver-
gence for q→ ∞ on boxes B := Dx × Dy with small admissibility measure η(B).

Idea: Partition [0, 1]d × [0, 1]d into boxes B1, . . . , BK, K ∈ N, Bk = Dk
x × Dk

y, Dx, Dy ⊂
[0, 1]d (also called a tiling)

[0, 1]d × [0, 1]d = B1 ∪ · · · ∪ BK , Bℓ ∩ Bm = ∅ , if ℓ 6= m ,

such that
only O(m + n) pairs (xi, yj) of collocation points are contained in boxes
with an admissibility measure η > η0, for prescribed η0 > 0.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 188

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(2.3.1) Near-field and far-field boxes

Formally we split the set B := {B1, . . . , BK} of boxes into η0-admissible boxes (“far-field” boxes) and
remainder (“near-field” boxes):

B = Bfar ∪ Bnear ,
Bfar := {B ∈ B : η(B) ≤ η0} ,

Bnear := {B ∈ B : η(B) > η0} .

Qualitative visualization of near-field↔ far-field split-
ting of [0, 1]2 for d = 1 ✄

Far-field boxes with admissibility measure
≤ η0.

Boxes abutting or close to the diagonal {x = y} form
the set of near-field boxes (not marked).

Fig. 76

Bk

x

y

Dk
x

Dk
y

What we have learned in Section 2.2, refer to Ass. 2.2.86:

Separable approximation in the far field

Rank-q separable approximation of G by expansion (→ Section 2.2.1.1) or interpolation (→ Sec-
tion 2.2.1.2/Section 2.2.1.3) is possible on far-field boxes with exponentially decreasing error for
q→ ∞.

Fig. 77 0

0

1

1

Poo
r App

ro
xim

at
ion

Reg
ion

✁ A picture helping you to remember the location of
near-field and far-field boxes in d = 1

Near field: No exponentially convergent
separable approximation possible

Far field: Expansion or interpolation pro-
vide exponentially convergent separable
approximation.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 189

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Meaning of η(B) ≤ η0 for size of far-field boxes:

• Accurate separable approximation possible
– only on small rectangles near the diago-

nal
– also on large rectangles far from the diag-

onal

Aiming for η(B) ≈ η0 fixes size of far-field boxes.

Fig. 78 0

0

1

1

G
Poo

r App
ro

xim
at

ion
Reg

ion

G smoother

G smoother

(2.3.3) Block partitioning of the kernel collocation matrix

Assume a partitioning of [0, 1]d × [0, 1]d into boxes Bk := Dk
x × Dk

y ⊂ [0, 1]2d, k = 1, . . . , K, Dk
x, Dk

y ⊂
[0, 1]d:

[0, 1]d × [0, 1]d = B1 ∪ · · · ∪ BK , Bℓ ∩ Bm = ∅ , if ℓ 6= m .

Based on the given collocation points xi ∈ [0, 1]d, i = 1, . . . , n, yj ∈ [0, 1]d, j = 1, . . . , m, this induces a
block-partitioning of the kernel collocation matrix M =

[
G(xi, yj)

]
i,j
∈ Rn,m. Set

Ik :=
{

i ∈ {1, . . . , n} : xi ∈ Dk
x

}
,

Jk :=
{

j ∈ {1, . . . , m} : yi ∈ Dk
y

}
,

(2.3.4)

D := {1, . . . , n} × {1, . . . , m} =
K⋃

k=1

Ik × Jk ,

(Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m ,

(2.3.5)

and define the matrix blocks by

Mk :=
[

G(xi, yj)
]

i∈Ik
j∈Jk

∈ R♯Ik,♯Jk , k = 1, . . . , K . (2.3.6)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 190

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 79

0

0

1

1ξ1 ξn

η1

ηm

x

y

For d = 1 and assuming sorted collocation points

0 ≤ ξ1 < ξ2 < · · · < ξn ≤ 1 ,

0 ≤ η1 < η2 < · · · < ηm ≤ 1 ,

the geometric boxes Bk directly correspond to matrix
blocks.

✁ • point (ξi , η j) ∈ R2d ↔ entry of M

However, block partitionings of M (rearrangement of indices allowed) induced by a partitioning (2.3.5) of
the set D := {1, . . . , n} × {1, . . . , m} of index pairs are more general that geometric partitionings of
[0, 1]2d. Therefore, we can now formulate the following objective (in not entirely rigorous terms).

Goal: admissible and efficient block partitioning

Find a partitioning of D = {1, . . . , n} × {1, . . . , m}

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m , (2.3.8)

such that, with a near-field – far-field splitting Fnear ∩ Ffar = ∅, Fnear ∪ Ffar = {1, . . . , K},

∑
k∈Ffar

♯Ik + ♯Jk = O(m + n) logp(m + n) , (2.3.9)

∑
k∈Fnear

♯Ik · ♯Jk = O(m + n) logp(m + n) , (2.3.10)

“for n, m→ ∞” and some p ∈ N.

Remember our bid for data-sparse approximation (→ § 2.2.1) by low-rank approximation of far-field blocks
to appreciate (2.3.9) and (2.3.10).

To characterize the sets Ffar (“near-field” blocks of index pairs) and Ffar (“far-field” block of index pairs), we
define mutual admissibility of two sets of indices. To prepare its statement, we need the sets of collocation
points associated with index sets:

I ⊂ {1, . . . , n}: Px(I) := {xi : i ∈ I} , J ⊂ {1, . . . , m}: Py(J) := {yj : j ∈ J} . (2.3.11)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 191

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 2.3.12. Bounding box of an index set

The x/y-bounding boxes of index sets are

I ⊂ {1, . . . , n}: boxx(I) :=
d⊗

ℓ=1

[min{xi
ℓ}i∈Px(I), max{xi

ℓ}i∈Px(I)] ⊂ Rd ,

J ⊂ {1, . . . , m}: boxy(J) :=
d⊗

ℓ=1

[min{yj
ℓ}j∈Py(J), max{yj

ℓ}j∈Py(J)] ⊂ Rd .

This makes it possible to link an index set with a geometric box.

Fig. 80

x1

x2

✁ Axiparallel bounding box of a set {xi} of points •
in the plane.

Bounding boxes are need to invoke geometric admissibility measure η, which is an essential ingredient of
Ass. 2.2.86.

Definition 2.3.13. Admissibility of index sets

Given η0 > 0 we call the product I × J of two index sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , m}
η0-admissible, if

η(boxx(I)× boxy(J)) :=
max{diam(boxx(I)), diam(boxy(J))}

2 dist(boxx(I); boxy(J))
≤ η0 ,

where η is the admissibility measure from (2.2.57).

This gives a rigorous criterion to be met by the far field:

Definition 2.3.14. Far-field blocks of index pairs

Given η0 > 0 and a partitioning of D := {1, . . . , n} × {1, . . . , m}

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m , (2.3.8)

a corresponding η0-admissible far-field set of products of index sets has to satisfy

Ffar := {k ∈ {1, . . . , K} : Ik × Jk η0-admissible} . (2.3.15)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 192

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 2.3.16 (From block partitioning to local low-rank compression)

We assume that we are given a partitioning of D := {1, . . . , n} × {1, . . . , m}

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ ⇔ ℓ 6= m , (2.3.8)

and a near-field – far-field splitting Fnear ∩ Ffar = ∅, Fnear ∪ Ffar = {1, . . . , K}, with an η0-admissible
far field Ffar according to Def. 2.3.14.

Appealing to Ass. 2.2.86 , for every Ik × Jk ∈ Ffar and q ∈ N, we can find a q-separable approximation

G̃k
q of G (depending on k, of course) such that

∥∥∥G− G̃k
q

∥∥∥
L∞(Bk)

≤ δ(η0)
q , Bk := boxx(Ik)× boxy(Jk) , (2.3.17)

where δ : R+ → [0, 1[is the function introduced in Ass. 2.2.86.

Based on G̃ we approximate the matrix blocks associated with Ik × Jk ∈ Ffar by rank-q matrices repre-
sented by their factors according to Lemma 2.2.10

(M) i∈Ik
j∈Jk

≈
(

M̃q

)
i∈Ik
j∈Jk

:=
[

G̃k
q(x

i, yj)
]

i∈Ik
j∈Jk

= Uk ·V⊤k , Uk ∈ R♯Ik,q , Vk ∈ R♯Jk,q . (2.3.18)

If Ik × Jk ∈ Fnear, then the corresponding block of M is stored without any approximation:

Ik × Jk ∈ Fnear ⇒
(

M̃q

)
i∈Ik
j∈Jk

:= (M) i∈Ik
j∈Jk

=
[

G(xi, yj)
]

i∈Ik
j∈Jk

. (2.3.19)

From (2.2.11) we conclude

Ik × Jk ∈ Ffar ⇒ storage(
(

M̃
)

i∈Ik
j∈Jk

) = q(♯Ik + ♯Jk) ,

Ik × Jk ∈ Fnear ⇒ storage(
(

M̃
)

i∈Ik
j∈Jk

) = ♯Ik · ♯Jk .

This is the rationale behind the goals (2.3.9) and (2.3.10) stated above.

Storage requirements: Local low-rank compresssion

The approximate kernel collocation matrix M̃ defined by (2.3.18) and (2.3.19) satisfies

storage(M̃) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.21)

(Short notation: k ∈ F∗ ⇔ Ik × Jk ∈ F∗)

The following two code snippets present a possible internal representation of M̃ in C++ code based on
EIGEN (using namespace Eigen; assumed).

C++11 code 2.3.22: Data structures for blocks of a local low-rank compressed matrix

2 // Rank-q matrix block in factorized form

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 193

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

3 template < i n t q>
4 st ruct FarFieldBlock {
5 const vector < in t > i_ idx , j _ i d x ; // contained indices

6 Matrix <double , Dynamic , q> U ,V ; // low-rank factors

7 } ;
8

9 // Submatrix; no special structure assumed

10 st ruct NearFieldBlock {
11 const vector < in t > i_ idx , j _ i d x ; // contained indices

12 MatrixXd Mloc ; // matrix block

13 } ;

C++11 code 2.3.23: Data structures for low-rank compressed matrix

2 template < i n t q>
3 class Par tMa t r i x {
4 public :
5 Par tMa t r i x (size_t _n , size_t _m) ;
6 // Matrix×vector operation

7 VectorXd operator ∗ (const VectorXd &v) const ;
8 pr ivate :
9 size_t m, n ; // dimensions of matrix

10 std : : vector <FarFieldBlock <q>> f a r F i e l d ;
11 std : : vector <NearFieldBlock > nearF ie ld ;
12 } ;

We are not only interested in economical use of memory, but also in fast execution of matrix×vector
multiplications. For local low-rank compressed matrices like M̃ we get the crucial hint from

rank(M) = q =⇒ Cost(M× vector) = O(q(n + m)) for n, m→ ∞ , (2.2.12)

which, again, relies on the factorized form of rank-q matrices. This is available in the data structures of

Code 2.3.22 and, thus, an efficient implementation of M̃×vector is straightforward:

C++11 code 2.3.24: Matrix×vector multiplication for low-rank compressed matrix

2 // Partitioned n×m-matrix split in near-field and

3 // far-field blocks, the latter of rank q

4 template < i n t q>
5 VectorXd Par tMat r ix <q > : : operator ∗ (const VectorXd &v) const {
6 i f (v . size () != m)
7 throw (std : : r un t ime_er ro r (" S i ze mismatch i n ∗ ")) ;
8 VectorXd y (n) ; y . setZero () ; // vector for returning result

9 // Traverse far field boxes

10 for (const FarFieldBlock <q> &B : f a rF ie ld) {
11 // Get no. of x and y collocation points in box

12 const s ize_t nB = B. i _ i d x . size () ;
13 const s ize_t mB = B. j _ i d x . size () ;
14 // Obtain values of argument vector corresponding to y-points

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 194

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

15 VectorXd tmp (mB) ; for (i n t j =0; j <mB; j ++) tmp (j) = v (B . j _ i d x [j]) ;
16 // Multiply vector with low-rank matrix: Effort ♯Ik + ♯Jk

17 VectorXd res (nB) ; res = B.U∗ (B .V . transpose () ∗tmp) ;
18 // Accumlate result into components of result vector

19 for (i n t i =0; i <nB ; i ++) y (B . i _ i d x [i]) += res (i) ;
20 }
21 // Traverse near field boxes

22 for (const NearFieldBlock &B : nearField) {
23 // Get no. of x and y collocation points in box

24 const s ize_t nB = B. i _ i d x . size () ;
25 const s ize_t mB = B. j _ i d x . size () ;
26 // Obtain values of argument vector corresponding to y-points

27 VectorXd tmp (mB) ; for (i n t j =0; j <mB; j ++) tmp (j) = v (B . j _ i d x [j]) ;
28 // Multiply vector with local collocation matrix

29 VectorXd res (nB) ; res = B. Mloc∗tmp ;
30 // Accumlate result into components of result vector

31 for (i n t i =0; i <nB ; i ++) y (B . i _ i d x [i]) += res (i) ;
32 }
33 return (y) ; // (Move) return result vector

34 }

Local low-rank compresssion: Cost of Matrix×vector

The approximate kernel collocation matrix M̃ defined by (2.3.18) and (2.3.19) can be multiplied with
a vector at a cost of

cost(M̃× vector) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.26)

Under Ass. 2.2.86 we can easily estimate the deviation of M̃ according to (2.3.18) and (2.3.19) from
the exact kernel collocation matrix M:

∥∥∥M− M̃q

∥∥∥
F
≤
√

mn δ(η0)
q ∀q ∈ N , (2.3.27)

where we also used (2.2.21). Hence we can achieve

∀1≫ ǫ > 0: q ≥
⌈

log ǫ− 1
2 log(mn)

log δ(η0)

⌉ ∥∥∥M− M̃q

∥∥∥
F
≤ ǫ . (2.3.28)

If for families of larger and larger sets of collocation points we find partitionings of D according to
(2.3.8) satisfying (2.3.9) and (2.3.10), then local low-rank compression offers a data-sparse approx-
imate representation of the kernel collocation matrices meeting the requirements of § 2.2.1.

Now the key issue is to find a partitioning (2.3.8) of D into far-field (→ Def. 2.3.14) and near-field product
index sets, such that (2.3.9) and (2.3.10) are satisfied.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 195

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.3.2 Cluster Trees

As is has become clear in the previous section, the challenge is to find a partition of the set D :=
{1, . . . , n} × {1, . . . , m} of index pairs (corresponding to the set of matrix entries) into products Ik × Jk

of index sets Ik ⊂ {1, . . . , n} and Jk ⊂ {1, . . . , m} such that {Ik × Jk}k=1,...,K permits an economical

decomposition

{Ik × Jk}k=1,...,K = Ffar ∪ Fnear , Ffar ∩ Fnear = ∅ ,

where, in the context of approximating a kernel collocation matrix (→ Def. 2.1.15) Ffar is a valid η0-
admissible far field according to Def. 2.3.14. By “economical” we subsume the requirements

∑
k∈Ffar

♯Ik + ♯Jk = O(m + n) , (2.3.9)

∑
k∈Fnear

♯Ik · ♯Jk = O(m + n) , (2.3.10)

considered in the limit n, m→ ∞ for families of collocation points.

Idea: (inspired by “tree code” algorithm presented in § 2.1.12)

Use tree based decomposition of D

Example 2.3.29 (Quadtree-based admissible tiling of unit square)

We recall from § 4.1.9 that a partition of D can be induced by a tiling (a geometric partition) of the tensor-
product domain Dx × Dy. In this example we consider Dx = Dy = [0, 1], Dx × DY is the unit square

[0, 1]2. We also restrict ourselves to m = n = 2L−1, L ∈ N, and

equidistant collocation points: ξi :=
i− 1/2

n
, ηj :=

j− 1/2

n
, i, j ∈ {1, . . . , n} . (2.3.30)

Taking the cue from the clustering of stars in § 2.1.12, we propose the following recursive construction of
a box tiling of [0, 1]× [0, 1].

Pseudocode 2.3.31: Geometric tiling

split(B := [a, b]× [c, d]) {
if |b− a|+ |d− c| < δ then return;
if η(B) ≤ η0 then

Ffar ← Ffar ∪ B // Add to far field
else {

split([a, 1
2(a + b)]× [1

2(c + d), d]);
split([1

2(a + b), b]× [1
2(c + d), d]);

split([a, 1
2(a + b)]× [c, 1

2(c + d)]);
split([1

2(a + b), b]× [c, 1
2(c + d)]);

}
}

✁ Recursive construction of far-field/near-
field tiling of box ⊂ R2. Invoke with
split([0, 1]2).

η(B) is the admissibility measure of the
box B = Dx × Dy

η(B) :=
max{diam(Dx), diam(Dy)}

2 dist(Dx; Dy)
.

(2.2.57)

δ > 0 controls termination of subdivision.

The following figures display 1
2 -admissible boxes (shaded) as identified by the recursive algorithm on [0, 1]

with δ = 1
16 .

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 196

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 81 x

y

Level 1

Fig. 82 x

y

Level 2

Fig. 83 x

y

Level 3

Fig. 84 x

y

Level 4

We discuss the asymptotic cost of the induced block partitioning of the kernel collocation matrix for the
admissibility parameter η0 = 1

2 (see Fig. 81–Fig. 84). For the chosen equidistant collocation points it is
immediate that

♯{i : ξi ∈ [a, b]}, ♯{j : ηj ∈ [a, b]} ∼ |b− a| . (2.3.32)

Hence, the “cost” of a box [a, b]× [c, d] ∈ Ffar, that is the amount of memory to store the rank-q approxi-
mation of the associated block of the kernel collocation matrix is

cost([a, b]× [c, g]) = qn · (|b− a|+|d− c|) for [a, b]× [c, g] ∈ Ffar . (2.3.33)

We stop the recursion when there is only a single pair of collocation points left in a box and set δ = 2−L−1.
This implies that we will do L− 1 = log2 n levels of recursive calls of split.

We also observe that, cf. Fig. 81–Fig. 84, on recursion level ℓ

♯{boxes cut by diagonal} = 2ℓ , (2.3.34a)

♯{boxes touching the diagonal} = 2 · (2ℓ − 1) , (2.3.34b)

♯{new boxes ∈ Ffar} = 6(2ℓ−1− 1) , (2.3.34c)

because each box cut by the diagonal spawns two of the same kind and two touching the diagonal on the
next level, while each box touching the diagonal produces three far-field boxes.

The new far-field boxes on level ℓ contribute a total cost (proportional to their circumference by (2.3.33))
of qn 2−ℓ · 6(2ℓ−1 − 1), q ∈ N the rank of the approximating matrix blocks, so that, by summing,

cost(B ∈ Ffar) = qn ·
L

∑
ℓ=1

6(1− 2−ℓ) = O(qnL) , L = O(log n) . (2.3.35)

By our stopping criterion the cost of the near field boxes on the last level L is fixed “O(1)”, which, by
(2.3.34a) and (2.3.34b), yields the total cost O(2L) = O(n) for dealing with the near field. Evidently
from (2.3.35), the storage required for the low-rank matrix blocks corresponding to far-field boxes is the
dominant contribution.

By the reasoning of Rem. 2.3.16 we conclude that for the chosen n equidistant collocation points

storage(M̃), cost(M×vector) = O(qn log n) for n→ ∞ . (2.3.36)

Ex. 2.3.29 relied on a geometric quadtree to define a tiling. This leads to an economical partitioning of D,
provided that the collocation points are equi-distributed. If this assumption is not satisfied, geometric tiling
may fail. Therefore we aim for a direct construction of block-partitionings

D =
K⋃

k=1

Ik × Jk , Ik, Jk ⊂ N , (Iℓ × Jℓ) ∩ (Im × Jm) = ∅ , if ℓ 6= m , (2.3.8)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 197

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The algorithm will rely on tree data structures defining partitionings of the index sets {1, . . . , n} and
{1, . . . , m}.

(2.3.37) Trees

From graph theory we recall the definition of a tree as a cycle-free directed graph.

Definition 2.3.38. Tree

Let V be a finite node/vertex set and E ⊂ V × V an edge set. For some r ∈ V we call T :=
(V , r, E) a tree with root r, if for each v ∈ V there is exactly one sequence v0, v1, . . . , vℓ ∈ V ,
l ∈ N0 such that

v0 = r , vℓ = v , (vi−1, vi) ∈ E ∀i = 1, . . . , ℓ .

✎ Notation: We write root(T) for the root of a tree T . Regularly, we will use the same symbol, e.g. T ,
for a tree and its node set.

We also refresh the rich terminology connected with trees:

Definition 2.3.39. Concepts connected with trees

Let T := (V , r, E) be a tree. For each v ∈ V we call

sons(v) := {w ∈ V : (v, w) ∈ E}

the set of sons of the node v. If sons(v) = ∅, then v is called a leaf.
If, for v ∈ V , there is a w ∈ V such that (w, v) ∈ E , that w is unique and called the father of v.

Fig. 85

v

r

✁ Visualization of a tree
: root r = root(T) of T
: nodes/vertices of T
: leaves of tree
: sons of v: sons(v)

Obviously, only the root of a tree has no father.

A special kind of trees are binary trees, for which each node is either a leaf or has two sons:

♯ sons(v) ∈ {0, 2} ∀v ∈ T .

A tree has a natural multilevel structure based on the distance of vertices from the root.

Definition 2.3.40. Level of nodes of tree

For a tree T := (V , r, E) we can inductively define the function

level : V → N0 ,

level(v) :=

{
0 , if v = r(root) ,

level(w) + 1 , if w is the father of v ,
∀v ∈ V .

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 198

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

This is valid definition, since, except for the root, every node has a unique father.

Fig. 86 r Level 0

Level 1

Level 2

Level 3

The depth of a tree T = (V , r, E) is the maximal level of its nodes

depth(T) := max{level(v) : v ∈ V} .

Hence, ?? displays a tree of depth 3.

A tree is an intrinsically recursive data structure which each node carrying a sub-tree.

Definition 2.3.41. Sub-trees

Let T := (V , r, E) be a tree and w ∈ V . Set set

Vw :=
{

v ∈ V : ∃v0, v1, . . . , vℓ ∈ V , ℓ ∈ N0 : v0 = w, vℓ = v, (vi−1, vi) ∈ E ∀i ∈ {1, . . . , ℓ} }

is the set of descendants of w and (Vw, w, E ∩ (Vw × Vw)) is a tree, called sub-tree of T with
root w.
For w ∈ V the ancestors of w form the set

{
v ∈ V : ∃v0, v1, . . . , vℓ ∈ V , ℓ ∈ N0 : v0 = v, vℓ = w, (vi−1, vi) ∈ E ∀i ∈ {1, . . . , ℓ} } .

Sub-tree Tw attached to a node w of a tree. ✄

: nodes/vertices of sub-tree Tw

w is the root of the subtree.

Fig. 87

w

r

Now we introduce a key concept that defines a sequence of nested partitions of index sets by means of a
tree.

Definition 2.3.42. Cluster tree

Let I ⊂ N an index set, T := (V , r, E), and I : V → 2I a mapping that assigns a subset of I to
every node of T . We call TI := (V , r, E , I, I) a cluster tree for I, if

(i) the subset corresponding to the root is I: I(r) = I,
(ii) the subset associated with each non-leaf node is the union of the subsets of its sons

I(w) =
⋃
{I(v) : v ∈ sons(w)} ∀w ∈ V , sons(w) 6= ∅ , (2.3.43)

(iii) the sets belonging to different sons of a node are disjoint

∀w ∈ V : v1, v2 ∈ sons(w) ⇒ I(v1) ∩ I(v2) = ∅ . (2.3.44)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 199

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Terminology: The nodes of a cluster tree are also called clusters.

✎ Notation: If TI is a cluster tree, we write LI for the set of its leaves

Example 2.3.45 (General cluster tree)

{1} {2} {3} {4} {5} {6} {7} {8} ← leaves

{1, 2} {3, 4, 5} {6, 7, 8} ← sons

{1, 2, 3, 4, 5, 6, 7, 8} ← root

Index set I := {1, . . . , 8}.
✁ Cluster three with 3 levels.

Note: Not a binary cluster tree.

(2.3.46) Bounding boxes of clusters

In the context of approximating kernel collocation matrices we know the collocation points xi ∈ Rd,
i ∈ I := {1, . . . , n}, and yj ∈ Rd, j ∈ J := {1, . . . , m}. Thus every subset of indices also describes a
cloud of points, recall (2.3.11). For instance , if TI := (V , r, E , I, I) is a cluster tree associated with the
x-direction, then the

node v ∈ TI holds the points Px(I(v)) :=
{

xi
}

i∈I(v)
.

The smallest axi-parallel box containing all the collocation points held by a cluster is called it bounding
box, cf. Def. 2.3.12.

Definition 2.3.47. Bounding boxes of clusters

Let TK := (V , r, E , K, I) be a cluster tree (→ Def. 2.3.42) for the index set K ⊂ N and{
zk
}

k∈K
⊂ Rd a set of points. Then for every node v ∈ TK we define its bounding box as

the bounding box of contained points:

box(v) :=
d

∏
ℓ=1

[min
{

zi
ℓ

}
i∈I(v)

, max
{

zi
ℓ

}
i∈I(v)

] ⊂ Rd .

(2.3.48) Construction of cluster trees

Matching the recursive nature of the tree data structure, a natural way to construct a cluster tree is by
recursion. We demonstrate this by means of a simple C++ code building a d-dimensional binary cluster
tree.

C++11 code 2.3.49: Data structures for a collocation points and bounding boxes ➺GITLAB

2 template < i n t d> // dimension d as template argument

3 st ruct Point {
4 size_t i dx ; // number of collocation point

5 Matrix <double , d ,1 > x ; // coordinate vector

6 } ;

2 template < i n t d> // dimension d as template argument

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 200

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

3 st ruct BBox {
4 // Bounding box from sequence of points

5 BBox(const vector <Point<d>> pts) ;
6 // Size diam(B) of a bounding box

7 double diam (void) const {
8 return (maxc−minc) . cwiseAbs () . maxCoeff () ; }
9 // Corner points of bounding box

10 Matrix <double , d ,1 > minc , maxc ;
11 } ;
12 // distance of [a, b] and [c, d]

13 double d i s t (double a , double b , double c , double d) {
14 i f (b<a) swap (a , b) ; i f (d<c) swap (c , d) ;
15 i f (c<a) { swap (a , c) ; swap (b , d) ; }
16 return (c<b) ?0 .0 : c−b ;
17 }
18 // distance of d-dimensional boxes

19 template < i n t d>
20 double d i s t (const BBox<d> &bx , const BBox<d> &by) {
21 double ds t = 0 .0 ;
22 for (i n t l =0; l <d;++ l)
23 ds t += pow(d i s t (bx . minc [l] , bx . maxc [l] , by . minc [l] , by . maxc [l]) ,2) ;
24 return s q r t (ds t) ;
25 }

The directed edges of the cluster tree are represented by pointers to other nodes. Moreover a node holds
information about its associated collocation points.

C++11 code 2.3.50: Data type for a node of the cluster tree ➺GITLAB

2 template < i n t d>
3 class CtNode {
4 public :
5 const s t a t i c s ize_t dim = d ;
6 // Constructors taking a sequence of points

7 CtNode (const vector <Point<d>> _pts , i n t _ d i r =0) :
8 pts (_pts) ,sons { nul lpt r , nul lp t r } , d i r (_ d i r) { }
9 // Destructor (also attempts to destroy sons!)

10 v i r t u a l ~CtNode (void) {
11 i f (sons [0]) delete sons [0] ;
12 i f (sons [1]) delete sons [1] ;
13 }
14 // Number of indices owned by the cluster

15 size_t noIdx (void) const { return pts . size () ; }
16 // Function I: access to owned indices

17 vector <size_t > I (void) const ;
18 // Access to bounding box

19 BBox<d> getBBox (void) const { return BBox<d>(pts) ; }
20 // Is the node a leaf node ?

21 i n l in e bool i sLea f (void) const { return (! sons [0] | | ! sons [1]) ; }

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 201

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

22 // Output operator

23 template < i n t dim>
24 f r iend ostream &operator << (ostream &o , const CtNode<dim> &node) ;
25 // Pointers to sons

26 CtNode ∗sons [2] ;
27 // Points contained in the cluster

28 vector <Point<d>> pts ;
29 // Direction for sorting

30 i n t d i r ;
31 } ;

A cluster tree object essentially holds a pointer to the root of the cluster tree.

C++11 code 2.3.51: “Envelope” data structure for cluster tree ➺GITLAB

2 template <class Node>
3 class ClusterTree {
4 public :
5 const s t a t i c s ize_t dim = Node : : dim ; // space dimension d

6 // Idle constructor

7 ClusterTree (void) : root (nul lp t r) { }
8 // Effective Constructor taking a sequence of points

9 // (needed, because polynorphism not supported in constructor)

10 void i n i t (const vector <Point<dim>> pts , size_t minpts = 1) ;
11 v i r t u a l ~ClusterTree (void) { i f (root) delete root ; }
12 // Output of tree

13 template <class Nd>
14 f r iend ostream &operator << (ostream &o , const ClusterTree <Nd> &T) ;
15 protected :
16 // Recursive construction

17 v i r t u a l void buildRec (Node ∗nptr , size_t minpts) ;
18 // Node factory

19 v i r t u a l Node∗ createNode (const vector <Point<dim>> pts , i n t d i r) {
20 return new Node (pts , d i r) ; }
21 public :
22 Node ∗root ; // pointer to root node

23 } ;

The argument minpts to the constructor specifies the minimial number −1 of indices contained in a
non-leaf cluster.

In order to cope with non-uniform distributions of collocation points, the recursive construction of the
binary cluster tree does not merely split the bounding boxes of clusters in half. Instead, in order to obtain
a balanced cluster tree the splitting of collocation point sets is done according to the rule:

Balanced nodal index sets

Rule: the index sets of the sons of a node must have the same cardinalities (±1).

This is achieved by alternating directional splitting: Let us assume that the collocation points
{

xi
}

i∈I(w)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 202

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

owned by a node w ∈ TI are sorted according to their ℓ-th component:

i, k ∈ I(w), i < k ⇒ xi
ℓ ≤ xk

ℓ , for some ℓ ∈ {1, . . . , d} . (2.3.53)

Then we assign the following index subsets to the sons of w

I(1st son of w) :=

{
1, . . . ,

⌊
♯I(w)

2

⌋}
,

I(2nd son of w) :=

{⌊
♯I(w)

2

⌋
+ 1, . . . , ♯I(w)

}
.

(2.3.54)

The direction ℓ cycles through {1, . . . , d} as we advanced towards the leaves of the cluster tree.

C++11 code 2.3.55: Construction of a cluster tree from collocation points ➺GITLAB

2 template <class Node>
3 void ClusterTree <Node > : : i n i t (const vector <Point<dim>> pts , size_t

minpts) {
4 i f (! (root = createNode (pts , 0)))
5 throw (r un t ime_er ro r (" Cannot a l l o c a t e r o o t ")) ;
6 i f (minpts < 1)
7 throw (r un t ime_er ro r (" m i n p t s must be a t l e a s t 1 ")) ;
8 buildRec (root , minpts) ;
9 }

2 template <class Node>
3 void ClusterTree <Node > : : buildRec (Node ∗nptr , size_t minpts) {
4 const s ize_t n = nptr−>pts . size () ; // Number of held indices

5 // Leaf, if minimal number of indices reached

6 i f (n > minpts) { //

7 // Points have to be copied and sorted according to direction dir

8 vector <Point<dim>> t p t s (nptr−>pts) ;
9 // next sorting direction

10 const in t d i r = (nptr−>d i r + 1)%dim ;
11 // call sort function from standard library

12 sort (t p t s . begin () , t p t s . end () ,
13 [d i r] (const Point<dim> &p1 , const Point<dim> &p2)
14 −> bool { return (bool) (p1 . x [d i r] < p2 . x [d i r]) ; }) ;
15 // Split point sequence and construct sons

16 const s ize_t m = n / 2 ; // integer arithmeric, m>0 ensured

17 const vector <Point<dim>> low_pts (t p t s . cbegin () , t p t s . cbegin () +m) ;
18 // First son gets “lower half” of sorted points

19 i f (! (nptr−>sons [0] = createNode (low_pts , d i r)))
20 throw (r un t ime_er ro r (" Cannot a l l o c a t e f i r s t son ")) ;
21 buildRec (nptr−>sons [0] , minpts) ; // recurse into first son

22 // Second son get “upper half” of sorted points

23 const vector <Point<dim>> up_pts (t p t s . cbegin () +m, t p t s . cend ()) ;
24 i f (! (nptr−>sons [1] = createNode (up_pts , d i r)))
25 throw (r un t ime_er ro r (" Cannot a l l o c a t e second son ")) ;
26 buildRec (nptr−>sons [1] , minpts) ; // recurse into 2nd son

27 }
28 }

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 203

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Taking into account sorting the total computational effort for BuildRec in the case of n := ♯I = 2L is

L

∑
k=0

(k + 1)(L− k)2L−k = O(n log2 n) .

Example 2.3.56 (Binary cluster tree for d = 1)

Fig. 88
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

7

8

x

le
v
e
l

For d = 1 with collocation points

ξi :=
√

i−1
n , i = 1, . . . n, n = 64 .

✁ Balanced binary cluster tree
(center of bounding box drawn for each cluster)

Example 2.3.57 (Unbalanced cluster tree)

The construction of a binary cluster tree could also be based on a purely geometry-based distribution of
the indices to the sons. For instance, for d = 1, w ∈ TI a cluster owning the collocation points {ξi}i∈I(w),
we could set

I(1st son of w) = {i ∈ I(w) : ξi ≤ γw} ,

I(2nd son of w) = {i ∈ I(w) : ξi > γw} ,

where γw := 1
2(max{ξi}i∈I(w) + min{ξi}i∈I(w)) is the “midpoint” of the cluster w.

Fig. 89

{ξ1}

{ξ2}

{ξ3}

{ξ4}

{ξ5}

{ξ6}

{ξ7} {ξ8}

✁ Geometry-based cluster tree for n = 8 and the
non-uniformly distributed collocation points

ξi = 2−i+1 , i = 1, . . . , n

At each level exactly one point will be split off, lead-
ing to a highly imbalanced cluster tree.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 204

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.3.3 Far-Field Blocks

Cluster trees of {1, . . . , n} or {1, . . . , m} provide a hierarchy of partitions of these index sets. However,
what we are aiming for is a partition of the product set D := {1, . . . , n} × {1, . . . , m}. We construct it
based on cluster trees.

Example 2.3.58 (Quadtree partition from cluster trees)

We reconsider the quadtree-based tiling of [0, 1]2 from Ex. 2.3.29 and the induced partition of a kernel
collocation matrix based on equidistant collocation points in 1D.

{1} {2} {3} {4} {5} {6} {7} {8} ← leaves

{1, 2} {3, 4} {5, 6} {7, 8}

{1, 2, 3, 4} {5, 6, 7, 8}

{1, 2, 3, 4, 5, 6, 7, 8} ← root

✁ Natural binary cluster tree for
the index set {1, . . . , 23} (4
levels).

The nodes of the balanced binary cluster tree (→ Def. 2.3.42) for the index set {1, . . . , 2L} on level
ℓ = 1, . . . , L are associated with the index sets:

Iℓ,k := {(k− 1) · 2L−ℓ + 1, . . . , k · 2L−ℓ} , ℓ = 1, . . . , 2ℓ .

The square matrix blocks arising from quadtree tiling are submatrices belonging to products of such index

sets (from the same level):
(

M̃
)

Iℓ,k,Iℓ,m

∈ R2L−ℓ,2L−ℓ
. This is displayed in the following figure for L = 5:

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 205

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 90

x

y

I2,1× I2,4
I2,2× I2,4

I2,1× I2,3

I3,6× I3,8

I3,5× I3,7

I3,5× I3,8

I3,3× I3,6I3,4× I3,6

I3,3× I3,5

I3,1× I3,4I3,2× I3,4

I3,3× I3,3

Now we take the cue from the algorithm in Ex. 2.3.29 to devise a recursive algorithm that builds a near-
field/far-field matrix partition from binary cluster trees of the index sets {1, . . . , n} and {1, . . . , m}. It will
be based on an abstract admissibility condition:

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 206

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Definition 2.3.59. Abstract admissibility condition

Let TI and TJ be cluster trees (→ Def. 2.3.42) for index sets I := {1, . . . , n} and J := {1, . . . , m},
A mapping

adm : TI × TJ → {true, false}

is called an admissibility condition for TI and TJ, if “admissibility in inherited by the sons”:

adm(τ, σ) ⇒ adm(τ ′, σ) ∀τ ∈ TI, σ ∈ TJ, τ ′ ∈ sons(τ) ,

adm(τ, σ) ⇒ adm(τ, σ ′) ∀τ ∈ TI, σ ∈ TJ, σ ′ ∈ sons(σ) .

The next code snippet contains the definition a class that can construct and represent the partition of a
matrix into two kinds of blocks: near-field blocks and far-field blocks. Node must be a type compliant with
CtNode from Code 2.3.50.

C++11 code 2.3.60: Class describing a far-field/near-field matrix partition ➺GITLAB

2 template <class Node , typename FFB , typename NFB>
3 class BlockPart i t ion {
4 public :
5 // Idle constructor

6 BlockPart i t ion (const ClusterTree <Node> &_xT ,
7 const ClusterTree <Node> &_yT) :
8 xT (_xT) , yT (_yT) { }
9 // Trigger recursive construction of partition

10 // (Needed, because polymorphic functions not available in
constructor)

11 void i n i t (double eta0 = 0 .5) ;
12 v i r t u a l ~BlockPart i t ion (void) { }
13 // Admissibility condition adm, see Def. 2.3.59

14 v i r t u a l bool adm(const Node ∗nx , const Node ∗ny , double eta0) const ;
15 protected :
16 // Recursive construction from cluster pair

17 v i r t u a l void bui ldRec (const Node ∗nx , const Node ∗ny , double eta0) ;
18 // Construct an instance of far-field block type

19 v i r t u a l FFB makeFarFieldBlock (const Node &nx , const Node &ny) const

20 { return FFB(nx , ny) ; }
21 // Construct an instance of near-field block type

22 v i r t u a l NFB makeNearFieldBlock (const Node &nx , const Node &ny) const

23 { return NFB(nx , ny) ; }
24 public :
25 const ClusterTree <Node> &xT ,&yT ; // underlying cluster trees

26 vector <FFB> f a rF ie ld ; // index blocks in the far field

27 vector <NFB> nearField ; // index blocks in the near field

28 s t a t i c bool dbg ; // Debugging flag

29 } ;

The vectors farField and nearField contain objects that store two index sets each. A suitable data
type may be defined as follows.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 207

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

C++11 code 2.3.61: Data structure for matrix block ➺GITLAB

2 template <class Node>
3 st ruct IndexBlock {
4 // Constructors extracts indices from clusters

5 IndexBlock (const Node &_nx , const Node &_ny) :
6 nx (_nx) , ny (_ny) , i_ idx (_nx . I ()) , j_ idx (ny . I ()) { }
7 v i r t u a l ~IndexBlock (void) { }
8 const Node &nx ,&ny ; // contributing clusters

9 const vector <size_t > i_idx , j_ idx ; // contained indices

10 } ;

The partitioning of D := I × J is built recursively by climbing up both cluster trees in tandem identifying
admissible pairs of clusters on the way:

✦ If one of the clusters is a leaf, then put the pair in the near field,

✦ else if the pair of clusters is admissible, then assign it to the far field

✦ else continue recursion with all pairs of sons.

This is implemented in the following functions:

C++11 code 2.3.62: Recursive construction of matrix partition ➺GITLAB

2 template <class Node , typename FFB , typename NFB>
3 void BlockPart it ion <Node ,FFB ,NFB> : : i n i t (double eta0) {
4 buildRec (xT . root , yT . root , eta0) ;
5 }

2 template <class Node , typename FFB , typename NFB>
3 void BlockPart it ion <Node ,FFB ,NFB> : :
4 buildRec (const Node ∗nx , const Node ∗ny , double eta0) {
5 i f (nx && ny) {
6 // Add admissible pair to far field

7 i f (adm(nx , ny , eta0)) //

8 f a rF ie ld . push_back (makeFarFieldBlock (∗nx ,∗ ny)) ;
9 else {

10 bool rec = fa lse ;
11 for (i n t i s x =0; i s x <=1; i s x ++) {
12 for (i n t i s y =0; i s y <=1; i s y ++) {
13 i f (nx−>sons [i s x] && ny−>sons [i s y]) {
14 // Next level of recursion for non-leaves

15 rec= true ; buildRec (nx−>sons [i s x] , ny−>sons [i s y] , eta0) ;
16 } } }
17 // At least one leaf cluster:

18 // Add cluster pair to near field

19 i f (! rec) //

20 nearField . push_back (makeNearFieldBlock (∗nx ,∗ ny)) ;
21 }
22 }
23 else

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 208

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

24 throw (r un t ime_er ro r (" I n v a l i d node p o i n t e r s ")) ;
25 }

In compliance with Def. 2.3.13 and Def. 2.3.14, the implementation of the adm() method will rely on a
geometric admissibility condition invoking the admissibility measure η(B) from Eq. (2.2.57), where B is
the product of the bounding boxes of the two clusters. More precisely, a pair of clusters (v, w) ∈ TI × TJ

qualifies as η0-admissible, η0 > 0, if

adm(v, w) = true ⇔





η(box(v), box(w)) ≤ η0 ,
and

v and w is not a leaf
(2.3.63)

The following implementation of the adm()-method realizes (2.3.63). The implementations of dist()
and diam() for bounding boxes are given in Code 2.3.49.

C++11 code 2.3.64: Geometric admissibility condition adm ➺GITLAB

2 template <class Node , typename FFB , typename NFB>
3 bool BlockPart it ion <Node ,FFB ,NFB> : :adm(const Node ∗nx ,
4 const Node ∗ny ,
5 double eta0) const {
6 // Neither node must be a leaf.

7 i f (nx−>isLea f () | | ny−>isLea f ()) return fa lse ;
8 // Geometric admissibility condition, see Eq. (2.2.57).

9 const BBox<Node : : dim> Bx = nx−>getBBox () ,By = ny−>getBBox () ;
10 const double eta = max(Bx . diam () ,By . diam ()) / (2∗ d i s t (Bx , By)) ;
11 return (eta < eta0) ;
12 }

The following pictures illustrate what is happening during first few calls of buildRec; to be continued by
the reader by supplementing Fig. 96.

Fig. 91

x

y

Fig. 92

x

y

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 209

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 93

x

y

Fig. 94

x

y

Fig. 95

x

y

Fig. 96

x

y

Example 2.3.65 (Near- and far-field boxes constructed from cluster trees in 1D)

We apply the algorithm of Code 2.3.62 with η0 = 1
2 for equispaced and non-equispaced sets of points and

visualize the resulting block partition: ∗ =̂ near field point pair, � =̂ product of bounding boxes for far-field
cluster pairs.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 210

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 97
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

η = 0.500000

ξi = ηi =
i

64 , i = 0, . . . 64

Fig. 98
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

η = 0.500000

ξi = ηi =
√

i
64 , i = 0, . . . 64

2.3.4 Storing Block-Partitioned Kernel Collocation Matrix

We aim for economically storing the local low-rank approximation M̃ ∈ Rn,m of a kernel collocation matrix
(→ Def. 2.1.15) M =

[
G(xi, yj)

]
i∈I
j∈J

, I := {1, . . . , n}, J := {1, . . . , m}, xi, yj ∈ [0, 1]d. We assume that

we are given

✦ two binary cluster trees (→ Def. 2.3.42) TI (“x-tree”) and TJ (“y-tree”) for the index sets I and J.
Both are available as instances of ClusterTree, see Code 2.3.51.

✎ Notation: We use the symbol v for clusters ∈ TI, and w for clusters ∈ TJ

✦ a far-field/near-field block partition of D := I× J built from the cluster trees TI and TJ by “admissi-
ble” recursive subdivision as done by buildRec in Code 2.3.62. The block partition is represented
as an instance of type BlockPartition as defined in Code 2.3.60.

As in § 4.1.9 we write Ffar and Fnear for the near field and far field, which are sets of pairs of clusters
↔ sets of pairs of index sets.

Recall that each cluster carries an index set accessible through the function I , e.g. I : TI → 2I, see
Def. 2.3.42. We adopt the following shorthand notation for blocks of the matrix M associated with pairs of
clusters:

v ∈ TI, I(v) = {i1, . . . , ik} ,
w ∈ TJ, I(w) = {j1, . . . , jℓ} ,

: M|v×w :=
[
(M)i,j

]
i=i1,...,ik
j=j1,...,jℓ

∈ Rk,ℓ , (2.3.66)

We remind of the gist of local low-rank approximation of kernel matrices:

If (v, w) ∈ Ffar the sub-matrix M|v×w is approximated by a rank-q matrix arising from a rank-q

separable approximation (2.2.15) G̃ of G|box(v)×box(w) with q≪ min{♯I(v), ♯I(w)}.

The bounding box of a cluster is defined in Def. 2.3.47.

(2.3.67) G̃ from uni-directional interpolation→ Section 2.2.1.2

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 211

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

As explained in § 2.2.36, in the case of uni-directional interpolation we rely on the rank-q separable ap-
proximation

G(x, y) ≈ G̃(x, y) :=
q

∑
ℓ=1

bv
ℓ (x)︸ ︷︷ ︸

=:gℓ(x)

G(tℓv, y)︸ ︷︷ ︸
=:hℓ(y)

, (x, y) ∈ box(v)× box(w) , (2.3.68)

for any par of far-field clusters v ∈ TI, w ∈ TJ. Here bv
ℓ : box(v) → R, ℓ = 1, . . . , q, are the cardinal

functions associated with the interpolation operator in x-direction, see (2.2.35).

This leads to the rank-q approximation in factorized form

M|v×w ≈ M̃
∣∣∣
v×w

:= U ·V⊤ ,

U :=
[

bv
ℓ (x

i)
]

i∈I(v)
ℓ=1,...,q

∈ R♯I(v),q ,

V :=
[

G(tℓv, yj)
]

j∈I(w)
ℓ=1,...,q

∈ R♯I(w),q .
(2.3.69)

To indicate the dependence of the interpolation nodes and of the cardinal functions on the cluster v in
(2.3.69) we wrote tℓv and bv

ℓ .

Depdence of local low-rank factors

For (v, w) ∈ Ffar the low-rank factor U according to (2.3.69) depends on v only, whereas V
depends on both clusters and the kernel function G.

Store low-rank factor U in cluster (=̂ node of cluster tree); enables reuse for several far-field cluster
pairs sharing the same x-cluster.

Required storage = O(q n log n) for n→ ∞ .

(2.3.71) G̃ from bi-directional interpolation→ Section 2.2.1.3

From (2.2.46) we learn the form the rank-q separable kernel resulting from interpolation in both x- and
y-direction, here given for the same number q of interpolation points in both directions.

G(x, y) ≈ G̃(x, y) :=
q

∑
k=1

q

∑
ℓ=1

G(tk
v, tℓw) bv

k(x)︸ ︷︷ ︸
=:gk,ℓ(x)

bw
ℓ (y)︸ ︷︷ ︸

=:hk,ℓ(y)

, (x, y) ∈ box(v)× box(w) . (2.3.72)

As above, we write
{

tk
v

}
k=1,...,q

and
{

tℓw
}
ℓ=1,...,q

for the sets of interpolation nodes on the tensor-product

domains box(v) and box(w), respectively. Again, bv
k and bw

ℓ designate the associated cardinal functions
for the underlying interpolation operators.

As in (2.2.47) we obtain a rank-q approximation of the block of the kernel collocation matrix in triple-factor
form:

M|v×w ≈ M̃
∣∣∣
v×w

:= UvCVw
⊤ ,

Uv :=
[
bv

k(x
i)
]

i∈I(v)
ℓ=1,...,q

∈ R♯I(v),q ,

C :=
[

G(tk
v, tℓw)

]
k,ℓ=1,...,1

∈ Rq,q ,

Vw :=
[

bw
ℓ (y

j)
]

j∈I(w)
ℓ=1,...,q

∈ R♯I(w),q .

(2.3.73)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 212

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Dependence of local matrix factors

For (v, w) ∈ Ffar the matrix factor Uv solely depends on the cluster v, the matrix factor Vw solely
on the cluster w, while both clusters and the kernel function G contribute to C.

The matrices Uv and Vw can be computed and stored in the clusters before even without knowing
the kernel function.

Required storage = O(q n log n)/O(q m log m) for n, m→ ∞ .

(2.3.75) Bi-directional interpolastion: Data structures for cluster pairs

We take the cue from (2.3.73) and the observation that the matrix factors Uv and Vw actually “belong to”
a single cluster. This suggests that we extend the data structure for clusters through a derived class type.

C++11 code 2.3.76: Extended cluster data structure for interpolatory kernel approximation

➺GITLAB

2 template < i n t d>
3 class InterpNode : public CtNode<d> {
4 public :
5 // Constructor from sequence of points; initializes V

6 InterpNode (const vector <Point <d>> _pts , size_t _q , i n t _ d i r =0) :
7 CtNode<d>(_pts , _ d i r) ,q (_q) , sons { nul lpt r , nul lp t r } , k (_pts . size ())
8 { i n i t V () ; }
9 v i r t u a l ~InterpNode (void) { }

10 protected :
11 // Initialization of matrix V

12 void i n i t V (void) ;
13 public :
14 const in t q ; // Rank, no of interpolation nodes

15 size_t k ; // Number of indices contained

16 MatrixXd V ; // low-rank factor V ∈ Rk,q

17 InterpNode ∗sons [2] ; // Pointers to sons (of type InterpNode!)

18 } ;

To accommodate the extended argment list of the constructor, also the data structure for ClusterTree

needs to be extended:

C++11 code 2.3.77: Extended cluster tree data type built for InterpNode from Code 2.3.76

➺GITLAB

2 template <class Node>
3 class LowRankClusterTree : public ClusterTree <Node> {
4 public :
5 // Idle constructor just setting rank argument q

6 LowRankClusterTree (size_t _q) : q (_q) { }
7 // Actual constructor taking a sequence of points

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 213

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

8 void i n i t (const vector <Point <Node : : dim>> pts , size_t minpts = 1) ;
9 v i r t u a l ~LowRankClusterTree (void) { }

10 protected :
11 // factory method for relevant type of node takine rank argument

12 v i r t u a l Node∗ createNode (const vector <Point <Node : : dim>> pts , i n t

d i r) {
13 return new Node (pts , q , d i r) ; }
14 public :
15 const s ize_t q ; // rank of degenerate approximation on cluster boxes

16 } ;
17

18 template <class Node>
19 void LowRankClusterTree<Node > : : i n i t (const vector <Point <Node : : dim>>

pts , size_t minpts)
20 { ClusterTree <Node > : : i n i t (pts , minpts) ; }

In (2.3.73) the matrix factor C ∈ Rq,q “belongs to” the cluster pair (v, w). Therefore this matrix should be
stored in the object representing the far-field cluster pair.

C++11 code 2.3.78: Data type for a far-field cluster pair & bidirectional interpolation ➺GITLAB

2 template <class Node , typename KERNEL>
3 class BiDirChebInterpBlock : public IndexBlock <Node> {
4 public :
5 using k e r n e l_ t = KERNEL ;
6 BiDirChebInterpBlock (const Node &nx , const Node &ny ,
7 k e r n e l_ t _G, size_t _q) ;
8 v i r t u a l ~BiDirChebInterpBlock (void) { }
9 // Invalid constructor throwing exception

10 BiDirChebInterpBlock (const Node &nx , const Node &ny) ;
11

12 const k e r n e l_ t G; // kernel function G

13 const in t q ; // No of interpolation nodes

14 MatrixXd C ; // C ∈ Rq,q

15 } ;

Remark 2.3.79 (Bi-directional polynomial interpolation)

The low-rank triple-factor approximation of a kernel collocation matrix as introduced in Section 2.2.1.3
involves the two matrix factors

U :=
[
bx
ℓ (x

i)
]

i=1,...,n
ℓ=1,...,q

∈ Rn.q , V :=
[
b

y
ℓ (y

j)
]

j=1,...,m
ℓ=1,...,q

∈ Rm.q , (2.3.80)

see (2.2.47). Here, xi ∈ Rd, i = 1, . . . , n, and yj ∈ Rd, j = 1, . . . , m, are collocation points (→ Def. 2.1.15),
and the function bx

ℓ , b
y
ℓ , ℓ = 1, . . . , q, are cardinal basis functions (→ (2.2.35)) for the underlying interpo-

lation operator and for interpolation nodes tℓx, tℓy ∈ Rd, ℓ = 1, . . . , q.

We employ tensor-product polynomial interpolation, cf. § 2.2.38 and § 2.2.42. From [Hip15, § 5.2.27] we
recall the barycentric interpolation formula in 1D: Given the set {t1, . . . , tq} ⊂ R of interpolation nodes

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 214

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

on the real line the unique polynomial p ∈ Pq satisfying the interpolation conditions p(tj) = yj for given
y1, . . . , yq ∈ R, can be written as

p(x) =
q

∑
i=1

λi

x− ti
yi ·

(
q

∑
i=1

λi

x− ti

)−1

, (2.3.81)

with weights λi =
1

(ti − t1) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tq)
, i = 1, . . . , q . (2.3.82)

The cardinal basis functions for polynomial interpolation are the Lagrange polynomials

Lℓ(x) :=
q

∏
j=1
j 6=ℓ

x− tj

tℓ − tj
, x ∈ R , ℓ = 1, . . . , q ⇒ Lℓ(t

k) = δℓ,k , ℓ, k = 1, . . . , q . (2.2.39)

For them we get the barycentric formula

Lℓ(x) =
λℓ

x− tℓ
·
(

q

∑
i=1

λi

x− ti

)−1

, x 6= tℓ , ℓ = 1, . . . , q , (2.3.83)

to be supplemented with Lℓ(t
ℓ) = 1.

Now we discuss the case d = 2 and the computation of U =
[
bx
ℓ (x

j)
]
. We assume a tensor-product grid

of interpolation points

t
j
x =

[
tk
1

tm
2

]
, k, m ∈ {1, . . . , q} , j = (k− 1)q + m ,

based on sets of one-dimensional interpolation points {t1
1, . . . , t

q
1} and {t1

2, . . . , t
q
2}. As explained in

§ 2.2.42, cf. (2.2.43), in this case the cardinal functions are given by products of 1D Lagrange polynomials

bx
j (x) = L1

k(x1) · L2
m(x2) , x =

[
x1

x2

]
, k, m ∈ {1, . . . , q} , j = (k− 1)q + m . (2.3.84)

This suggests the following algorithm for the computations of U:

➊ For ∗ = 1, 2 precompute the weights

λi =
1

(ti∗ − t1∗) . . . (ti∗ − ti−1∗)(ti∗ − ti+1∗) . . . (ti∗ − t
q
∗)

, i = 1, . . . , q .

➋ For all collocation points xj =

[
x

j
1

x
j
2

]
do:

(i) Compute L∗ℓ (x
j
∗), ∗ = 1, 2, using the formula (2.3.83).

(ii) Form the tensor product matrix Lj :=
[

L1
k(x

j
1) · L2

m(x
j
2)
]q

k,m=1
∈ Rq,q.

(iii) Reshape Kj is a row vector of length q2 and insert it into U as j-th row.

(2.3.85) Storage requirements

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 215

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

A general expression for the amount of storage required by an instance of BlockPartition (→ Code 2.3.60)
has already been given in (2.3.21):

storage(M̃) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.21)

Now we are going to refine this expression for the partition generated by the clustering algorithm of
Code 2.3.62 based on the cluster tree recursively built as in Code 2.3.55 and with the admissibility condi-
tion (2.3.63). To obtain the rank-q far-field blocks we employ bi-directional interpolation, which results in a
matrix factorization as in (2.3.73)

M̃
∣∣∣
v×w

= Uv ·Cv×w ·V⊤w , (2.3.86)

Uv ∈ R♯I(v),q , Cv×w ∈ Rq,q , V⊤w ∈ R♯I(w),q . (2.3.87)

The factors Uv and Vw are stored in the respective nodes.

The if-statement in Line 6 of ClusterTree<Node>::buildRec() ensures that there is a small num-
ber rL ∈ N that bounds the number of indices held by the leaves of the cluster trees:

∀u ∈ T∗: v is leaf ⇒ ♯I(u) ≤ rL , ∗ = I, J . (2.3.88)

On the one hand, in BlockPartition<>::buildRec() from Code 2.3.62 the admissibility check
of Line 7 rules out that a cluster pair containing one leaf cluster is added to the far field set. On the other
hand, the if-statement of Line 19 has such a cluster pair invariably added to the near field set:

(v, w) ∈ Fnear ⇒ v is leaf of TI or w is leaf of TJ . (2.3.89)

These insights combined lead to the estimate

(v, w) ∈ Fnear ⇒ ♯I(v) · ♯I(w) ≤ rL(♯I(v) + ♯I(w)) . (2.3.90)

Thus, the amount of memory required by an instance of BlockPartition is bounded by

storage(M̃) ≤ ∑
(v,w)∈Ffar

q2 + ∑
v∈TI

q · ♯I(v) + ∑
w∈TJ

q · ♯I(w) + ∑
(v,w)∈Fnear

rL

(
♯I(v) + ♯I(w)

)
.

For the last three terms in this sum the cluster tree structure immediately gives the estimates

∑
v∈TI

·♯I(v) ≤ depth(TI) · n , ∑
w∈TJ

·♯I(w) ≤ depth(TJ) ·m . (2.3.91)

To tackle the sum over the far-field pairs we have to make an assumption on the sparsity of the block
partition [GH03]:

Definition 2.3.92. Sparsity measure of block partition

Let F := {Ik × Jk}k be a block partition of D := I× J based on the cluster trees TI and TJ. Then
the sparsity measure of F bounds the number of occurrences of a cluster in cluster pairs

spm(F) := max

{
max
v∈TI

♯{w ∈ TJ : (v, w) ∈ F}, max
w∈TJ

♯{v ∈ TI : (v, w) ∈ F}
}

. (2.3.93)

Thus, the sparsity measure spm(Ffar) counts the maximal number of far-field blocks to which a single
cluster can contribute.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 216

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 99

x

y

✁

Nodes occurring together with
node • in block partition are
marked as • :

{ • }

=
{

v ∈ TI : (v, •) ∈ F
}

.

They define a set whose car-
dinality is taken into account
in the definition of the sparsity
measure.

The next estimates are immediate from the definition of the sparsity measure:

∑
(v,w)∈Ffar

1 = ∑
v∈TI

♯{w ∈ TJ : (v, w) ∈ Ffar} = ∑
w∈TJ

♯{v ∈ TJ : (v, w) ∈ Ffar}

≤ spm(F) ·min{♯TI, ♯TJ} ,

∑
(v,w)∈Fnear

♯I(v) + ♯I(w) ≤ spm(F) ·

 ∑

v∈TI

·♯I(v) + ∑
w∈TJ

·♯I(w)




≤ spm(F) · (n depth(TI) + m depth(TJ)) .

For the cluster trees TI and TJ the total number of clusters is smaller than depth(TI) · ♯I or depth(TI) ·
♯J, respectively. Thus we conclude

∑
(v,w)∈Ffar

q2 ≤ q2 spm(F) ·min{depth(TI) · n, depth(TI) ·m} , (2.3.94)

which highlights the key role of the sparsity measure when gauging the efficiency of clustering algorithms.
For balanced binary cluster trees as built by buildRec() we obtain

storage(M̃) ≤ ((rL + q2)spm(F) + q
) · (n⌈log2 n⌉+ m⌈log2 m⌉) . (2.3.95)

Remark 2.3.96 (Bounding the sparsity measure)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 217

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Our policy of using balanced trees as basis for block partitions as implemented in the buildRec() func-
tions of Code 2.3.55 and Code 2.3.62 does not permit us to bound the sparsity measure of the resulting
F := Ffar ∪ Fnear, unless some uniformity of the distribution of collocation points is assumed.

An alternative geometric clustering policy similar to the quadtree-based approach of Ex. 2.3.29 [GH03]
makes possible rigorous bounds on spm(F), but for general locations of collocation points the depth of
the cluster trees may grow linearly with ♯I/♯J.

Experiment 2.3.97 (Sparsity measure for clustering in 1D)

2.3.5 Matrix×Vector: Efficient Implementation

We discuss the implementation of M̃ ·~µ,~µ ∈ Rm in the setting of the previous section and for separable
kernel approximation by bi-directional interpolation, see § 2.3.71, in particular (2.3.73): For a cluster pair
(v, w) ∈ Ffar, v ∈ TI (“x-cluster tree”), w ∈ TJ (“y-cluster tree”) we have

M̃
∣∣∣
v×w

= UvCv×wVw
⊤ =

[
bv

k(x
i)
]

i∈I(v)
k=1,...,q︸ ︷︷ ︸

∈R♯I(v),q

[
G(tk

v, tℓw)
]

k,ℓ=1,...,q
∈ Rq,q

︸ ︷︷ ︸
∈Rq,q

[
bw
ℓ (y

j)
]

j∈I(w)
ℓ=1,...,q︸ ︷︷ ︸

∈Rq,♯I(w)

.

We adapt the general algorithm given in Code 2.3.24 to this situation. To elucidate the ideas we introduce
two essential operations and their matrix representations:

➊ Reduce-to-cluster: For w ∈ TJ we define

Rw : Rm → R♯I(w) , Rw(~µ) :=




µj1
...

µjℓ


 , with I(w) = {j1, . . . , jℓ}, ℓ := ♯I(w) . (2.3.98)

This is a linear mapping and can be described by a “fat” matrix Rw ∈ {0, 1}♯I(w),m.

➋ Expand-from-cluster: For v ∈ TI we introduce

Ev : R♯I(v) → Rn , (Ev~ν)i :=

{
νℓ , if iℓ = i ,

0 , if k 6∈ I(v) ,
with I(v) = {i1, . . . , ik}, k := ♯I(v) .

(2.3.99)

The matrix associated with Ev will be denoted by Ev ∈ {0, 1}n,♯I(v).

Remark 2.3.100 (Expand and reduce as adjoint operations)

If I = J and TI = TJ (m− n and same cluster tree for both directions), then we have Ev = R⊤v .

The operations make it possible to write the multiplication of M̃ with a vector in a concise way:

M̃~µ = ∑
(v,w)∈Ffar∪Fnear

Ev · M̃
∣∣∣
v×w
· Rw~µ

= ∑
(v,w)∈Fnear

Ev · M̃
∣∣∣
v×w
· Rw~µ + ∑

(v,w)∈Fnear

(EvUv)Cv×w(V
⊤
w Rw)~µ .

(2.3.101)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 218

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

This suggests a 3-pass approach:

(I) For each w ∈ TJ compute ~ωw := V⊤w Rw~µ ∈ R♯I(w)

Total effort = ∑w∈TJ
q♯I(w) = O(q m log m) for m→ ∞.

(II) In parallel carry out the following operations:

• For each cluster pair (v, w) ∈ Ffar update ~ζv ←~ζv + Cv×w~ωw,~ζv ∈ R♯I(v).

• For each cluster pair (v, w) ∈ Fnear update ~φv ← ~φv + M|v×wRw~µ, ~φv ∈ R♯I(v).

Total effort = ?
(III) For each v ∈ TI do ~ρ← ~ρ + Ev(Uv

~ζv + ~φv),~ρ ∈ Rn.

Total effort = ∑v∈TI
♯I(w) = O(n log n)

Of course, all vectors into which we accumulate results have to be initialized with zero.

(2.3.102) Complexity Estimates

We adopt the setting and notations of § 2.3.85. In Section 2.3.1 we have derived a general estimate for
the effort of matrix×vector multiplication with M̃:

cost(M̃× vector) = ∑
k∈Ffar

q(♯Ik + ♯Jk) + ∑
k∈Fnear

♯Ik · ♯Jk . (2.3.26)

Since this bound is the same that for the storage requirements in (2.3.21), we can appeal to the derivation
of (2.3.95) and get

cost(M̃× vector) ≤ rLspm(F) · (n⌈log2 n⌉+ m⌈log2 m⌉) . (2.3.103)

2.3.6 Panel Clustering

We discuss the application of clustering techniques for the local low-rank compression of boundary el-
ement Galerkin matrices as they have been introduced in Section 1.4 and Section 1.5. We recall the
general setting

✦ The domain Ω ⊂ Rd, d = 2, 3, is a bounded curved Lipschitz polygon/polyhedron with boundary
Γ := ∂Ω.

✦ The boundary Γ is equipped with a mesh G = {πk}K
k=1 according to Def. 1.4.16 (d = 2) or

Def. 1.5.4 (d = 3).

✦ Based on G we build a boundary element space VN, either S−1
p−1(G) or S0

p(G), p ∈ N, see

(1.4.21)/(1.5.11) and (1.4.22)/(1.5.12), piecewise polynomial under edge/face-wise pullback to the
parameter domain.

✦ The boundary element space is spanned by locally supported nodal basis functions:

VN = Span{b1
N , . . . , bN

N} , N := dim VN .

Refer to Ex. 1.4.28, Ex. 1.4.30, Ex. 1.5.24, and Ex. 1.5.25 for concrete examples.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 219

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Then the entries of the Galerkin matrix associated with the single layer boundary integral operator V for
−∆ read

V :=
[∫

Γ

∫
Γ

G∆(x, y) b
j
N(y) bi

N(x)dS(y)dS(x)
]N

i,j=1
∈ RN,N , (2.3.104)

with the fundamental solution

G∆(x, y) =

{
− 1

2π log‖x− y‖ , if d = 2 ,
1

4π
1

‖x−y‖ , if d = 3 .
(1.2.44)

Note that G∆ provides an asymptotically smooth singular kernel function, see Rem. 2.2.51. As such it
allows rank-q separable approximation on “admissible” boxes ⊂ Rd ×Rd, exponentially accurate in q, in
the spirit of Ass. 2.2.86.

In order to transfer the clustering techniques from kernel collocation matrices to V we have to answer two
questions:

Q1 What will play the role of the collocation points xi and yj?

Q2 How to obtain low-rank approximations of “admissible” blocks of V?

(2.3.105) Answer to Q1

The index sets will be I = J = {1, . . . , N}, that is n, m = N, and instead of collocation points we consider
the basis functions bi

N, i = 1, . . . , N. Recall that each basis function has a small support supp(bi
N) ⊂ Γ.

These will be used to define bounding boxes for sets of basis functions, cf. Def. 2.3.47. For I ⊂ I we
define

box
{

bi
N

}
i∈I

=
d

∏
ℓ=1

[
min{xℓ : x ∈

⋃

i∈I

supp(bi
N)}, max{xℓ : x ∈

⋃

i∈I

supp(bi
N)},

]
. (2.3.106)

This also defines the bounding box box(v) of each node v of a cluster tree (→ Def. 2.3.42) for I, because
v can be identified with a unique subset of indices/basis functions. Given bounding boxes we can compute
the diameter of a cluster and the distance of two clusters in the usual way, see Code 2.3.49.

The following could be a replacement of the Point class from Code 2.3.49.

C++11 code 2.3.107: Data type boundary element basis function ➺GITLAB

2 template < i n t d> // dimension d as template argument

3 st ruct BasisFn {
4 size_t i dx ; // Index of basis function

5 Matrix <double , d ,1 > xmin ,xmax ; // Corners of bounding box

6 } ;

(2.3.108) Answer to Q2

Assume that we have run the clustering algorithm and constructed far-field/near-field block partition. Con-
sider a cluster (v, w) ∈ Ffar. Hence (i, j) ∈ I(v)× I(w) means that

supp(bi
N)× supp(b

j
N) ⊂ B := box(v)× box(w) , η(B) ≤ η0 , (2.3.109)

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 220

https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

η(B) the admissibility measure from (2.2.57) and η0 > 0 the admissibility threshold.

Thanks to Ass. 2.2.86, on B we can get a rank-q separable approximation of G∆ by means of bi-directional
interpolation, see (2.2.46),

G∆
∣∣∣
B
(x, y) ≈

q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy) cx

k (x) c
y
ℓ
(y) , (x, y) ∈ B . (2.3.110)

with interpolation nodes tk
x for box(v), tℓy for box(w), and associated cardinal basis functions cx

k and

c
y
ℓ . We plug this approximation into the double integrals defining the entries of the Galerkin matrix V from

(2.3.104):

V|v×w ≈
[q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy)

∫
Γ

c
y
ℓ(y)b

j
N(y)dS(y) ·

∫
Γ

cx
k(x)b

i
N(x)dS(x)

]

i∈I(v)
j∈I(w)

=

[∫
Γ

cx
k (x)b

i
N(x)dS(x)

]

i∈I(v)
k=1,...,q

·
[

G∆(tk
x, tℓy)

]
k,ℓ=1,...,q

[∫
Γ

c
y
ℓ(y)b

j
N(y)dS(y)

]⊤
j∈I(w)
ℓ=1,...,q

= Uv ·C ·V⊤w ∈ R♯I(v),♯I(w) ,

(2.3.111)

which gives us a rank-q matrix already in triple-factor form, cf. (2.2.47).

If we rely on tensor-product polynomial interpolation, the cardinal functions cx
k and c

y
ℓ will be product of

Lagrange polynomials. As a consequence, the integrands of the integrals defining the matrices U and
V will be analytic after local analytic pullback to the parameter domain/reference element. For instance,
the contribution of a single panel π with associated local parameterization γπ : K̂ → π (→ § 1.4.35,
§ 1.5.21) is

∫

π
cx

k (x)b
i
N(x)dS(x) =

∫

K̂
cx

k (γπ(x̂))b̂
j(x̂)

√
det(Dγπ(x̂)

⊤Dγπ(x̂)) dx̂ , (2.3.112)

where b̂j : K̂ → R is the polynomial (!) reference shape function spawning bi
N : b̂j = γ∗π bi

N

∣∣
π

, see
(1.4.38). The integrand in (2.3.112) will inherit analyticity from γ and can be evaluated accurately by
(expoentially converging) families of high-order numerical quadrature rules on K̂.

Remark 2.3.113 (Compressing discrete BIEs with double layer kernels)

The entries of boundary element Galerkin matrices for the double layer boundary integral operator K with
the integral representation formula

K(v)(x) =
∫

Γ

x− y

ωd‖x− y‖d
· n(y) v(y)dS(y) , x ∈ smooth part of Γ , (1.3.80)

are given by the singular integrals

(K)i,j =
∫

Γ

∫

Γ

x− y

ωd‖x− y‖d
· n(y) b

j
N(y) βi

N(x)dS(y)dS(x) , (2.3.114)

where
{

b
j
N

}N

j=1
is a nodal basis of S0

p(G), p ∈ N, and
{

βi
N

}K

i=1
a nodal basis of S−1

p−1(G), see Sec-

tion 1.4.2.3 and Section 1.5.2.2.

Following the policy of § 2.3.108 and interpolating the singular, asymptotically smooth kernel kK(x, y) :=
x−y

ωd‖x−y‖d · n(y) on far-field boxes encounters difficulties, because it requires its evaluation also off the

boundary Γ, where the normal vector field n is not defined!

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 221

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We remember that

kK(x, y) :=
x− y

ωd‖x− y‖d
· n(y) = grady G∆(x, y) · n(y) , x, y ∈ Γ , x 6= y . (2.3.115)

Idea: Obtain a separable approximation of the double layer kernel kK by applying the
differential operator n(y) · grady to a birectional interpolant of G∆!

Recalling (2.3.110), this leads to the rank-q separable approximation

kK(x, y) ≈
q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy) cx

k(x) (grad c
y
ℓ)(y) · n(y) , (x, y) ∈ B ∩ Γ , (2.3.116)

where B ⊂ Rd ×Rd is a far-field box as in (2.3.109), associated to the cluster pair (v, w). We end up
with the rank-q matrix block

K|v×w ≈
[q

∑
k=1

q

∑
ℓ=1

G∆(tk
x, tℓy)

∫
Γ

(
grad c

y
ℓ(y) · n(y)

)
b

j
N(y)dS(y) ·

∫
Γ

cx
k (x)b

i
N(x)dS(x)

]

i∈I(v)
j∈I(w)

=

[∫
Γ

cx
k(x)b

i
N(x)dS(x)

]

i∈I(v)
k=1,...,q

·
[

G∆(tk
x, tℓy)

]
k,ℓ=1,...,q

[∫
Γ

(
grad c

y
ℓ(y) · n(y)

)
b

j
N(y)dS(y)

]⊤
j∈I(w)
ℓ=1,...,q

= Uv · C ·V⊤w ∈ R♯I(v),♯I(w) .

(2.3.117)

Remark 2.3.118 (Iterative solution methods for linear systems of equations → [Hip15,

Chapter 10])

After local low-rank compression the boundary element Galerkin matrices are available only in a special
data format like PartMatrix from Code 2.3.23. However, direct solution algorithms for dense linear sys-
tems of equations like Gaussian elimination [Hip15, Section 2.3] usually operate on matrices stored in
contiguous memory.

Direct elimination-based solution methods for linear systems of equations cannot be applied to
system matrices compressed with clustering techniques.

Fortunately, the matrix data formats arising from local low-rank compression support fast matrix×vector
operations, see Code 2.3.24 and Section 2.3.5. Thus, they well mesh with iterative solution methods for
linear systems of equations that can compute approximate solutions with a prescribed tolerance based on
system matrix×vector operations alone.

The typical generic interface to these methods reads:

template <typename MatrixType, typename Rhs, typename Dest, typename

Preconditioner>

void iterative_solver(const MatrixType& mat, const Rhs& rhs, Dest& x,

const Preconditioner& precond, s i z e _ t maxit,

typename Dest::RealScalar& tol_error);

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 222

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• Rhs, Dest have to be vector types, for instance, Eigen::VectorXd. The argument rhs holds the
right-hand side vector and x contains the initial guess and is also used to return the approximate
solution after the iteration has terminated.

• MatrixType has to provide a method Rhs operator * (const Dest &)const that implements
the matrix×vector product. The argument mat of this type passes the system matrix, more pre-
cisely, the linear operator described by the system matrix.

• The argument maxit specifies the maximal number of iterations and tol_error a relative toler-
ance for termination.

• Preconditioner is a type for a linear operator providing a method Dest solve(const Rhs

&)const that is supposed to emulate an approximate inverse of the system matrix. It is meant to
accelerate convergence, see [Hip15, Section 10.3]. Default is the identity mapping.

The following iterative solution methods are widely used. They all belong to the class of Krylov subspace
methods.

• Conjugate Gradient Method (CG) [Hip15, Section 10.2]:

Applicable to linear systems of equations with symmetric positive definite (s.p.d.) system matrices,
like those arising from the Galerkin boundary element discretization of first-kind direct or indirect
BIEs for boundary value problems for −∆, see Section 1.3.5.1, § 1.3.138 and § 1.3.142.

A single step of the iteration involves one evaluation A×vector, one evaluation P×vector, three dot
products and 3 elementary vector (SAXPY) operations.

Speed of convergence (measured in the energy norm induced by the system matrix) is governed by
the spectral condition number κ(PA), where A is the system matrix and P the matrix representation
of the preconditioner, see [Hip15, Thm. 10.2.25].

Note that for boundary element Galerkin matrices A on families of uniformly shape-regular curve/-
surface meshes we observe κ(A) = o(h−1

min), hmin =̂ minimal size of panels of the mesh. There-
fore, without preconditioner, the CG will converge more slowly on finer meshes.

• Bi-Conjugate Gradient Stabilized Method (BiCGStab) [Hip15, Section 10.4.2]:

This iterative method can be applied to general linear systems of equations. Unfortunately, no rigor-
ous convergence theory is available. One step, beside a few dot products and SAXPY operations,
one step executes two A×vector and P×vector evaluations.

• Generalized Mimimal Residual Method (GMRES) [Hip15, Section 10.4.1]:

This is another iterative solution method for general linear systems of equations. It enjoys robust
convergence, but in the ℓ-th step ℓ dot products and SAXPY operations have to be carried out,
beside a single A×vector and P×vector product.

2.4 Hierarchical Matrices

2.4.1 Definition

The clustering algorithm as presented in Section 2.3 yielded a data-sparse approximate representation
M̃ ∈ Rn,m of kernel collocation matrices M ∈ Rn,m for asymptotically smooth singular kernels like

(x, y) 7→ − log‖x− y‖ ,
1

‖x− y‖ ,
(x− y) · f(y)
‖x− y‖d

, x, y ∈ Rd, x 6= y ,

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 223

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

see Rem. 2.2.51 for the definition. Key elements of the data structure are

✦ cluster trees (→ Def. 2.3.42) TI and TJ defining subsets (clusters) and partitions of the index sets
I := {1, . . . , n}, J := {1, . . . , m},

✦ a far-field/near-field block partition F = Ffar ∪ Fnear of the product index set D := I × J recur-
sively built by the algorithm implemented in the method buildRec() of Code 2.3.62 based on an
admissibility condition according to Def. 2.3.59.

✦ a low-rank factorized representation of the sub-matrices of M̃ corresponding to the far-field blocks.

Recall that each cluster v ∈ TI and w ∈ TJ can be identified with a subset of indices I(v) ⊂ I, I(w) ⊂ J.
This endows Ffar, Fnear, and F := Ffar ∪ Fnear with two meanings

1. as sets of subsets of the product index set I× J,

2. as set of cluster pairs (v, w), v ∈ TI, w ∈ TJ.

We also remind of the notation X|v×w :=
(

X̃
)
I(v),I(w)

for sub-matrices of a matrix X ∈ Rn,m.

A special name has been introduced for the data structure built by the clustering algorithm:

Definition 2.4.1. Hierarchical matrix

Given n, m ∈ N, q ∈ N, a matrix H ∈ Rn,m is called a hierarchical matrix or H-matrix of local
rank q, if there exist
• cluster trees TI (row tree) and TJ (column tree) for I := {1, . . . , n} and J := {1, . . . , m},
• and an abstract admissibility condition adm : TI × TJ → {true, false}

such that

rank(H|v×w) ≤ q ∀(v, w) ∈ F := Ffar ∪ Fnear ⊂ TI × TJ ,

where

{I(v)× I(w)}(v,w)∈F = {I(v)× I(w)}(v,w)∈Ffar
∪ {I(v)× I(w)}(v,w)∈Fnear

is a partition of I × J generated by the algorithm implemented in the method buildRec() of
Code 2.3.62 based on adm().

Fig. 100

J
I

The essence of the hierarchical matrix data structure
for binary trees TI and TJ is captured in the figure
beside:

✁ � =̂ matrix blocks in the far field ∈ Ffar

✷ =̂ matrix blocks in the near field ∈ Fnear

! Note that Fig. 100 illustrates the
rather special case of n = m,
TI = TJ and that Fnear contains only
products of leaves of TI.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 224

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✎ Notation: Bold greek letters σ, τ, ρ will be used for elements of TI × TJ, so-called blocks.

Given X ∈ Rn,m, a block σ = (v, w) singles out the sub-matrix X|σ := X|v×w.

The algorithm of buildRec for the construction of a hierarchical matrix ensures

(v, w) ∈ Ffar ⇒ adm(v, w) = true , (2.4.2)

(v, w) ∈ Fnear ⇒ v is a leaf of TI or w is a leaf of TJ. (2.4.3)

Lemma 2.2.10 guarantees that for a hierarchical matrix H ∈ Rn,m

∀σ = (v, w) ∈ Ffar: ∃Aσ ∈ R♯I(v),q , Bσ ∈ R♯I(w),q: H|σ = Aσ · B⊤σ . (2.4.4)

Assumption 2.4.5. Availability of low-rank factor matrices

Whenever we regard a hierarchical matrix H (→ Def. 2.4.1) as given, we assume that for each block
σ = (v, w) ∈ Ffar all entries of the matrices Aσ and Bσ as in (2.4.4) can be accessed with small
constant effort.

Our implementation of buildRec() in Code 2.3.55 always creates binary cluster trees. This matches the
following assumption, which is made for the sake of simplicity and by no means essential for hierarchical
matrices and their handling.

Assumption 2.4.6. Binary cluster trees

Below we assume that all cluster trees underlying hierarchical matrices are binary trees (but not
necessarily balanced).

(2.4.7) Block tree

Fig. 101

I

J

The “tiling” of the matrix depicted in Fig. 101 is
obviously one that can be described by a two-
dimensional tree of quadtree type, for which a node
can have up to four sons. More generally, the
block partition of every hierarchical matrix H induced
by F := Ffar ∪ Fnear is related to a “quadtree-type”
tree, whose leaves are in one-to-one correspon-
dence to product index sets (↔ submatrices of H)
in F.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 225

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The following figures illustrate levels 1–4 of the two-dimensional tree underlying the matrix partition show
beside.

Each node of the tree has four sons, unless it is a leaf: geometrically, each square is split into four smaller
squares.

Fig. 102

I

J

Level 1

Fig. 103

I

J

Level 2

Fig. 104

I

J

Level 3

Fig. 105

I

J

Level 4

Now we formalize what we have just observed. Recall that F := Ffar ∪ Fnear is the set of all matrix blocks
occurring in the hierarchical matrix, cf. Def. 2.4.1.

Definition 2.4.8. Block tree underlying a hierarchical matrix

The block tree BI×J for a hierarchical matrix based on the row tree TI and column tree TJ is a tree
(V , r,E) (→ Def. 2.3.38)

✦ with pairs of clusters as vertices

V ⊂ {(v, w) ∈ TI × TJ : I(v)× I(v) is the union of product index sets in F} ,

✦ with root r := rI × rJ, where r∗ is the root of T∗, ∗ = I, J,
✦ and with the son-father relation defined as

sons(σ) =





(sons(v)× sons(w)) ∩V , if sons(v) 6= ∅ and sons(w) 6= ∅ ,

({v} × sons(w)) ∩V , if sons(v) = ∅ and sons(w) 6= ∅ ,

(sons(v)× {w}) ∩V , if sons(v) 6= ∅ and sons(w) = ∅ ,

(2.4.9)

for all σ = (v, w) ∈ V .

The algorithm implemented in buildRec() ensures that Def. 2.4.8 defines a tree in the sense of Def. 2.3.38.

The set of leaf nodes of a block tree can be identified with the set F of matrix blocks.

Remark 2.4.10 (Hierarchical matrices – a recursive data structure)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 226

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 106 TJ

TI

J
I

Let H ∈ Rn,m be a hierarchical matrix with local rank
q based on the cluster trees TI and TJ. For v ∈ TI

and w ∈ TJ such that (v, w) belongs to the block
tree BI×J (→ Def. 2.4.8), (v, w) ∈ BI×J, denote by
Tv and Tw the sub-trees (→ Def. 2.3.41) of TI and
TJ with roots v and w, respectively.

Then H|v×w ∈ R♯I(v),♯I(w) is another hierarchical
matrix of local rank q based on Tv and Tw. The ad-
missibility condition remains the same.

✁ hierarchical sub-matrix belonging to a pair of clus-
ters (�).

In other words, every sub-tree of the block tree BI×J defines, through its root, a sub-matrix of H, which is
a valid hierarchical matrix of the same local rank.

(2.4.11) Recursive algorithm for H-matrix×vector

Hierarchical matrices may not be stored in a linear fashion in a data structure similar to that given in
Code 2.3.23, but in a recursive fashion through a block tree data structure. Of course, also in this case
the multiplication of a hierarchical matrix with a vector can be done by the algorithm implemented in
Code 2.3.24, but loops have to be replaced with tree traversal.

Pseudocode 2.4.12: Recursive~ζ =~ζ + H~µ

1 void hmv(H ∈ Rn,m , re f ~ζ ∈ Rn ,~µ ∈ Rm) {
2 σ := root of block tree for H ;
3 i f (sons(σ) = ∅) { // a leaf ∈ F

4 i f (σ ∈ Ffar) {

5 ~ζ := ~ζ + Aσ · (Bσ~µ) ; // → (2.2.13)

6 }

7 else { ~ζ := ~ζ + H ·~µ ; }
8 else

9 foreach (τ = (v, w) ∈ sons(σ)) {

10 hmv(H|τ ,~ζ
∣∣∣
v

, µ|w) ;

11 }
12 }

✁ The argument H should be a hierarchi-
cal matrix in recursive block-tree-based
format. Then this argument need only
pass a node of the block tree, cf. Line 2.

Line 9: see (2.4.9).

The cost of hmv() remains the same
as the estimate (2.3.103) found in
§ 2.3.102:

cost(hmv) = O((n + m) log(n + m))

for n, m→ ∞, where the constants will
depend on the sparsity measure spm(F),
see Def. 2.3.92.

Our goal in this section is to find an algorithm that can be used to approximately solve linear systems of
equations whose coefficient matrix is provided in hierarchical matrix (H-matrix) format, refer to Def. 2.4.1
and Ass. 2.4.5. This will turn out to be a highly complex algorithm with many components. Those are
provided in the following sections.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 227

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Example 2.4.13 (Preview: multiplication of hierarchical matrices)

Fig. 107

I

J

We consider square hierarchical matrices
Y, Z ∈ Rn,n with local rank q based on the same
binary balanced row and column cluster tree TI,
I :=∈ {1, . . . , n}. We used

adm(v, w) = true ⇔ I(v) ∩ I(w) = ∅ .

✁ block structure of simple hierarchical matrices in
this example

Goal: Approximate the product Y · Z by an n× n-hierarchical matrix based on row/column tree TI and
the same admissibility condition, that is, the same block structure, the same Fnear, Ffar.

The following situations are encountered when forming the matrix product:

X = Y · Z

I

J

=
I

J

·
I

J

,

I

J

=
I

J

·
I

J

.

To compute the upper left block of the matrix product we face

← · + · .

To accomplish this we have to

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 228

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• compute the product of two smaller hierarchical matrices ➤ recursion,

• add a rank-q matrix, namely the product of two rank-q blocks, to a hierarchical matrix.

The evaluation of the upper right block boils down to

← · + · .

To accomplish this we have to

• compute the product of a hierarchical matrix with a rank-q matrix in any order,

• incorporate the sum of two rank-q matrices into a rank-q block.

2.4.2 Low-Rank Matrices: Algorithms

We repeat a fundamental concepts and algorithms from numerical linear algebra.

(2.4.14) (Economical) Singular value decomposition→ [Hip15, Section 3.4]

Theorem 2.4.15. Singular Value Decomposition (SVD)

For any X ∈ Rk,l, k, l ∈ N, r := min{k, l} there are matrices U ∈ Rk,r and V ∈ Rl,r with

orthonormal columns and a diagonal matrix Σ ∈ Rr,r with non-negative entries such

X = U · Σ ·V⊤ . (2.4.16)

Recall that a matrix Y ∈ Rk,l has orthonormal columns, if Y⊤Y = Ik, Ik =̂ k× k-identity matrix.

The matrix factorization (2.4.16) is called the economical singular value decomposition (SVD) of X.
For k > l is can be visualized as follows.




X




=




U







Σ







VH




2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 229

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The diagonal entries of Σ ∈ Rr,r are called the (non-zero) singular values of X, denoted by σ1, σ2, . . . , σr

and assumed to be ordered

0 ≤ σr ≤ σr−1 ≤ · · · ≤ σ1 .

The computation of the singular value decomposition of a matrix relies on a sophisticated algorithm
[GV13, Sect. 8.6]. This algorithm is perfectly stable and returns the results with relative error of the same
size as the machine precision eps. The effort for computing the SVD of a densely populated matrix is
substantial:

cost(economical SVD of X ∈ Rk,l) = O(min{k, l}kl) for k, l → ∞ . (2.4.17)

The following C++ function computes the factors of the singular value decomposition of a matrix in EIGEN,
see also [Hip15, Code 3.4.13]. Note that EIGEN has to be instructed to compute the economical version
instead of the full SVD with square orthogonal factors. Of course, one usually does not build the matrix Σ

as a dense matrix.

C++11 code 2.4.18: Computing the economical SVD in EIGEN

1 std : : tup le <MatrixXd , MatrixXd , MatrixXd > svd_eco (const MatrixXd& X) {
2 Eigen : : JacobiSVD<MatrixXd > svd (X , Eigen : : ComputeThinU |

Eigen : : ComputeThinV) ;
3 MatrixXd U = svd . matrixU () ; // get unitary (square) matrix U

4 MatrixXd V = svd . matrixV () ; // get unitary (square) matrix V

5 VectorXd sv = svd . singularValues () ; // get singular values as vector

6 MatrixXd Sigma = sv . asDiagonal () ; // build diagonal matrix Σ

7 return std : : tup le <MatrixXd , MatrixXd , MatrixXd >(U, Sigma ,V) ;
8 }

In numerical algorithms the SVD owes its key role in numerical algorithms to the fact that it paves the way
for computing the rank-q best approximation of a given matrix.

Theorem 2.4.19. best low rank approximation → [Hip15, Thm. 3.4.48]

Let X = UΣV⊤ be the SVD of X ∈ Rn,m (→ Thm. 2.4.15). For 1 ≤ q ≤ rank(X) set Uq :=
(U):,q ∈ Rn,q, Vq := (V):,q ∈ Rm,q, Σq := diag(σ1, . . . , σq) ∈ Rq,q. Then, for ‖·‖ = ‖·‖F and

‖·‖ = ‖·‖2, holds true

∥∥∥X−UqΣqV⊤q
∥∥∥ ≤ ‖X− F‖ ∀F ∈ Rn,m, rank(F) = q ,

that is, the truncated SVD realizes the rank-q best approximation of X with respect to both the

Frobenius norm (2.2.7) and the Euclidean matrix norm.

Norms of approximation error can be computed easily: Writing Xq := UqΣqV⊤q we have rank(Xq) ≤ q
and

∥∥X− Xq

∥∥ =
∥∥Σ− Σq

∥∥ =

{
σq+1 for ‖·‖ = ‖·‖2 ,√

σ2
q+1 + · · ·+ σ2

r for ‖·‖ = ‖·‖F .
(2.4.20)

This is a straightforward consequence of the fact that both norms satisfy

‖UX‖F = ‖X‖F , ‖UX‖2 = ‖X‖2 ∀X ∈ Rk,l, U ∈ Rk,k, U⊤U = Ik . (2.4.21)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 230

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(2.4.22) QR-decomposition → [Hip15, Section 3.3.3]

Appealing to the Gram-Schmidt orthonormalization algorithm we derived the following theorem about a
special matrix factorization:

Theorem 2.4.23. Economical QR-decomposition

For any matrix X ∈ Rk,l, k, l ∈ N, k ≥ l, with rank(X) = l there exists a unique matrix Q ∈ Rk,l

with orthonormal columns Q⊤Q = Il and a unique upper triamgular matrix R ∈ Rl,l with (R)i,i >

0, 1 ≤ i ≤ l, such that

X = Q ·R . (2.4.24)

The factorization (2.4.24) of X is called QR-decomposition. It can be visualized in the following way:

X = Q · R , Q ∈ Kk,l , R ∈ Kl,l upper triangular ,



X




=




Q







R




. (2.4.25)

A stable algorithm for computing the QR-decomposition of a dense matrix relies on successive House-
holder transformations, see [Hip15, § 3.3.15]. The asymptotic effort required for finding a QR-decomposition
are the same as for computing the SVD:

cost(economical QR-decomposition of X ∈ Rk,l) = O(min{k, l}kl) for k, l → ∞ . (2.4.26)

(2.4.27) Low-rank approximation of low-rank matrices

Assume that the matrix X ∈ Rk,l with rank(X) = p ≤ min{k, l} is given in factorized form

X = A · B⊤ , A ∈ Rk,p , B ∈ Rl,p ,

according to Lemma 2.2.10. In order to obtain further compression we want to determine the rank-q best
approximation Y of X for some q < p

Y ∈ Rk,l, rank(Y) = q: ‖X− Y‖F ≤ ‖X− F‖F ∀F ∈ Rk,l, rank(F) = q .

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 231

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Of course, we want to find the low-rank factors Ã ∈ Rk,q, B̃ ∈ Rl,q of Y such that Y = Ã · B̃⊤.

We start with an (economical) QR-decomposition of A according to Thm. 2.4.23: A = QR, Q ∈ Rk,p,
R ∈ Rp,p upper triangular. The we compute the (economical) SVD of RB⊤ ∈ Rp,l:

RB⊤ = UΣV⊤ , U ∈ Rp,p , Σ ∈ Rp,p , V ∈ Rp,l ,

where U and V have orthonormal columns and Σ is a diagonal matrix with non-negative entries. Com-
bining the two factorizations yields

X = AB⊤ = QRB⊤ = QUΣV⊤ = ŨΣV⊤
︸ ︷︷ ︸
SVD of X !

, Ũ := QU , Ũ⊤Ũ =U⊤Q⊤UQ= Ip . (2.4.28)

Thus, invoking Thm. 2.4.19 and adopting its notations, we have found

Y = Uq︸︷︷︸
=:Ã

ΣqV⊤q︸ ︷︷ ︸
=:B̃⊤

, Uq := (U):,q , Σq := (Σ)1:q,1:q , Vq := (V):,q . (2.4.29)

Pseudocode 2.4.30: Low-rank “recompression”

1 [Matr ix , Mat r ix] ← low_rank_recompress (
2 Matr ix A , Mat r ix B , i n t q) {
3 k := A . rows () ; l := B . rows () ;
4 i f (q > min (k , l)) { return (A, B) ; }
5 [Q ,R] = qr (A) ;
6 [U ,Σ ,V] = svd (R · B⊤) ;

7 Ũ := Q ·U ; // see (2.4.28)

8 Ã := (U):,q ; // first q columns of U

9 B̃ := VqΣq ; // see (2.4.29)

10 return (Ã, B̃) ;
11 }

The asymptotic computational effort
of low_rank_recompress is de-
termined by the calls to qr() and
svd().
If A ∈ Rk,p, B ∈ Rl,p, then from
(2.4.17) and (2.4.26) we conclude

cost(low_rank_recompress)

= O(p2(k + l)) for k, l → ∞ .
(2.4.31)

Remark 2.4.32 (Adaptive low-rank recompression)

According to (2.4.20) the discarded singular values provide information about the error committed during
low-rank compression of a matrix. Thus, writing σ1 ≥ σ2 ≥ · · · ≥ σp for the singular values of X available
as diagonal entries of Σ in (2.4.28), we may set (σp+1 := 0)

q ∈ {1, . . . , p}: σq+1 ≤ rtol · σ1 , (2.4.33)

for some prescribed relative tolerance rtol > 0. This gives control of the recompression error.

(2.4.34) Recompression of sums of low-rank matrices

We are given two rank-q matrices

Xi = AiB
⊤
i , Ai ∈ Rk,q , Bi ∈ Rl,q , i = 1, 2 ,

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 232

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

and want to compute the rank-q best approximation of X1 + X2. This can be done with a single call to
low_rank_recompress from Code 2.4.30, because, thanks to

X1 + X2 =
[
A1 A2

]
·
[

B⊤1
B⊤2

]
, (2.4.35)

we immediately have a rank-2q factorization of X1 + X2 at our disposal.

Pseudocode 2.4.36: Approximation of sum of low-rank matrices

1 [Matr ix , Mat r ix] low_rank_sum (Mat r ix A1 , Mat r ix B1 ,
2 Matr ix A2 , mat r ix B2) {
3 q := A . co ls () ; // target rank for compression

4 A∗ :=
[
A1 A2

]
; B∗ :=

[
B1 B2

]
;

5 return low_rank_recompress (A∗ ,B∗ , q) ;
6 }

The asymptotic cost is O(q2(l + k)) for k, l → ∞.

(2.4.37) Compressing stacked low-rank matrices

We arrange s ∈ N rank-q matrices

Xi = AiB
⊤
i ∈ Rk,li , Ai ∈ Rk,q , Bi ∈ Rli,q , li ∈ N , i = 1, . . . , s ,

next to each other,

Z :=
[
X1 X2 . . . Xs

]
∈ Rk,l , l := l1 + · · ·+ ls .

and aim to determine a rank-q best approximation Y = Ã · B̃⊤, Ã ∈ Rk,q, B̃ ∈ Rl,q, of Z in factorized
form.

Of course, as in § 2.4.27 we use Thm. 2.4.19 but, again, we cannot afford to compute the SVD of Z
directly. As in § 2.4.27 it can be obtained efficiently via QR-decompositions (→ Thm. 2.4.23) of low-rank
factors:

Bi = QiRi , Q⊤i Qi = Iq , Ri upper triangular .

This yields as factorization of Z

Z =
[
A1R⊤1 . . . AsR

⊤
s

]
︸ ︷︷ ︸

=:Ẑ∈Rk,sq

·




Q⊤1
Q⊤2

. . .

Q⊤s


 .

Obviously, the transpose of the second factor features orthogonal columns. Then compute the SVD of
the first factor according to Thm. 2.4.15

Ẑ = U · Σ ·V⊤ , U ∈ Rk,sq , Σ =




σ1

σ2
. . .

σqs


 ∈ Rqs,qs , V ∈ Rl,qs ,

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 233

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

U⊤U = V⊤V = Iqs, gives the SVD of Z:

Z = U · Σ ·


V⊤ ·




Q⊤1
Q⊤2

. . .

Q⊤s







︸ ︷︷ ︸
=:Ṽ⊤∈Rqs,l

. (2.4.38)

Thus, the low-rank factors of the rank=q best approximation are

Ã := Uq · Σq , Uq := (U):,1,...,q , Σq :=




σ1

σ2
. . .

σq


 ∈ Rq,q , (2.4.39a)

B̃ :=
(

Ṽ
)

:,1,...,q
∈ Rl,q . (2.4.39b)

The total asymptotic computational effort is dominated by the cost of computing SVD and QR-decomposition.
For sq ≤ k it amounts to

cost = O((sq)2(k + l)) for k, l → ∞ . (2.4.40)

2.4.3 H-Addition of Hierarchical Matrices

Armed with the algorithm of Code 2.4.36 we can efficiently add and recompress two hierarchical matrices
X, Y ∈ Rn,m provided that

✦ they are based on the same row and column cluster trees,

✦ their far-field/near-field block partitions coincide (which will follow, if the same admissibility condition
is used for their construction).

Due to recompression H-addition differs from the exact addition of the matrices. Therefore we designate
it with a special symbol.

✎ Notation: We write ⊕ for the addition with recompression of hierarchical matrices.

The following pseudocode performs the operation H← H + H′ for two hierarchical matrices of the same
local rank q, whose far-field blocks are provided in factorized form H|σ = AσB⊤σ and H′|σ = A′σ(B

′
σ)
⊤,

σ ∈ Ffar, according to (2.4.4). Note that the block trees of H and H′ agree.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 234

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 2.4.41: In-situ summation and recompression of hierarchical matrices

1 void hmat_add (re f H−matr ix H ∈ Rn,m , const H−matr ix H′ ∈ Rn,m) {
2 σ := root of block tree for H ;
3 i f (sons(σ) = ∅) { // leaf of block tree

4 i f (σ ∈ Ffar) { // sum and truncate

5 [Aσ ,Bσ] := low_rank_sum (Aσ ,Bσ ,A′σ ,B′σ) ;
6 }
7 else { // dense near-field block

8 H := H + H′ ;
9 }

10 }
11 else { // recursion

12 foreach (τ = (v, w) ∈ sons(σ)) {
13 hmat_add (H|τ , H′|τ) ;
14 }
15 }
16 }

(2.4.42) Low-Rank Modification of a Hierarchical Matrix

Let a row tree TI for I := {1, . . . , n} and a column tree TJ :=∈ {1, . . . , m}, n, m ∈ N, be given (and
some admissibilty condition according to Def. 2.3.59). Since the rank of a sub-matrix is at least as big as
the rank of the matrix itself, it is clear that any rank-q matrix Y = UV⊤ ∈ Rn,m, U ∈ Rn,q, V ∈ Rm,q, can
be treated as a hierarchical matrix based on TI and TJ.

Pseudocode 2.4.43: Recursive low-rank update of H-matrix

1 void low_rank_update (re f H−matr ix H ∈ Rn,m ,
2 Matr ix U ∈ Rn,q , Mat r ix V ∈ Rm,q) {
3 σ := root of block tree for H ;
4 i f (sons(σ) = ∅) { // leaf of block tree

5 i f (σ ∈ Ffar) {
6 [Aσ ,Bσ] := low_rank_sum (Aσ ,Bσ ,U ,V) ;
7 }
8 else { // near-field block

9 H := H + U ·V ;
10 }
11 else {
12 foreach (τ = (v, w) ∈ sons(σ)) {
13 low_rank_update (H|τ ,(U)I(v),: ,(V)I(w),:) ;
14 }
15 }
16 }

△ Given a hierarchical matrix H ∈ Rn,m with local rank q stored in a block tree compatible format this
code computes recursively H + UV⊤ for U ∈ Rn,q and V ∈ Rm,q, and stores the result in H again.

Refer to Code 2.4.12 for a related algorithm.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 235

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

2.4.4 H-Multiplication of Hierarchical Matrices

We are given two hierarchical matrices Y ∈ Rn,k, Z ∈ Rk,m, n, k, m ∈ N with local ranks qY and qZ,
respectively, according to Def. 2.4.1. Our goal is to compute an approximation X ≈ y · z, which is itself a
hierarchical matrix.

We assume that

✦ Y is based on the binary cluster trees TI of I := {1, . . . , n} and TK of K := {1, . . . , k},
✦ Z is based on the binary cluster trees TK of K := {1, . . . , k}, and TJ of J := {1, . . . , m}.
✦ X ∈ Rn,m is based on the binary cluster trees TI of I := {1, . . . , n} and TJ of J := {1, . . . , m}.

! Note that the column tree of Y and the row tree of Z have to agree.

The sets of matrix blocks of X, Y, and Z will be denoted by F∗, ∗ = X, Y, Z. Superscripts X, Y, Z will
also tag the corresponding far-field and near field blocks: F∗far, F∗near, ∗ = X, Y, Z. We take for granted
that far-field matrix block are available in factorized form (2.4.4):

∀σ = (v, w) ∈ FX
far: ∃AX

σ ∈ R♯I(v),q , BX
σ ∈ R♯I(w),q: H|σ = AX

σ ·
(
BX

σ

)⊤
,

∀σ = (v, u) ∈ FY
far: ∃AY

σ ∈ R♯I(v),q , BY
σ ∈ R♯I(u),q: H|σ = AY

σ ·
(
BY

σ

)⊤
,

∀σ = (u, w) ∈ FZ
far: ∃AZ

σ ∈ R♯I(u),q , BZ
σ ∈ R♯I(w),q: H|σ = AZ

σ ·
(
BZ

σ

)⊤
.

(2.4.44)

We also point out that the matrix blocks corresponding to near-field cluster pairs are stored as dense
matrices, e.g.

(u, w) ∈ FZ
near ⇒ matrix Z|u×w ∈ R♯I(u),♯I(w) is directly accessible.

Note that the admissibility condition admX : TI × TJ → {true, false} used for X need not have any-
thing to do with the admissibility conditions underlying Y and Z. For ease of presentation we assume
q := qX = qY = qZ and that every leaf cluster contains at most r ≤ q indices:

v ∈ TI , sons(v) = ∅ ⇒ ♯I(v) ≤ q ,

w ∈ TJ , sons(w) = ∅ ⇒ ♯I(w) ≤ q ,

u ∈ TK , sons(u) = ∅ ⇒ ♯I(u) ≤ q ,
(2.4.45)

Thus, matrix blocks defined by leaves are small, need not be stored in low-rank factorized form, and will
invariably be assigned to the near field:

(x.y) ∈ F∗ , sons(x) = ∅ or sons(y) = ∅ ⇛ (x, y) ∈ F∗near . (2.4.46)

We remind of the constraint that near-field cluster pairs contain at least one leaf

(v, w) ∈ FX
near ⇒ sons(v) = ∅ or sons(w) = ∅ ,

(v, u) ∈ FY
near ⇒ sons(v) = ∅ or sons(u) = ∅ ,

(u, w) ∈ FX
near ⇒ sons(u) = ∅ or sons(w) = ∅ .

(2.4.47)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 236

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

As a consequence of (2.4.45) and (2.4.47), near-field matrix blocks will be small in one dimension and, in
particular, have rank ≤ q.

All these constraints are satisfied by partitions generated by the algorithm implemented in buildRec() in
Code 2.3.62 provided that the admissibility condition from (2.3.63) is used.

Assumption 2.4.48. Structure of result matrix

The matrix product Y · Z ∈ Rn,m allows an approximate representation by a hierarchical matrix X
with local rank qX ∈ N based on the cluster trees TI and TJ.

Thus, similar to the case of adding hierarchical matrices we will resort to low-rank truncation while carrying
out the operations of matrix multiplication.

(2.4.49) Recursive matrix multiplication

Inspired by Ex. 2.4.13 we aim for a recursive algorithm: Let (v, w) = σ = root(BX) be the root of the
block tree for X, that is, v = root(TI) and w = root(TJ).

• If neither v nor w is a leaf, the two son clusters both induce a 2× 2 block partition of X.

Fig. 108

X11 X12

X21 X22

Y1

Y2

Z1 Z2

TITI

TJTJ

s1s1

s2s2

t1t1 t2t2

= ·

sons(v) = {s1, s2} ,
sons(w) = {t1, t2}

Xs1×t1
= Ys1×r · Zr×t1

,

Xs1×t2 = Ys1×r · Zr×t2 ,

Xs2×t1
= Ys2×r · Zr×t1

,

Xs2×t2 = Ys2×r · Zr×t2 ,

r := root(TK) . (2.4.50)

• The cluster w is a leaf, but not v. The sons of v induce a 2× 1 block partition of X

Fig. 109

X1

X2

Y1

Y2

Z

TITI

TJTJ

s1s1

s2s2

= ·

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 237

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

sons(v) = {s1, s2}
Xs1×w = Ys1×r · Z ,

Xs2×w = Ys2×r · Z ,
r := root(TK) . (2.4.51)

• The cluster v is a leaf, but not w. The sons of w induce a 1× 2 block partition of X

Fig. 110

X2X1 Y Z1 Z2

TITI

TJTJ

t1t1 t2t2

= ·

sons(w) = {t1, t2}
Xv×t1

= Y · Zr×t1
,

Xv×t2 = Y · Zr×t2 ,
r := root(TK) . (2.4.52)

Note that all the sub-matrices occurring in (2.4.50), (2.4.51), and (2.4.52), are themselves hierarchical
matrices based on sub-trees of the cluster trees, see Rem. 2.4.10.

The following pseudocode demonstrates the approximation of the operation X := X + Y⊙ Z in “H-arithmetic
with hierarchical matrices as above. The the recursion stops when we have reached a leaf of the block
tree associated with X. Note that the full H-matrices are passed in each recursive call and that block are
selected through specifying cluster pairs.

Pseudocode 2.4.53: RecursiveH-multiplication (preliminary version)

1 void hmat_mult_add (re f H−matr ix X ∈ Rn,m ,
2 H−matr ix Y ∈ Rn,k , H−matr ix Z ∈ Rk,m) {
3 (v, w) := root of block tree associated with X ;
4 r := root of cluster tree TK ;
5 switch {
6 case ((v, w) ∈ FX

near) : { nearfield_block_mul (X ,Y ,Z) ; break ; }
7 case ((v, w) ∈ FX

far) : { farf ield_block_mul (X ,Y ,Z) ; break ; }
8 d e f a u l t : { // (v, w) does not correspond to a partition block of X

9 i f (sons(v) = ∅) {
10 i f (sons(w) = ∅) {
11 e r r o r (" Non− l e a f b l o c k must have sons ") ;
12 }
13 else { // Case (2.4.52)

14 {t1, t2} :=sons(w) ;
15 hmat_mult_add (X|v×t1

, Y , Z|r×t1
) ;

16 hmat_mult_add (X|v×t2
, Y , Z|r×t2

) ;

17 }
18 else { // Case (2.4.51)

19 {s1, s2} :=sons(v) ;

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 238

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

20 i f (sons(w) = ∅) { // Case (2.4.51)

21 hmat_mult_add (X|s1×w , Y|s1×r , Z) ;

22 hmat_mult_add (X|s2×w , Y|s2×r , Z) ;
23 }
24 else { // Case (2.4.50)

25 {t1, t2} :=sons(w) ;
26 hmat_mult_add (X|s1×t1

, Y|s1×r , Z|∗×t1
) ;

27 hmat_mult_add (X|s1×t2
, Y|s1×r , Z|∗×t2

) ;

28 hmat_mult_add (X|s2×t1
, Y|s2×r , Z|∗×t1

) ;

29 hmat_mult_add (X|s2×t2
, Y|s2×r , Z|∗×t2

) ;
30 }
31 }
32 }
33 }
34 }
35 }

To understand the challenges involved in implementing nearfield_block_mult() and farfield_block_mult()

we now focus on a single block X|σ , (v, w) = σ ∈ FX, a leaf of the block tree for X. In Ex. 2.4.13 we
could already catch a glimpse of the substantial additional complications compared to addition. The fol-
lowing drawing illustrates that blocks of various kinds and levels contribute to a single block of the matrix
product.

X = Y · Z





=







·







In order to compute X|σ we have to sum products of blocks Y|v×u and Z|u×w for suitable clusters u ∈ TK.
In other words, we accumulate the products Y|v×u · Z|u×w in X|σ , so that the basic operation is

X|σ ← X|σ + Y|v×u · Z|u×w for suitable u ∈ TK . (2.4.54)

To simplify the presentation, we introduce the concept that a cluster pair is contained in a block partition,
for instance for the matrix Y and its far field,

(v, u) ∈ TI × TK: (v, u)❁FX
far :⇔ ∃(v′, u′) ∈ FX

far: I(v)× I(u) ⊂ I(v′)× I(u′) .

The same notations will be used for the other matrices and their associated block partitions.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 239

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 111

v

w

TI

TJ

✁ (v, w) ❁ FX
far

The matrix block defined by (v, w) lies completely
in a far-field block of X.

Since, in (2.4.54) we have to admit rather arbitrary clusters u ∈ TK, we have to distinguish several cases:

➊ ρ := (u, w)❁ FZ
far ⇔ admZ(u, v) = true (contained in a far-field block of Z)

By Ass. 2.4.5 we have AZ
ρ ∈ R♯I(u),q and BZ

ρ ∈ R♯I(w),q at our disposal such that

Z|ρ = Aρ · B⊤ρ ⇒ Y|v×u · Z|ρ = Y|v×uAρB⊤ρ .

Therefore, in this case (2.4.54) amounts to a rank-q modification of X|σ , which can be accomplished
by calling low_rank_update() from Code 2.4.43 with the arguments

H ↔ X|σ , U ↔ Y|v×uAZ
ρ , V ↔ BZ

ρ .

The matrix Y|v×uAρ can be computed by feeding the columns of Aρ to the function hmv from
Code 2.4.12 (as argument~µ), supplying the hierarchical matrix (→ Rem. 2.4.10) Y|v×u as H-argument.

➋ τ := (v, u)❁ FY
far ⇔ admY(v, u) = true (contained in a far-field block of Y)

According to Ass. 2.4.5 we know the factorization

Y|τ = Aτ · Bτ , Aτ ∈ R♯I(v),q , Bτ ∈ R♯I(u),q .

Y|τ Z|u×w = Aτ · Bτ · Z|u×w = Aτ︸︷︷︸
=:U

·
(

Z|⊤u×w · Bτ

)⊤

︸ ︷︷ ︸
=:V⊤

.

Thus we have to do a rank-q update of X|σ, which can be accomplished by means of low_rank_update()

from Code 2.4.43.

The next three cases deal with near-field blocks.

➌ ρ := (u, w)❁ FZ
near and u is a leaf of TK.

In this case ♯I(u) ≤ q such that the product

Y|v×u · Z|ρ

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 240

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

is the factorized form of a rank-q matrix already. The matrix Z|ρ is immediately available, whereas

Y|v×u may have to be computed, because (v, u) ∈ BY need not be a leaf of BY. In this case we simply
use the function hmv from Code 2.4.12 to multiply unit vectors with the hierarchical matrix Y|v×u.

Once Y|v×u and Z|ρ are available, they supply the arguments U and B⊤ in a call to low_rank_update()

from Code 2.4.43 (with X|σ) as H-argument).

➍ ρ := (u, w)❁ FZ
near and w is a leaf of TJ.

Now we know ♯I(w) ≤ q such that the product Y|v×u · Z|ρ is a rank-q matrix already, because Z|ρ
has at most q columns. Therefore we first compute Y|v×u · Z|ρ by multiplying the hierarchical matrix

Y|v×u with the columns of Z|ρ (via hmv from Code 2.4.12) and then call low_rank_update() from
Code 2.4.43 with a suitable identity matrix as V-argument.

➎ τ := (v, u)❁ FY
near and u is a leaf of TK.

➣ will be captured by case ➋ already.

➏ τ := (v, u)❁ FY
near and v is a leaf of TI.

We know that ♯I(v) ≤ q, so that Y|τ has at most q rows. We compute V := Z|⊤u×w Y|⊤τ by multiplying

the columns of Y|⊤τ with Z|⊤u×w. This can be done with an algorithm similar to hmv() from Code 2.4.12.
This gives the V-argument for low_rank_update() from Code 2.4.43. The U-argument must be chosen
as identity matrix.

➐ Neither τ := (v, u) ❁ FY nor ρ = (u, w) ❁ FZ

To achieve a concise notation we write

sons+(x) :=

{
sons(x) , if sons(x) 6= ∅ ,

{x} else
, x = v, u, w .

The sons-functions refer to the cluster trees TI, TK, and TJ, respectively. In a recursive fashion we
move on to the sons of v, u, and w:

foreach v′ ∈ sons+(v) do

foreach w′ ∈ sons+(w) do

(i) If (v′, w′) ∈ FX (corresponds to a matrix block), that if, both v and w are leaves, then
perform

X|v′×w′ ← X|v′×w′ + Y|v′×u′ · Z|u′×w′ foreach u′ ∈ sons+(u) .

(ii) If (v′, w′) 6∈ FX we are visiting a sub-block of X, because (v′, w′) ❁ FX. This can be

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 241

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

the following situation

X|v×w = Y|v×u · Z|u×w

w

v
=

u

v
·

w

u
.

In this case, as indicated by the dashed red lines, we are forced to consider sub-blocks
of X|v×w though (v, w) ∈ FX!

Since we have no matrix block to add to we have to use a temporary matrix T ∈ R♯I(v),♯I(w),
initialized to O. Each pair (v′, w′) will correspond to a sub-matrix of T, which we will
designate by T|v′×w′ . We regard T as a hierarchical matrix with local rank q and a block
tree of depth 1.

Recursion: Apply the algorithm for the multiplication of hierarchical matrices to compute

T|v′×w′ ← T|v′×w′ + Y|v′×u′ · Z|u′×w′ foreach u′ ∈ sons+(u) .

Compression: Apply the algorithm of § 2.4.37 for the best rank-q approximation of block
matrices with rank-q blocks to T and add the result to X|v×w.

end

The reader is now encouraged to “run” the algorithm for the following far-field block of X:

X = Y · Z





=







·







(2.4.55) H-multiplication: Interleaved tree traversals

The multiplication as implemented in Code 2.4.53 involves hidden repeated traversals of the cluster tree
TK, which compromises efficiency. The following algoritm relies on interleaving of the tree traversals, thus
improving efficiency.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 242

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 2.4.56: RecursiveH-multiplication (interleaved version)

1 void hmat_mult_add (re f H−matr ix X ∈ Rn,m ,
2 H−matr ix Y ∈ Rn,k , H−matr ix Z ∈ Rk,m) {
3 (v, w) ∈ TI × TJ := root of block tree associated with X
4 (v, u) ∈ TI × TK := root of block tree associated with Y
5 (u, w) ∈ TK × TJ := root of block tree associated with Z
6 switch {
7 case ((u, w) ∈ FZ

far) {
8 low_rank_update (X ,Y ·AZ

(u,w) , BZ
(u,w)) ;

9 break ;
10 }
11 case ((u, w) ∈ FZ

near and u ∈ TK i s l e a f) {
12 low_rank_update (X , Y · Z , I) ;
13 break ;
14 }
15 case ((u, w) ∈ FZ

near and w ∈ TJ i s l e a f) {
16 X += Y · Z ;
17 break ;
18 }
19 case ((v, u) ∈ FY

far) {
20 low_rank_update (X , AY

(v,u) , Z⊤ · BY
(v,u)) ;

21 break ;
22 }
23 case ((v, u) ∈ FY

near and v ∈ TI i s l e a f) {

24 X +=
(
Z⊤ · Y⊤

)⊤
;

25 break ;
26 }
27 case ((v, u) ∈ FY

near and u ∈ TK i s l e a f) {
28 low_rank_update (X , Y , Z⊤) ;
29 break ;
30 }
31 d e f a u l t : { // recursion, no leaf clusters

32 foreach s ∈ sons(v) {
33 foreach t ∈ sons(w) {
34 foreach r ∈ sons(u) {
35 hmat_mult_add (X|s×t , Y|s×t , Z|r×t) ;
36 }
37 }
38 }
39 i f (v, w) ∈ FX

far {
40 Merge blocks of X into rank-q factorized form ;
41 }
42 }
43 }

“Merge” in Line 40 means the recompression of a matrix comprised of possibly low-rank blocks into a
rank-q-matrix, using the algorithm discussed in § 2.4.37.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 243

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 2.4.57 (Asymptotic complexity of H-multiplication)

Estimating the complexity of the algorithm hmat_mult_add from Code 2.4.56 is a formidable task and
can only be done under some restrictive assumptions, see [Hac15, Sect. 7.8.3], [Bör17, Sect. 5.7]. For
balanced binary cluster trees, we obtain

cost(hmat_mult_add) = O(q2(n + m + k)) for n, m, k→ ∞ . (2.4.58)

2.4.5 Hierarchical LU-Decomposition

(2.4.59) LU-decomposition: definition and existence

In [Hip15, Section 2.3.2] the LU-decomposition of square matrices was introduced as a matrix factorization
leading to an algorithm for implementing Gaussian elimination in a two-stage way.

Definition 2.4.60. LU-dcomposition [Hip15, Def. 2.3.18]

Given a square matrix A ∈ Rn.n, an upper triangular matrix U ∈ Rn,n and a normalized lower
triangular matrix L ∈ Rn,n provide an LU-decomposition of A, if A = L ·U.

Refer to [Hip15, Def. 1.1.5] to learn the defintion of a (normalized) triangular matrix, that is, a triangular
matrix with all diagonal entries = 1.







=




0

1
1

1
1

1
1

1
1

1
1

1
1 



·


 0




.

Without reordering an LU-decomposition of a square matrix may not exists, see [Hip15, Lemma 2.3.47].
[Hip15, Lemma 2.8.9] and [Hip15, Thm. 2.8.11] give us matrix properties ensuring the existence of an
LU-decomposition, for instance the following:

Theorem 2.4.61. LU-decomposition of s.p.d. matrices

If A ∈ Rn,n is symmetric positive definite (s.p.d.), then it has a unique LU-decomposition A = L ·U
according to Def. 2.4.60.

Remark 2.4.62 (S.p.d. boundary element Galerkin matrices)

S.p.d. Galerkin matrices usually arise from the boundary element discretization of the single layer and hy-
persingular boundary integral operators associated with Lu := − div(A grad u), A s.p.d., see Thm. 1.3.114,
Thm. 1.3.118, and Thm. 1.3.123 for details.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 244

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

From now we consider a symmetric positive definite square hierarchical matrix H ∈ Rn,n with fixed local
rank q based on the same binary cluster tree TI of I :=∈ {1, . . . , n} for both rows and columns.

(2.4.63) Compatible ordering

Obviously, the property of a matrix to be triangular will be destroyed by reordering its rows and columns.
To make sense of a “triangular hierarchical matrix” the ordering of the index set has to match the structure
of the cluster trees. To that end we assume a compatible ordering of the indices, namely

1. that the sons of non-leaf clusters are ordered; we write sons(v) = (s1, s2) ∀v ∈ TI.

2. that

sons(v) = (s1, s2) ⇒
{

i ∈ I(s1) , j ∈ I(s2) ⇒ i < j
}

. (2.4.64)

A compatible ordering can easily be achieved by an index re-mapping built based on
depth-first pre-order tree traversal.

Assumption 2.4.65.

For any square hierarchical matrix based on a binary row/column cluster tree and designated as
triangular a compatible ordering of the index set is assumed.

Goal: Find (lower/upper) triangular square hierarchical matrices LH and UH of local rank q based on
the same row and column cluster trees as H and with the same block partition as H such that
H ≈ LH ·UH with a small error in a relevant matrix norm.

(2.4.66) Triangular linear systems of equations

The rationale for trying to find H-LU factors LH and UH is the same as for the computation of an exact
LU-decomposition, see [Hip15, § 2.3.30]. With LU-factors LH and UH of H at our disposal we can
(approximately) solve the linear system of equations by successive forward and backward substitution

Solve H~µ = ~ϕ ⇔
{

➊ Solve LH~ζ = ~ϕ ,

➊ Solve UH~µ = ~ζ .
(2.4.67)

Thus we need efficient algorithms for solving linear systems of equations with triangular hierarchical coef-
ficient matrices.

Let LH ∈ Rn,n be a square invertible lower triangular hierarchical matrix based on the row and column
cluster tree TI. Wee seek

~ζ ∈ Rn,n: LH~ζ = ~ϕ , ~ϕ ∈ Rn . (2.4.68)

For LH to be invertible its diagonal blocks must be regular and cannot have low rank (compared to their
size). They should all be near-field blocks:

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 245

https://en.wikipedia.org/wiki/Tree_traversal

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Assumption 2.4.69. Near-field diagonal blocks

adm(v, v) = false ∀v ∈ TI

In particular, for all leaves v ∈ TI the matrix blocks LH|v×v are densely populated, invertible, lower trian-
gular matrices directly available in the data structure.

Recursion for solving (2.4.68): If

sons(root(TI)) = (s1, s2) ,

LH~ζ = ~ϕ ⇔



LH|s1×s1
O

LH|s2×s1
LH|s2×s2





~ζ|s1

~ζ|s2


 =



~ϕ|s1

~ϕ|s2


 ,

~ζ
∣∣∣
s1

= (LH|s1×s1
)−1~ϕ|s1

, ~ζ
∣∣∣
s2

= (LH|s2×s2
)−1

(
~ϕ|s2
− LH|s2×s1

~ζ
∣∣∣
s1

)
,

(2.4.70)

with • regular square lower triangular H-matrices LH|s1×s1
, LH|s2×s2

,

• general rectangular H-matrix LH|s2×s1
.

Pseudocode 2.4.71: Solving a triangular linear system with H-coefficient matrix

1 vec tor hmat_forw_elim (const H−matr ix LH , const vec tor ~ϕ) {
2 v := root of cluster tree TI, on which LH is based
3 i f (sons(v) = ∅) return L−1~ϕ ; // standard forward elimination

4 else { // recursion according to (2.4.70)

5 (s1, s2) := sons(v) ;
6 ~µ1 := hmat_forw_elim (LH|s1×s1

, ~ϕ|s1
) ;

7 vec tor ~ζ := 0 ; hmv(LH|s2×s1
, ~ζ , ~µ1) ;

8 ~τ := ~ϕ|s2
− ~ζ ;

9 return hmat_forw_elim (LH|s2×s2
, ~τ) ;

10 }
11 }

(2.4.72) Recursive tiling algorithm for LU-decomposition → [Hip15, Rem. 2.3.27]

The recursive computation of the LU-decomposition of an s.p.d. matrix H ∈ Rn,n is immediate from the
following block matrix product:

L ·U = H ⇔
[

L11 O

L21 L22

]
·
[

U11 U12

O U22

]
=

[
H11 H12

H21 H22

]
. (2.4.73)

Equating matching matrix blocks leads to the following steps for finding the unknown blocks of the nor-
malized lower triangular matrix L and the upper triangular matrix U (l + k = n)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 246

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

➊ Find L11, U11 ∈ Rk,k: L11 ·U11 = H11 =̂ LU-decomposition ➣ recursion,
➋ Find U12 ∈ Rk,l: L11U12 = H12 =̂ forward elimination,

Find L21 ∈ Rl,k: L21U11 = H21 =̂ forward elimination,
➌ Find L22, U22 ∈ Rl,l: L22 ·U22 = H22 − L21U12 =̂ LU-decomposition ➣ recursion.

The same scheme can be applied to an s.p.d. hierarchical matrix H ∈ Rn,n seeking triangular hierarchical
matrices LH, UH ∈ Rn,n based on the same row/column cluster tree TI, with one new twist however:

In the set of hierarchical matrices we cannot solve the matrix equations exactly, but only approxi-
mately.

➊ Find triangular H-matrices L11, U11 ∈ Rk,k: L11 ·U11≈H11 =̂ H-LU-decomposition,
➣ recursion.

➋ Find H-matrix U12 ∈ Rk,l: L11U12≈H12 =̂ forward elimination,
Find H-matrix L21 ∈ Rl,k: L21U11≈H21 =̂ forward elimination,

➌ Find triangular H-matrices L22, U22 ∈ Rl,l: L22 ·U22≈H22⊖L21⊙U12 =̂ LU-decomposition,
➣ recursion.

Note that the matrix operation H22⊖L21⊙U12 has to be conducted in H-arithmetic, because storage of
any intermediate dense matrix will exceed the memory constraints of the data-sparse approach. Fortu-
nately, this operation can be delivered by theH-arithmetic routine hmat_mult_add() from Code 2.4.53.

(2.4.74) Staggered matrix equations in H-arithmetic

A key component of the recursive computation of an H-LU-decomposition is the approximate solution of
the linear system of equations

LHXH = YH ,

where

✦ LH ∈ Rn,n is a lower triangular hierarchical matrix based on row/column cluster tree TI, with an ad-
missibility condition satisfying Ass. 2.4.69 and a compatible ordering of the index set, cf. Ass. 2.4.65.

✦ Y ∈ Rn,m is a general hierarchical matrix based on the row cluster tree TI and column cluster tree
TJ,

✦ XH ∈ Rn,m is the unknown general H-matrix based on the row cluster tree TI and column cluster
tree TJ.

In order to motivate the recursive algorithm we single out two clusters: v ∈ TI , w ∈ TJ.

If I(v) =∈ {1, . . . , n1}, n1 ≤ n, and the indices in I(w) are assumed to be contiguous, then the matrix
equations can be block-partitioned as follows




LH|v×v O

∗ ∗



·




∗ XH|v×w ∗

∗ ∗ ∗



=




∗ YH|v×w ∗

∗ ∗ ∗




2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 247

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

LH|v×v · XH|v×w = YH|v×w . (2.4.75)

Depending on the cluster pair (v, w) ∈ TI × TJ, which corresponds to a block of both XH and YH, we
distinguish several cases:

➊: (v, w) ∈ FX
near = FY

near (XH|v×w, XH|v×w =̂ near-field blocks)

In this case, while LH|v×v has to be regarded as a general lower triangular invertible hierarchical
matrix, both XH|v×w and XH|v×w are stored as densely populated small matrices and we can apply
hmat_forw_elim() from Code 2.4.71 to find the columns of XH|v×w, because

LH|v×v

(
XH|v×w

)
:,k

=
(

YH|v×w

)
:,k

, k ∈ I(w) .

➋: σ := (v, w) ∈ FX
far = FY

far (XH|v×w, XH|v×w =̂ far-field blocks)

Both XH|v×w and XH|v×w are rank-q matrices stored in factorized form, e.g.

yH|v×w = AY
σ · (BY

σ)
⊤ , AY

σ ∈ R♯I(v),q, Bσ ∈ R♯(I(w)),q . (2.4.76)

We have to find the corresponding low-rank factors AX
σ and BX

σ for XH.

We resort to hmat_forw_elim() from Code 2.4.71 to determine the columns of AX
σ and just copy BY

σ

LH|v×v

(
AX

σ

)
:,k

=
(

AY
σ

)
:,k

, k = 1, . . . , q , BX
σ = BY

σ , (2.4.77)

which ensures LH|v×v · XH|v×w = YH|v×w.

➌: (v, w) 6∈ FX = Fy

In this case neither v is a leaf of TI nor w is a leaf of TJ and both will have two sons:

sons(v) =: (s1, s2) [ordered] , sons(w) =: {t1, t2} .

The block-wise matrix product yields recursive formulas analogous to those derived from (2.4.70) and
implemented in Code 2.4.71. deduced from




LH|s1×s2
O

LH|s2×s1
LH|s2×s2



·




XH|s1×t1
XH|s1×t2

XH|s2×t1
XH|s2×t2



=




YH|s1×t1
YH|s1×t2

YH|s2×t1
YH|s2×t2




.





LH|s1×s2
XH|s1×t1

= YH|s1×t1
,

LH|s1×s1
XH|s1×t2

= YH|s1×t2
,

LH|s2×s2
XH|s2×t1

= YH|s2×t1
⊖ LH|s2×s1

⊙ XH|s1×t1
,

LH|s2×s2
XH|s2×t2

= YH|s2×t2
⊖ LH|s2×s1

⊙ XH|s1×t2
,

where the operations⊙ and⊖ indicate that some right-hand side matrices have to be computed using
H-arithmetic, more precisely the function hmat_mult_add() from (2.4.53).

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 248

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 2.4.78: Approximately solving a triangular matrix equation in H-arithmetic

1 H−matr ix ← hmat_triag_solve (H−matr ix LH , H−matr ix YH) {
2 XH := H-matrix with block structure of YH
3 (v, w) := root of block tree of LH
4 switch {
5 case ((v, w) ∈ FY

near) : { // Case ➊: dense near-field block

6 foreach k ∈ I(w) {
7 (X):.k := hmat_forw_elim (LH ,

(
YH|v×w

)
:,k

) ;

8 }
9 break ;

10 }
11 case ((v, w) ∈ FY

far) : { // Case ➋: far-field cluster pair

12 // In this case low-rank factorized representation: XH = AX(BX)⊤

13 for k := 1 to q { // column-by-column triangular solve

14

(
AX
)

:,k
:= hmat_forw_elim (LH ,

(
AY
)

:,k
) ;

15 }
16 BX := BY ; break ;
17 }
18 d e f a u l t : { // Case ➌: recursion

19 (s1, s2) := sons(v) ; (t1, t2) := sons(v) ;
20 XH|s1×t1

:= hmat_triag_solve (LH|s1×s1
, YH|s1×t1

) ;

21 XH|s1×t2
:= hmat_triag_solve (LH|s1×s1

, YH|s1×t2
) ;

22 hmat_mult_add (YH|s2×t1
, LH|s2×s1

, XH|s1×t1
) ;

23 hmat_mult_add (YH|s2×t2
, LH|s2×s1

, XH|s1×t2
) ;

24 XH|s2×t1
:= hmat_triag_solve (LH|s2×s2

, YH|s2×t1
) ;

25 XH|s2×t2
:= hmat_triag_solve (LH|s2×s2

, YH|s2×t2
) ;

26 }
27 }
28 return XH ;
29 }

(2.4.79) Recursive LU-decomposition in H-arithmetic → § 2.4.72

Armed with the function hmat_triag_solve() from Code 2.4.78 we can implement the recursive algorithm
outlined in § 2.4.72.

Pseudocode 2.4.80: RecursiveH-LU decomposition

1 [H−matr ix H−matr ix] ← hmat_lu_dec (H−matr ix HH) {
2 r := root of cluster three TI, on which HH is based ;
3 i f (sons(r) == ∅) { // leaf block

4 return lu_dec (HH) ; // standard LU-decomposition

5 }
6 else {
7 (s1, s2) := sons(v) ;
8 LH, UH := H-matrices with the same block structure as HH

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 249

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

9 [LH|s1×s1
, UH|s1×s1

] := hmat_lu_dec (HH|s1×s1
) ;

10 U|s1×s2
:= hmat_triag_solve (L|s1×s1

, HH|s1×s2
) ;

11 LH|⊤s2×s1
:= hmat_triag_solve (U|⊤s1×s1

, HH|⊤s2×s1
) ;

12 hmat_mult_add (H|s2×s2
,−LH|s2×s1

, UH|s1×s2
) ;

13 [LH|s2×s2
, U|H|s2×s2

] := hmat_lu_dec (HH|s2×s2
) ;

14 return [LH, UH] ;
15 }

Remark 2.4.81 (H-LU decomposition as preconditioner)

On the one hand, thanks to powerful error estimates for the local separable approximation of singular
asymptotically smooth kernels (→ Section 2.2.2), we have a rather good control of error committed when
approximating a kernel collocation matrix or a boundary element Galerkin matrix by means of clustering
techniques with geometric admissibility conditions.

On the other hand, the errors introduced byH-arithmetic, which offers only an approximation of linear alge-
bra operations, are very difficult to estimate. Therefore, the use of H-LU decompositions HH = LH ·UH
together with hmat_forw_elim() as an approximate solver for the linear system of equations HH~µ = ~ϕ is
not recommended.

Fortunately, preconditioners to be supplied to iterative Krylov subspace solvers (→ Rem. 2.3.118) need
supply only approximate solvers. If the approximation is bad, convergence of the iterative solver will usually
suffer, but it will not break down. Poor approximation afflicting H-arithmetic can thus be offset.

Preconditioners based onH-arithmetic

Inverses and LU-decompositions computed by H-arithmetic should be used for preconditioning
iterative solvers.

2.4.6 H2-Matrices

(2.4.83) Triple-factor low-rank factorization

Let us return to the local rank-q separable approximation by bi-directional interpolation as introduced
and analyzed in Section 2.2.1.3. Recall that on a box B ⊂ Dx × Dy ⊂ Rd ×Rd the kernel function
G : Dx × Dy → R is replaced with

G̃(x, y) :=
q

∑
k=1

q

∑
ℓ=1

G(tk
x, tℓy) bx

k (x)︸ ︷︷ ︸
=:gk,ℓ(x)

b
y
ℓ (y)︸ ︷︷ ︸

=:hk,ℓ(y)

, (2.4.84)

where ✦ tk
x ∈ Dx, k = 1, . . . , q, and tℓy ∈ Dy, k = 1, . . . , q are interpolation nodes, and

✦ bx
k : Dx → R and b

y
ℓ : Dy → R are the cardinal functions of the underlying interpolation

operator, see § 2.2.28.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 250

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Thus, given collocation points x1, . . . , xn ∈ Dx y1, . . . , ym ∈ Dy, the approximate kernel collocation ma-

trix M̃ ∈ Rn,m is based on G̃, has rank q, and can be represented in a special triple-factor form

(
M̃
)

i,j
=

q

∑
k=1

q

∑
ℓ=1

G(tk
x, tℓy)b

x
k (x

i)b
y
ℓ (y

j) , i = 1, . . . , n , j = 1, . . . , m

M̃ = U C V⊤ ,

U′ :=
[
bx

k (x
i)
]

i=1,...,n
k=1,...,q

∈ Rn.q ,

C :=
[

G(tk
x, tℓy)

]
k=1,...,qx
ℓ=1,...,q

∈ Rq,q ,

V :=
[
b

y
ℓ (y

j)
]

j=1,...,m
ℓ=1,...,q

∈ Rm.q .

(2.2.47)


 M̃


 =


 U



[

C
] [

V⊤
]

.

A very similar triple-factor low-rank representation arises from bi-directional interpolation combined with
clustering local low-rank compression applied to boundary element Galerkin matrices, see (2.3.111) in
Section 2.3.6.

Assume we use clustering with local rank-q separable approximation of a singular asymptotically smooth
kernel obtained by bi-directional interpolation to build a hierarchical matrix representation MH ∈ Rn,m (→
Def. 2.4.1) of a kernel collocation matrix M ∈ Rn,m based on cluster trees TI (row cluster tree) and TJ (col-
umn cluster tree). Then, using the notations of Def. 2.4.1 and, for a far-field cluster pair σ = (v, w) ∈ Ffar,
writing Aσ ∈ R♯I(v),q and Bσ ∈ R♯I(w),q for the low-rank factors of H|v×w according to (2.4.4), we can
choose

A = U C , B = V or A = U , B = VC⊤ .

Do we really have to break the beautiful symmetry inherent in bi-directional interpolation in this way? Of
course not, because we can simply retain the three matrix factors as we have already seen in § 2.3.75.

Example 2.4.85 (Storage requirements of double-factor and triple-factor representations)

In this example we revisit Ex. 2.3.29, which discussed clustering for d = 1 applied to a kernel collocation
matrix M =

[
G(ξi , ηj)

]n

i,j=1
∈ Rn,n, n = 2L−1, and equidistant collocation points

ξi :=
i− 1/2

n
, ηj :=

j− 1/2

n
, i, j ∈ {1, . . . , n} . (2.3.30)

We use the geometric admissibility condition η(B) ≤ 1
2 based on the admissibility measure η as defined

in (2.2.57). Here we adopt the convention that a single collocation point has a centered square bounding
box of width 1

2n . We use the same row and column balanced binary cluster tree, whose leaves contain s
single collocation point, see Fig. 100. Far-field cluster pairs must not comprise leaves.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 251

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 112 I

I
✁ Visualization of hierarchical matrix structure for

L = 6.

Each · corresponds to a matrix entry.

✷ =̂ far-field blocks

Counting as in Ex. 2.3.29, see (2.3.34), we find

♯{near-field blocks} = 32L − 8 ,

♯{far-field blocks on level ℓ} = 6(2ℓ − 1) , ℓ = 1, . . . , L− 3 .

Each near field block contains a single matrix entry, each far-field block on level ℓ ∈ {1, . . . , L− 3} holds
2L−ℓ−2 indices. Hence the total floating-point storage requirements for the standard hierarchical matrix
data structure with local rank q are

storage(H-matrix) = 3 · 2L − 8 +
L−3

∑
ℓ=1

6(2ℓ − 1) · 2q · 2L−ℓ−2 = O(Ln) for L→ ∞ . (2.4.86)

near-field blocks no. of far-field blocks low-rank factors

In § 2.3.71 we learned that once a triple-factor representation of far-field blocks σ = (v, w) ∈ TI × TI is
available, the matrices Uσ and Vσ depend only on the clusters v and w, respectively, see (2.3.73). Thus
they can be stored in the nodes of the cluster trees (except for the leaf level in this example). Only the
coupling matrices Cσ remain to be stored in the far-field blocks. This leads to total floating point storage
requirements

storage(“§ 2.3.71”) = 3 · 2L − 8 +
L−3

∑
ℓ=1

q26(2ℓ − 1) + 2 ·
L−1

∑
ℓ=0

2ℓ · 2L−ℓ = O(Ln) for L→ ∞ .

(2.4.87)

near-field blocks storage for Cσ storage for Uv, Vw

We observe that the asymptotic storage requirements are determined by the last term!

(2.4.88) Transfer matrices

Let us assume that in Eq. (2.2.47) we use a bi-directional interpolation scheme based on tensor-product
polynomial interpolation of degree p ∈ N, as explained in § 2.2.42. This means, q = (p + 1)d. The
space, in which we approximate the kernel (x, y) 7→ G(x, y) on every far-field cluster box box(v)× box(w),
(v, w) ∈ Ffar, will be the same for all far-field clusters, namely the tensor-product polynomial space

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 252

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

T Pp(R2d) (→ Def. 1.4.148). Moreover, for all clusters v ∈ TI, w ∈ TJ, the spaced spanned by the

cardinal functions (aka tensor-product Lagrange polynomials) x 7→ bx
k (x) and y 7→ b

y
ℓ (y), respectively,

will coincide with T Pp(Rd):

∀v ∈ TI: Span{bx
k}

q
k=1 = T Pd(R

p) , ∀v ∈ TI: Span{by
ℓ}

q
ℓ=1 = T Pd(R

p) . (2.4.89)

Though not expressed by the notation, the cardinal functions depend on the clusters, of course.

Let us restrict ourselves to the row tree TI and focus on non-leaf clusters v ∈ TI. For the associated
cardinal functions ∈ T Pp(Rd) we write bv

k , k = 1, . . . , q, Owing to (2.4.89) they can be represented by
linear combinations of the cardinal functions of each son cluster:

∀s ∈ sons(v): bv
k =

q

∑
ν=1

tv,s
k,νbs

ν , tv,s
k,ν = bv

k(t
s
ν) , (2.4.90)

with {ts
1, . . . , ts

q} ⊂ box(s) standing for the set of interpolation nodes on the son cluster s ∈ TI. The

formula for the expansion coefficients tv,s
k,ν is immediate from (2.2.34). This permits us to rewrite the low-

rank factor matrix Uv for the cluster v in terms of the corresponding matrices for its sons:

(Uv)i,k = bv
k(x

i) =
q

∑
ν=1

tv,s
k,νbs

ν(x
i) , i ∈ I(v) , k = 1, . . . , q , (2.4.91a)

s ∈ sons(v) ⇒ (Uv)i,k =
q

∑
ν=1

tv,s
k,ν(Us)i,ν , i ∈ I(s) . (2.4.91b)

For a cluster v ∈ TI and one of its sons s ∈ sons(v) we collect the coefficients tv,s
k,ν from (2.4.91) in the

transfer matrix Tv,s ∈ Rq,q:

(Tv,s)k,ν = tv,s
k,ν = bv

k(t
s
ν) , k, ν = 1, . . . , q . (2.4.92)

In the particular case of a binary cluster tree TI with sons(v) = (s1, s2), the rules of matrix multiplication
imply

Uv =

[
Us1

(Tv,s1)⊤

Us2(T
v,s2)⊤

]
. (2.4.93)

✎ Notation: Since every cluster, except for the root cluster, has exactly one father, we may associate the
transfer matrix Tv,s with the son cluster s and, when doing so, denote it by Ts.

(2.4.94) Storing hierarchical matrix based on transfer matrices

Let us assume the setting of the previous paragraph § 2.4.88 with triple-factor low-rank representation
MH|σ = UvCσV⊤w of the far-field matrix blocks as in (2.2.47). The relationship (2.4.93) suggests a more
efficient way to store the hierarchical matrix MH.

Idea: ✦ Store Uv/Vw in the leaf nodes only.
✦ Store the transfer matrices Tv/Tw in all (son) clusters v ∈ TI/w ∈ TJ.

storage(transfer matrices) = q2 · (♯TI + ♯TJ) . (2.4.95)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 253

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

In the case of balanced binary trees, we know ♯TI ≤ 2♯I and ♯TJ ≤ 2♯J and in this case

storage(transfer matrices) ≤ 2q2(m + n) .

Recall that in Ex. 2.4.85 the asymptotically largest amount of storage was used for the cluster-specific
factors of the triple-factor low-rank factorization, cf. (2.4.87). So a data structure relying on transfer
matrices can achieve an asymptotic memory complexity of O(n) in this example!

(2.4.96) H2-matrices

Storing hierarchical matrices with triple-factor low-rank representations of far-field blocks and the possibility
of a “leaf-down” successive computation of the cluster-specific transfer matrices according to (2.4.93) can
be abstracted into a new variant of hierarchical matrices.

Definition 2.4.97. H2-matrices

Given n, m ∈ N, a matrix H ∈ Rn,m is aH2-matrix with local rank q, if there exist
• cluster trees TI (row tree) and TJ (column tree) for I := {1, . . . , n} and J := {1, . . . , m},
• an abstract admissibility condition adm : TI × TJ → {true, false},
• transfer matrices Tv/Tw for all v ∈ TI \ {root(TI)}/w ∈ TJ \ {root(TJ)},

such that

(i) H|v×w = UvC(v,w)Vw
⊤ ,





U ∈ R♯I(v),q ,
C ∈ Rq,q ,

V ∈ R♯I(w)
∀(v, w) ∈ Ffar , (2.4.98a)

(ii) Uv =
[
Us(Ts)⊤

]
s∈sons(v)

, v ∈ TI , Vw =
[
Vt(Tt)⊤

]
t∈sons(w)

, w ∈ TJ , (2.4.98b)

(iii) ♯I(v), ♯I(w) ≤ q ∀ leaves v ∈ TI, w ∈ TJ , (2.4.98c)

where the far field Ffar ⊂ TI × TJ is defined as in Def. 2.4.1.

The matrices Uv, v ∈ TI, are called the row cluster bases, Vw, w ∈ TJ, the column cluster basis, and
C(v,w) the coupling matrices.

The estimate

storage(transfer matrices) = q2 · (♯TI + ♯TJ) . (2.4.95)

for the amount of memory needed to store the transfer matrices still holds for H2-matrices. For leaf clus-
ters v, w of TI or TJ, respectively, we have to keep Uv or Vw, which will consume another≤ q(♯TI + ♯TJ)
floating point numbers. For estimates addressing the amount of storage needed for the coupling matrices
and the near-field blocks refer to § 2.3.85 and (2.3.95); the role of the sparsity measure spm(F) from
Def. 2.3.92 remains unchanged. Summing up, we can bound

storage(H2-matrix) ≤ ∑
(v,w)∈Fnear

♯I(v) + ♯I(w) + (spm(Ffar) + 1)q2 · (♯TI + ♯TJ) . (2.4.99)

In the special case of a balanced binary tree as constructed by buildRec from Code 2.3.62, the number
of near-field blocks and the number of clusters is bounded by n + m, which implies

storage(H2-matrix from buildRec()) = O(q2(m + n)) for n, m→ ∞ . (2.4.100)

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 254

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 2.4.101 (Data structure forH2-matrices)

Any object of a type compatible with the concept of anH2-matrix with local rank q according to Def. 2.4.97
must provide

• access to suitable objects for both row and column cluster tree TI and TJ,

• instant access to

– the cluster bases Uw ∈ R♯I(w),q and Vv ∈ R♯I(v),q for leaf nodes,

– the tranfer matrices Tv ∈ Rq,q, Tw ∈ Rq,q for all v ∈ TI and w ∈ TJ.

– the coupling matrices C(v,w) ∈ Rq,q for all far-field cluster pairs (v, w) ∈ Ffar,

– the dense near-field blocks H|v×w ∈ R♯I(v),♯I(w) for all (v, w) ∈ Fnear.

(2.4.102) H2-matrix×vector multiplication

We extend the considerations of Section 2.3.5 about how to organize the matrix×vector product efficiently
in the case of local triple-factor low-rank representation

M̃
∣∣∣
v×w

= Uv · C ·V⊤w , (v, w) ∈ Ffar ,

of the matrix M̃ to H2-matrices, which faeture the additional component of transfer matrices, see ??,
(2.4.98b).

Recall the reduce-to-cluster restriction and index remapping operation for w ∈ TJ

Rw : Rm → R♯I(w) , Rw(~µ) :=




µj1
...

µjℓ


 , with I(w) = {j1, . . . , jℓ}, ℓ := ♯I(w) . (2.3.98)

and the expand-from-cluster assembly operation for a row cluster v ∈ TI:

Ev : R♯I(v) → Rn , (Ev~ν)i :=

{
νℓ , if iℓ = i ,

0 , if k 6∈ I(v) ,
with I(v) = {i1, . . . , ik}, k := ♯I(v) ,

(2.3.99)

with associated matrices Rw and Ev. Consider a far-field cluster pair (v, w) ∈ Ffar consisting of non-leaf
clusters with

sons(v) = {s1, s2} , sons(w) = {t1, t2} .

Then, in light of Def. 2.4.97, (2.4.98b), the key operation of multiplying a snippet of a vector~µ ∈ Rm with
a far-field block of anH2-matrix becomes:

EvUvC(v,w)V
⊤Rw~µ =


Es1

Us1
T⊤S1︸︷︷︸
FtS

+Es2Us2 T⊤s2︸︷︷︸
FtS


 ·C(v,w) ·


 Tt1︸︷︷︸

StF

V⊤t1
Rt1

+ Tt2︸︷︷︸
StF

V⊤t2
Rt2


~µ .

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 255

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We observe that reduce-to-cluster and multiplication with the column cluster basis as well as multiplication
with the row cluster basis and expand-from-cluster can be done on the level of the sons. This has to be
supplemented by son→father (StF) and father→son (FtS) transformations through the transfer matrices.
Thus, by recursion all reduction and expansion operations can be pushed to the leaf level of the cluster
trees.

The following algorithm does this for reduce-to-cluster and multiplication with the column cluster bases
and implements the so-called forward transformation.

Pseudocode 2.4.103: Recursive transformation into column cluster bases

1 void forward_tr f (H2−matr ix M , c l u s t e r w ∈ TJ ,
2 vec tor ~µ ∈ Rm , re f vec tors (~ωw)w∈TJ

) {

3 i f (sons(w) == ∅) { \ \ l e a f c l u s t e r
4 ~ωw := V⊤w~µ|I(w) ;

5 }
6 else { // recurse into sons for father clusters

7 foreach t ∈ sons(w) {
8 forward_tr f (M , t , ~µ , (~ωw)w∈TJ

) ;

9 ~ωw += Tt~ω|I(t) ;

10 }
11 }
12 }

The backward transformation realizes the multiplication with the row cluster bases Uv for each v ∈ TI and
the subsequent expand-from-cluster operation:

Pseudocode 2.4.104: Recursive transformation into column cluster bases

1 void backward_trf (H2−matr ix M , c l u s t e r v ∈ TI ,

2 vec tors
(
~ζv

)
v∈TI

, re f vec tor ~ρ ∈ Rn) {

3 i f (sons(v) == ∅) { \ \ l e a f c l u s t e r

4 ~ρ|I(v) += Uv
~ζv ;

5 }
6 else { // recurse into sons for father clusters

7 foreach s ∈ sons(v) {

8 ~ζs += T⊤s ~ζv ;

9 backward_trf (M , s ,
(
~ζv

)
v∈TI

, ~ρ) ;

10 }
11 }
12 }

The argument vector~ρ used for returning the result has to be initialized with zero.

These two recursive functions are building blocks for a 3-pass computation of M~µ analogous to the algo-
rithm from Section 2.3.5:

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 256

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 2.4.105: Recursive transformation into column cluster bases

1 vec tor ← h2mv(H2−matr ix M , vec to r ~µ ∈ Rn) {
2 vec tors (~ωw)w∈TJ

:= 0 ; forward_tr f (M , root(TJ) , ~µ , (~ωw)w) ;

3 vec tors
(
~ζv

)
v∈TI

= 0 ;

4 // far-field blocks: multiplication with coupling matrices

5 foreach ((v, w) ∈ Ffar) { ~ζv += C(v,w)~ωw ; }
6 // near-field blocks: direct multiplication

7 foreach ((v, w) ∈ Fnear) { ~ζv += H|v×w~ωw ; }

8 vec tor ~ρ ∈ Rn := 0 ; backward_trf (M , root(TI) ,
(
~ζv

)
v∈TI

, ~ρ) ;

9 return ~ρ ;
10 }

?! Review question(s) 2.4.106.

1. We can define a class H∗ of n×m hierarchical matrices, n, m ∈ N by fixing the row and column
cluster trees and the block partition F. Outline an algorithm that, given M ∈ Rn,m constructs

H∗ := argmin
H∈Ch∗

‖M−H‖F .

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 257

Chapter 3

Convolution Quadrature

This chapter studies a class of modern numerical methods for particular evolution problems, which are
models with a particular direction of propagation, usually called time. In these models we can distinguish
past and future and the latter must not have any influence on the former, a feature called causality. The
mathematical description of many evolution models relies on initial value problems (IVP) for ordinary differ-
ential equations (ODEs), see [Hip15, Section 11.1]. They seek an for an unknown function y : I ⊂ R → V
satisfying (the symbol ˙ stands for the derivative with respect to time t)

ẏ = f(t, y) , y(t0) = y0 , (3.0.1)

with y0 ∈ V and f : I ×V → V. Here, V is the state space, either V = Rd, d ∈ N, or a more gen-
eral Banach space. The latter case also covers evolution problems for partial differential equations like
parabolic initial boundary value problems [Hip16, Section 6.1] and wave equations [Hip16, Section 6.2]. In
this case V will be a Sobolev space like H1(Ω).

One may call (3.3.15) a “time-local” evolution, because the direction of evolution depends only on the
current state. This is in contrast to causal evolution problems with memory, which will be in our focus now.
In these problems (the change of) the current state will be influenced by the entire past from some initial
time. This will entail fundamentally new approaches to the construction of stable and efficient numerical
integrators (timestepping schemes).

Contents

3.1 Basic Concepts and Tools . 259

3.1.1 Convolution of Causal Functions . 259
3.1.2 Discrete Convolutions . 263
3.1.3 Laplace Transform . 265
3.1.4 Diagonalizing Convolutions . 270

3.2 Convolution Equations: Examples . 278

3.2.1 Tomography: Abel Integral Equation . 278
3.2.2 Impedance Boundary Conditions . 280
3.2.3 Time-Domain Boundary Integral Equations 282

3.3 Implicit-Euler Convolution Quadrature . 286

3.3.1 Setting and Goal . 286
3.3.2 Derivation . 287
3.3.3 Properties of implicit-Euler Convolution Quadrature 293
3.3.4 Convergence . 295

3.4 Multistep Convolution Quadrature . 298

3.4.1 Multistep Numerical Integrators . 298
3.4.2 Convolution Weights . 298
3.4.3 Convolution Quadrature: Algorithms . 298

258

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

3.5 Runge-Kutta Convolution Quadrature . 298

3.6 Fast Oblivious Convolution Quadrature . 298

3.1 Basic Concepts and Tools

3.1.1 Convolution of Causal Functions

From calculus recall a fundamental binary operation on absolutely integrable functions R→ R, that func-
tions belonging to

L1(R) := { f : R→ R integrable:
∫

R
| f (x)|dx < ∞} . (3.1.1)

Definition 3.1.2. Convolution on the real line

Given two functions f , g ∈ L1(R), their convolution f ∗ g ∈ L1(R) is defined as

(f ∗ g)(t) :=
∫

R
f (t− ξ) g(ξ)dξ =

∫

R
f (ξ) g(t − ξ)dξ , t ∈ R .

From the very definition we conclude that

∗ : L1(R)× L1(R)→ L1(R) is continous, bilinear, and symmetric.

Interchanging orders of integration (“Fubini’s theorem”) reveals another important property of convolution:

Corollary 3.1.3. Associativity of convolution

(f ∗ g) ∗ h = f ∗ (g ∗ h) ∀ f , g, h ∈ L1(R)

Example 3.1.4 (Some special convolutions)

• Convolution with the Heaviside function: f (t) =

{
1 , if t ≥ 0 ,

0 , if t < 0 .
boils down to integration

(f ∗ g)(t) =

t∫

−∞

g(ξ)dξ , t ∈ R .

• Convolution reproduces (complex) exponentials:

(f ∗ {t 7→ exp(iωt)}) = exp(iωt) ·
∞∫

−∞

f (ξ) exp(−iωξ)dξ , t ∈ R .

Sloppily speaking, when considering the convolution with a fixed function f as a linear mapping
g 7→ f ∗ g, then the exponentials {t 7→ exp(iωt)} can be regarded as eigenfunctions. However,
note that they do not belong to L1(R)!

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 259

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 3.1.5 (Convolution in Lp(R)-spaces)

As a generalization of L1(R), for 1 ≤ p < ∞ and an interval I ⊂ R we may consider the space of func-
tions

Lp(I) := { f : I → R integrable: ‖ f‖p

Lp(I)
:=
∫

I
| f (x)|p dx < ∞} . (3.1.6)

This family is completed by L∞(R) the space of essentially bounded functions equipped with a gener-
alized supremum norm. All these spaces are Banach spaces. We can define the convolution on certain
pairs of them.

Theorem 3.1.7. Young’s inequality for convolutions [McL00, Thm. 3.1]

If p, q, r ∈ [1, ∞] satisfy p−1 + q−1 = 1 + r−1, then the convolution can be extended to a continu-

ous mapping ∗ : Lp(R)× Lq(R)→ Lr(R), in particular

‖ f ∗ g‖Lr(R) ≤ ‖ f‖Lp(R) · ‖g‖Lq(R) ∀ f ∈ Lp(R) , g ∈ Lq(R) . (3.1.8)

The case p = r = ∞, q = 1, furnishes pointwise estimates

(f ∗ g)(t) ≤ ‖ f‖L1(R) · ‖g‖L∞(R) ∀ f ∈ L1(R) , g ∈ L∞(R) . (3.1.9)

Remark 3.1.10 (Convolution of distributions [Rud73, pp. 170])

Sloppily speaking, a distribution on R is a linear functional on the space C∞
0 (R) of smooth compactly

supported functions. The evaluation of a distribution φ for g ∈ C∞
0 (R) is usually written as a formal

integral:

φ(g) =: 〈φ, g〉 =:
∫

R
φ(ξ) g(ξ) dξ , ∀g ∈ C∞

0 (R) .

In this sense, we can read the convolution of a distribution with a smooth compactly supported function
g ∈ C∞

0 (R)

(φ ∗ g)(t) :=
∫

R
φ(t− ξ)g(ξ)dξ =

∫

R
φ(ξ)g(t − ξ)dξ := 〈φ, {ξ 7→ g(t− ξ)}〉 , t ∈ R . (3.1.11)

In some cases the resulting expression remains meaningful even for functions g of limited smoothness.
One such case is the δ-distribution

δx : C∞
0 (R)→ R , δx(g) := g(x) x ∈ R , (3.1.12)

for which convolution becomes a shift operation that makes sense for for very general functions

(δx ∗ g)(t) = g(t− x) , g ∈ L∞(R) . (3.1.13)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 260

https://en.wikipedia.org/wiki/Young_convolution_inequality

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(3.1.14) Causal functions

Causal evolutions model processes that start at some point t = 0 in time. They can be described by
functions on R that vanish for t < 0.

Definition 3.1.15. Causal functions

For a vector space X an integrable function f : R→ X is called causal, if f (t) = 0 for almost all
t < 0.

Note that causal functions are defined on all of R. Thus, a causal function g that is continuous will auto-

matically satisfy g(0) = 0. If g is k-times continuously differentiable, then g(ℓ)(0) = 0 for all 0 ≤ ℓ ≤ k.

The convolution of two R-valued causal functions takes a special form and yields another causal function

f , g causal ⇒ (f ∗ g)(t) =
∫ t

0
f (t− ξ)g(ξ)dξ =

∫ t

0
f (ξ)g(t − ξ)dξ , t ≥ 0 , (3.1.16)

⇒ (f ∗ g)(t) depends on f |[0,t], g|[0,t] only. (3.1.17)

Thus, in the causal case, Thm. 3.1.7 leads to the estimates

‖ f ∗ g‖Lr([0,T]) ≤ ‖ f‖Lp([0,T]) · ‖g‖Lq([0,T]) , (3.1.18)

if p, q, r ∈ [1, ∞] satisfy the assumptions of Thm. 3.1.7: p−1 + q−1 = 1 + r−1.

(3.1.19) Signal-processing background

A function f : R→ R can be regarded as a time-continuous, analog signal. Such a signal can be
sent over a causal, linear, time-invariant channel, which, mathematically speaking, is a linear operator
T : L∞(R)→ L∞(R) that

✦ maps causal functions to causal functions, that is, g(t) = 0 for t < 0 then (Tg)(t) = 0 for t < 0,
too.

✦ satisfies

T({t 7→ g(t− ξ)})(t) = (Tg)(t − ξ) , ∀g ∈ L∞(R) , ∀ξ ∈ R . (3.1.20)

Then there is a f ∈ L1(R) such that

Tg = f ∗ g ∀g ∈ L∞(R) .

The function f is called the (impulse) response function of T, because “ f = T(δ0)” hints that it can be
obtained as output, when feeding the “impulse” δ0 into the channel.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 261

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(3.1.21) Convolutions of operators

In Def. 3.1.2, we considered the convolution of two real-valued functions. By componentwise considera-
tion, we can instantly extend this to integrable matrix-valued and vector-valued functions

F : R→ Rn,m , g : R→ Rm .

(F ∗ g)(t) :=
∫

R
F(t− ξ) · g(ξ)dξ =

∫

R
F(ξ) · g(t− ξ)dξ ∈ Rn , t ∈ R .

Here, · designates the matrix×vector product. Generalizations of the associativity property, Cor. 3.1.3,
and 3.1.7 to this case are straightforward. Of course, this kind of convolution can no longer be commuta-
tive.

We can even go one step further and for Banach spaces X, Y consider the convolution with a one-
parameter family of bounded linear operators represented by an integrable “linear-operator-valued” func-
tion f : R→ L(X, Y), L(X, Y) the vector space of bounded linear mappings X → Y:

f : R → L(X, Y) , g : R→ X: (f ∗ g)(t) :=
∫

R
f(t− ξ)(g(ξ)) dξ , t ∈ R .

(3.1.22) Convolution equations

As in § 3.1.21, let X, Y be Banach spaces. Given a causal continuous function y : R→ Y and a causal
operator-valued function f : R → L(X, Y), we can state the convolution equation

(f ∗ u)(t) =
∫ t

0
f(t− ξ)(u(ξ)) dξ = y(t) , t ∈ R , (3.1.23)

for the unknown causal function u : R→ X. At first glance this looks like a simpler form of the integral
equations tackled in Chapter 1, but it is fundamentally different because it encodes a direction of propa-
gation, since u|[0,T] should depend on y|[0,T] only (causality!). This is also reflected by the fact that the
domain of integration depends on t unlike in the case of integral equations of the form

u : Γ→ R:
∫

Γ
k(x, y) u(y)dS(y) = y(x) , y ∈ Γ .

This chapter will be dedicated to

1. approximating the convolution (3.1.16) of causal functions, given in a particular form, namely through
their Laplace transform.

2. approximately solving convolution equations like (3.1.23).

Since both types of tasks address evolution problems, the methods will have the flavor of timestepping
schemes.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 262

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

3.1.2 Discrete Convolutions

(3.1.24) Sequences

We consider the sampling of a continuous function f : R→ X, X a vector space, on an equidistant lattice
with step size τ > 0,

Gτ := {tℓ := τ · ℓ}ℓ∈Z . (3.1.25)

This yields a sequence (fℓ) : Z→ X, fℓ := f (tℓ), ℓ ∈ Z “(fℓ) = f |Gτ
”.

✎ Notation: We write (xℓ) for a sequence Z→ X with terms xℓ ∈ X. Sometimes the index range will be
restricted to subset of Z

Replacing the improper integral in Def. 3.1.2 with a bi-infinite sum yields the convolution of real-valued
absolutely summable sequences:

Definition 3.1.26. Convolution of sequences

If the sequences (fℓ), (gℓ) : Z → R satisfy ∑ℓ∈Z | fℓ| < ∞ and ∑ℓ∈Z |gℓ| < ∞, then

((fℓ) ∗ (gℓ))n := ∑
l∈Z

fn−ℓ · gℓ = ∑
l∈Z

fℓ · gn−ℓ , n ∈ Z .

defines another summable sequence Z→ R the discrete convolution of (fℓ) and (gℓ).

The discrete convolution operation enjoys similar properties as the convolution on R:

Theorem 3.1.27. Properties of discrete convolution of sequences

The discrete convolution according to Def. 3.1.26 is a symmetric, bilinear, and associative mapping

of the space ℓ1(Z) of summable sequences into itself.

Young’s inequality of Thm. 3.1.7 also carries over:

(
∞

∑
n=−∞

|((fℓ) ∗ (gℓ))n|
r

) 1
r

≤
(

∞

∑
n=−∞

| fℓ|p
) 1

p

·
(

∞

∑
n=−∞

|gℓ|q
) 1

q

(3.1.28)

for p, q, r ∈ [1, ∞] with p−1 + q−1 = 1 + r−1 and for all sequences for which the right hand side of
(3.1.28) is finite. If p, r = ∞, q = 1, the maximum modulus term of the sequence has to be picked.

Remark 3.1.29 (Sequences as distributions)

Given a sequence (fℓ) ⊂ R, for τ > 0 we can define the distribution

ϕ :=
∞

∑
ℓ=−∞

fℓ δτℓ , δτℓ =̂ δ-distribution located at τℓ, cf. (3.1.12). (3.1.30)

Following (3.1.11) we find that for g ∈ C∞
0 (R)

(ϕ ∗ g)(t) =
{

t 7→
∞

∑
ℓ=−∞

fℓ g(t− τℓ)
}
∈ C∞(R) . (3.1.31)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 263

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

A closer inspection shows that with ϕ given in (3.1.30)

(ϕ ∗ g)|Gτ
= (fℓ) ∗ (g|Gτ

) . (3.1.32)

Beware: the ∗ on the left designated the convolution of functions according to Def. 3.1.2, whereas the ∗
on the right means the convolution of sequences from Def. 3.1.26.

(3.1.33) Causal sequences

If f : R → X is causal, the sequence (fℓ) := f |Gτ
is causal in the sense that fℓ = 0 for ℓ < 0. In analogy

to (3.1.16) the discrete convolution of two causal sequences yields another causal sequence according
to

(fℓ), (gℓ) causal ⇒ ((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n ∈ N0 . (3.1.34)

Causal sequences are a powerful abstraction:

• In a signal-processing context a causal sequence represents a time-discrete analog signal, recall
[Hip15, § 4.0.1]. Regarding the causal sequence (gℓ) as input the convolution (fℓ) ∗ (gℓ) represents
the output of a time-invariant, linear, causal filter with impulse response (fℓ): the impulse gℓ at
t = tℓ triggers the response (fk−ℓ)k≥ℓ and the output signal results from the linear superposition of
all these responses. More details are given in [Hip15, Section 4.1].

• A causal sequence (gℓ) is related to a formal power series

(gℓ) ↔ (Z(gℓ))(z) :=
∞

∑
ℓ=0

gℓz
l , z ∈ C . (3.1.35)

which is called the z-transform of (gℓ). If (gℓ) is summable, then the series will converge inside
the unit disc {z ∈ C : |z| < 1} ⊂ C and define an analytic function there.

For (formal) power series the discrete convolution formula (3.1.34) agrees with the Cauchy product
of the two sequences. An important consequence is that the product of z-transforms of two summable
causal sequences is equivalent to the power series expansion of the discrete convolution of the given
sequences.

Theorem 3.1.36. z-Transform and discrete convolution

If (gℓ) and (fℓ) are causal summable sequences, then

Z((fℓ) ∗ (gℓ))(z) = Z((fℓ))(z) · Z((gℓ))(z) , ∀z ∈ {z ∈ C : |z| < 1} . (3.1.37)

Note that in (3.1.37) · is the multiplication in C.

(3.1.38) Operator-valued sequences

The generalization pursued in § 3.1.21 can also be pursued for causal sequences. For normed vector
spaces X, Y let (fℓ) ⊂ L(X, Y) stand for a causal sequence of bounded linear operators X → Y, and
(gℓ) ⊂ X. The natural way to extend the discrete convolution to these sequences is

((fℓ) ∗ (gℓ))n :=
n

∑
ℓ=0

fn−ℓ(gℓ) =
n

∑
ℓ=0

fℓ(gn−ℓ) ∈ Y , n ∈ N0 . (3.1.39)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 264

https://en.wikipedia.org/wiki/Cauchy_product

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

A discrete convolution equation for causal sequences has the simple structure of an infinite triangular
linear system of operator equations. If (fℓ) ⊂ L(X, Y), (yℓ) ⊂ Y are causal sequences, then

(fℓ) ∗ (uℓ) = (yℓ) ⇔




f0 O
f1 f0 O . . .
f2 f1 f0 O . . .
...

.
...

.







u0

u1

u2
...
...



=




y0

y1

y2
...
...




. (3.1.40)

If and only if f0 is invertible, this operator equation can be solved recursively similar to the forward elimi-
nation step in Gaussian elimination:

f0un = yn −
n−1

∑
ℓ=0

fn−1−ℓuℓ , n ∈ N0 . (3.1.41)

This simple scheme is also known as marching on in time (MOT) algorithm in the area of timestepping
methods for evolution problems.

Our goal will be the disretization of the convolution of causal functions through replacement by a dis-

crete convolution: for causal f : R→ L(X, Y), g : R→ X we seek τ-dependent sequences (w
f ,τ
ℓ

)
of convolution weights such that

(f ∗ g)|Gτ
≈ (w

f ,τ
ℓ

) ∗ g|Gτ
(3.1.42)

m
tn∫

0

f (tn − ξ) (g(ξ))dξ ≈
n

∑
ℓ=0

w
f ,τ
n−ℓ g(ℓτ) , (3.1.43)

where “≈” should be read as “convergence in a suitable norm for τ → 0”. The origin of the name
convolution quadrature for this approximation is clear, because (3.1.43) can be regarded as the
approximation of an integral value by a weighted sum, similar to a quadrature formula as defined in
Def. 1.4.109.

We consider the approximation problem for f ∗ g in a particular setting: the function f may have awkward
properties or not be available at all. Instead, its Laplace transform may be simple and known and we

should rely on it to determine the convolution weights w
f ,τ
ℓ .

3.1.3 Laplace Transform

The exponentials es : t 7→ exp(st) have the unique property that they are “eigenfunctions” of both the

differentiation operator d
dt : C∞(R)→ C∞(R) and the translations g 7→ g(· − τ), τ ∈ R:

d

dt
{t 7→ exp(st)} = s {t 7→ exp(st)} , exp(s(t− τ)) = exp(−sτ) exp(st) .

So exponentials are the right building blocks for function spaces to use, when dealing with (linear) equa-
tions involving differentiation and translations. The latter play a prominent role in convolutions.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 265

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(3.1.44) Fourier transform on R

Considering the exponentials on the entire real line R and demanding that they or their Lp-norms are
bounded, leaves s := ıω, ω ∈ R as the only option, which leads to the famous Fourier transform

F : L1(R)→ L∞(R) , F f (ω) :=
1√
2π

∫

R
f (t) exp(−ıωt)dt . (3.1.45)

By the Plancherel theorem F gives rise to an isometric isomorphism of L2(R):

‖ f‖L2(R) = ‖F f ‖L2(R) ∀ f ∈ L2(R) , (3.1.46)

which means
∫

R
| f (t)|2 dt =

∫

R
|F f (ω)|2 dω .

Thus the Fourier transform is invertible on L2(R) and for F (f) ∈ L2(R) ∩ L1(R) we have the inversion
formula

f (t) =
1√
2π

∫

R
F f (ω) exp(ıωt)dω . (3.1.47)

Morally speaking, by means of the Fourier transform, a function f : R→ C can be broken down into a
superposition of exponentials {t 7→ exp(ıωt)}.

On the half real line R+
0 a much larger family of exponentials does not blow up: {t 7→ exp(st)} for

Re(s) ≤ 0. This gives much more freedom for writing functions as a superposition of exponentials.

Definition 3.1.48. Causal polynomially bounded functions

For a vector space X denote by CF (X) the space of causal (→ Def. 3.1.15) continuous functions
R → X satisfying a polynomials growth bound:

∀ f ∈ CF (X): ∃M > 0, m ∈ N: ‖ f (t)‖X ≤ M(1 + |t|)m ∀t ∈ R .

In the case X = R the space CF (X) is closed under convolution: f , g ∈ CF (X) ⇒ f ∗ g ∈ CF (X),
because the convolution of two polynomial causal functions is another polynomial causal function.

Definition 3.1.49. Laplace transform

For f ∈ CF (X), its Laplace transform L f is an X-valued function on the right half plane
C+ := {z ∈ C : Re(z) > 0} defined as

L f (s) :=
∫ ∞

0
f (t) e−st dt , s ∈ C+ .

The improper integral is well defined because

∥∥ f (t)e−st
∥∥

X
≤ ‖ f (t)‖X exp(−Re(s)t)

Def. 3.1.48
≤ M(1 + t)m exp(−Re(s)t) .

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 266

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The bound on the right-hand side is an integrable function of t for any Re(s) > 0.

The next theorem is proved by differentiation under the integral and a limit argument (Weierstrass theorem)
to deal with the improper integral.

Theorem 3.1.50. Analyticity of Laplace transforms

For every f ∈ CF (X) its Laplace transform L f is an analytic function (→ Def. 1.4.136) on C+.

Analytic functions initially defined on open subsets of C possess an intrinsic extension to a maximal
domain of definition. This also applies to Laplace transforms.

Example 3.1.51 (Laplace transform of causal power function)

We consider the causal power function

f (t) := t
q
+ :=

{
tq for t ≥ 0 ,

0 for t < 0
, q > −1 .

(The constraint q > −1 is meant to ensure integrability, because for q < 0 the function has a singularity
at t = 0.) This function belongs to CF (R).

We directly compute the Laplace transform

L f (s) =

∞∫

0

tq e−st dt =

∞∫

0

(η
s

)q
e−ηs−1 dη [Subst. η := st]

=
1

sq+1

∞∫

0

ηqe−η dη =
Γ(q + 1)

sq+1
,

where Γ stands for the Gamma function, which interpolates the factorials.

Fig. 113

Re

Im

We can rewrite s−(q+1) = exp(−(q + 1) log(s)) to
find the maximal domain of analyticity of L f : The
(main branch of the) complex logarithm is analytic in
C \ [−∞, 0], which also yields the domain of analyt-
icity of L f :

L{t 7→ t
q
+} is analytic in C \ [−∞, 0]

Obviously this domain of analyticity extends far be-
yond C+.

Remark 3.1.52 (Complex contour integrals)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 267

https://en.wikipedia.org/wiki/Gamma_function

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

In complex analysis you have seen complex contour integrals, the integral of a function f : D ⊂ C → C

along a C1
pw-curve Γ ⊂ D, given by a parameterization γ : I ⊂ R→ C, Γ := γ(I), I an interval:

∫

Γ
f (z)dz :=

∫

∞
f (γ(ξ)) · γ̇(ξ)dξ , (3.1.53)

where · is multiplication in C, and γ̇ is the derivative with respect to the parameter.

For example, the unit circle S1 ⊂ C around 0 viewed as an oriented closed curve has the the parameteri-
zation ξ 7→ exp(2πıξ), ξ ∈ I := [0, 1]. Hence, the contour integral of a C-valued function f defined in a
neighborhood of S1 can be computed via

∫

S1
f (z) dz = 2πı

∫ 1

0
f (exp(2πıξ)) exp(2πıξ) dξ .

(3.1.54) Laplace inversion formula

Restricting the Laplace transform to a line parallel to the imaginary axis reveals a close connection with the
Fourier transform on R addressed in § 3.1.44. For an integrable causal function f ∈ CF (X) we formally
compute

s = σ + ıω ⇒ L f (s) =

∞∫

−∞

f (t) e−(σ+ıω)t dt =
√

2πF ({t 7→ e−σt f (t)})(ω) , (3.1.55)

where we have split s ∈ C+ into real and imaginary part: s = σ + ıω, σ ∈ R+, ω ∈ R. Apply the Fourier
inversion formula

F−1G(t) :=
1√
2π

∞∫

−∞

G(ω) exp(ıωt)dω , t ∈ R , (3.1.47)

to (3.1.55) to obtain

√
2πe−σt f (t) = F−1{ω 7→ (L f)(σ + ıω)}(t) = 1√

2π

∞∫

−∞

L f (σ + ıω) exp(ıωt)dω .

Multiply with exp(σt) and recall the tool of complex contour integration from Rem. 3.1.52, which permits
us to rewrite

∞∫

−∞

L f (σ + ıω) exp((σ + ıω)t)dω = 1
ı

∫

σ+ıR
L f (s) exp(st)ds ,

where σ + ıR is a “curve” in C, a line parallel to the imaginary axis, for which we have used the natural
parametertization ω → σ + ıω.

Theorem 3.1.56. Inverse Laplace transform

If F : C+ → X is analytic in C+ and satisfies the decay condition

‖F(s)‖X ≤ |s|µ for µ < −1 , (3.1.57)

then, for any σ > 0, F is the Laplace transform of the causal function given by the improper contour

integral

(L−1F)(t) :=
1

2πı

∫

σ+ıR
F(s) exp(st)ds , t ∈ R (3.1.58)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 268

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The decay of s 7→ F(s) stipulated by (3.3.2) guarantees the existence of the improper integral. By the
Cauchy integral theorem that we recall next

• the value of the contour integral does not depend on σ > 0, and

• the function from (3.1.58) is causal.

Theorem 3.1.59. Cauchy integral theorem

Let D ⊂ C be open and simply connected. If f : D → C is analytic on D and Γ ⊂ D is a closed

C1
pw-curve then the contour integral (→ Rem. 3.1.52) of f over Γ vanishes

∫

Γ
f (z)dz = 0 .

Fig. 114

Re

Im

R

−R

Now, for σ > 0 and R > 0 consider the contour

ΓR := {σ + ı[−R, R]}∪
{|z− σ| = R, Re(z) > σ} ,

marked in color beside. By the Cauchy integral the-
orem

∫

ΓR

F(s) est ds = 0 .

If t < 0, then |est| ≤ 1 for all s ∈ C+ and, thanks to
the decay property (3.3.2),

lim
R→∞

∫

|z−σ|=R
Re(z)>σ

F(s) est ds = 0 .

Hence, also the integral over σ + ıR has to vanish.

(3.1.60) Differentiation in Laplace domain

Now we will reap a first fruit of the fact that exponentials are “eigenfunctions” of the differentiation operator.

Theorem 3.1.61. Differentiation formula for Laplace transform

For a causal continuously differentiable function f ∈ CF (X) ∩ C1(R) (“of time”)

L ḟ (s) = s · L f (s) , s ∈ C+ ,

where ḟ is the (temporal) derivative of f .

The proof is straightforward integration by parts. We mention two consequences of this theorem.

➊ The Laplace transform converts linear ordinary differential equations (ODEs) with constant coefficients
into algebraic equations in “Laplace domain”

For the initial value problem for a second-order ODE,

ÿ(t)− a2y(t) = c(t) , a ∈ R , y(0) = ẏ(0) = 0 ,

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 269

https://en.wikipedia.org/wiki/Cauchy_integral_theorem

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

set Y(s) := Ly(s) and obtain

s2Y(s) = a2Y(s) + Lc(s) Y(s) =
Lc(s)

s2 − a2
.

➋ Thm. 3.1.61 makes it possible to extend the Laplace inversion formula to functions violating the decay
condition (3.3.2), see also [Say16, Prop. 3.1.2]

Let F : C+ → X be analytic and comply with the power-law growth bound

∃µ ∈ R, M > 0: ‖F(s)‖X ≤ M|s|µ . (3.1.62)

Then, by Thm. 3.1.56, for m ∈ N, m > µ + 1, the function

fm(t) :=
1

2πı

∫

σ+ıR
s−mF(s) est ds , t ∈ R ,

is causal and its Laplace transform satisfies

sm · L fm(s) = F(s) ∀s ∈ C+ .

Then, we can invoke Thm. 3.1.61 and find

L(f) = F for f :=
dm fm

dtm
defined in the sense of distributions,

3.1.4 Diagonalizing Convolutions

We started Section 3.1.3 by pointing out that exponentials es : t 7→ exp(st) are “eigenfunctions” of every
translation operator in L∞(R). Note that convolution

(f ∗ g)(t) :=
∫

R
f (ξ) g(t − ξ)dξ , t ∈ R ,

seen as an operator g 7→ f ∗ g is essentially a superposition of translations of g. Hence, it comes as no
surprise that exponentials will also be “eigenfunctions” of this convolution operator: For f ∈ L1(R)

f ∗ eıω = eıω ·
∫

R
f (ξ) exp(−ıω)dξ = eıω · (F f)(ω) , ω ∈ R , (3.1.63)

where F is the Fourier transform on R. This immediately leads to the famous convolution theorem for the
Fourier transform.

Theorem 3.1.64. Convolution theorem for Fourier transform

For all f , g ∈ L1(R): F (f ∗ g) = F f · Fg pointwise on R.

Proof (formal). Appeal to the inverse Fourier transform and boldly exchange convolution and integration:

(f ∗ g)(t) =
(

f ∗
∫

R
(Fg)(w) eıω(·)dω

)
(t) =

∫

R
(Fg)(ω) (f ∗ eıω)(t)dω

=
∫

R
(Fg)(ω)(F f)(ω) eıω(t)dω by (3.1.63) .

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 270

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Demanding that f is causal (→ Def. 3.1.15) we can admit s ∈ C+ in the above reasoning, which gives us
a similar result for the Laplace transform. Again, relying on formal computations for causal f , g ∈ CF (C)
and (3.1.16)

L(f ∗ g)(s) =

∞∫

0

t∫

0

f (ξ)g(t − ξ)dξ exp(−st)dt =

∞∫

0




∞∫

ξ

exp(−st) f (ξ)g(t − ξ)dt


 dξ

=

∞∫

0

exp(−sξ) f (ξ) ·
∞∫

ξ

exp(−s(t− ξ))g(t − ξ)dt dξ = (L f)(s) · (Lg)(s) , s ∈ C+ .

The next theorem restates this result in the more general context of vector-valued/operator-valued causal
functions, cf. § 3.1.21.

Theorem 3.1.65. Convolution theorem for Laplace transform

For Banach spaces X, Y and g ∈ CF (X), f ∈ CF (L(X, Y)) holds

L(f ∗ g)(s) = (L f)(s)((Lg)(s)) , s ∈ C+ .

(3.1.66) Operational calculus

Convolution with f ∈ CF (L(X, Y)) is now regarded as a family of linear mappings CF (X) → CF (Y),
g 7→ f ∗ g parameterized by f. If the Laplace transform F(s) := Lf is more easily accessible than f itself,
we can also use F as “parameter”. This leads to the “operational calculus” view of convolution, introduced
by Ch. Lubich [Lub88].

Definition 3.1.67. Operational calculus

For F : C+ → C analytic we define the linear operator

F(∂t) :

{ CF (X) ∩ C∞
0 (R, X) → CF (Y) ∩ C∞(R, Y)

g 7→ F(∂t)g := L−1({s 7→ F(s) · Lg(s)})
,

induced by the transfer function F.

Equivalently, we can write

Def. 3.1.67 ⇒





(LF(∂t)g)(s) = F(s) · Lg(s) , s ∈ C+ ,

F(∂t)g = L−1F ∗ g ,

(3.1.68)

(3.1.69)

where the last identity is a consequence of Thm. 3.1.65. Hence, the operational calculus is another way
to encode causal convolution with emphasis on the Laplace transform of one factor.

Operational calculus can also be viewed as a generalization of differentiation, because Thm. 3.1.61 implies
for m ∈ N0

F(s) = sm ⇒ F(∂t)g(t) =
dmg

dtm
(t) t ∈ R . (3.1.70)

Already these formulas hint that the restriction to g ∈ CF (X) ∩ C∞(R, X) in Def. 3.1.67 is not nec-
essary. If the growth of F admits a polynomial bound, argument functions of finite smoothness can be
accommodated.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 271

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Lemma 3.1.71. Pointwise estimate for convolution

Assume that F : C+ → C is analytic and satisfies the power law growth bound

∃µ ∈ R , M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ , . (3.1.72)

Then, for every m ∈ N, m > µ + 1, there holds the pointwise estimate

‖(F(∂t)g)(t)‖X ≤
t∫

0

e−σξ
∥∥∥g(m)(ξ)

∥∥∥
X

dξ · eσt

2π

∫

σ+ıR

|F(s)|
|s|m ds , t ∈ R , (3.1.73)

for all causal g ∈ CF (X) for which the right-hand side is finite.

Proof. For the sake of simplicity, consider X = C. Thm. 3.1.61 gives the identity (σ > 0)

F(∂t)g(t) =
1

2πı

∫

σ+ıR

(
F(s)

sm

)
(smLg(s)) est ds =

1

2πı

∫

σ+ıR

(
F(s)

sm

)
Lg(m)(s) est ds .

The assertion of the lemma follows from the estimate

|Lg(m)(s)| =

∣∣∣∣∣∣

∞∫

0

g(m)(t) e−st dt

∣∣∣∣∣∣
≤

∞∫

0

e−σt |g(m)(t)|dt , s ∈ σ + ıR ,

and the fact that F(∂t)g(t) depends on g|[0,t] only.

Knowing the growth of F(s), the right-hand side of (3.1.73) can be estimated further, which yields the
following refined bound after elementary but tedious calculus.

Theorem 3.1.74. Pointwise estimate for convolution II [Say16, Prop. 3.2.2]

Assume that

✦ the operator-valued function H : C+ → L(X, Y), X, Y Banach spaces, is analytic, and

✦ satisfies the power law growth bound

∃µ ≥ 0 , m ∈ N , M > 0: ‖H(s)‖ ≤ M max{1, (Re s)−m}|s|µ ∀s ∈ C+ , (3.1.75)

✦ and that the causal X-valued function g ∈ CF (X) belongs to Cn(R, X) for some n ∈ N,

n > µ + 1, and

✦ that its n-th derivative g(n) is integrable on R.

Then we can estimate

‖H(∂t)g(t)‖Y ≤ M2µ 1 + δ

πδ

tδ max{1, tm}
(1 + t)δ

t∫

0

∥∥∥∥∥
n

∑
ℓ=0

(
k

ℓ

)
g(ℓ)(τ)

∥∥∥∥∥
X

dτ ,

with δ := n− (µ + 1).

Next, we turn our attention to discrete convolutions (3.1.34) of causal sequences (fℓ) ⊂ C and (gℓ) ⊂ C

((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n ∈ N0 . (3.1.34)

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 272

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

In computations, we are interested in only a finite number N + 1, N ∈ N, of terms,

yn := ((fℓ) ∗ (gℓ))n =
n

∑
ℓ=0

fn−ℓ · gℓ =
n

∑
ℓ=0

fℓ · gn−ℓ , n = 0, . . . , N . (3.1.76)

which can be expressed as, see also (3.1.40),




y0
...

...
yN




=




f0 0 0

f1 f0 0 . . .
...

f2 f1 f0 0 . . .
...

.
...

. 0
fN fN−1 . . . f2 f1 f0







g0
...

...
gN




⇔ y = Kg , K ∈ CN+1,N+1 , (3.1.77)

that is, a matrix×vector multiplication with a lower-triangular matrix K of a very special structure.

We now revisit [Hip15, Chapter 4], which in great detail discusses the relationships of and algorithms for
periodic convolutions (→ [Hip15, Def. 4.1.33]) and causal discrete convolution, see [Hip15, Section 4.1]
and, in particular, [Hip15, Rem. 4.1.40]. As explained in [Hip15, Section 4.2.1], diagonalization of periodic
convolutions will lead to the discrete Fourier transform (DFT) as the fundamental linear transformation
underlying all algorithms connected with discrete convolutions. The Fast Fourier Transform (FFT) offers
an optimal-complexity implementation of DFT, see [Hip15, Section 4.3]. We give a summary of the con-
siderations leading to an optimal algorithm for causal discrete convolution.

(3.1.78) Tool: Circulant matrices → [Hip15, § 4.1.37]

Definition 3.1.79. circulant matrix →
[Hip15, Def. 4.1.38]

A matrix C ∈ Cn,n, n ∈ N, is circu-

lant, if there exists an n-periodic sequence
(pk)k∈Z such that

(C)ℓ,j = pℓ−j , 1 ≤ ℓ, j ≤ n .

A sequence (pk)k∈Z is n-periodic, if pk+n = pk

for all k ∈ Z.

C =




p0 pn−1 pn−2 · · · · · · p2 p1

p1 p0 p2

p2
...

...
...

... pn−2

pn−2 pn−1

pn−1 pn−2 . . . · · · p2 p1 p0




The columns and rows of a circulant n× n-matrix can be generated by successive cycling shifting of
the entries of an n-vector.

The multiplication of a circulant matrix C ∈ Cn,n generated by the n-periodic sequence (pk) with a vector
x = [x1, . . . , xn]⊤ ∈ Cn amounts to periodic discrete convolution [Hip15, Def. 4.1.33]:

(Cx)n =
n

∑
ℓ=1

pn−ℓxℓ , n = 1, . . . , N . (3.1.80)

An elementary and fundamental observation is that all circulant matrices ∈ Cn,n commute and, therefore,
share the same basis of eigenvectors.

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 273

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 3.1.81. Diagonalization of circulant matrices

For any circulant matrix C ∈ Cn,n, n ∈ N, (C)ℓ,j = pℓ−j, (pk) an n-periodic sequence of complex

numbers, holds

CFn = Fn diag(λ1, . . . , λn) ,




λ1
...

λn


 := Fn




p0
...

pn−1


 , (3.1.82)

where Fn ∈ Cn,n is the Fourier matrix

(Fn)ℓ,j = ω
(ℓ−1)(j−1)
n , ℓ, j ∈ {1, . . . , n} , ωn := exp(− 2πı

n) . (3.1.83)

The elementary proof of this theorem is given in [Hip15, § 4.2.6]. Since ωn is a root of unity, the Fourier
matrix as defined in (3.1.83) is, up to scaling with 1√

n
, unitary→ [Hip15, Lemma 4.2.14],

F−1
n =

1

n
FH

n =
1

n
Fn , (3.1.84)

which implies the diagonalization formula [Hip15, Eq. (4.2.17)]

C = F−1
n diag(λ1, . . . , λn) Fn , (3.1.85)

that is, the columns of the Fourier matrix provide an eigenbasis for every circulant matrix.

The multiplication of a Fourier matrix Fn with a vector is known as discrete Fourier transform (DFT):

c = Fny ⇔ y = 1
n Fnc , c = [ck]

n
k=1, y =

[
yj

]n

j=1
∈ Cn

ck =
n

∑
j=1

yj ω
(k−1)(j−1)
n ⇔ yj =

1

n

n

∑
k=1

ck ω
−(k−1)(j−1)
n , k, j = 1, . . . , n .

(3.1.86)

✎ Notation: We write FFT(y) := Fny and IFFT(c) := F−1
n c

Thanks to (3.1.85), the multiplication of a vector with a circulant matrix C ∈ Cn,n generated by the n-
periodic sequence (pk) can be expressed as

Cc = IFFT(FFT([p0, . . . , pn−1]
⊤). ∗ FFT(c)) . (3.1.87)

A C++ implementation based on a DFT library function of EIGEN is given in [Hip15, Code 4.2.25].

(3.1.88) Fast Fourier Transform (FFT)

The Fast Fourier Transform is a divide-and-conquer algorithm for the efficient computation of the discrete
Fourier transform of complex vectors, see [Hip15, Section 4.3].

Asymptotic computational effort for DFT

cost(DFT of a vector ∈ Cn) = O(n log n) for n→ ∞

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 274

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Owing to (3.1.87) the asymptotic computational effort for multiplying a circulant matrix ∈ Cn,n with
a vector is

cost(circulant n× n- matrix× vector) = = O(n log n) for n→ ∞

(3.1.90) Techniques for Toeplitz matrices

We observe that the matrix K ∈ CN+1,N+1 from (3.1.77) has “constant (off-)diagonals” and, therefore,
belongs to a special class of matrices→ [Hip15, Def. 4.5.8].

Definition 3.1.91. Toeplitz matrix

T ∈ Cm,n, m, n ∈ N, is a Toeplitz matrix

generated by the sequence (u−m+1, . . . , un−1) of
n + m− 1 complex numbers, if

(T)ij = uj−i , 1 ≤ i ≤ m , 1 ≤ j ≤ n .

T =




u0 u1 · · · · · · un−1

u−1 u0 u1
...

...
.

...
...

.
...

...
. u1

u1−m · · · · · · u−1 u0




Obviously a Toeplitz matrix T ∈ Cm,n has an information content of merely m + n + 1 numbers. This sets
a strict lower bound for the asymptotic complexity of operations involving Toeplitz matrices.

Idea behind fast algorithms for Toeplitz matrices:

Circulant augmentation: embed Teoplitz matrix into larger circulant matrix

Lemma 3.1.92. Circulant augmentation of Toeplitz matrix

Given a sequence (u−m+1, . . . , un−1) of m + n− 1 numbers, let C ∈ Cn+m,n+m be the circulant

matrix (→ Def. 3.1.79) generated by the m + n-periodic sequence

(u0, u−1, u−2, . . . , u−m+1, 0, un−1, un−2, . . . , u1) .

Then the upper-left m× n-block (C)1:m,1:n of C is the m× n Toeplitz matrix (→ Def. 3.1.91) gen-

erated by the sequence

(u−m+1, u−m+2, . . . , u0, . . . , un−2, un−1) .

Appropriately the matrix C is called the circulant augmentation of T.

The following formula demonstrates the structure of C in the case m = n with the Toeplitz block highlighted

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 275

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

in color.

C =




u0 u1 · · · · · · un−1 0 u1−n · · · · · · u−1

u−1 u0 u1
... un−1 0

. . .
...

...
.

...
...

.
...

.
...

. . .
...

. u1
...

. u1−n

u1−n · · · · · · u−1 u0 u1 un−1 0
0 u1−n · · · · · · u−1 u0 u1 · · · · · · un−1

un−1 0
. . .

... u−1 u0 u1
...

...
.

...
.

...
. . .

...
.

...
...

. u1−n
...

. u1

u1 un−1 0 u1−n · · · · · · u−1 u0




The case of a rectangular Toeplitz block with m = 6, n = 4 is shown next:

C =




u0 u1 u2 u3 0 u−5 u−4 u−3 u2 u−1

u−1 u0 u1 u2 u3 0 u−5 u−4 u−3 u−2

u−2 u−1 u0 u1 u2 u3 0 u−5 u−4 u−3

u−3 u−2 u−1 u0 u1 u2 u3 0 u−5 u−4

u−4 u−3 u−2 u−1 u0 u1 u2 u3 0 u−5

u−5 u−4 u−3 u−2 u−1 u0 u1 u2 u3 0
0 u−5 u−4 u−3 u−2 u−1 u0 u1 u2 u3

u3 0 u−5 u−4 u−3 u−2 u−1 u0 u1 u2

u2 u3 0 u−5 u−4 u−3 u−2 u−1 u0 u1

u1 u2 u3 0 u−5 u−4 u−3 u−2 u−1 u0




The message of Lemma 3.1.92 is that for a given Toeplitz matrix T ∈ Cm,n, we can find a circulant matrix
C ∈ Cm+n,m+n such that

C =

[
T ∗
∗ ∗

]
, ∗ =̂ matrix blocks of suitable size. (3.1.93)

As a consequence the product of a Toeplitz matrix T ∈ Cm,n with a vector u ∈ Cn can be computed by
the multiplication of its circulant augmentation with a “zero-padded” argument vector:

C

[
u
0

]
=

[
T ∗
∗ ∗

][
u
0

]
=

[
Tu
∗
]

, (3.1.94)

where C ∈ Cm+n,m+n is the circulant matrix from Lemma 3.1.92 with (C)1:m,1:n = T. This shows how to
harness the power of FFT for multiplying a Toeplitz matrix with a vector.

Toeplitz matrix × vector

The multiplication of a Toeplitz matrix with a vector can be converted to the multiplication of a ciculant
matrix with a vector:

cost(m× n Toeplitz matrix × vector) = O((m + n) log(m + n)) for m, n→ ∞

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 276

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(3.1.96) Diagonalization-based algorithms for discrete convolutions

It is clear from (3.1.77) that the FFT-based multiplication of a general Toeplitz matrix with a vector can
immediately be applied for the computation of the initial N + 1 terms of a discrete convolution (3.1.98) of
causal sequences, because

K :=




f0 0 0

f1 f0 0 . . .
...

f2 f1 f0 0 . . .
...

.
...

. 0
fN fN−1 . . . f2 f1 f0




∈ CN+1,N+1

obviously is a Toeplitz matrix generated by the sequence

(fN , fN−1, . . . , f0, 0, . . . , 0) ∈ C2N+1 .

The N + 1 first terms of the discrete convolution of causal sequences can be computed with an
asymptotic effort of O(N log N) for N → ∞.

(3.1.97) Efficient solution of convolution equations

We consider the (truncated) convolution equation (3.1.40) in the simple setting X = Y = C. Given y ∈ Cn

we seek a vector u ∈ Cn such that



f0 0 0

f1 f0 0 . . .
...

f2 f1 f0 0 . . .
...

.
...

. 0
fn−1 fn−2 . . . f2 f1 f0







u1
...

...
un




=




y1
...

...
yn




⇔ Ku = y . (3.1.98)

We assume f0 6= 0, which ensures that the lower-triangular coefficient matrix of (3.1.98) is invertible. The
simple forward elimination according to (3.1.41),

uℓ = f−1
0 (yℓ −

ℓ−1

∑
k=1

fℓ−kuk) , ℓ = 1, . . . , n , ,

gives the result vector with an asymptotic effort of O(n2) for n→ ∞. A faster method uses the efficient
algorithms for Toeplitz matrices from § 3.1.90.

Idea: Divide-and-conquer algorithm:

Apply recursion to 2× 2-block split linear system

For 1 ≤ k < n, preferably k ≈ n/2, consider

Ku = y ⇔
[

(K)1:k,1:k O
(K)k+1:n,1:k (K)k+1:m,k+1,n

][
(u)1:k

(u)k+1,n

]
=

[
(y)1:k

(y)k+1,n

]
,

and note that

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 277

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✦ both (K)1:k,1:k and (K)k+1:m,k+1,n are lower-triangular Toeplitz matrices again, and

✦ (K)k+1:n,1:k is a Toeplitz matrix.

This suggests the following algorithm:

➊ solve (K)1:k,1:k(u)1:k = (y)1:k ➣ recursion
➋ Compute t := (y)k+1:n − (K)k+1:n,1:k(u)1:k (Toeplitz matrix × vector)
➌ Solve (K)k+1:n,k+1:n(u)k+1:n = t ➣ recursion

The asymptotic complexity can easily determined for the case n = 2p, where at each level of the recur-
sion the task is split into two problems of half the size. Denoting by W(p) the computational effort for
n = 2p and taking into account that the multiplication of a vector with an 2p × 2p Toeplitz matrix involves
asymptotic computational cost of O(p2p), by trivial induction we arrive at the estimate [BHS80]

W(p) ≤ 2W(p− 1) + C2p p ➣ W(p) ≤ C 2p p2 .

Hence, in this case, the discrete convolution equation can be solved with an asymptotic effort of O(n log2 n).
This holds for all system sizes.

The asymptotic cost for computing n components of the solution of the discrete convolution equation
(3.1.40) is O(n log2 n).

3.2 Convolution Equations: Examples

Convolution equations occur in a wide range of mathematical models of phenomena with non-local inter-
actions and, in particular, “memory in time”. We highlight a few simple examples.

3.2.1 Tomography: Abel Integral Equation

Fig. 115 X-ray source

X-ray receiver

✁ 2D cross-section of a tomography set-up.

In X-ray tomography parallel X-rays are shot through an ob-
ject and their attenuation is measured. From the attenuation
regarded as a function of the ray line the spatial density distri-
bution of the object can be computed by means of the Radon
transform [Rie03, Sect. 1.1].

This method is the mathematical foundation of CT-scans, which
is a widely used technology in medical imaging.

We study only a substantially simplified setting.

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 278

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We assume that the object is a long straight circu-
lar cylinder with radius 1 and that its density ρ is
a function of the radius only: ρ = ρ(x1, x2) = ρ(r),

r :=
√

x2
1 + x2

2.

Hence, only a single ray direction is required, let it be
the x2-direction. The ray position can be character-
ized by its x1-coordinate.

Let I = I(x1, x2) denote the intensity of the X-rays.
It is governed by the attenuation equation

∂I

∂x2
(x1, x2) = −ρ(x1, x2)I(x1, x2) , (3.2.1)

a simple linear ordinary differential equation with x1

acting as a parameter. Dividing by I(x1, x2) we get
from the chain rule

∂

∂x2
log(I(x1, x2)) = −ρ(x1, x2) . (3.2.2)

Fig. 116

x1

x2

r

X-ray source

X-ray receiver

Write IS = IS(x1) for the intensity at the source, and IR = IR(x1) for the intensity measured by the re-
ceiver. Integrating (3.2.2) in x2-direction over [−1, 1] yields (ρ(x1, x2) = 0 for x2

1 + x2
2 > 1)

g(x1) := − log
IR(x1)

IS(x1)
= 2

√
1−x2

1∫

0

ρ(x1, x2)dx2 , −1 ≤ x1 ≤ 1 , (3.2.3)

where we also used the symmetry of ρ: ρ(x1, x2) = ρ(x1,−x2).

The task is to tease out ρ = ρ(
√

x2
1 + x2

2) from the data g = g(x1), which have to satisfy g(−1) = g(1) = 0

and g(−x1) = g(x1). This amounts to seeking a non-negative function ρ = ρ(r) defined on [0, 1] and
solving the integral equation

2

√
1−x2

1∫
0

ρ(
√

x2
1 + x2

2)dx2 = g(x1) , 0 ≤ x1 ≤ 1 . (3.2.4)

We perform the substitutions

t := 1− x2
1 ⇒ x1 =

√
1− t ,

ξ := 1− x2
1 − x2

2 ⇒ x2 =
√

t− ξ , dξ = −2x2dx2 ,

which converts the integral equation (3.2.4) into

0∫

t

ρ(
√

1− ξ)√
t− ξ

dξ = g(
√

1− t) , 0 ≤ t ≤ 1 . (3.2.5)

We continue with substitutions and set

u(ξ) := ρ(
√

1− ξ) , 0 ≤ ξ ≤ 1 , y(t) := −g(
√

1− t) , 0 ≤ t ≤ 1 ,

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 279

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

and, finally, end up with the Abel integral equation for u : [0, 1]→ R

t∫

0

u(ξ)√
t− ξ

dξ = y(t) , 0 ≤ t ≤ 1 . (3.2.6)

Notice the structure of a convolution equation (with singular kernel k(t, ξ) = 1√
t−ξ

) for causal functions

as presented abstractly in § 3.1.22. An equivalent way to write (3.2.6) is

(Au)(t) :=
(
{t 7→ 1√

t
}∗u

)
(t) = y(t) , 0 ≤ t ≤ 1 , (3.2.7)

where A is known as Abel integral operator. The restriction to the finite interval [0, 1] is irrelevant thanks
to causality.

In Ex. 3.1.51 we established

L{t 7→ t−1/2
+ }(s) = Γ(1/2)s−1/2 =

√
π√
s

, s ∈ C+ . (3.2.8)

Thus, the Abel integral operator can be fit into operational calculus

A = F(∂t) with F(s) =

√
π√
s

. (3.2.9)

Remark 3.2.10 (The square of the Abel integral operator)

From (3.2.9) we conclude

LA2u(s) =

√
π√
s
LAu(s) =

π

s
(Lu)(s) .

Thm. 3.1.61 tells us that division by s in the Laplace domain corresponds to integration in time domain:
for a continuous causal function f satisfying a polynomial growth condition we have

L{t 7→
∫ t

0
f (τ)dτ}(s) = 1

s
(L f)(s) , s ∈ C+ . (3.2.11)

Inverting the Laplace transform this implies for a continuous causal function u ∈ C0(R)

(A2u)(t) = π
∫ t

0
u(τ)dτ , t ≥ 0 ,

⇒ d

dt
(A2u)(t) = πu(t) , t ≥ 0 .

In a sense, the Abel integral operator A is the square root of the antiderivative.

3.2.2 Impedance Boundary Conditions

A typical task in computational electromagnetics: A straight co-axial cable extends in x3-direction. The
electromagnetic properties of its conducting (copper) core are characterized by

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 280

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• a constant “large” conductivity σ > 0, [σ] = A
Vm ,

• a constant magnetic permeability µ > 0, [µ] = Vs
Am .

Fig. 117

ΩC

nsupp(j)

The core’s cross-section occupies the bounded do-
main ΩC ⊂ R2.

The core is surrounded by a cladding carrying a

time-dependent current j(x, t) = j(x1, x2, t)[0 0 1]⊤

in x3-direction, which provides the exciting
source in the model. The spatial support of j,
ΩJ := supp(j) ⊂ R2, is bounded and outside ΩC.
The source current is switched on at time t = 0.

The space outside ΩC is considered homogeneous
with magnetic permeability µ > 0, and vanishing
conductivity.

Unless j displays very rapid variation in time, the appropriate model is the eddy current model, a degen-

erate linear parabolic initial-boundary value problem for the x3-component u(x, t), x = [x1, x2]
⊤, of the

electric field:

∂

∂t
(σ(x)µu) − ∆u = f (x, t) := µ

∂j

∂t
(x, t) in R3 × [0, T] ,

u(x, 0) = 0 in R3 ,
(3.2.12)

with σ(x) =

{
σ in ΩC ,

0 in R3\ (3.2.13)

By linearity, the evolution problem (3.2.12) can be transformed from time domain to the Laplace domain
using Thm. 3.1.61. We apply the Laplace transform on both sides of the PDE in (3.2.12) and arrive at

sσ(x)µ(Lu)(s) − ∆(Lu)(s) = f̂ (s) := L{t 7→ f (·, t)}(s) . (3.2.14)

In the sequel we write û(s) := (Lu(s). Note that s ∈ C+ can be regarded as a parameter in (3.2.14).

Two approximations are commonly applied to the model (3.2.14):

(I) Instead on the whole space R3 the spatial computational domain is truncated to a bounded domain
Ω ⊂ R2 containing both ΩJ and ΩC and indicated by the outer box in Fig. 117,

(II) The interaction of the conducting core and the electromagnetic fields is taken into account by im-
posing impedance boundary conditions on the surface of ΩC:

grad û(x, s) · n(x) = −
√

s ηû(x, s) for all x ∈ ∂ΩC , (3.2.15)

where n is the unit normal vectorfield on ∂ΩC pointing into the interior of Ω)C, and η :=
√

µσ.

Imposing homogeneous Neumann boundary conditions for û at the artificial truncation boundary, the final
boundary value problem in Laplace domain seeks û = û(x, s) satisfying

−∆xû(x, s) = 0 in Ωe := Ω \ΩC ,

gradx û(·, s) · n= −
√

s ηû(·, s) on ∂ΩC ,

gradx ·û(·, s) · n = 0 on ∂Ω .

(3.2.16)

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 281

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

This is a second-order elliptic boundary value problem with linear impedance-type boundary condi-
tions. As explained in [Hip16, Ex. 2.9.6] its weak (variational) formulation reads: Given any s ∈ C+ seek
û(s) ∈ H1(Ωe) such that

∫

Ωe

grad û(s) · grad v dx +
∫

∂ΩC

√
s ηû(s)v dxdS =

∫

Ωe

f̂ (s)v dx ∀v ∈ H1(Ωe) . (3.2.17)

Appealing to Thm. 3.1.61 again, we can transform (3.2.17) back into time domain. We obtain an evolution
problem for u = u(x, t) with the following spatial variational formulation: seek u(t) ∈ H1(Ωe)

∫

Ωe

grad u(t) · grad v dx +
∫ t

0
k(t− τ)

∫

∂ΩC

ηu(τ)v dxdS

︸ ︷︷ ︸
convolution term

=
∫

Ωe

f (t)v dx ∀v ∈ H1(Ωe) . (3.2.18)

Note that the multiplication with
√

s in Laplace domain has become a convolution in time domain. What
we know about the convolution kernel k in (3.2.18) is its Laplace transform: (Lk)(s) = s1/2.

Remark 3.2.19 (Kernel with known Laplace transform)

This example illustrates a mathematical model with a convolution term in time, whose kernel has a simple
Laplace transform.

Remark 3.2.20 (Finite element discretization)

In the spirit of the method of lines introduced in [Hip16, Section 6.1.4] we can achieve the spatial semi-
discretization of (3.2.18) through a Galerkin approach using H1(Ωe)-conforming finite elements on a
triangulation of Ωe. The simplest choice would be triangular linear Lagrangian finite elements, see [Hip16,
Section 3.4].

Writing N ∈ N for the dimension of the finite element space and ~µ(t) for coefficient vector of the basis
expansion of the finite element approximation of u(t), this will result in the convolution equation

A~µ(t) + (K ∗~µ)(t) = ~ϕ(t) , K(τ) = k(τ)B , (3.2.21)

where ✄ A ∈ RN,N is the finite element Galerkin matrix (“stiffness matrix”) for −∆,
✄ B ∈ RN,N arises from the boundary bilinear form in (3.2.18).

Remark 3.2.22 (Derivation of impedance conditions)

3.2.3 Time-Domain Boundary Integral Equations

(3.2.23) Acoustic Scattering

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 282

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Freely propagating acoustic waves are described by a time-dependent pressure distribution u = u(x, t)
in the air region Ω ⊂ R3, governed by the linear wave equation, cf. [Hip16, § 6.2.10]

∂2p

∂t2
− c2∆x p = 0 in Ω×]0, T[, (3.2.24)

for fixed final observation time T > 0. Here, c > 0 is the constant wave speed, [c] = m
s , which agrees with

the maximal speed of propagation in the model. For in-depth explanations refer to [Hip16, Section 6.2.2].

Fig. 118

D

pinc

We are interested in simulating the scattering of an
incident plane acoustic wave propagating in direction
d ∈ R3, ‖d‖ = 1,

pinc(x, t) := Ψ(d · x + ct) ,
x ∈ R2

t ∈ R
, (3.2.25)

with smooth Ψ : R→ R , (3.2.26)

impinging on a sound-soft (∗) object occupying
D ⊂ R3.

(∗) “Sound-soft” means that p(t) = 0 on Γ := ∂D for all times t: the total pressure field p satisfies
homogeneous Dirichlet boundary conditions on ∂D.

We assume that pinc is causal: pinc(x, t) = 0 for t ≤ 0 and x in a neighborhood of D. To simplify the
presentation, we also rescale units of space and time to achieve c = 1.

This scattering problem is modeled by an exterior Dirichlet problem for the unknown scattered field
u := p− pinc on the unbounded spatial domain Ω := R3 \ D:

∂2u

∂t2
− ∆xu = 0 in Ω×]0, T[, (3.2.27a)

u(x, t) = −pinc(x, t) for x ∈ ∂D , t ∈]0, T[, (3.2.27b)

u(x, 0) =
∂u

∂t
(x, 0) = 0 for x ∈ Ω . (3.2.27c)

(3.2.28) Scattering boundary integral equations in Laplace domain

Since u is causal as a function of time and all the equations in (3.2.27) are linear, we can apply the
Laplace transform in time and get the follpowing parameterized family of boundary value problems for the
transformed unknown û(x, s) := (L{t 7→ u(x, t)})(s), s ∈ C+,

s2û(x, s)− ∆xû(x, s) = 0 in Ω , (3.2.29a)

û(x, s) = −TD p̂inc(x, s) , p̂inc := Lpinc, for x ∈ ∂D . (3.2.29b)

For no s ∈ C+ the solution û(s) may suffer blow-up as ‖x‖ → ∞. Therfore we supplement (3.2.29) with
decay conditions at ∞, analogous to what we did in Section 1.1.7.

û(x, s)→ 0 for ‖x‖ → ∞ . (3.2.30)

Note that (3.2.29) is an exterior Dirichlet boundary value problem (BVP) for the parameterized partial
differential equation −∆û(s) + s2û(s) = 0. If the term s2û(s) was not present, we would already know a

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 283

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

way to solve it: As elaborated in § 1.3.138 in this case we can convert the BVP into an equivalent indirect
first-kind boundary integral equation (1.3.139) for the unknown Neumann data. The only obstacle to doing
this for the more general PDE (3.2.29a) is the missing fundamental solution. The next lemma will provide
it.

Lemma 3.2.31. Fundamental solution for L := −∆ + s2

The fundamental solution for the second-order linear differential operator Lu := −∆u + s2u,

s ∈ C+, in three dimensions is

Gs(x, y) :=
exp(−s‖x− y‖)

4π‖x− y‖ , x 6= y . (3.2.32)

Of course, for s = 0 we recover the fundamental solution (1.2.44) for the Laplacian −∆. Also notice that
x 7→ Gs(x, y) decays exponentially for ‖x‖ → ∞.

Lemma 3.2.31 can be proved by a slight generalization of the computations presented in Ex. 1.2.35, see
[STE09b]. We remark that all essential results of Section 1.2, in particular the representation formula from
Thm. 1.2.60, and of Section 1.3, in particular the jump relations from Thm. 1.3.65, carry over to the more
general differential operator L.

Thus, following the policy of Section 1.3.6 we represent û(s) in Ω by means of the single layer potential

acting on an s-dependent unknown density φ̂(s) ∈ H−
1
2 (∂Ω), Γ := ∂Ω:

û(x, s) = Ψs
SL(φ̂(s))(x) in Ω , Ψs

SL(φ)(x) =
∫

Γ

exp(−s‖x− y‖)
4π‖x− y‖ φ(y) dS(y) , x 6∈ Γ .

(3.2.33)

We apply the Dirichlet trace operator TD on Γ := ∂D and take into account the prescribed Dirichlet data
(3.2.27b), which yields the boundary integral equation (also given in variational form)

V(s)φ̂(s) = TD p̂inc(s) in H
1
2 (∂Ω) (3.2.34)

m
φ̂(s) ∈ H−

1
2 (∂Ω): a(s; φ̂(s), ψ) :=

∫

Γ

(
V(s)φ̂(s)

)
(x)ψ(x)dS(x) =

∫

Γ
p̂inc(x, s)ψ(x)dS(x)

∀ψ ∈ H−
1
2 (∂Ω) ,

with the s-dependent single-layer boundary integral operator

V(s) :





H−
1
2 (∂Ω) → H

1
2 (∂Ω)

φ 7→
(
V(s)φ

)
(x) :=

∫

Γ

exp(−s‖x− y‖)
4π‖x− y‖ φ(y)dS(y) , x ∈ Γ . (3.2.35)

(3.2.36) Boundary element discretization → Section 1.5

As explained in Section 1.5 the s-dependent variational problem (3.2.34) set in H−
1
2 (∂Ω) is amenable to

Galerkin boundary element discretization using piecewise constant trial and test functions on a surface
mesh (→ Def. 1.5.4) G of Γ: use S−1

1 (M) as trial and test space.

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 284

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The main challenge faced when computing the entries of the Galerkin matrix arises from the singularity
of the integral kernel. Up to a modulation with the continuous functions (x, y) 7→ exp(−s‖x− y‖), this
singularity is the same as the one for the single-layer boundary integral operator for the Laplacian −∆.
Therefore, the techniques from Section 1.5.3 can be applied unchanged.

This gives us a family of linear systems of equations, parameterized with s:

V(s)~φ(s) = ~ρ(s) , s ∈ C+ , (3.2.37)

with a dense boundary element Galerkin matrix V(s) ∈ CN,N, N := dimS−1
1 (M), and ~φ standing for

the basis expansion coefficient vector of the approximate solution.

(3.2.38) Retarded potential integral equations

The left-hand side of (3.2.34) is a bilinear expression, a product, involving the s-dependent boundary inte-

gral operator V(s) ∈ L(H−
1
2 (∂Ω), H

1
2 (∂Ω)) and the s-dependent density φ̂(s) ∈ H−

1
2 (∂Ω). According

to the rule “multiplication in Laplace domain corresponds to convolution in time domain” expressed in
Thm. 3.1.65, the boundary integral equation (3.2.34) can be transformed back to time domain and we

obtain a convolution equation for the time-dependent density φ : [0, T]→ H−
1
2 (∂Ω)

(kV ∗ φ)(t) = TDuinc(t) , t ∈ [0, T] , (3.2.39)

with kernel kV : [0, T]→ L(H−
1
2 (∂Ω), H

1
2 (∂Ω)), whose Laplace transform is explicitly available from

(3.2.35).

In fact, by the inverse Laplace transform, we can obtain an explicit formula for Kbiov and the convolution in
(3.2.39). Recall the formal inverse Laplace transform of an exponential:

L−1({s 7→ exp(−sτ)})(t) = δ(t− τ) , τ > 0 ,

where δ is the δ-distribution. This formula can be used to deal with the numerator of the fundamental
solution Gs(x, y):

L−1
({

s 7→ V(s)φ̂(s)
})

(t) =

t∫

0

∫

Γ

δ(t− ‖x− y‖)
4π‖x− y‖ φ(y, t) dS(y) dt =

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dS(y) ,

where φ = φ(y, t) := L−1{s 7→ φ̂(y, s)}, y ∈ Γ, 0 ≤ t ≤ T, is a time-dependent surface density. Hence,
the time-domain version of the integral equations (3.2.34) reads:

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dS(y) = pinc(x, t) , x ∈ Γ , 0 ≤ t ≤ T , (3.2.40)

for obvious reasons called a retarded-potential boundary integral equation. From its solution φ the scat-
tered pressure field can be reconstructed through

u(x, t) =
∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dS(y) , x ∈ Ω . (3.2.41)

This is called a Kirchhoff representation formula; the scattered field is given by the superposition of fields
radiated by time-dependent point sources on the boundary Γ of the scatterer.

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 285

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

3.3 Implicit-Euler Convolution Quadrature

3.3.1 Setting and Goal

Throughout we are given a transfer function F(s) := L f (s), the Laplace transform (→ Def. 3.1.49) of a
causal function f : R → C.

Assumption 3.3.1. Properties of transfer function

F : C+ → C is analytic on the right half plane and satisfies the decay condition

∃M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ and some µ < −1 . (3.3.2)

Recall that Gτ = τZ for some timestep τ > 0 denotes an equidistant temporal grid. Also remember
operational calculus introduced in Def. 3.1.67, here, for the sake of simplicity, used with X = Y = C:

(F(∂t)g)(t) := (f ∗ g)(t) =

t∫

0

f (ξ)g(t − ξ)dξ =

t∫

0

f (t− ξ)g(ξ)dξ .

The goal of convolution quadrature is to find a linear mapping

CQτ : {F : C+ → C, F satisfies Ass. 3.3.1} → {causal sequences Z→ C} ,

depending on the timestep τ > 0, such that

F(∂t)g|Gτ
≈ CQτ(F) ∗ g|Gτ

for g ∈ CF (C) ∩ C∞
0 (R, C) , (3.3.3)

where ≈ means the convergence requirement

lim
τ→0

∥∥∥F(∂t)g|Gτ∩[0,T] − CQτ(F) ∗ g|Gτ∩[0,T]

∥∥∥ = 0 ∀g “sufficiently smooth” , (3.3.4)

for some finite time T > 0 and a suitable (semi-)norm ‖·‖ on the space of causal sequences Z→ C.

The terms of the sequence CQτ(F) : Z→ C are called convolution quadrature weights. They will

usually depend on both F and τ and, therefore we write wF,τ
ℓ ∈ C, ℓ ∈ Z:

CQτ(F) =:
(

wF,τ
ℓ

)
ℓ∈Z

➣ CQ(F) ∗ g|Gτ
=

(
n

∑
ℓ=0

wF,τ
n−ℓgℓ

)

n∈Z

, gℓ := g(ℓτ) .

We mention two desirable algebraic structural properties of CQτ:

➊ CQ should preserve the neutral element of convolution:

CQτ({s 7→ 1}) = (δ0,ℓ)ℓ∈Z
, (3.3.5)

➋ and CQ should be compatible with the convolution theorem for the Laplace transform

CQτ(F1 · F2) = CQτ(F1) ∗ CQτ(F2) , (3.3.6)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 286

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

for transfer functions F1, F2 : C+ → C complying with Ass. 3.3.1. Note that in (3.3.6) ∗ is the
discrete convolution of causal sequences, see (3.1.34). Thus this formula is the discrete counterpart
of the relationship

(F1 · F2)(∂t)g = (f1 ∗ f2) ∗ g = f1 ∗ (f2 ∗ g) = F1(∂t)
(

F2(∂t)g
)

,

which reflects the associativity of convolution, cf. Cor. 3.1.3.

Remark 3.3.7 (Approximately solving convolution equations by convolution quadrature)

As in § 3.1.22 let us consider a convolution equation

u ∈ CF (C):
[

F(∂t)u(t) = (f ∗ u)(t) =
] ∫ t

0
f (t− ξ)u(ξ) = y(t) , t ∈ R , (3.3.8)

for given causal y ∈ CF (C). By the convolution theorem for the Laplace transform Thm. 3.1.65 we can
lift (3.3.8) to Laplace domain

∫ t

0
f (t− ξ)u(ξ) = y(t) ⇔ F(s) · (Lu)(s) = (Ly)(s) , s ∈ C+ , (3.3.9)

where the transfer function F is the Laplace transform of f ∈ CF (C).

Applying convolution quadrature to the convolution equation (3.3.8) converts it to a discrete convolution
equation, cf. (3.1.40),

(un) : Z→ C causal: CQτ(F) ∗ (un) = (yn) := y|Gτ
, (3.3.10)

set in the space causal sequences.

Assume that F(s) 6= 0 for all s ∈ C+. Then s 7→ F(s)−1 will also be analytic in C+ and the solution of the
convolution equation can be obtained as

Lu(s) = F−1(s) · Ly(s) ⇔ u(t) = L−1(F−1 · Ly) . (3.3.11)

The key observation is that the properties (3.3.5) and (3.3.6) enable an analoguous formula on the discrete
level

CQτ(F) ∗ (un) = (yn) ⇔ CQτ(F
−1) ∗ CQτ(F) ∗ (un) = CQτ(F

−1) ∗ (yn)

(3.3.6)⇔ CQτ(F
−1 · F) ∗ (un) = CQτ(F

−1) ∗ (yn)

(3.3.5)⇔ (un) = CQτ(F
−1) ∗ (yn) .

(3.3.12)

Thus, if convolution quadrature satisfies the structural properties (3.3.5) and (3.3.6), then a convolution
equation can be solved approximately by a simple discrete convolution.

3.3.2 Derivation

Let F : C+ → C be a transfer function satisfying Ass. 3.3.1 related to a causal function/distribution f
through Laplace transform (→ Def. 3.1.49) and its inverse (→ Thm. 3.1.56)

F(s) =

∞∫

0

f (t)e−st dt ⇔ f (t) =
1

2πı

∫

σ+ıR

F(s)est ds , σ > 0 .

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 287

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(3.3.13) Reduction to ordinary differential equations

Using the Laplace inversion formula and boldly changing the order of integration permits us to rewrite
convolution

F(∂t)g(t) = (f ∗ g)(t) =

t∫

0

f (t− ξ)g(ξ)dξ

=

t∫

0

1

2πı

∫

σ+ıR

F(s)es(t−ξ) ds · g(ξ)dξ =
1

2πı

∫

σ+ıR

F(s) ·
t∫

0

es(t−ξ) g(ξ)dξ

︸ ︷︷ ︸
=:y(s;t)

ds

Surprisingly, the highlighted integral expression, in the sequel abbreviated by y(s; t) is related to a family
of simple initial value problems for ordinary differential equations.

Lemma 3.3.14. Variation of constants formula

For a continuous causal function g : R → C and any s ∈ C the solution t 7→ y(s; t) of the initial

value problem (IVP)

ẏ(t) = sy(t) + g(t) , t ∈ R , y(0) = 0 , (3.3.15)

has the integral representation

y(s; t) =

t∫

0

es(t−ξ)g(ξ)dξ . (3.3.16)

Proof. The initial value problem (3.3.15) for a simple scalar linear ordinary differential equation has a
solution y : R→ C. We make the transformation

z(t) = e−sty(t) ⇔ y(t) = estz(t) , t ∈ R .

By the product rule we find

ż(t) = −se−sty(t) + e−stẏ(t) = −se−sty(t) + e−st(sy(t) + g(t)) = e−stg(t) .

z(t) =

t∫

0

e−sξg(ξ)dξ ⇔ y(t) =
∫ t

0
es(t−ξ)g(ξ)dξ , t ∈ R .

✷

As a consequence the convolution F(∂t)g can be written as a contour integral involving solutions of a
family of linear initial value problems

F(∂t) =
1

2πı

∫

σ+ıR

F(s) y(s; t) ds , t ∈ R . (3.3.17)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 288

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Idea: Use numerical integration of the IVPs for ẏ = sy + g(t) on the temporal grid Gτ,
producing a sequence

(yn(s))n∈Z: yn(s) ≈ y(s; nτ) , (3.3.18)

and then, inspired by (3.3.17), approximate

F(∂t)(nτ) ≈ 1

2πı

∫

σ+ıR

F(s) yn(s) ds (3.3.19)

(3.3.20) Implicit Euler (IE)/backward Euler timestepping → [Hip15, Section 11.2.2]

The implicit Euler method converts the ordinary differential equation (ODE) ẏ = g(y, t) into a difference
equation by using a backward difference quotient to approximate the temporal derivative

ẏ = g(y, t) ➣
y(t)− y(t− τ)

τ
≈ g(y(t), t) with timestep τ > 0 ,

and restricting the difference quotient to the temporal grid Gτ:

yn − yn−1 = τg(yn, tn) , tn := τn , k ∈ Z . (3.3.21)

Thinking of timestepping yn−1 → yn, given yn−1 this is an equation for yn. Consult [Hip15, Rem. 11.2.14]
for an explanation why (3.3.21) has a unique solution yn provided that g is differentiable w.r.t y and the
timestep τ is sufficiently small.

(3.3.22) Implicit Euler for scalar linear ODEs

We elaborate the above idea in the concrete case of numerical integration by means of the implicit Euler
method. We apply implicit Euler timestepping (3.3.21) to (3.3.15), that is, for g(y, t) = sy + g(t) and
y0(s) := y(0) = 0. As in (3.3.18) we write (yn(s)) for the resulting causal sequence, which, if τs 6= 1, it
is defined by (n ∈ N)

yn(s) = yn−1(s) + τsyn(s) + τg(tn) , y0(s) = 0

m
yn(s) = (1− τs)−1(yn−1(s) + τg(τn)) .

yn(s) = τ
n

∑
ℓ=0

(1− τs)−(ℓ+1)gn−ℓ , n ∈ N , gℓ := g(τℓ) , (3.3.23)

because we have g0 = g(0) = 0 for the causal continuous function g.

If σ < 1
τ , then we can plug (3.3.23) into (3.3.19):

F(∂t)(nτ) ≈ 1

2πı

∫

σ+ıR

F(s) yn(s) ds =
1

2πı

∫

σ+ıR

F(s) τ
n

∑
ℓ=0

(1− τs)ℓ+1gn−ℓ ds

=
n

∑
ℓ=0

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds · gn−ℓ .

(3.3.24)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 289

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Strikingly, this amounts to a discrete convolution:

F(∂t)(nτ) ≈
n

∑
ℓ=0

wF,τ
ℓ · gn−ℓ with wF,τ

ℓ :=
τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds . (3.3.25)

We have found our first convolution quadrature scheme!

Definition 3.3.26. Implicit Euler convolution quadrature (IE-CQ)

Given the transfer function F : C+ → C, convolution quadrature based on implicit Euler timestep-
ping with timestep τ > 0 is defined as (0 < σ < τ−1)

CQIE
τ (F) :=


wF,τ

ℓ
:=

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds




ℓ∈N0

.

Remark 3.3.27 (Well-defined IE-CQ)

An elementary estimate yields |1− τs| > τ|s| − 1, which implies |(1− τs)−(ℓ+1)| < (τ|s| − 1)−(ℓ+1).
Thus under the decay condition from Ass. 3.3.1, the improper contour integrals in the definition of CQIE

τ (F)
are always well-defined for ℓ ∈ N0, if σ < τ−1.

Remark 3.3.28 (Convolution quadrature based on explicit Euler timestepping ?)

Another simple timestepping scheme is the explicit Euler method which replaces the temporal derivative
with a forward difference quotient, see [Hip15, Section 11.2.1]:

ẏ = g(y, t) ➣
y(t + τ)− y(t)

τ
≈ g(y(t), t) with timestep τ > 0 .

For the initial value problem (3.3.15) and uniform timestep τ > 0 this yields the recurrence

yn+1(s) = yn(s) + τsyn(s) + τgn , y0 = 0 yn(s) = τ
n

∑
ℓ=1

(1 + τs)ℓgn−ℓ (3.3.29)

This would lead to convolution weights defined by

wℓ :=
τ

2πı

∫

σ+ıR

F(s)(1 + τs)ℓ ds , ℓ ∈ N , w0 := 0 .

Yet, |1 + τs| ≥ τ|s| − 1 such that the improper integrals will in general diverge for almost all ℓ ∈ N,
unless F decays exponentially for |s| → ∞, which cannot be expected. Hence, explicit Euler timestepping
is not suitable for defining a convolution quadrature scheme.

(3.3.30) CQ weights through Taylor expansion

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 290

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

To manipulate the formula for the convolution quadrature weights for IE-CQ from Def. 3.3.26

wF,τ
ℓ :=

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds , ℓ ∈ N , 0 < σ < 1
τ ,

Fig. 119

Re

Im

τ−1

σ

Γ

−R

R

note that the integrand

s 7→ F(s)(1− τs)−(ℓ+1)

is analytic in C+ \ {τ−1}. Thus by the Cauchy in-
tegral theorem Thm. 3.1.59 its path integral over the
contour

Γ := Γσ ∪ ΓR ∪ Γr ,

Γσ := σ + ı[−R, R] ,

ΓR := {s : |s| = R, Re z ≥ σ} ,

Γr := {s : |s− τ−1| = r} ,

with r, R > 0, R > τ−1 + r and suitable orientations
of the pieces, vanishes. Thanks to the decay proper-
ties of F from Ass. 3.3.1, we have
∫

ΓR

F(s)(1− τs)−(ℓ+1) ds→ 0 for R→ ∞ .

Hence, the convolution quadrature weight can also be computed by integrating over a small circle centered
at τ−1 and oriented counter-clockwise:

wF,τ
ℓ :=

τ

2πı

∫

σ+ıR

F(s)(1− τs)−(ℓ+1) ds = − τ

2πı

∫

|s− 1
τ |=r

F(s)(1− τs)−(ℓ+1) ds

= − τ

2πı

∫

|s− 1
τ |=r

F(s)(1− τs)−(ℓ+1) ds = − 1

2πıτℓ

∫

|s− 1
τ |=r

F(s)

(τ−1 − s)ℓ+1
ds .

A fundamental result of complex analysis reveals the benefit of switching to an integration contour sur-
rounding τ−1.

Theorem 3.3.31. Cauchy integral formula [Rem84, §7.2]

If g : D ⊂ C→ C is analytic in D, c ∈ D, and B := {z : |z− c| ≤ r} ⊂ D for some r > 0, then

g(z) =
1

2πı

∫

∂B

g(s)

s− z
ds ∀z ∈ B ,

where the integral is a complex contour integral and the circle ∂B is oriented counterclockwise.

By formal differentiation under the integral we obtain a similar representation of all derivatives of g:

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 291

https://en.wikipedia.org/wiki/Cauchys_integral_formula

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Corollary 3.3.32. Cauchy differentiation formula [Rem84, §7.3.4]

If g : D ⊂ C → C is analytic in D, c ∈ D, and B := {z : |z− c| ≤ r} ⊂ D for some r > 0, then

the ℓ-th derivative of g can be computed as the contour integral

g(ℓ)(z) =
ℓ!

2πı

∫

∂B

g(s)

(s− z)ℓ+1
ds ∀z ∈ B , ℓ ∈ N0 .

Use this formula with g = F, z = 1/τ, B := {z ∈ C : |z− τ−1| = r}, r < τ−1 − σ:

wF,τ
ℓ = − 1

2πıτℓ

∫

|s− 1
τ |=r

F(s)

(τ−1 − s)ℓ+1
ds =

(−1)ℓ

ℓ!τℓ
F(ℓ)(1/τ) =

1

ℓ!

dℓ

dzℓ
{z 7→ F(

1− z

τ
)}
∣∣∣∣∣
z=0

.

Recall the local Taylor expansion for a function g that is analytic in an neighborhood of c ∈ C:

g(z) =
∞

∑
ℓ=0

1

ℓ!
g(l)(c)(z − c)ℓ for all z : |z− c| sufficiently small.

Obviously, the convolution weights are the Taylor coefficients of {z 7→ F(1−z
τ)} when expanded around

z = 0.

Lemma 3.3.33. Convolution quadrature weights are Taylor expansion coefficients

If F : C+ → C is analytic and complies with Ass. 3.3.1, then z 7→ F(1−z
τ) is a generating function

for the convolution quadrature weights from Def. 3.3.26, that is,

F(
1− z

τ
) =

∞

∑
ℓ=0

wF,τ
ℓ zℓ for |z| < 1 . (3.3.34)

Note that the power series in (3.3.34) converges for |z| < 1, because z 7→ F(1−z
τ) is analytic for Re z < 1.

Also note that this formula makes sense for any F that is analytic in a neighborhood of 1 and, thus, extends
Def. 3.3.26, which requires decay properties of F.

Remark 3.3.35 (Real-valued convolution quadrature weights)

If F(s) ∈ R for s ∈ R, then

G(z) := F(
1− z

τ
) ∈ R , if z ∈ R .

Hence, all derivatives G(m)(0) will be real and so will be the convolution quadrature weights wF,τ
ℓ for

IE-CQ.

Example 3.3.36 (Direct computation of convolution quadrature weights)

For simple transfer functions F Lemma 3.3.33 paves the way for computing the convolution quadrature
weights wF,τ

ℓ , ℓ ∈ N0, by Taylor expansion/repeated differentiation. We elaborate this for two examples

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 292

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(I) If F(s) = sµ, µ ∈ R \N0, then

G(z) := F(
1− z

τ
) = τ−µ(1− z)µ ,

⇒ G(ℓ)(z) = τ−µ(−1)ℓµ(µ− 1) · · · · · (µ− ℓ+ 1)(1− z)µ−ℓ .

G(ℓ)(0) = τ−µ(−1)ℓµ(µ− 1) · · · · · (µ− ℓ+ 1) ,

G(z) =
∞

∑
ℓ=0

τ−µ(−1)ℓ
ℓ−1

∏
k=0

µ− k

k + 1
zℓ .

Thus we find the IE-CQ weights

wF,τ
0 = τ−µ , wF,τ

ℓ = τ−µ(−1)ℓ
ℓ−1

∏
k=0

µ− k

k + 1
, ℓ ∈ N . (3.3.37)

(II) For F(s) = (s2 + ω2)−1, ω > 0, we rely on a factorization approach:

F(
1− z

τ
) =

1
(

1−z
τ

)2
+ ω2

=
1

1−z
τ − ıω

· 1
1−z

τ + ıω

=
τ2

1 + ω2τ2
·
(∞

∑
n=0

(1− ıωτ)−nzn
)
·
(∞

∑
n=0

(1 + ıωτ)−nzn
)

,

where the last step employed the geometric series. By the Cauchy product formula for power series,
cf. Thm. 3.1.36, we obtain the convolution quadrature weights by discrete convolution:

wF,τ
ℓ =

τ2

1 + ω2τ2
·

l

∑
n=0

(1− ıωτ)−n+ℓ(1 + ıωτ)−ℓ , ℓ ∈ N0 . (3.3.38)

3.3.3 Properties of implicit-Euler Convolution Quadrature

Does the convolution quadrature scheme as introduced in the previous section (→ Def. 3.3.26, Lemma 3.3.33)
satisfy the crucial properties (3.3.5) and (3.3.6)?

➊ We consider the constant transfer function F(s) = 1 and use Lemma 3.3.33 that obviously gives

w
{s 7→1},τ
ℓ = δℓ,0, which is (3.3.5).

➋ Given two analytic transfer functions F1, F2 : C+ → C, we appeal to Lemma 3.3.33

Fi(
1− z

τ
) =

∞

∑
ℓ=0

wFi,τ
ℓ zℓ , i = 1, 2 , (F1 · F2)(

1− z

τ
) =

∞

∑
ℓ=0

wF2·F2,τ
ℓ zℓ .

The Cauchy product formula for power series immediately gives

(F1 · F2)(
1− z

τ
) = F1(

1− z

τ
) · F2(

1− z

τ
) =

(
∞

∑
ℓ=0

wF1,τ
ℓ zℓ

)
·
(

∞

∑
ℓ=0

wF2,τ
ℓ zℓ

)
=

∞

∑
ℓ=0

l

∑
k=0

wF1,τ
ℓ−kwF2,τ

k .

Comparing Taylor coefficients we conclude

wF2·F2,τ
ℓ =

l

∑
k=0

wF1,τ
ℓ−kwF2,τ

k ⇔ CQIE
τ (F1 · F2) = CQIE

τ (F1) ∗ CQIE
τ (F2) =̂ (3.3.6) . (3.3.39)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 293

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 3.3.40 (“Differentiation theorem” for convolution quadrature)

Consider the transfer function F(s) = s, for which we have by the differentiation formula for the Laplace
transform (→ Thm. 3.1.61)

F(∂t)g(t) =
dg

dt
(t) , t ∈ R ,

see also (3.1.70). The corresponding convolution quadrature is straightforward by Lemma 3.3.33:

F(
1− z

τ
) =

1− z

τ
⇔

(
CQIE

τ (s 7→ s)
)
ℓ
=





1/τ for ℓ = 0 ,

−1/τ for ℓ = 1 ,

0 else.

This means that convolution quadrature is reduced to applying the backward difference quotient:

CQIE
τ ({s 7→ s}) ∗ g|Gτ

=

(
gℓ − gℓ−1

τ

)

ℓ∈Z

=
Id− Tτ

τ
g

∣∣∣∣
Gτ

, (3.3.41)

where we have used the shift operator

Tτ : CF (C)→ CF (C) , (Tτg)(t) := g(t− τ) , τ > 0 .

The right-hand side in (3.3.41) can be regarded as an approximation of
dg
dt in the points of the temporal

mesh Gτ.

Generalizing these considerations we immediately get the convolution quadratures induced by powers as
transfer functions

CQIE
τ ({s 7→ sm}) ∗ g|Gτ

=

(
Id− Tτ

τ

)m

g

∣∣∣∣
Gτ

. (3.3.42)

Again, we recognize difference quotient approximations of g(m).

Finally, we can combine these formulas with (3.3.6) and get

CQ
IE
τ ({s 7→ smF(s)}) ∗ g|Gτ

= CQ
IE
τ (F) ∗

{ (
Id− Tτ

τ

)m

g

︸ ︷︷ ︸
approximation of g(m)

}∣∣∣
Gτ

, (3.3.43)

a CQ-counterpart of Thm. 3.1.61.

(3.3.44) Continuous-in-time convolution quadrature [Say16, Sect. 4.4]

A new perspective is opened by considering an alternative motivation for implicit Euler convolution quadra-
ture. Remember the shift operator

Tτ : CF (C)→ CF (C) , (Tτg)(t) := g(t− τ) , τ > 0 .

Recall the following correspondences for the Laplace transform:

time domain Laplace domain

Derivative:
d

dt
s·

Backward difference quotient:
1− Tτ

τ
≈ d

dt

1− exp(−sτ)

τ
· ≈ s·

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 294

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We point out that the backward difference quotient is the approximation of the derivative underlying the
implicit Euler timestepping scheme, cf. § 3.3.20.

We define a modified transfer function

Fτ(s) := F(
1− exp(−sτ)

τ
) , Fτ : C+ → C analytic. (3.3.45)

The formula for the convolution quadrature weights from Lemma 3.3.33

F(
1− z

τ
) =

∞

∑
ℓ=0

wF,τ
ℓ zℓ for |z| < 1 , (3.3.34)

with z := e−sτ gives us

Fτ(s) = F(
1− exp(−sτ)

τ
) =

∞

∑
ℓ=0

wF,τ
ℓ e−sτℓ .

Recall the Laplace transform of a shifted δ-distribution

L{t 7→ δ(t− τ)}(s) = “
∫

R
δ(t− τ) exp(−st)dt ” = exp(−sτ) . (3.3.46)

This gives us the time-domain counterpart of Fτ as a causal distribution:

fτ(t) := L−1Fτ(t) =
n

∑
ℓ=0

wF,τ
ℓ δ(t− ℓτ) . (3.3.47)

Convolution with this comb function is straightforward:

Fτ(∂t)g = (fτ ∗ g)(t) =
∞

∑
ℓ=0

wF,τ
ℓ g(t− ℓτ) (3.3.48)

Using the definition of convolution quadrature, this can be rewritten as

CQIE
τ (F) ∗ g|Gτ

= Fτ(∂t)g|Gτ
. (3.3.49)

Continuous-in-time convolution quadrature

Implicit-Euler convolution quadrature realizes (continuous) operational calculus with

F replaced with Fτ(s) := F(
1− exp(−sτ)

τ
).

This again confirms (3.3.6) for IE-CQ as a simple consequence of the obvious fact (F1 · F2)τ = F1,τ · F2,τ

and of the convolution theorem for the Laplace transform Thm. 3.1.65.

3.3.4 Convergence

This section present quantitative results about the asymptotic convergence of convolution quadrature as
the timestep τ → 0. In particular we are interested in the maximum error at points of the temporal grid in
a finite time interval [0, T], T > 0:

err(τ) := max
n=0,...,N

∣∣∣F(∂t)g(τn) −
(
CQIE

τ (F) ∗ g|Gτ

)
n

∣∣∣ , τ := T/N , N ∈ N , (3.3.51)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 295

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

for a given causal function g : R→ C. We first report some empiric results in order to see what kind of
convergence can be expected.

Experiment 3.3.52 (Convergence of implicit Euler convolution quadrature)

Throughout this experiment we consider F(s) = 1√
s
, which corresponds to Abel integral operator,

F(∂t)g(t) =
1√
π

t∫

0

g(ξ)√
t− ξ

dξ .

We choose T = 1.

Fig. 120

10 -4 10 -3 10 -2 10 -1

timestep

10 -5

10 -4

10 -3

10 -2

10 -1

er
r(

)
(m

ax
im

um
 n

or
m

)

g(t) = exp(-t) on [0,1]

err()
O()

➊ We consider g(t) = 1− e−t and find
F(∂t)g(t) =

2√
π
(
√

t− FD(
√

t)), where FD

is the Dawson function

FD(t) = e−t2
∫ ζ

0
eζ2

dζ .

✁ We observe algebraic convergence of order 1:

err(τ) = O(τ) for τ → 0 .

Fig. 121

10 -4 10 -3 10 -2 10 -1

timestep

10 -5

10 -4

10 -3

10 -2

10 -1

er
r(

)
(m

ax
im

um
 n

or
m

)

g(t) = sqrt(t) on [0,1]

err()
O()

➋ Now we choose the non-smooth g(t) =
√

t, which
implies F(∂t)g(t) =

√
πt/2.

✁ Though g is not continuously differentiable on
[0, 1], we still observe algebraic convergence of
order 1:

err(τ) = O(τ) for τ → 0 .

In both cases we observe first-order algebraic convergence as τ → 0.

We provide a rigorous justification of the convergence observed in Exp. 3.3.52 for the case X = C and
assuming at most polynomial growth of F.

Assumption 3.3.53. Polynomial growth of F

We assume that F : C+ → C is analytic and satisfies the growth condition

∃M > 0: |F(s)| ≤ M|s|µ ∀s ∈ C+ and some µ ≥ 0 . (3.3.54)

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 296

https://en.wikipedia.org/wiki/Dawson_function

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The starting point is the fundamental relationship (3.3.49) from § 3.3.44

CQIE
τ (F) ∗ g|Gτ

= Fτ(∂t)g|Gτ
max

n=0,...,N

∣∣∣F(∂t)g(τn) −
(
CQIE

τ (F) ∗ g|Gτ

)
n

∣∣∣

≤ sup
0≤t≤T

|(F − Fτ)(∂t)g(t)| ,

with [0, T] the time interval of interest and τ > 0 the timestep. Pointwise estimates for convolutions are
available through Thm. 3.1.74 and we intend to apply this theorem with F ← F− Fτ .

Idea: Verify the assumption (3.1.75) of Thm. 3.1.74 for F− Fτ with

M ≤ Cτ , C > 0 independent of τ .

To begin with, we use the mean value theorem for complex-valued functions

F(s) − Fτ(s) = F(s)− F
(1− exp(−sτ)

τ

)
≤ |s− 1− exp(−sτ)

τ
| max

z∈Ξ(s)
|F′(z)| , (3.3.55)

with the line segment Ξ(s) ⊂ C connecting s and
1−exp(−sτ)

τ :

Ξ(s) :=

{
ζs + (1− ζ)

1− exp(−sτ)

τ
, 0 ≤ ζ ≤ 1

}
.

By Taylor expansion for small |s| and elementary estimates for large |s| one can bound the length of Ξ(s)
by

∣∣∣∣s−
1− exp(−sτ)

τ

∣∣∣∣ ≤ C
1

τ
|τs|2 = Cτ|s|2 , (3.3.56)

with some universal constant C > 0.

Next, we tackle |F′(z)| by means of the Cauchy formula,

F(ℓ)(z) =
ℓ!

2πı

∫

∂B

F(s)

(w− z)ℓ+1
dw ∀z ∈ B , z ∈ disk B ⊂ C+ , ℓ ∈ N0 ,

from Cor. 3.3.32 taking into account that F is analytic in the right half-plane C+.

|F′(z)| ≤ 1

π

∣∣∣∣∣∣∣

∫

|z−w|= 1
2 Re(z)

F(w)

(w− z)2
dw

∣∣∣∣∣∣∣
.

On the circle {w : |z−w| = 1
2 Re(z)} we have Re w ≥ 1

2 Re z and |w| ≤ 3
2 |z|, which yields the estimate

(M > 0 from Ass. 3.3.53)

|F′(z)| ≤ M(3
2)

µ 2

Re z
|z|µ ∀z ∈ C+ . (3.3.57)

Again by Taylor expansion and elementary estimates we see

for z ∈ Ξ(s): Re z ≥ min
{

Re s, Re
1− exp(−sτ)

τ

} ≥ 1
2 min{1, Re s} ,

|z| ≤ max{|s|,
∣∣1− exp(−sτ)

τ

∣∣} ≤ C|s| ,

3. Convolution Quadrature, 3.3. Implicit-Euler Convolution Quadrature 297

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

with another universal constant C > 0.

|F′(z)| ≤ CM

min{1, Re s} |s|
µ ∀z ∈ Ξ(s) , s ∈ C+ , (3.3.58)

with C > 0 independent of s and τ. Combine this with the estimate (3.3.56) for the length of the segment
Ξ(s):

|F(s)− Fτ(s)| ≤ τ
CM

min{1, Re s} |s|
µ+2 ∀s ∈ C+ . (3.3.59)

Plugging this into the estimate provided by Thm. 3.1.74 (for m = 1) gives us

|((F − Fτ)(∂t)g)(t) ≤ CM τ

T∫

0

∣∣∣∣∣
n

∑
ℓ=0

g(ℓ)(τ)

∣∣∣∣∣ , 0 ≤ t ≤ T , (3.3.60)

with n ∈ N, n ≥ µ + 3, and C > 0 independent of τ, but, of course, depending on T > 0. Finally, we
invoke (3.3.4)

Theorem 3.3.61. Convergence of IE-CQ

Under Ass. 3.3.53 on F and assuming g to be causal and g ∈ Cn(R), n > µ + 3, we have

max
n=0,...,N

∣∣∣F(∂t)g(τn) −
(
CQIE

τ (F) ∗ g|Gτ

)
n

∣∣∣ ≤ CM τ

T∫

0

∣∣∣∣∣
n

∑
ℓ=0

g(ℓ)(τ)

∣∣∣∣∣ ,

with C > 0 independent of g and τ.

3.4 Multistep Convolution Quadrature

3.4.1 Multistep Numerical Integrators

3.4.2 Convolution Weights

3.4.3 Convolution Quadrature: Algorithms

3.5 Runge-Kutta Convolution Quadrature

3.6 Fast Oblivious Convolution Quadrature

Example: B = 2, t = 15τ

t∫

0

· · · dξ =

15τ∫

14τ

· · · dξ

︸ ︷︷ ︸
t−ξ∈I0

+

14τ∫

12τ

· · · dξ

︸ ︷︷ ︸
t−ξ∈I1

+

12τ∫

8τ

· · · dξ

︸ ︷︷ ︸
t−ξ∈I2

+

8τ∫

0

· · · dξ

︸ ︷︷ ︸
t−ξ∈I3

3. Convolution Quadrature, 3.6. Fast Oblivious Convolution Quadrature 298

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 122 t = 1τ

t = 2τ

t = 3τ

t = 4τ

t = 5τ

t = 6τ

t = 7τ

t = 8τ

t = 9τ

t = 10τ

t = 11τ

t = 12τ

t = 13τ

t = 14τ

t = 15τ

t− τ < τ (“near

t− ξ ∈ I1

t− ξ ∈ I2

t− ξ ∈ I3

Integration interval

3. Convolution Quadrature, 3.6. Fast Oblivious Convolution Quadrature 299

Chapter 4

(Algebraic) Multigrid Methods

Supplementary reading. [TOS00] is a comprehensive textbook about and introduction into the

foundations and algorithmic aspects of various kinds of multigrid methods:

• An outline of geometric multigrid is given in Chapter 2c “Basic Multigrid I”,

• Appendix A titled “Introduction to Algebraic Multigrid” is the text underlying parts of the presen-
tation in ??.

4.1 Solvers for Finite Element Linear Systems

[Hip16, Chapter 3] introduced low-order finite element methods with small fixed polynomial degree of the
local trial spaces for the approximate solution of second-order elliptic boundary value problems. However,
the discussion completely glossed over a key issue: How can we solve the arising large sparse linear
systems of equations fast?

Here, “large” hints at huge matrix dimensions that can go up to billions as of 2018.

4.1.1 Elliptic Model Boundary Value Problems

The focus in this chapter is on scalar elliptic boundary value problems with homogeneous Dirichlet bound-
ary conditions on bounded connected polyhedral domains [Hip16, Section 2.5] Ω ⊂ Rd, d = 2, 3:

− div(A(x) grad u) + c(x)u = f in Ω , u = 0 on ∂Ω . (4.1.1)

The unknown is a function u : Ω→ R and the source function f must be square integrable: f ∈ L2(Ω).

Further, A : Ω→ Rd,d is a matrix-valued function, often called diffusion coefficient. We demand that

(i) A ∈ (C0
pw(Ω)d,d, that is, A is piecewise continuous with respect to a subdomain partition of Ω,

(ii) A(x) is symmetric for all x ∈ Ω, and

(iii) A is bounded and uniformly positive definite [Hip16, Def. 2.2.23]: there are constants 0 < α− ≤ α+

such that

α−‖z‖2 ≤ z⊤A(x)z ≤ α+‖z‖2 ∀z ∈ Rd , ∀x ∈ Ω . (4.1.2)

300

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The function c : Ω→ R is called reaction coefficient, has to belong to C0
pw(Ω) and to satisfy c(x) ≥ 0

for all x ∈ Ω.

Example 4.1.3 (Poission equation)

In the special case A(x) = I (identity matrix) and c ≡ 0, we face a homogeneous Dirichlet boundary
value problem for the Poisson equation

−∆u = f in Ω , u = 0 on ∂Ω . (4.1.4)

(4.1.5) Two-point boundary value problems

A special case is d = 1, where Ω =]a, b[, a, b ∈ R, a < b. Then (4.1.1) reads:

d

dx

(
a(x)

du

dx
(x)
)
= f (x) for x ∈]a, b[, u(a) = u(b) = 0 . (4.1.6)

(4.1.7) Variational formulation

The finite element method relies on the variational formulation of (4.1.1), also known as the weak form:
seek u ∈ H1

0(Ω)

∫

Ω

A(x) grad u(x) · grad v(x) + c(x)u(x)v(x)dx

︸ ︷︷ ︸
=:a(u,v)

=
∫

Ω

f (x)v(x) dx

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1
0(Ω) . (4.1.8)

For the Sobolev space H1
0(Ω) refer to [Hip16, Section 2.3.4]. Under the above assumptions on A and c

existence and uniqueness of solutions of (4.1.8) can be taken for granted.

(4.1.9) Equivalent minimization problem

As explained in [Hip16, Section 2.4] the linear variational problem (4.1.8) is equivalent to the quadratic
minimization problem

u = argmin
v∈H1

0(Ω)

J(v) , J(v) := 1
2a(v, v)− ℓ(v) . (4.1.10)

(4.1.11) Finite element Galerkin discretization

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 301

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We equip Ω with a simplicial mesh/triangulation M
in the sense of [Hip16, Def. 3.5.2]. For d = 1 it will be
a partitioning of the interval Ω into smaller intervals
(cells), for d = 2 a special tiling of Ω with triangles.

A triangular mesh in 2D, edges drawn in blue, those
on the boundary ∂Ω in red ✄

We take for granted that the interior angles of all tri-
angles are above a fixed threshold, which ensures a
uniformly bounded shape-regularity measure [Hip16,
Def. 5.3.37].

Fig. 123
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

The finite element method converts (4.1.8) into a discrete vasriational formulation by replacing H1
0(Ω)

by a finite-dimensional subspace Vh, a procedure called Ritz-Galerkin discretization [Hip16, ??]: seek
uh ∈ Vh

∫

Ω

A(x) grad uh(x) · grad vh(x) + c(x)uh(x)vh(x)dx

︸ ︷︷ ︸
=:a(uh,vh)

=
∫

Ω

f (x)vh(x)dx

︸ ︷︷ ︸
=:ℓ(vh)

∀vh ∈ Vh . (4.1.12)

We restrict ourselves to linear Lagrangian finite ele-
ments and use Vh = S0

1,0(M), see [Hip16, § 3.3.3]
(1D) and [Hip16, Section 3.4.2] (2D). We use “tent
function” locally supported nodal basis functions as
explained in [Hip16, Section 3.4.3]. They provide a
cardinal basis of S0

1,0(M) with respect to point eval-
uation at interior vertices ofM.

A single “tent function” on a triangular mesh ✄

(Graph is a pyramid with height 1.) Fig. 124

Inserting the nodal basis expansion of uh ∈ S0
1,0(M), the discrete variational problem can be converted

into an equivalent linear system of equations A~µ = ~ϕ, where A ∈ RN,N is the Galerkin matrix, ~µ ∈ RN

the vector of the basis expansion coefficients of uh ∈ Vh, and~ϕ ∈ RN the load vector. Throughout N ∈ N

will stand for the dimension of the finite element space N := dim Vh. It agrees with the number of interior
nodes ofM.

The structure of the variational problem (4.1.8) implies particular properties of Galerkin matrices:

Lemma 4.1.13. Symmetric positive definite Galerkin matrices

Every matrix A ∈ RN,N arising from a Galerkin discretization of (4.1.8) based on the trial and test

space Vh ⊂ H1
0(Ω) will be symmtric and positive definite, that is

A = A⊤ and ~ν⊤A~ν > 0 ∀~ν ∈ RN \ {0} . (4.1.14)

(4.1.15) Finite element computations based on local quadrature rules

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 302

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

The occurrence in (4.1.8) of “general functions” A = A(x), c = c(x), and f = f (x) that may be acces-
sible through point evaluation only entails using numerical quadrature on the cells of the mesh in order to
evaluate a(uh , vh) and ℓ(vh) approximately.

For Vh = S0
1,0(M) it is sufficient to rely on the composite trapezoidal rule, locally defined by

∫

K
ϕ(x) dx ≈ 1

3 |K|
(

ϕ(a1) + ϕ(a2) + ϕ(a3)
)

, K ∈ M triangle with vertices a1, a2, a3 , (4.1.16)

for the approximation of all integrals.

(4.1.17) Sparsity of finite element Galerkin matrices

The nodal basis functions b1
h, . . . , bN

h of vh = S0
1,0(M) are “tent functions” associated with the interior

nodes/vertices x1, . . . , xN of the meshM. Since

supp(bi
h) =

⋃
{K : K ∈ M, xi ∈ K} , (4.1.18)

that is, the support of a basis function is the union of the (closed) triangles adjacent to the associated
vertex, the S0

1,0(M)-Galerkin matrix A ∈ RN,N for the bilinear form a(·, ·) from (4.1.8) satisfies:

{
Nodes xi, xj ∈ V(M)

not connected by an edge
⇔ Vol(supp(bi

h) ∩ supp(b
j
h)) = 0

}
⇒ (A)ij = 0 .

(4.1.19)

This means that A is sparse in the sense of [Hip16,
Notion 3.4.18]: most of their entries will be zero.

Non-zero entries of the S0
1,0(M)-Galerkin matrix

arising from discretizing (4.1.8) on the triangular
mesh displayed in 123. ✄

Fig. 125
0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2670

Sparsity of finite element Galerkin matrices

N × N Galerkin matrices for low-order finite element methods
have O(N) non-zero entries for N → ∞.

As a consequence

✦ It takes only O(N) memory to store an N × N finite element Galerkin matrix
(➣ data-sparse matrices),

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 303

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✦ the computational effort for the multiplication of an N × N finite element Galerkin matrix with a
vector scales like O(N) for N → ∞.

Example 4.1.21 (Poisson matrix)

Fig. 126

We consider the finite element Galerkin discretiza-
tion of the Poisson equation (4.1.4) on the unit
square Ω =]0, 1[2 using linear finite elements on the
“equidistant triangular tensor-product mesh”M dis-
played beside.

Line-by-line lexikographic numbering of the interior
nodes (•) is assumed, cf. [Hip16, Section 4.1].

If there are n cells in each direction, the total number
of interior nodes will be N := (n− 1)2, which agrees
with dimS0

1,0(M).

As explained in [Hip16, Section 4.1.1], we end up with an N × N block-tridiagonal Galerkin matrix, known
as Poisson matrix

A :=




T −I 0 · · · · · · 0

−I T −I
...

0 −I T −I
...

...
. 0

... −I T −I
0 · · · · · · 0 −I T




, T :=




4 −1 0 0

−1 4 −1
...

0 −1 4 −1
...

...
.

... −1 4 −1
0 · · · · · · 0 −1 4




∈ Rn−1,n−1 (4.1.22)

We are going to rely on this matrix in several numerical experiments.

4.1.2 Sparse Elimination Solvers

Recall Gaussian elimination and its rewriting through the LU-decomposition of matrices, [Hip15, Sec-
tion 2.3]. Gaussian elimination does not mesh smoothly with the sparse matrices obtained from finite
element discretization:

! [Hip15, Ex. 2.7.45]: LU-factors of a sparse matrix need not be sparse

fill-in [Hip15, Def. 2.7.47]

Let A ∈ RN,N be a large sparse finite element Galerkin matrix for a 2D or 3D BVP with “O(N)” non-zero

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 304

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

entries:

Dream: Cost for solving A~µ = ~ϕ = O(N)

Reality Cost for solving A~µ = ~ϕ = O(Nα), 1.5 ≤ α ≤ 2.

The exponent α depends on the details of the method and tends to be bigger for 3D problems. In practice
one observes

• α ≈ 1.5 for 2D finite element Galerkin matrices,

• α ≈ 2 for finite element Galerkin matrices arising from 3D problems.

Experiment 4.1.23 (Cost of direct elimination solvers)

Fig. 127
10

5
10

6

Matrix size

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
(s

ec
)

3D Laplacian
2D Laplacian
Complexity O(1.801)
Complexity O(1.449)

✁ Runtime measurements for direct solution of FE
linear systems, courtesy of Prof. O. Schenk, USI
Lugano

✦ Sparse solver code PARDISO 6.1 [SG06]
✦ Domain Ω =]0, 1[d, A =̂ Poisson-Galerkin

matrix on uniforrm 2D/3D tensor product mesh
(5-point/9-point stencil)

✦ OS: Ubuntu Linux 18.04,
Compiler: gcc-7, -O3, single core,
CPU: I2ntel Xeon CPU E7-4880@2.50GHz

4.1.3 Stationary Linear Iterations

The O(Nα), α ≥ 2 asymptotic computational cost of direct elimination solvers becomes prohibitive for
N ≈ 107 even on HPC systems. Is there an alternative?

(4.1.24) Iterative solution of linear systems of equations

As an alternative to the direct solution of A~µ = ~ϕ, A ∈ RN,N sparse, we could try iterative methods that

produce sequences
(
~µ(k)

)
k∈N0

of approximate solutions that, ideally, fast converge to the exact solution

lim
k→∞

∥∥∥~µ(k) −~µ∗
∥∥∥ = 0 , A~µ∗ = ~ϕ .

Interative methods may be preferred for several reasons often relevant in the context of finite element
computations:

(I) The sheer size of the linear system of equations rules out the use of methods whose memory
requirements scale like O(Nα) as N → ∞ for some α > 1.

(II) In light of inevitable discretization errors highly accurate solutions of the linear systems are not
needed; early termination of the iteration may be possible.

(III) If a rather good approximation of the solution is available already, a sufficiently accurate solution
may be obtained after only a few iterations.

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 305

http://www.pardiso-project.org/

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(4.1.25) Gauss-Seidel method

The Gauss-Seidel method is an iterative solution method for general square linear systems of equations:
Given

✦ the coefficient matrix A ∈ RN,N, N ∈ N, with non-zero diagonal elements, (A)i,i 6= 0,

✦ any right-hand-side vector~ϕ ∈ RN,

✦ and an initial guess~µ0 ∈ RN,

it can be implemented as follows (the argument ~µ both passes the initial guess and serves to return the
approximate solution):

Pseudocode 4.1.26: Gauss-Seidel method for A~µ = ~ϕ

1 void GaussSeidel (const A ∈ RN,N , const ~ϕ ∈ RN , re f ~µ ∈ RN , double TOL) {
2 do {
3 double deltanorm = 0; // squared norm of update in one step

4 // Update all components of the approximate solution

5 for (i n t i =0; i <N; i ++) { \ \

6 double δµ :=
1

(A)i,i

(
(
~ϕ
)

i
−

N

∑
j=1

(A)i,j

(
~µ
)

j

)
;

7 (~µ)i += δµ ;
8 deltanorm += (δµ)2 ;
9 } \ \

10 }
11 while (s q r t (deltanorm) < TOL·‖~µ‖) ; // Termination criterion

12 }

The outer loop in Code 4.1.26 embodies the steps of the Gauss-Seidel method. At step i of the inner loop
(Line 5–Line 9) the solution component

(
~µ
)

i
is adjusted so that the i-th row of the LSE A~µ = ~ϕ is satisfied

exactly.

Obviously, the computational effort for a single step of the Gauss-Seidel method is proportional to the
number of non-zero entries of A, hence O(N) for finite element Galerkin matrices and N → ∞, remember
§ 4.1.17.

(4.1.27) Gauss-Seidel method as stationary linear iteration

The operations in the inner loop of Code 4.1.26 from Line 5 through Line 9 boil down to

(A)i,i

(
~µ
)

i
:=
(
~ϕ
)

i
−

N

∑
j=1
j 6=i

(A)i,j

(
~µ
)

j
, i = 1, . . . , N . (4.1.28)

Thus, the entire inner loop of the Gauss-Seidel method from Code 4.1.26 can be rewritten as

~µ← ~µ + tril(A)−1~ρ with residual ~ρ :=
(
~ϕ−A~µ

)
, (4.1.29)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 306

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

where tril(A) ∈ RN,N extracts the lower-triangular part of the matrix A. Assuming, (A)i,i 6= 0 for all i
ensures that tril(A) is invertible.

Hence, the Gauss-Seidel method is an iteration generating the vector sequence ~µ(0),~µ(1),~µ(2), . . . ac-
cording to the rule

~µ(0) := ~µ0 , ~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) with M := tril(A)−1 . (4.1.30)

An itaration of the form ~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) is called a stationary linear iteration consistent
with the linear system of equations A~µ = ~ϕ.

Obviously, any solution of the LSE A~µ = ~ϕ provides a fixed point of the associated linear stationary
iteration

A~µ(k) = ~ϕ ⇒ ~µ(k+1) = ~µ(k) . (4.1.31)

This is the meaning of “consistent”. Moreover, every fixed point gives a solution of the LSE provided that
M is invertible

~µ = ~µ + M(~ϕ−A~µ)
M invertible
=⇒ A~µ = ~ϕ . (4.1.32)

(4.1.33) Error recursion for stationary linear iterations

We consider a stationary linear iteration

~µ(k+1) = ~µ(k) + M
(
~ϕ−A~µ(k)) with invertible M ∈ RN,N , (4.1.34)

consistent with the N × N linear system of equations (LSE) A~µ = ~ϕ, A ∈ RN,N,~ϕ ∈ RN.

Assuming that A is invertible, we write~µ∗ ∈ RN for the unique solution of the LSE: A~µ∗ = ~ϕ. A one-line
elementary calculation yields the error recursion

~ǫ(k+1) = (I−MA)~ǫ(k) for the iteration error ~ǫ(k) := ~µ∗ −~µ(k) . (4.1.35)

The matrix E := I−MA is called the error propagation matrix for the stationary linear iteration (4.1.34).

Corollary 4.1.36. Convergence of stationary linear iterations

Let ‖·‖ be a matrix norm induced by the vector norm ‖·‖ on RN. If ρ := ‖I−MA‖ < 1, the

stationary linear iteration (4.1.34) converges to~µ∗ := A−1~ϕ linearly with rate ρ.

“Linear convergence” of an iteration is defined in [Hip15, Def. 8.1.9] and means that
∥∥∥~µ∗ −~µ(k+1)

∥∥∥ ≤ ρ
∥∥∥~µ∗ −~µ(k)

∥∥∥ for some ρ < 1 .

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 307

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Remark 4.1.37 (Asymptotic decay of iteration error)

As in § 4.1.33 we consider the stationary linear iteration (4.1.34). From the error recursion (4.1.35) we

learn that the sequence of error vectors (~ǫ(0),~ǫ(1),~ǫ(2), . . .) is generated by a power iteration. Therefore,
we know

lim
k→∞

∥∥∥~ǫ(k+1)
∥∥∥

∥∥∥~ǫ(k)
∥∥∥

= λmax(I−MA) := max{|λ| : λ ∈ σ(I−MA)} , (4.1.38)

for any vector norm ‖·‖: Asymptotically the decay of the iteration error will be determined by the largest
eigenvalue of the error propagation matrix.

Remark 4.1.39 (Measuring rates of convergence of stationary linear iterations)

Write λmax(X) for the largest (in modulus) eigenvalue of the matrix X ∈ RN,N:

λmax(X) := max{|λ| : λ ∈ σ(X)} , σ(X) := spectrum of X . (4.1.40)

Then, for any matrix norm ‖·‖ induced by a vector norm

∥∥∥Xk
∥∥∥→ λmax(X)

k for k→ ∞ . (4.1.41)

Hence, the spectral radius λmax(X) will give precise information about the so-called asymptotic rate of
linear convergence, which, after several steps, is a good approximation of the actual rate.

The computation of λmax(X) relies on the power iteration, see [Hip15, Section 9.3.1] and Code 4.1.42

C++11 code 4.1.42: Power method for computing λmax(X), X ∈ RN,N

1 double comp_lmax (const X ∈ RN,N) {
2 ~ν ∈ RN := random vector ;
3 λnew := 0
4 do {
5 λold := λnew ;

6 ~ν :=
~ν

‖~ν‖ ; // normalization

7 ~ν := X~ν ;
8 λnew := ‖~ν‖ ; // new guess for largest eigenvalue

9 }

10 while (
|λnew − λold|
|λnew|

> TOL) ; // Terminate in case small relative change

11 return (λnew) ;
12 }

Experiment 4.1.43 (Convergence of Gauss-Seidel method for Poisson matrix)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 308

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

We measure the (asymptotic) rate of linear convergence of the Gauss-Seidel method from Code 4.1.26
when applied to the linear system of equations A~µ = ~ϕ, where A is the N × N Poisson matrix from
(4.1.22) and~ϕ = 1 is the vector of all ones.

Fig. 128

2 3 4 5 6 7 8 9 10
ℓ

0.5

0.6

0.7

0.8

0.9

1.0

λ m
ax
(E

G
S)

We investigate the matrix sizes N := (n− 1)2,
n = 2ℓ, ℓ = 2, . . . , 10, and compute a guess for the
rate of linear convergence by means of the power it-
eration with TOL=10−3.

As initial guess we used 0.

We observe a massive deterioration
of the rate of convergence for increas-
ing matrix size.

A simple heuristic argument can make this observation plausible: If~νmin ∈ RN, ‖~νmin‖ = 1, is an eigen-
vector of the Poisson matrix A belonging to the smallest eigenvalue κmin, then we expect (‖·‖ the Eu-
clidean norm)

∥∥∥(I− tril(A)−1A)~νmin

∥∥∥ ≈ 1− λmin .

The eigenvectors and eigenfunctions of the Poisson matrix are well-known [Stü99, Ex. 3.1], [Hac94,
Sect. 4.1]: for k, m ∈ {1, . . . , n− 1} we find

eigenvectors :

[
sin(π

i

n
k)

]n−1

i=1

⊗
[

sin(π
j

n
m)

]n−1

j=1

∈ RN ,

eigenvalues : λk,m = 4− 2 cos(
kπ

n
)− 2 cos(

mπ

n
) = 4 sin2(

kπ

2n
) + 4 sin2(

mπ

2n
) .

(4.1.44)

As a consequence we have λmin = O(N−1) for N → ∞ and the asymptotic rate of convergence of the

Gauss-Seidel iteration will behave like 1−O(N−1). Hence, writing ~µ(k) for the Gauss-Seidel iterates,
from (4.1.35) we can expect that after a few steps and for large N

∃C > 0:
∥∥∥~µ∗ −~µ(k+1)

∥∥∥ ≤ (1− C

N
)
∥∥∥~µ∗ −~µ(k)

∥∥∥ .

In order to achieve error reduction by a factor of ǫ < 1, we have to carry out at least

K ≥ log ǫ

log(1− C
N)
≥ log ǫ

C
· N = O(N) for N → ∞

Gauss-Seidel steps. Since each step involves computational cost O(N), we arrive at an asymptotic
effort of O(N2) for solving A~µ = ~ϕ approximately up to a prescribed error level. This does not compare
favorably with the effort required by a modern sparse direct solver, see Section 4.1.2.

(4.1.45) Composition of stationary linear iterations

Let us consider to interleaved stationary linear iterations

~µtmp = ~µ(k) + M1

(
~ϕ−A~µ(k)) with invertible M1 ∈ RN,N ,

~µ(k+1) = ~µtmp + M2

(
~ϕ−A~µtmp

)
with invertible M2 ∈ RN,N .

(4.1.46)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 309

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

By elementary algebra, this yields another stationary linear iteration

~µ(k+1) = ~µ(k) + M
(
~ϕ−A~µ(k)) , M := M1 + M2 −M2AM1 . (4.1.47)

Naturally, its error propagation matrix must be the product of the two error propagation matrices of the
involved stationary linear iterations:

I−MA = (I−M2A)(I−M1A) . (4.1.48)

4.1.4 Conjugate Gradient Method (CG)

From Lemma 4.1.13 we learn that finite element discretizations will lead to linear systems of equations with
large spare symmetric positive definite coefficient matrices. For this class of linear systems, the conjugate
gradient method (CG) [Hip15, Section 10.2] is the most important iterative method.

(4.1.49) CG algorithm [Hip15, Section 10.2.2]

The next pseudocode gives a mathematical definition of the conjugate gradient method applied to the LSE
A~µ = ~ϕ. For the derivation refer to [Hip15, Section 10.2].

Pseudocode 4.1.50: Conjugate gradient method

1 Vector cg (A ∈ RN,N , ~ϕ ∈ RN , ~µ(0)) {

2 ~ζ1 = ~ρ0 := ~ϕ−A~µ(0) ;
3 for (j =1; j < maxit ; ++ j) {

4 ~µ(j) := ~µ(j−1) +
~ζ
⊤
j ~ρj−1

~ζ
⊤
j A~ζ j

~ζ j ;

5 ~ρj = ~ρj−1−
~ζ
⊤
j ~ρj−1

~ζ
⊤
j A~ζ j

A~ζ j ;

6 ~ζ j+1 = ~ρj −
(A~ζ j)

⊤~ρj

~ζ
⊤
j A~ζ j

~ζ j ;

7 i f (
∥∥∥~ρj

∥∥∥ < TOL · ‖~ρ0‖) return (~µ(j)) ;

8 }
9 }

✁ CG-Algorithm for solving
LSE A~µ = ~ϕ

Input:
✦ S.p.d. matrix A ∈ RN,N,
✦ right-hand-side vector~ϕ,

✦ initial guess ~µ(0) ∈ RN,
✦ tolerance TOL for termination crite-

rion.

Return value: approximate solution.

Cost of CG step

A single CG step requires one

A×vector multiply plus a small
number of vector operations.

The cost for a single CG step applied to an N × N finite element linear system is
O(N) asymptotically for N → ∞.

(4.1.52) Convergence of CG [Hip15, Section 10.2.3]

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 310

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

For a symmetric positive definite matrix A ∈ RN,N we denote by ‖·‖A the energy norm induced by A:

‖~ν‖2
A := ~ν⊤A~ν , ~ν ∈ RN . (4.1.53)

This energy norm is fundamental in the theory of the CG method [Hip15, Cor. 10.2.23] and it is in this
energy norm that convergence estimates are stated. We also need the notion of the spectral condition
number of an invertible matrix

κ(A) :=
λmax(A)

λmin(A)
=

max{|λ| : λ ∈ σ(A)}
min{|λ| : λ ∈ σ(A)} . (4.1.54)

Theorem 4.1.55. Convergence of the CG method [Hip15, Thm. 10.2.25]

The iterates of the CG method for solving A~µ = ~ϕ (see Code 4.1.50) with A = A⊤ ∈ RN,N s.p.d.

satisfy

∥∥∥~µ∗ −~µ(l)
∥∥∥

A
≤ 2

(√
κ(A)− 1√
κ(A) + 1

)l∥∥∥~µ∗ −~µ(0)
∥∥∥

A
, l ∈ N ,

where A~µ∗ = ~ϕ.

The larger κ(A) the slower the convergence of CG!

Experiment 4.1.56 (Convergence of CG for the Poisson matrix)

We apply the CG method to a linear system with the Poisson matrix (4.1.22) as coefficient matrix.

Fig. 129
10 20 30 40 50 60 70 80 90 100

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
te

Convergence of CG

We record the “approximate asymptotic convergence
rates”

rate ≈ 10

√√√√√

∥∥∥~µ(30) −~µ∗
∥∥∥

A∥∥∥~µ(20) −~µ∗
∥∥∥

A

,

for~µ∗ = 1 and~µ(0) = 0.

We measure these rates of convergence for
N = (n− 1)2, n = 5, 6, . . . , 30.

✁ We observe a pronounced deterioration of CG
convergence for larger N.

(4.1.57) CG convergence for FE linear systems

The observation made in the previous experiment can be concluded from Thm. 4.1.55 and [Hip16, Lemma 6.1.112].
That theorem told us that for finite element Galerkin matrices A for second-order scalar elliptic boundary
value problems (4.1.8) and trial/test spaces S0

1,0(M) we have

0 < λmin(A) ≤ C , λmax(A) ≥ C′h−2
M , (4.1.58)

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 311

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

with constants C, C′ > 0 depending only on the shape-regularity measure (→ [Hip16, Def. 5.3.37]) and
quasi-uniformity of the meshM. As a consequence

κ(A) ≥ Ch−2
M . (4.1.59)

Hence, by Thm. 4.1.55 we expect slower convergence on finer meshes, exactly what we have observed
in Exp. 4.1.56. In fact, κ(A) ≈ h−2

M , which gives, asymptotically on sequences of uniformly and regularly
refined meshes

∥∥∥~µ∗ −~µ(k)
∥∥∥

A
≤ 2(1−O(hM))k

∥∥∥~µ∗ −~µ(0)
∥∥∥

A
for meshwidth hM → 0 . (4.1.60)

In two dimensions we have N = O(h−2
M), which means that we get an asymptotic reduction of the energy

norm of the CG iteration error by a factor of ǫ < 1, if we carry out at least

K ≥ log ǫ

log(1− CN−
1
2)
≥ log ǫ

C
N

1
2 = O(

√
N) for N → ∞

CG steps. We conclude an asymptotic computational effort of O(N
3
2) for solving A~µ = ~ϕ up to a pre-

scribed relative accuracy. This is superior to the Gauss-Seidel method, but not better than the advanced
sparse direct solvers mentioned in Section 4.1.2.

4.2 Geometric Multigrid Method

Recall the Gauss-Seidel iteration for solving the linear system of equations A~µ = ~ϕ,

~µ(0) := ~µ0 , ~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) with M := tril(A)−1 , (4.1.30)

for which we found the error recursion

~ǫ(k+1) = (I−MA)~ǫ(k) for the iteration error ~ǫ(k) := ~µ∗ −~µ(k) . (4.1.35)

Idea: Study the eigenvector belonging to the largest (in modulus) eigenvalue of
I−MA

= slowest converging error component!

Experiment 4.2.1 (Convergence of Gauss-Seidel II, see also Exp. 4.1.43)

As in Exp. 4.1.43 we study the Gauss-Seidel iteration

~µ(k+1) = ~µ(k) + tril(A)−1(
~ϕ−A~µ(k)) ,

for the 2D Poisson matrix A as defined in (4.1.22). We choose~ϕ := A~µ∗ with a random vector~µ∗ ∈ RN

(entries equidistributed in [0, 1]), and initial guess~µ(0) = 0.

➊ For N = 100 we we plot the finite element “error” functions e
(k)
h ∈ S0

1,0(M) with nodal coefficient

vectors~µ∗ −~µ(k) generated by the Gauss-Seidel iteration (4.1.30).

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 312

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 130

0

1

0.2

0.4

1

F
E

 E
rr

o
r 0.6

0.8

k =0

Y

0.8

0.5 0.6

X

1

0.4
0.2

0 0

k = 0

Fig. 131

0

1

0.1

0.2

1

0.3

F
E

 E
rr

o
r 0.4

0.8

k =2

Y

0.5

0.5

0.6

X

0.6

0.4
0.2

0 0

k = 2

Fig. 132

0

1

0.1

0.2

1

0.3

F
E

 E
rr

o
r

0.4

0.8

k =4

Y

0.5

0.5

0.6

X

0.6

0.4
0.2

0 0

k = 4

Fig. 133

0

1

0.1

0.2

1

F
E

 E
rr

o
r 0.3

0.8

k =8

Y

0.4

0.5 0.6

X

0.5

0.4
0.2

0 0

k = 8

We observe that after several steps of the Gauss-Seidel iteration the iteration error viewed as a finite
element function becomes smooth.

➋ For the Poisson matrix A given in (4.1.22) we inspect the finite element functions defined by the
eigenvectors of the error propagation matrix E := I− tril(A)−1A belonging to the largest eigenvalue.

Fig. 134

0

1

0.05

0.1

1

F
E

 f
u
n
c
ti
o
n

0.15

0.8

Y

0.2

0.5 0.6

X

0.25

0.4
0.2

0 0

N = 64, λmax(E) = 0.88302

Fig. 135

0

1

0.02

0.04

1

0.06

F
E

 f
u
n
c
ti
o
n 0.08

0.8

Y

0.5

0.1

0.6

X

0.12

0.4
0.2

0 0

N = 256, λmax(E) = 0.96624

Fig. 136

0

1

0.01

0.02

1

0.03

F
E

 f
u
n
c
ti
o
n 0.04

0.8

Y

0.5

0.05

0.6

X

0.06

0.4
0.2

0 0

N = 1024, λmax(E) = 0.99096

We observe that the “slowest converging” error functions are smooth and their per-step reduction as
measured by λmax(E) becomes smaller with increasing N: λmax(E)→ 1 as N → ∞.

➌ Now we examine the finite element function defined by the eigenfunction of the Gauss-Seidel error
propagation matrix E belonging to the smallest (in modulus) eigenvalue.

Fig. 137

-1

1

-0.8

-0.6

1

-0.4

F
E

 f
u
n
c
ti
o
n -0.2

0.8

Y

0.5

0

0.6

X

0.2

0.4
0.2

0 0

N = 64, λmin(E) = 0

Fig. 138

-0.2

1

0

0.2

1

0.4

F
E

 f
u
n
c
ti
o
n 0.6

0.8

Y

0.5

0.8

0.6

X

1

0.4
0.2

0 0

N = 256, λmin(E) = 0

Fig. 139

-1

1

-0.8

-0.6

1

-0.4

F
E

 f
u
n
c
ti
o
n -0.2

0.8

Y

0.5

0

0.6

X

0.2

0.4
0.2

0 0

N = 1024, λmin(E) = 0

Obviously, the “fastest converging” error functions are highly localized and they experience an (almost)
N-independent per-step reduction given by λmin(E).

Behavior of the Gauss-Seidel iteration error

When applied to LSE arising from the finite element discretization of scalar 2nd-order elliptic bound-
ary value problems on fine meshes (large N, small hM), the Gauss-Seidel iteration

✦ effects a fast reduction of highly-oscillatory error components,

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 313

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

✦ fails to reduce smooth error components significantly.

4.2.1 Subspace Correction Methods

The relationship between variational problems, linear systems of equations, and minimization problems,
hinted at in § 4.1.9 suggests an abstract approach to the construction of iterative solution methods for
finite element linear systems of equations with s.p.d. coefficient matrix.

Let us assume that A is spawned by the Galerkin discretization of a linear variational problem

uh ∈ Vh: a(uh, vh) = ℓ(vh) ∀vh ∈ Vh , (4.2.3)

using the finite-dimensional trial/test space Vh and its basis {b1
h, . . . , bN

h } ⊂ Vh, N := dim Vh. Thus, we

assume (A)i,j := a(b
j
h, bi

h), 1 ≤ i, j ≤ N.

If the bilinear form a(·, ·) is symmetric and positive definite, then (4.2.3) is equivalent to the quadratic
minimization problem

uh = argmin
vh∈Vh

J(v) , J(v) := 1
2a(v, v)− ℓ(v) . (4.2.4)

The scheme outlined next is a natural iterative approach to solving (4.2.4).

Definition 4.2.5. (Successive) subspace correction method

Given an additive decomposition (not necessarily direct)

Vh =
M

∑
m=1

Vm , with subspaces Vm ⊂ Vh M ∈ N , (4.2.6)

a single step u
(k)
h → u

(k+1)
h of the induced (successive) subspace correction iteration is defined

as

u
(k+1)
h := u

(k)
h , u

(k+1)
h ← u

(k+1)
h + argmin

wm∈Vm

J(u
(k+1)
h + wm) , m = 1, . . . , n . (4.2.7)

Remember from [Hip16, Section 2.4.2] that the necessary and sufficient optimality conditions for a quadratic
minimization problem with s.p.d. bilinear form amount to a linear variational problem. Thus, any successive
subspace correction method can also be reformulated in terms of linear variational problems restricted to
the subspaces Vm, because

J(uh + wm) =
1
2a(wm, wm)− (ℓ(wm)− a(uh, wm)) + a(uh, uh)− ℓ(uh)

is a quadratic functional in wm ∈ Vm. Hence, by the equivalence of linear variational problems with s.p.d.
bilinear forms and quadratic minimization problems,

vm = argmin
wm∈Vm

J(u
(k+1)
h + wm)

m
vm ∈ Vm: a(vm, wm) = r(uh ; wm) := ℓ(wm)− a(uh, wm) ∀wm ∈ Vm ,

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 314

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

with the residual linear form w 7→ r(uh ; w) := ℓ(w)− a(uh, w), w ∈ Vh. As a consequence, the sub-
space correction iteration (4.2.7) can be recast as

u
(k+1)
h := u

(k)
h ,

{
vm ∈ Vm: a(vm, wm) = r(u

(k+1)
h ; wm) ∀wm ∈ Vm ,

u
(k+1)
h ← u

(k+1)
h + vm ,

m = 1, . . . , M .
(4.2.8)

We switch to an algebraic perspective: Assume that we are given a basis {b1
m, . . . , bNm

m } of Vm, Nm := dim Vm.
Then we can express vm from (4.2.8) as a linear combination

vm =
Nm

∑
k=1

(ν̃m)kbk
m for some ν̃m ∈ RNm .

The coefficient vector ν̃m ∈ RNm can be computed as the solution of the Nm × Nm linear system of
equations

Amν̃m = ρ̃m(uh) with

(
Am

)
i,j
= a(b

j
m, bi

m) , i, j ∈ {1, . . . , Nm} ,

(ρ̃m(uh))i := r(uh, bi
m) , i ∈ {1, . . . , Nm} .

(4.2.9)

Since Vm ⊂ Vh, the basis functions b
j
m are linear combinations of the basis functions bk

h of Vh:

∃Pm ∈ RN,Nm : bi
m =

N

∑
k=1

(Pm)k,ib
k
h , i ∈ {1, . . . , Nm} , m = 1, . . . , M . (4.2.10)

Exploiting the bilinarity of a(·, ·) and the linearity of r(uh, ·), we find

Am = P⊤mAPm , (4.2.11)

ρ̃m(uh) = P⊤m(~ϕ−A~µ) , (4.2.12)

where ~µ ∈ RN is the coefficient vector of uh ∈ Vh with respect to the basis {b1
h, . . . , bN

h } of Vh. This
implies that the solution of (4.2.9) reads

ν̃m =
(

P⊤mAPm

)−1
P⊤m(~ϕ−A~µ(k+1)) ,

with the coefficient vector~µ(k+1) of u
(k+1)
h . Also ν̃m describes a function in Vm ⊂ Vh and this function is

represented by a coefficient vector~νh ∈ RN, too:

~νm = Pmν̃m = Pm

(
P⊤mAPm

)−1
P⊤m(~ϕ−A~µ(k+1)) . (4.2.13)

This gives the final algebraic version of (4.2.8):

~µ(k+1) := ~µ(k) ,




~νm := Pm

(
P⊤mAPm

)−1
P⊤m(~ϕ−A~µ(k+1)) ,

~µ(k+1) ← ~µ(k+1) +~νm ,

m = 1, . . . , M .
(4.2.14)

The highlighted formula provides the subspace correction in the direction of Vm.

The following pseudocode implements a subspace correction iteration for the linear system of equations
A~µ = ~ϕ. The function takes the right-hand side vector ~ϕ ∈ RN and the initial guess ~µ as arguments
and returns the final approximation in ~µ. The codes assumes that the basis transformation matrices Pm,
m = 1, . . . , M, are known. Termination triggered when the relative size of the update of~µ drops below a
specified threshold TOL.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 315

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 4.2.15: Algebraic (successive) subspace correction method

1 void ssc (const ~ϕ ∈ RN , r e f ~µ , double

2 TOL) {
3 // Precompute Galerkin matrices in subspaces

4 Compute Am := PmAP⊤m ∈ RNm,Nm , m = 1, . . . , M ;
5 do {
6 ~µold := ~µ ;
7 for (i n t m=1; m<M; m++) {
8 Compute ~ρm := P⊤m(~ϕ−A~µ) ;
9 Solve Am~γ = ~ρ ;

10 ~µ← ~µ +~γ ; // Update in the direction of Vm

11 }
12 }
13 while (‖~µ−~µold‖ > TOL · ‖~µ‖) ; // Termination test

14 }

From (4.2.14) it is clear that

(i) the correction in the direction of Vm already defines a stationary linear iteration of the form (4.1.34)

with M = Pm

(
P⊤mAPm

)−1
P⊤m ,

(ii) the whole subspace correction iteration is the composition of subspace corrections in individual
directions as introduced in § 4.1.45.

Hence, from § 4.1.45 and, in particular (4.1.48), we learn that the whole subspace correction iteration is a
stationary linear iterative method, whose error propagation matrix is

ESSC := I−MsscA = (I− Pm

(
P⊤mAPm

)−1
P⊤mA) · · · · · (I− P1

(
P⊤1 AP1

)−1
P⊤1 A) . (4.2.16)

(4.2.17) Gauss-Seidel as a subspace correction method

Now we view the Gauss-Seidel stationary linear iteration for a s.p.d. finite element Galerkin matrix
A ∈ RN.,N as defined in Code 4.1.26/(4.1.30) from a new angle and identify it as a particular subspace
correction method.

To that end, we consider the very special situation

M = N , Nm = 1 , b1
m = bm

h ,

which yields a subspace correction method with one-dimensional subspaces spanned by a single basis
function of Vh each. In this case we have

Pm =~εm =̂ m-th coordinate vector , Am = (A)m,m , m = 1, . . . , N .

This means

~µ← ~µ + PmA−1
m P⊤m(~ϕ−A~µ) ⇐⇒ (~µ)m ← (~µ)m +

1

(A)m,m

(
(
~ϕ
)

m
−

N

∑
j=1

(A)m,j

(
~µ
)

j

)
. (4.2.18)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 316

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

This perfectly agrees with what is done in the inner loop body of the Gauss-Seidel implementation
Code 4.1.26. Carrying out (4.2.18) sequentially for m = 1, . . . , N, we recover one step of the Gauss-
Seidel method for the LSE A~µ = ~ϕ! Hence, Gauss-Seidel is a subspace correction iteration based on the
special type of splitting (4.2.6)

Vh =
N

∑
m=1

Span{bm
h } . (4.2.19)

Gauss-Seidel

Gauss-Seidel for a finite-element linear system of equations realizes a successive subspace cor-
rection in the directions of finite elements basis functions.

Since finite element basis functions invariably have localized supports, it is not suprising that, when applied
on fine meshes, the Gauss-Seidel iteration cannot cope with smooth, that is, long-range error components.

4.2.2 Coarse-Grid Correction

Now we discuss a remedy for the failure of the Gauss-Seidel iteration from Code 4.1.26 to reduce smooth/long-
range error components effectively. This remedy is suggested by the subspace correction interpretation
of the Gauss-Seidel method elaborated in § 4.2.17.

Idea: Augment the subspace splitting (4.2.19) defining the Gauss-Seidel iteration by
another subspace VH ⊂ Vh capable of representing smooth functions with global
support.

Of course, the dimension of this extra subspace must not be too large, in order to keep the cost of com-
puting the subspace correction affordable.

Idea: Choose VH as finite element space on a coarse meshMH of the computational
domain Ω with significantly fewer cells thanM, e.g., VH := S0

1,0(MH).

! For unrelatedM,MH the requirement VH ⊂ Vh will not be met in general.

Fortunately, [Hip16, § 5.1.19] discusses a special situation, in which VH ⊂ Vh is guaranteed for Lagrangian
finite elements: the case of nested meshes.

Definition 4.2.21. Nested finite element meshes

Two finite element meshesMh,MH (→ [Hip16, Def. 3.5.2]) of a computational domain Ω ⊂ Rd

are nested,MH ≺Mh, if every (closed) cell ofMH is the union of closed cells ofMh.

Lemma 4.2.22. Nesting of meshes implies nesting of finite element spaces

In the case of nested meshesMH ≺Mh we have S0
1,0(MH) ⊂ S0

1,0(Mh).

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 317

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Proof. The assertion is immediate from the definition [Hip16, Def. 3.6.2] of the Lagrangian finite element
space S0

1 (M): thanks to the nesting propertyMH ≺Mh every function in S0
1,0(MH) is affine linear on

every cell ofMh. Continuity and boundary conditions are immediate.
✷

On pairs of nested meshes we can thus defined an enhanced Gauss-Seidel method supplemented with a
so-called coarse grid correction. The resulting subspace correction method is known as two-grid iteration.

Two-grid iteration

The two-grid method based on nested meshesMH ≺Mh carrying nested finite element spaces
VH ⊂ Vh is the successive subspace correction method according to Def. 4.2.5 using the subspace
decomposition

Vh =
N

∑
j=1

Span{bj
h}+VH , (4.2.24)

where {b1
h, . . . , bN

h }, N := dim Vh, is the nodal basis of Vh.

In finite element applications nested meshes are usually generated by means of local or global refinement.

Fig. 140

K

T1
T2

T3

T4

We focus on the global regular refinement
of 2D triangular meshes as achieved by
splitting every triangle into four smaller
ones, see figure beside.

✁ Regular refinement of triangle K into
four congruent triangles T1, T2, T3, T4

Two nested triangular mesh created by uniform reg-
ular refinement ✄

—: edges of coarse meshMH

—: new edges of fine meshMh

�: interior nodes of coarse meshMH

•: new interior nodes of fine meshMh

• dimS0
1,0(MH) = 3,

• dimS0
1,0(Mh) = 17,

Fig. 141

For two given nested triangular meshes MH ≺Mh with associated linear Lagrangian finite element
spaces Vh := S0

1,0(Mh) and VH := S0
1,0(MH) we now explain the computation of the so-called prolon-

gation matrix PH ∈ RN,NH , N := dim Vh, NH := dim VH with respect to the nodal bases {b1
h, . . . , bN

h }
and {b1

H, . . . , bNH
H } of Vh and VH, respectively. Remember that PH is a basis transformation matrix and,

thus, the entries of PH are defined by the relationship

bi
H =

N

∑
j=1

(
PH

)
j,i

b
j
h , i = 1, . . . , NH . (4.2.25)

We number the interior nodes/vertices of meshes:

• {x1
h, . . . , xN

h } =̂ interior nodes of the fine meshMh,

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 318

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

• {x1
H, . . . , xNH

H } =̂ interior nodes of the coarse meshMH.

Since the nodal basis functions are are one-on-one associated with interior nodes, we assume that the
numbering of both matches. Therefore,

bi
h(x

j
h) = δi,j , i, j ∈ {1, . . . , N} , bi

H(x
j
H) = δi,j i, j ∈ {1, . . . , NH} . (4.2.26)

From this cardinal basis property we conclude for the prolongation matrix

(
PH

)
j,i
= bi

H(x
j
h) , 1 ≤ i ≤ NH , 1 ≤ j ≤ N . (4.2.27)

Notice that the new nodes ofMh, those that do not coincide with nodes ofMH are midpoints of edges
ofMH,see Fig. 141. The function bi

H is linear on all edges of the coarse mesh and attains the value 1
2 at

all midpoints of edges adjacent to xi
H. From this observation and (4.2.26) we infer

(PH)i,j =





1 , if xi
h = x

j
H ,

1
2 , if xi

his midpoint of an edge ofMH adjacent to x
j
H ,

0 , otherwise,

,
1 ≤ i ≤ N ,
1 ≤ j ≤ NH .

(4.2.28)

Evidently, the prolongation matrix PH is a sparse matrix, with important consequences:

Applying the basis transformation matrix

The asymptotic cost of multiplying a vector with PH or P⊤H is O(N) for N → ∞.

Assuming that the basis transform matrix PH is available, the two-grid iteration for solving the linear system
of equations A~µ = ~ϕ can be implemented as follows on the algebraic level:

Pseudocode 4.2.30: Two-grid iteration algorithm

1 void two_grid_iterat ion (const A ∈ RN,N , const ~ϕ ∈ RN , r e f ~µ) {
2 AH := P⊤HAPH ; // build Galerkin matrix on MH

3 do {
4 ~µold := ~µ ;
5 for (i =1 ; i <N ; i ++) { // Inner Gauss-Seidel loop

6 (~µ)i =
1

(A)i,i

(
(~ϕ)i −

N

∑
j=1
j 6=i

(A)i,j(~µ)j

)
;

7 } //

8 ~ρh := ~ϕ−A~µ ; // Residual vector ∈ RN

9 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNH by restriction

10 Solve AH~νH = ~ρH ; // Correction in VH

11 ~µ← ~µ + PH~νH ; // Prolongation and update of approximate solution

12 }
13 while (‖~µ−~µold‖ > TOL · ‖~µ‖) ; // Termination test

14 }

Here, the argument~µ both passes the initial guess and serves as variable to return the final approximate
solution. As has already been mentioned, the operations in lines 8–11 of Code 4.2.30 are usually called
coarse-grid correction. The Gauss-Seidel loop comprising lines 5–7 is often dubbed the smoothener.
What is implemented in Code 4.2.30 is pre-smoothening, because the smoothener comes before the

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 319

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

coarse-grid correction. Of course, the coarse-grid correction and the smoothener can also be swapped
and this will result in post-smoothening.

A simple inspection of the algorithm reveals its computational cost:

Cost of two-grid method

Apart from solving the linear system AH~νH = ~ρH the asymptotic computational cost of the two-grid
method from Code 4.2.30 is O(N) provided that A is a sparse finite element matrix.

Moreover, the two grid method is the composition in the sense of § 4.1.45 of the Gauss-Seidel iteration
and a subspace correction in the direction of VH. Hence, from (4.1.48) and (4.1.30) we draw the following
conclusions:

Corollary 4.2.32. Two-grid method as stationary linear iteration

the two-grid method from Code 4.2.30 is a stationary linear iteration with error propagation matrix

ETGM = (I− PHA−1
H P⊤A)(I− tril(A)−1A) . (4.2.33)

Example 4.2.34 (A concrete basis transformation matrix)

Fig. 142

1

2
3

4

5
6

7 8 9

10

1112

13
14

15

16
17

We examine the two nested meshes MH ≺Mh

sketched beside, see also Fig. 141.

The interior nodes of both meshes are numbered as
indicated, with the coinciding nodes numbered first
on the fine mesh.

We use piecewise linear Lagrangian finite el-
ements on both meshes: Vh := S0

1,0(Mh),

VH := S0
1,0(MH).

According to the rule (4.2.28), we have

P⊤H =




1 0 0 1
2

1
2

1
2 0 1

2
1
2 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1
2

1
2 0 1

2 0 1
2 0 0 0 0 1

2
0 0 1 0 0 0 0 0 1

2
1
2

1
2 0 1

2 0 1
2

1
2 0


 ∈ R3,17 . (4.2.35)

Experiment 4.2.36 (Two-grid method for the Poisson matrix)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 320

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Fig. 143
2 3 4 5 6 7 8 9 10

ℓ

0.25

0.30

0.35

0.40

0.45

0.50

λ m
ax
(E

TG
M
)

Apply the two-grid method to the Poisson matrix
A ∈ RN,N, N = (n− 1)2, from (4.1.22).

We investigate the matrix sizes N := (n− 1)2,
n = 2ℓ, ℓ = 2, . . . , 10, and compute a guess for the
rate of linear convergence by means of the power it-
eration with TOL=10−3.

In sharp contrast to the behavior of the Gauss-Seidel and CG iterations, the convergence
of the two-grid method does not deteriorate on fine meshes; it is h-uniform.

4.2.3 Multigrid Iteration

? The coarse grid linear system AH~νH = ~ρH may still be too big for direct elimination solvers.

Idea: (Recursion) If alsoMH arises from refining an even coarser mesh, iteratively
solve AH~νH = ~ρH approximately by another two-grid iteration.

Assumption 4.2.37. Mesh hierarchy

We assume that a hierarchy of nested meshes

M0 ≺M1 ≺ · · · ≺ ML , L ∈ N ,

is available.

The subscript ℓ ofMℓ is called the level of a mesh.

This gives us a sequence of nested finite element spaces

V0 ⊂ Vℓ ⊂ · · · ⊂ Vh := VL , e.g., Vl := S0
1,0(Mℓ) . (4.2.38)

All these spaces are equipped with (nodal) finite element bases:

Vl = Span{b1
ℓ , . . . , b

Nℓ

ℓ } , Nℓ := dim Vℓ . (4.2.39)

This fixes the finite element Galerkin matrices Aℓ ∈ RNℓ.Nℓ for all levels ℓ = 0, . . . , L. We can also
compute the prolongation matrices Pℓ−1,ℓ ∈ RNℓ,Nℓ−1 through, cf. (4.2.25)

bi
ℓ−1 =

Nℓ

∑
j=1

(Pℓ−1,ℓ)j,ib
j
ℓ . (4.2.40)

At this point we have all ingredients ready for the (geometric) multigrid iteration, whose recursive imple-
mentation is given next:

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 321

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Pseudocode 4.2.41: Multigrid iteration: recursive algorithm (adaptive cycle)

1 void mul t i_gr id_ i te ra t ion (const ~ϕ ∈ RNℓ , r e f ~µ ,
2 i n t ℓ , double TOL , i n t max_n_steps) {
3 i f (ℓ == 0) { D i r e c t l y solve A0~µ = ~ϕ ; }
4 else {
5 for (nsteps = 0; nsteps < max_n_steps ; nsteps ++) {
6 ~µold := ~µ ;
7 ~µ← ~µ + tril(A)−1(~ϕ−A~µ) ; // Gauss-Seidel step, pre-smoothening

8 ~ρh := ~ϕ−A~µ ; // Residual vector ∈ RNℓ

9 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNℓ−1

10 ~νH := 0 ; // Natural initial guess for correction

11 mult i_gr id_ i te ra t ion (Aℓ−1 , ~ρH , ~νH , ℓ−1, TOL , max_n_steps) ; //

12 ~µ← ~µ + PH~νH ; // Update approximate solution

13 i f (‖~µ−~µold‖ ≤ TOL · ‖~µ‖) break ; // Termination test

14 }
15 e r r o r (" No conve rgence ") ;
16 }
17 }

The algorithm assumes that all Galerkin matrices Aℓ ∈ RNℓ,Nℓ on all levels ℓ = 1, . . . , L, have been
precomputed. Again, the code in lines 8–?? represents the coarse-grid correction and ?? is a compact
way to express Gauss-Seidel pre-smoothening. The corresponding variant with post-smoothening should
be clear.

In practice, one prefers to apply both pre- and post-smoothening together and in a symmetric fashion. In
Code 4.2.41 this can be realized by inserting the backward Gauss-Seidel smoothening step

~µ← ~µ + triu(A)−1(~ϕ−A~µ) ,

after Line 12. Here triu designates the upper triangular part of the matrix A.

(4.2.42) Cost of multigrid iteration

Let us supplement Ass. 4.2.37 with the additional requirement that the number of cells on coarser meshes
decreases geometrically

♯Mℓ−1 = q♯Mℓ for 0 < q < 1 , ℓ = 1, . . . , L . (4.2.43)

This is the case, e.g., if the sequence of nested meshesM0 ≺M1 ≺ · · · ≺ ML is generated by re-
peated global regular refinement, recall Section 4.2.2. In 2D in this case we obtain q = 1

4 . A consequence
of (4.2.43) is that

Nℓ := dimS0
1,0(Mℓ) ≈ q−ℓN0 , ℓ = 1, . . . , L . (4.2.44)

As we have already noted, apart from Line 11 the cost of a function call in Code 4.2.41 is
≈ Nℓ. Summing the geometric series, we conclude that the total cost for all recursive calls
of multi_grid_iteration() is O(NL)!

Remark 4.2.45 (Multigrid iteration as successive subspace correction method)

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 322

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

It was a major discovery that the complete multigrid iteration as implemented in Code 4.2.41 is a genuine
successive subspace correction method according to Def. 4.2.5, see [TOS00, Appendix B].

Theorem 4.2.46. Multigrid = multi-level subspace correction [Xu92]

The multigrid iteration from Code 4.2.41 with max_n_steps= 1 is a successive subspace correc-

tion method based on the space decomposition

Vh = V0 +
L

∑
ℓ=1

Nℓ

∑
j=1

Span{bj
ℓ} . (4.2.47)

This interpretation of the geometric multigrid method made it possible to establish h-uniform convergence
for finite element linear systems.

Theorem 4.2.48. Convergence of geometric multigrid [BY93]

Consider the Galerkin discretization of (4.1.8) by means of linear Lagrangian finite elements. Let the

multigrid iteration from Code 4.2.41 with max_n_steps= 1 be based on a uniformly shape-regular

and quasi-uniform family of nested triangular meshes. Then the energy operator norm of the error

propagation operator of the multigrid iteration is bounded by a constant 0 < ρ < 1 that depends

only on the shape-regularity and quasi-uniformity of the meshes and the coefficient functions A and

γ.

In particular, geometric multigrid enjoys a rate of linear convergence, which does not depend on the
number L of levels involved.

(4.2.49) Nested iteration

One crucial issue remains: How do we choose the initial guess?

Idea: (Recursion) Use “low-accuracy” solution obtained by multigrid iteration on next
coarser level as initial guess.

This policy is known as nested iteration and a recursive implementation is given next. Again, the Galerkin
matrices Aℓ ∈ RNℓ,Nℓ are supposed to be available.

Pseudocode 4.2.50: Nested multigrid iteration: recursive algorithm

1 RNℓ−vector mg_solve (const ~ϕ ∈ RNℓ , i n t ℓ , double TOL , i n t max_n_steps)
{

2 i f (ℓ == 0) { D i r e c t l y solve A0~µ = ~ϕ ; }
3 else {
4 ~ϕH := P⊤ℓ−1,ℓ~ϕ ;

5 ~µH := mg_solve (Aℓ−1 , ~ϕH , ℓ− 1 , ρ · TOL , max_n_steps) ;
6 ~µh := Pℓ−1,ℓ~µH ;
7 mult i_gr id_ i te ra t ion (Aℓ , ~ϕ , ~µ , ℓ , TOL , max_n_steps) ; // Code

Code 4.2.41
8 }
9 return (~µ) ;

10 }

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 323

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Here the factor ρ > 1 takes into account that on coarser meshes we expect a larger discretization error,
which justifies relaxed accuracy requirements there. The concrete choice of ρ can be guided by asymptotic
a-priori error estimates for finite element Galerkin solutions: If we expect an asymptotic convergence like
O(hα

M) for some α > 0 in a norm of interest, and assume regular global refinement, then choosing ρ = 2α

is the proper value.

4.2.4 Multigrid Preconditioning

(4.2.51) Preconditioned conjugate gradient method (PCG)

In § 4.1.57 we saw that the comjugate gradient (CG) iterative solvers is haunted by a similar degradation
of performance for large finite element linear systems A~µ = ~ϕ, A ∈ RN,N s.p.d., as the Gauss-Seidel
method. Fortunately, there is a powerful technique for accelerating the convergence of CG known as
preconditioning, cf. [Hip15, Section 10.3]. It relies on the availability of a linear operator RN → RN,
henceforth incarnated by an s.p.d. matrix B ∈ RN,N. The resulting algorithm for the preconditioned
conjugate gradient method (PCG) is given next.

Pseudocode 4.2.52: PCG method

1 void pcg (A ∈ RN,N , ~ϕ ∈ RN , re f ~µ ,
2 B ∈ RN,N , double TOL) {
3 ~ρ := ~ϕ−A~µ ; // Residual vector

4 π := B~ρ ; ~η := ~π ; τ0 = ~π⊤~ρ ;
5 for (j =1; j < maxit ; ++ j) {

6 β := ~ρ⊤~η ;
7 ~γ := A~η ;

8 α := β

~π⊤~γ
;

9 ~µ← ~µ + α~π ; // update solution

10 ~ρ← ~ρ− α~γ ; // update residual

11 ~η← B~ρ ;

12 β← ~ρ⊤~η
β ;

13 i f (|~η⊤~ρ| < TOL·τ0) break ;
14 ~π ←~η+ β~π ;
15 }
16 }

✁ Preconditioned conjugate gradient
method for solving A~µ = ~ϕ with
preconditioner B.

(~µ passes the initial guess and also re-
turns the result.)

Computational effort per step:
• One A× vector operation
• One A× vector operation
• 3 dot products
• 3 AXPY operations

PCG requires only the application of
the linear operators described by A
and B to a vector.

Cost of PCG step

If A and B are sparse matrices with “O(N) number of non-zero entries”, then the computational
cost per PCG step is O(N) for N → ∞.

The assertion of Thm. 4.1.55 remains valid for PCG, provided that κ(A) is replaced with κ(BA):

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 324

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Theorem 4.2.54. Convergence of the PCG method [Hip15, Thm. 10.2.25]

The iterates of the PCG method with preconditioner B ∈ RN,N for solving A~µ = ~ϕ (see

Code 4.2.52) with A = A⊤, B = B⊤ ∈ RN,N s.p.d. satisfy

∥∥∥~µ∗ −~µ(l)
∥∥∥

A
≤ 2

(√
κ(BA) − 1√
κ(BA) + 1

)l∥∥∥~µ∗ −~µ(0)
∥∥∥

A
, l ∈ N ,

where A~µ∗ = ~ϕ.

Summing up, a good preconditioner B must satisfy that

(I) B is symmetric and positive definite,

(II) the cost of B×vector is proportional to N, and

(III) the spectral condition number κ(BA) is small independently of N.

How to build preconditioners? The good news is that stationary linear iterations for solving A~µ = ~ϕ,
A ∈ RN,N

~µ(k+1) = ~µ(k) + M(~ϕ−A~µ(k)) , M ∈ RN,N regular , (4.1.34)

are a source for preconditioners:

Theorem 4.2.55. Preconditioners from stationary linear iterations

If the stationary linear iteration (4.1.34) enjoys an asymptotic rate of convergence ρ < 1, then

κ(MA) ≤ 1 + ρ

1− ρ
.

Proof. As explained in § 4.1.33 we have λmax(I−MA) ≤ ρ, which implies

|1− λ| ≤ ρ

m
1− ρ ≤ λ ≤ 1 + ρ

for all eigenvalues λ ∈ σ(MA) .

The claim follows from the definition of κ(MA) := λmax(MA)λ−1
min(MA).

✷

Thus, the stationary linear iteration induced by the multigrid method is a promising candidate for a precon-
ditioner, provided that it supplies a symmetric M! Thm. 4.2.46 together with the following lemma tell us
how to achieve this.

Lemma 4.2.56. Symmetric successive subspace correction

The error propagation matrix ESSC of a successive subspace correction method according to

Def. 4.2.5 satisfies

AESSC = E⊤SSCA ,

if A = A⊤ and VM−j+1 = Vj, j = 1, . . . , M.

4. (Algebraic) Multigrid Methods, 4.2. Geometric Multigrid Method 325

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Proof. Using (4.2.16) we conclude

E⊤A = (I−A⊤P1

(
P⊤1 AP1

)−1
P⊤1 A) · · · · · (I−A⊤Pm

(
P⊤mAPm

)−1
P⊤mA)

= (I−A⊤Pm

(
P⊤mAPm

)−1
P⊤mA) · · · · · (I−A⊤P1

(
P⊤1 AP1

)−1
P⊤1 A)

= AE ,

because A = A⊤.
✷

If the assumptions of the lemma are satisfied, we have

M⊤SSC = A−1(I− E⊤SSC) = (I−A−1E⊤SSCA)A−1 Lemma 4.2.56
= (I−A−1AESSC)A

−1 = MSSC .

The symmetry of the subspace splitting, VM−j+1 = Vj, j = 1, . . . , M, can be ensured by using symmetric
pre- and post-smoothening steps, that is, we employ Gauss-Seidel iterations with opposite directions. This
results in the following algorithm:

Pseudocode 4.2.57: Multigrid iteration: recursive algorithm (symmetric V-cycle)

1 void mgsym_iteration (const ~ϕ ∈ RNℓ , r e f ~µ , i n t ℓ) {
2 i f (ℓ == 0) { D i r e c t l y solve A0~µ = ~ϕ ; }
3 else {
4 ~µold := ~µ ;
5 ~µ← ~µ + tril(A)−1(~ϕ−A~µ) ; // Gauss-Seidel step, pre-smoothening

6 ~ρh := ~ϕ−A~µ ; // Residual vector ∈ RNℓ

7 ~ρH := P⊤H~ρh ; // Residual vector ∈ RNℓ−1

8 ~νH := 0 ; // Natural initial guess for correction

9 mgsym_iteration (Aℓ−1 , ~ρH , ~νH , ℓ−1) ; //

10 ~µ← ~µ + PH~νH ; // Update approximate solution

11 ~µ← ~µ + triu(A)−1(~ϕ−A~µ) ; // Gauss-Seidel step, post-smoothening

12 }
13 }

Then the multigrid preconditioner can be realized as follows

~η := B~ρ ←→ ~η := 0; mgsym_iteration(~ρ,~η, L) , (4.2.58)

where L is the refinement level of the finest mesh in the hierarchy, cf. Ass. 4.2.37.

4.3 AMG: Matrix-Based Multigrid

(4.3.1) Need for black-box iterative solvers

4.3.1 AMG Framework

4. (Algebraic) Multigrid Methods, 4.3. AMG: Matrix-Based Multigrid 326

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

(4.3.2) Building multigrid components algebraically

(4.3.3) Mesh from matrix graph

Remark 4.3.4 (The AMG fill-in challenge)

4.3.2 AMG Heuristics

4.3.3 Coarse Grid Selection

4.3.4 AMG Prolongation

4. (Algebraic) Multigrid Methods, 4.3. AMG: Matrix-Based Multigrid 327

Index

L2-projections, 151
H2-matrices, 258
H2-matrix, 258
H-matrix, 228
(Layer) potentials, 48
(Successive) subspace correction method, 320
1D Quadrature formula/quadrature rule, 112

Abel integral equation, 284
Abel integral operator, 284
Abstract admissibility condition, 210
acoustic scattering, 287
acoustic wave equation, 287
adjoint

differential operator, 40
admissibility condition, 168, 228

abstract, 210
admissibility measure, 191
Admissibility of index sets, 195
admissible

index sets, 195
algebraic convergence, 116
analytic extension, 119
analytic function, 119
Analyticity of a function in C, 120
arclength derivative, 71
arclength parameterization, 128
Ass: Analytic parameterization, 125
Ass: Analyticity of local parameterizations, 141
Ass: Availability of low-rank factor matrices, 229
Ass: Binary cluster trees, 229
Ass: Connected domains, 20
Ass: Data in procedural form, 93
Ass: Mesh compatible with partition, 155
Ass: Mesh hierarchy, 327
Ass: Near-field diagonal blocks, 250
Ass: Polynomial growth of F, 302
Ass: Properties of transfer function, 290
Ass: Rank-q separable approximation on admis-

sible boxes, 191
Ass: Structure of result matrix, 241
Ass: Uniform distribution, 168
Ass: Unisolvence of interpolation nodes, 176

assembly
of Galerkin matrices, 98

associativity
of convolution quadrature, 291

Asymptotic convergence of quadrature rules, 116
attenuation equation, 283
average

of traces, 65

barycentric coordinate functions, 140
barycentric interpolation formula, 217
Bernstein ellipse, 120, 186
bilinear form, 27

elliptic, 147
BIO =̂ boundary integral equations, 54, 75
BIO =̂ boundary integral operator, 54
block

of a hierarchical matrix, 229
Block tree underlying a hierarchical matrix, 230
boundary conditions

mirror symmetry, 23
boundary element space, 86
boundary integral equations, 54, 75
boundary integral operators, 54
Boundary integral operators for −∆, 68
boundary value problem

elliptic, 305
bounding box, 203
Bounding box of an index set, 195
Bounding boxes of clusters, 203

cardinal basis property, 324
cardinal function, 177
Cauchy integral formula, 296
Cauchy integral theorem, 273
Cauchy product, 298
causal function, 265
Causal functions, 265
Causal polynomially bounded functions, 270
causal sequence, 268
Cea’s lemma, 147
CG, 315
channel, 265

time-invariant, 265

328

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

characteristic function, 90
charge density, 25
Chebychev interpolation, 96, 186

error estimates, 185
Chebychev nodes, 185
circulant matrix, 278
Clenshaw-Curtis quadrature rule, 114
cluster bases

for H2-matrix, 259
Cluster tree, 203
cluster tree, 203
co-normal trace, 63
coarse-grid correction, 323, 325
coefficient vector, 86
collocation

of a kernel, 170
column cluster bases

for H2-matrix, 259
column tree, 228
compatibility conditions

for H1(Ω), 22
complex contour integral, 272
Concepts connected with trees, 201
configuration space, 24
conjugate gradient method, 315
convergence

algebraic, 116
exponential, 116

convolution, 44, 263
associativity, 263
of distributions, 264
of operators, 266

convolution equation, 266, 291
Convolution of functions in Rd, 44
Convolution of sequences, 267
Convolution on the real line, 263
convolution quadrature, 291
convolution quadrature weights, 291
Corollary: Associativity of convolution, 263
Corollary: Cauchy differentiation formula, 296
Corollary: Continuous, piecewise-C1 functions in

H
1
2 (Γ), 58

Corollary: Convergence of stationary linear itera-
tions, 313

Corollary: Direct 1st-kind variational BIE for trans-
mission problem, 160

Corollary: Embedding of H
1
2 (Γ), 57

Corollary: Embeddings of boundary element spaces,
89

Corollary: Green’s function integral representa-
tions, 52

Corollary: Mapping properties of Dirichlet trace,
56

Corollary: Mapping properties of the Newton po-
tential, 45

Corollary: Two-grid method as stationary linear
iteration, 325

Coulomb force, 18, 37
coupling matrix

for H2-matrix, 259
curl operator, 18
curl-free, 18
curved polygon, 36, 87
curvilinear polyhedron, 36

d.o.f. mapper, 100
data sparse, 171
decay conditions, 32
delta distribution, 41
density, 55
density unknowns, 82
diffusion coefficient, 305
Dirichlet BVP, 77, 92
Dirichlet trace operator, 55
Dirichlet trace space, 56
discrete variational problem, 85, 86
distributions, 41
Double layer potential, 50
Doxygen, 84
Dual norm for source charge distributions, 34
duality, 34, 62

eddy current model, 285
edge, 134
edge set

of a tree, 201
Electrostatic field energy [Hip16, Eq. (2.2.20)], 17
elliptic, 147

bilinear form, 78
elliptic boundary value problem, 305
energy norm

for Neumann trace space, 60
equilibrium principle, 26
error propagation matrix, 312
error recursion

for stationary linear iterations, 312
expand-from-cluster, 260
exponential convergence, 116

face, 134
Far field, 192
far field, 192, 195
Far-field blocks of index pairs, 195

INDEX, INDEX 329

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

fill-in, 310
First-kind BIE, 79
forward transformation, 260
Fourier transform, 270
Fundamental solution, 40
fundamental solution, 40, 51

Galerkin approximation, 85
Galerkin discretization, 84
Gauss quadrature, 113

generalized, 115
Gauss-Seidel method, 311
generating function, 297
global shape functions (GSF), 138
Gram determinant, 37
Green’s first formula, 29
Green’s function, 51

for disk, 52
for half space, 53

h-refinement, 146
h-uniform convergence, 326
half space, 53
hat function, 91
Hierarchical matrix, 228
hierarchical matrix, 228
Hilbert BEM library, 83
Hilbert space of square integrable functions [Hip16,

Def. 2.3.4], 21

impedance boundary conditions, 286
Implicit Euler convolution quadrature (IE-CQ), 294
implicit Euler method, 293
initial guess, 311
integration by parts

multidimensional, 29
interpolation, 176

polynomial, 96
interpolation nodes, 176
intrinsic norm, 59
irrotational, 18
iteration error, 312

Jacobian, 19
jump

of traces, 65
jump relations, 67

kernel
of an integral operator, 44, 48, 69

Kernel collocation matrix, 170
kernel collocation matrix, 169, 170
kernel function, 170

Krylov subspace method, 226

Lagrangian multiplier, 94
Laplace inversion formula, 273
Laplace transform, 270
Laplacian, 43

spherical coordinates, 42
layer potential, 54
leaf

of a tree, 201
Lebesgue constant, 188
Legendre polynomials, 92
Lemma: Arclength integration by parts, 72
Lemma: Chebychev interpolation error estimate,

185
Lemma: Circulant augmentation of Toeplitz ma-

trix, 280
Lemma: Convolution quadrature weights are Tay-

lor expansion coefficients, 297
Lemma: Ellipticity of c, 160
Lemma: Fundamental solution for L := −∆ + s2,

288
Lemma: Generalized orthogonal polynomials, 115
Lemma: Nesting of meshes implies nesting of fi-

nite element spaces, 323
Lemma: Pointwise estimate for convolution, 276
Lemma: Properties of I, 176
Lemma: Quadrature error and best-approximation

error, 118
Lemma: Representation of low-rank matrices, 172
Lemma: Smoothness of double layer potential,

51
Lemma: Smoothness of single layer potential, 49
Lemma: Symmetric positive definite Galerkin ma-

trices, 307
Lemma: Symmetric successive subspace correc-

tion, 331
Lemma: Variation of constants formula, 293
level

of mesh, 327
of the nodes of a tree, 202

Level of nodes of tree, 202
Linear interpolation operator, 176
Linear variational problem, 27
local parameterization, 91
local shape functions (LSF), 139
local→global index map, 100
LU-dcomposition, 248
LU-decomposition, 248

marching on in time (MOT), 269
mesh, 134

INDEX, INDEX 330

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

of a curve, 88
mesh hierarchy, 327
Mesh/partitioning of a curve, 88
Meshwidth, 148
meshwidth, 148
Minimal angle, 148
mirror symmetry, 23
MOT = marching on in time, 269
Multivariate polynomials, 136

Near field, 192
near field, 192
Nested finite element meshes, 323
nested meshes, 323
Neumann BVP, 77, 82, 92
Neumann trace, 59
Neumann trace operator, 59
Neumann trace space, 60
Newton potential, 44
nodal interpolation operator, 150
nodal interpolation operators, 138
node

quadrature, 113
node set

of a tree, 201
nodes

of a mesh, 88
Non-local operator, 165
normal component trace, 23
numerical quadrature, 112

offset function, 154
Operational calculus, 276
operational calculus, 275
order

of quadrature formula, 113
Order of a quadrature rule, 113

panels
of a mesh, 88

parameterization, 87
partitioning

of a curve, 88
PEC boundary conditions, 23
Piecewise Sobolev spaces on Γ, 148
plane wave, 287
point charge, 37
Poisson integral formula, 53
Poisson matrix, 309
polygon

curved, 87
polynomial interpolation, 96

polynomials
degree, 136
multivariate, 136

post-smmoothening, 325
potential

electrostatic, 19
pre-smmoothening, 325
preconditioners, 254
procedural form, 93
prolongation matrix, 324
pullback, 89
Pullback from a curve, 89

quadratic minimization problem, 306
quadrature error, 116
quadrature formula

order, 113
quadrature node, 113
quadrature weight, 113

Rank of a matrix, 172
reaction coefficient, 306
Real analytic functions, 119
real analytic, 119
reduce-to-cluster, 260
reference interval, 91
reference shape function, 91
reference shape functions, 91
relative distance

of panels, 133
residual linear form, 320
root

of a tree, 201
Rotation invariance, 41
rotation operator, 18
rotation-invariant, 41
row cluster bases

for H2-matrix, 259
row tree, 228

scattered field, 288
separation of variables, 42
shape function

reference, 91
shape functions

global, 90, 138
local, 91

shape regularity, 148
shift operator, 299
Single layer potential, 48
single layer potential, 48
singularity, 38

INDEX, INDEX 331

https://en.wikipedia.org/wiki/Analytic_function

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

smoothener, 325
Sobolev norm, 148
Sobolev space

higher-order, 148
on surfaces, 69

Sobolev space H1(Ω), [Hip16, Def. 2.3.25], 21
sons

in a tree, 201
sound-soft, 287
source charge distribution, 26
Space of function with square-integrable Lapla-

cian, 61
sparse matrix, 308
sparsity measure

of a block partition, 219
Sparsity measure of block partition, 219
spectral condition number, 316
spherical coordinates, 42, 145
stationary linear iterations

error recursion, 312
sub-tree, 202
Sub-trees, 202
subspace correction method, 319, 322
surface gradient, 74
surface integral, 36
surface mesh, 135

tangent vector, 72
tangential component trace, 23
Taylor expansion, 19, 174
tensor product polynomials, 123, 178
tensor-product interpolation, 178
Tensor-product polynomials, 123
tensor-product quadrature, 122
tent function, 91
test space

for Galerkin discretization, 85
Theorem: z-Transform and discrete convolution,

268
Theorem: L2(Γ)-duality between H

1
2 (Γ) and H−

1
2 (Γ),

62
Theorem: “Higher” continuity of BIOs, 69
Theorem: Analyticity of Laplace transforms, 271
Theorem: Asymptotic interpolation/projection er-

ror estimates, 151
Theorem: best low rank approximation, 235
Theorem: Cauchy integral formula, 296
Theorem: Cauchy integral theorem, 273
Theorem: Cea’s lemma, 147
Theorem: Characterization of Cauchy data, 76
Theorem: Chebychev interpolation of analytic func-

tions, 186

Theorem: Compatibility conditions for piecewise
smooth functions in H1(Ω), 22

Theorem: Continuity of boundary integral opera-
tors, 68

Theorem: Continuity of single layer potential in
energy (trace) spaces, 64

Theorem: Continuity of the double layer potential
in energy trace spaces, 64

Theorem: Continuity of the Neumann trace on
H(∆, Ω), 61

Theorem: Continuity of the single layer potential,
49

Theorem: Convergence of geometric multigrid,
328

Theorem: Convergence of IE-CQ, 303
Theorem: Convergence of the CG method, 316
Theorem: Convergence of the PCG method, 330
Theorem: Convolution theorem for Fourier trans-

form, 275
Theorem: Convolution theorem for Laplace trans-

form, 275
Theorem: Decay of Newton potential, 45
Theorem: Diagonalization of circulant matrices,

278
Theorem: Differentiation formula for Laplace trans-

form, 274
Theorem: Dimensions of BE spaces on curves,

89
Theorem: Dimensions of BE spaces on triangu-

lated surfaces, 137
Theorem: Economical QR-decomposition, 235
Theorem: Electric fields are irrotational/curl-free,

18
Theorem: Ellipticity of aV in 2D, 78
Theorem: Ellipticity of aV in 3D, 78
Theorem: Ellipticity of aW, 79

Theorem: Embedding of H−
1
2 (Γ), 62

Theorem: Equivalence theorem for quadratic min-
imization problems, 28

Theorem: Existence and uniqueness of energy
minimizing potentials, 27

Theorem: Existence of electrostatic potential, 20
Theorem: Gauss(-Legendre) quadrature, 113
Theorem: Generalized Gauss quadrature, 116
Theorem: Green’s first formula, 29
Theorem: Green’s second formula, 35
Theorem: Higher order trace theorem, 150
Theorem: Independence of Galerkin solution of

choice of basis, 86
Theorem: Integral representation formula, 46
Theorem: Integral representation formula for 3D

INDEX, INDEX 332

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

exterior domains, 47
Theorem: Integral representation of aW in 2D, 74
Theorem: Integral representation of aW in 3D, 74
Theorem: Inverse Laplace transform, 273
Theorem: Jump relations for layer potentials, 67
Theorem: Jump representation formula, 66
Theorem: LU-decomposition of s.p.d. matrices,

249
Theorem: Main approximation theorem for S−1

p (G),
149

Theorem: Main approximation theorem for S0
p(G),

149
Theorem: Multigrid = multi-level subspace cor-

rection, 328
Theorem: Multiplicative trace inequality, 56
Theorem: Pointwise estimate for convolution II,

277
Theorem: Polynomial approximation of analytic

functions, 120
Theorem: Positivity of Clenshaw-Curtis weights,

114
Theorem: Preconditioners from stationary linear

iterations, 331
Theorem: Properties of discrete convolution of

sequences, 267
Theorem: Quadrature error estimate for integrands

with finite smoothness, 119
Theorem: Singular Value Decomposition (SVD),

233
Theorem: Uniqueness of fundamental solutions,

41
Theorem: Validity of 1st-kind indirect BIE for Dirich-

let problem, 82
Theorem: Validity of 1st-kind indirect BIE for Neu-

mann problem, 82
Theorem: Young’s inequality for convolutions, 264
tiling, 191
time-invariant channel, 265
Toeplitz matrix, 279
tomography, 283
trace

normal component, 23
tangential component, 23

Trace operator, 48
trace operator, 54
transfer function, 276
transfer matrix, 258
translation-invariant, 41
transmission conditions, 157
transmission problems, 156
trapezoidal rule, 113

Tree, 201
tree, 201
trial space

for Galerkin discretization, 85
Triangular planar mesh/triangulation, 134
Triangular surface mesh/surface triangulation, 135
triangulation, 134
triple-factor low-rank factorization, 255

uniform cone condition, 128
unisolvence

of interpolation nodes, 176

V-cycle
of multigrid, 331

variational crimes, 153
variational problem

discrete, 85, 86
vertex, 134
vertex set

of a tree, 201
virtual work principle, 26
volume integral operator, 44
volume potential, 44

weight
quadrature, 113

weight function, 115
weights

convolution quadrature, 291

Young’s inequality
for convolutions, 264

INDEX, INDEX 333

List of Symbols

C1
pw(Ω) =̂ continuous, piecewise continuously

differentiable functions, 23
(xℓ) =̂ sequence (usually on Z), 267
∗ =̂ convolution (binary operation), 263
Div =̂divergence of a vector field, 29
tℓv =̂ interpolation nodes associated with cluster

v, 215
D(Ω)′ =̂ space of distributions on Ω, 41
LI =̂ set of leaves of a cluster tree TI, 203
Qp(Rd), 123

u, Fv, Fw =̂ functions in H
1
2 (Γ), 56

H(∆, Ω) =̂ space of function with square-integrable
Laplacian, 61

H
1
2 (Γ) =̂ Dirichlet trace space., 56

H−
1
2 (Γ) =̂ Neumann trace space on ∂Ω, 60

H1(Ω) =̂ Sobolev space, see Def. 1.1.21, 21
L∞(D) =̂ space of bounded functions on D, 49
L1(D) =̂ space of integrable functions on D, 49
L2(Ω) =̂ Hilbert space of square integrable func-

tions, see Def. 1.1.22, 21
‖·‖ =̂ Euclidean norm of a vector ∈ Rn, 36
‖·‖1, ‖·‖2, ‖·‖∞ =̂ vector norms and associated

matrix norms, 171
‖·‖H1(Ω) =̂ norm of Sobolev space H1(Ω), 21

‖·‖L2(Ω) =̂ norm of L2(Ω), 21
A, B, C, . . . (matrices), 86
Tv =̂ transfer matrix inH2-matrix format, 258
adm =̂ abstract admissibility condition, 210
αmin(G) =̂ minimal angle of mesh G, 148
{T}Γ =̂ average of a trace, 65
Br(x) =̂ ball with center x and radius r > 0, 32
C+ := {z ∈ C : Re(z) > 0}, 270
D := {1, . . . , n} × {1, . . . , m} =̂ index pairs for

kernel collocation matrix, 193
F =̂ matrix block partition for a hierarchical ma-

trix, 228
box =̂ bounding box, 203
box =̂ bounding box for collocation points, 195
gradΓ =̂ surface gradient, 74
Ω′ := Rd \Ω =̂ complement of a domain Ω ⊂

Rd, 17
P =̂ sets of collocation points belonging to an

index set, 194
CQIE

τ =̂ implicit Euler convolution quadrature, 294
D =̂ total derivative operator, 19
dist(X; Y) =̂ (Euclidean) distance of two set Rd,

184
dist(X; Y) =̂ distance of two sets X, Y ⊂ Rd,

133
ḟ , γ̇ =̂ derivative of a function depending on a

single parameter (“time”), 36
d f
ds =̂ arclength derivative, 71
d
ds =̂ arclength derivative, 71

G∆(x, y) =̂ fundamental solutions, 39
γ∗ f =̂ pullback under parameterization γ, 89
JTKΓ =̂ jump of a trace, 65
κ(A) =̂ spectral condition number of the invert-

ible matrix A, 316
Lℓ =̂ℓ-th Lagrange polynomial for polnomial in-

terpolation, 178
L(X, Y) =̂ vector space of bounded (continous)

linear operators (mappings) X → Y, 266
MH ≺Mh =̂ nesting of meshes, 323
N∆ =̂ Newton potential operator, 44
Tn,Σ =̂ normal component trace, 23
TN =̂ Neumann trace on Γ, 59
FFT =̂ discrete Fourier transform, 279
depth(T) =̂ depth of a tree T , 202
spm =̂ sparsity measure of a cluster-based block

partitioning, 220
tril =̂ lower-triangular part of a matrix, 312
triu =̂ upper triangular part of a matrix, 328
⊕ =̂ H-addition of hierarchical matrices, 239
Pp(R

d) =̂ space of d-variate polynomials, 136

Pp(Rd) =̂ d-variate polynomials of total degree
≤ p, 88

Hm
pw(∂Ω) =̂ piecewise Sobolev space on Γ :=

∂Ω, 148
S−1

p (G) =̂ discontinuous, piecewise polynomial
BE functions of degree p, 89, 137

rank(M) =̂ rank of a matrix M, 172
Î =̂ reference interval]-1,1[, 91
M|v×w =̂ matrix block belonging to a pair of clus-

ters, 214

334

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

S0
p(G) =̂ continuous, piecewise polynomial BE

functions of degree p, 89, 137
♯M =̂ cardinality (no. of elements) of the setM,

89
Tt,Σ =̂ tangential component trace, 23
Tr =̂ trace operator for matrices, 43
root(T) =̂ root of a tree T , 201

~µ,~ϕ,~ξ, . . . (coefficient vectors), 86
V(G) =̂ set of vertices of mesh G, 91
b1

N , . . . , bN
N =̂ basis function for BE space, 90

bv
ℓ =̂ ℓ-th cardinal function belonging to cluster v,

215
cqop =̂ convolution quadrature operator, 291
diam =̂ diameter of a set in Rd, 184
hG =̂ meshwidth of mesh G, 148

sH
1
2 (∂Ω) =̂ functions in H

1
2 (∂Ω) with vanishing

mean, 79
L(X, Y) =̂ vector space of bounded (= continu-

ous) linear mappings X → Y, 266
GΓ =̂ mesh of curve/surface Γ, 88
E(G) =̂ edge set of a mesh, 135
V(G) =̂ vertex set of a mesh, 135
a, . . . , x, y, Bz =̂ small vectors/points, 17

LIST OF SYMBOLS, LIST OF SYMBOLS 335

Examples and Remarks

H-LU decomposition as preconditioner, 254
Global bi-directional interpolation of singular ker-

nel, 180
“LyGL = δx”, 41

“Continuity” of functions in H
1
2 (Γ), 57

“Differentiation theorem” for convolution quadra-
ture, 299

“First-kind”, 79
“Second-kind”, 81

A basis for S−1
0 (G), 90

A concrete basis transformation matrix, 325
Adaptive Clenshaw-Curtis quadrature, 122
Adaptive low-rank recompression, 237
Admissible source charge distributions, 26
Affine space V, 85
Approximately solving convolution equations by

convolution quadrature, 291
Approximation of surfaces, 138
Assembly of Galerkin matrix for double layer BIO

K, 101
Asymptotic complexity of H-multiplication, 248
Asymptotic decay of iteration error, 313
Asymptotically smooth kernels, 181

Behavior of quadrature errors for global quadra-
ture rules, 117

Bi-directional interpolation of smooth kernel func-
tion, 180

Bi-directional polynomial interpolation, 217
BIEs for general second-order scalar differential

operators, 76
Binary cluster tree for d = 1, 207
Bounding the sparsity measure, 221

Co-normal trace, 63
Complex contour integrals, 272
Compressing discrete BIEs with double layer ker-

nels, 225
Computing G∆ in 3D, 41
Convergence of CG for the Poisson matrix, 317
Convergence of Gauss-Seidel II, 318
Convergence of Gauss-Seidel method for Pois-

son matrix, 314

Convergence of implicit Euler convolution quadra-
ture, 301

Convolution in Lp(R)-spaces, 264
Convolution of distributions [Rud73, pp. 170], 264
Convolution quadrature based on explicit Euler

timestepping ?, 295
Cost of direct elimination solvers, 310

Data structure for H2-matrices, 259
Density argument, 55
Derivation of impedance conditions, 287
Direct computation of convolution quadrature weights,

297

Electrostatic interpretation of ΨSL, 49
Electrostatic meaning of Ψ∆

DL, 51
Electrostatics in homogeneous isotropic media,

30
Expand and reduce as adjoint operations, 222

Finite element discretization, 287
Fixed potential boundary conditions, 25
Fixing the potential, 25
From block partitioning to local low-rank compres-

sion, 196
Fundamental solution for 2nd-order partial differ-

ential operator, 42

Galerkin error estimates for 2nd-kind BIE, 147
Gauss’ law, 30
General cluster tree, 203
General layer potentials, 64
Global quadrature of analytic integrand, 120
Globally supported singular kernel functions, 170
Green’s function for −∆ on a disk, 52
Green’s function for a half space, 53

Hierarchical matrices – a recursive data structure,
231

Impact of kernel approximation on kernel matrix,
173

Integral representation formula for exterior domains,
46

Intrinsic norm of H
1
2 (Γ), 59

336

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes c©SAM, ETH Zurich, 2018

Iterative solution methods for linear systems of
equations, 226

Kernel with known Laplace transform, 286

Laplace transform of causal power function, 271
Layer potentials and traces, 48
local→global index map, 100
Logarithmic kernel in 1D: Separable approxima-

tion by Taylor expansion, 175

Meaning of “density unknowns” φ and v, 82
Measuring rates of convergence of stationary lin-

ear iterations, 313
More general surface meshes, 136
Multigrid iteration as successive subspace cor-

rection method, 328

Near- and far-field boxes constructed from cluster
trees in 1D, 213

Necessity of decay conditions, 32
Nodal basis for S0

1 (G), 90
Nodal interpolation operators, 138

Pairing of traces, 60
Poission equation, 306
Poisson integral formula, 53
Poisson matrix, 309
Potentials on unbounded domains, 21
Precomputing complex quadrature formula, 144
Preview: multiplication of hierarchical matrices,

232
Properties of the potential due to a point charge,

38
Properties of the potential of a point charge in 2D,

39

Quadtree partition from cluster trees, 208
Quadtree-based admissible tiling of unit square,

199

Real-valued convolution quadrature weights, 297
Reference shape functions for S−1

0 (G), 140
Reference shape functions for S0

1 (G), 140

S.p.d. boundary element Galerkin matrices, 249
Scalar potentials and work, 20
Scaling of electromagnetic field problems, cf. [Hip16,

Rem. 1.2.10], 17
Separable approximation by truncated power se-

ries, 174
Sequences as distributions, 267
Simplification of right-hand side, 158
Some special convolutions, 263

Sparsity measure for clustering in 1D, 221
Stable evaluation of integrands, 131
Storage requirements of double-factor and triple-

factor representations, 256
Surface meshes as traces of volume meshes, 136

Tensor-product Chebychev interpolation of singu-
lar kernel, 189

The AMG fill-in challenge, 332
The Neumann trace is not defined on H1(Ω), 59
The Newton potential from a physics perspective,

45
The square of the Abel integral operator, 285
Trapezoidal rule, 113
Two-grid method for the Poisson matrix, 326

Unbalanced cluster tree, 207
Unbounded functions in H

1
2 (Γ), 58

Well-defined IE-CQ, 295

EXAMPLES AND REMARKS, EXAMPLES AND REMARKS 337

	0 Introduction
	0.0.1 Focus of this course
	0.0.2 Goals
	0.0.3 Reporting errors
	0.0.4 Literature

	0.1 Specific information
	0.1.1 Assistants and exercise classes
	0.1.2 Assignments
	0.1.3 Information on Examinations

	1 Boundary Element Methods (BEM)
	1.1 Elliptic Model Boundary Value Problem: Electrostatics
	1.1.1 The Electric Field
	1.1.2 Electric Scalar Potential
	1.1.3 Continuity of Fields and Boundary Conditions
	1.1.4 Equilibrium Conditions
	1.1.5 Variational Equations
	1.1.6 Boundary Value Problems
	1.1.7 Decay conditions on unbounded domains
	1.1.8 Supplement: An energy norm for source charge distributions

	1.2 Boundary Representation Formulas
	1.2.1 Green's Formulas
	1.2.2 Fundamental Solutions
	1.2.2.1 Potential of a Point Charge
	1.2.2.2 Potential of a Line Charge
	1.2.2.3 Distributional View: bold0mu mumu L= 0L= 0subsubsectionL= 0L= 0L= 0L= 0

	1.2.3 Volume Potential Representation
	1.2.4 Boundary Potential Representation
	1.2.5 Layer Potentials
	1.2.5.1 Single Layer Potential
	1.2.5.2 Double Layer Potential

	1.2.6 Green's Functions

	1.3 Boundary Integral Equations (BIEs)
	1.3.1 Trace Operators
	1.3.1.1 Dirichlet Trace
	1.3.1.2 Neumann Trace

	1.3.2 Mapping Properties of Layer Potentials
	1.3.3 Jump Relations for Layer Potentials
	1.3.4 Boundary Integral Operators (BIOs)
	1.3.4.1 Formal Definition
	1.3.4.2 Integral Representations
	1.3.4.3 Variational Form for Hypersingular BIO

	1.3.5 Direct Boundary Integral Equations
	1.3.5.1 First-kind BIEs
	1.3.5.2 Second-kind BIEs

	1.3.6 Indirect Boundary Integral Equations

	1.4 Boundary Element Methods in Two Dimensions
	1.4.1 Abstract Galerkin Discretization
	1.4.2 Boundary Element Spaces on Curves
	1.4.2.1 Curve Partitionings
	1.4.2.2 Piecewise Polynomial Functions on Curves
	1.4.2.3 Shape Functions
	1.4.2.4 Solving Boundary Value Problems via Galerkin BEM
	1.4.2.5 Approximation of Curves

	1.4.3 Computation of BEM-Galerkin Matrix in 2D
	1.4.3.1 Panel-oriented Assembly
	1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas
	1.4.3.3 Recapitulated [NCSE-cha:NumericalQuadrature]NCSE: Aspects of Numerical Quadrature
	1.4.3.4 Matrix Entries by Quadrature

	1.5 Boundary Element Methods on Closed Surfaces
	1.5.1 Surface Meshes
	1.5.2 Boundary Element Spaces on Triangulated Surfaces
	1.5.2.1 Definitions
	1.5.2.2 Shape Functions

	1.5.3 Assembly of Galerkin Matrices

	1.6 BEM: Various Aspects
	1.6.1 Convergence
	1.6.1.1 Abstract Galerkin Error Estimate
	1.6.1.2 Approximation in Boundary Element spaces
	1.6.1.3 Variational Crimes
	1.6.1.4 Pointwise Recovery of Solutions

	1.6.2 Mixed Boundary Value Problems
	1.6.3 Transmission Problems
	1.6.3.1 Two-Domain Setting
	1.6.3.2 Multi-Domain Transmission Problem

	1.6.4 BEM for Wave Propagation

	2 Local Low-Rank Compression of Non-Local Operators
	2.1 Examples: Non-Local Operators
	2.1.1 (Discretized) Integral Operators
	2.1.2 Long-Range Interactions in Discrete Models
	2.1.3 Kernel Collocation Matrices

	2.2 Approximation of Kernel Collocation Matrices
	2.2.1 Separable Kernel Approximation
	2.2.1.1 Polynomial Expansions
	2.2.1.2 Uni-directional Interpolation
	2.2.1.3 Bi-directional interpolation

	2.2.2 Error Estimates and Admissibility condition for Singular Kernels
	2.2.2.1 Truncation Error Estimates for Taylor Expansion
	2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation
	2.2.2.3 Estimates for Bi-Directional Interpolation

	2.3 Clustering Techniques
	2.3.1 Local Separable Approximation
	2.3.2 Cluster Trees
	2.3.3 Far-Field Blocks
	2.3.4 Storing Block-Partitioned Kernel Collocation Matrix
	2.3.5 MatrixVector: Efficient Implementation
	2.3.6 Panel Clustering

	2.4 Hierarchical Matrices
	2.4.1 Definition
	2.4.2 Low-Rank Matrices: Algorithms
	2.4.3 H-Addition of Hierarchical Matrices
	2.4.4 H-Multiplication of Hierarchical Matrices
	2.4.5 Hierarchical LU-Decomposition
	2.4.6 H2-Matrices

	3 Convolution Quadrature
	3.1 Basic Concepts and Tools
	3.1.1 Convolution of Causal Functions
	3.1.2 Discrete Convolutions
	3.1.3 Laplace Transform
	3.1.4 Diagonalizing Convolutions

	3.2 Convolution Equations: Examples
	3.2.1 Tomography: Abel Integral Equation
	3.2.2 Impedance Boundary Conditions
	3.2.3 Time-Domain Boundary Integral Equations

	3.3 Implicit-Euler Convolution Quadrature
	3.3.1 Setting and Goal
	3.3.2 Derivation
	3.3.3 Properties of implicit-Euler Convolution Quadrature
	3.3.4 Convergence

	3.4 Multistep Convolution Quadrature
	3.4.1 Multistep Numerical Integrators
	3.4.2 Convolution Weights
	3.4.3 Convolution Quadrature: Algorithms

	3.5 Runge-Kutta Convolution Quadrature
	3.6 Fast Oblivious Convolution Quadrature

	4 (Algebraic) Multigrid Methods
	4.1 Solvers for Finite Element Linear Systems
	4.1.1 Elliptic Model Boundary Value Problems
	4.1.2 Sparse Elimination Solvers
	4.1.3 Stationary Linear Iterations
	4.1.4 Conjugate Gradient Method (CG)

	4.2 Geometric Multigrid Method
	4.2.1 Subspace Correction Methods
	4.2.2 Coarse-Grid Correction
	4.2.3 Multigrid Iteration
	4.2.4 Multigrid Preconditioning

	4.3 AMG: Matrix-Based Multigrid
	4.3.1 AMG Framework
	4.3.2 AMG Heuristics
	4.3.3 Coarse Grid Selection
	4.3.4 AMG Prolongation
	Index
	Symbols
	Examples

