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Chapter 0

Introduction

This course discusses modern numerical methods involving complex algorithms and intricate data struc-
tures that render an efficient implementation non-trivial.

0.0.1 Focus of this course

> Boundary element methods for second-order elliptic boundary value problems
> Local low-rank compression and hierarchical matrices techniques
> Convolution quadrature

> Algebraic multigrid methods

Contents

(0.0.1) Prequisites

4+ Familiarity with basic numerical methods (as taught in the course “Numerical Methods for CSE”).

4+ Knowledge about the finite element method for elliptic partial differential equations (as taught in the
course “Numerical Methods for Partial Differential Equations”).

0.0.2 Goals

4+ Appreciation of the interplay of functional analysis, advanced calculus, numerical linear algebra, and
sophisticated data structures in modern computer simulation technology.

4+ Knowledge about the main ideas and mathematical foundations underlying boundary element meth-
ods, hierarchical matrix techniques, convolution quadrature, and reduced basis methods.

4 Familiarity with the algorithmic challenges arising from these methods and the main ways on how to
tackle them.
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4+ Knowledge about the algorithms’ complexity and suitable data structures.
4 Ability to understand details of given implementations.

4 Skills concerning the implementation of algorithms and data structures in C++.

Indispensable: Learning by doing (=> exercises)

0.0.3 Reporting errors

As the documents will always be in a state of flux, they will inevitably and invariably teem with small errors,
mainly typos and omissions.

Please report errors in the lecture material through the Course Webpage!

an " English (en)
ETH:irich e

401-4671-00L Advanced Numerical Methods for CSE HS2018

General

Administration

« Course administration Add a new topic...
£ Edit sefings Lecturers: First week Eigen tutorial
#° Turn editing on Prof. Dr. Ralf Hiptmair, Prof. Dr. Carlos Jerez Hanckes 17 Sep, 13:59 Andrea Scapin
p Users (o] i > .
; Tganieers Older topics ...
Y Filters Andrea Scapin, Pratyuksh Bansal
» Reports Assistant:
## Gradebook setup Fernando Henriquez Barraza
& Outcomes Lecture hours: L Assignments
» Badges 5 Forums

« Monday at 15-17 in HG F 1.
4, Backup Resources

« Tuesday at 15-17 in HG F 1.

¥, Restore

& Import Exercise classes:

2 Reset Thursday at 8-10in HG E 1.1.

» Question bank Eigen tutorial class (first week only):
£ Repositories Thursday 20.09 at 9-10in HG E 1.1.

(£] Video Suite annotations
Presence hours:

Navigati Thursday at 12-13in HGE 1.1.
Dashboard Lecture notes:

» Site home The lecture document is available here.
« My courses Please note that the lecture document will continuously be updated in the course

Errors in Lecture Material
I Erros i Locture Materi Please point out errors by leaving a comment in the
Clicking on the icon with speech bubbles above you can report mistakes in the lecture notes or Forum at the bottom (“Errors in LeCture Material” SeC'

problem sheets to improve the quality of the lecture material. . )

Home

When reporting an error, please specify the section and the number of the paragraph, remark, equation,
etc. where it hides. You need not give a page number.

0. Introduction, 0. Introduction 7
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0.0.4 Literature

Parts of the following monographs may be used as supplementary reading for this course. References to
relevant sections will be provided in the course material.

Studying extra literature is not important for following this course!

4 Chapter 1: S. SAUTER AND CH. SCHWAB, Boundary Element Methods, Springer, 2010.

4 Chapter 1: O. STEINBACH, Numerical approximation methods for elliptic boundary value problems,
Springer, 2008.

4 Chapter 2 M. BEBENDORF, Hierarchical matrices: A means to efficiently solve elliptic boundary
value problems, Springer, 2008.

4 Chapter 2 W. HACKBUSCH, Hierarchical Matrices, Springer, 2015.

4 Chapter 2 S. BOERM, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compres-
sion, Algorithms and Analysis, EMS, 2010.

4+ Chapter 2 S. BOERM, Numerical Methods for Non-Local Operators, Lecture Notes Univ. Kiel, 2017.

4 Chapter 3: M. HASSELL AND F.-J. SAYAS, Convolution Quadrature for Wave Simulations, Springer,
2016.

4 Chapter 3: F.-J. SAYAS, Retarded Potentials and Time-Domain Boundary Integral Equations, Springer,
2016.

4 Chapter 4: K. STUBEN, An Introduction to Algebraic Multigrid, Appendix A of U. TROTTENBERG, C.
OSTERLEE, AND A. SCHULLER, Multigrid, Academic Press, 2001.

4 Chapter 4: J. XU AND L. ZIKATANOV, Algebraic multigrid methods, Acta Numerica, 26 (2017),
pp. 591-721.

0.1 Specific information

0.1.1 Assistants and exercise classes

Lecturer: Prof. Carlos Jerez-Hanckes HG G 58.3, carlos.jerez@sam.math.ethz.ch

Assistants: Andrea Scapin, HG G 54.1, andrea.scapin@sam.math.ethz.ch
Pratyuksh Bansal, HG G 53.2, pratyuksh.bansal@sam.math.ethz.ch
Fernando Henriquez, fernando.henriquez@sam.math.ethz.ch

Though the assistants email addresses are provided above, their use should be restricted to cases of
emergency:

In general refrain from sending email messages to the lecturer or the assistants. They will not
be answered!

Questions should be asked in class (in public or during the break in private), in the tutorials, or
in the study center hours.

0. Introduction, 0.1. Specific information 8
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Lecture hours: Mon, 15.15-17.00 (HG F 1), Tue, 15.15-17.00 (HG F 1)
Exercise class:  Thu, 08.15-10.00 (HG E 1.1)
Presence hours: Thu, 12.15-13.00 (HG E 1.1, HG E 27 only when announced)

0.1.2 Assignments

You should expect to spend 4—6 hours per week on trying to solve the homework problems. Since many
involve small coding projects, the time it will take an individual student to arrive at a solution is hard to
predict.

(0.1.1) Homeworks and tutors’ corrections

*

The weekly assignments will be a few problems from the ADVNCSE Problem Collection available
online as PDF. The particular problems to be solved will be communicated on Friday every week.

Please note that this problem collection is being compiled during this semester. Thus, make sure
that you obtain the most current version every week. The assignment sheets will be also updated
with new problems on the course webpage on Friday every week.

Some or all of the problems of an assignment sheet will be discussed in the tutorial classes on
Thursday 6 days after the problems have been assigned.

If you want your tutor to examine your solution of the current problem sheet, please hand it in to
the tutor during the following exercise class, or put it into the appropriate plexiglass tray in front
of HG G 53/54 by the Thursday after the publication. You should submit your codes using the
online submission interface on the course webpage. This is voluntary, but feedback on your perfor-
mance on homework problems can be important.

Please clearly mark the homework problems that you want your tutor to inspect.

You are encouraged to hand-in incomplete and wrong solutions, you can receive valuable feedback
even on incomplete attempts.

(0.1.2) Git code repository

C++ codes for both the classroom and homework problems are made available through a git repository
also accessible through Gitlab (Link):

= M} AdvNumCSE/Code v : +-0 n o

Project Repository Issues 0 Merge Requests 0 Pipelines  Wiki Snippets Members Settings

Home Activity ~Cycle Analytics

Adv
mCSE

Code s

“r Star 0 Y Fork 0 HTTPS » https://gitlab.math.ethz.ch/Ac I & - + v A Global ~

Files (655KB) Commits (26) Branches(2) Tags(0) AddChangelog  AddLicense  Add Contribution guide

0. Introduction, 0.1. Specific information 9
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The Gitlab toplevel page gives a short introduction into the repository for the course and provides a link to
online sources of information about Git.

Download is possible via Git or as a zip archive. Which method you choose is up to you, but it should be
noted that updating via git is more convenient.
> Shell command to download the git repository:
> git clone https://gitlab.math.ethz.ch/AdvNumCSE/Code
Updating the repository to fetch upstream changes is then possible by executing > git pull inside the

Code folder.

Note that by default participants of the course will have read access only. However, if you want to contribute
corrections and enhancements of lecture or homework codes your are invited to submit a merge request.
Beforehand you have to inform your tutor so that a personal Gitlab account can be set up for you.

The Zip-archive download link is here.

For instructions on how to compile assignments or lecture codes see the README file.

0.1.3 Information on Examinations

(0.1.3) Examination during the teaching period

From the ETH course directory:

Students are expected to give a 15-minute oral code review and answer questions concerning
selected programming assignments at a date announced in the beginning of the term. This
review has to be passed in order to be admitted to the main examination.

The oral code review is regarded as a central element and as such is graded on a pass/fail basis.

Admission to the main exam is conditional on passing the code review.

Date of code review: Wed 12th and Fri 14th December, 2018

4 Reqgistration through a Doodle poll until Nov 30, 2018 is mandatory for taking parts in the code
review:

Link: not_available_yet
Non-registration is considered as opting out of the course and forfeits eligibility for repetition.

4 The following homework coding problems will be announced as relevant for the code review during
the term:

e Problem
e Problem

e Problem

0. Introduction, 0.1. Specific information 10
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e Problem
e Problem

4 Candidates for the code review are expected to send their codes until Monday 10th December, 2018.
Please upload all your files as a single . z ip archive with different codes in different sub-directories;

Upload link will be published at (Moodle): >

4+ The 15-minute exam will center around questions connected with (parts of) the codes supplied by
the candidates.

Make-up code review in Spring Term 2018: 2?2?,2019

(0.1.4) Main examination during the exam session

4 30-minute oral exam in English
4 Dates will be communicated by the ETH exam office and cannot be negotiated.
4 Subjects of examination:

All topics, which have been addressed in class or in a homework problem

(0.1.5) Repeating an exam

Main exam.
e The main exam can be repeated once, conditional on failure.

e Any bonus already earned will be taken into account again for the repeated exam.

Code review.

e A failed code review can be repeated once.

0. Introduction, 0.1. Specific information 11
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Chapter 1

Boundary Element Methods (BEM)

Preface

Boundary element methods (BEM) represent a class of numerical methods for the discretization of bound-
ary integral equations (BIE) arising from boundary value problems (BVPs) for linear partial differential

equations (PDEs) with constant coefficients.

In this chapter we focus on the derivation of various boundary integral equations, the study of their prop-
erties and on Galerkin discretization by means of boundary element methods, which can be regarded a
finite element methods for BIE.

Boundary value problem . Boundary integral (Linear) system
for linear PDE equations (BIE) of equations (LSE)
fundamental
solutions

Boundary element methods play a significant role in computational engineering, in particular in the fields

of computational electromagnetism and acoustics, and for simulations based on linear elasticity.

(1.0.1) BEM in computational electromagnetics

12
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The plot shows the post-processed re-
sult of an electrostatic field simulation
conducted by Lars Kielhorn for a test
geometry provided by ABB Research,
Baden/Déttwil (The strength of the electric
field is given in units of X).

Computations were done by means of a
low-order piecewise polynomials Galerkin
boundary element method based on the
boundary element library BETL [HK12].

The mesh used for the computations is

faintly drawn for the outer casing.

(1.0.2) BEM for acoustic wave propagation

A result from [CHS18]:

Acoustic wave propagation in frequency domain;
scattering of an incident plane acoustic wave Ui
at a scatterer composed of three different homoge-
neous isotropic parts, of which Qg is perfectly ab-
sorbing (sound soft). The color scale indicates the
amplitude of the total acoustic pressure field on a sur-

face.

Simulation was based on piecewise constant bound- *
ary element applied to a second-kind single trace -

y

i Uinc

rect boundary integral equation formulation.
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BEM = boundary element method

BIE = boundary integral equation

BIO = boundary integral operator

BLF = bilinear form

BVP = boundary value problem

FS = fundamental solution

GalM = Galerkin matrix

GSF = global shape function

LF  =linear form

LSE = linear system of equations

LSF = local shape function

PDE = partial differential equation

QF = quadratic functional or quadrature formula (— Def. 1.4.109)
QMP = quadratic minimization problem

QN = quadrature node (— Def. 1.4.109)
QR = quadrature rule (— Def. 1.4.109)
QW = quadrature weight (— Def. 1.4.109)
RF = representation formula

VF = variational formulation
pwc = piece-wise constant
pwl = piece-wise linear

rhs = right-hand side

1.1 Elliptic Model Boundary Value Problem: Electrostatics

We consider electromagnetism in a stationary setting, that is none of the fields depends on time. In this
case electric and magnetic fields become decoupled. In this section we focus on the electric field as we
did in [Hip16, Section 2.2.2].

1.1.1 The Electric Field

(1.1.1) Domains

We denote by O € IR3, called a domain in the sequel, an open subset of 3D Euclidean space with
piecewise smooth Lipschitz boundary. For the intricate mathematical notion of a Lipschitz boundary we
refer to [McL0O, pp. 89] and [SS10, Def. 2.2.7]. If () is bounded, you may imagine a polyhedron with some
curved faces, see § 1.2.5 below.

As a new aspect we will also consider boundary value problems for fields on unbounded domains, more
precisely, the case when Q) is the (open) complement of a bounded Lipschitz domain C R3.

= Notation: ) := R\ Q) £ complement of a domain Q) C R?

The simplest mathematical model for a stationary electric field is that of a vectorfield E : QO — IR3,
assigning a field vector E(x) € IR® to each point x € Q).

® Notation: We write a4, . . ., x,y, z for small vectors and points in space.
bold typeface for vector-valued quantities: E, u, j, . ..
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(1.1.2) Energy (density) of electric field

Any non-zero electric field contains energy, which determined by both the strength of the electric field and
the dielectric medium penetrated by the field. We restrict ourselves to simple linear media. In this case
the we have the following expression for the energy:

Definition 1.1.3. Electrostatic field energy [

The total energy of an electric field E : QO — R3 inside Q) is

Ja(B) =} [ (e()E(x)) - E(x) dx, (11.4)

Q

where € : QO — R33 is the symmetric, bounded, uniformly positive definite dielectric tensor field,
see [Hip16, § 2.2.21].

We call a tensor field, that is, a matrix-valued function & : QO — R% d € N, bounded and uniformly
positive definite [Hip16, Def. 2.2.23], if

Fy 9t >0 9z <zla(x)z <oF||z|]* VzeRY. (1.1.5)

€ is a macroscopic material parameter taking into account complex microscopic interactions of electric
fields and matter.

Energy norm

E — +/Ju(E) defines a norm (— [Hip16, Def. 1.6.4]) on the vector space of electric fields, the
energy norm, cf. [Hip16, § 1.6.8].

Remark 1.1.7 (Scaling of electromagnetic field problems, cf. [Hip16, Rem. 1.2.10])

Quantity units
T — 4V
Electric field E [E] =1
The physical units of electrostatic quanti- Dielectric tensor € €] =1 (}_s
ties are given beside > "
Charge density p [o] =145
Field energy [Jal =1VAs =1]

There are three “free units”, 1V (unit of voltage), 1m (unit of length), and 1As (unit of charge), which can
be fixed arbitrarily. For instance, one may set the unit of length to the diameter of (), if () is bounded, and
set the units of voltage and charge to the “maximum expected values”.

Thus, one ends up with non-dimensional equations for electrostatics. In this course we will tacitly assume
that equations heve already been converted into non-dimensional form by suitable scaling.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 16
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1.1.2 Electric Scalar Potential

A point charge g in a (continuous) electric field E : () — IR3 at a point x € Q) experiences a Coulomb
force

f(x) :=gE(x) . (1.1.8)

(Note matching physical units [f] = As_- =

(1.1.9) Vanishing circulation of electric fields

The integration of a force along a directed curve  : [0,1] — «(f) € Q yields the work required to
move the charge: W = ¢ f,y E - ds. Thus, in order to comply with the fundamental principle of energy
conservation we have to demand

1
/ E-ds = / E(y (1)) - Z—Z(t) dt=0 V closed curvesy C Q), (1.1.10)
v 0

where the curve 7 : [0,1] — Q) is called closed, if y(0) = 7(1). The non-local property (1.1.10) has an
important local consequence, which can be stated by means of the rotation operator (also knows as curl
operator)

[0U3 00y , ]
)
o1 o a@)
curl v(x) :== |=—(x) — =—(x)| , for v(x) = |vp(x)| differentiable in x . (1.1.11)
gx?’ 3’“1 v3(x)
02 U1
_a—xl(x) - a—xz(x)_

Theorem 1.1.12. Electric fields are irrotational/curl-free

Every differentiable stationary electric field E : Q) — R> satisfies curl E = 0 in Q).

Proof. We assume 0 € () and show curl E(0) = 0. Pick7,j € {1,2,3}, i # j, and consider the closed
curve describing an axes-aligned square of size i > 0:

v = {t+> hte;} U {t > he; + the;} U{t — he; + hej — hte;} U{t — (1 —t)he;}, 0<t<T1,

with e; standing for the i-th Cartesian basis vector. The path integral evaluates to

1
/E 45 = /hE(htei) e; -+ hE(he; + the;) - ej—
! 0 HE(hej+h(1—t)-e;)e; — hE(h(1 —t)e;) - ;.
We plug in the first-order Taylor expansion of E around 0:
E(x) = E(0) + DE(0)x 4+ O(||x||*) forx — 0. (1.1.13)
% Notation: DE = Jacobian of the (differentiable) vector field E, see [Hip16, Eq. (0.6.5)].
> /VE -8 = 1% (1DE(0)e; -+ DE(0)e; - ¢+ SDE(0)e; - ¢j — DE(0)e; ¢

1
2
IDE(0)e; - ¢ — 3DE(0)e; - ¢;) + O(h®) forh — 0.
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Note that multiplication with unit vectors selects rows/columns of matrices and that (1.1.10) makes the
path integral along <y vanish.

= 0:AE-d§=h2<(DE(0))i,j—(DE(O))].,Z->+O(h3) forh — 0.

This implies (DE(0)); ; = (DE(0)); ;, the Jacobian DE(0) is symmetric: DE(0) = DE(0)". In light of

the definition (1.1.11) of the rotation operator we see that this is equivalent to curl E(0) = 0 -

(1.1.14) Introducing the electrostatic potential

As another consequence of (1.1.10) we note that for an open curve x the integral fK E - ds will depend
only on the endpoints of the curve (path-independence); connect both endpoints of x by another curve
of opposite orientation. Therefore, picking an arbitrary point z € () we can define an electric potential
through

u(x) = —/ E-ds forsomecurvexy:[0,1] — Q, kx(0) =z, (1) =x, x € Q.  (1.1.15)
Kx

Thanks to path-independence of the work integral this is a valid definition.

Now,let us assume 0 € () and that () is star-shaped with respect to z := 0, that is for every x € () we
have [0, x] C Q. Then, for every x € () we can choose the straight line connecting 0 and x as curve
in (1.1.15):

1
we(t) =tx, = u(x):= —/ E(tx) - xdt . (1.1.16)
0
By differentiation under the integral we get by the chain rule and the product rule
b
vy (%) |
grad u(x) := a%(x) = —/ t DE(tx) " x + E(tx) dt .
22 (x) '
aX3

Applying the same differentiation rules, we also obtain
L {1 TE(tx)},_, = tDE(tx)x + E(tx) .

Combining both formulas leads to a recovery of the electric field:

grad u(x) = — /01 AT TE(Tx) ), +t <DE(tx)T _ DE(tx)) cx dt = —TE(Tx)\i(l) = —E(x),

=0 by Thm. 1.1.12!

where we used the fundamental theorem of calculus and that the components of curl E(x) agree with
the off-diagonal entries of DE(tx) " — DE(tx).

Theorem 1.1.17. Existence of electrostatic potential

If a continuous vectorfield E : Q) — R> satisfies (1.1.10) (“circulation-free”), then (1.1.15) defines a
differentiable function u : (3 — IR such that E = — grad u.

Obviously, if () is connected, then a function u : (2 — IR satisfying grad u = —E for given E is unique up
to a constant.

The function u from Thm. 1.1.17 is called a scalar potential for E. The — in its definition is a convention.

1. Boundary Element Methods (BEM), 1.1. Elliptic Model Boundary Value Problem: Electrostatics 18
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Assumption 1.1.18. Connected domains

The domain ) is connected

Remark 1.1.19 (Scalar potentials and work)

By virtue of the very definition (1.1.15) of the scalar potential we conclude that

—q(u(x) — u(y)) is the work required to move a charge g from y € () to x € () against the
force exerted by the electric field — grad u : Q) — R3.

Note: positive work is “work done by the electric field” (we harvest energy), negative work amounts to
“work done against the electric field” (we spend energy).

We are still missing two things:
1. A mathematical description of the cause of electromagnetic fields, which are charges,
2. and a criterion for selecting the unique physical electric field induced by charges.

These issues will be tackled next and everything will center around the concept of field energy introduced
in Def. 1.1.3.

(1.1.20) Spaces for electric fields and scalar potentials

Physically admissible electric fields E : Q) — IR? on Q) C RR3 (either bounded or unbounded) have to
satisfy

4 that their energy content [, e(x)E(x) - E(x) dx is finite, cf. Def. 1.1.3,

4+ and that they are gradients of a scalar potential: E = — grad u for a sufficiently smooth function
u:0Q — R

Thus we can switch to a characterization by admissible scalar potentials, which form the set
{u O — R: / €(x) grad u(x) - grad u(x) dx < oo} .
0

Since € : Q) — R33 is uniformly positive definite, this set can be endowed with the structure of a Hilbert
space by completion, see [Hip16, § 2.3.8] and [Hip16, § 2.3.16]. On a bounded domain () this yields the
Sobolev space H'(Q), recall [Hip16, Section 2.3.4].

Definition 1.1.21. Sobolev space

For a bounded domain Q) ¢ R%, d € IN, we define the Sobolev space

HY Q) := {v e L2(Q): /Q | grad v(x)|*dx < oo}

as a Hilbert space with norm field energy
A
2 2 2 2 2
1015 ) = Iolli20) + 121y - 1o)== /Q\gradv(x)\ dx.
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The above definition involves the Hilbert space L?(Q)):

Definition 1.1.22. Hilbert space of square integrable functions [

The function space of square integrable functions on () C R is
L?(Q) := {v: O — R integrable: / lv(x)[?dx < oo},
o)

a Hilbert space, when endowed with the norm

ol 2(cy = (/Q o(x)[2 dx)

Space for admissible scalar potentials

1/2

Meaningful electrostatic scalar potentials on a bounded domain () C R3 belong to the Sobolev
space H'(Q)).

Remark 1.1.24 (Potentials on unbounded domains) |

It will turn out that some physically meaningful scalar potentials will not belong to L2(Q), if QO C R? is
an exterior domain, that is, the open complement of a bounded Lipschitz domain. In this case the proper
space of admissible potentials is [SS10, Eq. (2.148)]

2
HY(Q) := {u Q- R ||u||%11 / lgrad u(x)|* + 1‘+(3’C|)‘2 dx < oo} , (1.1.25)
x

which is larger than the space on () we would get from Def. 1.1.21 When equipped with the norm defined
in (1.1.25) also this space becomes a Hilbert space. Note that (??) still guarantees finite energy of the
electric field.

A Many authors, also [SS10], use Def. 1.1.21 also for exterior domains and introduce special
notation for the space defined in (1.1.25).

1.1.3 Continuity of Fields and Boundary Conditions

Maxwell’s equations and their reduced version, the equations of electrostatics are generically posed on all
of IR3. Often, one is interested in the behavior of the fields in a region Q) # IR3 only and the impact of the
complement () is taken into account by imposing boundary conditions on the boundary I' := 9().

The boundary I' := 0d() is a two-dimensional ori-

entable closed (that is, without a boundary itself) sur-

face.

2 Notation: n : T — RR3 is the exterior unit normal n
vectorfield on I'.
(Defined only in the interior of faces for polyhe- Q'
dra) T

Fig. 3
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(1.1.26) Jump conditions for electric field

v ¥ C RR3® = smooth orientable surface (“interface”). Consider

/‘;7 x slender closed curve v aligned with X, see Fig. 4. Letting the -

transversal width of y shrink to zero, (1.1.10) [fy E-ds = 0] can
be satisfied for any such curve only if the tangential components
Fig. 4 of E agree on both sides of 2.

Continuity of electric fields

The tangential components of an electric field continuous on both sides of an orientable surface are
continuous across that surface.

(1.1.28) Continuity of scalar potentials

If a scalar potential u : () — IR was only piecewise continuous with a jump across an interface, then
pushing a charge by an “infinitesimally small” distance across the interface could always release fixed
finite amount of energy. This amounted to an infinitely large force acting on the charge, which does not
make physical sense.

Continuity of scalar potentials

A scalar potential that is continuous on both sides of an orientable surface is also C’-continuous
across it.

This finding very well matches our results about the appropriate function spaces for scalar potentials
[Hip16, Thm. 2.3.35].

Theorem 1.1.30. Compatibility conditions for piecewise smooth functions in H' (Q)

Let () be partitioned into sub-domains ()1 and (),. A function u that is continuously differentiable
in both sub-domains and continuous up to their boundary, belongs to Hl(Q), if and only if u is
continuous on Q).

We also recall from [Hip16, § 2.3.37] that continuous and piecewise continuously differentiable functions
on Q) belong to H(Q)):
Cpw(Q2) C HY(QY) . (1.1.31)

We have to define CE;W on the closed domain Q) in (1.1.31) to make sure that the functions are continuous
up to the boundary.

Be aware that the gradients of functions in C%,W(ﬁ) enjoy continuity of their tangential components across
any interface inside (). They satisfy the natural jump conditions for electric fields, cf. § 1.1.26.

(1.1.32) Normal and tangential components of a vectorfield on a surface

If ny : ¥ — R3is a unit normal vector field on the orientable 2-surface ¥ and v a vectorfield continuous
up to X, then
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the normal component of vin x € X is (Tuzv)(x) :=v(x) - ng(x),
the tangential componentof vinx € £is  (T¢xv)(x) := v(x) — (v(x) - nx(x))ns(x),

% Notations: T,y = normal component (trace) of a vector field on X
T4y = tangential component (trace) of a vector field on X.
(Subscript indicating the surface may be omitted when clear from the context.)

The mappings T, s and T;x are first examples of trace operators, linear mappings from function spaces
on volume domains to function spaces on interfaces or boundaries.

(1.1.33) Boundary conditions on the surface of conductors

A conductor is a region Q. C IR3 filled with (infinitely many) mobile charge carriers.
- The electric field vanishes inside a conductor.
Otherwise the field would cause permanent movement of charges, releasing an infinite amount of energy
in the process.
If u is the electric potential (— Thm. 1.1.17), then E = — grad u = 0 inside the conductor.

= The electric potential is constant inside each connected component of ()..

In light of the tangential continuity of the electric field E, E = 0 inside (). means that
T¢o0,E =0 on boundaries of conductors . (1.1.34)
Engineers refer to the boundary conditions (1.1.34) as perfectly electrically conducting (PEC)

In mathematics, these PEC boundary conditions belong to the class of Dirichlet boundary conditions, see
[Hip16, Section 2.7].

(1.1.35) Mirror symmetry boundary conditions

'y
Assume a situation mirror-symmetric with respect

to a plane X (through 0) with unit normal 7y, see
Fig. 5:

x' = (I —2ngny )x

1.1.36
E(x') = (I - 2nsny )E(x) . ( )

Note that the electric field E is completely continu-
ous across 2., because 2 does not separate different
X ny, physical domains (“artificial interface”).
_ 1
Fig. 5

Thus, for x = x’ € X we have

E(x) = (I —2nyny )E(x) = T,sE=E-nzy=0 onX.
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Boundary condition for electric fields as symmetry planes

At symmetry planes electric fields have vanishing normal components.
(= homogeneous Neumann boundary conditions [Hip16, Section 2.7])

(1.1.38) Configuration space for electrostatic phenomena

Remember that the configuration space for a physical system is a subset of a vector space. Each element
models a particular state of the system. In electrostatics states are characterized by functions on spatial
domains, the fields.

In § 1.1.20 we saw that the configuration space can be a set of scalar potentials and should be a subspace
of H'(Q)). PEC boundary conditions as introduced in § 1.1.33 will enter the definition of the configuration
space.

Configuration space for electrostatics

Let I'1,..., I, C 0Q) stand for the connected components of the part of d() corresponding to
surfaces of conductors. Then the scalar potential is sought in the space

V= {uec H(Q): ”|rj =const, j=1,...,m}.

We can further restrict the configuration space, if the scalar potential is imposed on all or some connected
components of the conducting part of d(): Assume that ”‘rj =U;eRforj=1,...,k k < m. Thenwe

can choose
Vi={ue H(Q): ulp, =Uj, j=1,....k, uly =const, j=k+1,...,m}. (1.1.40)

This configuration space is an affine space. For any some ug € V it can be written as V' = uy + V}y with
the Hilbert space

Vo:i={ue Hl(Q): u|Cj =0,j=1,...,k, u|Cj =const, j=k+1,...,m}. (1.1.41)

Terminology: Connected components of the conducting boundary part of () where no potential is imposed
are called floating potentals.

Remark 1.1.42 (Fixing the potential)

Since the potential is unique only up to constant, one can always set u]r] = 0 for one connected compo-
nent of the conducting boundary without changing the outcome for the electric field. Then I'y is called a
grounded conductor.

Example 1.1.43 (Fixed potential boundary conditions)
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o) < situation with imposed potentials
u=20 on Iy,
(1.1.44)
== u=1Uy on Tj.
(Metal electrode inside a grounded metal box)
Ty B> configuration space
V= {u € H'(Q): u satisfies (1.1.44)} .
R
b |
Fig. 6 uo J___

1.1.4 Equilibrium Conditions

As the reader will know, the sources of electric fields are electric charges. Above we have already made
of the construct of a point charge for measuring an electric field through the Coulomb force.

A large number of small “point charges” contained in a volume Q) C IR® can be modeled by a charge
density p : O — R, physical units [p] =1 %.

B o= / p(x)dx = total charge in sub-volume D C Q). (1.1.45)
D

(1.1.46) Energy of charges in a field

Assume Q) C IR to be bounded that the the scalar potential u : 0 — R satisfies u|,q = 0 (If Q) is
the complement of a bounded set, we may just choose a normalization of the scalar potential that makes
it vanish at large distance: lim | %(x) = 0 uniformly, also written as “u(c0) = 0"). According to
Rem. 1.1.19 it takes the work —qu(x) to move a charge g to x € Q) from Q).

Now think of a charge density p : (3 — lRar as composed of many small point charges. The work it takes
to assemble this arrangement of charges is the sum of the work units required for each individual charge,
because we assume a fixed scalar potential not influenced by the presence of the charges. In the limit this
summation becomes integration (— Riemann integral), and the energy required for setting up the charge
distribution p in the presence of a fixed potential is

Jo(u) = — /Qp(x)u(x) dx, uec HY(Q). (1.1.47)

The notation stresses the dependence of the energy on u, because this will play the role of the unknown.

In the sequel the presence of charges modeled by p(x) will engender the fields. Therefore we call p as
source charge distribution.

Remark 1.1.48 (Admissible source charge distributions)
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The energy ]p(u) of a source charge distribution p : (3 — IR should be finite for all admissible scalar
potentials 1. For bounded (), applying the Cauchy-Schwarz inequality in L?(Q)) [Hip16, Eq. (2.3.30)] we
get

2 2 2 2
< ([ prar) ([ nerax) = lollienlule

Hence, p € L?(Q)) is a sufficient condition for a suitable source charge distribution, cf. [Hip16, Cor. 2.3.32].

)] = | [ (o)) i

If () is an exterior domain, we demand that p has bounded support in addition (“compactly supported”).

The total energy in a electrostatic situation in a volume () is the sum of the energy (1.1.4) of the electric
field and the energy content of the charges given by (1.1.47):

J(u) == Ja(u) + Jo(u) = /Q Te(x)gradu(x) - grad u(x) — p(x)u(x)dx, ugV C H'(O).
(1.1.49)
configuration space, see § 1.1.38
The selection of the scalar potential prevailing in a particular situation relies on a fundamental equilibrium
principle also called virtual work principle, compare [Hip16, Eq. (2.2.29)]:

Equilibrium condition for electrostatic phenomena

Given a (compactly supported) source charge distribution p € LZ(Q) and a configuration space
V C H'(Q) encoding boundary conditions, the scalar electrostatic potential « minimizes to total
energy

u = argmin J(v) . (1.1.51)
veV

(1.1.52) Total energy as quadratic functional

Let us introduce the following abbreviations:
a(u,v) := /Qe(x) grad u(x) - gradv(x)dx, u,0€ H'(Q), (1.1.53)
{(v) := / po(x)v(x)dx, vel*Q). (1.1.54)
o)

Here, a : H'(Q)) x H'(Q)) — Ris a bilinear form and ¢ : H'(Q)) — R is a linear form, see [Hip186,
Def. 1.3.22]. Then the functional | from (1.1.49) can be written as

J(u) = Ya(u,u) — €(u) . (1.1.55)
Hence, | is a quadratic functional, see [Hip16, Def. 2.2.32) on V' C Hl(Q) and the scalar potential is

defined as the solution of the quadratic minimization problem (1.1.51).

We remark the obvious fact that the bilinear form a)(-,-) from (1.1.53) is positive semi-definite [Hip16,
Def. 2.2.45]. This connects to the fact that %a(u,u) tells the energy (norm) (1.1.4) of the electric field
E:= —gradu.

By the Cauchy-Schwarz inequality both a and £ are continuous on H'(Q)) in the sense of [Hip16, Def. 2.2.61].
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The next result answer the fundamental question about existence and uniqueness of solutions of the above
quadratic minimization problem. Throughout, V C Hl(Q) is the configuration space as described above.

Theorem 1.1.56. Existence and uniqueness of energy minimizing potentials

If

Q C R3 is bounded and u is fixed on some part of 9Q)
or

Q C RR3 is the complement of a bounded domain

then (1.1.51) has a unique solution.

The proof of this theorem requires deep results from the theory of Sobolev spaces (a generalization of
the first Poincaré-Friedrichs inequality [Hip16, Thm. 2.3.31]) and functional analysis (Riesz representation
theorem [Hip16, Thm. 2.3.12]). If () is the complement of a bounded domain, then we have to appeal to
[SS10, Prop. 2.10.8].

1.1.5 Variational Equations

Recall the notion of a linear variational problem from [Hip16, Def. 1.4.8]:

Definition 1.1.57. Linear variational problem

A variational problem posed on an affine space V' and a vector space V| of the form
ueV: a(u,v)=4Lv) YoeV, |, (1.1.58)

is called a linear variational problem, if
e a:V x Vy— Risabilinear form, that is, linear in both arguments (— [Hip16, Def. 1.3.22]),
e and /: V) — R is a linear form.

We will also need fundamental abstract result from [Hip16, Section 2.4.2].
Theorem 1.1.59. Equivalence theorem for quadratic minimization problems
Let V) be a normed real vector space, V a related affine space anda: V xV — R, /:V — R a

continuous symmetric positive semi-definite (— [Hip16, Def. 2.2.42]) bilinear form and continuous

linear form, respectively. Thenu € V is a minimizer of the quadratic functional ] (v) := }a(v,v) —

¢(v), if and only if 1 solves the linear variational problem

ueV: a(u,v)=4L(v) YoeV,.
The assertion of this theorem can concisely be stated as follows: for u € V holds the equivalence

u=argminia(v,0) —L(v) <<= wueV: a(uv)=_Lv) YoeV |, (1.1.60)
veV

if a is symmetric and positive semi-definite.
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Proof of Thm. 1.1.59. (I) Assume that u € V is a minimizer of J(v) over the affine space V. = u + V.
Then for any v € V| the smooth auxiliary function

o R—=>R , ¢@u(t) :=]J(u+tv),
has a global minimum in t = 0, which means

dey
dt

Since v € V| was arbitrary, (1.1.58) follows.

(0) = {t = ta(v,0) +a(u,v) = €(v) };—o = a(u,0) — £(v) =0.

(I) Let u € V satisfy (1.1.58): a(u,v) = £(v) for all v € Vj. Then we can rewrite

J(v) = %a(v,0) —a(u,v) = La(v —u,0— ul—%a(u,u) .

>0!

Obviously, v = u yields a global minimizer. O

Concretely, if the potential u is fixed to agree with a function ¢ : I', — IR on a part I'p (“Dirichlet part”) of
the boundary d(), it can be obtained as the solution of the following linear variational problem.

ue H(Q), ‘

“|rD =8

v € H(Q),

(1.1.61)
U|FD =0

/Qe(x)gradu(x)‘gradv(x)dx:/ﬂp(x)v(x)dx v

1.1.6 Boundary Value Problems

In [Hip16, Section 2.5] we learned that, under some assumptions on the smoothness of solutions, linear
variational problems like (1.1.61) can be recast as boundary value problems for second-order linear partial
differential equations in strong form. The main tool is Green’s first formula that we recall from [Hip16,
Thm. 2.5.14].

Theorem 1.1.62. Green’s first formula

For all vector fields j € (Cp,(Q2))" and functions v € C},(QY) holds

/j-gradvdx:—/ divjvdx—l—/ j-nodS. (1.1.63)
Q Q a0

The divergence of a vector field v(x) = [v1(x),...,v(x)] is

001 ' 07,

leV(X) = a—x1 < a—xd .

As in [Hip16, Ex. 2.5.23] the derivation of the boundary value problem induced by (1.1.61) proceeds in two
steps. Throughout we assume that u € CZ(Q) so that all manipulations are possible. The source charge
distribution must have compact support in IR>.

@ In (1.1.61) test with v € C{°(Q2) = smooth functions with compact support, vanishing on 90}

/Q e(x)grad u(x) - grad v(x) dx = /Qp(x) v(x)dx Vv e Cy(Q)
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J} < by Thm. 1.1.62, 7|, = 0!
/ div(e(x) grad u(x)) o(x) dx = /Qp(x)v(x) dx Yo e CP(Q)

|l + density of smooth functions in L?(Q))

—div(e(x)gradu(x)) =p in Q. (1.1.64)

@ In (1.1.61) test with v € C*®(Q)) with bounded support in IR?, vanishing on I'p

/Q e(x) grad u(x) - grad v(x) dx = /Qp(x) v(x)dx Vo e C®(Q)
| ¢ by Thm.1.1.62

/{;—div( (x) grad u(x) dx+/ x)grad u -nov(x)dS(x)
=p(x) by (1.1.64)

— / ¥)dx Yo e C®(@)
I < use(1.1.64)
/;Qe(x) gradu-no(x)dS(x) =0 Yo e C®(Q), v|, =0
|} < density of smooth functions

e(x)gradu-n=0 on I'y:=dQ\Ip |. (1.1.65)
In fact, the boundary conditions on I'yy agree with the symmetry boundary conditions derived in § 1.1.35.

Summing up, the strong form of the boundary value problem related to (1.1.61) is

—div(e(x)gradu(x)) =p in Q, (1.1.66a)
u=g on Ip (1.1.66b)
e(x)gradu-n=0 on TIy. (1.1.66c¢)

The boundary conditions (1.1.66b), which generalize the PEC boundary conditions from § 1.1.33, are
Dirichlet boundary conditions, whereas (1.1.66¢) is called (homogeneous) Neumann boundary conditions
[Hip16, Section 2.10].

Remark 1.1.67 (Gauss’ law)

The partial differential equation — div(e(x) grad u(x)) = p is known as Gauss’ law. It holds beyond the
stationary setting in electrodynamics (assuming a “suitable” definition of charge).

The field D(x) := —e(x) grad u(x) is known as displacement current in electrodynamics (physical units
[D] =123).

As a consequence of Gauss’ law and Gauss’ theorem, which is Green’s first formula (1.1.63) with v = 1,
we get

/aDe(x) grad u(x) -n(x)dS(x) = — /Dp(x) dx (1.1.68)
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for all “control volumes” D C Q).

Remark 1.1.69 (Electrostatics in homogeneous isotropic media)

Homogeneous isotropic media feature a dielectric tensor that is a constant multiple of the identity matrix
€(x) = el for some constant € > 0. In this case by scaling (— Rem. 1.1.7) we can always obtain the
non-dimensional Poisson equation from (1.1.64):

with the Laplace operator

—Au=p, (1.1.70)

92 9?9

A =divograd = — +

2 2 2
8x1 axz 8x3

(1.1.71) Transmission conditions

From Gauss law we conclude that

divD =

Fig. 7

Continuity of displacement current

div(—egradu) € L*(Q) .

Let Q) be partitioned Q) = Q' UX. U Q" with piecewise smooth
interface X, see figure (<) for cross-section.

Assume that both € and u are smooth both in Q) and Q). Ap-
ply Gauss’ theorem (1.1.68) in a small flat cylindrical box with
“bottom” and “top” face locally aligned with X..

Let the height and width of the box tend to zero so that it shrinks
to a point x € 2.. There we find

(egrad u|q, (x) — egrad u|q(x)) -n™ (x) = o(x),
(1.1.72)

where ¢ : 22 — IR is a surface charge, that is, a layer of charge
concentrated on . (which does not exist in L2(Q)), however).

If p € Lz(Q) and u solves (1.1.66a) and is piecewise smooth, then the normal component of
D := —egrad u is continuous across any interface.

Note that surface charges cannot belong to L?(()), because functions in L?(Q)) cannot be restricted to

some surface, cf. [Hip16, Rem. 2.3.6].
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(1.1.74) Electrostatics in two dimensions

We say that a situation possesses translational symmetry, when
Q 4+ there is a Cartesian coordinate system with coordinates
(x1,x2,x3) such that no quantity depends on the x3-
coordinate,
w 4 anditis posed on a cylindrical spatial domain of the ten-

sor product form Q = Q x R, O ¢ R?

Fig. 8 - - - _ _ _ -
Then, (1.1.66) becomes a boundary value problem for i (x1, x2) = u(x1, x2,0) on O
—div(égradil) =pinQ), i=gonlp, égradii-i=00onTy, (1.1.75)

where, for instance, €(x1, x2) = (e(x1,%2,0))15 1.5, grad if = [%, %]T.

Thus, we naturally arrive at a scalar elliptic boundary value problem in two dimensions.

1.1.7 Decay conditions on unbounded domains

We are concerned with the electrostatic linear variational problem

v € H'(Q),

u€ H(Q),
. U‘FD =

”’rD =8

posed on the complement () of a bounded domain. We face a so-called exterior BVP. We also assume
that p(x) = 0 and e(x) = Ifor ||x|| > R and some R > 1.

/(;e(x) grad u(x) - grad v(x) dxz/Qp(x)v(x) dx V (1.1.61)

Far away from d() and supp p we expect the electric field to be “radial”:
E(x) = E(||x]))*/lx| with &:RT — R for |x| — 0.

% Notation: B,(x) = ball with center x and radius » > 0.

By Gauss’ law and theorem

4mr?E(r) = /BBr(O) E(x) - */||x| dS(x) = /By(o) p(x)dx = const for r— oo,
B> (=002 for r— .
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For large ||x|| we also expect u(x) = u(||x||), which means grad u(x) = 3/ (||x]|)*/|x|. Thus, from the
aymptotic behavior of E we conclude

K ~ | [ £ ds| <00 tor 7 oo,
0

B> u(x)| = O(|lx| ") and |gradu(x)| = O(|x||*) for x| —oco |.  (1.1.76)

These decay conditions have to be imposed as “boundary conditions at co” for the exterior boundary value
problems of 3D electrostatics.

Note that a smooth potential decaying according to (1.1.76) belongs to H'(()) as defined in (1.1.25). To
see this transform the integrals to polar coordinates (— [Hip16, § 2.4.39]).

Remark 1.1.77 (Necessity of decay conditions)

Considering () = R3 it is clear that without imposing decay conditions we cannot expect a unique solution
of —Au = p, because we could always add an unbounded harmonic function like x — x? — x5 to u and
would get a different solution.

| (1.1.78) Decay conditions in 2D electrostatics

)

|

N

We consider an x3-translation-invariant setting in whole space
IR3 as in § 1.1.74 with a cylindrical source charge distribution
p(x) = p(x1,x2), p compactly supported in the x; — x; plane
and infinitely extended in x3-direction. >

~”i
)

i
|

|

|

Thought experiment: To compute the electric field in x :=

[x1,%2,0] " we chop up p into many slices and obtain E(x)

X3 by linear superposition of the fields generated by the individual
2 “charge slices”.
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Then send x7 + x5 — oo and take into account the decay con-
0 x1 dition (1.1.76) for the electric field: the field Es caused by the
“charge slice” at x3 = ¢ € IR will behave like
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|E¢(x1,%2,0)[| = O((x] + 23+ %))
for xq,x2, — o0 separately .
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Fig. 9

Now, letting the thickness of the slices tend to zero, summation can be replaced with integration (“Riemann
summation”, see [Hip16, Eq. (1.2.40)]). Writing ¥ := [x1, x5] | we get with some constant C > 0

i 1 c [ 1 cC (> 1 Cr

E(xy, %2,0 gc/ . qr= / __df= = / dg =
B2 Ol=C ) iz T e Tr@mr T T 2 T 2
For ||¥|| — oo we can again expect a merely radial dependence of the electric field and scalar potential

So<y L

B, x2,0) = E(I3) 3 |

&gl

X1

2] e 0) = .
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By integrating the electric field in radial direction

.
|P‘(V)|§C/ %ds:O(logr) for r— oo,
1

B | ja(®)]=OoglEl) , |E®| =0 for [F| e |  (1179)

1.1.8 Supplement: An energy norm for source charge distributions

In Rem. 1.1.48 we have seen that p € L?(Q)) makes p : Q) — R a valid source charge distribution on the
domain QO C R3. Is L?(Q)) the largest space of possible source charge distributions? In this section we
will identify an even larger space of admissible source charge distributions by introducing a suitable norm
on them.

Definition 1.1.80. Dual norm for source charge distributions

Forp € L2(Q) let p € L?(IR?) be its extension by zero to IR® and define

—Au=p in R3,

u satisfies decay conditions (1.1.76) . (1.1.81)

HPHﬁ—l(Q) = |u| (g3 Where u solves {

The completion of L?(Q)) w.rt. [I[ f7-1(y) Yields the Hilbert space H1(Q).

B> The norm ||p||ﬁ,1(ﬂ) can be read as the energy of the electric field on IR®> engendered by the source
charge distribution p (after extension by zero).

The solution u of the “exterior” boundary value problem in (1.1.81) can be obtained as the solution of the
linear variational problem

u € HY(R?): /]R3 grad u(x) - grad v(x) dx = /]R3 p(x)v(x)dx VYo e HY(R?). (1.1.82)

Remember that H'(IR3) is defined through a weighted L?-norm in (1.1.25).

(1.1.83) An embedding of .?(Q))
From [SS10, Prop. 2.10.8] we learn that

|v(x)[? / 2 13
dx <4 radv(x)||"dx Vv e H (R’). (1.1.84)
/]R31 HxHZ ]R3||g (ol (R?)

Thus, setting v = u in (1.1.82), we obtain for o € L2(Q)) that

HPH%—l o) = ||gl‘ad””%2(11<3) < 1ol 2rayllll 2grsy < 4V 1+ R? (o[l 20 llgrad u|[ 12ks)
Q)
> ol 1) < 4llell2q) -
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Thus ||| g-1(qy) is @ weaker norm than [|-| 2 () and H1(Q) is a larger space than L2(Q)).

(1.1.85) Duality of H'(Q)) and H1(Q)

Owing to (1.1.82) we can also characterize the space H~'(Q2) and the norm ||'||F1—1(Q) in an equivalent
way

HY Q) :={p: 0> R: '/ x) dx| < oo for all finite-energy potentials u} , (1.1.86)
x)u(x)dx ~
lollg-10) = sup f“p() ) , peH Q). (1.1.87)
ueH(Q) ||“||H1(Q)

duality means that the same characterization applies to H!(Q)) and ||- || i1 (y) in @ reciprocal fashion:

HY(Q) = {u € [2(Q V x) dx

<o Ype HYQ), (1.1.88)

x)d
[ull )y = sup Jop(x) x, uec H(Q). (1.1.89)
pelfl‘l(Q) ||p||171—1(ﬂ)

1.2 Boundary Representation Formulas

The focus will be on electrostatic problems in homogeneous isotropic dielectric media so that, after rescal-
ing, we face boundary value problems (BVPs) for the Laplacian —A in 2D (— § 1.1.74) and 3D, as
explained in Rem. 1.1.69.

Most considerations apply to more general linear scalar second-order partial differential operators in di-
vergence form in d € IN dimensions and and with constant coefficients

A € RéA symmetric positive definite (s.p.d.) ,

Lu ;= —div(Agradu) +cu, CER.

(1.2.1)

1.2.1 Green’s Formulas

Recall Green's first formula on Q0 C R?from Thm. 1.1.62: for a vector field j € (Cp,,,(©2))? and a function
v € Cp(Q),

/j'gradvdx:—/ divjvdx+/ j-nodS. (1.1.63)
Q Q a0

We may set j := grad u for u € C?>(Q)) and obtain from A = div grad

/(;gradu-gradvdxz—/QAuvdx—k/anradu-nvdS. (1.2.2)
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Applying Green'’s first formula to the first integral in (1.2.2) yields Green’s second formula [SS10, Thm. 2.7.4]

Theorem 1.2.3. Green’s second formula

Foru,v € C2(Q) holds

/uAv—vAudx:/ ugradv-n—vgradu-ndS(x) . (1.2.4)
0 90

These formulas are valid on any bounded Lipschitz domain QO C R%. If Q) is an exterior domain, a
sufficiently fast decay of all functions for ||x|| — oo has to be assumed.

Since ultimately we are interested in discretization, we restrict our shapes to “engineering geometries” that
can be described (in the context of a Bezier or NURBS model) by a few parameter.

(1.2.5) 2D: Curved Lipschitz polygons [Hip16, § 2.2.3]

= relevant class of planar domains:

Assumption 1.2.6.

The boundary I' of () can be partitioned into
finitely many openedges I'y, ..., Ty, M € IN,
such that
4+ I'=T1U---UTy,
4+ NI =Qfori # j,
4+ foreveryj € {1,..., M} there is a C2-
function v; : [~1,1] — T; C R* with
%fy # 0 (a smooth parameterization).

We can distinguish corners (e) and edges (—) of I'>

Fig. 10

(1.2.7) Curvilinear Lipschitz polyhedra

Eligible 3D domains Q C R3:

Assumption 1.2.8.

The boundary I' of () is Lipschitz and can be partitioned
into finitely many open faces I'y,...,I'y;, M € IN, such
that
4+ I'=T1U---UTy,
+ NI =0Ofori #j,
4+ foreveryj € {1,..., M} there is an open planar
polygon IT; C R? and a bijective C2-function K
IT; — T; C IR? (a smooth parameterization).

< Sphere composed of patches parameterized over squares
(forums.tigsource.com)

Fig. 11
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(1.2.9) Curve and surface integrals

The formulas (1.2.1), (1.2.2), (1.2.4) involve integrals of scalar integrands over I' := d(). Calculus supplies
the following formulas:

e 2D (d = 2): Under Ass. 1.2.6 with the notations from there and for a piecewise continuous f : I' —

IR holds
x)dS(x) = 1 t yi ()] dt yilf) = —,Yj t) € R? 1.2.10

where ||-|| designates the Euclidean norm of a vector.

e 3D (d = 3): With Ass. 1.2.8 and its notations and f : I' — R integrable we have [Str09,
Rem. 8.6.1]

1/2

Jpr@ast) = D [ @))%, g(x) s | det (09 (210 (3)

J/

€R22
(1.2.11)

The Jacobians Dy; map I1; — IR** and the function g; is the Gram determinant of ;.

1.2.2 Fundamental Solutions
1.2.2.1 Potential of a Point Charge

We consider electrostatic in a homogeneous, isotropic, dielectric medium, that is, we assume € = 1
after scaling, recall Rem. 1.1.69. Then the repulsive Coulomb force acting between two unit charges (in
rescaled units) located at x, y € R3 is

1 y—x
= —— (1.2.12)
3
47 |y — x|
Recalling the link between Coulomb force on a point charge and the electric field expressed in (1.1.8), we
conclude that

1 y—x

== YT ytx, (1.2.13)
47 |y — x|’

Ex(y) :

describes is the electric field engendered by a unit charge at x. Now we are looking for the associated
electric scalar potential (— § 1.1.14), denoted by y — G,(y) and satisfying grad Gy = —E4(y).

% Notation: We write L, F(x, y) to indicated that the differential operator L “acts on y” and x is treated as
a mere parameter; generalizes the concept of a partial derivative.
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Gradients of functions depending on ||x|| are aligned with the radial direction:

1 X

X 1 . X
[Eq] [E B

grad{x — ||x||} = m = grad{x —

which reveals that E, can be expressed as a gradient:

1 1 —Xx 1 1
B E = —— J = —grad,  ——— 5.
() 47T||y—x||2||y_x|| 8 y{ }

Potential due to a point charge

A point charge at x € IR? generates the potential

1 1

— G = it (1.2.15)
y = G = Y

Remark 1.2.16 (Properties of the potential due to a point charge)

From (1.2.15) we read off that the potential G, x € R3,
4+ is a function of the the distance ||x — y|| only,
4 is smooth away from x: G, € C®(R3\ {x}),
4 isharmonic: AG,(y) =0forally € R\ {x},
4 satisfies the decay conditions (1.1.76)
Ge()| = Olyll™") , llgrad G«(y)| = O([ly[7*) for [ly[l = oo, (1.2.17)

4 has a singularity at x
Gx)| =O(ly—=|7") , lgradGx(y)l| = O(llx —y|™?) for y—x,  (1.218)

4+ and, owing to the singularity in x, G, ¢ H'(IR?) (— (1.1.25)): the field generated by a point charge
fails to have finite energy, “point charge” is a non-physical concept (of great usefulness for formal

considerations, however).

1.2.2.2 Potential of a Line Charge

2 {x e R?: [2] =X}, ¥ € R?

X1 — Xp-plane.

We adopt the x3-translation invariant setting underly-
ing 2D electrostatics, see § 1.1.74: a 2D point charge
X3 becomes a 3D infinite line charge concentrated on

X By linear superposition in 3D we determine the elec-
X tric field Ez(x1,x2) € R? of the line charge in the
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By symmetry arguments ()and suitable substitutions, we compute

o1y 8- O 1[G-% [ !
x = 3/2 C= i 32 a
Ex(y) 47.[_[0 (“'j—yuz—l—gz) / 47T[ 0 }_Zo <||%_y||2+€2> /

1 [7 T 1 [L=2
:_V } ;| de= = |l |
w0 e L arar

As expected there is no x3-component and we have found

~ _L y—}z

~ 1 - ~ _
Ex(y) = 7 = —grady{—ﬁlogﬂx—yﬂ} , 7R\ {3}. (1.2.19)

27 % — 9|
Thus we have also identified the associated 2D potential.

Potential of a point charge in 2D

the scalar potential of a point charge at ¥ € R? is

. 1 SO . -
C(y) = —5-log|x—y[, y< R?\ {%} . (1.2.21)

Remark 1.2.22 (Properties of the potential of a point charge in 2D)

This echos Rem. 1.2.22. The potential Gz is a smooth harmonic function for y # x and

4 satisfies the decay conditions (1.1.79)
Gx(®)| = O(log|lyll) , lgrad Ge®)[| = O(llyl|™") for [F]l = co, (1.2.23)
4 Gx has a logarithmic singularity at x

Gx(y)] = Olog|ly —%[) , |grad Gz(y)| =O(|x —7| ") for =%, (1224

4+ and the energy of the electric field of a 2D point charge is not bounded: Gy ¢ H'(IR?).

1.2.2.3 Distributional View: LG = ¢

= Notation: For the potentials (1.2.15), (1.2.21) caused by point charges at x € R?, d = 2,3, we now
indiscriminately write G*(x, i) to emphasize the symmetric roles of both arguments.

In both 2D and 3D

/d IGA(x,y)|dy < 0 Vx e RY,
R

so that all the integrals below exist as improper integrals [Str09, Sect. 6.4]. For x € R and a smooth
compactly supported function w € C*(IR?) we find by A,G”(x,y) = 0 for x # y and Green’s second
formula from Thm. 1.2.3,

/(;gradu-gradvdx:—/QAuvdx—k/anradu-nvdS, (1.2.2)
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with o <— w and u < {y — G®(x,y)} that

/]Rs G*(x,y)(—Aw)(y) dy = lim G2 (x,y)(—Aw)(y) dy

€=0J|ly|[>e

= lim / /y@’f(/' ) dy—
e—0
lyll>e

im [ G°(x,y)gradw(y) - n(y) — grad, G*(x,) - n(y) w(y) dS(y) .

e—0
lyll=e

Next, we examine the limit of the surface integral for
d=3:

In the case d = 3 we have concrete formulas at our
disposal. For y € dB¢(x) we find

1 1
A
Gy = o=y~ e
1 x—y xX—vy
rad G®
By ) = T A
We plug this into the surface integral over the e-sphere:
n n 1 1
= /]Ra GA(xfy)(—Aw)(wdy—g% ~ 1o sradw(y) - n(y) + —5w(y)dS(y) .

lyll=e

Since w € CJ°(IR?) is smooth and the area of the sphere shrinks like O(e?) for € — 0, the contribution
of the first term vanishes in the limit.

= /]R G (x,y)(~Aw)(y) dy = lim / o 0(y) dS(y) = w(x) (1.2.25)

e—0
lyll=e

The same result holds for d = 2.
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Definition 1.2.26. Fundamental solution

A function G- : R? x R? — R is a fundamental solution for a second-order scalar linear differential
operator L, if
(i) G-is C*-smooth on {(x,y)R% x RY : x # y},
(iiy forallx € R%: L,G"(x,y) =0 onR%\ {x}
(i) y — G“(x,vy) satisfies the appropriate decay conditions (1.1.76)/(1.1.79),
(iv) y — G(x,y) is integrable on R,
(v) forevery x € R%, w € CF(R?)

/]Rd G (x,y)(L'w)(y) dy = w(x) . (1.2.27)

Here L* is the (formal) adjoint differential operator of L defined by

/ (L) (x) v(x) dx = /Q w(x) (L0)(x)dx Vw,v € CP(RY). (1.2.28)
0

For all differential operators of the form Lu := — div(A grad u) + cu with A = AT € R%, ¢ € R, in
particular L = —A, we easily see from Green’s formulas that L* = L.

‘ Remark 1.2.29 (“L, G- = 6,”)

“Testing equalities with smooth functions” is the idea underlying the calculus of distributions [RR04, Ch. 5].
Sloppily speaking, a distribution is a linear functional on C8°(1Rd), continuous in a particular topology. In
distributional calculus we can concisely rephrase

Jre Gt y)(L'w)(y)dy = w(x) Yw,x <= L,G"(x,y)=0x inD(RY) VxeR?,

where Jy is the so-called J-distribution supported in x € R?, that is, the point-evaluation functional:

vw € CP(RY), x € RY: /]R Sey)w(y)dy = w(x). (1.2.30)

2 Notation: If an equation is supposed to hold in distributional sense, one often writes “in D(Q))"”.

A mathematical discussion of fundamental solutions can be found in [McLO0O, pp. 191-197]. Existence and
uniqueness are discussed there.

Theorem 1.2.31. Uniqueness of fundamental solutions

Fundamental solutions according to Def. 1.2.26 for differential operators (1.2.1) are unique.

(1.2.32) Symmetries of fundamental solutions

If a differential operator L

e is symmetric in the sense that L = L*, then G'(x,vy) = G-(y,x) forall x,y € RY, x # y.
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e has constant coefficients (L is translation-invariant in this case), then its fundamental solution de-
pendsonlyonx —y: G-(x,y) =G (x —y), x # .

e has constant coefficients and is rotation-invariant, then ~ G-(x,y) = G-(||lx — y||).

Above, “abusing notations”, we used the same symbol G" for different functions.

Definition 1.2.33. Rotation invariance

An operator D : C®°(R%) — C®(IRY) is rotation-invariant, if it “commutes with rotations”
(Dw)(Qx) = (D{x — w(Qx)})(x) Vw e C*(R?), (1.2.34)

and for all orthogonal matrices Q € R%4.

Example 1.2.35 (Computing G2 in 3D)

The rules from § 1.2.32 pave the way for easy computation of fundamental solutions for rotionally sym-
metric differential operators with constant coefficients by means of separation of variables.

We demonstrate the computation of the fundamental solution G* for the Laplacian L := —A in 3D using
spherical coordinates

X1 rcos ¢ sin 0
Xp| = [rsingsinf |, r>0,0<¢<2mr, 0<O<T. (1.2.36)
X3 rcosf

Also recall the formula for the Laplacian in spherical coordinates

az_u %a_u_|_ 1 azu+lazu+lcot98_u
a2 radr  2sin®0 P> r?2 002 12 20

Au = (1.2.37)

The Laplacian —A is the most prominent example of a linear differential operator that is both translation-
and rotation-invariant. Thius, from § 1.2.32 we know that G*(x,y) = G”(||x — y||). So we can set
G2(x,y) = f(||x — y||) and the requirement A, G (x,y) = 0 leads to the linear second-order ordinary
differential equation

?f
or?

20f 2., .
+;§—f (r)+rf(r)—0.
It has the family of solutions

f(ry=A+Br! r#£0, ABER.

By the decay conditions for fundamental solutions we know that f(r) = O(r!) for r — oo has to be
satisfied, which entails A = 0. The constant B must be chosen to satisfy (1.2.27). Eventually,

we recover the potential (1.2.15) of a point charge as fundamental solution.

Example 1.2.38 (Fundamental solution for 2nd-order partial differential operator)
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We consider the symmetric second-order scalar differential operator
Lu = —div(Agradu), A=A"T ¢ R?spd.. (1.2.39)

lts associate fundamental solution G" will be symmetic and of the form G-(x, y) = G"(x — y), and must
fulfill

Aﬁ?@—yﬂmwwdy:w@)VwECmR%xERﬁ (1.2.40)

@ Idea: Try to express Gt in terms of the fundamental solution for —A.

To begin with recall the formulas

divj = Tr(Dj) for j:R% - R?, (1.2.41a)
Aw =Tr(Dgradw) for w:R? =R, (1.2.41b)
——
Hessian of w

where Tr : R%? — TR is the trace operator for matrices,
d
TTM =) (M);; for MeC™, (1.2.42)
=1

that satisfies Tr(XY) = Tr(YX).

We decompose A = CC', which can be achieved by means of a Cholesky-decomposition [Hip15,
§ 2.8.13]. For a function f : RY — R we define its pullback under the linear mapping induced by C
according to

f@) = f(Ch) JeR’.
Using the chain rule and (1.2.41b), we obtain for x € R?
Ati(x) = Tr(D grad{x — u(Cx)}) = TrD{x — C' (grad u)(Cx)}
= Tr(C" (D grad u)(Cx)C) = Tr(CC (D grad u)(Cx)) = Tr(D(CC grad u) ) (Cx)
= (div(CC" grad u))(Cx) = (div(A grad u))(Cx) = (Lu)(Cx) .
We plug this identity into (1.2.40) and use the transformation formula for multi-dimensional integrals with
y=Cly.
() = w(C8) = [ GHCx—y)(Lw)(y)dy
=LAy(?(C&—-Cy)ﬂﬂﬂ(Cy)|detC|dy
= |, VaetAGH(C(x — §))(~80)(7) 4,

=GA(xy)

forany w € CS"(]Rd). By the uniqueness of the fundamental solution we conclude

1
vdet A

1. Boundary Element Methods (BEM), 1.2. Boundary Representation Formulas 41

G (x,y) = GAMCHx—vy), x#vy, (1.2.43)




AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

where G, is the fundamental solution for —A

1 .
— == log||x — Jifd =2,
GA(x,y) = {_2” og|lx — vl I (1.2.44)
47 [Jx—y|| ’ -
Eventually, as
|-y =c-ncTc ey =x-nTA x-y),
we get
L y) — —%logﬂxl—y)TA—l(x—y) Jifd =2, o
X,y)= : . 2.
VvdetA | 71— — ,ifd=3.
AT/ (x —y)A N (x —y)
1.2.3 Volume Potential Representation
We return to L = —A (electrostatics in a homogeneous, isotropic medium with e = I), where we have the
fundamental solutions
1 .
— = log||x — Jifd =2,
GA(x,y) = GB(x—y) = {ﬁﬂl gllx =yl P (1.2.44)
47t [lx—y|| ’ '
Since A* = A, by the very property
/ GM(xy)(~dw)(y) dy = w(x) VxeRY, Vo e CF(RY), (1.2.27)
R

of the fundamental solution, we conclude that for every smooth compactly supported source charge
distribution p € C(IRY), if u solves

—Au=p in R? , u satisfies decay conditions for ||x|| — o,

then we have the volume potential representation
u(x) = f]Rd GA(x,y)p(y) dy, x¢ R3 |. (1.2.46)

The operator on the right-hand side of (1.2.46) is an volume integral operator with kernel GA. Is has been
given a special name:

Definition 1.2.47. Newton potential

The linear operator

{ CRY) — CF(RY)
Ny : (1.2.48)

o = JrGAx—ypo(y)dy

is the Newton potential for —A.
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Supplement 1.2.49.

The Newton potential on R? is a volume integral operator of convolution type.

Definition 1.2.50. Convolution of functions in IR?

The convolution of two functions f, ¢ € L'(IR?) is the function

(fg)x) = | fx—y)gly)dy = | fy)gx—y)dy.

Using this notation, obviously,
Na(p) = G2 xp, (1.2.51)

becausem by the structure of the fundamental solution,
A _ Ars _ A _
/]1sz (x,y)o(y) dy—/RdG (x—y)p(y) dy—/RdG (y)p(x —y)dy .

This last expression also reveals that for p € C3°(IR?) also u € C*(IRY), since y — G (y) is integrable
on R, A

Theorem 1.2.52. Decay of Newton potential
For compactly supported p the function Na(p) complies with the decay conditions (1.1.76),
-1 -2
INa(p)(x)] = O(||x|| ") and [|gradNa(p)|| = O(||x[| %) for |x|| = co,
ford = 3 and (1.1.79)
-1
INa(p)(x)| = O(log||x[|) , [gradNa(p)(x)|| =O([x[|"") for [lx|| = oo,
for d = 2, respectively.
We can immediately conclude this from the decay properties of the fundamental solutions. The next
assertion is clear from the definition of the norm of H~1(IR) given in Def. 1.1.80.

Corollary 1.2.53. Mapping properties of the Newton potential

The Newton potential Ny as defined in (1.2.48) can be extended to a continuous mapping
HY(RY) — HY(RY) (— 1.1.8).

The relationship (1.2.46) tells us that the Newton potential provides a solution operator for the Poisson
problem —Au = p (+ decay conditions) in the whole space R4,

A(Nap) =p Yo € HI(RY) . (1.2.54)

Remark 1.2.55 (The Newton potential from a physics perspective)
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We can imagine a source charge distribution p as being composed of (infinitely) many small point charges:

N
d
P:Z‘]jéxj/ x]‘EIR,EIjEIR.
j=1
The potentials generated by all these point charges can be added up and yield the potential

N
u(x) = Zq]'GA(x —xj) .
j=1

Sending N — oo and appealing to “intuitive Riemann integration” yields the Newton potential solution of
—Au = ponR%

1.2.4 Boundary Potential Representation

The manipulations in Section 1.2.2.3 that led to (1.2.25) and, in the sequel, to the volume potential repre-
sentation for solutions of —Au = p on R,

u(x) = /]Rd GAx,y)p(y)dy, x€R3, (1.2.46)

were carried out on the entire space. Now we move them to a bounded Lipschitz domain Q C RRY,
d=2,3.

Pick x € Q) and w € C?(Q)). Appealing to Green’s second formula

/ uAv—vAudx:/ ugradv-n—vgradu-ndS(x) . (1.2.4)
00 0Q

from Thm. 1.2.3 with 1z < w and v < G we get

Jo G ) (o) dy =lim [ Go(xy)(~aw)(y) dy
= —lim G*(x,y) gradw(y) - n(y) — grad, G*(x,y) - n(y) w(y) dS(y)
ly—x[|=e

- /a G (xy) gradw(y) - n(y) — grad, G (x,y) - n(y) w(y) dS(y)
= w(x) — /aQ G*(x,y) grad w(y) - n(y) — grad, G*(x,y) - n(y) dS(y) w(y) ,

and, based on the same limit arguments that yielded (1.2.25), we arrive at:
wix) = [ Gxy)(~aw)(y)dy+ [ GA(x.y)gradw(y) -nly) dS(y)-

(1.2.56)
/BQ grady GA(x,y) n(y)w(y)dS(y), xe€Q.

The derivation was carried out for —A for the sake of simplicity, but all arguments carry over to the more
general scalar linear differential operator Lu = — div(A grad u) + cu from (1.2.1), starting from Green’s
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first formula with (1.1.63) with j := A grad u. Eventually this yields the following generalization of (1.2.56)
[SS10, Thm. 3.1.6].

Theorem 1.2.57. Integral representation formula

A solutionu € C>(Q) of Lu:= —div(Agradu) —cu = pinQ, A, c as in (1.2.1), satisfies

u(x) = [ GHxyey)dy+ [ GC-(x.y) Agradu(y) - n(y) dS(y)-

(1.2.58)
/HQAgrady G (x,y) -n(y)u(y)dS(y), xcQ,

where G" is the fundamental solution for L, see Def. 1.2.26.

Note that the first term in (1.2.58) is the Newton potential from Def. 1.2.47.

Remark 1.2.59 (Integral representation formula for exterior domains)

Q
Again, we elaborate the arguments for the Laplacian

" L=—A.

If () is an exterior domain, that is, the open comple-
ment of a bounded Lipschitz domain, then we first
apply Thm. 1.2.57 to Q) := QN Bg(0) with R > 0
large enough such that 0Q) C Br(0), see Fig. 14.

Fig. 14

Note that 9Q) = 9Q2 U 9B (0), so that (1.2.56) becomes

w(x) = [ G (xyp(y) dy+
|| GAxy) gradw(y) - n(y)dS(y) - | grad, GA(x,) - n(y) w(y) dS(y)+

frx G20 gradw(y) n)dS(w) = [ grady G (xy) nly) wly) ().

Consider d = 3 and assume that w satisfies the decay conditions (1.1.76):

x| =R

w(x)| =O(|x|| ") and [gradw(x)| = O(|lx| %) for x| — co.

In this case we have the following behavior of the integrands on 0B (0)

G*(x,y) grad w(y) - n(y) = O(|ly]| ),
grad, G*(x,y) - n(y) w(y) = O(|ly[ ™)

Hence, in the limit R — oo, the contributions of 9B (0) vanish.

[yl = oo, [lx] = R
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Theorem 1.2.60. Integral representation formula for 3D exterior domains

Ifue CZ(ﬁ) satisfies —Au = p in an exterior domain () plus the decay conditions (1.1.76), then
for all x € ()

u(x) = [ Gy dy+ [ G xy) graduly) - n(y) dS(y)-

(1.2.61)
/an grady GA(x,y) n(y)u(y)dS(y),

where G2 is the fundamental solution for —A, see (1.2.44).

For d = 2 a faster decay of u than stipulated by (1.1.79) has to be assumed in order to make (1.2.61)
hold.

1.2.5 Layer Potentials

Now we take a closer look at the building blocks of the integral representation formulas (1.2.58)/(1.2.61),
in particular those terms mapping trace data (— Notion 1.2.62) on the boundary d() back to the domain

|:J

Notion 1.2.62. Trace operator

A trace operator is a linear mapping from a function space on the volume domain () to a function
space on (parts of) the boundary 0Q).

The simplest trace operator is the plain restriction C?(Q)) — C°(9Q). We have also seen the tangential
and normal component traces for vector fields in § 1.1.32.

Notion 1.2.63. (Layer) potentials

A (layer) potential is a linear mapping from a function space on dQ) into a function space on the
volume domain ().

Remark 1.2.64 (Layer potentials and traces)

Obviously, (Layer) potentials (— Notion 1.2.63) and
trace operators (— Notion 1.2.62) map into “opposite
directions”

The integral representation formulas (1.2.58) contain
two layer potentials acting on the traces
+ u|yq = point-wise restriction of the potential u
to the boundary, and
4+ gradu - n|;q the normal component trace of
the displacement current.

Fig. 15

Next, we examine the two layer potentials more
closely.
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1.2.5.1 Single Layer Potential

The first layer potential occurring in (1.2.58), Thm. 1.2.57, involves the fundamental solution as kernel.
Here, we call kernel a function k : D1 x D, — IR that defines an integral operator of the form

f{x— /];)2 k(x,y) f(y)dy x € D1}, (1.2.65)

mapping functions on D, to functions on D;. In this an in the next section we restrict ourselves to the
differential operator —A, but emphasize that all results carry over to operators L in general divergence
form (1.2.1).

Definition 1.2.66. Single layer potential

The single layer potential for the Laplacian —A on d() is the mapping

¢ {x o ¥ (o)) = [ GUryley)ds), x¢a0}  (1267)

We collect a few classical properties of Y1, see [Hac95, Sect. 8.1] for proofs using elementary calculus.

Theorem 1.2.68. Continuity of the single layer potential [Hac95, Sect. 8.1.2]

If p € L*(9Q), then Y5, € CO(IRY).
Proof. We recall the asymptotic behavior

I — ifd =2
GA<x,y):{o<og||x yl) i C ey

O(lx—y|™") ,ifd=3,

Note that x — log |x| is integrable on [—1,1] and x — ||x|| " on B1(0) C IR2. By means of piecewise
smooth parameterizations we can reduce faQ ---dS(y) to integrals over domains in R9~1 and the type
of the singularities of the integrands will not change. Hence {y — G%(x,y)¢(y)} € L'(9Q) with con-
tinuous dependence on x (as mapping RY — Ll(aQ)). We conclude by appealing to general theorems

about improper parameter dependent (Lebesgue) integrals. -

% Notation: L®(D) = space of (essentially) bounded functions on D, CgW(D) C L*(D)

L' (D) £ space of (improperly) integrable (in Lebesgue sense) functions on D

As a consequence, if ‘PQL is evaluated for a piecewise polynomial function ¢ : Q2 — R, it results in a
globally continuous function.
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Lemma 1.2.69. Smoothness of single layer potential

If € L*(0Q)) we have for every compact D C Q orD C Q) := R¥\ Q that
(i) ¥5 (9) € C®(D) (Y&, is smooth away from 9Q)),
(i) AYE, (¢) =00onD (Y& is harmonic away from 0Q)).

Proof. This is a consequence that for any x ¢ dQ) every derivative (w.r.t. x) of the integrand is integrable
on dQ) (as a function of y). Thus, on D we can pull any derivative operator under the integral and the
result will be a continuous function on D.

O
Finally, observe that ‘I’éL satisfies the decay conditions (1.1.76) and (1.1.79), respectively, e.g.,
O(log||x||) ,ifd=2,
R4S x) = for |lx| — co. 1.2.70

Remark 1.2.71 (Electrostatic interpretation of Yq;)

Comparing (1.2.67) and the formula (1.2.48) for the Newton potential
(Ysrp)(x) = [ G xy) o) dSy) «— (Nap)®) = [ C*xy)ply)dy,
we deduce that

the single layer potential is the Newton potential applied to a surface charge on dQ).
Recall the physical interpretation of the Newton potential Npp as electrostatic scalar potential caused

by the source charge distribution p : (2 — IR on IR¥, This immediately suggests the following physical
meaning of Y5 ¢.

‘YéL(p is the electrostatic scalar potential induced by the surface charge ¢ on 0Q).

1.2.5.2 Double Layer Potential

Now we study the second potential (— Notion 1.2.63) occurring in (1.2.58) and (1.2.61) (for the case of
L = —A). Refer to [Hac95, Sect. 8.2] for detailed proofs.

Definition 1.2.72. Double layer potential

Foru: I' — IR we define the double layer potential operator for the Laplacian —A by

{x — P8, (u)(x) := /an grad, G2(x,y) -n(y)u(y)dS(y), x £ 000} (1.2.73)

For the kernel we can compute explicit formulas
1 x—y

- J (1.2.74a)
2
27 |lx —y|

d=2. G*xy)=—5logllx—y| = grad, GA(x,y) =
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1 (x—y)-n
B = [ gz as), x g0,
d=3 GMry)=-— = grad GMry) = — * Y _ (1.2.74b)

_ [ 1 (x—y) nly)
o) = [ g ) dsty), v ¢ 00,

(1.2.75) Continuity of double layer potential

—d-l—l)

Since grad, G2(x,y) = O(||x — v for y — x, which is a non-integrable singularity in dimension

d — 1, the mapping x — {y — grad, G%(x,y) -n(y)} fails to be a continuous mapping into L' (30)).
So we cannot conclude global continuity of ‘I’%Lu regardless of the smoothness of 1.

In fact, if () is bounded, for u = 1, the constant function 1 := {y € 0Q) — 1}, from Gauss theorem

dw(x) - n(x)dv = [ divgradw(x)dv, we Chy(Q),
8 w(x) -n(x)dx o, divgra w(x)dx, w e Gy (Q)

(Y1) (x) = [ grad, GA(x,y) - n(y)dS(y) = [ 8,G (x,y) dx

_Jo Jifx & Q)
BN — [qoxdx"=—-1 |ifxe Q.
0 inQ:=R\Q,
= YA, 1= { . !n o \ is piecewise constant with a jump across 9C).
—1 in

Concerning smoothness away from d(), the double layer potentials enjoy properties similar to those of the
single layer potentials, with analogous proofs.

Lemma 1.2.76. Smoothness of double layer potential

If o € L} (0Q)) we have for every compact D C Q) or D C () that
(i) Y5, (p) € C*(D) (¥5, is smooth away from 9()),
(i) AYS; (9) =0onD (Y8, is harmonic away from Q).

Remark 1.2.77 (Electrostatic meaning of ‘I’%L)

Assume that I' := 02 is smooth with exterior unit normal vector field n. Then, formally, for y € I’

Gx, — GAx,y —
grad GO (x,y) - n(y) = lim SX ¥ Fenly) = Goxy —enly))
y e—0 2¢e
Hence, the double layer kernel models the potential of two unit charges of opposite sign at an infinitesi-

mally small distance, an arrangement known as electric dipole. The double layer potential could also be
called a dipole layer.
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1.2.6 Green’s Functions

We consider a bounded domain and a general scalar linear second-order differential operator L as in
(1.2.1). We study generalized fundamental solutions that also satisfy boundary conditions.

Definition 1.2.78. Green’s function

A function G(L) : OO x ) — R is a Green’s function for a second-order scalar linear differential
operator L on a bounded domain QO C RY, if
() Ghis C®-smoothon {(x,y) € QA x Q: x £ y},

(i) forallx € Q:  L,Gh(x,y) =00onQ\ {x}

(iii) Gb satisfies homogeneous Dirichlet boundary conditions:
Gh(x,y) =0 forall y€dQ,xeQ), (1.2.79)

(iv) y — Gk (x,y) is integrable on Q for all x € Q,
(v) forevery x € Q, w € C*(Q)

| Ghlxy) (L w)(y) dy = w(x) . (1280

We can rewrite Item (v) by means of distributional calculus as
L,G(x,y) =dx in D(Q) , (1.2.81)
see Rem. 1.2.29.

Now we can pursue the same manipulations as in Section 1.2.4 for the model case of L = —A. We
choose any x € Q) and w € C?(Q)). Appealing to Green’s first formula from Thm. 1.1.62 we get

o GAGey) () dy =tim | GAxy)(~aw)(y) dy
= —lim Go(x,y) gradw(y) - n(y) — w(y) grad, G§(x,y) - n(y) dS(y)+
|y—x[|=e
~ [ Ghlxy) gradw(y ) grad, G (x,y) - n(y) dS(y)

/GQW y) grad, Go(x,y) - n(y) dS(y) ,

thanks to Item (iii). This yields a simplified integral representation formula compared to Thm. 1.2.57. For
w € C*Q)

= | Ghxy)(—sw)(y)dy — [ grad, Gi(xy) - n(y)w(y)dS(y).  (1282)
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Corollary 1.2.83. Green’s function integral representations
4+ Ifu € C?(Q) solves the boundary value problem
—Au—pECO(Q in Q , u=0 on 90,
/GQxy y)dy, x€Q. (1.2.84)

4+ Ifu € C*(Q) solves the Dirichlet boundary value problem
—Au=0 in QO , u=geC’Q) on 90,
> ux)=— /BQ grad, GA(x,y) -n(y)a(y)dS(y), xcQ. (1.2.85)

Comparing with (1.2.54), we notice that the integral operator
prr {x e / Go (% y)p(y) dy}

is the solution operator for the Dirichlet boundary value problem —Au = p in (), u = 0 on 0Q).

Green’s functions remain elusive for general domains (). Only for very special geometries and simple
operators like —A they can be computed in closed form. Next we give an example.

Example 1.2.86 (Green’s function for —A on a disk)

We compute the Green'’s function (— Def. 1.2.78) for —A, d = 2, and the unit disk domain ) = D :=
{x e R?: ||x|| < 1}.

The derivation is based on the mirror charge ap-
proach and reflection at the unit circle. For x € IR?
° write x* := x/||x|?, that is ||x*| = Hﬁlf_\l and x* ¢ D
for x € ID. We fix x € ID and place a unit charge
at x and a compensating charge at x* ¢ D, which
yields the total potential, cf (1.2.21),

20

G (xy) =~ logl|x — |+
5 log||x* — y|| — 5= log||x*|| . (1.2.87)

A . _ |05
< Plotofy — G ,x—[o}

Fig. 16

For x € D, thanks to x* ¢ D, the properties ltem (i), ltem (ii), Iltem (iv), and ltem (v) are all inherited
from the first term, which is the fundamental solution for —A in 2D, see (1.2.21), and the only term with a
singularity in ID. To see Item (iii) note that for ||y|| = 1, we have for all x € ID

—x|? 1 Iy — ||
GY(x,y) = %log( ly ) = 4—10g(
"\ ly — 272 " ly — x|

g 21—2x-y+||xu2

= —log(1) =
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Remark 1.2.88 (Poisson integral formula [Hac92, Thm. 2.20])

The Green’s function (1.2.87) combined with Cor. 1.2.83, Section 1.2.6, we get an explicit integral repre-
sentation for solutions of

—~Au=0in D , u=g on dD:={xcR>: ||x]| <1},

= S | | B S dS(y), D. 1.2.89
(x) o /m_1 =yl gy)dS(y), xe ( )

Example 1.2.90 (Green’s function for a half space)

x2

In Def. 1.2.78 we assumed a bounded (), but Green’s
QO o X functions can easily be generalized to non-bounded
domains by simply keeping all the requirements
Item (i)—Item (v), demanding compact support of w

in the latter. For instance, relying on another mirror
charge approach for the half space Q) := {x € R? :
xp > 0} we find

x*

1 1 * * X
GA(x,y) = —=—log||x — y|| + =—log|x* —y||, x* = _1 , x,ye Q. (1.2.91)
27T 271 Xo

1.3 Boundary Integral Equations (BIEs)

Throughout this section we consider a Lipschitz domain QO C RY satisfying Ass. 1.2.6 for d = 2 or
Ass. 1.2.8 for d = 3. We write I' := 9(Q) for its (compact) boundary and n for the exterior unit normal
vector field on I'.

(1.3.1) Outline

Trace operators (— Notion 1.2.62) when applied potentials (— Notion 1.2.63) yield linear mappings taking
functions on I to other functions on I':

Layer potentials I

o=

Trace operators I

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 52



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

—~—g——

[ Boundary integral operators (BIOs) ]

In particular, we may apply trace operators to layer potential representations formulas for solutions of
second-order scalar PDEs with vanishing source terms, like those given in Thm. 1.2.57 and Thm. 1.2.60
for p = 0 (crucial traces of u highlighted, cf. Rem. 1.2.64):

u(x) = [ G-(x,y) Agradu(y) -n(y)dS(y) — [ Agrad, G-(x,y)-n(y)u(y)dS(y), (132

for x € O, where u € C?>(Q) solves Lu := —div(Agradu) —cu = 0in Q, A, c as in (1.2.1), and
Gt is the fundamental solution for L, see Def. 1.2.26. We point out that using our notations for the layer
potentials, a compact way to write (1.2.58) is

u(x) = ¥l (Agradu(y) - n(y)|p)(x) —¥oy (ul)x), x€Q . (13.2)

Applying trace operators we should end up with equations linking the traces |- and A grad u(y) - n(y)|.
One of these must be known in the case of well-defined boundary value problems, and we hope to deter-
mine the other through the obtained equations.

Representation formula (1.3.2)

o=

Trace operators I

———

[ Boundary integral equations (BIES) ]

However, we have to ensure that trace operators can be applied to layer potentials. Adhering to an
“energy-centric” approach, we investigate the continuity of the operators in energy norms.

1.3.1 Trace Operators

Notion 1.2.62 tells us that trace operators map functions on the volume domain () to functions on the
boundary I'. Now examine the continuity properties in energy norms of the two trace operators relevant
for boundary value problems for the Laplacian —A.

1.3.1.1 Dirichlet Trace

Definition 1.3.3. Dirichlet trace operator

The Dirichlet trace (operator) Tp boils down to pointwise restriction for smooth functions:

(Tpw)(x) :=w(x) VxeT, weC®Q).

Though obvious, we stress the fact that Tp maps functions O — R to functions I’ — IR. Also not that, if
I is merely piecewise smooth, even w € C*(Q)) does imply only Tpw € CO(T)!
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(1.3.4) An energy space for point traces of scalar potentials

Our goal is to extend the Dirichlet trace Tp to the energy space H' (Q)) and to identify the strongest norm
on C%(T") that will still render Tp continuous. Completion (— [Hip16, § 2.3.16]) with respect to this norm
will yield a suitable trace space, serving range space of Tp| HI(Q)-

Let ||| stand for a norm on C°(T'). Recall that T is continuous with respect to this norm, if

3C > 0: | Tpully < Cllullypq) YueC¥(@). (1.3.5)

A norm is dubbed “stronger” than another norm on the same space, if (up to a constant) it assigns larger
norm values to every element of the space than this other norm. The strongest possible norm ||- ||y on
C%(T') for which we can still expect the continuity (1.3.5) can formally be defined as follows

]| == inf{||v||H1(Q):v e C®(@Q), Tpv = u} , ueC®Q). (1.3.6)

The reader is encouraged to verify the norm axioms from [Hip16, Def. 1.6.4] for this ||-|| .

Remark 1.3.7 (Density argument)

A fundamental result in the theory of Sobolev spaces [McL00, Thm. 3.25] ensures the density of C*°(Q)) in
H'(Q)). Therefore, when studying Tp on H'(Q), it is sufficient to consider Tp|c,- Recall the advice
[Hip16, Section 2.3.4] that one should focus on norms in the study of Sobolev spaces and not worry about
the smoothness of the functions too much.

It is easy to establish that (1.3.6) defines a norm. In fact,
then yields the right trace space.

-|| x is derived from an inner product. Completion

Definition 1.3.8. Dirichlet trace space

The Dirichlet trace space H%(T) is the Hilbert space obtained by completion of C®(Q)|. with
respect to the energy norm
- mf{||v||Hl(Q):v € C®(Q), Tpv = u} , ue C¥(Q),. (1.3.9)

Il 3,

= Notation: We write 1, v, tv for functions in H? (I).

For mathematicians familiar with functional analysis the next result is an immediate consequence of
Def. 1.3.8, thus labelled a corollary. A reader not well versed in functional analysis may just accept it
as a fact.

Corollary 1.3.10. Mapping properties of Dirichlet trace [SS10, Sect. 2.6]

The Dirichlet trace T p according to Def. 1.3.3 can be extended to a continuous and surjective linear
operator Tp : H(Q)) — H(T).

In the title of this §H% (T') was said to be an “energy space”. To see the connection look up the equilibrium
condition (1.1.51)again to understand that the minimizer w & Hl(Q) of the expression in (1.3.9) agrees
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with the weak solution of the Dirichlet boundary value problem
—Aw =0 inQ)Q , w=u onl.

In an electrostatic context this is the potential arising in the volume when imposing the potential values u
on I'. Hence, we arrive a the following “physical interpretation” of “‘HH%(F)

HuHH% 0 is the electric field energy in () due to imposing the potential values uon T'.

(1.3.12) Smoothness (“regularity”) of functions in H? (T

Def. 1.3.8 does not yield much insight into HZ(T). To understand properties of functions in Hz(T) we
recall a first result on continuity properties of Tp [Hip16, Thm. 2.10.8].

Theorem 1.3.13. Multiplicative trace inequality [BS08, Thm. 1.6.6]

IC=C(Q) > 0: [lulzr) < Cllull 2y - gy Ve € H(Q).

Proof.

We demonstrate the proof only for domains () with
diam Q) = 1 that are star-shaped w.r.t. a ball B,(0),
0 <r<1,thatis,

Vy € B,(0), x € Q: [y,x] C Q.
In this case
n(x)-x>Cq, (1.3.14)

for a constant C > 0.

Fig. 18

Gauss’ theorem and the product rule show for u € C?(Q))
[ u@Pdsx) < Cq! [ nexlux)Pds) = Co' [ divixlu(x)P)dx
r r Q
= Cg! / d|u(x)|* + 2ux - grad u dx
Q

< 5" (dllullEaqr) + 41l g [#l3n ey )

where we used ||x|| < 2. A density argument (— Rem. 1.3.7) as in the proof of [Hip16, Thm. 2.3.31]

establishes the claim. -

The next statement is labelled a corollary, that is, considered “obvious”. The reader should be able to
conclude it from Def. 1.3.8 and Thm. 1.3.13 instantly.
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Corollary 1.3.15. Embedding of H? (I

The space H2 (T') is continuously embedded in L2(T): [ull 2y < Cllu| wh) for allu € H2(T)

and some C > 0 independent of u.

Example 1.3.16 (“Continuity” of functions in H%(F))

How smooth are functions in H%(l")? For the Sobolev space H'!(()) we already asked this question in
[Hip16, § 2.3.37].

We consider the unit disk domain Q = D := {x € R? : ||x|| < 1} and, in polar coordinates (r, ¢), the
Fourier sums

sin((2k — 1)) € L*(T), neN.

4 n
=7 Z

The solutions of
_Aun — |n ]D ’ TDZ/[;/[ — gn on r ’

are

“lsin((2k—1)p), 0<r<1,0<¢<2rm.

4n
:%2

This is a consequence of the fact that A{ (r varphi) + rsin(£¢@)} = 0.

By (1.3.9) the energy norm of u;, is equivalent to the trace norm of g;;:

|tn| () = Hg"HH%(r) with “universal constants”.

From the theory of Fourier series we know

, -1 for — < <0,
lim g, =g in L*(T), g(sv)z{l f0r0<¢<q)n

n—00

that is the limit of the sequence (g, ),,c IS @ piecewise constant, discontinuous function.
Termwise differentiation gives

grad u,(r, @) = ké r? 72 (sin((2k — 1)@)e,(r, @) + cos((2k — 1)p)ey (7, 9)) ,

where {e,, e, } is the polar coordinate orthonormal basis, see [Hip16, § 2.4.39].

N

7T

B |gradu,|}:q) = =4 gin((2k — 1)¢) + cos?((2k — 1)) dg rdr

k

Il
[y

™=
o
o

27

k_3—>oo for n — oo.

T
X

I
=
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As a consequence, “||g||H =", ¢ & H%(F).

1
2(T)

9, (T) ¢ HA(T) !

Example 1.3.17 (Unbounded functions in H%(F))

According to [Hip16, Cor. 2.4.43] the point evalution functional u — u(y), y € (), is not bounded on
H'(Q) for d > 2; there are unbounded functions in H'(Q)) and in [Hip16, Ex. 2.4.37] we found an
example in 2D

o(x) =log|logl|x[||, [lx| <3, ©v€H(B1(0)). (1.3.18)

N[ —

If 0 € T, Tpv € H2(T) will not be bounded!

As a positive result we note that continous, piecewise smooth functions belong to H2 (T'), ecause they are
already contained in H'(T'). Compare with Ex. 1.3.16.

Corollary 1.3.19. Continuous, piecewise-C! functions in H 2 (T
1
Cpw(T) C HZ(T).

In words, piecewise smooth bounded functions I' — IR belong to H%(F), if and only if they are contin-

uous: for them belonging to H%(F) entails the same compatibility conditions as for H'(T'), remember
Thm. 1.1.30.

Remark 1.3.20 (Intrinsic norm of H? (T))

As a consequence of extension theorems for Hl(Q) [McL0O0, Appendix A], Def. 1.3.8 yields equivalent

norms for H? (T'), no matter whether we base the definition of ||- ||H%(r) on Qor (Y.

In fact, from [SS10, Def. 2.4.1] we learn, that there is an equivalent I'-intrinsic definition

2 o 112 [ u(x) —
e e e

This expression known as the Sobolev-Slobodeckii norm.

2
“ﬁ{j)’ dS(y)dS(x), ue H2(T). (1.3.21)
y
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1.3.1.2 Neumann Trace

Now we take a closer look at the normal component trace of the displacement current, in non-dimensional
form grad u - n|;.

Definition 1.3.22. Neumann trace operator

For smooth functions the Neumann trace (operator) Ty is defined by

(Tyw)(x) :=gradw -n(x) Vx €T ,we C®(Q).

Remark 1.3.23 (The Neumann trace is not defined on H'((Q2))

We consider d = 2, ) = D := {x € R?> : ||x|| < 1}, and (in polar coordinates (r, ¢), see [Hip16,
§ 2.4.39]) the functions

un(r, @) :=n"4", necNN.
Then grad u,(r, ¢) = r"~Le, and we find by simply computing the norms in polar coordinates
[ttnl[ 1) — O for m— oo  whereas Tyuy =1 on dD.

The message sent by this example is similar to the insight gained in [Hip16, Rem. 2.3.6]:

The Neumann trace T is not bounded on H'(Q)).

In other words, Neumann boundary conditions cannot be imposed in H'(Q)), analogous to the situation
with the Dirichlet trace and L?(Q)) as discussed in [Hip16, Rem. 2.3.6].

Remark 1.3.24 (Pairing of traces [SS10, Thm. 2.7.7])

It is a straightforward consequence of Green’s first formula from Thm. 1.1.62 (with j := grad u) that

/ (Tr)(x) (Tpo)(x) dS(x) = / Au(x) o(x) + grad u(x) - grad v(x) dx , (1.3.25)
r @)

for all u,v € C*(Q)). If u is harmonic, that is Au = 0, then
/ (Tri) (x) (Tpo)(x) dS(x) = / grad u(x) - grad v(x) dx . (1.3.26)
T Q

In particular, we conclude that for any harmonic function u & Hl(Q) (solving Au = 0), the paired Dirichlet
and Neumann traces yield the function’s energy:

J(Tai) @) (Tow)(x) dS(x) = [ [lgrad ()| dx. (1.3.27)
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(1.3.28) An energy norm for Neumann traces

From electrostatic theory we know that the normal component trace of the displacement current at a PEC
boundary part corresponds to a surface charge distribution.

B> The range space of the Neumann trace operator Ty, the Neumann trace space is a space of surface
charge distributions.

@ Define a norm on the Neumann trace space through the energy of the field induced by
surface charge distribution.

Definition 1.3.29. Neumann trace space

The Neumann trace space H*%(F) is the Hilbert space obtained by the completion of C°(T') with
respect to the norm

||<P||H,%(r) = [|1¢ll g1 - (1.3.30)

where ||-|| 7-1 () is the norm on source charge distributions introduced in Def. 1.1.80 and ¢ is the
“extension by zero to IR%” of ¢.

Temporarily, we restrict ourselves to d = 3. Given ¢ € C°(T') we define uy € H'(IR?) through
/3 grad uy - gradvdx = /(])(x) (Tpo)(x)dS(x) Vo € H'(R?). (1.3.31)
R r

By virtue of (1.1.84) [SS10, Prop 2.10.8], the bilinear form of this variational problem is H1(1R3)—elliptic
and, thus, unique solvability is guaranteed. Then, from the definition of ||- ||H—1(Q) is immediate that

HQDHH—%(F) = HGDHH%(Q) = ||grad ”¢HL2(1R3) . (1.3.32)
With this in mind, in perfect analogy to § 1.3.4 we can also link the norm on H2 (T) to the energy norm
of fields/potentials:

H(])HH% - is the energy of the electric field engendered by the surface charge distribution ¢.

(1.3.33) Continuity of Neumann trace

We have seen in Rem. 1.3.23 that the Neumann trace Ty is not defined on H'(()); we need a function
space with a stronger norm, on which we can then define T as a continuous linear operator.
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Definition 1.3.34. Space of function with square-integrable Laplacian

We introduce the Hilbert space
H(A,Q):={vec HY(Q): Avc [*(Q)},
with norm

lultaq) = lullfniq) + [1Bul 2y, v € H(A,Q).

Theorem 1.3.35. Continuity of the Neumann trace on H(A, Q)

The Neumann trace Ty from Def. 1.3.22 can be extended to a continuous mapping
Ty : H(A,Q) — H2(T).

Proof. Given w € C*®(Q)) define u,, € H'(Q)) through

/]R3 grad uy - gradvdx = /F(TNw)(x) (Tpo)(x)dS(x) Yo e HY(R?). (1.3.36)
Recall from § 1.3.28 that HTNwHH*%(r) = ||grad i || ;2(r3). Then use the pairing identity
/r (Tr)(x) (Tpo)(x) dS(x) = /Q Au(x) o(x) + grad u(x) - grad v(x) dx , (1.3.25)
and obtain
/(TNw)(x) (Tpuyw)(x)dS(x) = /Q Aw(x) uy(x) + grad w(x) - grad g, (x) dx . (1.3.37)
r

Combine (1.3.36) (with v := uy,) and (1.3.37) and conclude by means of the Cauchy-Schwarz inequality
in L2(Q)) [Hip16, Eq. (2.3.30)]

2
||”w||H1(1R3) = /QAw(x) uw(x) + grad w(x) - grad uy (x) dx < ||w||H(A,Q)Huw||H1(]R3) :
We cancel [[iy | ;1 (g3) in this inequality and the observation

Tl y 0, = lgrad ol ey < ol < [@liao

clinches the proof.

By Thm. 1.3.13 the Dirichlet trace Tp is continuous as a mapping H'(Q)) — L?(T'). Then from (1.3.32)
and (1.1.84) the following embedding can be inferred:

Theorem 1.3.38. Embedding of H 2 (T)

L?(T) is continuously embedded in H*%(F): L2(T) C H*%(F)

(1.3.39) Duality
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For ¢ € H*%(F) we also conclude from
/ , grad uy - gradvdx = / ¢(x) (Tpo)(x)dS(x) Vo € HY(R?), (1.3.31)
R r
using the function 1y defined thus, that

/cp (Tpug)(x) dS(x) = ||grad u(,)HL2 R3) = = |\grad u(,)HL2 R?) H4>|| (1.3.40a)

/r(,b(x)n(x) / grad uy - grad vdx < ||¢|| — (1.3.40b)

forallv € H2(T), where & € H!(R®) is that extension of v € H2 (T') for which 0]y = [v ||HZ N

The estimates (1.3.40) can be translated into the following deep mathematical statement that holds for
both d = 2,3. The reader be reassured that grasping the full scope of the theorem is not necessary for

applying it.

Theorem 1.3.41. L2(T)-duality between H? (T') and H 2 ()

The bilinear form (1p,0) — [ (x)v(x)dS(x), p,0 € L*(T) induces isomorphisms between

H%(F) and the dual space (H_%(F))’, and between H_%(F) and the dual space (H%(F))’. In
particular,

H

/¢ (x) < || b0l YW EHTAI), e HAT) . (1342)

In fact, the duality asserted in Thm. 1.3.41 can be used to define H: (T'). Here, without further comment-
ing on the theorem, we state an important consequence:

woe HI(I): u=v & /r(u—n)(x)gb(x)dS(x):O Vo € H2(T), (1.3.43a)

bpeHIT): p=¢ < /r(tp—gb)(x)n(x)dS(x)20 Vo e HE(T).  (1.3.43b)

We will see several applications of these relationships below.

Remark 1.3.44 (Co-normal trace)

If we deal with a general differential operator according to (1.2.1), Lu := — div(A grad u) +cu, A € R%4
s.p.d., ¢ € IR, then the Neumann trace Ty has to be replaced with the co-normal trace u — T]L\, =
A grad u - n|. By and large, the results of this section carry over to TL,, see [SS10, Sect. 2.7].

1.3.2 Mapping Properties of Layer Potentials

We recall the two layer potentials: the single layer potential Y, defined in Def. 1.2.66 and the double layer
potential Ypr defined in Def. 1.2.72. Above considered them for “sufficiently smooth” argument functions.
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Now we aim to study them as mappings between energy (trace) spaces, similar to what we have already
done for the Newton potential in Cor. 1.2.53.

(1.3.45) Single layer potential
We can relate the single layer potential operator for —A (— Def. 1.2.66)
¥(9)(x) == [ GA(x—y)p(y)dS(x), ¥ £ T, (1.2:67)
to the Newton potential (— Def. 1.2.47)
(Npp)(x / G2(x,y)o(y)dy . (1.2.48)

For smooth ¢ € C*(Q ) p € C®(Q)), interchanging integrals (Fubini’s theorem), we get

/Q (Y5.9)(x) p(x) dx = /Q /r G*(x,y) ¢(y) dS(y) p(x) dx
- /]r /Q G (x,y) ¢(y) p(x) dxdS(y)
= [ (ToNsp)(w) 9(y) dS(y)

(1.3.42)
< [[ToNapll, b ||<P|| -

< [Nap|gr(r3) H‘PHH% < llell g-1(q) H§DHH7%<F)

() —

We find that, if ¢]], -y <o ¢ € H~2(T), then

[ (¥8.9)(x) p(x) d¥| < co

for every admissible (||p||ﬁ_1(Q) < ool) source charge distribution p. Next, use the characterization
(1.1.89).

Theorem 1.3.46. Continuity of single layer potential in energy (trace) spaces

The single layer potential operator ‘I’éL (— Def. 1.2.66) can be extended to a continuous mapping

¥4 H2(T) — HY(RY) N H(A,RI\T) .

The message of this theorem is that we can find a constant C > 0 depending only on () such that

180 98 58] y < 10 1

H(R4) (A,Q)) H

(1.3.47) Double layer potential

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 62



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

To establish the continuity of the double layer potential operator ‘I’]A)L from Def. 1.2.72, we rely on the
representation formulas (1.2.58) (for L = —A) or (1.2.61). These can be written in a compact way as

u=Np(—Au) +¥5 (Tyu) —¥5.(Tpu) Yu € C*(Q).
Pick v € C*(Q)) |, and define u € H'(Q2) as the solution of
—Au=0 in QO , Tpu=v on T.
By the continuity result for ‘PQL from Thm. 1.3.46 we can plug this u into the representation formula
B =95 (Tyu) —¥8.(v) in Q. (1.3.48)
Then, by Thm. 1.3.46 and Thm. 1.3.35 (Au = 0!)

[¥aam| < ClTaul

Q) H < Cllulla,0) < Cllullim) < Clloll 1 -

1 1
2(r) 2(r)

with positive constants with different values at each stage but all independent of v. The A-inequality
combined with (1.3.48) yields

#8000, ) < Il + [T, o) < Cloll,

H1( i)

This argument can also be employed on the complement domain ()'.

Theorem 1.3.49. Continuity of the double layer potential in energy trace spaces

The double layer potential operator ‘I’]_%L (— Def. 1.2.72) can be extended to a continuous mapping

¥A HI(T) — H(ARI\T) .

Remark 1.3.50 (General layer potentials)

All the above arguments and results remain valid for layer potentials derived from fundamental solutions
for general scalar second-order differential operators L in divergence form (1.2.1).

1.3.3 Jump Relations for Layer Potentials

In § 1.2.75 we saw that the double layer potential may have a discontinuity, a jump, across I'. In this
section we will glean detailed information about jumps and kinks (ie, jumps of derivatives) of potentials.

(1.3.51) Jumps and averages

Letu € L?(IRY) be smooth on both sides of I' := 9Q): u|, € C*®(Q) and u|o € C®(QY), Y = R4\ Q.
Then we can apply some trace operator T on both sides and take the difference of the resulting functions,
what we call a jump of Tu.
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Concretely, for the jumps of Dirichlet and Neumann traces introduced in Def. 1.3.3 and Def. 1.3.22, re-
spectively, we write

Jumps: [Toulp == Tp(uley) — To(ulg)
[Tnulp == Tn(ulg) — Ta(ulg)
where in the second difference Ty is based on the exterior unit normal for () throughout. Jumps adhere

to the convention “outside — inside” and they are functions on I'. Note that the exterior unit normal for ()
enters the Neumann jump:

[Tnulr(x) = ((grad u|qy)(x) — (gradufqg)(x)) -n(x), x<T.

Similarly we can define averages of traces:

(To(uley) +To(ulg))

Averages: {Toufy =
(Tn(ulg) + Tn(ulg)) -

{TNU}I’ =

NI—= N[—=

(1.3.52) Jump representation formula

Pick u € C*®(Q))), Au = 0in Q, and x ¢ Q , thatis, x is located in the interior of the complement

domain ()'. Then, by property (i) of a fundamental solution (— Def. 1.2.26), y — G”(x,y) is harmonic
in Q): AyGA(x, y) = 0. As a consequence of Green’s second formula (1.2.4)

¥ar (Tavu) (x) — ¥or (Tou) (x) |
- /r G®(x,y)(Tnu)(y) — grad, G*(x,y) - n(y) (Tpu)(y) dS(y)

For bounded () combining this finding with the “interior” integral representation formula of Thm. 1.2.57 in
the form (1.3.2), we get

u(x) ,ifxeQ,

0 Jifx e O . (1.3.53)

TéL(TN”> - 11I[A)L(TD”) = {

The same reasoning can be pursued for the “exterior” complement domain )’ based on Thm. 1.2.60.
Merging the resulting formulas gives a new version of the representation formula on R4 \T.

Theorem 1.3.54. Jump representation formula [SS10, Thm. 3.1.8]
Foru € H(A,RY\T), Au = 0in QU Y, holds

u=—Y5 ([Taulp) +¥5. ([Tpuly) in H(ARI\T). (1.3.55)

We could state this theorem in terms of energy spaces, since from 1.3.2 we know that all traces and layer
potentials are well defined.
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(1.3.56) Jumps of single layer potential

According to Thm. 1.3.46, for ¢ € H_%(I“) we know ¥4, ¢ € H'(R?). Appealing to the fact that “functions
in H' must not have discontinuities”, see Thm. 1.1.30, we conclude that

[[TD(‘PQL@HF =0 VpeHI). (1.3.57)

We rely on “electrostatic heuristics” to elaborate the Neumann jump of ‘I’ ¢, recalling Rem. 1.2.71. From
(1.2.54) we know that the Newton potential

(Nap) (x /GAxy y)dy, xeR?,

generates the potential produced by the source charge distribution p € H1 (IR3). It solves the variational
problem

Nap € H'(R?): /Q(grad Nap)(x) - grad v(x) dx = /Qp(x) v(x)dx, (1.3.58)

for all v € H'(IR?). Match this with the formula

(Y5, 0)(x / GA(x,y)¢(y)dS(y), x€R?,

defining the single layer potential, which gives the electrostatic potential due to the surface charge ¢ €
H~2(T). Adapting (1.3.58), we find that

/Q(grad‘I’sAch)( x) - grad v(x dx—/cp x)dS(x) Vo e HY(R?) (1.3.59)

The policy demonstrated in 1.1.6 can be used to find the PDE form of the transmission problem encoded
by (1.3.59). First test with smooth v compactly supported inside either () or )/, which shows

AYS (9) =0 in QU . (1.3.60)

Then test with v € C8°(]Rd), perform integration by parts (Green’s first formula (1.1.63)) both in () and
() and use (1.3.60) to remove all volume integrals. The remaining boundary terms on I lead to

[{TNTQL@)HT = . (1.3.61)

| (1.3.62) Jumps of double layer potential

@ For arbitrary u € H(A,R? \ T') apply the jump operators [Tp-]r and [Tyn-] to the jump
representation formula (— Thm. 1.3.54)

u=—Y5 ([Tyulp) +¥8, ([Tpuly) in H(ARI\T). (1.3.55)
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+ Apply [Tp-]r: Inlight of [¥5 [ = 0, see (1.3.57), we infer
[Touly = HTDT%L([TDLtﬂr)HF & [Tp¥po]p =bv Yo e HI(T), (1.3.63)

because any jump [ Tpu | can be realized by choosing an appropriate u.

4+ Apply [Tn-]r: By virtue of (1.3.61) we obtain from (1.3.55)

[Taulr = — |[Tw¥& ([Trudr) |+ [Tabe([Toulr) |

J/

=—[Tnulr
T

[[TN‘I’%LUHF —0 VYoe HYI). (1.3.64)

The following theorem summarizes our finding (1.3.57), (1.3.61), (1.3.63), (1.3.64).

Theorem 1.3.65. Jump relations for layer potentials [SS10, Thm. 3.3.1]

The single and double layer potentials Y&, and Y5, satisfy for all ¢ € H 2 (T) andv € H 2 (T)
the jump relations

Tr¥a ¢| =0 Tp¥A. 0| =v in H2
ptg ¢l =0, p¥pre| =v in H2(I),
I I ) (1.3.66)
[Tn¥do| =—¢ . [Tw¥bio] =0 in HTHI).
1.3.4 Boundary Integral Operators (BIOs)
Boundary integral operators (BIOs) arise from applying traces to layer potentials. By the results of Sec-
tion 1.3.2 this is possible and the continuity properties in energy trace spaces are immediately clear. The

challenge is to establish concrete integral formulas for the BlOs.

We exclusively focus on the Laplace operator, but point out that analogous considerations applyu to all
scalar second-order differential operators with constant coefficients.

1.3.4.1 Formal Definition

As explained in § 1.3.1:

A
Two traces {TD } + two layer potentials { TEL } B> four BIOs !

Layer potentials are defined everywhere in R? \ I'. The jump relations of Thm. 1.3.65 teach that traces of
layer potentials may jump. Thus it makes a difference whether we take the trace from inside or outside ().
The convention adopted in the literature resorts to the average {T-}r of traces to resolve this ambiguity.
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Definition 1.3.67. Boundary integral operators for

The four boundary integral operators associated with the Laplacian —A are defined as follows:
single layer BIO: V(¢) := {TD‘PQL(qb)}F, ¢ H2(T),
double layer BIO:  K(v) := {TD‘F[A)L(U)}F, v e H2(T),
adjoint double layer BIO: K'(¢) := {TN‘PQL(cp)}F, ¢ c H3(T),

hypersingular BIO:  W(v) := —{TN‘I’[A)L(U)}r , ve H? (T) .

The mapping properties of BIOs in trace spaces follow immediately from what we know:

Continuity of Continuity of -
. Continuity
trace operators + layer potentials = of BIOS
(Cor. 1.3.10, Thm. 1.3.35) (Thm. 1.3.46, Thm. 1.3.49)

The next theorem gives summary.
Theorem 1.3.68. Continuity of boundary integral operators
The following linear operators are continuous:
single layer BIO: 'V : Hz (') — Hz (T,
double layer BIO: K
adjoint double layer BIO: K’ : H™2(T) — H2(T),
hypersingular BIO: W : H %(T) —~ H 2 (T) .

Supplement 1.3.69 (Adjointness of double layer potentials).

The reason, why K’ is called the adjoint double layer boundary integral operator is the formula

J (K (x) p(x)dS(x) = [ u(@) (Ke)(x)ds(y), (1:3.70)

which has to be seen from the perspective of the definition (1.2.28) of an adjoint operator. The proof of
the formula makes use of the fact that, if u and v are harmonic in (), then

J(Tow)(x) (To) () dS(x) = [ (Taw)(x) (Tpo)(x) dS(x),

which is a consequence of (1.3.26).

(1.3.71) Continuity of BIOs in spaces of higher smoothness

Through Lipschitz parameterization of I' we can define Sobolev spaces on I', see [SS10, Sect 2.4]: A
function f € L?(T) belongs to H!(T), if its pullback under the parameterization belongs to H' on the
parameter domain.

As explained in [SS10, Sect. 3.1.2], the trace operators and the layer potentials also enjoy continu-
ity in higher order Sobolev spaces. Hence, this is inherited by the boundary integral operators [SS10,
Rem. 3.1.18], [Ste08, Sect. 6.6.5].
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Theorem 1.3.72. “Higher” continuity of BIOs

The boundary integral operators from Def. 1.3.67 are continuous as operators mapping between
the following spaces:

single layer BIO: ~ V : L*(T') — HY(T),
double layer BIO: K : L?(T') — L*(T),

adjoint double layer BIO: ~ K': L2(T) — L%(T),

hypersingular BIO: W : HY(T') — L*(T) .

1.3.4.2 Integral Representations

“Integral representations” mean the possibility to write a boundary integral operator applied to a sufficiently
smooth function f : I' — R in the form

Fs {xs /r k(x,y) f(y)dS(y) x €T}, (1.3.73)

with a kernel k : I' x I' — IR. From Def. 1.3.67 it is not immediately clear that this is possible for the
four BIOs. However, for numerical purposes it is essential that such integral representations are at our
disposal.

(1.3.74) Integral representation for single layer BIO

We have already noted

1
——log|lx—y|| ,ifd=2,
G xy) =< 127 1 (1.2.44)

— Jitd =3.
Art[lx —y

This implies that y — G%(x,y) is integrable even on I': {y — G®(x,y)} € LY(T) for any x € R".
Hence, for ¢ € L*(I') we have the integral representation as an improper (due to “GA(x, x) = o0”)
integral

x) = [ G y)ey)dasty) |- (1.3.75)

The situation is more involved for the remaining BIOs, because their kernels feature stronger singularities
and fail to be integrable on I'.

(1.3.76) Integral representation for double layer BIOs
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The kernel of the double layer potential for —A

2t ford =2,

(FBL0)x) = [ n) o) dS() = {M i3 (13.77)

is not integrable a priori. On smooth parts of I', however, we make the following observation:
Lemma 1.3.78.

IfT is C>-smooth in a neighborhood of x € T, then

[(x—y) -n(y)| = O(|x —y|*) (1.3.79)

fory € I' — x.

Fig. 19

4 As y — x on I the normal n(y) becomes “more and more
orthogonal” to x — y, see [SS10, Lemma 2.2.14] for a rigor-
ous proof.

B> Under Ass. 1.2.6/Ass. 1.2.8 (I" is a curved polygon/polyhedron with smooth faces) the kernel of the
double layer potential behaves like

X — _
kxy) = ——2— u(y) = O(|lx—y|*™) for yeT —x,
wd||x—y||

for almostall x € T'.

Hence, for almost all x € I' we can take for granted the integral representation formulas

K(v)(x) = / . n(y)v(y)dS(y) |, x € smoothpartofI, (1.3.80)
r wglx -yl

K'(¢)(x) =/ﬂ-n(x)¢(y) dS(y) |, x & smoothpartof . (1.3.81)
r wgllx -y’

A rigorous treatment and a discussion of what happens at edges and corners can be found in [Hac95,
Sect. 8.2] and [SS10, Sect. 3.3.3].

(1.3.82) No integral representation for hypersingular BIO

Formally applying the Neumann trace Ty to the double layer potential Yy, yields

T ye) () A(n(y) a(x) () (x =) (n(x) - (- y>>> o) dS()

d d+2
I =yl lx =yl

7 A
non-integrable for x € T’ integrable by Lemma 1.3.78

There is no useful surface integral representation for then hypersingular integral operator.
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1.3.4.3 Variational Form for Hypersingular BIO

Fortunately, it has been discovered that the hypersingular operator W in weak form is amenable to a
reformulation by integration by parts that curbs the strength of the singularity of the kernel.

Let us first examine that weak form: By Thm. 1.3.68 the hypersingular operator maps continuously W :
1 1
H2(T') — H™2(T). Therefore, owing to Thm. 1.3.41, it gives rise to a continuous bilinear form

ay { H3 () x HA(I) — R (1.3.83)

(u,0) = [r(Wu)(x) v(x) dS(x)

provided that u, v are “sufficiently smooth”, by “technical manipulations” equivalent expressions for
aw (u, ) can be derived that merely involve improper integrals on T..

(1.3.84) Integration by parts on curves

Let v : [0,1] — IR? be a C?-parameterization of a curve © with endpoints a, b. The arclength derivative
of a function f € C'(X) iny € X is ( tags the derivative of an univariate function)

Ly =B 1907, y=a(0), B0 = fa(0)), 0<t <1, (1389

As a consequence of the chain rule, the arclength derivative is independent of the parameterization.

Given another function g € C! (X), G := g o, we find the integration by parts formula for the arclength

derivative:
af FOE(
sty 0/”” b [5(6)] dt = /P

= f(b)g(b) — f(a)g(b) —
Let I' be a closed curved Lipschitz polygon according to Ass. 1.2.6:

'Yj—l(l) = 'Yj(l) ’
Tm(1) = 71(0) .

Then we apply the integration by parts formula for the arclength derivative on each segment and observe
that the endpoint contributions cancel:

[ =TyU---UT)y, C?-parameterizations v 0,1] — T]- ,

Lemma 1.3.86. Arclength integration by parts

With T a closed Lipschitz curve satisfying Ass. 1.2.6 for f,g € C'(T') we have

(L swasy) = - [0 Ewdsw). (1387)
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(1.3.88) Arclength derivative of restrictions

With the notations of the previous §, if f = f . where fis a C!-function defined in a neighborhood of %,
then, by the chain rule,

Y y) =grad fl) tly), yex, (1329

with t standing for the unit tangent vector field at 2:

() = nly) = |10

n(y) = [m(y)] = unit normal vector at X .

Fig. 20

(1.3.90) Integration by parts of ay in 2D
We start from the formula for the double layer potential
(¥ (x) = [ grad, G (x,y) - n(y)u(y) dS(v) ,
foru e C%,W(l") smooth on all segments of I'. By elementary computations

oGA 1 1 yi—x 1 xi—y oG4
—(xy) =—5—5—1lo — = - = = —
axi( y) 2nax{ gllx—yll} = 27 —y|| 2n||x W2 o

(xy), x#y.

Hence, fory € T,

9 A . 0 A
a—xi(gradyG (x,y)-n(y)) = —grad, @G (x,y) nly), x#vy.

A 2~A 2GA
i (G o) = m o o) —m S )
20N 02GA
= nl( )a?/ Ca;y ( ) ( ) aycz;z (x’y)

(5 0).

> (T y)) n<y>-grady(a—%<x,y>).

In step we used that

92GA 92GA
A = — _— pum
AyGP(x,y) = 312 (x,y) + 32 (x,y) =0.
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Using all these auxiliary results, we obtain for the partial derivatives of the double layer potential

PO ) = [ 2 (grad, G ) ) uly), d5(v)
-~ [gmad, {5 um b at) asty
- [ £ 5w b asw)
- [ 5w ) asiy),

P ) = [ ) iy aste).

Now we attack the Neumann trace of the double layer potential in x € I'. We dodge issues of integrability
and and rely on formal manipulations (that can all be justified rigorously, of course). Using the above
expressions for grad ‘I’[A)L(u) we recover another arclength derivative:

A A du

(grad ) () () = [ {=m )5 () +ma0) 5 (x,9) p 5L ) S0
. A A
/{m( )5 ) ma() 5 () | ) dS(y)
et enfw ) asw.

This arclength derivative can be moved onto the second argument of the bilinear form ayy:
aw(it,0) = — / (grad ¥pru)(x) - n(x) v(x) dS(x)
r
d A du
| e {G (595 ()} 45 (w) o(2) a5
du do
= [ [ 6w F ) dswas) .

Finally, we have arrived at an integral operator with the same integrable kernel as V. We traded this
reduction of the singularity of the kernel for the need to differentiate the argument functions.

Theorem 1.3.91. Integral representation of a\y in 2D

Ifd =2, u,0 € Cl},w(l"), then the bilinear form ay from (1.3.83) induced by the hypersingular
operator W : H2 (T - H -2 (T') can be expressed as

d d
aw(u,v) = =3 [ [ logllx —yll (v) (@) dS(y)as(x) (1.3.92)

where % designates the arclength derivative, see (1.3.85).

(1.3.93) Surface gradient
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For the statement of the 3D counterpart of Thm. 1.3.91 we need another tool: Let 2 be an orientable
surface with a C!-parameterization « : IT C R?> — R3. For f € C!(X) its surface gradient grad; f is a
tangential vector field defined as

(gradp f)(y(x)) =Dy(x)(grad F)(x¥), x€Il, F:=fovy. (1.3.94)

The surface gradient does not depend on the parameterization.

(1.3.95) Integration by parts of ayy in 3D

Also the hypersingular operator in 3D is amenable to manipulations similar to those in § 1.3.90. Yet, tech-
nicalities are formidable and we refer to [Ste08, pp. 131-136] for the case of W, and to [SS10, Sect. 3.3.4]
for the case of a general scalar second-order differential operator. [Ste08, Thm. 6.17] reads as follows:

Theorem 1.3.96. Integral representation of a\y in 3D

Ifd = 2, u,0 € Cllgw(l“), then the bilinear form ayy from (1.3.83) induced by the hypersingular
operator W : H %(1“) — H~2 (T') can be expressed as

swlu,) = o [ [ L (grady u(y) x n(y) - (srady v(x) x n(x) ds<y>ds<z>;97)

where grad designates the surface gradient, see (1.3.94), and x stands for the vector product.

1.3.5 Direct Boundary Integral Equations

Now we have all the building blocks ready to devise boundary integral equations that permit us to solve
boundary value problems.

The road to boundary integral equations (BIE):

Representation formula (1.3.2)

+

Trace operators Tp & Ty (— Def. 1.3.3, Def. 1.3.22)

+

Jump relations, Thm. 1.3.65 I

——

[ Boundary integral equations (BIESs) ]

In Def. 1.3.67 we defined boundary integral operators on I' := 9() by taking the average Dirichlet- and
Neumann traces of the two layer potentials. To facilitate notations we now tag traces from outside () with
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“4+: generically T+, specifically T, TB. For traces from inside () we keep the notations Tp, Ty, and
only occasionally write T, T; to contrast them with exterior traces. For both TK,/TN and Tf{, the normal
vector n points from () into () (exterior unit normal vector for ).

Using this new notation we can rewrite the definition of the boundary integral operators:
single layer BIO:  V(¢) := <T+(‘YSL(4>) + T (Y (9
double layer BIO: K(v) := %(Tg(‘I’%L(n)
adjoint double layer BIO:  K'(¢p) := %(TJI(,(‘I’.QL ¢)) + Tr(¥a (¢
hypersingular BIO:  W(v) := —3 (
We combine this with the jump relations of Thm. 1.3.65

TH(YEL(9) — Tp(¥5L(¢) =0, TH(¥EL() — T
TR(¥sL(@) = T(¥sL(9) = =9, TH(¥DL(0) =T

Thus we can easily isolate interior and exterior traces of layer potentials:

TH(¥EL(¢) = V() TH(¥EL(9) = V(@) (1.3.98a)
T (¥pL(v) = =30+ K(v) TH(ERL(P)) = 30+ K(v), (1.3.98b)
TN(FEL(9) = 30 +K'(9) TN (Y5L(9) = =30+ K (9), (1.3.98¢)
Ty (¥DL(v) = —W(b) TH(¥DL(9)) = —W(v) . (1.3.98d)

Thus, when applying the trace operators to the representation formula for harmonic (Au = 0) functions
in ()

u(x) = V5 (Tyu) —¥8.(Tpu), u€ H(Q), Au=0, (1.3.99)
we obtain two boundary integral equations

Fundamental BIEs

[apply Tp] Tpu = V(Tyu) — (—3ld+ K)(Tpu), (1.3.101a)
[apply Tl Ty = (31d + K (Tyu) + W(Tpu) . (1.3.101b)

The boundary integral equations can be written in various block operator forms using the conventions of
matrix x vector multiplication for operators on function spaces:

1 1
sld — K \% Tpu Tpu =ld4+ K -V Tpu
2 — 2 =0. 1.3.102

wo lid+ K’} {TNLJ {TNLJ = [ W lld- K’} {TNM} 0 (1.3102)

The next result is the foundation of numerical methods relying on direct boundary integral equations,
because it tells us that solutions of boundary integral equations are in one-to-one relationship to solutions
of boundary value problems.
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Theorem 1.3.103. Characterization of Cauchy data

A pair of functions (u, ) € H 3(T) x H 2(T) solves the boundary integral equations

1 1
sld—K Vv u u 5ld + K -V u
2 = & |2 =0, 1.3.104
T 1] I e e ) (12104
if and only if there is a function u € H'(Q)) with Au = 0 in Q) such that

u=Tpu , Pp=TyNu. (1.3.105)

Proof. “=":1f (u, ) € H? (T') x H*%(F) provide a solution of (1.3.104), then choose u according to

u(x) =¥ () (x) = ¥pL(u)(x), x€Q,

cf. (1.3.99). Lemma 1.2.69 and Lemma 1.2.76 confirm that we obtain a harmonic function. The trace

matching is a direct consequence of the BIEs (1.3.104) and (1.3.98).

“«<": The BIE (1.3.104) are a direct consequence of the representation theorem Thm. 1.3.54 and (1.3.98).

|

Remark 1.3.106 (BIEs for general second-order scalar differential operators)

All of the above developments and results for —A carry over to scalar second-order differential operators
with constant coefficients, cf. (1.2.1), with suitable fundamental solutions and an altered definition of Ty,

of course, see Rem. 1.3.44.

1.3.5.1 First-kind BIEs

(1.3.107) Model boundary value problems

Our goal is to solve either of the following two “canonical” boundary value problems (BVPs) for the Lapla-

cian —A, which we give in strong form, though we usually consider weak (variational) solutions.

4 Dirichlet BVP: given g H%(F) find u € H'(Q)) such that

—Au=0 in Q , Tpu=g on T. (1.3.108)

_1
4+ Neumann BVP: giveny € H, *(T') determine u € H!(Q) such that

—Au=0 in Q , Tyu=n on I. (1.3.109)

The “x-spaces” are defined as spaces of functions with vanishing average:

HIA(T) = {p e HAM)s [ plx)ds(x) =0},
HY(Q) = {0 € H(Q): /dex:0}.

This choice reflects
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> the failure of the pure Neumann problem (1.3.109) to possess a unique solution
(adding an arbitrary constant yields another solution),

> the corresponding compatibility condition on the Neumann data # [Hip16, Ex. 2.9.10].

Now we formulate BIEs related to these boundary value problems for —A. Of course, we cannot solve
for the function u € H'(Q)), because BIEs are set in trace spaces. Rather, we consider a BVP solved in
the sense of BIEs, if both the Dirichlet trace T pu and the Neumann trace T ju of the solution have been
found. Then u can be recovered in a post-processing step based on evaluating the representation formula
(1.3.99).

(1.3.110) First-kind BIEs for the Dirichlet problem

In the case of (1.3.108) we have to find the unknown Neumann trace Tyu € H_%(F). Since Tpu = g s
know, we can get it from the BIE (1.3.101a)

V(Tyu) = (Ld+K)g in H(T). (1.3.111)

Due to the mapping property V : H2(T) — H%(F) and by the L2-duality of H%(F) and H*%(F), see
Thm. 1.3.41 and (1.3.43a),

wo € HXI): u=—v o /r(u— 0)(x) p(x)dS(x) =0 Vg € H3(I), (1.3.43a)
this operator equation has a natural equivalent variational form:
pe HHI): ay(p,¢) = /r(%ld +K)g(x) (x)dS(x) Vo e H 2(T), (1.3.112)

av(®,¢) = [ V()(x) 9(x) dS(x) (1.3113)

The bilinear form ay : H_%(F) x H"2(T) — R is clearly symmetric and bounded by Thm. 1.3.68 and

Thm. 1.3.41. If we can show that it defines an equivalent inner product on H~2(T), also called H~2 (T)-
elliptic, then the Riesz representation theorem will guarantee unique solvability of (1.3.112). In 3D the next
theorem confirms this. An in-depth discussion is given in [Ste08, Sect. 6.6.1].

Theorem 1.3.114. Ellipticity of ay, in 3D
Ford = 3 the bilinear for ay is H (T')-elliptic:
1
3C > 0: |ay(¢, )| > C||¢||;%(r) Vo € H2(T) . (1.3.115)
Proof. For d = 3 the decay conditions (1.1.76) satisfied by the single layer potential ‘PQL ensure that

the pairing identity (1.3.37) holds for both domains () and )/, no matter whether they are bounded or
unbounded:

J(TN¥E (@) (6) (T (9)) () dS(x) = [ [lgrad ¥or (¢)(x)]*dx (13.116)
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Based on the jump relations for ¥4, (¢) we deduce from (1.3.116)
[ V@) o) ds(x) = = [ To(¥ (@) [Tt @)] (@) dse)
=3 /r To(¥5L(9)) (%) Tn(¥5L(9) (%) — TH(¥5L(9)) (x) T (¥sL(¢)) (x) dS(x)

=3 ("I%L((P) i

s @, ) =llol?
SL HY(QY) H3(r)’

HY(Q)
thanks to Def. 1.3.29, which means

1Py = 1P (1.3.117)
Hl(Q’) - Hil(ﬂ) — H_%(r) : T

3.9 g+ Y0

Note that Tf{, employs a normal vector field oriented opposite to the exterior normal vector field of ().

This explains the flipping of signs in the above manipulations. -

The poor decay properties of ‘IféL(cp) in 2D thwart (1.3.116). Nevertheless, the following result is available.

Theorem 1.3.118. Ellipticity of ay, in 2D

1

For d = 2 the bilinear for ay is only H.. 2 (I')-elliptic.

Ifdiam Q) < 1 thenay is H? (T')-elliptic also ford = 2.

B> The variational problem
pe HAD: av(pg) = [(d-Ka@) ¢ dSkx) vpeHIT),  (13112)

r
av(9) = [ V§)(x) p(x) dS(x)

has a unique solution ¢ for any g € H:2 (T), provided that for d = 2 we have diam () < 1, because
in this case ay provides an inner product for H~2 (I).

(1.3.119) First-kind BIEs for the Neumann problem

_1
In (1.3.109) the Neumann trace 7 € H, *(T') is given and we seek the unknown Dirichlet trace T of
the solution u. From (1.3.101b) we get

W(Tpu) = (Ad—K)y in H 3(A). (1.3.120)
Invoking the duality relationship
byeHII): p=¢ o /r(‘P —)(x)o(x)dS(x) =0 Vo e HA(I), (1.3.43b)
an equivalent variational formulation of (1.3.120) is

we HE(T): aw(uv) = /r'(%ld _K)y(x)v(x)dS(x) o e HE(T), (1.3.121)
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aw(1,0) = AW(u)(x)n(x) ds(x),
where H2 (T) :— {ve H D)« fro(x)ds(x) =0},

1
The need to restrict trial and test functions to the space H? (') of functions with vanishing mean is clear
from the representations (1.3.92) and (1.3.97). They imply

aw(u,0) =0 Yo e H%(T) & u=const. . (1.3.122)

On the complement of its kernel ayy enjoys ellipticity, see [Ste08, Sect. 6.6.2] for details.

Theorem 1.3.123. Ellipticity of a\y

The bilinear form ayy induced by the hypersingular boundary integral operator W : H 2 () —
1
H~2(T) is H2(T)-elliptic

1
3C > 0: Jaw(v,0)] > CHnH; Vo € HZ(T) . (1.3.124)

Nl—
—

1 _1
B> The variational problem (1.3.121) has a unique solution u € H2 (T) forany n € H, *(T).

Remark 1.3.125 (“First-kind”)

Boundary integral equations are of the first kind if the mapping properties of the boundary integral operator
on the left-hand side support a natural variational formulation in energy trace spaces via duality. Examples
are (1.3.111) and (1.3.120).

1.3.5.2 Second-kind BIEs

You might have been wondering why we simply ignored the second equation of (1.3.101) when treating the
Dirichlet problem in § 1.3.110, and why we skipped the first equation in the case of the Neumann problem
in § 1.3.119. The reason was that using these other equations will not result in a first-kind BIE. Now we
study what we get from them.

(1.3.126) Second-kind BIE for the Dirichlet problem

We consider the boundary value problem 1.3.108. Knowing g = Tpu we have to determine ¢ := T .
From (1.3.101b) we extract the BIE

(31d —K)p=W(g) in H2(T). (1.3.127)

In light of the duality of Thm. 1.3.41, (1.3.43), a natural variational formulation of 1.3.127 is

pe HAD: [ ((3d=K)p)(x) o(x)dS(x) = [ (Wa)(x) o(x) dS(x)[ = aw(g,v) ] Vo€ HE(T).
(1.3.128)
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(1.3.129) Second-kind BIE for the Neumann problem

We want to solve the Neumann boundary value problem (1.3.109) by finding the unknown Dirichlet data
u:= Tpu. We use (1.3.101a) and end up with the BIE

(Ad+Ku=Vy in HY(T). (1.3.130)

The duality (1.3.43a) yields the equivalent variational equation:

we HET): (3 +K)u) () 9(x) dS(x) = [ (V) (x) 9(x) dS(x)[av (1,9)] ¥ € HE(A)
(1.3.131)

‘ (1.3.132) Variational formulations in L?(T)

Unfortunately the variational formulations (1.3.128) and (1.3.131) share the undesirable (from the point of
view of Galerkin discretization) feature that trial and test spaces do no coincide.

This can be remedied by switching to variational formulations in L?(I"). We multiply the BIEs (1.3.127)
and (1.3.130) with a test function w € L?(T') and integrate over I'. When also using L?(T') as trial space,
we end up with

¥ € L2(I): /r((%ld —KNY)(x) w(x)dS(x) = /(Wg)(x) w(x)dS(x) Yw e L*(T), (1.3.133)

T
we 12(I): /r((%ld + K)u) (x) w(x) dS(x) = /F(Viy)(x) w(x)dS(x) Yw e I2(T), (1.3.134)

with L2(T') := {v € L*(T) : [; v(x)dS(x) = 0}. Note that assuming g € H'(T'), thanks to Thm. 1.3.72
these variational equations are meaningful (right-hand and left-hand sides are continuous on Lz(l")).
Yet the bilinear forms occurring in (1.3.133) and (1.3.134) are neither symmetric nor elliptic. Results on
existence and uniqueness of solutions of the BIEs (1.3.127) and (1.3.130), and the variational equations
(1.3.1383) and (1.3.134) required profound mathematical tools [Ste08, Sect. 6.6.4].

Remark 1.3.135 (“Second-kind”)

Boundary integral equations of the second kind are distinguished by a left-hand side operator of the form
cld 4+ T, where ¢ # 0 and T is a continuous operator in L2. Obviously, the BIEs (1.3.130) and (1.3.131)
are of this type.

1. Boundary Element Methods (BEM), 1.3. Boundary Integral Equations (BIEs) 79



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

1.3.6 Indirect Boundary Integral Equations

In the previous sections we used the fundamental result of Thm. 1.3.103 to obtain (variational) boundary
integral equations. Now we boldly “guess” a formula for the solutions of Dirichlet and Neumann boundary
value problems (1.3.108) and (1.3.109) and justify it a posteriori.

We start by recalling from Lemma 1.2.69 and Lemma 1.2.76 that

vV  AYSY =A¥S =0 in RI\T,

A . N (1.3.136)
v  Yg and Y satisfy “decay conditions at co”.
@ B> |dea: Use trial expressions based on layer potentials:
u=95(p) or u=98(f) (1.3.137)

with unknown functions ¢,f : I' — IR for the solution u of the boundary value
problems (1.3.108) and (1.3.109).

Be aware that at this point we have no guarantee that the weak solution u € H'(Q) of the boundary value
problems allows any of the representations from (1.3.137). Strictly speaking, once we have proposed
a way how to determine ¢ or f we have to proof that the trial expression really satisfies the boundary
conditions.

(1.3.138) Indirect first-kind BIE for the Dirichlet problem

For the Dirichlet problem: given g H%(F) find u € H'(Q) such that

—Au=0 in QQ , Tpu=g on T, (1.3.108)
we try u=Y5 (¢) .
We impose the prescribed trace by applying Tp and use (1.3.98a), TD‘I%L(cp) =V(¢):
B> BE: V(p)=g in H2(I). (1.3.139)
By duality we obtain the natural variational formulation of this BIE in energy trace space:
¢ H3T): av(p, ) = /rg(x)tp(x) dS(x) V€ H 3 (I). (1.3.140)

Notice that this variational problem is based on the same bilinear form ay as the first-kind variational
formulation (1.3.112).

Theorem 1.3.141. Validity of 1st-kind indirect BIE for Dirichlet problem

In the case d = 2 assume diam(Q)) < 1. Thenu = Y& (¢) solves (1.3.108) for the unique
solution ¢ € H=2(T) of (1.3.140).

Proof. Existence and uniqueness of a solution ¢ & H*%(F) of (1.3.140) follows from Thm. 1.3.114 and

Thm. 1.3.118. That u complies with the boundary conditions is built into the BIE (1.3.139). -
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(1.3.142) Indirect first-kind BIE for the Neumann problem

1
We consider the Neumann problem: given 77 € H, ?(T') determine u € H!(Q) such that

—Au=0 in QO , Tyu=7€ on I, (1.3.109)
we try u="5(f) .
To enforce the prescribed Neumann trace on u apply Ty and use (1.3.98d):
B> BE  W()=7y in H2(I). (1.3.143)
Duality yields the natural variational formulation in energy trace spaces
FeHIT): aw(jv) = /;n(x)n(x) dS(x) Voe HI(T). (1.3.144)

Again, we have arrived at a variational formulation involving the same bilinear form a\y and trace spaces
as the first-kind variational problem (1.3.121).

Theorem 1.3.145. Validity of 1st-kind indirect BIE for Neumann problem

1
If € H2(T) is the unique solution of (1.3.144), then u := ¥4, (f) solves the Neumann problem
(1.3.109).

Proof. The assertion is immediate from Thm. 1.3.123 and the construction of the BIE (1.3.143).

Remark 1.3.146 (Meaning of “density unknowns” ¢ and v)

1
The unknown functions ¢ € H_%(F) in (1.3.139) and v € HZ(T') in (1.3.143) do not agree with any trace
of the solution u of the related BVP; they are called densities.

However, there is a relationship with traces that we elaborate for (1.3.139). By the jump relations of
Thm. 1.3.65 we have for u = ¥5 (¢).

O [Thu]r= [{TN‘I%L(‘P)HF =—¢ on I,
® Tru=Tlu=V(p)=g on T.

B> The solution ¢ € H*%(F) of the indirect 1st-kind BIE (1.3.139) coincides with the jump across I' of
the Neumann trace of the solutions of the Dirichlet BPVs (with data g) on () and ().

1
B> The solution f € H2(T') of the indirect 1st-kind BIE (1.3.143) coincides with the jump across I of
the Dirichlet trace of the solutions of the Neumann BPVs (with data #) on () and (Y.
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1.4 Boundary Element Methods in Two Dimensions

(1.4.1) AC++ 2D BEM code =*GITLAB

To demonstrate principles of implementation of 2D BEM we rely on a C++ port by C. Urzua (formerly, SAM,
ETH Zurich, now University of Graz, Austria) of the MATLAB BEM code HILBERT [Aur+14] developed in
the group of D. Praetorius at TU Wien.

The C++ library provides functions for the assembly of boundary element Galerkin matrices that will be
used for homework coding projects. Meshes (— Def. 1.4.16) of a closed connected curve I' := 0(),
Q C R? are stored in BoundaryMesh objects, see Code 1.4.68. In the sequel let ny € N and ng
denote the number of vertices and panels of the current mesh G.

e void computeV (Eigen::MatrixXd& V,const BoundaryMesh& mesh, double eta)

This function constructs the Galerking matrix V. € IR"E"E for the bilinear form ay induced by the
single layer BIO V, using '50_ 1 (G) as test and trial space, equipped with the characteristic functions

By € 80_1(9), i=1,...,ng, of panels as basis, see Ex. 1.4.28.

o 1 )
(V)i = av(Bly, Biy) = _E/n,- /ﬂjlog”x—y”dS(y)dS(x), i=1... . (1.42)

Here and below, the input argument et a is the so-called admissibility parameter and defines which
entries are to be computed analytically (as in Section 1.4.3.2) or semi-analytically using numerical
quadrature for some of the integrals. Specifying eta=0. 0 selects analytic formulas throughout.

e void computeW (Eigen::MatrixXd& W,const BoundaryMesh& mesh, double eta)

This function builds the Galerking matrix W € IR"V-"*v of the bilinear form ayy induced by the hy-
persingular BIO W, using S{)(g ) as test and trial spaces, endowed with the “tent function” basis
{bk,, ..., by}, see Ex. 1.4.30. The matrix entries are

; ] i
(Wi = aw(blo ) = o [ [logllx— 9l N () TN (x) ds(w)as(x), (149

fori,j=1,...,ny.
e void computeK (Eigen::MatrixXd& K, const BoundaryMesh& mesh, double eta)

This function assembles the Galerking matrix K € IR"£"V of the bilinear form induced by the double
layer BIO K, using S 1(G) and SY(G) as test and trial spaces, respectively. The standard nodal
bases from Ex. 1.4.28 and Ex. 1.4.30 are employed and we get for the matrix entries

(K)ij = ax (bl Biy) = /m /Suppb, ux—yu ()P () dS(y)dS(x),  (14.4)

fori € {1,...,nE},]'€ {1,...,7[\/}.

e void computeKO00 (Eigen::MatrixXd& K, const BoundaryMeshé& mesh, double eta)

This function assembles the Galerking matrix K € IR"E"E of the bilinear form induced by the double
layer BIO K, using SO_ 1(Q) as test and trial space, equipped with the characteristic functions of
panels as basis.

(<0 = ax(Blobh) = 5 [ [ X Es nw)asasx), 149

fori,j=1,...,ng.
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e void computeMO1 ( : :SparseMatrix<double> &M, const BoundaryMeshé& mesh)

This function creates the so-called mass matrix M € IR"E""V as defined in (1.4.50c). (Note that
for this case you need to initialize the matrix passed in M with its size before calling this function).
Please consult [Hip15, Section 2.7.3] to learn about data structures for sparse matrices in EIGEN.

e void computeMOO ( : :SparseMatrix<double> &M, const BoundaryMeshé& mesh)

This function creates another mass matrix My € IR"£"E, a Galerkin matrix for the L2 (T')-inner prod-
uct using S, 1(9 ) as trial and test space (with the standard nodal basis consisting of characteristic
functions of panels). As before, you must initialize the matrix M with its size ng X ng.

We refer to the Doxygen documentation of the library for further details on the implementation of these
methods.

1.4.1 Abstract Galerkin Discretization

Regardless of whether we tackle the first-kind variational boundary integral equations (1.3.112)/(1.3.121)
set in energy trace space or the second-kind versions (1.3.133)/(1.3.134), we face linear variational prob-
lems (— Def. 1.1.57)

ueV: a(u,v)=4Lv) YoeV, |, (1.1.58)

posed on function spaces V = Vj on I'in each case. In this section we recall from [Hip16, Section 3.2] the
policy of Galerkin discretization as an abstract approach for the approximate solution of linear variational
problems on infinite-dimensional spaces.

Galerkin approximation

Idea of Galerkin approximation:
Replace Vj in (1.1.58) with a finite dimensional subspace Vy.
(Vn C V) called Galerkin (or discrete) trial space/test space)

Notation: Twofold nature of symbol “N”, cf. [Hip16, Section 1.5.2]:

4+ N =formal index, tagging “discrete entities” (— “finite amount of information”)
4 N =dim Vy € IN = dimension of Galerkin trial/test space

—~—g——

Discrete variational problem (DVP), cf. [Hip16, Eq. (1.5.9)],

uy € Vy: a(uN,vN) = g(ZJN) Yoy € V. (1.4.7)

Galerkin solution

The discrete variational problem is “discrete” in the sense that it involves only a finite number N of degrees
of freedom, but it is still not amenable to direct implementation. To that end, it has to be recast as a linear
system of equations (LSE), which can be accomplished as follows:
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Second step of Galerkin discretization
Recall from [Hip16, Section 1.5.2]: 2nd step of Galerkin discretization:

Introduce (ordered) basis By of Vy:

By :={b},..., 0N} c Vv , Vy=Span{Byn} , N:=dim(Vy).
B> Unique basis expansions:

uN:]/llb}\]-l-"'-l-ﬂNb%, yiEIR_

: plug into (1.4.7).
Uszlbll\]—i-"'—FVNb%, v €R

Remark 1.4.9 (Affine space V)

In Section 1.1.5 we saw the use of an affine space V = ¢ + V| with a so-called offset function g (—
[Hip16, Def. 1.3.23]) in order to impose essential boundary conditions in (1.1.61). Since the boundary
integral equations that we have encountered so far do not involve any “essential conditions” to be taken
into account in the trial trace, we will have V' = V}) in the sequel.

The derivation of a linear system of equations equivalent to (1.4.7) boils down to inserting the unique basis
expansions into (1.4.7) and exploiting the linearity of both a and /.

MNEVO,NZ a(uN,vN)zﬁ(vN) Yoy € Vy . (1.4.7)
II [MN = ylb}\,+---+yz\;b%,y,~e]R]
ON = Vlb}\]—f—"'—i—l/Nb%,ViE]R
N N j
ZZWV] bk, Zv b] Yv,...,UN €R,
k=1j=1
)
N . .
ZW(Z}!ka(bk,b]]\,)—ﬁ(bé\[) =0 Vip,...,un €R,
j=1
$(x)
Zyka (b, b)) = £(b)) forj=1,...,N.

k=1

T H=(u,...,un)" €RY
(b, b)) eRNN,
Aﬁ — G_ﬂ) , with << )

k=1
A linear syst&m of equations
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Summary: notions connected with Galerkin discretization

. . . , , Linear system
Linear discrete variational problem Choosing basis By, .
> of equations
un € Vn: a(MN,UN) = g(UN) Yon € Vn Al — &
ki)Y N,N ey
Galerkin matrix: A = (a(by, by) e RV,
N7Jik=1

: : ” i VN N
Right hand side vector: ¢ = <€(bN)>j_1 € RY,

Coefficient vector: i = (yl,...,yN)T e RN,

Recovery of solution:  uy = Z,]j:l i by,

Assuming exact arithmetic, the second step of Galerkin discretization is a “mere aspect of implementation”
and will not affect the quality of the Galerkin solution.

Theorem 1.4.11. Independence of Galerkin solution of choice of basis [Hip16, Thm. 1.5.25]

The choice of the basis ‘5 has no impact on the (set of) Galerkin solutions uy of (1.4.7).

1.4.2 Boundary Element Spaces on Curves

Now we are concerned with defining suitable trial and test spaces for the Galerkin discretization of the
variational BIEs We seek “simple” finite-dimensional subspaces of the energy trace spaces H? (T) (—

Def. 1.3.8), H_%(F) (— Def. 1.3.29) for the first-kind BIEs (1.3.112) and (1.3.121), and of L?(T') for the
second-kind BIEs (1.3.133) and (1.3.134).

The new Galerkin trial and test spaces will be called boundary element (BE) spaces and will be of a
“piecewise polynomial type”. The construction of these spaces will rely on many of the principles under-
lying the design of finite element spaces in 1D, see [Hip16, Section 1.5.2]. This reflects a rather general
relationship.

Boundary element methods (BEM)
= Finite element methods (FEM) for variational BIEs on curves and surfaces

(1.4.12) Main ingredients of FEM

In light of the above relationships it is useful to recall the building blocks of FEM from [Hip16, Section 3.5]:

4+ A mesh/triangulation of the computational domain, see [Hip16, Section 3.5.1], in particular [Hip16,
Def. 3.5.2],

4 local polynomial spaces defined on the cells of the mesh, see [Hip16, Section 3.5.2],

4 andlocal and global shape functions (— [Hip16, Section 3.5.3], [Hip16, Def. 3.5.19]) providing bases
B of the finite element space Vy.
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Another fundamental paradigm in the field of finite element methods is the parametric construction of
finite element spaces based on the pullback under suitable transformations of shape functions defined on
reference elements, see [Hip16, Section 3.8], [Hip16, Def. 3.8.22], and § 1.4.35 below.

1.4.2.1 Curve Partitionings

Now we introduce the counterparts of the building blocks of finite element methods for boundary element
methods on closed curves I' := 9Q), O C R?.

(1.4.13) Curved closed polygons

We assume that I' is a connected curved closed Lipschitz polygon according to Ass. 1.2.6. There is a
(small) number M € IN

r=T,U---Uly , INl;=0, (1.4.14)
wherethe I';,j =1,..., M, are the edges of I" with C? parameterizations

y:[-L1] =T;, j=1,...,.M,
1) =7(=1), j=1L...M=1 , 7(=1)=7y) . (1.4.15)

=> close curve

We assume that point evaluations of <y and its derivative y are cheap and, inside a code, provided by
simple function calls.

Definition 1.4.16. Mesh/partitioning of a curve

A mesh/partitioning of a closed curved polygon according to Ass. 1.2.6 is a decomposition

M Nj . , . )
r=Jy=", z¥=9,0e",e"), i=1,...,N, NJeN, j=1,...,M, (1.4.17)
j=1i=1

induced by grids of the parameter intervals [—1, 1]:

1= < <<l <) =1 (1.4.18)
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Mesh/partition of I" induced by partitions of parame-
ter intervals >

Terminology: ‘ ‘
e vertices: xlw = 'y(é‘l.(])), i=0,...,Nj
e panels: i) = 7j(]§ff_)1,§(f)[),

i i
i=1,...,N;.
(In the context of FE methods we use the terms
“cells” or “elements” instead of “panels” to denote the

(open) sets forming the mesh partition.)

Fig. 21

% Notation: We write G (or simply G if I' is clear from the context) to denote a mesh/partitioning of I' and
also the set of its panels.

We define the size h of the panel Tt € G as its diameter: h, := diamm = |a — b||, where a, b
are the endpoints of 7r. Since the parameterizations 7y are fixed C?-diffeomorphisms (twice continuously

differentiable, invertible, with also ! twice continuously differentiable), for any mesh Gr of a given closed
curved polygon I' we have bi-Lipschitz continuity

Gec> 0 dlg— ] < [|7() — 90| < length(v(1g,nD) <@l -yl V& e[-11],
for some constants 0 < ¢ < ¢. So the size of a panel is “about the same” as the length of its associated

parameter interval.

1.4.2.2 Piecewise Polynomial Functions on Curves

We write Py = PP(]Rl) for the space of univariate polynomials of degree < p, p € IN. This is a vector
space of dimension p + 1.

The construction of boundary element spaces will be parametric from the beginning, relying on the local
parameterization of I'. The reader is advised to refresh his knowledge of parametric finite elements [Hip16,
Section 3.8].

Definition 1.4.19. Pullback from a curve

The pullback yjf of a function f : I = R, I'; on an edge of the parameterized curved polygon I
according to Ass. 1.2.6, is defined as

vifA=L =Ry f(E) = f(), —1<E<T. (1.4.20)

Adapting the notations for Lagrangian finite element spaces from [Hip16, Section 3.6] we write:
S9(G) = {v €CUT): 9i(v],) EPy, VI EG, MCTy, j = 1,...,M} , op>1, (1.4.21)

Sp—l(g)::{veLZ(r):y;f(v|,t)ePp,Vneg,ncr~,j:1,...,M}, p>0. (1.4.22)
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O continuous functions, cf. C°(Q)
Notations explained:
p .~ locally polynomials of degree p , e.g. P, (IR%)
S — 1 @discontinuous functions
p . y locally polynomials of degree p , e.9. P) (]Rd)

[S stands for “scalar-valued”.]

As a consequence of Cor. 1.3.19 and Thm. 1.3.38 we conclude the following embeddings:
Corollary 1.4.23. Embeddings of boundary element spaces

The boundary element spaces defined in (1.4.21) and (1.4.22) satisfy
8p(G) C Chy(T) € HA(D),

S;1(G) € CO(T) € LA(T) € H™2(I),

where “pw” refers to the mesh G.

However note that S, ' (G) ¢ H2(T), as we saw in Ex. 1.3.16.

(1.4.24) Dimensions of boundary element spaces on curves

From dim P, = p + 1 and the fact that the condition Sg(g) C C%(T) “removes one degree of freedom
per vertex of G”, we deduce the dimensions of boundary element spaces by a counting argument.

Theorem 1.4.25. Dimensions of BE spaces on curves

dimSy(G) =p-4G,p>1 and dimS,(G) = (p+1)-4G, p >0.

2 Notation: 4G = no. of panels contained in G

1.4.2.3 Shape Functions

Following the terminology for finite element methods from [Hip16, Section 3.5.3], the elements of an (or-
dered) basis By := {b1 ,...,b%} of a boundary element space are called (global) shape functions
(GSF).

%, Notation: We write By := {b},... ,b%} for some basis of the boundary element space Vy, N :=
dim VN-

The shape functions for boundary element methods have to meet the same requirements as those for
finite element methods:
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Properties of global shape functions (GSF)

Basis functions b}\,,...,b% for a boundary element trial/test space Vy built on a mesh G must
satisfy:

(@ By :={b},..., N} isabasisof Vy > N =dimVy,

(b) each by is associated with a single geometric entity (panel/edge/vertex) of G,

(c) supp(by) = {7 m € G, p e T}, if bl is associated with the panel/edge/vertex p.

(1.4.27) Local supports of global shape functions

Condition 1.4.26 means that global shape functions have small local supports. Concretely, for a mesh of
a closed curve (— Def. 1.4.16), which comprises the geometric entities “vertices” and “panels”, we have
that

+ if b, is associated with a vertex x, its support supp b, is the union of the panels adjacent to x,

+ if b, is associated with a panel 7, then supp b}, = 7.

Example 1.4.28 (A basis for S;(G))
So_l(g) is the space of piecewise constant functions on the mesh G. As natural global shape functions
we choose the characteristic functions of the panels

1 ,Jifxemr
T(x):= ’ ’
A () {0 elsewhereon I'.
which results in the basis (a “nodal basis”)
By ={BN, TG} CS9), (1.4.29)

with 18y = #G, matching Thm. 1.4.25.

Example 1.4.30 (Nodal basis for SY(G)) ‘

For a mesh G of a closed curve with vertices ‘\
V(G) = {x1,...,xn}, N € N, we define the ‘
tent function (hat function) associated with a vertex '
p € V(G), cf 1.4.26, as in [Hip16, § 1.5.66] by !

bR, € S(G),

bp(x)— 1 ,ifx:p, (1.4.31)
N 10 Litxe V() \ {p).

B suppth, =|J{reG:per}.

Two tent functions drawn over a surface mesh > ‘

Fig. 22 X
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(1.4.32) Local shape functions (LSF)

Local shape functions for boundary element spaces are defined in exactly the same way as for finite
element spaces [Hip16, Def. 3.5.19]. Given a panel G of a mesh G of I and a boundary element space
Vn with basis By = {b},...,bN}, N := dim Vy, we define the set of local shape functions (LSF) of
V associated with the panel 7t as

(b, ..., b = {bn],;: bn € BN} \ {0} forsome Q= Q(m) € N. (1.4.33)

In words, the set of local shape functions for a panel 7t is the set of non-zero restrictions of global shape
functions to that element. By the very definition of Sg(g) and Sp_l(g) through pullback, see (1.4.21) and
(1.4.22), we have

Vmreg, mCTi v(Span{bk,...,b3}) =Py, (1.4.34)

if {bL,.. .,bg} is the set of local shape functions for Sg(g) or Sp_l(g) on 7t. The local shape functions
span full polynomial spaces in this case.

(1.4.35) Parametric construction of local shape functions

For every panel 7t := «;(]1,112[) C Tj, =1 < 171,172 < 1, of the mesh G of a closed curve I we denote
by

12©) =231 =Om+E+Vn2), €11, (1.4.36)

~

a parameterization of 7t over the reference interval T :=]—1,1[: 7 = «,(I). For instance, if the panel
is a straight oriented line segment

m=1[ab], abeR> B> 4 (O=11-a+i@+1b, -1<g<1. (1.437)

In the parametric approach the set of local shape functions {b}r, ceey bg} on 7t is defined through a given
set of reference shape functions {b!,..., b2} < C%(I) on I according to [Hip16, Eq. (3.8.18)]

=iy, j=1,...Q . (1.4.38)

Be aware that the choice of b/ has to make sure that the resulting local shape functions can be “glued”
into global shape functions satisfying potential continuity constraints [Hip16, § 3.8.20]. Of course, the b/
may depend on 7t, which was ignored in (1.4.38).

For the boundary element spaces Sg(g) and SP_l(Q) the reference shape functions do not depend on
the panel and are of the form

S;;l(g): {Bj,...,Bp+1}=anybasisof7?p, p>0, (1.4.39)

SNG): b =1(1-¢), P& =21+, (1.4.40)
bi(E) = (1~ &)qi-5(&), j=3,...,p+1, {qo,....qp—2} abasisof P,_,. (1.4.41)

In (1.4.40) the choice of b! and b? and the fact that Ef(—l) = Ef(l) =0,j=23,...,p+1, makes
possible a gluing that respects the constraint b}; € co(T).
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Supplement 1.4.42 (Stability of local shape functions).

For larger values of the polynomial degree p stability of the reference shape functions 51, e ,EQ becomes
an issue. Following the recommendation of [Hip16, Rem. 1.5.31] a good choice is basis functions derived
from orthogonal polynomials:

for S, 1(G): B=P_1, j=1...,p+1, (1.4.43)
for Sp(G): 1-¢), b*@) =3ieE+1), (1.4.44)

Here, P, is the n-th Legendre polynomial [Hip16, Def. 1.5.34]. The higher degree reference shape
functions for 82(9) are called integrated Legendre polynomials; b/(£1) = 0 for j > 3 follows from the

Lz(D—orthogonaIity of the Legendre polynomials. A

1.4.2.4 Solving Boundary Value Problems via Galerkin BEM

This section discusses the use of Galerkin boundary element methods to solve the boundary value prob-
lems introduced in § 1.3.107, the

+ Dirichlet BVP: given g € H2(T) find u € H!(Q) such that

—Au=0 in Q , Tpu=g on T, (1.3.108)
1
4+ and the Neumann BVP: given 7 € H, ?(I') determine u € H.(Q)) such that
—Au=0 in QO , Tyu=7n€ on I. (1.3.109)

For standard Galerkin discretization we need finite dimensional subspaces of the trace space on which
the variational BIEs are posed:

function space Eligible BE space(s)
1
H2() |8,%G),p>0 and S)(G),p>1 N
I2(T) 5,7(0), p=0 and SUQ),p=1 Y= mesholl
H2(T) Sp(G), p > 1, only

(1.4.45) Approximation of data

For implementation we also need a discrete representation of the data, of g € H2 (T) for (1.3.108), and
of 5 € H=2(T) for (1.3.109).

Assumption 1.4.46. Data in procedural form

The data functions y — g(y) and y — 7(y) can be evaluated at any pointy € T.

For instance, the data functions may be supplied through a function of the signature > CppRef

std: : function<double (double) > .
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Then we can replace

gwith gy € Sg(g), g € IN, obtained by G-piecewise polynomial interpolation of g (always including the
vertices of the mesh into the sets of interpolation nodes),

nwith 7y € Sq’l (G), g € Ny, obtained by G-piecewise local polynomial interpolation of g on each panel.

(1.4.47) Galerkin BEM for 1st-kind direct BIE for Dirichlet BVP
As explained in § 1.3.110, the Dirichlet BVP (1.3.108) can be solved through the variational BIE

peHHI): av(pg) = / (H4+K)g(x) px)ds(x) Ype HAT),  (a112)
/v x)dS(x) .

Using Sp*l (G) C H-2 (T') as Galerkin trial and test space we arrive at the discrete variational problem

Yn €S, 1(9): av(yn, dn) = /]r (31d+K)an(x) pn(x) dS(x) Von € Sy (1), (1.4.48)

where the data g have already been approximated by gy € Sfl)(g), g > 1. In order to balance accuracy,
the choice g = p + 1 is recommended.
Choosing bases

B ={pL,.... BN}, N:=dimS;1(G), for S, 1(G), and
B0 = {b},...,b5},  K:=dimSY(G), forSY(G),

and writing

7 € RX, K = dim 8(G), for the coefficient vector of gy with respect to B°, and
¥ € RN, N := dim S, (G), for the coefficient vector of i with respect to B,

we obtain the linear systems of equations

Vy = (M +K)7, (1.4.49)
with the Galerkin matrices
V= (sviBhoBV),
N

< / log||x — y|| ﬁ] (y) B (x) dS(y)dS(x)) e RNN (1.4.50a)

ij=1
K= < (Kb, (x) By (x) dS(x)) e RNK, (1.4.50b)

T P

M = < /r Bl (x) b, (x) dS(x )) . RNK | (1.4.50¢)

i
j=L1...K
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(1.4.51) Galerkin BEM for 1st-kind direct BIE for Neumann BVP

To solve the Neumann BVP (1.3.109) by Galerkin BEM we can start from the variational BIE
1 " 1
we H2(T): aw(u,b0) = /(%Id — K')y(x)o(x)dS(x) Vo e H2(T), (1.3.121)
/ W(u)(x) o(x) dS(x) ,

posed on spaces of functions with vanishing mean. Unfortunately, there is no way to reconcile the zero
mean condition and the advantages of locally supported bases for boundary element spaces. Therefore,
we switch to an augmented variational formulation by explicitly adding the zero mean constraint: We seek
the Dirichlet trace 1 € H%(F), , such that

wino) o+ /n(x) ds(x) = /(%m — K)y(x) v(x)dS(x) Vo HY(T),
r r
/ u(x) dS(x) — 0
r
Obviously, a vanishing mean value for the solution u is enforced through the second equation. The

unknown « is a so-called Lagrangian multiplier for the scalar zero mean constraint imposed in the second
line of the augmented variational formulation.

(1.4.52)

As Galerkin trial and test we must use Sg(g) C H%(l"). After replacing 77 with an approximation 77y €

Sq‘l(g) (— § 1.4.45), we thus get the discrete variational problem: Seek 1y € Sg(g),

aw(un,on) + fr on(x)dS(x) = /r(%ld —KNyn(x) on(x)dS(x) Voy € Sg(g) ,
/]r un (x) dS(x) ~ 0

(1.4.53)
As above choosing bases
B0 = {b} ,...,bﬁ]]}K, N := dim §)(G), for §)(G), and
Byl = {IB}\,,...,IBN}, K:= dlmSp_l(g), for Sp_l(g),
and writing
ij € RY, K = dim S, (G), for the coefficient vector of 17y with respect to B, and
ji € RY, N = dim §))(G), for the coefficient vector of uy with respect to 57,
we end up with the linear systems of equations
W ][] _ | (AMT+KT)j
[CT OH } = [( . ) , (1.4.54)
with the Galerkin matrices M and K from (1.4.50), and
N v, dbi, :
W= (awthth) | = (= [ [loglx—yll T2 TEmdSwiasx) ), (1.456)
=1 ds ij=1

N
(/ e ) e RN . (1.4.56)
i=1

]7
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Note that we also used that the double layer BIOs are adjoint to each other, see Suppl. 1.3.69,

/r' (Ku) (%) ¢(x) dS(x) = / u(x) (K'¢)(x)dS(y), Vue HXT), ¢ HE(I).  (1.457)

r

Therefore, we can reuse the Galerkin matrix K of the double layer boundary integral operator and simply
transpose it to discretize K'.

1.4.2.5 Approximation of Curves

In most BEM codes the curve @ is represented by a piecewise polynomials model: Instead of relying on
the “exact” parameterization Vi of the edge I';, one uses a piecewise polynomial approximate parameteri-
zation. Here, “piecewise” refers to the partitioning

L =led e 1ule e Tu- - ulE) ey (1.4.59
of the parameter interval [—1, 1] induced by the grid
=) << g%}?_l - g%]) =1, (1.4.18)
On each parameter grid interval one considers the vector-valued polynomial
el e s v, 7Y e (P peN, (1.4.59)
interpolating y at the endpoints

@y = 9@y for k=i—1,i. (1.4.60)

(1.4.61) Approximation by a polygon

The simplest case p = 1 amounts to an approxima-
tion of I' by a polygon.

< polygon interpolating a closed curve descibed by
a single paramterization 74

Setting = 0% cj(j) , we get the affine formula
1 1

el ¢ G) 6~ &

~ () (1)
Y@ ==l G+
1 -l -
(1.4.62)
Fig. 23 éi_l SCSCZ/ 121, ’N]
The derivative with respect to the parameter is
d 70 (g) = 2D — £ (1.4.63)

"
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(1.4.64) Curve approximation by interpolation

()

The approximate polynomial parameterizations 7, € (77p)2 can be constructed by means of polynomial

interpolation of 4 on [Cl@ld]: fixing p + 1 interpolation nodes

51@1 <y <1 < "'<Vp§§fj)
by [Hip15, Thm. 5.2.14] we can find a unique interpolating polynomial 7"
polation conditions

€ (Pp)? satisfying the inter-

v =v(w), k=0,...,p. (1.4.65)

Stability of the interpolation procedure is a major concern, cf. [Hip15, Section 5.2.4], and the use of
Chebychev interpolation is recommended, see [Hip15, Section 6.1.3], in particular [Hip15, Rem. 6.1.90].
It is based on the nodes [Hip15, Eq. (6.1.87)]

' ) 2%k + 1
Ve = (fi(]_)l + %(Ci(]) —Cl-(]_)l)(cos(m n) —|—1) , k=0,...,p. (1.4.66)

We remark that interpolation need not be carried out on the grid intervals (1.4.58) of the parameter
domain. Instead global polynomial interpolation of 7; on [—1,1] is another option.

(1.4.67) Data structure for closed polygon

In the C++ code presented in § 1.4.1 a closed polygon with N vertices is represented by
e a N x 2-matrix whose rows store the coordinates of the corners.

e another N x 2-matrix containing the indices of the endpoints of the panels.

C++11 code 1.4.68: Class for closed polygon (incomplete listing) =*GITLAB

1 | class BoundaryMesh

2 |{

3 private:

4 /// The two coordinates for vertices are stored in the rows of a
matrix. ) ) i .

5 typedef Eigen:: Matrix<double, Eigen::Dynamic, 2> coord_matrix_t;

6 /// The indices of endpoints of flat panels are stored in the rows of
a matrix o . | .

7 typedef Eigen::Matrix<int, Eigen ::Dynamic, 2> elem_matrix_t;

8

9 /// data container for geometric and topological information

10 coord_matrix_t coordinates_;
1 elem_matrix_t elements_;
12 bool islnitialized_;
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14 public:

15 // Constructor from raw data

16 BoundaryMesh(const coord_matrix_t& coords,

17 const elem_matrix_t& elems) ;

18 // Constructor reading the data from file

19 BoundaryMesh(const std::string& filename);

20 // Straightforward access methods

21 int numVertices() const; // No. of vertices
2 int numElements() const; // No. of panels

23 const coord_matrix_t &getMeshVertices () const;
24 const elem_matrix_t &getMeshElements() const;

25 // Coordinates 1f i-th vertex

2 Eigen ::Vector2d getVertex(int i) const;

27 // Coordinates of vertices of i—-th element

28 std :: pair <Eigen :: Vector2d, Eigen::Vector2d> getElementVertices (int
i) const;

2 // Coordinates of j-th vertex, j=0,1 of i-th element

30 int getElementVertex(int i, int j) const;

31 };

The code adopts the following convention about the orientation of the nor-
mal vector

w=lab], a= [Zﬂ b= [Zj

= n(x)=(b-a)" = l—l(?i;—aﬂzh)} , xXET.

1.4.3 Computation of BEM-Galerkin Matrix in 2D

1.4.3.1 Panel-oriented Assembly

As setting we consider a boundary element discretization of a linear variational problem (— Def. 1.1.57)
ueVy: a(uv)=4»Lv) YoeV, (1.1.58)

that arises from a variational formulation of a first-kind or second kind variational boundary integral equa-
tion like

pe HHD): av(pg) = [(Gd+K)a(@) p(x)dS(x) vpe HAT), (13.112)

av(¥9) = [ V(§)(x) p(x)dS(x), (13113)
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for which Vy = H‘%(F)), or
we HA(T): aw(u,b) = /( Id — K'Yy (x) v(x) dS(x) Vo € HA(T), (1.3.121)
/vv x)dS(x),

where Vjy = H: (T'). We remark that we could also start from the 2nd-kind variational BIE (1.3.128) and
(1.3.131), for which Vo = L2(T).

We equip the curve I with a mesh G as in Section 1.4.2.1. For Galerkin discretization (— Section 1.4.1)
we employ a boundary element space Vy C V), dim Vy = N, concretely

o Vy =8, 1(G) for Vo = H™2(T) and Vp = LX(T),
e and Vy = Sg(g) for Vo = H%(F) (— Section 1.4.2.2).

We endow Vy with a basis By = {b},,..., b\ } asin Section 1.4.2.3. As elaborated in Section 1.4.2.3 the
basis functions, also called global shape functions (GSF), are locally supported and parametric piecewise
polynomials composed of contributions of local shape functions (LSF), see § 1.4.32. The standard choice
of global shape functions for S, '(G) and SY(G) is presented in Ex. 1.4.28 and Ex. 1.4.30.

We end up with a linear system of equations

A=, A= (a0l 0y) RN, gi=(dby))  €RV. (1469

As in the field of finite element methods [Hip16, Section 3.7.4], also for boundary element methods as-
sembly means the initialization of the Galerkin matrix A € RN, and right hand side vector ¢ € R". We
start by writing a(u, v) as a sum of contributions of pairs of panels, e.g., in the case of the bilinear form
induced by the single layer boundary integral operator

ﬁg ﬁg
av (¥, ¢) / / GB(x, y)w(y) ¢(x) dS(y) dS(x) | . (1.4.70)

11]1

This is also possible for all other BIE-related bilinear forms occurring in the variational problems of Sec-
tion 1.3.5:

ﬁg ﬁg

[ (ko)) p(x)dsx) =) ) [ [ grad, GAxy) - n(y)v(y) (x) dS(y) dS(x),  (1471)
i= 1] 177 /T

. tiQ 1G

Jo @ o as) =13 [ ] grad, 62xy) -n(x) 9(y) o) dS(w) dS(x) (1472
11] 177

[ (W)(x) o(x) dS(x) = %3 >/ / G (x,) T (y) T () dS () dS(x) (1.4.73)

where % denotes the arclength derivative (1.3.85). More explicit formulas for the integrands are given in
§ 1.3.74 and § 1.3.76.

| (1.4.74) Non-locality of variational BIEs
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The bilinear forms b occurring in variational formulations of partial differential equations (PDEs), for in-
stance in (1.1.61), are local in the sense that

[for PDEs]:  voly(supp(u) Nsupp(v)) =0 = b(u,v) =0 . (1.4.75)

This usually makes it possible to evaluate b(u, vy) for finite element trial and test functions uy, vy
by summing once over the elements of the finite element mesh, see [Hip16, Section 3.7.4.1]. The prop-
erty (1.4.76) also makes locally supported basis functions spawn sparse Galerkin matrices in the finite
element method see [Hip16, Section 3.4.4].

The situation is fundamentally different in the case of the bilinear forms spawned by boundary integral
operators. The presence of globally supported kernels thwarts any locality of the kind (1.4.76):

[for BIES]: voly_1(supp(u) Nsupp(v)) =0 #= b(u,v)=0 . (1.4.76)

This has profound consequences for boundary element methods, particular for data structures and
algorithms:

e boundary element Galerkin matrices will be densely populated,
e the bilinear forms arising from BIE require a double summation of local contributions as in
(1.4.70).

(1.4.77) Local — global index mapping

The formulas (1.4.70)—(1.4.73) are the starting point for developing algorithms for the assembly of the
Galerkin matrix A and the right-hand side vector ¢ from (1.4.69). A key issue will be the algorithmic
representation of the relationship between global shape functions (GSF) and local shape functions (LSF,
— § 1.4.32). To see why, note that, with ,BN, i=1,...,N, denotlng the global and ,8 k=1,...,0,the

local shape functions of a boundary element space C H™ (F), for every pair (j,i) €€ {1,.. .,N}2

BB = X [ [ GMx) Boly) Belx) dS(y) dS(x)

wTeqg 'eg

for uniquely defined 7,k € {1,...,Q}. Now we formalize these considerations.

©® The global shape functions of the basis By = {b1 P .,b%} of a boundary element space Vy
are supposed to be ordered and, thus, can be identified through a unique index € {1,...,N} (as
already insinuated by the notation by, ).

® We also assume an ordering of the local shape functions bﬁr for every panel 7t € G, also indicated
by indices € {1,...,Q}.

® Observe that for each 7t € G and its local shape function b’;r, 1=1,...,0Q,thereis a unique global
shape function b}, j € {1,..., N} such that b, = bl

B> We can define a local—global index map (“d.o.f. mapper”) as [Hip16, Eq. (3.7.61)]
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locglobmap : G x N — IN,

; . 1.4.78
locglobmap(7,i) =j, if bé\,’n = b, ( )

ief{1,...,0(n))}.
\

global shape function local shape function

Example 1.4.79 (local—global index map)

We assume that the curve I' := 9(Q) is connected and
oriented counterclockwise >

Vertices (blue) and panels (red) of the mesh G of T’
are numbered consecutively as in Fig. 25: the i-th
panel,i =1,...,N —1, has verticesi and i 4 1, the
N-th panel vertices N and 1.

We comsider Vyy = SY(G), tent function basis as in
Ex. 1.4.30, and assume that the i-th basis function is
associated with the i-th vertex, i = 1,..., N. Then
the local—global index map from (1.4.78) reads:

k Jifi=1,
locglobmap(k,i) = {k 1 :f z 5 (1.4.80)

Fig. 25

Using the local—global index mapping, we can now write in a rigorous way

av (B, By) = Y ) /ﬂ/ﬂ/ G2(x,y) B (y) B (x)dS(y) dS(x) . (1.4.81)
locglognig(ﬂ,k):j locglognae})%'ﬂ’,f):i

An efficient implementation of this formula takes into account the constraints locglobmap(7t, k) = j and
locglobmap(7t/,¢) = i by inverting them, thus distributing the numbers obtained from evaluating the
double integrals to suitable entries of the Galerkin matrix. This leads to panel-oriented assembly.

The following pseudocode demonstrates the implementation of panel-oriented assembly by means of two
nested loops over all panels.

Pseudocode 1.4.82: Outline of panel-oriented assembly of BE matrices for BIOs (same trial
and test space)
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Matrix A(N,N); A = 0; {Initialize dense matrix with zero}
forall panels me G do {outer loop}
Q := no_of_loc_shape_fns(m);
forall panels @' €G do {inner loop}
Q’ := no_of_loc_shape_fns () ;
Matrix Al := get_interaction_matrix(m, ) ; {get “local” matrix}
for k=1 to Q do
i = locglobmap (7T, k) ;
for 1=1 to Q’ do
j = locglobmap (7', 1);
A(i, j) += Al(k,1); {update of Galerkin matrix}
endfor
endfor
endfor
endfor

As auxiliary functions we need
(I) the local—global index mapping function 1ocglobmap as introduced in § 1.4.77,

(Il) a function get_interaction_matrix computing the contribution of a pair of panels 7r, 7r’ to
the Galerkin matrix. If Q, Q' are the number of local shape functions (— § 1.4.32) on 7 and 7/,
respectively, then this function returns a Q x Q’-matrix Aj,.:

(Ao = [ [ k)bt () Vi () dS () dS ) (1.483)

which we wrote for a general boundary integral operator with kernel k. For instance, in the case of
a = ay, we face the singular kernel k(x, y) = G (x,y).

Example 1.4.84 (Assembly of Galerkin matrix for double layer BIO K)

We consider the Galerkin discretization of the bilinear form induced by the double layer boundary integral
operator K

(0.9) = [(K()(x)9(x)dS(x), v HID), ¢ € HHT).

We rely on lowest order/degree piecewise polynomial boundary element spaces

Nl—

H:T) — S)G) cH:I) , H:(I) — SY9)cH2(T),

where G is a mesh of the closed polygon I', see Def. 1.4.16.
As bases we use

for SY(G): tentfunction basis B° := {b};,...,bN} see (1.4.30),
for S;(G): characteristic function basis B! := {BY,..., BN} see (1.4.28).

B> supp b, is the union of two adjacent panels, su I covers only a single panel.
PPN PP PN
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B> For 8?(@), Q =2, for So_l(g), Q = 1, where Q designates the number of local shape functions
per panel, see § 1.4.32

= A € RY?  (see (1.4.83) for the definition of Aj,.).

Since a fully populated matrix has to be initialized we face the following computational cost of assembly:
Cost of assembling a BIO Galerkin matrix

The asymptotic computational effort for assembling the Galerkin matrix discretizing a BIO based on
trial and test spaces with dimensions N and M, respectively, is at least O(MN) for M, n — co.

The following C++ function performs the assembly of the Galerkin matrix for K. Refer to Code 1.4.68 for
explanations on the class BoundaryMesh.

C++11 code 1.4.86: Assembly of Galerkin matrix for double layer BIO K =*GITLAB

2 |void computeK ( - &K, const BoundaryMesh &mesh, double
eta) {
3 int nE = mesh.numElements () ;
4 int nC = mesh.numVertices () ;
5 // Matrix returned through reference: resize and initialize matrix
6 K. (nE, nC);
7| K. ()
8 double 10 = 0.0, I1 = 0.0;
9
10 // outer loop: traverse the panels
1 for (int j = 0; | < nE; ++)) {
12 // get vertices indices and coordinates for panel 7; = [a,Db]
13 int aidx = mesh.getElementVertex(j, 0);
14 int bidx = mesh.getElementVertex(j, 1);
15 const D &a = mesh.getVertex (aidx) ;
16 const - &b = mesh.getVertex (bidx) ;
17
18 // inner loop: traverse the panels
19 for (int i = 0; i < nE; ++i) {
20 // get vertices indices and coordinates for panel ;= |[c,d|
21 int cidx = mesh.getElementVertex (i, 0);
22 int didx = mesh.getElementVertex (i, 1);
2 const - &c = mesh.getVertex (cidx) ;
24 const - &d = mesh.getVertex (didx) ;
25 // Zero contribution for parallel panels !
2% double lindep1 = fabs((a — ¢)[0] x (b —a)[1] — (a— c)[1] * (b
—a)[0]);
27 double lindep2 = fabs((a — d)[0] * (b —a)[1] — (a— d)[1] * (b
—a)[0]);
28
29 if (lindep1 > EPS x (a — c). O |
30 lindep2 > EPS x (a—d). 0)) 72/
31
{
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32 // compute entries of 1X2 interaction matrix
33 // double I0=0.0, I1=0.0;

3 computeKij(&l0, &1, eta, a, b, c, d);

35 // distribute values to matrix entries

36 K(j, cidx) += 10 — I1; //

37 K(j, didx) += 10 + I1; //

38 } // endif

39 } // endfor

40 } // endfor

41 }

Remarks on Code 1.4.86

e The function computeKi j adopts an unusual convention for the reference shape functions (1.4.38)
for the SP(G):

V@) =%, P =3¢ gel:=-11[.
This accounts for the linear combinations used in Line 36 and Line 37.
e Note that, if 7r || 7z’ (parallel panels), then
: : —x)-n
[ kel @ ot dse = [ [ T o) g as(y) dsix) =0 v,
4 w ) |ly — x|

because of the orthogonality (y — x) - n(y) = 0. This is tested in a numerically sound way in
Line 30.

1.4.3.2 Lowest-order BEM on Polygons: Analytic Formulas

We consider the case that I is or is approximated by a closed connected polygon (with straight edges!),
see § 1.4.61. In this case all panels of a mesh G are line segments.

g:{ﬂ'l,...,TCN}, r=mu.---Umy, 71'1‘:[}7,'/1],‘]/ P,-,q,-E]R2-

A data structure modeling such meshes is presented in Code 1.4.68.

We restrict ourselves to Galerkin discretization based on lowest degree boundary element spaces 8?(9 )

and S, ' (G), which are implemented in the 2D BEM C-++ code introduced in § 1.4.1. We use the standard
bases of “tent functions” and characteristic functions, respectively, for these spaces, see Ex. 1.4.28 and
Ex. 1.4.30.

(1.4.87) Panel interaction matrix for the single layer BIO

The bilinear form

v 0) = 5 [ [loglx—yll9(y) o(x) dS(y) dS(x), g€ HA(D),
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is discretized on So_l(g) X So_l(g), the local shape functions have constant value = 1 on each panel.
Therefore, we just have to compute 1 x 1 interaction matrices for pairs of panels:

= (B BY) = —5= [ [ logllx— vl B(y) R (1) dS(y) dS(x), 7 € G (1489

QIf T = ,q,], T = ,4d,|, then we can transform the line integrals to the reference interval
Pi-491 P2 4>
= [—1, 1] through the parameterizations

~)

for 1 (t) == py + (t+1)3(q1 — p1) = 3(p1 +a1) + 3t(q1 — p1) q{<i<q
[for 7r']: V(t) = py+ (t+ 1) (9, — po) = %(Pz +4q,) + %t(‘lz —P2), -

which, by the defining formula (1.2.10) for curve integrals

[ s@ase = [ fa@laolan, =17,

results in
; b1
— 5 | [1ogllsu~to -+ z|31a,  pi13l1a  poll deds (1489
—1-1
with  u = %(41 —p1), U= %(42 —Pa), 2= %(P1 T4 =P~ ) - (1.4.90)

The following manipulations mainly rely on the identity

(%~ c)-gradg(log[M(E — o)) = (F—¢) - MT —ME=E) 4 (1.4.91)
IM(x — c)]

The reader is encouraged to derive this formula by applying the chain rule twice.

® By Green’s first formula Thm. 1.1.62 we conclude for any domain D C R?
/ log|M(x — ¢)||dx = / %div;{? — (¥ —¢)} log||M(x — ¢)||dx
D D

— 1 [ (G- grad; log|M(z — )| o
D
=voly(D) by (1.4.91)

+%/BD (% —c) - n(x) log|M(Z — ¢)|| dS(%) .

The boundary integral faD is a one-dimensional line integral. Moreover, if D is a polygon the exterior unit
normal n(X) is piecewise constant and x — (¥ — ¢) - n(x) will be constant on all edges, cf. Hesse normal
form of a line in IR?.

® In concrete terms we apply this trick to the integral (1.4.89) with ¥ = [i] M= [u,—v|,c= [_ﬁ}.
Then, forany &, B € R, u,v € R? (1.4.91) implies

{(s —|—tx)aas + (t— ,B)aat}logﬂu(s +a)—ov(t—PB)]|=1. (1.4.92)
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11
: d
> 4= / /(s+oc)a—log||u(s+oc)—v(t—[%)||dtds+
-1-1
1. 1. a
[ [t~ p)5; togluls + ) ~ o(t — Bl deds
-1-1
1a
= [{ 16+ @) log]l. 2, / log]|...||ds p d-+
-1
1a
4 1= p)togll... 12", / log]|...|dt ¢ ds,
-1
where ||...|| = ||u(s + a) — v(t — B)|| and one-dimensional integration by parts has been employed in
a straightforward way. This reduces the integral over log]|. . .|| to four one-dimensional integrals
11 .
—= / /log||. .|| dtds = —2+/ (1+a)log||(1 + &)u — (t— B)o| dt (H)
e !
1
+ [ (A—w)log (-1 +w)u—(t=p)o] (12)
1
+ [ (1=p)logl|(s+a)u — (1 - B)o]|ds (13)
1
+/1(1+ﬁ) log||(s + a)u — (—1 — B)o]|ds . (14)
® Now we return to the computation of
11
/ /log||su — tv + z|| dtds, (1.4.93)
—1-1
where we have to distinguish two cases:
Casel: u,v from (1.4.90) are linearly independent. Then there are a, B € R such that z = au + po.

1

11 1
- //log||su—tv—|—z||dtds://log||u(s—|—oc)—v(t—[%)||dtds,

-1-1 -1-1

and we can apply the above formulas, see Code 1.4.98, Line 29—Line 37.

Case ll: v = Cu for some { # 0 (parallel panels). The previous formulas cannot be used, but we can
resort to the identity

d (su—to+z)-u d
— logl|su — to + z|| = = log||su — tv + z 1.4.94
Z5- log] = = g gl I (a9

Straightforward integration by parts gives
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1 1

/ / log||su — tv + z|| dtds
—1-1

1
_ )
{[tlog“su—tv—i—z“]i:l_l—/t§10g||su—tv+z||dt} ds
-1

1
d
{log||su — v+ z|| +log||su + v + z|| + / @tg log||su — tv + ZH} ds
-1

1
= /log||su—v—|—z\|—|-10g||su—|—v—|—z||ds—|—C/[logHsu—tv—|—z||]§:1_1dt (1.4.95)

-1 -1
1 1

= /log||su—v—|—z\|ds—|—/log\|su—|—v—|—z\|ds—|—
-1 -1

1 1
g/t10g||u—tv+z||dt+z;/tlog||—u—tv+z||dt.
-1 -1

These formulas are implemented in Code 1.4.98, Line 20-Line 28.

® Thus, the computations are reduced to evaluating integrals of the form

1
/tklog||tu—|-v||dt wvcR?, t=0,1. (1.4.96)
-1

We elaborate the expressions for k = 0 and point out that the case k > 0 can be reduced to k = 0 by
repeated integration by parts. With

2
ltu+ ol = al +pt+7, ai=ul?, pi=2u-v, 7:=o|?.

1 1 1
B .= / log||tu + v| dt = § /logHtu +ofPdt=1 /log(oaf2 + Bt +y)dt .
~1 —1 —1
We have to proceed differently, depending on whether the argument of the logarithm has a zero or not.
For the quadratic polynomial in t we examine the discriminant.

Case l: 4oy — ,52 =0 <= p=2/ay: argument of logarithm can vanish

1

1
L:_/log<(\/Et—|—\/§)2> dt:Z_/lalog]\/Et—l—\/ﬂ dt,

1
then distinguish cases, « > < (split interval) and & < <y, and use explicit principal, see Code 1.4.97,
Line 26-Line 33.

Case l: 4ay— B> > 0: t — at?> + Bt + - has no real zero and an explicit principal can be used,
Code 1.4.97, Line 34-Line 41.

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 105



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

C++11 code 1.4.97: Evaluating integrals of the form (1.4.96) =*GITLAB, [Mai08, Sect. 2]

2 - slplterative (int k, const - & u,
3 const D & v)

s | double a = u.squaredNorm(); // a = |u|?

6 double b = 2. x u. (v); // B=2u-v

»| double ¢ = v.squaredNorm(); // v=|v|?

8 double D = 0.; // discriminant
9 s val (k+1); // return values

11 // Ensure one non—-zero argument vector

12 double tmp = 4xaxc — bxb;

13 assert(fabs(u[0]) > EPS || fabs(u[1]) > EPS
14 || fabs(v[0]) > EPS || fabs(v[1]) > EPS);
15 // By Cauchy-Schwarz inequality tmp >= 0

16 assert(tmp >= —fabs (EPSx4xaxc)) ;

18 // Numerically sound way of testing if discriminant = 0
19 if (tmp > EPSx4xaxc) D = sqrt(tmp);

20 else D = 0.;

21
22 // The case k=0: pure logarithmic integrand

2 if (fabs(u[0]) < EPS && fabs(u[1]) < EPS) { // constant integrand
24 val[0] = 2xlog(c);

25 }

2 else if (D == 0.) { // Integrand is logarithm of a pure square

27 tmp = b + 2xa;

2 if (fabs(tmp) > EPSxa) val[0] = tmp * log( 0.25xtmp*xtmp /a );

29 else val[0] = O;

3 tmp = b — 2xa;

31 if (fabs(tmp) > EPSxa) val[0] —= tmp * log( 0.25xtmpxtmp /a );

% val[0] = 0.5xval[0] /a — 4.0;

3 | 4

3 else { // case D > 0: argument of logarithm has no zeros

35 tmp = ¢ — a;

36 if (fabs(tmp) < EPSxc) val[0] = 0.5xM_PI;

a7 else if (a < c) val[0] = atan( D /tmp );

38 else val[0] = atan( D /tmp ) + M_PI;

39

40 val[0] = (0.5x((b+2xa)x*log (a+b+c)—(b—2+a)*log(a—b+c))+
Dxval [0]) /a—4.0;

a1 | s

42 if (k == 0) return val;

C++11 code 1.4.98: Evaluating integrals of the form (1.4.89) =*GITLAB, [Mai08, Sect. 3]

> |double computeWijAnalytic (const D & a,
3 const - & b,
4 const i & c,

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 106


https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/BEM/CppHilbert/Library/source/singleLayerPotential.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

5 const i & d)

s [ {

7 double hi = (b—a).squaredNorm(); // length? of first panel |a,b]
8 double hj = (d—c).squaredNorm(); // lendth® of second panel [c,d]
9 double val = 0.;

10 double lambda, mu;
11 // Vectors defined in (1.4.90)

12 g x = (b—a)/2.;

13 g y = (cd)/2.;

14 o z = (atb—cd)/2.;

15

16 // There hold different recursion formulae when the panels

17 // are parallel (det = 0) or not
18 double det = CrossProd2d(x,y);

20 if ( fabs(det) <= EPSxsqrt(hixhj) ) { // parallel panels, Case II
21 if ( fabs(x[0]) < fabs(x[1]) )

2 lambda = y[1] / x[1];

2 else

24 lambda = y[0] / x[0];

25 // Evaluate the four integrals from (1.4.95)

2 val = 0.5%( lambda x ( slp(1, y, z—x) — slp(1, y, z+x) )
27 + slp(0, x, z+y) + slp(0, x, z—y) );
28 | 4

29 else { // x and y linearly independent, Case I

20 lambda = (z[O0]*xy[1] — z[1]xy[0]) /det;

31 mu = (x[0]*xz[1] — x[1]*xz[0]) /det;

32 // Integrals (I11)-(14)

3 val = 0.25 x (—8 + (lambda+1)*slp(0, y, z+x) —

a4 (lambda—1)xslp (0, y, z—x)+

as (mu+1)xslp (0, x, z+y) —

3 (mu—1)xslp (0, x, z—y));

a7 | 4

s return —0.125xval/M_PI; // = —g «val
a |}

Note that the test whether x and y are parallel in Line 20 takes into account the presence of roundoff
errors.

(1.4.99) Local analytic formulas for double layer BIO

We consider the bilinear form

L [ (x—y) ny) ! 1
(WP)Hﬂ/r/rwwy)wx)ds(y)ds(x), ve H(T), ¢ € H2(T),

and its Galerkin discretization based on SY(G) x So_l(g), that is v is G-piecewise linear and ¢ G-
piecewise constant. For a pair (n', n") € G x G of panels the entries of the 2 x 1 interaction matrix can
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be computed from the two integrals

_ 1 (x—y) - n(y)
Io ._%/ /ﬂ/WdS(y)dS(x), (1.4.100)
L= 2n//,ﬂ ||x—y|| E=y) W)y ds(y) dsx), (1.4.101)

where ¢ is (parametric) linear on 7t with vanishing mean. In the case of line segments Tt = [P1r‘11]=
7’ = [p,, q,), the unit normal vector field n(y) is constant on 7t” and a transformation to the reference

interval T =]—1,1[ yields (1 = normal to 7’)

—to+
ol = Pl pa / D1 dras, (14102
fou—ro-+ 2|1
—to+
ol = plla— pa / DM s, (14109
fou—ro-+ 2|1
with u = %(41 —P1), v = %(42 - Pz)r z= E(Pl T4 - P2~ q) - (1.4.90)

Also note that both integrals vanish in the case r = 7’.

We exploit an identity similar to (1.4.91). For M € R?>?, ¢ € R?, n € R?,

M(x —c¢c)-n cad F)(x) — 2(M(x—¢) -n)M M(x — c) M'n
IM(x — )| - (erd D IM(x —¢)||* ! IM(x — )|
B> (x—c) gradF(x) = —F(x). (1.4.104)

F(x) :=

As above we apply Green’s formula from Thm. 1.1.62 on a domain D C R?

/D G(x)F(x) dx = — / G(x) (x — c) - grad F(x) dx
—/ div(G x—c))F(x)dx—/ G(x) (x — ¢) - n(x) F(x) dS(x) ,

oD

[~ / %) + grad G(x) - (x—c))F(x)dx:/ G(x) (x — ¢) - n(x) F(x)dS(x) . (1.4.105)

oD

for any smooth function G € C!(D). In particular, if G is linear, G(x) = d - x for some d € R?, then the
computation of [, G(x)F(x) dx can be reduced to the case G = 1 up to integrals on dD. Note that for
regular M the term under the integral faD in (1.4.105) is bounded, since in this case

e, ¢ >0 ¢ x—c|| < |M(x—¢)|| <cT|lx—¢| VxccR>,

As before we observe that if D is a polygon x +— (x — ¢) - n(x) will be constant on all edges of D.

This formula can be applied, if # and v are linearly independent, compare (1.4.92). Conversely, if u || v,
v = Cu for { # 0, we can use

(2 f(s,) = —of(s 1), flst) = (su—totz)-n

|su — tv + z||?

analogously to (1.4.94), e.g. [Mai08, p. 7],
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1 1 1 1

/ / tf(s,t) dtds= /{[tzf(s t)lil — / tZ%f(s ) dt} ds

-1-1
1 1

—/ tzst /gt2 stdt}d

1

= [ (s, 1) = fls,~1))ds +¢ / L1~ f(-1, 1) di
-1 -1

All these formulas are implemented in Code 1.4.108

Eventually, all two-dimensional integrals are reduced to integrals of rational functions of the form

t
———dt R? 1.4.1
_/1 R R (14100

whose evaluation is done in Code 1.4.107 based on [Mai08, Lemma 2.1].

C++11 code 1.4.107: Evaluating integrals of the form (1.4.106) =*GITLAB, [Mai08, Sect. 2]

» |double dlp(int k, const Eigen::Vector2d& p, const Eigen::Vector2d& q)
s | {

4 // The full recursion is not implemented

5 assert (k<=2 && (k>=0));

7 double a = p.squaredNorm(); // a = <p,p>

8 double b = 2 x p.dot(q); // b =2 <p,g>
o double ¢ = gq.squaredNorm(); // ¢ = <q,g>

10 double D = 4xaxc—bx*b; // Discriminant

1 double root D = 0.;
12 double GO = 0., G1 = O.;

14 assert(D>=—EPSx4xaxc); // In exact arithmetic, D >= 0
15 if (D> EPSx4xaxc){ root_D = sqrt(D);} else{ D = 0.0;}

16 if (D==10.0){ GO = 2./(c—a); } // linearly dependent vectors,
[Mai08, (5)]

17 else // Denominator cannot vanish, integrate rational function

18 {

19 if (fabs(c—a) < EPSxfabs(c)){ GO = M_Pl/root_D;}

20 else if (a < c){ GO = 2.xatan( root_D/(c—a) )/root_D;}

21 else { GO = 2.x(atan( root_D/(c—a) )+M_PI)/root_D;}

22 }

23

24 if (k >= 1) // First step of recursion for k=1

25 {

2% // gl_l in [Mai08, Lemma 2.1]

27 Gl = —b*GO,

28 if (a+b+c > EPSxa){ G1 += log(a+b+c) ;}

20 if (a—b+c > EPSxa){ G1 —= log(a—b+c) ;}

30 Gl /= (2.*3.);
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31

% // gt in [Mai08, Lemma 2.1]

33 if (k == 2){return (2.—bxG1—cxG0)/a;}
34

3 return Gi;

s |}

37 return GO;

s |}

C++11 code 1.4.108: Evaluating integrals (1.4.102) and (1.4.103) =*GITLAB

» |[void computeKijAnalytic (doublex 10, doublex I1,
3 const - & a, const & b,
4 const i & c, const & d)
5!
{
6 double hi = (b—a).squaredNorm(); // hi = norm(b-a) squared
7 double hj = (d—c).squaredNorm(); // hj = norm(d-c) squared
8 D n = unitNormal(c,d); // normal vector
10 - u=ab, v=dc, w=c+dab;
1 - WPpU = W+U, WMU = W—U;
12 WPV = W+V, WMV = WV ;
14 double dot u n = u. (n), dot_w_n = w. (n);
15 double dot wpu_n = wpu. (n), dot_ wmu_n = wmu. (n);
16 double det = CrossProd2d(u,v);
18 double lambda=0.0, mu=0.0;
19 if (fabs(det) <= EPSxsqrt(hixhj)) { // u,v linearly dependent
20 if (fabs(u[0]) > fabs(u[1])) mu = v[0]/u[0];
21 else mu = v[1]/uf1];
23 x*10 = dot_w_nx( dlp(0,u,wpv)+dlp(0,u,wmv)+
mux(dlip (1,v,wmu)—dlip (1,v,wpu)) );
24 *11 = dot_w_nx*( dlp(0,u,wpv)—dlp(0,u,wmv)+
mux(dip (2,v,wmu)—dIlp(2,v,wpu)) )*0.5;

2 }
2 else { // u,v linearly independent
27 if (a[0] == d[0] && a[1] == d[1]) {
28 *10 = 2*(

dot_wpu_nxdlp (0,v,wpu)+dot_u_nx*xdlp(1,u,wmv)+dot_w_nxdlp (0,u,wmy)

) ;
29 11 =

dot_wpu_nxdlp(1,v,wpu)—dot_u_nxdlp (1 ,u,wmv)—dot_w_nxdlp (0,u,wmy)
30 + 05*(*'0),
31 }
s else if (b[0] == c[0] && b[1] == c[1]) {
33 *10 = 2*(

dot_wmu_nxdlp (0,v,wmu)+dot_u_nxdlp (1,u,wpv)+dot_w_nxdlp (0,u,wpy)
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) ;

34 11 =
dot_wmu_nxdlp (1,v,wmu)+dot_u_nxdlp (1,u,wpv)+dot_w_nxdlp (0,u,wpy)

35 — 0.5*(*'0);

3 }

a7 else {

a8 mu = CrossProd2d(w,v)/det;

%9 lambda = CrossProd2d(u,w)/det;

40

a1 *10 = (mu+1)xdot_wpu_nx*xdlp(0,v,wpu) —
(mu—1)*xdot_wmu_nx*xdlp (0,v,wmu)

P + (lambda+1)*( dot_u_nxdlp(1,u,wpv) +

dot_w_nxdIp (0,u,wpv) )
43 — (lambda—1)*( dot_u_nxdlp(1,u,wmv) +
dot_w_nx*xdlp (0 ,u,wmv) );

” *11 = 0.5%( (mu+1)xdot_wpu_nx*xdlp(1,v,wpu) —
(mu—1)xdot_wmu_nxdlp (1,v,wmu)

45 + (lambda+1)*( dot_u_nx*dlp(1,u,wpv) +

dot_w_nxdlp (0,u,wpv) )
46 + (lambda—1)*( dot_u_nxdlp(1,u,wmv) +
dot_w_nxdlp (0,u,wmv) )

a7 — lambdax(x10) );

48 }

49 }

50 *10 x= —0.125xsqrt(hixhj)/M_PI;

51 x11 %= —0.125xsqrt(hixhj)/M_PI;

s2 |}

1.4.3.3 Recapitulated [Hip15, Chapter 7]: Aspects of Numerical Quadrature

Numerical quadrature studies the approximate evaluation of integrals fD f(x) dx for a given domain D C

R?, d € N, and a function f D — IR, for which at least a routine for point evaluation must be available
(ensured, if f given in procedural form [Hip15, § 7.0.2]).

The simplest approach is the approximation of a one-dimensional integral by a weighted sum of function
values.
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Definition 1.4.109. 1D Quadrature formula (QF)/quadrature rule (QR)[ , Def.

An n-point (one-dimensional) quadrature formula (QF)/quadrature rule (QR) on [a, b] provides an
approximation of the value of an integral through a weighted sum of point values of the integrand:

b n
for f:[a,b] = R: /f(t)dt ~ Qulf) = Y w! f(c!) . (1.4.110)
a i=1
Terminoloay- w7 = quadrature weights € R
erminology: o = quadrature nodes € [a, b]

j

Definition 1.4.111. Order of a quadrature rule [

The order of quadrature rule Q,, : C%([a, b]) — R is defined as

b
order(Qy) := max{m € No: Qu(p) = / p(t)dt Yp € Pu}+1, (1.4.112)

that is, as the maximal degree +1 of polynomials for which the quadrature rule is guaranteed to be
exact.

Given a quadrature formula (E], Z/ﬁj);lzl on, e.g., the reference interval [—1, 1], a quadrature formula of the
same order on [a, b] is spawned by affine transformation:

[r0at=~je-ayafe >=iw]-f<cj)
2 =1 - (1.4.113)

with quadrature nodes ¢; = (1 —¢j)a + %(1 +¢)b,

%)

quadrature weights  w; = (b — a)@;

In words, the nodes are just mapped through the affine transformation ¢; = ®(¢;), (1) := 3(1 — T)a +
(T + 1)b, the weights are scaled by the ratio of lengths of [, b] and [—1, 1].
Example 1.4.114 (Trapezoidal rule [Hip15, Ex. 7.4.3])
A simple composite quadrature formula of (low) order 2 is the equidistant trapezoidal rule:
/ 1 1= b
/f(t)dt%—f(a)—i— Z(a+ )+ f( ), n€N. (1.4.115)
2n n =
a

However, in the context of boundary element methods it is mainly global quadrature rules of high order
that are relevant.

(1.4.116) Gauss(-Legendre) quadrature rules [Hip15, Section 7.3]
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Theorem 1.4.117. Gauss(-Legendre) quadrature

For every n € IN there is a unique n-point quadrature rule on [—1,1| of maximal order 2n, the
Gauss(-Legendre) quadrature rule.

It has positive weights and its nodes coincide with the zeros of the n-th Legendre polynomial P, €

=
Zeros of Legendre polynomials in [-1,1] Gauss-Legendre weights for [-1,1]
201k % w ok w Y * Y Yo w Y * Y Y b RS- 0o~ ¢ + n=2
1+ + + O n=4
184 % * * n=6
sk # % K * n=8
A n=10
16 * * * # =12
%] n:
% . * * % * % 08r s n=14
C 14k * * % * * * * * * kK
(0]
é * * * * * * * o o
S 12 * * * * * % % * 06
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Sk« “
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g o o
[ A A
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Z [ X
* % * * 021 & S ¢ = = ¢ P .
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Fig. 26 t Fig. 27

Nodes of Gauss quadrature formulas on [—1,1]  Weights of Gauss quadrature formulas on [—1, 1]

Nodes and weights of n-point Gauss(-Legendre) quadrature rules on [—1, 1] can be computed efficiently
by

4 solving an n x n dense eigenvalue problem: Golub-Welsch algorithm [Hip15, Rem. 7.3.35],

4 using Newton’s method for finding the zeros of the Legendre polynomials (with initial guesses from
asymptotic closed-form formulas) and then solving an n x 7 linear system to determine the weights
[Hip15, Rem. 7.3.6].

In codes nodes and weights are often accessed by simple table look-up.

(1.4.118) “Practical” Clenshaw-Curtis quadrature rules [Tre08]
This is a family of quadrature rules on [—1, 1] based on the quadrature nodes

G—1)m .
n._ _ _—
¢j = cos( — ), j=1,...,n. (1.4.119)

These nodes form a set of dilated Chebychev nodes (1.4.66), which are known to be “optimal” for global
polynomial interpolation [Hip15, Section 6.1.3]. T he so-called Clenshaw-Curtis quadrature rules use the
nodes (1.4.119) also for numerical quadrature and fix the weights in order to achieve order > #n for the
corresponding n-point quadrature formula.

Theorem 1.4.120. Positivity of Clenshaw-Curtis weights

For alln € IN the weights of the n-point Clenshaw-Curtis are positive.
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CenshaW-Curtis nodes in [-1,1] Clenshaw-Curtis weights for [-1,1]
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Clenshaw-Curtis nodes (1.4.66) on [1,1] Weights for Clenshaw-Curtis rule on [—1, 1]

The weights of any 1-point Clenshaw-Curtis rule can be computed with a computational effort of O (1 log 1)
using FFT.

(1.4.121) Generalized Gauss quadrature rules

The theory for Gauss(-Legendre) quadrature developed in [Hip15, Section 7.3] heavily relies on orthogo-
nality with respect to the L?([—1,1]) inner product (u,v) — f_ll u(t)o(t)dt. A closer scrutiny reveals
that the considerations remain valid for a large class of weighted L?-inner products.

We fix a weight function w € C°(]—1,1]) satisfying

w(t) >0 Vte]-1,1] and /11w(t) df < oco. (1.4.122)

B> The weight function w defines an inner product on C°([—1, 1]) through (1, v) — f_ll w(t)u(t)o(t) dt.

Thus we can orthogonalize the monomials {t > tk}, k € Ny, by means of the Gram-Schmidt algorithm
as in [Hip15, Rem. 7.3.19].

Lemma 1.4.123. Generalized orthogonal polynomials [Han02, Sect. 33]

There exists a unique sequence of polynomials (Uy ), <, that fulfills
(i) U, is a polynomial of degree < n: U, € Py,
(i) U, has leading coefficient 1: U,(t) ="+ ---,
(iii) U, is “w-orthogonal” to all polynomials of smaller degree

/_11 w(OUn(Op(H)dt =0 Vp € Py_y .

We used the Legendre polynomials to define the nodes for the Gauss-Legendre quadrature rules, and in
the same vein we can harness the polynomials U, thus generalizing Thm. 1.4.117.
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Theorem 1.4.124. Generalized Gauss quadrature

For every n & IN there exists an n-point (generalized) Gauss quadrature formula with
nodes/weights c;’/w;’, j=1,...,n, such that

n 1
Zw?p(c?) = /1w(t)p(t) dt Vp € Pyy1.
= -

The nodes c}l are the zeros of the generalized orthogonal polynomials U, and the weights are
positive.

The generalized orthogonal polynomials satisfy a 3-term recurrence

U1 (£) = (E+ an)Un(f) + Bully_1(t) , &n,Bu €R.

Explicit formulas for «;, and f, are known only for very few special weight functions w, of course for
w = 1 (Legendre polynomials, see [Hip15, Eq. (7.3.33)]). The accurate and stable computation of these
recursion coefficients for general w is a challenging numerical problem [Gau18; Gau04].

(1.4.125) Quadrature error [Hip15, § 7.1.12]

A natural concept for a quadrature rule Q,, is the

b
quadrature error E.(f) := / f(t)dat — Qu(f)
a
It is all but impossible to estimate the quadrature error for complicated integrands that may be given only
implicitly. Therefore we have to be content with understanding the asymptotic behavior of the quadrature
error for large numbers of quadrature nodes.

Definition 1.4.126. Asymptotic convergence of quadrature rules, cf. [ , Def.

Let (Q), e be a family of n-point quadrature rules for approximating fab f(t)dt. For a given
function f : [a,b] — R the quadrature errors E, (f) are said to

e converge algebraically with rate p, if ~ E,(f) = O(n~F) for some p € N,

e converge exponentially, if  E,(f) = O(g") forsome 0 < g < 1,
forn — oo.

Asymptotically, exponential convergence always beats algebraic convergence

We refer to [Hip15, Rem. 6.1.40] on how to glean qualitative and quantitative information about the asymp-
totic behavior of the quadrature error from errors measured in numerical experiments. We may examine
plots of the quadrature error versus the number of quadrature points:

e Exponential convergence manifests itself through points tracing out lines in semi-logarithmic plots.

e Algebraic convergence leads to points approximately lying on lines in a doubly logarithmic plot.

Experiment 1.4.127 (Behavior of quadrature errors for global quadrature rules)
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We monitor the error of global 7-point quadrature rules on [0, 1], n € IN
e Newton-Cotes rule with equidistant nodes c,f(’ = % k—1,...,n,
e n-point Gauss(-Legendre) rules according to Thm. 1.4.117,

e n-point Clenshaw-Curtis rule, nodes according to (1.4.119).

We apply these rules to different integrands f € CY([0,1]) and plot the quadrature errors for n =

1,...,20.

@ Smooth functions:

f(t) = log(t+1/10)

5\|umerica| quadrature of function log(t+0.1)
10 T T T

1

f(t):m

5\lumerical quadrature of function log(t+0.1)
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—+— Gauss quadrature —+— Clenshaw-Curtis quadrature
10°1° ‘ ‘ ‘ —+— Gauss quadrature
0 5 10 15 20 10715 ‘ ‘ ‘
Fig. 30 Number of quadrature nodes 0 5 10 15 20
Fig. 31 Number of quadrature nodes
Observation:  Exponential convergence for all quadrature rule, Gauss-Legendre rule fastests.

® functions with a (higher order) singularity:

Fig. 32

Observation:

Root f(t) = /t
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|quadrature error|

-
o
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Numerical quadrature of function sqrt(t)

—+— Equidistant Newton-Cotes quadrature
—+— Clenshaw-Curtis quadrature
—+— Gauss quadrature
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Fig. 33

|quadrature error|

f(t) =tlogt

Numerical quadrature of function t*logt

—+— Equidistant Newton-Cotes quadrature
—+— Clenshaw-Curtis quadrature
—+— Gauss quadrature

10°8
10°

10"

Number of quadrature nodes

102

Merely algebraic convergence for all quadrature rules, Gauss-Legendre rule again fastests.

® functions with (higher-order) kinks:
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1 1
oump £(1) — cos?(4t —2) for|t—1[ <1, tent f(£) = 1—|4t—2| for|t—3%[ <1,
P ~]o elsewhere. 0 elsewhere.

0 Numerical quadrature of bump function 109 Numerical quadrature of tent function
10 \ 1 w
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_+ —+— Gauss quadrature

5 5
@ ®
@102 o
= 2
< S
E g
= 1073 F =
—+— Clenshaw-Curtis quadrature
. —+— Gauss quadrature
10 0 ‘ 1 2 107 ‘
10 10 10 10° 10" 102
Fig. 34 Number of quadrature nodes Fig. 35 Number of quadrature nodes

Observation:  We vaguely see algebraic convergence, big impact of presence of kinks.

(1.4.128) Finite smoothness quadrature error estimates

If a quadrature rule is of order q, then the quadrature error does not change when adding a polynomial of
degree < g to the integrand:

En(f) = Ea(f =) Vg€ Py

In addition, the weights of a quadrature rule have to add up to the length of the interval. These two ideas
plus the A-inequality yield the following result.

Lemma 1.4.129. Quadrature error and best-approximation error [Hip15, Thm. 7.3.39]

If Q is a quadrature formula on [a, b] of order q € IN with positive weights, then the quadrature error
can be estimated by

b
[ ) d = Q)| < 200 = alinf{lf — pllwgosy P € Paa) (14130

B> The quadrature error can be estimated by error (in maximum norm) of the polynomial best approxi-
mation.

Therefore polynomial best approximation estimates like [Hip15, Thm. 6.1.15] immediately translate into
quadrature error estimates:
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Theorem 1.4.131. Quadrature error estimate for integrands with finite smoothness

If f € C"([a,b]), m € Ny, and the quadrature rule Q is of order q > m with positive weights,

then

b—a
2

m—i—l(q_

(q

[ fwa-o)| < @+

< C(m)|b —a|™*!

1—_1)7;1)! Hf(m) HL""(]ab

b))
' f(m)H (1.4.132)

(g —1)m

L>(Jab]) ’

with an increasing function C : N — R,

> |Let (Qq)qGIN be a family of quadrature rules on [a, b] with positive weights and Qg have order g. If

f € C™([a,b]) at most, then we expect asymptotic algebraic convergence of the quadrature error
with rate m for g — oo:

/abf(t)dt—Qq(f) — 0™ for q— 0. (1.4.133)

(1.4.134) Quadrature error estimate for analytic integrands

What does Thm. 1.4.131 mean for f € C*®([a,b])? If its derivatives do not grow “too fast” a very fast
decay of the quadratur error can be predicted as the quadrature order g — co.

Now we meet functions whose derivatives do not grow “too fast” and we call them analytic. Analytic
functions are locally “polynomials of infinite degree”, the class of general functions closest to polynomials:

Definition 1.4.135. Real

A function f € C®([a, b]) is analytic, if for every t € [a, b] its Taylor series converges in a neighbor-
hood of ¢:

vt e [a,b]: 3> 0: f(T):i(T%)k

k=0

FRG) Yoo T—t <.

Since power series make perfect sense for complex arguments, we can replace t € IR with z € C and
obtain a complex-valued function defined on a neighborhood of [a, b] in the complex plane C, an analytic
extension of f.

Im C Im C

Fig. 36 Fig. 37

Taylor series for f converge inside disks B> natural extension of f to C

The analytic extension of f will also have locally convergent Taylor series:
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Definition 1.4.136. Analyticity of a function in

Let D C C be an open set in the complex plane. A function f : D — C is called ana-
lytic/nolomorphic in D, if f has a representation as a convergent power series in a neighborhood of
every z € D:

Vze€D:: Tr; >0, (ak)gen, % €C: f(w) = Zak(w—z)k Vw: |z—w| <r;.
k=0

Functions f € [a, b] that possess an analytic extension into a sufficiently large C-neighborhood of [, b]
allow excellent approximation by polynomials, for instance, by their Chebychev interpolants, see [Hip15,
Rem. 6.1.96].

For the reference interval [—1, 1] these particular C-
neighborhoods can be identified as ellipses with foci 0.8 —
—1land1: o8~ 72212
04k o p=1.4|" s \\
Eyi={zeC: lz=1|+|z+1=p+p ! Y ——p=16 ~_ .\
0 =1 1 | _|1 z+1=p+p "} i/ et SN
°T 21((p o 1>) cosor e o [ - Y]
= 153(p—p ")sinf, o, L\ )]
0<6<2m 028 A
N\ ~_ _— /
(1.4137) %4 ~ 0 /
06} R 3
with a parameter p > 0 controlling the size of the | —
ellipse. > | | | | |
&, is often called Bernstein ellipse. —= -1 -05 2 05 i

Theorem 1.4.138. Polynomial approximation of analytic functions, [Hip15, Eq. (6.1.98)]

If f : [—1,1] — C possesses an analytic extension fto C beyond the ellipse &, forap > 0, then

2|&p| 1
: 1.4.1
T (0" —1)(p+p1-2) %%;‘ f(@)], (1.4.139)

pief})fm“f— P||L°°([71,1]) =
for all polynomial degrees m € INj.

Obviously, the bound in (1.4.139) decays exponentially like O(p") for m — oo. By virtue of Lemma 1.4.129
the same bound holds for the quadrature error of a quadrature rule with positive weights and order
g=m+1.

Asymptotics of quadrature error for analytic functions

If f: [a,b] — R has an analytic extension to a neighborhood of an ellipse in C with foci 2 and b,
then the quadrature errors for both Gauss(-Legendre) quadrature and Clenshaw-Curtis quadrature
will decrease exponentially in the number of quadrature points.

Experiment 1.4.141 (Global quadrature of analytic integrand)

We use Gauss-Legendre quadrature (— Thm. 1.4.117) and Clenshaw-Curtis rules for the numerical
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quadrature of

t—log(t+wa), wa€{1.051.01,12,14} on [-1,1].

100 Gauss quadrature of t->log(t+ a)on [-1,1] o CC quadrature of t->log(t+ a)on[-1,1]
T T T 10 T T T
——a-14
a=1.2
102 —t—a=1.1 ]
——a=1.05
10
= = 107
e °
@ )
21010 2 10®
2 2
o o
e] ©
&

S S5 1078
o k=2
ELREES

—t—a=14 10

a=1.2 10
——a=11
—t—a=1.05
1020 | | | 1012 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
Fig. 39 Number of quadrature nodes Fig. 40 Number of quadrature nodes

Observation:  The smaller & — 1, the slower the exponential convergence of the quadrature error

The (main branch of the) logarithm z — log(z) is analytic on C \ R, . Hence the domain of analyticity
of z = log(z + &) is D, := C\]—00, —a] and the range of p for which the ellipse £, C D, shrinks for
a — 1. The bound O(p~") from (1.4.139) will predict “flatter” exponential convergence as « — 1.

Summary: Significance of smoothness of integrand

The maximal smoothness of the integrand determines the quantitative asymptotic behavior of
quadrature errors for increasing quadrature order:

=¥ Integrand of class C" only > algebraic convergence.

=» Integrand has analytic extension > exponential convergence.

(1.4.143) Adaptive global quadrature

The numerical quadrature of analytic integrands by means of Clenshaw-Curtis rules usually results in
(slightly) larger errors than the use of Gauss(-Legendre) quadrature with the same number of nodes.
Nevertheless, the Clenshaw-Curtis nodes (1.4.119) feature an obvious, but interesting nesting property:
n . 2n __ n .
forc; from (1.4.119): ¢ =¢c;, j=1...,n.
Thus, successively, using Clenshaw-Curtis rules with n = 2,4,8, 16, .. .,sL nodes, L € N, to approxi-
mate fabf(t) dt requires only 2 point evaluations of the integrand.

The following pseudo-code implements an adaptive Clenshaw-Curtis quadrature. It assumes that the cor-
responding nodes and weights (c;?, w]”) are available already in a table. The quadrature error is estimated
by comparing results obtained for different numbers of quadrature points. Refer to [Hip15, Section 7.5] for
a detailed discussion of ideas underlying adaptive quadrature controlled by specifying a relative tolerance
rtol > 0 and and absolute tolerance atol > 0.
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Pseudocode 1.4.144: Adaptive Clenshaw-Curtis quadrature

n:=3; {Startwith 3 nodes}
y[1] = f(c):y[2] = f(c3); yg] F(e3);

I:=wly[1] + wiy[2] + w3y[ ; {evaluate quadrature formula}
repeat {main adaptive loop}
Iold =1

n:=2%(n—1)+1; {nextnumber of nodes}
y[n] =y[(n—1)/2+1];
for j:=(n—1)/2 downto 1 do
y[2xj—1] =ylj]; {reuse previous function values}
y[2xj] = f(c3;); {additional f-evaluations}
endfor
I:= Y _,wlylk]; {evaluate quadrature formula}
e:=1[1—-1 {estimate for quadrature erronr}
{Check termination criterion based on absolute and relative tolerance}
untii (e <rtol-I or € <atol oOr 7 > Nmax);
return(/);

Experiment 1.4.145 (Adaptive Clenshaw-Curtis quadrature)

We test the algorithm of ?? for a family of quadrature problems with a “nearly singular” integrand:

/if(t)dt , f(t) =log(t+a) on [-1,1], a>1.

70 AdagtiveC.—C.qL‘Jadratureof‘Iog(t+ ‘ a) 102
*
60 F o+ 1104 — —
. R <4 For rtol = 1072, rtol = 10°°, total
sl e . 1106 number of f-evaluations using the algorithm of
2 o z Code 1.4.144.
§40r * {10° 3
E 5
Tl * 100 2 The adaptive strategy triggers the use of a
= * g higher-order quadrature rule, whenever the
g 20 L 0" & proximity of the singularity might affect accu-
racy.
10 + ¥ ok K X X X KX KX * K K 1107 acy
* ok ¥k k¥
0 : : ‘ ‘ 10716
1 1.2 1.4 1.6 1.8 2

(1.4.146) Tensor-product quadrature, cf. [Hip16, Ex. 3.7.152]

Nested quadrature formulas can be used to integrate bi-variate functions over tensor-product domains.
Given a quadrature formula

= fwyf(c;?) ~ /Zf(t)dt, fec’(-1,1]),
j=1 -

1. Boundary Element Methods (BEM), 1.4. Boundary Element Methods in Two Dimensions 121



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

we can use it to approximate integrals over [—1,1]%: for F € C°([—1,1]?)
1 1 n 1 n n
/_1/_11:(5,15) dtds ~ Z;w;l/_lp(cy,t) di~ Y w! Y wfF(c] ).
j=1 j=1 k=1
Thus we have found the derived two-dimensional tensor-product quadrature formula
1 1 n o n
/ / F(s,t)dtds =~ ¥ ¥ w;?wZF(c?,c?) =: Quxn(F), (1.4.147)
-1/-1 j=1k=1

with nodes (c}“, ;) € R?, and weights w;?wZ, k=1,...,n.

This approach can easily be generalized to even higher dimensions and the combination of different
quadrature formulas with different numbers of points in different directions.

If the underlying one-dimensional quadrature rule has order g, then Q,,,; will be exact for tensor product
polynomials of degree < g — 1.

Definition 1.4.148. Tensor-product polynomials

The space of tensor product polynomials of (separate) degree p € IN in d dimensions is

TPP(]Rd) = {x — 6]1(2(1) """ qd(xd), qi € Pp,i =1,.. ,d} .

For tensor-product quadrature formulas we define their order relying on exactness on spaces of tensor-
product polynomials:

1 1
orderof Q, =m = Quxn(q) :/ / q(s,t)dtds Vg€ TP, 1(R?).
-1J-1

As in one dimension, see Lemma 1.4.129, quadrature error and best approximation error in 7 P, (IR?)
are closely related: If the one-dimensional quadrature rule Q,, is of order 11, then

Quscn(F) — /_11 /_11 F(s, ) dtds

- 2.
= (1 + (Z |w]n|) ) inf{||F — P||L°°([—1,1]2)' P& TPy 1(R?)}
k=1

if Q, has positive weights.

Without going into details we point out that nested interpolation and approximation estimates make it
possible to exploit Thm. 1.4.138 also in higher dimensions:

If both {t — F(s,t)} and {s — F(s,t)} allow an analytic extension to an ellipse neighborhood
of [—1,1] in C independent of the other variable, then the quadrature error of Q,,»,,(F) will decay
exponentially for n — oo, provided that Q,, has positive weights and order ~ n.
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1.4.3.4 Matrix Entries by Quadrature

We admit a general closed connected curve complying with Ass. 1.2.6: It can be split into M € N edges
I'j,j=1,..., M, each available through a parameterization vy; : [~1,1] — I';, see also (1.4.15). Every
parameterization fulfills

Jc > 0: H'yj(t)H >c Vte[-1,1],j=1,...,M. (1.4.150)

(1.4.151) Data structure for general parameterization

When the use of a parameterization of an edge or of a single panel in a code is mentioned, one should
read this as the availability of an object of the following type.

C++11 code 1.4.152: Model class representing a smooth parameterization (incomplete list-
ing), =*GITLAB

1 |class CurveParam

2 |{

3 public:
" /)
5 // Querying the parameter interval

6 std :: pair <double ,double> ParameterRange(void) const;
7 // Accessing a point (t) on the edge/panel

8 s operator () (double t) const;

0 // Retrieving the derivative 4(t), a tangent vector
10 s Derivative (double t) const;

1 /)

The parameterizations of edges are supposed to be “maximally smooth”:

Assumption 1.4.153. Analytic parameterization

All parameterizations 7y possess an analytic extension (— § 1.4.134) beyond [—1, 1].

Parlance: When, in the sequel, using the term “analytic” for a function of one or two variables on a bounded
interval, we actually mean the possibility of analytic extension to an ellipse neighborhood of that
interval, cf. Thm. 1.4.138.

Ass. 1.4.153 is obviously satisfied, if ¢ is a polynomial and for many function systems (NURBS) used in
CAD modeling.

We endow T" with a mesh G = {7y,..., tn} according to Def. 1.4.16. For each panel t € G the
relevant parameterization induces a local parameterization vy, : [—1,1] — 7T as defined in (1.4.36).

Writing k(x, y) for the kernel of some boundary integral operator (single layer BIO V or double layer BIO
K, K’), this section is devoted to the approximate computation of the entries of the interaction matrix

/n /ﬂ k(x, )bl (y) bre(x) dS(y) dS(x) , i€ {1,...,Q}, (1.4.154)
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where b}t, ceey bg are the local shape functions (— § 1.4.32) associated with the panel 7.

| (1.4.155) Transformation to reference interval

The first step in the computation of (1.4.154) employs transformation to the reference interval T =]-1,1].

[ [ )b () b () dS () dS ()

T 7!

1 1
= [ [ ka7 )T OF ) 1500 |7x()] dtds, (1.4.156)
-1-1

with reference shape functions b’ ' as defined in (1.4.38).

We have assumed that -y, and v, are analytic with , ||§ | and ||¥,| bounded away from zero on
[—1,1]. Moreover, for customary boundary element spaces like 82(9) or S;l(g) the reference shape
functions are simple polynomials, cf. (1.4.39) and (1.4.40). Thus the task amounts to computing inte-
grals

11 R
[ [ k(s t)E(t) G(s)dtds , k(s, t) :=k(y(s), v, (F)) , (1.4.157)
“1-1
for analytic functions F,G : [—1,1] — R. Note that the kernel k might inherit the singularities of k, if

7T N 7t’ # @ (touching/overlapping panels).

(1.4.158) Single layer BIO: Identical panels

We consider k = G? and 7t = 7/, in which case (1.4.157) becomes

1 1
://logH'yﬂ — (D] F(H)G(s) dtds . (1.4.159)
—-1-1

@ Using calculus for log we rewrite the kernel:

_ 2
21og||7,(s) —v.(t)| = log<”’y”(2 — ;y),zr(t)H ) +2logls—t/. (1.4.160)

We examine the first term and, in particular, the “difference quotient” in the argument of the logarithm,

||rY7r(S) — 'Yn(t)Hz
S(s,t) = (512 fors #1t,

. 2
1@l fors=t.

(1.4.161)
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In this formula we have already filled the gap at s = t with the norm of the derivative 4.

< Plot of S(s, t) for the semi-circle

AT
25+ o ~
fa \\ o
£ o LLge =
i i k
i /// \\ \\
‘ 7 « \
IR 4 \ : cos(rth)
2 i s W 4 o ) .
y v 2 1 ’y(t) = {sin(ni) ’ 1 S t S 1.
S | 4 < 4 2
ALh i s L y
« i -4 . Y
{ 4 S L
15 § y A
i y \.__-\\ The plot shows a perfectly smooth function nicely
: b |
| 4 1 bounded away from zero.
[ 4
1
0
-0.5 1.1 -

0.5
t
Actually, we find by means of Taylor expansion that for the analytic function -y, the difference quotient
S(s, t) is still analytic in both variables s,t € [—1,1]. Hence, since ||¥,.(t)|| > ¢ > 0on [—1,1], also

Fig. 42

—s|F()G(s) dtds =L+, (1.4.162)

(s,t) — log D(s, t) is analytic, and
11
(@dﬁs+//kgu
-1-1 singular

1 1
1://gmgﬂ&mch

-1-1 analytic
splits into an integral with an analytic integrand and one with a singular. Thus,

an exponentially convergent approximation of I; is provided by tensor-product Gaussian quadrature

(— §1.4.146).
Idea: Move location of singularities of integrands to a coordinate axis by an affine transfor-

@ mation of the integration domain.
In the second integral in (1.4.162) the singularities of the integrand are located at the diagonal {s = ¢} of

the square. In the spirit of the policy just described, we tackle I, by the linear transformation
1
{ 1 1} H : (1.4.163)

= (=00 T = [=elil=214s

w t

125
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w
L
/\ t
1] 1
il z i) 1 °
IT
—1
Fig. 43
Then apply the transformation formula for integrals over D C IR? [Str09, Sect. 8.5]
/ F(x)dx = / o f(@(3) | detD@(3)] 4, f inegrable on D (1.4.164)
D)
L —2/ log|z]F(%( —2))G(L(w + 2)) dzdw (1.4.165)

The integral over the square I1 := d)‘l([—l, 1]?) (left in Fig. 43) is split into the left and right half and
then we add the contributions

analytic in (z, w)

12—2/10g /F%(w—z))G(%(w—l—z))—F(%(w—l—z))G(%(w—z))dwdz. (1.4.166)
—2+z

4

. e .
analytic as a function of z

The inner integral is amenable to standard Gaussian quadrature. Then we face an integral of the form
f02 log z f(z) dz with an analytic function f : [0,2] — R.

Generalized Gaussian quadrature (— § 1.4.121) with weight log(z) can approximate I, with expo-
nential accuracy.

(1.4.167) Single layer BIO: Adjacent panels

We assume 7t, 7’ € G, T # 7/, TN’ = {p}. Writing |7t|, | 7’| for the length of 7 and 7/, respec-
tively, in this § we will make use of a local arclength parameterization
[for 7T]: k:[0,||]] > 7, |x(t)||=1 Vtelo,|x|],

for @k [0, || » 7, K (1) =1 Vielo|n]]. (14.168)
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Thus, after transformation to the parameter domain, the entries of the interaction matrix for (7z, 7t’) are
given by integrals

||
o\:.

/ log|[x(s) — «'(£)|| F()G(s) dtds , (1.4.169)
0

with suitable univariate analytic functions F and G.
—k/( —k(O)

Uniform cone condition:

Lipschitz property of I' entails lower bound on angle enclosed
by 7t and 7r’:

«(0) -« (0) <c, < 1. (1.4.170)

< The panels cannot invade the yellow cone.

Fig. 44

@ Taking the cue from (1.4.160) we split the kernel according to

L[, l(s) (1)) 2, p
log||x(s) —«'()]| = 5 (log 2o Tl ) ). (1.4.171)
By Taylor expansion around s = t = 0:
x(s) —«'(t) = €(0)s — &' (0)t + O(s* +*) for s,t=0, (1.4.172)
B |ic(s) — &/ (t) || = s>+ £2 — 25tic(0) - &'(0) + O(s* + £*) for s,t~0. (1.4.173)

@ The prominent presence of s> + t> suggests that we introduce polar coordinates (r, 9),
see [Hip16, § 2.4.39], according to

s=rcosgp , t=rsing,

with 7, ¢ in a suitable range that makes (s, t) cover D := [0, |7|] x [0, |7’|].

In polar coordinates the result of the above Taylor expansion reads

|x(s) — 1c’(if)H2 = r%(1 —sin(2¢)x(0) - «'(0) + O(r?)) for r —0.

B> Dueto (1.4.170) we can take for granted that the logarithm of

| (r cos ) — ' (rsin ¢) || |
D(r,¢) = r2 (s t) #(0,0), (1.4.174)
1—sin(2¢)i(0)-&'(0) >1—¢c, ,ifr=0,

is analyticon D := [0, |7r|] x [0, |7r']].
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. < Plot of D(r, ¢) for the
5 T cos(t)
b i = | . <t<Z
& 08 .y (s) lsm(t)} » 0st<7,
. \\_(,_,,, ———————— ) ::Tj::'j: roy |1t
02 g K(t)_ |: 0 }/ 0<t<T1.

The graph looks perfectly smooth, hinting at a benign
. dependence of D on the polar coordinates (7, ¢).

t (r sin(¢)) 0 1

o gz 04 06 08
Fig. 45 s (r cos(¢))

Analogously to (1.4.162) the integral can be split into two summands with “nice” and “nasty” integrands,
respectively.

J= %/rlog(D(r, ®)) F(tcos ¢)G(rsin gol drde + /rlong(s)G(t)J drdg (1.4.175)

D analytic D singular

The first summand is amenable to tensor-product Gauss quadrature The domain D of integration has to
be decomposed in two triangles for integration in polar coordinates.

7| ||
t //log\/s2—|—t2F - +
‘ﬂ/_l singular
w ||/ cos(p) analytic in (7, ¢)

/ / rlogr j—“(r sin ¢)G(rcos @) drde +
0

q) J
,3 analﬁg in @
(\\ N 5 /2 |7/ sin(g) analytic}i\n (t, ¢)
Fig. 46 171—| / / rlogr F(rsing)G(rcos ¢) drdg .
tana = |7'l/|x|, tan B = |7l/|7| « 0 )
analy?ﬂ: in @

This suggest that we use

4 generalized Gaussian quadrature formulas (— § 1.4.121) with weight r — r log r for the inner
integral,
4 standard Gaussian quadrature for the outer integral.

(1.4.176) Double layer BIO: Coinciding panels

In the case 7t = 7t/ (local analytic parameterization «y,. : [—1,1] — 77), for the double layer BIO K we
have to approximate integrals of the form
t
— / / V() = 1= (t)) - (v ; =) £1G(s) dtds | (1.4.177)
H'yn — Y= ()]
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< plot of

('Yrr(s) - rYn'(t)) ’ n(’)’n’(t))
||77r(s) - 'Yn(t)“?-

for 7t a semi-circle of radius 1.

(s, t) —

S(s.b)

We see the graph of a perfectly smooth function!

Fig. 47

To understand, why the integrand in (1.4.177) is smooth, note that n(7y . (t)) - 4, (t) =0forall =1 < t <
1, because 7, (t) is tangential to I" in the point 7. (). Thus, by power series expansion of the analytic
function +y . for |s — t| sufficiently small

ﬁﬁ@)—WnU»'MWAO):<Z%@_
]:
2 i

]—O

D)) - nlre(®)

S ()

J/

analytic functlon of (s, t)
By the same arguments
7,2(s) — 7. (D)]|* = (s — t)* - { smooth function > 0 of (s, 1) } .
. (S t) = (77‘((5) - 'Yrr(t)) 'n(rYn'(t))
’ 2
||rY7r(S) o 'Yn(t) H

Hence, the integrand in (1.4.177) is analytic and we can achieve

is analytic in (s, t) !

exponential convergence of the quadrature error by standard tensor-product Gaussian (—
§ 1.4.146) quadrature of (1.4.177).

(1.4.178) Double layer BIO: Abutting panels

We discuss the situation of § 1.4.167 for the double layer boundary integral operator K. As earlier, we
assume that the panels 7r, 77’ € G have in common exactly one point 77 N 7r/ = {p} and we make use
of the arclength parameterization (1.4.168).

[for 7]: k:[0,|7|]] > 7, |&t)|]|=1 Vie|0,|r|],

0 1.4.168
[for 7r']: k' [0,|7|] =", || (H)]|=1 Vtelo]|x]]. ( )

We are concerned with the numerical evaluation of integrals in the parameter domain of the form

7| |’

:// “ () - n(K/(t))F(t)G(s) dtds . (1.4.179)
0 0 K

(1)
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We can no longer count on the regularizing effect of orthogonality as in § 1.4.176.

@ Inspired by the success in § 1.4.167, we switch to polar coordinates (7, ¢) for the domain
in integration: s = rcos ¢, t = rsin @.

Then, since x(0) = x’(0) = p, Taylor expansion around s = t = 0 yields for 0 < s, t sufficiently small

x(s) — Z ]+ 1)1 ( U+1)(0) cos*t g — /U1 (0) sin/*! go) =rb(r,¢), (1.4.180)

with a (componentwise) analytic function b : Ry x [0,271] — IR? that satisfies b(0, ¢) # 0 on the
domain of integration, compare (1.4.173). Thus, in polar coordinates

(x(s) =#'(1) -n(x'()) _ 1 b(r,g) n(x(rsing)) .
IxG)—wOF T b))

analyhc in(r, )

Thus we can achieve a cancellation of the singular term 7 — r~1 by the metric factor (dtds — rdrds)
when integrating in polar coordinates, see Fig. 46 for the meaning of «, 3,

|| 7| a ||/ cos(@)
(x(s) =K' (6) - n (1) b(r,g) - n(x'(rsing)) |
0/ 0/ COEIO AR 0/ 0/ b0, 9) "

n/2 |7’/ sin(@)

/ b(r,go)-n(;c’(rsin(p))d
/o b(r, )]

rde .

For the resulting two integrals

standard tensor-product Gaussian quadrature yields an exponentially convergent numerical approx-
imation.

Remark 1.4.182 (Stable evaluation of integrands)

The functions (s, t) — S(s,t)/D(s,t) introduced in (1.4.161)/(1.4.174) and (7, ¢) — b(r, ¢) are defined
as

2
S(s,t) = ”7"<(Z - z)g_f(t)” fors #t, (1.4.183)
/ 2
D(s, 1) = ¥ 22+t2(t>‘| for s>+ >0, (1.4.184)
b(r, g) = <SP ;K/(rsm ?) for r>0. (1.4.185)

A Evaluating these expressions for s ~ t, s> + t? ~ 0, or r =~ 0, respectively, incurs cancel-
lation.

As explained in [Hip15, Section 1.5.4], cancellation is a massive amplification of roundoff errors due to sub-

tracting numbers of almost the same value. We have to follow the recommendation of [Hip15, Ex. 1.5.65]

and
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@ use truncated Taylor expansions of x, x’ to avoid cancellation !

V() = V(D) & (s — D7 (L(s + 1) for |s—t] < VEPS,
w(s) —«'(t) ~ «(0)s —«’(0)t for r?=s*4 > <EPS.
(EPS = machine precision, see [Hip15, Ass. 1.5.32])

B> Stable evaluation by means of the expressions

2
S(s, t) ~ H%@@H))H for |s—t < VEPS, (1.4.186)
N , , 2st > 2
D(s,t) ~1—%(0) - &'(0) 2. for s*+1t> <EPS, (1.4.187)
b(r, p) ~ «(0) cos ¢ — «'(0) sin @ for r < VEPS. (1.4.188)

(1.4.189) Treatment of disjoint panels

Now we discuss the situation 77 N 7t/ = @. We use the standard local parameterizations of 7, 7t/ over
]—1,1] from (1.4.36). In principle we face only integrals

1 1
//Est G(s)dtds , K(s,t) = k(y(s),7.0(1) (1.4.157)
—-1-1

with analytic integrands, because the singularity of the fundamental solution is avoided. However, if 7T
and 7t/ are very close,

the proximity of a singularity will be “felt” by Gaussian quadrature and (exponential) convergence (in
terms of the number of quadrature points) will deteriorate, see Exp. 1.4.141.

Thus we have to link the number of quadrature points to the inverse relative distance of panels

max{|7|, | 7’|}
dist(7t; /)

p(m, ') := , dist(rr; ') = inf{||x—y|,xe T,y 7'}. (1.4.190)

The following heuristic (supported by the analysis of [SS10, Sect. 5.3.2]) may be implemented:

For (1.4.157) use n x n-point tensor-product Gaussian quadrature on [—1, 1]2with
/
n:no-max{l,l—i—Clog(p(n—Ui))} , (1.4.191)

where 71 is a small fixed number, ny € {3,4,5}, and C, > 0 are constants, 3 < 77 < 1,
C =72

Thus, in particular,

it 7 dist(rr; 7') > max{|m|,|7c'|} then use fixed ny x ng-point quadrature .
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1.5 Boundary Element Methods on Closed Surfaces

The first-kind and second-kind boundary integral equations stated in variational form in Section 1.3.5.1/Section 1.3.5
and Section 1.3.6 hold for both d = 2, 3, if based on the respective fundamental solutions. The previous

section gave a detailed introduction into the building blocks and algorithmic details of Galerkin boundary
element methods in 2D. It is not surprising that for d = 3 similar principles, constructions and algorithms

will apply. of course, the paradigm of Galerkin discretization elaborated in § 1.4.6 remains unchanged.

Also the other ingredients of boundary element methods remain relevant for surfaces, with slight adapta-
tions to the additional dimension:

4+ meshes, see Section 1.4.2.1 for the 2D case, attain much greater flexibility and will be discussed in
Section 1.5.1,

4 boundary element spaces, for 2D introduced in Section 1.4.2.2 will again turn out to be “2D finite
element spaces on surfaces”, see Section 1.5.2 below,

4+ shape functions, both global and local will become more complicated than those presented in Sec-
tion 1.4.2.3, but still comply with the same design pattern, see Section 1.5.2.2,

4 parametric construction as presented in § 1.4.35 will remain a crucial tool for defining and handling
shape functions.

4 panel-oriented assembly will exactly agree with its 2D counterpart from Section 1.4.3.1.

Because of the similarities some aspects of boundary element methods in 3D will be treated only briefly
with reference to further explanation given in Section 1.4. Also many concepts will be borrowed from
Lagrangian finite element methods in 2D, see [Hip16, Section 3.5] and [Hip16, Section 3.6].

1.5.1 Surface Meshes

If O C R3, then T is an orientable two-dimensional manifold, a surface embedded into three-dimensional
Euclidean space R3.

(1.5.1) I' with smooth faces

Ass. 1.2.8 should still apply: T' is a curved Lipschitz polyhedron and can be partitioned into M € IN
faces

FZT1U”‘UTM , Flﬂl“]:® for l7é],
of which each has a C2-parameterization

v : I —=T; , II C R? aplanar polygon .

X

Fig. 48
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(1.5.2) Planar triangulations [Hip16, Section 3.5.1]

Definition 1.5.3. Triangular planar mesh/triangulation, cf. [

A triangular mesh/triangulation M of a polygon IT C IR? is a finite collection {Ki}fil, N € NN, of
open non-degenerate triangles
(A) TI = J{K;,i=1,...,M} (covering property),
(B) KiNK;=® <« i#]j (partition property)
(C) foralli,j € {1,...,M},i # j, the intersection K; N K]- is either empty or a vertex or edge of
both K; and K;.

Fig. 49
A triangular mesh/triangulation Inadmissible “hanging nodes”

For the notions of triangles, edges, and vertices as basic constituent parts of a triangulation we appeal to
geometric intuition. The triangles of a mesh may also be called cells.

Putting it simply, surface mesh is the image of compatible triangulations of the paramter domains 11; C
IR?under the parameterizations 1.

Definition 1.5.4. Triangular surface mesh/surface triangulation

A triangular surface mesh/surface triangulation G is a partitioning

r=mmu---Umy , 7T1'ﬂ7'(]'2® for i;é]',

such that
(i) every panel 7t; is contained in exactly one face,
(i) the pre-images of the panels contained in I'; under the parameterization Vi form a triangula-
tion M of I1; according to Def. 1.5.3,
(iii) forall 7r;, 7t; € G the intersections 7T; N 7T are either empty, a common vertex, or a face of
both panels.

As usual, we identify a surface triangulation G with its set of panels. It should be evident what is meant by
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edges and vertices of a surface mesh. The vertices may also be called the nodes of the mesh.

% Notation: V(G) = set of vertices (nodes) of G
E(G) = set of edges of G

Fig. 51

ltem (iii) ensures that the surface triangulation G is
compatible across the edges separating the faces of
I': also there hanging nodes cannot occur.

< Surface triangulation covering a polyhedron

| Remark 1.5.5 (Surface meshes as traces of volume meshes)

We could also have introduced surface meshes as restrictions of tetrahedral finite element meshes of the
volume domain () to the boundary I

Conversely, we may assume that for every surface mesh G there is a generalized tetrahedral mesh M of
() according to [Hip16, Def. 3.5.2], possibly with curved faces and edges, such that G = M|.

Remark 1.5.6 (More general surface meshes)

Of course, we could have also relied on more general meshes of the parameter domains in our definition
of surface meshes, like quadrilateral meshes or hybrid meshes, see [Hip16, § 3.5.4]. We restrict ourselves
to triangular surface meshes just to simplify the presentation.

1.5.2 Boundary Element Spaces on Triangulated Surfaces

1.5.2.1 Definitions

(1.5.7) Polynomials in IR?

Polynomials on I' are again defined via their pullbacks * to parameter domains II; C. The definition of
the pullback Def. 1.4.19 carries over and what is a polynomial on 1—[]' is clear from the following definition
ford = 2:
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Definition 1.5.8. Multivariate polynomials

The space of d-variate polynomials of (total) degree p € Ny is

Pp(RY) = {x e R = )" cax®, cp € R} .

wENG, |a|<p

. . 2 _ LS. %)
= d=2: Py(R%) = Z Caymn X1 X5%, Cayan ER 3,
0(1,0(220
aqptan<p

forinstance  P,(IR?) = Span{1, x1, x2, X3, x3, x1X2 }.

From [Hip16, Lemma 3.5.11] we learn that

dimP,(RY) = (PP} B dimP,(R2) = L(p+2)(p+1) . (15.9)
P p p 2

| (1.5.10) Piecewise polynomials on triangulated surfaces

A function f : T'; — R is called a polynomial of degree < p on the face I, if its pullback 'y;f is a

2-variate polynomial of degree < p on I1; C IR2. Thus, the definitions of piecewise polynomial spaces for
Section 1.4.2.2 remain unchanged.

59(G) = {v € CON) : 4i(vl,) € PH(RE), ¥ e g, mCT;, j= 1,...,M} . p>1, (1511

5,1(G) = {UELZ(F): Yi(v],) € Pp(R?), ¥r € G, m C T, j:1,...,M}, p>0. (1512

The embeddings S9(G) © CL,(I) € H2(I), S;(G) c CO(I) € LX(I) ¢ H2(I), stated in
Cor. 1.4.23 remain true.

Theorem 1.5.13. Dimensions of BE spaces on triangulated surfaces

+ dimS)(G) =tV(G) + (p—1)-4E(G) +3(p—D(p—-2)-4G, p>1,
+ dimS, ' (G) =#G5(p+1)(p+2), p>0.
(negative terms to be set to zero!)

BE spaces from FE spaces

Let /\/l]- be the triangular mesh of I1; inducing g|rj. Then

Sy(M;) = 7} 5p(9)

I i=1,...,M (1.5.15)
J=141..., , 5.

Sy M) =778,
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where Sg(/\/lj) is the p-th degree Lagrangian finite element space on M; as defined in [Hip16,
Def. 3.6.2], and Sp‘l(/\/l) the space of M ;-piecewise polynomials of degree < p.

The relationship (1.5.15) permits us to transfer most concepts from finite element spaces in 2D to surface
boundary element spaces. In particular, this will be done in the next section.

Remark 1.5.16 (Nodal interpolation operators)

The relationship expressed in (1.5.15) permits us to transfer most tools from the world of finite elements
to boundary elements.

Let /\/l]- be the preimage of gyrj under Vj- For the Lagrangian finite element space Sg(Mj) there are

nodal interpolation operators Ig’j . CO (ﬁj) — Sg(Mj) defined through interpolation in special interpola-
tion points. Their locations for different p in 2D are described in [Hip16, Ex. 3.6.3] and [Hip16, ??]. Then
nodal interpolation operators I, : C°(T') — S)(G) can be defined by

o ._ (—1\x _(0j

'P’rj = (1) el o (1.5.17)
This amounts to “piecewise polynomial interpolation in the mapped interpolation nodes”. For p = 1 the
interpolation nodes coincide with the vertices of G.

Remark 1.5.18 (Approximation of surfaces)

3D boundary element codes often resort to piecewise polynomial approximation of I', analogous to what
was done for curves in Section 1.4.2.5.

Given a triangular surface mesh according to Def. 1.5.4, we define approximate piecewise polynomial
parameterizations by

~ 0,
Fp= 1oy 1 = R, (1.5.19)

where the nodal interpolation operator Ig’j acts on the three components of Vj- Then we obtain the
approximate surface

1.5.2.2 Shape Functions

(1.5.20) Global shape functions

Everything from Section 1.4.2.3 can be adapted to triangulated surfaces and the associated boundary
element spaces 82(9) of continuous, and Sp_l(g) of discontinuous piecewise polynomials. Again, we
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can find bases of the boundary element spaces consisting of locally supported basis functions associated
with geometric entities of the surface mesh G; they satisfy the properties § 1.4.26, § 1.4.26, and § 1.4.26
from 89 and are called global shape functions (GSF). From [Hip16, Ex. 3.5.16] we recall

Fig. 52 Fig. 53 Fig. 54

Support of vertex-associated  Support of edge-associated basis Support of panel-associated basis
basis function function function

(1.5.21) Local shape functions
Restricting global shape functions to individual panels we obtain local shape functions (LSF):
{bL, ..., b3 = {bn],.: bn € BN} \ {0} forsome Q= Q(m) € N. (1.4.33)

Also (1.4.34) remains true: If {bL,..., b3} is the set of local shape functions of S)(G) or S, 1(G) fora
panel 7t C I'; then

Vmeg, mCIj 'yj(Span{b}t,...,bg}) = Py(R?) . (1.4.34)

(1.5.22) Reference shape functions |

The role of the reference interval T :=]—1,1[in 2D is now played by the “unit triangle” K:= < [8] , [(1)] . [?] >
see [Hip16, Section 3.8.1].

For a panel 7t C I'; the local parameterization vy . is built by a two-stage procedure:

O Find the unique affine mapping from K to the triangle K := 'yj_l(n'):

= o] [17 To 2 a3
v £ (L LLED ok e
For K = (a',a? a’): T
2 1 3 1
a2 —al a3 —a
Fr= 1|3 "1 71 "1  te=al.
S e | B g
o A~
Fig. 55 '1 X1 az

® Map from K to 7t through the paramterization Vi <
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These two mappings can be concatenated into a local parameterization of the panel 7t:

~ Yi N
[ K K—=m |, yg=70®:K—=m. (1.5.23)

The pullback of shape functions to K yields reference shape functions:
V=95, j=1,...Q. (1.4.38)

For the standard boundary element spaces 82(9) and Sp‘l(g) on a triangulated surface the reference
shape functions can be chosen independent of the panel 7t:

e For sp—l(g), p > 0:
Any basis of PP(IRZ) can supply valid reference shape functions.
e ForS)(G),p > 1:

Reference shape functions € PP(IRZ) as Lagrange polynomials for suitable interpolation
nodes on K, see [Hip16, Ex. 3.6.3] and [Hip16, Ex. 3.6.7].

In both cases  Q = dim P, (IR?) = 3(p +1)(p +2).

The reference shape functions in the lowest-degree cases are straightforward:

Example 1.5.24 (Reference shape functions for So_l(g))

The space Py (IR?) spanned by the reference shape functions has dimension 1 and, therefore, for 80_1 (9)

Example 1.5.25 (Reference shape functions for SY(G))

The reference shape functions space the space 771(]RA2) of dimension 3. The reference shape functions
are the barycentric coordinate functions A1, Ay, A3 on K

~ 0]
bL(t) = A(t) :=1—t; — t, [associated with vertex olb
:1:
P2(t) = Mo (t) := 1 [associated with vertex 0 1,
:0:
PP(t) = A3(t) := 1 [associated with vertex 0 l, -
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1.5.3 Assembly of Galerkin Matrices

The entire discussion in Section 1.4.3.1 including Code 1.4.82 carries over to surface boundary elements.
Therefore we completely focus on the computation of entries of the interaction matrices of two panels
t, r' € G by means of quadrature-based techniques, that is, we present the subject of Section 1.4.3.4
for d = 3. As in Section 1.4.3.4 we assume maximally smooth parameterizations, compare Ass. 1.4.153.

Assumption 1.5.26. Analyticity of local parameterizations

We assume that the local parameterizations vy, according to (1.5.23) can be extended analytically
(— Def. 1.4.136) to an ellipse neighborhood of [0, 1] in both variables and independently of the
panel T € G.

Also due to the different nature of singularities in the fundamental solutions

1 .

—5-logllx —y|| ,ifd=2,

G (x,y) = {f” ) (13 (1.2.44)
47t [|lx—y|| ’ ’

the technical details of the computations will be very different for the different dimensions. In this section
we exclusively focus on the single layer BIO V, that is, the evaluation of integrals of the form

[ # j i X X
Ii= /ﬂ/ﬂ ey P (1) V() dS(y) dS(x)

for pairs of panels 7r, 7’ € G, where b];T are local shape functions, see § 1.5.21.

(1.5.27) Transformation to reference triangle, cf. § 1.4.155

By pullback to the reference triangle K:= < [8} , [é} , [ﬂ > we obtain

. )
= /I2 /I2 s =y F(D) Gls) deds, (1.5.28)

with smooth functions F,G € C“(I?) that possess an analytic extension beyond K in each variable.
The domain of integration in (1.5.28) is four-dimensional, a tensor-product of two triangles, the convex
polyhedron.

KxK= {[Sl,Sz,tl,tz]T € R*: t1.t,51,5¢ >0, 1+t < 1,51+ 57 < 1} .

| (1.5.29) Coinciding panels, compare § 1.4.158, [SS10, Sect. 5.2.1] |

We deal with the situation & = 7/, y,, = v,» =: 7 : K — m.

@ We observe that in (1.5.28) the integrand has a singularity for s = ¢, which suggests the
following change of coordinates [SS10, Sect. 5.2.1].

D) - [-bi e
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This is a volume preserving (det = 1) linear transformation and it converts (1.5.28) into

1 a = o~ ~ g~
=1/, 7 =G =3y LEZ2)C(8) dzds, (1.5.31)

analytic in (3, 2)

where D C R* is the transformed convex polyhedron

(1.5.32)

S5 5 5 $1,52>0,51—-21>0,5—-2, >0
D:{[51152121122]T€R4: 1,92 et 1 , 52 ) y '

B —|-/S\2—(/Z\1 —|—22) <1

Now the singularity has been isolated at Z = 0, where the integrand behaves like O(||Z]|") for Z — 0.

@ Asin § 1.4.178 for the treatment of O(||Z]| " )-type singularities switch to polar coordinates:
Z1 =rcos @,z =rsing, r > 0.

To understand the behavior of the integrand we perform two-dimensional Taylor expansion around z =
0:

Then we plug in polar coordinates and get

~ =2 T
B(s,2) == [v(e) == _ [C.OS(P} Dy(3) "Dy (s ){C sgo] +r-{analyticin (5,7, ¢)} .

||z||2 sin ¢ sin ¢

Since vy is a parameterization, the smallest eigenvalue of the Gram matrix D'yT D+ must be uniformly
positive on K. Therefore, for sufficiently small r := ||Z||, B(S, %) will be positive, and

(5,2) € D+~ /B(5,Z) e RT

will possess an analytic extension beyond D. Hence, we have

1—// B BS)Z dzds // )dsdrdgo, (1.5.33)

analytic in D

because the volume element dzds = rdrd¢ cancels the denominator r = ||Z||. We have achieved an
integral with an analytic integrand, on a complicated domain, however.

@ Split D into six four-dimensional simplices with a vertex in 0 [SS10, p. 309]!

D={-1<21<0,-1<z,<72;, -2 <51 <1, -2, <5 <5}
{*1<21<O,/Z\1<22<0,21 </S\1<1,—/Z\2<§2</S\1—|-21—22}
{-1<21<0,0<2, <1421, 2021 <51<1,0<5<51+721 — 2}

{0<z1 <1, 142 <% <0, -2 <8 <1-2, -2 <% <5} (1.5.34)

CCcCccCccCcc

{0</Z\1<1,0<22</Z\1,0</S\1<1—21,0</S\2<§1}
{0</Z\1 <lL,z1<z<1,2—71 <§2<1—/Z\1,O,/S\2<21—22+§1}
::D1UD2UD3UD4UD5UD6.
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We have arranged the inequalities defining the sets D; in a way that removes the dependence of the
z-coordinate froms. So we can rewrite

D={zec /A, -2 <51 <1, -2, <5 <51}
{zey,Z1<51<1, -2 <5 <51+721 — 2}
zeEN, 2p—21<51<1,0<5<84+21—2»
{ ) (1.5.35)

{Zzely, —p<51<1—721, —2p <5 <5}

{ZzeN5,0<51<1—-21,0<5 <51}

{/Z\EA6,22—21 <SH<1—172, 0,§2</Z\1—22—|—75\1},

cCccCccCccc

A2
1
JAY:
< with suitably defined triangles /\; in the z; — z»-
Ag A5
plane.
=t T ’21 Refer to Fig. 46 for the representation of triangles in
AV} AV polar coordinates.
AN
-1
Fig. 56

Thus we can express the integral through contributions from simpler domains:

1§ 1 si+a-n
/ / ... dsdrdg = / / / ... d5dsdrdg + / / / ...d5dsidrdg+  (1.5.36)
b Ny —Zp —2p LDy —=z1  —2p
1 s4E-5 1-% §
/ / / ... d5ds1drde + / / / ... d5,ds1drdg
Rszg 0 Ay =5 -3,
1-21 5 1-21 Z1—2+5,
/ / / ... d&yds drde + / / / ... dSydgydrdg .
As 0 0 A¢z-z 0

For the triangles it is easy to determine the corresponding integration bounds in the (7, ¢)-domain: make
the radius dependent of the angle as we did in § 1.4.167.

Four-nested Gauss(-Legendre) quadrature rules applied to every integral in (1.5.36) yield an expo-
nentially convergent quadrature approximation.

A Remeber Rem. 1.4.182 and be wary of cancellation that may affect the evaluation of
B(3,%).
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Remark 1.5.37 (Precomputing complex quadrature formula)

The domain of integration in (1.5.33) does not depend on 7t, only the smooth integrand does. Hence, for
a fixed order of the four-nested Gauss-Legendre rule used to evaluate the integrals in (1.5.36), all points
at which we have to evaluate the integrand are known in advance and will be independent of 7. Thus we
can simply precompute the resulting family of complex quadrature formula on D (in polar coordinates) and
tabulate them.

(1.5.38) Adjacent panels [SS10, Sect. 5.2.2], cf. § 1.4.167

We face the situation 7t # 7/, N 7t/ = E, E an edge of G. Given local parameterizations 7 := V-
K — mrand 9 := v, : K— 7t we assume that they agree for E:

E = ([0,1] x {0}) = 7/([0,1] x {0}) , 'YGSDZ'Y/({SD 0<t<1. (1539

Thus, the integrand in the transformed integral

= 1 S S
1_/[2/[2”%(8)_%/(”” F(t) G(s) dtds , (1.5.28)

has a singularity for t; = s1!

@ To deal with the singularity at { = s; we employ the following change of integration vari-
ables [SS10, p. 313]

§1 S1 51 §1

z s1—t s 5;

=0 e [P =P (1.5.40)
S2 S» tq 1—Z

ty 1) 1) 1)

This yields the transformed integral over the pre-image D of K x K under this transformation:

R e ) )

2

with the four-dimensional convex polyhedron

0<s1<1l,51-1<z<5,
€R4.

: R R - L (1.5.42)
0<5;<1—51,0<th<l—514+z%

o)
I
STS) Ny [

To motivate the next transformation, we temporarily focus on the case that both 7t and 7t/ are flat trian-
gles:

= {(ab,c) , 7 ={abc), ab,c,c € R?,
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thatis E = [a, b].

sp/to b
1, CX T
7T
Y NN
E
Z /
a c
S 1 51 /tl ,
Fig. 57 'Y
In this special case the local parameterizations can be chosen as, see Fig. 57:
u:=b-—a,
v(s) =a+siu+sv , Y(t)=a+tut+to, v:i=c—a, (1.5.43)
vVi=c —a.

We point out the geometric minimal angle conditions for triangles of the mesh and at edges of I': with «g
independent of 7t, 7’

<(v,v"), <(u,v),<(u,v") > ap . (1.5.44)

Then we find
H’Y(S) a ryl(t)Hz = H§1u +5v— (51 —2)u —i—?zlez
= ||$20 — zu +?2fo-’-

= 83)|0))* + 22||ul* + B¢ ||” — 25:2(u - v) — 202 (u - 0') + 2rba (v - ') .

@ This suggests that we use spherical coordinates (7,6, ¢) in Z — 5, — t,-space:
z=rsinfcosp , 5;=rsinfsing , ty =rcosh, (1.5.45)

r>00< ¢ < 2mr 0 < 0 < m, for which the volume element is dzds,dt =
r? sin 0d0d dr.

In these new coordinates we obviously have for flat panels

lv(s) =2 (®)]* = p(6, ),

where p is a polynomial in sin 6, sin ¢, cos 6, cos ¢, uniformly positive in [0, 7r] x [0,27t] due to the angle
condition (1.5.44).

In the general case Taylor expansion arguments confirm that for small » > 0
r
B §1—rsinf cos ¢
”’)/([rsinélsingo]) _7/<[ ' rcosf })H
is analytic on the pre-image D, of D under the spherical coordinate transformation. To write I as nested

integrals [ [ [ [ ...ds1drdfdg, in analogy to (1.5.34), we split D into five simplices with a single vertex
in 0 each. For details refer to [SS10, pp. 313].

(g\l, r,0, QD) —
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Four-nested Gaus(-Legendre) quadrature applied (pieces of) to the (51, 7, 0, ¢)-transformed integral
I converges exponentially in the number of quadrature nodes.

Pre-computation of the corresponding complex quadrature rule is possible, of course.

(1.5.46) Common vertex [SS10, Sect. 5.2.3]

To deal with the case TN 7T = {p}, p € IR3 a point, we assume local parameterizations 7y := Vo -
K — mrand 9/ := 7, : K — 7’ that satisfy ¢(0) = 9/(0) = p. Thus the integrand of the transformed
integral

. )
I= /12 /12 e FB Gl s, (1.5.28)

has a singularity ins = £ = 0 only. This can be removed by switching to four-dimensional spherical coordinates.
The arguments are similar to thos elaborated in § 1.5.38.

(1.5.47) Panels at a positive distance

We follow heuristic rules put forth in § 1.4.189 and use Gauss quadrature formulas on K x K with orders
adjusted to the relative distance of the panels according to (1.4.191).

1.6 BEM: Various Aspects

1.6.1 Convergence

As in convergence theory for finite elements we can make statements only about asymptotic convergence
considering families of boundary element trial/test spaces. The reason is that it is usually impossible to
predict the size of the discretization error for general boundary value problems. So we have to settle for
results merely telling the behavior of discretization error under variation of discretization parameters, read
[Hip16, ??], [Hip16, § 5.3.62].

The focus will be on h-refinement, increasing the resolution of the boundary element spaces by using finer
meshes, see [Hip16, Ex. 5.1.20].

1.6.1.1 Abstract Galerkin Error Estimate
We recall a fundamental result of [Hip16, Section 5.1] for the Galerkin discretization of linear variational
problems (— Def. 1.1.57)

ueVy a(uv)=4»Lv) YoeV, (1.1.58)

where Vj is a Hilbert space with norm ||-||,,. Galerkin discretization based on the trial and test space
VN C Vp, N := dim Vy < o0, leads to the discrete variational problem

uy € Vn: a(uN, Z)N) = E(UN) Yoy € VN, (1.4.7)
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with Galerkin solution uy € Vy.
Theorem 1.6.1. Cea’s lemma [Hip16, Thm. 5.1.15]
Assume that the bilinear forma : V; x V; — IR is continuous and elliptic, that is
3C, > 0: la(u,v)| < G llullyllvlly Yu,ve W, (1.6.2)
dc > 0: la(v,0)| > c|jvlli, Yoe V. (1.6.3)

Then both (1.1.58) and (1.4.7) have unique solutions u € Vy and uy € Vi, respectively, that
satisfy

G .
— < — inf — . 1.6.4
=l < 2, inf [l —on]ly (1.6.4)

The theorem tells us that the norm of the Galerkin discretization error u — uyx is bounded by the best-
approximation error times a constant that is independent of V.

Elliptic first-kind variational BIEs

The assumptions of Thm. 1.6.1 are satisfied for most first-kind variational BIEs
4+ for (1.3.112) witha = ay, V) = H‘%(F) by Thm. 1.3.114/Thm. 1.3.118
(when diam(Q)) < 1 ford = 2),

1
4+ for (1.3.121) with ayw, Vp = HZ(T') by Thm. 1.3.123.

Remark 1.6.6 (Galerkin error estimates for 2nd-kind BIE)

Estimates for the Galerkin discretization error for the second-kind variational BIEs (1.3.133) and (1.3.134)
on general curved polyhedra have remained elusive up to date.

1.6.1.2 Approximation in Boundary Element spaces

Thanks to Thm. 1.6.1 we can obtain full information about (“energy” trace norms of) the Galerkin discretiza-
tion error for direct first-kind BIEs by studying how well traces of solutions of boundary value problems can
be approximated (in “energy” trace space norms) in boundary element spaces.

(1.6.7) Spaces for functions of higher smoothness on I

Aapproximation error estimates require smoothness of the traces, and this smoothness is conveniently
measured in a Sobolev scale, recall [Hip16, Section 5.3.3]. Sobolev spaces of functions on smooth faces
of I' are defined via pullback (— Def. 1.4.19).

As before we make Ass. 1.2.6 (d = 2) or Ass. 1.2.8 (d = 3), that is I' consists of (smooth) faces T,
j =1,..., M, with individual parameterizations oK Hj c Rl Fj.
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Definition 1.6.8. Piecewise Sobolev spaces on

For m € Ny and assuming C™-parameterizations v; we define the piecewise Sobolev space of
orderm € N onTI as

Hp (1) »= {o € LA(T), 7} (vl) € H"(I1))},

with (Sobolev) norm

2 M 2 M 2
o)1= 35 7 )y = 2 f, o) @l dx, ve .

d—1
aeINO
Joe| <m

The definition of H™ (D) for domains D C IR¥ is also given in [Hip16, Def. 5.3.41].

(1.6.9) Mesh parameters

Approximation estimates for the boundary element spaces Sg(g) and Sp_l(g) will hinge on properties of
the mesh expressed through fundamental mesh parameters.

Definition 1.6.10. Meshwidth

The meshwidth of G is the size of its largest panel

hg := maxdiam(7) .
meg

Definition 1.6.11. Minimal angle

For d = 3 we call the minimal angle amin (G) of G the minimal angle occuring in all triangles of the
2D meshes M in Def. 1.5.4.

For planar triangulations the minimal angle measures the shape regularity of a mesh [Hip16, § 5.3.36].

(1.6.12) Summary: approximation estimates

The following results from [SS10, Sects. 4.3.4 & 4.3.5] mirror [Hip16, Thm. 5.3.56]. In fact, via the pull-
backs 'y;-k they can immediately be inferred from interpolation error estimates for finite element spaces in
dimension d — 1.
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Theorem 1.6.13. Main approximation theorem for S, L(G)

With a constant C > 0. depending only on m € Ny, the C™-parameterizations ;> and the minimal
angle amin(G), for any p € INy we have the best-approximation estimate

he min{p +1,m} + % ;
) Il vy Vor € H(D)

infl |u— on|| 7%(r) <C (ﬁ

PNES, (G) 2l
(1.6.14)

rate of alg. cvg. smoothness requirement

Theorem 1.6.15. Main approximation theorem for Sg(g)

With a constant C > 0 depending only on m > 2, the C"™-parameterizations Vi and the minimal
angle amin (G), for any p € IN we have the best-approximation estimate

hg>mm{p " " Ju Vu € Hp, (T) N C(T)
H, (T) pw :

inf Hu—nNH 1 SC(—
oNESH(G) H2(T) p

(1.6.16)

rate of alg. cvg. smoothness requirement

Algebraic convergence of best approximation errors

The energy norm of the best approximation error for S,;l(g), 82(9) for fixed polynomial degree
p converges algebraically (— Def. 1.4.126) for hg — 0, if a uniform minimal angle condition is
satisfied for d = 3.

We can even read off the rates of algebraic convergence in hg — 0:
. Sl,’l(g), p € Noforu € Hf, (T),m € No > ratemin{p+1,m}+ Tin H_%(F)-norm,

e $)(G),peNforuc Hy(l),m>2 > ratemin{p+1,m} — jin H2(T')-norm.

Combined with Thm. 1.6.1 we immediately conclude asymptotic algebraic convergence of Galerkin bound-
ary element solutions of variational first-kind BIEs in terms of the meshwidth g — 0.

(1.6.18) Smoothness of solution traces

The smoothness of the unknown trace of the solution of the related boundary value problem imposes a
limit on the achievable rate of algebraic convergence in the meshwidht /ig. In turns, this smoothness is
determined by the smoothness of the solution of the boundary value problem.
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Theorem 1.6.19. Higher order trace theorem

LetT := 0Q) satisfy Ass. 1.2.6 (d = 2) or Ass. 1.2.8 (d = 3) with C* -parameterizations ;- Then,

ueH"(Q) for m>1 = Tp(u) € Hp, '(T)NC(T), (1.6.20)
ue H"(Q) for m>2 = Tn(u) € HITVQZ(T) . (1.6.21)

So, when one uses manufactured solutions u € C®(IR) to test a boundary element code, the maximal
rate of convergence as limited by the polynomial degree p should be observed.

However, in actual computations, the inevitable emergence of singularities of the solutions of BVPs on ()
at corners/edges of I' will curtail their smoothness, see [Hip16, Section 5.4]. Thus, for non-smooth I" only
reduced rates of ig-convergence of fixed-degree BEM will be observed.

| (1.6.22) Validation of BEM Galerkin matrices for BIOs

If u € H(A,Q) satisfies Au = 0 in (), then Thm. 1.3.103 provides the fundamental relationships
beetween Dirichlet trace Tpu and Neumann trace T yu of u:

! 1
d—K v ][Tpu] _ [Tpu d+K =V ][Tpu

2 — o |2 _

{ W ld+ K’} {Twu] {Twu] { -W  fld - K’] [TW] 0. (1.6.23)

Let us assume that we have a code, allegedly capable of computing the Galerkin matrices
e« VERKK K:i=dimS,”(G), ofayon S, () x 8,1,(G) € H3(T) x H™3(T),
(single layer BIO)

e We RNN, N = dimS)(G), of aw on SY(G) x SUG) € HZ(T) x HZ(T),
(hypersingular BIO)

e K& RN of (v,9) 1 [1(Ko)(x) p(x) dS(x) on S)(G) x S, (G) € HE(T) x H™3(T),
(double layer BIO)

for some fixed degree p € IN. We want to exploit on (1.6.23) to validate the implementation.

@ Use smooth “manufactured” solution u € C®(Q)) of Au = 0 and check, if its BE inter-
polants satisfy (1.6.23) “up to higher order errors”.

We consider a sequence of meshes (G, );,cpy H := {ho, h1, ho, . . .}, where I is the meshwidth of G, and
Qhk arises from th by means of uniform dyadic refinement (in the parameter domain), which implies

hy ~ %hk—l and that amin(Gy,) > ap for all i € H, see Def. 1.6.11. Uniform dyadic refinement amounts
to

e splitting each grid cell ]gl@l,gff)[ (— Def. 1.4.16) into two equal intervals for d = 2,
e subdividing each triangle of M]' (— Def. 1.5.4) into four congruent ones [Hip16, Fig. 204] for d = 3.
To define “boundary element interpolants” we use

+ for $)(G) the nodal interpolation operators Iy : C°(T) — S)(G) from Rem. 1.5.16,
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4+ for Sp__ll(g) the local L?-projections Q;_ll :L2(T) — Sp__ll(g) defined by

J@1L N pn(x)dS(x) = [ F@ yn(xds(x) Yynes,N(G). (1624

Of course, the actual implementation of Q;_ll has to rely on numerical quadrature on the panels
using high-order quadrature formulas.

For smooth u we have Tpu, Tyu € HITW(T) for every m € IN. Then we can use the following interpola-
tion error estimates.

Theorem 1.6.25. Asymptotic interpolation/projection error estimates

With constants depending only onm > p, p € IN, the C"-parameterizations <y (and the minimal
angle wg ford = 3)

41
Hu - '2”HH%(r) < CHE|ull g, Vu € HI'\(T) (1.6.26)

1 p+3
= Q] g ) < CHE i) Vi € HI(T) . (16.27)

Appealing to (1.6.23) we expect the residual functionals (they depend on p and the mesh G;)

() = [ (B +K01,(Tom) = V(@1 Tin)) (x) 9(x) dS(x)

= [ (14 Ky, = 1) (Tom) = (@, = 1) Twin)) (x) p() dS(x) , g€ HAT),
(o) i= [ (=W, (Tpu) + (31d = K@, L, Tor) (x) o(x) dS ()

—/ W(l, — 1) (Tpu) + (31d — K)(Q, 2 — 1d)Tyu) (x) o(x)dS(x), v HE(T),

to become “small” as i — 0. To quantify this, observe that owing to the continuity of the boundary integral
operators (— Def. 1.3.67) we can conclude from Thm. 1.6.25 that on the mesh G,

rp ()] < ChP*HE - |y , peH (), (1.6.28)

H™2(T)
Pty 3
)l <ol v e HAD), (1.6.29)

with constants independent of 1. We still have to deal with the presence of the general functions 1 and v.

@ Replace them with nodal basis functions b, i = 1,...,N, and ﬁj ,j =1,...,Kof
Sg(g) and Sp‘_ll(g), respectively (— § 1.4.35, § 1.5.22), for which we have rather precise
information about their energy trace norms.

We elaborate this for d = 3, resorting to a heuristic scaling argument. If 7t is a panel of diameter i and
ﬁlN a global shape function associated with it, we get from Thm. 1.3.114

|

ot = BB = [ Jlx =yl Biv(y) B (x) dS(x) dS(x)
| 1
%hzz/lz/lzmﬁ(s)ﬁ(t)dtds,
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for some fixed reference shape functions B see (1.4.38). The last step is justified by thinking of the
transformation K — 7T, K the reference triangle, as simply a scaling by i. Then the powers of h arise
from the transformation formula for 4 — 1-dimensional integrals. We conclude the asymptotic two-sided
estimate (similar arguments for d = 2)

recall from Thm. 1.3.96 and Thm. 1.3.123

By ~h"* on G, (1.6.30)

|
H™ 2(I)
with constants independent of /.

To determine Hbé\’HH%(r)

Under scaling pullback to K the surface gradient behaves like ~ &, Then the same argument as above
confirms

.12 ‘ ‘ ‘ |
N ’H%(F) ~ aw(by, by) = av(grad by X n, grad; by x n) .

bl ~h"1 on G, (1.6.31)

¥
H2(T)
with constants independent of /.

Thus, setting ¢ := ﬁé\] in (1.6.28) and v := bé\, in (1.6.29), the estimates (1.6.30) and (1.6.31) imply

ro(BR)| < CHIFEE rp(Bh)| < CRPER T RN (1.6.32)
Thus, defining the residual coefficient vectors
= i 1% 1 2 v - K
Pp = [”D<5N)] T (M +K)o - Vv eR™,
- (1.6.33)

. N -
By = [rN(bgv)} = -Wi+(IMT K7 RN,
based on the basis expansions

seRN & Ig(TDu) € Sg(g) , 7eRf & Q;}l(TNu) € ngl(g) .,
we can predict the algebraic decay of the components:

= 1 5 _1
18Dl = ORPT2T72) Byl = O(RP— 272 . (1.6.34)

As we learn from (1.6.33), the vectors g, and p,; can be computed. Then tabulate the norms in (1.6.34)
for sequences of dyadically refined meshes and check whether they exhibit a decay as 1 — 0 matching
(1.6.34). If this is observed, the Galerkin matrices have passed the test.

1.6.1.3 Variational Crimes

As in the context of finite element methods [Hip16, Section 5.5], also for boundary element methods the
term variational crime also for boundary element methods means that Galerkin discretization is based on
a perturbed variational problem or even a trial/test space not contained in the function space, on which the
orginal variational problem is posed.
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We can distinguish three main categories of vatiational crimes in BEM:

Variational crimes in BEM I

O Approximation of T’
(Section 1.4.2.5, Rem. 1.5.18)

® Numerical quadrature
(Section 1.4.3.4, Section 1.5.3)

© Data approximation
(§ 1.4.45)

We recall from [Hip16, Section 5.5]:
Guideline for acceptable variational crimes

Variational crimes must not interfere with (type and rate) of asymptotic convergence!

B> For Galerkin boundary element methods based on the piecewise polynomial boundary element
1
spaces 8;9__11(9) C I2(T) c H %(T), Sp(G) C Hi(T), p € N,
4+ the degree of polynomial boundary approximation must be linked to p,
4+ the boundary element spaces for data approximation must depend on p,

4+ the order of numerical quadrature must be larger for larger p.

(1.6.36) Quantitative recipes

A very detailed quantitative analysis of variational crimes of type @ is conducted in [SS10, Ch. 8] and of
type ® in [SS10, Sect. 5.3]. These results and practical experience inspire the following rules of thumb:

If the following trial/test spaces are used for variational BIE in energy trace space

S;1(9) cAT) c H () , SY(9)C H:(T), peN,
then do the following:
O for the approximation of I':
use piecewise polynomial interpolants of degree p,
@ for computation of entries of Galerkin matrices by means of numerical quadrature
follow (1.4.191), but no clear rule for selecting order of Gauss quadrature rules in general,

® for data approximation:

interpolate Dirichlet in 82(@), Neumann data in 8};11(9).

1.6.1.4 Pointwise Recovery of Solutions

1.6.2 Mixed Boundary Value Problems

In mixed second-order elliptic boundary value problems both Dirichlet and Neumann boundary conditions
are imposed on different parts I'p and I'yy of the boundary I' := 9} of the computational domain () C R4
[Hip16, Section 2.7], which satisfy

I'= TD UTN ’ FD N FN =Q ’ Vold,l(FN),vold,l(FD) >0. (1.6.37)
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The associated mixed BVP for —A reads

TDM = g onFD,

—Au=0 in Q , Tau = 7 onTy .1

(1.6.38)

where g : I'p — R and ;7 : I'y — IR are given data. If () is an exterior unbounded domain, we have to
impose additional decay conditions (1.1.76)/(1.1.79).

(1.6.39) Offset technique for BIE

By Thm. 1.3.103 the traces of the solution u satisfy the fundamental boundary integral equations

Tpu = V(Tyu) — (—41d +K)(Tpu) in H2(T), (1.6.40)
Ty = (31d +K') (Tyu) +W(Tpu) in H 2(T). (1.6.41)

To take into account the fact that both traces are known on some parts of the boundary we introduce
extensions of the data to all of I":

gc H
neH

Nl—

(r) §|FD =49,
(T): ’ﬂrN =1

(1.6.42)

N|—

@ Offset function technique: We seek the unknown traces as additive corrections of these
extended data, the corrections of course supported on either I'p or I'yy [SS10, Sect. 3.5.2].

1
Tpu=g+u , uGHfD(T) - {neH%(T): n]rD:O}, (1.6.43)

Tau=i+9 , peH ()= {pcHIT): ¢|r, =0}

The functions g and 77 serve as offset functions in a context similar to the use of offset functions for
imposing essential boundary conditions in variational formulations of boundary values problems for PDEs
as discussed in [Hip16, § 2.2.38].

Next, we insert (1.6.43) into (1.6.40) and 1.6.41 and get

0=V(ij+9) — (1d+K) G +w) in H2(T), (1.6.44)
0= (—31d+K)(7 + ) + W(G +u) in H2(T) . (1.6.45)

1 _1
The unknowns are u € Hp (I'), ¢ € Hy *(T).

(1.6.46) Variational BIE for correction trace functions

Collecting known and unknown quantities in 1.6.44 and 1.6.45 leads to

1

V() + (31d + K) (u) = V(7)) — (31d + K)(3) in H2(T), (1.6.47)
(L1d — K') () = W(u) = (=11d + K') (i) + W(3) in H 2(T) . (1.6.48)

As usual, a variational formulation arises from invoking duality (1.3.43). Yet, we have to ensure that trial
and test spaces are the same. The trial spaces are the trace spaces for the unknowns u and ¢ and those

1 _1
have to be chosen from H2 (I') and H- ?(I"), respectively. Thus, we
o T'y
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1
e do not test (1.6.44) with H~2(I'), butwith v € Hy.* (I,
(“Test (1.6.44) only where T yu is not known”)

1
e do not test 1.6.45 with H2(I'), butwith v € H7 (T).
(“Test 1.6.45 only where Tpu is not known”)

1 1
This leads to a linear variational problem in Hy *(I') x Hy (I'):

peH D) —ay(p,v)+ /r ((31d + K) (1)) (%) v(x) dS(x) (1.6.49a)
—av(i,v) - [+ K@) @ v s weH D),
we HE (T): /r ((L1d — K'Y () (x) v(x) dS(x) — aw(u, 0) (1.6.49b)

= [((~31d+ K@) (x) o(x)dS(x) +aw(,0) Vo HE (I) .

(1.6.50) Boundary element discretization of variational BIE for mixed BVP

We suppose that we are given a mesh G of I" according to Def. 1.4.16 (d = 2) or Def. 1.5.4 (d = 3) that
resolves the parts I'p and I'y of the boundary in the following sense.

Assumption 1.6.51. Mesh compatible with partition

Both I'p and I'yy are the union of closed panels of the mesh G.

We have to adapt the boundary element spaces 82(9) C H%(F) and Sp_}l(g) C H_%(F), degree

1 1
p € IN, in order to obtain subspaces of Hf (I') and Hy. * (I'). On the formal level this is straightforward
1 1 B
Sprp(G) :=HE (D) NS)G) 5;}1,FN<Q) = Hp 2(T) N Sp_11<g) . (1.6.52)

In practice,

SQID(Q) and S;}LFN(Q) are obtained by dropping all global shape functions of 82(9)/8;}1(9)
whose suppports intersect I'p or I'yy, respectively.

The construction runs utterly parallel to that of finite element subspaces of Hj(Q2) from finite element
subspaces of H!(Q)), see [Hip16, § 3.4.14].

Note that the Galerkin matrices for the variational boundary integral operators arising from using the
boundary element spaces 82 r,(9) and Sp__ll r,(G) are sub-matrices of the Galerkin matrices we get
when using the unconstrained boundary element spaces.

As explained in § 1.4.45, in boundary element computations the data g and 7 are usually replaced with
approximations. In the case of (1.6.49) this approximation also takes care of extension of the data to all of
I

+ gis replaced with gy € S))(G) obtained by

1. interpolating g in S)(G) ;
D
(e.g., piecewise linear interpolation in the case of p = 1),
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2. and then setting the contribution of all shape function supported outside I'p to zero.

4+ 7 is replaced with 7y € S;jl(g), obtained by

1. interpolating 77 in Sp__ll(g) :
N
(e.g., midpoint interpolation onto piecewise constants for p = 1),

2. and then setting the contribution of all shape function supported outside I'y to zero.

1.6.3 Transmission Problems

So far we have discussed BEM for scalar elliptic boundary value problems with constant coefficients. This
section will present boundary integral equations related to problems with piecewise constant coefficients
posed on R9, so-called transmission problems.

1.6.3.1 Two-Domain Setting

0o <1 We consider a partition

& R = OyUTUQ,

(1.6.53)
T =30 =00,

where T is a curved Lipschitz polygon (d = 2) or
polyhedron (d = 3), ()7 is bounded.

Note the opposite orientation of the two normals ng

Fig. 58 and nq.
We seek a solution of
—div(A(x)gradu) =0 in R?, (1.6.54a)
A; € R spd. f O,
with  A(x) = o1 SR spa for xeih (1.6.54b)
| for xe (),
U — uine Satisfies decay conditions (1.1.76)/(1.1.79). (1.6.54c)

Here uinc is a given exciting incident field satisfying ~ Atutjne = 0in R?. For instance, it may represent an
applied external electric field; ui(x) = Eg - x.

(1.6.55) Reformulation as transmission problem

We can restrict solution u of (1.6.54) to both domains and define
ug := u|q —tinc € H(A, Qo) , u1:=ulg € H(A, ), (1.6.56)
where H(A, Q) D has been introduced in Def. 1.3.34. These functions solve

—A(Al grad ul) =0 in Ql ; Au1 =0 in QO . (1.6.57)
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In § 1.1.71 we learned that 1 and 1 are connected by transmission conditions reflecting the continuity
of scalar potentials and the normal continuity of displacement currents. We can state them concisely by
means of Dirichlet and Neumann traces:

TOug + Tuine = Thuy , Thuo + Tttine = — Tyt , (1.6.58)

where we remind that the coefficients and the normal vectors (responsible for the —-sign) enter the
definition of the Neumann trace

(TQu)(x) = grad ulq, (x) -no(x) (Thu)(x) = A grad ulg, (x) m(x), x€l. (1.6.59

The partial differential equations (1.6.57) together with the transmission conditions (1.6.58) and decay
conditions for 1 represent a transmission problem.

(1.6.60) First-kind boundary integral equations

In Ex. 1.2.38, (1.2.45) we found the fundamental solution for the general linear, translation-invariant
second-order differential operator Lu := —A(A grad 1) with symmetric positive definite (s.p.d.) matrix
A € R4 Drawing on (1.2.45) we set

~Lloglx—y| Lifd=2,
1 1

0 _
G(xly)_ _ ,|fd:3, x%y’
anfx—yl
~log((x ) TA N (x—y)) Litd=2,
Gl(x,y):L- 1 1 ifd =3 xXFY.
Sl LV e Tr— .

for the fundamental solutions associated with the PDE in ()y and ()q, respectively. Based on these the
fundamental solutions GY and G' we can introduce boundary integral operators Vy, Ko, K6, and W,
and V1, Ky, K’l, and W4. The subscript indicates, which fundamental solution and which Neumann trace
operator is used in their definition, for instance, cf. (1.3.80),

(Koo)(x) = [ grad, C*(x,y) - m0(y) () dS(y)

xel.
(Kio)(x) = [ (Argrad,, G (x,y)) - m(y) v(y) dS(y)

@ Idea: O Use the fundamental boundary integral identities of Thm. 1.3.103
both in () and ().
® Combine them with the transmission conditions (1.6.58).

9: (1.3.104) gives us

1 0

sld + Ky -V THup

2 pho| _ 1.6.61

{ ~W, lid— Ké] [T?\,uo 0, ( a)
1 1

51d 4+ Ky —Vi THuq

2 DY — 1.6.61
{ ~W;  Jld— K’J [T}\,ul} 0, (1.6.61b)
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0
®: Eliminate {TDMO} by means of the transmission conditions (1.6.58):

I?\]uo
{IO”} { Illlll} {I ”ic]'
N%0 N¥1 N*inc

1 1 1 0
sld + KO VO T [Z5] sld + KQ VO T Uinc f
> 2 D — |2 D = . 1.6.62

l —Wp %Id — K{J lT}\,ul —Wp %Id - Kj T?\]uinc [ (1.6.62)

Then subtract the two boundary integral equations:

- P
5ld + K1 —V1 T u
1.6.61b) > 2 b =0,
(16.610) ~W;  Ad =K [Ty
1 1.
51d 4 Ko Vo THuy f
1.6.62) > 2 D _
(16.62) Wo  dld—Kh] [ Thm) —¢
S Sl <[]
“Wi =Wy K[+ K] [Thm| T ]
Writing u := T})ul and ¢ := Tll\,ul for the unknown traces we get the following boundary integral
equations for the transmission problem
Kl — K() _Vl — V() u —f
= . 1.6.63
{—vvl—wo K+ K ] T | e (1.6.63)

If this system of boundary integral equations has a unique solution, then u and ¥ will furnish traces on I
of the solution u of (1.6.54), see Cor. 1.6.74 below . Thus, (1.6.63) qualifies as a direct BIE formulation.

Remark 1.6.64 (Simplification of right-hand side)

As in Section 1.3.4.1 let V, K, K’, and W denote the four fundamental boundary integral operators for
—A on (). Since we have assumed A, = 0 on RY, we know that Uinc IS harmonic in (). Hence,
Thm. 1.3.103 yields the identity

%ld —K V :| |:TDuinc:| _ [TDuinC}

1.6.65
W %Id + K| | TNUinc T NUine ( )

Here Ty is the “standard” Neumann trace (— Def. 1.3.22) from within (): Tnuine := grad ujnc - 1.
Also note that V, K, K’, and W are based on the same fundamental solution G° as V), Ko, K{, and Wo,
but on a normal vector with opposite orientation. Therefore, a scrutiny of Def. 1.3.67 reveals that

V=Vy, K=-Ky, K=-K, W=W,. (1.6.66)

in addition Tpujne = T%umc and TnUjpe = —T?\,uinc (change of the orientation of normals!), so that we
can rewrite (1.6.65) as

Fld—f— Ko Vo } [ T%Minc } _ [ T%”inc }

Wo  Aid — K| | =T tinc — T tinc
1 (1.6.67)
{%ld"‘ KO _VO ] |:T(1))uinc:| _ [T%uinc}
~Wo A= K} | | T tine T tine
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Compare this with the definition

|:f} — |:%Id + Ko —Vo :| |:T0Duinc} > |:f} _ |:T0Duinc}

% —Wp %Id - K6 T?\]uinc % T?\]uinc

The right hand side of (1.6.63) boils down to simple Dirichlet and Neumann traces of the exciting harmonic
function 5!

(1.6.68) Variational BIE for transmission problem

We can rewrite (1.6.63) as

(Ki—Ko)u — (Vi+Vo)yp = —f in H2(T),
—(Wi4+Wou + (=K +K)yp = ¢ in H2(I).

The customary approach via duality (1.3.43) gives us an equivalent variational first-kind (— Rem. 1.3.125)
BIE:

ak1(w, 1) —ako(w, )  — avi(p,n)+avo(y,n) —
e, st wentm,
1P c H_%(T) ) _aW,l(u/U) — aw,o(u,tl) — aKll(U, 1/)) + aK,O(U/ 1/)) = B

Jr9(x)v(x)dS(x) Vo € H2(T),

where we have used the “adjointness” (1.4.57) of K; and K;, i = 0,1. The bilinear forms in (1.6.69) are
definedas,i = 0,1,

avi(p ) = [(Vip)(x)n(@)dS(x), gy e HA(T) o (13112
aw@myzzhmwamuywuy w0 € H ()  of (1.3.421)

1 _1
%mwyzﬁmm@muma@,neHmmquz@y
The variational problem (1.6.69) is posed on H? (T) x H? (T') and can be expressed as

[u} € HY(T) x H2(T) :

¥
(5] [2]) = frow o =6 ne dsia)

vm € HI(T) x H3(T). (1.6.70)

with the bilinear form

C( Lﬂ' {;D = a1 (w17) —ako(u,7) —avi (P, 7) —ave(P, 1) - (1.6.71)
aw,1(1,0) —awo(u,0) — a1 (v, ¥) +ako(o, ) .
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Lemma 1.6.72. Ellipticity of c

(Assuming diam(Q)y) < 1 ford = 2, ) the bilinear form c from (1.6.71) of the first-kind variational
boundary integral equations for the transmission problem is Hz (T) x H -2 (T)-elliptic:

b b ) ) 9 B
> . .
C(Mf M)‘ > C(IIUHH%(F)Jr HWHH,%(F)) Vo € HX(T), n € H1(T), (1.6.73)

with c > 0 depending onI" and A,.

Proof. Observing the cancellation of all terms contributed by double layer BIOs, the result is an immediate
consequence of Thm. 1.3.114, Thm. 1.3.118, and Thm. 1.3.123. -

We immediately conclude uniqueness and existence of a solution [lﬂ of (1.6.70). By its derivation these
are the traces of the solution of the transmission problem on I'.

Corollary 1.6.74. Direct 1st-kind variational BIE for transmission problem

If u solves the transmission problem (1.6.54) and [ﬂ solves (1.6.70), then

u:TlDu , lp:T}\,u.

(1.6.75) Direct BEM for transmission two-domain problem

Galerkin boundary element discretization of (1.6.70) is straightforward: Given a standard mesh G of I' we
opt for the natural trial/test spaces from Section 1.4.2/Section 1.5.2

S;1,(g) for HTI(T) , SY(G) for HI(T). (1.6.76)

The resulting discrete version of (1.6.70) will also enjoy existence and uniqueness of solutions. Based on
nodal bases we arrive at the following linear system of equations written in block form

Wy + W, KI—KJ} lﬁ} _ [—Mﬂ%}

~Ki+Ky Vo+Vy || Mg

1.6.77
¥ ( )

with boundary element Galerkin matrices
e W; € RVN, N :=dim §)(G) for ay,; on Sp(G) x Sp(G),
o V. e REK K .= dimSplll(g) for ay ; on S;}l(g) X Spill(g),
e K; € RSN forag;on Sg(g) X Sp__ll(g),
e M e R*Nfor (v,77) = [ro(x)5(x)dS(x) on SY(G) x S, 1(9),

and right hand side vectors ¥ and c]i containing the basis expansion coefficients of interpolants (— “data
approximation”, § 1.4.45) of ¢ and f in 32;_11(9) and 82(9), respectively.

BEM for direct first-kind BIE for two-domain transmission problems requires only the assembly of
the usual boundary element Galerkin matrices.
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1.6.3.2 Multi-Domain Transmission Problem

1.6.4 BEM for Wave Propagation
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Chapter 2

Local Low-Rank Compression of Non-Local
Operators
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(2.0.1) The need for matrix compression for BEM

The boundary element Galerkin discretizations of boundary integral operators presented in Chapter 1 lead
to densely populated matrices as explained in § 1.4.74.

We consider an (interior) boundary value problem on a bounded domain () C R4, d = 2,3, equipped
with a “uniform” finite element mesh M with a global meshwidth /.
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We assume that a low-order finite element Galerkin discretization on M provides a solution
with an accuracy similar to that achieved by a low-order boundary element Galerkin discretiza-
tionon G := M|, I := 0Q).

Finite element method (FEM) <— Boundary element method (BEM)
No. of degrees of freedom (unknowns):

—d —d+1
[ W — hg
No. of nonzero entries of Galerkin matrices:
—d —2d4-2

Hence, asymptotically for hip, hg — 0 and d = 3, the BEM will require much more memory for storing
the linear system of equations than FEM, O(h& ) vs. O(h,}). The lower number of unknowns for BEM
becomes irrelevant!

Without matrix compression BEM cannot compete with FEM!

2.1 Examples: Non-Local Operators

Notion 2.1.1. Non-local operator

An operator defined on RN, N > 1, or on a space of functions on Q ¢ R is non-local, if it maps
locally supported vectors/functions to vectors/functions with global support.

B> Linear non-local operators in RN can usually be represented only by fully populated matrices.

In mathematical models of physical phenomena, non-locality of operators is often caused by long-range
interactions of spatial components.

2.1.1 (Discretized) Integral Operators

An integral operator on a space X(D) of functions D — R, D C R a domain, is a linear mapping
T:X(D) — Y(D), Y(D) another function space, defined by

(THx) = [ kxy) fly)dy, xeD, feX(D), 212

with a kernel function k : D x D — IR. If the support of k is global, then T will be a archetypical non-local
operator, cf. Notion 2.1.1.

Important specimens of non-local integral operators are

e the Newton potential (— Def. 1.2.47)

/ GAx,y)p(y)dy, pe H\(RY), (2.1.3)
with the fundamental solution (— Def. 1.2.26) for the Laplacian
5 — Jifd =2,
6B, y) = { ogllx —yl . (1.2.44)
W T itd =3,

whose support is R? x IR? and obviously unbounded.
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e and the fundamental boundary integral operators of Def. 1.3.67, for instance the single layer bound-
ary integral operator on I' := d() for the Laplacian —A (— § 1.3.74)

(V9)(x) = [ GA(x.9) 9(v) dS(y) , ¢ € HH(a0). (1.3.75)

The Galerkin discretization (— Section 1.4.1) of an integral operator of the form (2.1.2) based on a basis
{bk,,...,bN} C X(Q) leads to Galerkin matrices T € RN-N with entries

N

— ] i
T= {/D/Dk(x,y) by (y) biy(x) dy dx i’j:1. (2.1.4)

If T is non-local then the matrix T will be densely populated even if the basis functions are locally sup-
ported, recall § 1.4.74.

2.1.2 Long-Range Interactions in Discrete Models

In computational physics interactions are classified as short-range, if for each component of a system
(star, particle, molecule, etc.) only the interaction with a fixed small number of “neighbors” matters.

(2.1.5) Gravitational forces in astropysics

The goal is to simulate the dynamics of the n stars in
a galaxy; usually n ~ 10°. This can be done by treat-
ing the stars as “point masses” and solving Newton’s [
equations of motion by numerical integration, which
entails computing the gravitational attraction between
every of the 10'® pairs of start.

Letx' € R, i = 1,...,n, stand for the position of
the i-th star with mass m; > 0. Then the force on the
j-th star is

G x—x
] — — - -
Pt kP
i#]

mimj , j=1,...,n,

(2.1.6) |

Fig. 59

where G is the gravitational constant.
In terms of vector components (2.1.6) reads

i G { xig—x]é
N = P

= i =]
i#]

mimj , (=123, j=1,...,n. (2.1.7)

, T
Collecting all force components in long vectors Fje = [f},...,f;’] permits us to express (2.1.7) as
matrix x vector-product: for = 1,2,3

i j

my ny X)— Xy .
, ——— fori#7j,
: with  (Mg); : = i xi|? ,
F=C | [, W M= el
47 : 0 fori=7j,
My My iji=1...n.
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Thus the complete vector of force components F in every timestep can be obtained from multiplying the

vector of masses with the matrix M,. However, the evaluation of Fs for many timesteps is way beyond
the capabilities of even the largest supercomputers, because M is a fully populated matrix with ~ 10'®
entries!

Fortunately, the matrices M, possess a very special structure, they are so-called kernel collocation matri-
ces (— Def. 2.1.15) associated with a singular, asymptotically smooth kernel function (— Rem. 2.2.51).
In this chapter we will learn how to realize an approximate matrix x vector product with a computational
effort way smaller than the number of non-zero matrix entries (— Section 2.3.5)

(2.1.9) Forces on parallel wires

We consider n long straight parallel wires in a plane, é
. 1 62G3 465 G 7
with the j-th wire at location ¢; € R carrying the cur- % ) % i | ) %
. Fig. 60
rentc; € R. ———e% ¢ — 96— — 0 ——

The (scaled) magnetic force on the j-th wire is

n clc]

fl= Zléz , j=1,...,n. (2.1.10)
i#j

. : T , .
Again, we can collect all forces in one long vector F := [fl, ..., f"]  andrewrite (2.1.10) as a matrix x vector-
product:

€1 €1

Cn Cn
(2.1.11)

In a sense, comparing (2.1.11) and (2.1.8), the task to compute the magnetic force on the wires can be
regarded as a one-dimensional counterpart of the challenge to compute gravitational forces in galaxies.

| (2.1.12) A glimpse of clustering approximation

We continue § 2.1.5 and describe a heuristic for the efficient approximate evaluation of gravitational inter-
actions. We assume x' € [0, 12 for all star positions x* € IR3,

@ To evaluate the force fj replace “remote” clusters of stars with a single massive star in the
center of gravity.

@ Define clusters through octree decomposition of the spatial box containing the galaxy.
(Choose depth L € IN of octree such that a leaf contains a single star at most)

Example in 2D: quadiree decomposition of [0,1]?, - = stars, * = equivalent stars.
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Cluster boxes at level 1

Cluster boxes at level 2 Cluster boxes at level 3
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Fig.61 0 +Fele2| 0 F1g.63 0
9 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 94 0 0.2 0.4 0.6 0.8 1

The clusterson level ¢ € {0,...,L} are (a« = (a1, ap,a3))
{i €{1,...,n}: x' € CLi=hy- ([ag, 00 + 1[x w2, a2 + 1[x[az, a5+ 1[), &; € {0,...,2° - 1}} ,

hy .= 2~!. Each cluster of stars is uniquely characterized by its bounding box Cﬁ.

@ In the case of a given threshold for the approximation error it is clear that lumping together
stars will introduce smaller errors, if those stars are farther away from x/:

Heuristics: The larger the distance of a cluster from x/,
the larger can be the size of the bounding box of the cluster.

In quantitative terms this can be expressed by requiring that the admissibility condition
dist(CL; x/) > diam(CL) , a€{0,...,2=1}3, >0, (2.1.13)

dist(CL; x) := min{Hz—xj’ czeCl} , diam(C)) =277,

has to be satisfied for the cluster Cfu if its stars are to be replaced with a single equivalent star.

Assumption 2.1.14. Uniform distribution

The stars are uniformly distributed in [0, 1 [3 (Constant asmptotic density of stars).

Preprocessing step: for each cluster (stars in a box of the octree decomposition) determine center of
gravity and total mass — “equivalent star”

> cost O(n), for no. n of stars — oo

Then we want to compute the force on the star located at ¥,

; G X xi—xj .
fl= oy, 021,23, =10 2.17)
|
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Admissible clusters for a single star

09} . %
0.8 |
*
| N Example in 2D:
061 * | “Stars” randomly by uniformly distributed in |0, 1[>.
oo ; *|  Admissibility condition (2.1.13) with 17 ~ 0.6
04 | % % :
sl ) | < Admissible clusters w.r.t. star e, level / > 3.
0.2 | * %
* * °
0.1 | % .
0 ‘ ‘
0 0.2 0.4 0.6 0.8 1
< Star at ¥/ is surrounded by at most 9 inadmissible
clusters on level £ (magenta lines)
At most 9 clusters on level £ + 1 (blue lines) will be
inadmissible.
.xf
= admissible clusters on level ¢ 4 1.
B> There are at most 36 relevant admissible clus-
ters on level / + 1.
The number of contributing clusters on each
level is bounded: O(1) for n — oo, of course,
dependent on 7.
Fig. 65
> cost O(log 1) for computing £/ in the limit 7 — oo

However, except for choosing different parameters 7 > 0 in the admissibility condition (2.1.13), there is
no way to control the accuracy of the approximation inherent in this approach.

2.1.3 Kernel Collocation Matrices

As a model problem for the treatment of non-local operators we study the approximation of densely popu-
lated matrices of a particular form.
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Definition 2.1.15. Kernel collocation matrix

We are given
e two bounded domains Dy, D, C IRd, d € N,
e a kernel function G : Dy x Dy — R,

e and collocation points  x' € Dy, y/ € Dy. The matrix M € R""™ with entries
(M), := G(x,y), ic{1,...,n}je{1,...,m}, (2.1.16)

is a kernel collocation matrix.

% Notation: If d = 1, we write ¢;, i = 1,...,n, and Uit j = 1,...,m, for the collocation points and
assume that they are sorted:

61 << <Gn, GED:CR , m<m<-+<fm, 7,€DyCR, mnelN.

Example 2.1.17 (Globally supported singular kernel functions)

We are mainly interested in globally supported kernels (x,y) — G(x,y), x € Dy, y € D, that are
singular for x = y.

Examples are kernels related to fundamental solutions (— Def. 1.2.26) of scalar linear partial differential
operators with constant coefficients.

log||x — if x , L ifx#y,
G(x,y):{og” vl else#y or G(x,y):{(;x yl slse Y (2.1.18)

Note that these kernel functions are C*°-smooth even analytic (Def. 1.4.135) in every variable on Dy x D,
provided that D, N D,, = @.

2.2 Approximation of Kernel Collocation Matrices

(2.2.1) Data-sparse approximate representation
Kernel collocation matrices M € IR (— Def. 2.1.15) based on kernel functions like those in (2.1.18)
are densely populated.
B O(nm) memory/effort for straightforward storage/initialization, ~ for 1, m — co.

O(nm) computational cost for M x vector
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Goal: Find approximation M € IR"" of M such that we can guarantee a prescribed accuracy
HM — K/[JH <e [||-|| some matrix norm], (2.2.2)

with
cost of storage/initialization of M

. = O((m + n)log?(m + n)|logfe| form,n — oo, e — 0,
cost(M x vector)

for some exponents p, g € INp.

If the kernel function G was locally supported, G(x,y) = Ofor ||x — y|| > ¢ - min{diam (D), diam(Dy)},
0 < 1, then, under an even distribution assumption (— Ass. 2.1.14) on the collocation points, M would
be a sparse matrix and the above goal could be achieved even without any approximation, see [Hip15,
Section 2.7.1].

Alluding to the efficiency of algorithms for large sparse matrices, data structures with which we can achieve
the above goal are called data sparse. .

(2.2.3) Recalled: Matrix norms [Hip15, § 1.5.69]

Recall that matrix norms can be induced by vector norms as norms of the linear mapping described by the
matrix. If ||-]|; is @ norm on IR and ||-||, @ norm on IR", then the associated matrix norm ||-|| is [Hip15,
Def. 1.5.76]

ez

M e R": |M| := sup L,

- (2.2.4)
x|

2

% Notation: Matrix norms for quadratic matrices associated with standard vector norms:
Ixllz = M, ix]ly = [Mly, [Ix]le = Ml

For the matrix norms ||-||; and ||-||, there are simple formulas [Hip15, Ex. 1.5.78]:

m
> matrix norm < ||-||, = rowsumnorm ||M|| = max Yo (M), (2.2.5)
1=1,...n
VARV ]:1
> matrix norm <> [|-||; = columnsumnorm |[|M|; := _max Y I(M);j] . (2.2.6)
j=L..m /=

There is no corresponding simple formula for the Euclidean matrix norm ||-|
[Hip15, Cor. 1.5.82].

5, see [Hip15, Lemma 1.5.81],

Not induced by a vector norm is the Frobeniusnorm [Hip15, Def. 3.4.46]

n m
2
M|z =Y Y (M)F;, MeR"™. (2.2.7)
i-1j=1

Note that ||-|| - provides an upper bound for ||-||,.
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2.2.1 Separable Kernel Approximation

(2.2.8) Low-rank matrices

There is an important class of fully populated matrices for which exact data-sparse representation is
possible.

Definition 2.2.9. Rank of a matrix [ , Sect. 2.4]

The rank of matrix M € IR""" is the dimension of its image space:

rank(M) := dimR (M) .

We have rank(M) < min{m,n} for every M € R"". A matrix is called low-rank, if rank(M) <
min{m, n}.

Lemma 2.2.10. Representation of low-rank matrices

IfM € R™™ satisfies rank(M) = ¢, then there are matrices U € R™1 and V € R such that
M=UV'".

B> storage(M) = O(q(n +m)) for n,m — oco. (2.2.11)

Recall from [Hip15, Ex. 1.4.11] the possibilities offered by associative multiplication:

rank(M) =g = Cost(Mx vector) = O(q(n+m)) for n,m — oo |. (2.2.12)

M I|=| U [ vT ] | , [eR". (2.2.13)

q scalar products of length m

(2.2.14) Separable kernel functions

Let us consider a kernel collocation matrix M € R""" (— Def. 2.1.15) based on a separable kernel
function

g:Dy — R,

G:DxxDy =R , G(xy):=gx)h(y), h:D,— R,

(2.2.15)
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and the collocation points x' € Dy, y/ € Dy,ie{l,...,n},je{l,...,m}.

Using the notations of Def. 2.1.15 we observe

L - T
M =[G, y)], = [s()],_, ,[h)]_, , BB rank(M)=1. (2.2.16)
Hence, M is a rank-1 matrix whose factorized form according to Lemma 2.2.10 is immediately available:
According to § 2.4.42, M needs O(m + n) storage and the evaluation of M, { € IR incurs computa-

tional cost O(m + n) for m, n — oo.

(2.2.17) Separable kernel functions

Generalization to so-called rank-g separable kernel functions

q Dy — R,
G:DyxD,—»R , Gxy) =Y gx)h(y) , %:D;%]R. L 0=1,...,q, (22.18)

g € IN, is straightforward; in this case we end up with a rank-g kernel collocation matrix, whose factorized
form according to Lemma 2.2.10 is

BT AcR™, (A, :=g(x), i=1,...,n,

M=A N
BeR™, (B)j :=h(y), j=1,...,m,

(=1,...,q. (2.2.19)

@ Idea: Obtain data-sparse approximation of a kernel collocation matrix
M = [G(x, /)] i (— Def. 2.1.15) by a separable approximation of G:

]

N q
G(x,y) ~ G(x,y) = ;ge(x)he(y) =

1,...n
1,...m

M = |:G<xll y]>] ?:%,m,ﬂ ) rank(ﬁ) = q .
i=1,..

3

| Remark 2.2.20 (Impact of kernel approximation on kernel matrix)

Replacing the kernel function G with an approximation G amounts to perturbing the kernel collocation the
matrix M. This can be quantified by estimating HM -M ’ ||-|| a relevant matrix norm § 2.2.3.

Let M be a kernel collocation matrix according to Def. 2.1.15 based on the kernel function G : Dy x D, —
R and collocation points x* € Dy, i =1,...,n,y/ € Dy,j=1,...,m. From the definition of the matrix
norms we immediately conclude
o< <¢
L®(DyxDy)
[} (2.2.21)

o] <, [on ] <, [sa ], < v

The next three sections present different ways how to obtain promising separable approximations with
rather explicit formulas for g, and k.
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2.2.1.1 Polynomial Expansions

For the sake of clarity we restrict ourselves to one dimension d = 1, D,, D, C IR. To understand the
following, recall the Taylor formula in 1D for f € C"*1([a,b]), a < b, and expansion point x* € [a, b]:

Fx) = F) 4 (= )f () + b= 22 )
.—|—ﬁ(x-x*)q—lf(q—l)(x*>+/):ﬁ(x_r>q—1f(q)(l_> dr. (2.2.22)

Dropping the remainder term fo ...dT we obtain an approximation of f in a neighborhood of x* by its
Taylor polynomial of degree g — 1. We can apply this approximation to the “1D function” x — G(x, y) and
simply regard i as a parameter.

@ Idea: Approximate G(x,y) by a truncated Taylor expansion in the x-variable:

~ = 1 Y4 I'G * *
G(x,y) ~ Z@(X—x )" 57 ("), xx" €Dy y €Dy, (2.2.23)
f:O\ . ~ -4 ~ /
=:g¢(x) =:hy(y)

for a “sufficiently” large truncation parameter g € IN.

As indicated in (2.2.23), this provides a rank-gq separable approximation of G. The number g of terms in
the polynomial expansion can be used to control the accuracy, because we expect G — G for g — 0.
This will be examined in Section 2.2.2.1.

Example 2.2.24 (Separable approximation by truncated power series)

We consider the globally C*-smooth kernel function

1

———— on IxI, I:=[-aa],acR".
1+ (x—y)?

G(x,y) =

We want to approximate it globally by truncated power series expansions around x* = 0, which is a
natural choice for symmetry reasons.

The geometric series gives the Taylor series expansion at x* = 0, valid for |x — y| < 1:

00 S ) 2k
Gle) = 1o (~x =) = L0t —p* = R rE ()

=0 =0 =0 (=0
0 00 2% B

_y Ay (_1)k(£)(_y)2k ¢
20 k=[iy2]

However, this is a double series. We truncate the geometric sum to the first § summands to obtain a
rank-2g separable approximation:

~ = e 2k k-t 2=b ¢ = K [ 2k 2%—1
Glxy) =) (-1))] (Z)x (—v) =Y &) (-1 <£)(—y) :

J/

=thy(y)
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Kgrnel approximation by truncated power series
10 T T T

A A
A A A A A A A A A A A A
NS
10° %i************%**; ~
- e, < HG - GH for different values of truncation
£ T, Lo(IxI) . _
e sl * parameter g and on different intervals I.
g 10
é Exponential convergence in g for small intervals.
E -10 © 0303 ? “ . . » :
10
5 + Loaod 2 Exponential divergence” on large intervals.
* [-0505 2
A 106,06 2
-15 I | |
10 0 5 10 15 20

Fig. 66 q

Global separable kernel approximation based on Taylor expansion/power series is usually possible
only locally (on small domains).

Experiment 2.2.25 (Logarithmic kernel in 1D: Separable approximation by Taylor expansion)

We consider the singular kernel function
G(x,y) = —log|x—y|, xeD, yeD,, DyD,CRintervals, D.ND,=®.
The condition D, N 5y = () avoids the singularity of the kernel. Thus, on D, x D, the kernel function G
is C*-smooth and amenable to Taylor expansion.
Without loss of generality we assume y > x on Dy x Dy, (Dy to the left of D).

o'G

W(x,y) =(—1)!(y—x)"" for (x,y)€DyxD,, £>1. (2.2.26)

This yields the Taylor polynomial with expansion point x* € D,:

~ i 1 * EaEG *
~log(y —x) ~ Glx,y) = 5 (x =) 52 (x"y)
=0
* q_ll *\{ A4
= —log(y—x") + ¥ 5 (x—x) (y=x") " .
Eo——""07
=:g4(x) }

(2.2.27)
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10

++*%***2AAAAAAAAAA
~ ~ . . oy R
HG— GH ( ) G as in (2.2.27), sampling ap- T T ]
L®(Dyx Dy L
proximation of grid > T,
e +
: . . 5
We observe exponential convergence in truncation =
parameter g. =
&
“ . . » -10
(Would observe “exponential divergence” on larger %10 T =[07id
intervals) o + D, =[04.16]
% D, =[0218
B> Same bottom line as in Ex. 2.2.24 applies. A D, =[0119]
-15 1 I I
10 0 5 10 15 20
Fig. 67 no. of summands q

2.2.1.2 Uni-directional Interpolation

Since the Taylor expansion of the kernel function G is fixed, we have little options to remedy poten-
tially small domains of convergence. Moreover, the Taylor expansion and power series techniques from
Section 2.2.1.1 require knowledge of higher-order partial derivatives of G. Conversely, the interpolation
techniques presented in this section are more flexible and rely on point evaluations of G alone.

(2.2.28) Linear interpolation operators

Let D C R be a closed bounded domain and V' C C%(D) a g-dimensional space of continuous functions.

Given are q distinct interpolation nodes # € D, j = 1,...,4.

Assumption 2.2.29. Unisolvence of interpolation nodes

We assume that for any numbers ¢4, ..., ¢, € R there is a unique f € V satisfying the interpola-
tion conditions

f(t) = @; forall j=1,...,q. (2.2.30)

In approximation theory this particular property of the space V' and the set {tf}]. of interpolation nodes is
known as unisolvence.

Definition 2.2.31. Linear interpolation operator

For a unisolvent set of interpolation nodes {tf}jzl, g€ N,wrt. VC C%D),dimV = g, define
the associated linear interpolation operator by

1:C%D) =V , IfeV: (If)t)=f({t) Vi=1,...,q. (2.2.32)

Lemma 2.2.33. Properties of |

The mapping | according to (2.2.32) is linear, continuous, and surjective.

We can write

If = if(tj)bg , fec’D), (2.2.34)
(=1
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where the cardinal functions by € V, ¢ =1, ..., ¢, are defined (thanks to Ass. 2.2.29!) by

1 fort=7j,

(,iedl,...,qgt. 2.2.35
0 else, J { E]} ( )

by(t)) = by = {

(2.2.36) Separable approximation by interpolation

Given
+ acontinuous kernel function G : Dy x Dy — R, G € C%(Dy x Dy),

4 and a linear interpolation operator | : CO(DX) — V according to Def. 2.2.31 based on interpolation
nodes {tf'}?:1 and a g-dimensional function space V C CY(D,) (satisfying Ass. 2.2.29, of course)

we can build a rank-q separable “approximation” of the kernel function G:

~ q
G(x,y):= ¥ by(x) G(t',y), (x,y) €Dxx Dy , (2.2.37)
f=1 S~ N———
=:go(x) =hy(y)
where the b, are the cardinal functions for the interpolation into V with nodes t/ as defined by the property

(2.2.35). From (2.2.19) we immediately get a special version of the factorization (2.2.19) of the kernel
collocation matrix based on G:

Il
—
o

~
—~

=
N
~—
.

M:= [G(x",y))] 1 = A-B'

j=1,..,m

A i=1,..,n € IRn'q ’
B = [G(i’l,yj)} j=1,..m € R™ .

joeol]

(2.2.38) Polynomial interpolation in 1D [Hip15, Section 5.2]

The most important class of interpolation schemes is global polynomial interpolation. For d = 1 and if
D C Ris aninterval, it relies on the space of uni-variate polynomials

V=P, = Span{xn—>xé, ¢=0,....,q—1}, geN,
of degree < g — 1. By [Hip15, Thm. 5.2.14], any set of g distinct points t/ € D enjoys unisolvence with
respect to V, which guarantees Ass. 2.2.29.

As explained in [Hip15, § 5.2.10], the cardinal functions of uni-variate polynomial interpolation in the nodes
t',..., 1 are the Lagrange polynomials [Hip15, Eq. (5.2.11)]

q _tj

Li(x) ;:Hh, xeR, £=1,...,q. (2.2.39)
=1
it

Thenfor G : Dy x Dy, — R, Dy, Dy C R, the separable approximation from (2.2.37) reads

_ q ,
G(x,y) :== Y Li(x) G(t,y), (x,y) € DxxDy. (2.2.40)
B0 =)
=:gu\x =Yy
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“Optimal” nodes for polynomial interpolation are the Chebychev nodes, see [Hip15, Section 6.1.3], [Hip15,
Eq. (6.1.87)]. If Dy = [a, b] they are

t ;:a—i—%(b—a)(cos(z]z;lﬂ) —|—1) , j=1,...9. (2.2.41)

(2.2.42) Tensor-product polynomial interpolation

If D ¢ R? is a tensor-product domain
D:[al,bl]X"'X[ﬂd,bd], ﬂi<bi, i:]ﬂ”'/d/

then we can define a d-dimensional polynomial interpolation into the space of tensor-product polynomials
(— Def. 1.4.148)

TPy(RY) i= {x = pr(xa) oo palxa), pi € Ppsi=1,...,d},

based on uni-variate polynomial interpolation as introduced in § 2.2.38.

Let tl.l,...,t? be nodes for uni-variate polynomial interpolation on [a;, b;] into P;-1- Denote by L;,
¢ =1,...,q, the associated Lagrange polynomials. Then we can define the d-variate tensor-product
polynomial interpolation operator

Ip: CO(D) = TP;_1(RY)
q q

(0N = ¥+ 3 £

(2.2.43)

Hence, we have to evaluate f on a grid of g% points, which matches dim 7P, 1 (R?) = 4“.

2.2.1.3 Bi-directional interpolation

Many kernel functions (x, y) — G(x,y) are symmetric in their two arguments. However, separable kernel
approximation by means of uni-directional interpolation as introduced in Section 2.2.1.2 treats the x- and
y-coordinates rather differently. Another interpolation approach preserves symmetry.

(2.2.44) General “two-dimensional” interpolation

We assume that we are given
+ acontinuous kernel function G : Dy x Dy — R, G € C°(D, x Dy),

4 alinear interpolation operator I* : C°(D,) — V, according to Def. 2.2.31 based on interpolation
nodes tl,...,tI € Dy, g, € R, and a g,-dimensional function space V; ¢ C°(Dy),

+ another linear interpolation operator IV : C°(D,)) — V into a g,-dimensional space V,, C C°(D,))
with interpolation nodes 1, ..., tzy € D,.
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We write by, k = 1,...,qx, and b]y, j=1,...,qy, for the cardinal functions associated with the respective
spaces and sets of interpolation nodes on Dy, D,

Then, in the spirit of tensor-product polynomial interpolation from § 2.2.42, we can introduce the tensor-
product interpolation operator

"@1Y:CoDy x Dy) = Ve®Vy
4x Ay (2.2.45)

((IF @ 1)f) Zth’;,t] ) b (x) b (y), feCDyxDy).

Obviously, the tensor-product interpolant is separable. Hence, applying it to G provides a separable
“approximation” (its quality depending on k, I, and ¥, of course):

~ x 4 /
Gx,y) = ("2 )G) (x,y) = kzuzylc(t’;, DEE) By) (2.2.46)
=:8k,0(%) = o(y)

Note that in order to obtain G we need only evaluate G at g* - ¥ pairs of interpolation nodes to obtain
the values G(t{;, t{/) € IR. Another advantage of (2.2.46) is that it inherits the possible simplicity of the
cardinal functions.

For given collocation points xl,.. ., x" € Dy, yl, oyt e Dy, the approximate kernel collocation matrix
M € R™" spawned by G has the special triple-factor form

x ql/
Gt" t( VY () , i=1,...,n, j=1,...,m
(M ) ZZ oy j
=1/=1
U = [b;{( (xi):| klel,.“,n E IRH.L]X 7
= ,.A.,qx
B> M=UCV', C:= [G(t{if tﬁ)} ot € R, (2.2.47)
V= [B()] o € R
:1...,qy
M| =|u[e][ v |

This implies that  rank(M) < min{qx, }

Of course the most widely used interpolation operators |* and I¥ are polynomial interpolations, in particular,
Chebychev interpolation [Hip15, Section 6.1.3]. Then the b;{‘/b]y will also be polynomials, for which efficient
algorithms for evaluation are available, see [Hip15, Section 5.2.3].

Experiment 2.2.48 (Bi-directional interpolation of smooth kernel function)

For d = 1 we consider the globally smooth kernel function

1

N on [0,1]?

G(xy) =

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 177



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

- and collocation points ¢; = 7; = % i=1,...,n,n €N.

A rank—q2 separable approximation of G on [0, 1]2 is obtained by bi-directional Chebychev interpolation
into tensor-product polynomials 7P, _1 (R?):

GEeTP1(R?): G(H,¥)=G(, V), ije{l,....q}, (2.2.49)

with Chebychev nodes t* as defined in (2.2.41).

Error in Frobenius Norm
T

—*— n=100

Plot of the scaled Frobenius norm of the approxima-
tion error of the kernel collocation matrix,

Error

1,]

err ;= % (Z(G(Cir’?j) - é(gz’rﬂj>2> z ,

as a function of the degree g — 1 and for n €
{100, 200,400}.

Fig. 68 Degree
Observation: Evidence of exponential convergence of the approximation error for g — oo.

The observation matches theoretical interpolation error estimates for Chebychev interpolation: the kernel
(x,y) — G(x,y) is analytic on [0, 1] (— Def. 1.4.135) both as a function x — G(x,y) and y — G(x,y),
uniformly in the other argument. Thus, the results reported in [Hip15, Rem. 6.1.96] predict exponential

convergence of HG — éHLw([o 12y’ refer to Thm. 1.4.138 for quantitative formulas. Details will be given in
Section 2.2.2.2. '

| Experiment 2.2.50 (Global bi-directional interpolation of singular kernel)

For d = 1 we apply bi-directional Chebychev interpolation into TPq_l (le) to the singular kernel function

1 if
G(x,y) = { V] HXEY oy <t,
Y 0 Jifx =y, 4

in order to obtain a separable approximation G.

Error in Frobenius Norm
T

—*— n=100
—#— n =500
—#— n=1000

We use the same collocation points as in Exp. 2.2.48.

Plot of HM — ﬁ“F as a function of the degree g — 1

8 1ot
for n € {100,500, 1000}. >
We observe no convergence at all. S |
10° : : : :
0 2 4 6 8 10

Fig. 69 Degree
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2.2.2 Error Estimates and Admissibility condition for Singular Kernels

We embark on an analysis of separable approximation of singular kernels like those introduced in Ex. 2.1.17,
with focus on d = 1, the logarithmic kernel

G(x = x,y € |0,1].
< ,y) {0 else, 4 [ ]

and Chebychev polynomial interpolation. We have seen in Exp. 2.2.50 that applying polynomial across
the singularity at x = y is pointless. Conversely, Exp. 2.2.25 sends the message that singular kernels for
d = 1 allow exponentially convergent separable approximations on “boxes” Dy x D, C R? away from
the “diagonal” {(x,y) € R? : x = y}. Now we estimate truncation and interpolation errors to glean
quantitative information.

Remark 2.2.51 (Asymptotically smooth kernels [Beb08, Sect. 3.2])

The analysis of this section carries over to d > 1 and a larger class of singular kernels, which are asymp-
totically smooth.

A kernel function G : (RY x RY) \ {(x,y) € RY x R¥ : x = y} — Ris called asymptotically smooth, if
(i) GeC®((RY x R\ {(x,y) e R x RY: x = y}),
(i) and its derivatives satisfy the decay conditions

o [Gxy)|  VaeNj,
||x—y||‘“‘ V(x,y) € R¥\ {(x,y) e R x RY: x =y},
(2.2.52)

D G(x, )| < Clafty

with constants C > 0, ¢ > 0 (|a| = |aq| + - - - + |ag])-

Straightforward differentiation, cf. (2.2.26), confirms that the kernels from Ex. 2.1.17 are asymptotically
smooth.

2.2.2.1 Truncation Error Estimates for Taylor Expansion

We focus on the asymptotically smooth logarithmic kernel G(x,y) = —log|x — y| in one dimension,
d=1.

Yy

As in Exp. 2.2.25 we consider its rank-q separable
approximation by means of truncated Taylor expan-
D, B sion on D, x D, where Dy, D, C R are disjoint
intervals: Dy N Dy = @.

tdiagonal” {x =y}

Dy < Approximation on a “box” B := Dy x D, away
from the diagonal.

(Assume that B is above the diagonal: y > x for all
X (x,y)€B)
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Using that for y > x

¢
?)73(9(,]/) =(L—1)(y—x)"" for (x,y)€ Dyx D,, (>1, (2.2.26)

the formula (2.2.23) for the rank-q separable approximation by Taylor expansion takes the concrete form

- q— 1
G(x,y) = —log(y — x*) + Z 7 —x*)f (y - x*)‘g , (2.2.53)
0 —_———

=:8¢(x)

We choose x* € Dy as the midpoint of Dy: if Dy = [a, b], then x* = J(a + b).

(2.2.54) Heuristics based on maximal analytic extension

Appealing to the arguments of [Hip15, Rem. 6.1.72] we find that the domain of analyticity of z — — log(y —
z),y € R,is C\ [y, co[, because the complex logarithm is analytic everywhere except R, .

Then apply the “rule of thumb” that predicts that

the Taylor series of an analytic function f : D — C, D C C open (“domain of analyticity”),
around z* € D converges inside every disk centered at z* that lies completely inside D.

Thus the Taylor series of x — —log(y — x) inx* <y

| afc; 9'G
Glry) = —logly —x) = ) 5 (x =) 5~ (x Zw x =20 for = o (¥y),
/=0 ""
(2.2.55)

has a radius of convergence p = y — x*. Assume that for |[x — x*| = p the terms of the series are still
bounded:

' <C YL eEN. (2.2.56)
Therefore, if |[x — x*| < p, we get
© lx—x*|
(G —G)( (x—x) <) Yoo
l=q P
(2.2.55) x — x* ¢ x — x* |1 0
2 ¢ 2 —c :
=l P =[x — x|

Note that by simple geometric arguments
[x* —y| > Ydiam(Dy) + dist(Dy; Dy) , |x — x| < }diam(Dy) .

> 7
_1+77/

x — x*
Y

with the admissibility measure of the box B := D, X D

() = max{diam(Dy), diam(D,)}
T=ME) = 2dist(Dy; Dy) '

(2.2.57)
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Hence, for x € D, we expect exponential convergence (in terms of g — o) of the g-term Taylor expansion
in x with error bounds

HG GHLw ooy =€ (ﬁ)q VgeN. (2.2.58)

(2.2.59) Remainder estimates for Taylor expansion of logarithmic kernel

Now we make rigorous the heuristic arguments of § 2.2.54. Recall the remainder formula for one-
dimensional Taylor expansion of f € C"*!([a, b]) around x* € [a, b] [Str09, Sect. 5.5],

q—1 1 1
— Y S (=) FO ) = (x — x*)1 1—7)‘7 Lr@) (x* + 7(x — x*)) dr.
/!
(=0 4
(2.2.60)

Apply this formula to G(x,y) in x-direction only, regarding y as a parameter. The remainder term for
expansion length 4 > 1 and x* chosen as midpoint of D, reads

1
G(x,y)—é(x,y):%o/(l—r)q 1ax(;(x +7(x —x%),y)dt
(=2 [ * o
=T /(1—T) (g —D)!x* +7(x — x*) —y|7dr
0

We estimate the remainder in terms of geometric quantities
x* —y| > %diam(Dx) + dist(Dy; Dy) ,
x — x*| < Jdiam(Dy) .
where
dist(Dy; Dy) := max{|x —y|: x € Dy, y € Dy} > 0.

Hence, for all (x,y) € Dy x Dy,

A4k q
1—7‘7_1( - ) dr
A= = =]

1 diam(Dy)

1
[
1 q
-1
< 0/(1 — 7)1 (dist(Dx; D,) + %(1 — 1) diam(Dx)> ar
1

G(x,y) = G(x,y)| <

_ 1 _ 1
B e ()

0
7\
—(11.) tog140) = O for g,

(2.2.61)
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Again the admissibility measure 17 of the box B := D, X D, as defined in (2.2.57) crucially enters the
bound for the truncation error and determines the “rate” of exponential convergence for g — co.

On boxes away from the diagonal {x = vy} rank-g separable approximation of asymptotically
smooth singular kernels by means of truncated Taylor expansion converges uniformly exponentially
for g — oo.

The speed of convergence is determined by the admissibility measure 7 = 77(B).

2.2.2.2 Interpolation Error Estimate for Chebychev Interpolation

We conduct a rigorous analysis for separable approximation by uni-directional interpolation as presented
in Section 2.2.1.2, see (2.2.37). We restrict ourselves to d = 1 and Chebychev interpolation [Hip15,
Section 6.1.3.2].

Specializing (2.2.37), the approximate rank-q separable kernel function is given by

G(x,y) = g0, 4x = G(x,y)} = 2 Lo(x)G(t,y), (2.2.62)

where |, p, : Co%(Dy) — ;-1 is the g-node Chebychev interpolation operator,

oo =1,.. ., q, are the Chebychev nodes in D, given by (2.2.41), and the functions L, are the
Lagrange polynomials (2.2.39) to these nodes.

(2.2.63) Simple 1D Chebychev interpolation error estimates

Write |- for the well-defined polynomial interpolation operator into ;1 based on the node set 7 :=
{t',...,#1} C [-1,1] C R. The fundamental error respresentation from [Hip15, Thm. 6.1.44] for f €
Ci([=1,1])

f(q) q .
(f =17f)(x) = H x—t) forsome t(x)€[-1,1], (2.2.64)
k=1

yields the bound of [Hip15, Eq. (6.1.50)]:

_ iy — 1
1F =1y < gl gy o =)= 0] (2.2.65)

For the special Chebychev nodes

- 2j—1 .
- = - =
t: cos( 2 n) , J=1,...q, (2.2.41)

which are zeros of the Chebychev polynomial T, [Hip15, Def. 6.1.76] we know
|(t—t) - (t—t7) = 21T (1) <2171 v—-1<t<1. (2.2.66)
Plugging this into (2.2.65), we get

<259, (2267)

—11))

Hf _quHLO"([ 1,1])
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where we wroteTq for the Chebychev interpolation operator on the reference interval [—1, 1] based on g
interpolation nodes.

Affine transformation to a general interval [a,b], a < b, [Hip15, Rem. 6.1.30] finally leads to an error
estimate for the g-node Chebychev interpolation.

Lemma 2.2.68. Chebychev interpolation error estimate
Forany f € C(a, b]) the g-node polynomial Chebychev interpolation operator|, (, ;, on the interval

la,b], a < b admits the error estimate

Hf_l “beLoo[ b)) <207 q_Hf HLoo (at]) sl

Now we consider the singular logarithmic kernel G(x,y) = —log|x —y| on a box B := D, x Dy,
Dy,Dy C R, DyN Dy, = @, see Fig. 70. There we approximate it by Chebychev interpolation in x-
direction, cf. (2.2.37)

G(x,y) == g fapix = —log|x—y[}(x,y), (x,y) €B. (2.2.70)

Next we apply the estimate of Lemma 2.2.68 to x — — log |x — y|. More precisely, we use Lemma 2.2.68
for abritrary, but fixed y € D,, and

(2.2.26)

f(x):=Glxy) B> |fV(x) = XFy.

291G (q—l)‘
W“"”’ TR

Plugging this into (2.2.69) and observing that |x — y| > dist(D,; D) and diam(Dy) = b — a yields the

final estimate
2/ diam(Dy) \7 _2/n(B)\?
< < =
HG GH ©(DyxDy) q<4dist(Dx;Dy)> =4\ 2 ’ (2.2.71)

where,again, we expressed the bound through the admissibility measure of the box B

(B) = max{diam(Dy), diam(D,)}
e 2dist(Dy; D,)

(2.2.57)

Unlike (2.2.57), for large 77 the above estimate (2.2.71) does not predict exponential convergence. This
can be remedied by stronger estimates that we outline next.

(2.2.72) Interpolation error estimates based on analytic extension

We start with a deep result of approximation theory already given in Thm. 1.4.138. Recall the concept of
“analyticity” of a function D C C — C from Def. 1.4.136 and the special closed curves in the complex
plane called Bernstein ellipses

E={z€C: |z=1|+|z+1=p+p '}, p>1,

: B ' (1.4.137)
:{z:z(p—l—p Y cos®+1i(p—p!)sing, 0§6§27I},
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see Fig. 38 for a visualization. They wrap around the reference interval [—1, 1], have +1 as their focal
points, and p + p’l and p — p’l as lengths of their long and short axes, respectively.

Theorem 2.2.73. Chebychev interpolation of analytic functions [Hip15, Eq. (6.1.98)]

Iff: D C C — Cis analytic in the interior of the Bernstein ellipse £, p > 1, and bounded on &,,
then

~ 8 1
— < — for all
f meLO"([—l,l]) = (Pm _P_l)(P +P_1 _ 2) 1’;’&%;( |f(Z)’ orall m e IN,

inf
PEPm

(2.2.74)

wherel,, : C°([—1,1]) — P, stands for the Chebychev interpolation operators on [—1,1].

Again, we point out exponential convergence of the maximum norm of the minimal approximation error
over P, as the degree m — oo.

To apply Thm. 2.2.73 to the Chebychev interpolation of x — —log(y — x) on Dy := [a,b],a < b < y,
we first employ an affine pullback to the reference interval [Hip15, Rem. 6.1.18] and obtain

F(7) = —log(y— (L(b—a)% + %(b+a))> , —1<%<1. (2.2.75)

f is analytic on C \ [xs, oo[ with

= — — = > - . =
Xs 1= g (y—3(b+a) > diam(Dy) (dist(Dy; Dy) + 5 diam(Dy))
~ 2dist(Dy; Dy)

diam(Dy)

1
+1ZE+1>1’

where 7 is the admissibility measure of the box Dy x Dy,

- max{diam(Dy), diam(D, )}

= 5(B) := 2.2.57
1 =1(B) 2dist(Dy; Dy) (2257)
xS 0 0 .
= ] 3 - R < domain of analyticity of f.
The range of possible size parameters p for the Bernstein ellipses SP is
1+n+ 1+
0>1: ptpl<2x,, satisfiedfor 1<p< -1 ; T, (2.2.76)

This confirms exponential convergence of Chebychev interpolation of x — —log(y — x) on D, with
respect to the polynomial degree, for any y ¢ Dy, with a rate governed by the admissibility measure 7.

For asymptotically smooth singular kernels the admissibility measure 1 governs the speed of
asymptotic exponential convergence of rank-g separable approximations by uni-directional Cheby-
chev interpolation.
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2.2.2.3 Estimates for Bi-Directional Interpolation

For separable approximation by bi-directional interpolation as elaborated in Section 2.2.1.3 we have to
study the interpolation error

G(x,y) —Glxy) = (d—1F @) (xy) .

(2.2.77) Error estimates for bi-directional interpolation

We revisit the setting of § 2.2.44 for bi-directional interpolation based on two linear interpolation operators
I*: C%(Dy) — Vyand IV : C°(Dy) — V;, with interpolation nodes ¢}, . . . S gy i= dim Vy, t;, ... ,tzy,
qy = dim Vy. Writing bi,k=1,...,q and b]y, j=1,.. ., qy for the associated cardinal functions we
can express, compare (2.2.34),

qx
(Fg)(x) = Y gt bi(x), geC'(Dx) , (Wh)( Zh (t]) bl(y), heC(Dy). (2278)
k=1

Definition 2.2.79. Lebesgue constant [

The Lebesgue constant of a linear interpolation operator | : C°(D) — V according to Def. 2.2.31
with associated cardinal functions by, { =1, ..., 4, is the number

q
)= Y Mol
-1

As an immediate consequence of the definition and A-inequality we mention

11fll ooy £ ADflle(py ¥f € C(D) . (2.2.80)

Next we rewrite the tensor-product interpolation operator as a composition of unidirectional interpolation
operators |5, : C%(Dy x D) — C%(Dy x Dy), * = x,y. We introduce

(pf)(x ) Zf (£, y)
f€C%Dy x Dy).
(5pf)(x,y) fotk be(y)
(2.2.45) B> K@l =13,0l, on C%DyxDy,) |. (2.2.81)

By the very definition of the Lebesgue constant in Def. 2.2.79 we conclude

180f1l1(0) f(#h, ) b ()]

~ xeDyyeDy =1

< kZ||f||Loo(Dxny)||b;’f||Loo(Dx) = A(1") ||f||L°°(Dx><Dy) :
=1

(2.2.82)

This means that A(I*) provides a bound for the (operator) norm of I3 .

2. Local Low-Rank Compression of Non-Local Operators, 2.2. Approximation of Kernel Collocation Matrices 185



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

Owing to (2.2.81) we can separate interpolation directions:
@l —1d=1p0l, —3pold+1350ld—Id =13, (1, —Id) + (135 —1d) old,
and the A-inequality gives the following estimate for f € C°(D, x D,)):
||(|x X Y — ld)f||L°°(Dx><Dy) < ngD(ljz/D - ld)fHLo"(Dxny) + ||< ;D - ld)f“LO"(DxXDy)
< /\(lx) H (lgD B Id)fHLoo(DxXDy) + ||( JZCD - |d>f||L°°(Dx><Dy) :

Let us elucidate the contribution of uni-directional interpolation errors (highlighted with color)

X y _ X
[(F @ ¥ —=1d)fl| (D, xD,) < Al )g%f{;ré%t

Ty ,
fxy) = L fx 8 ()] }+ (22.83)
j=1

Yx
CEDY f<t’;,y>bz<x>\} .

max<{ max
yeDy x€Dy

Hence, estimates of the interpolation error of I* and 1Y when applied to the functions x — f(x,y) and
y — f(x,y), respectively, permit us to estimate the interpolation error for I* @ IY, if they are uniform in
the other argument.

Let us apply the estimate (2.2.83) for d = 1to G(x,y) = log(y — x), x € Dy, y € Dy, y > x, in
the situation of Fig. 70 with well separated intervals Dy and D,. We rely on one-dimensional g-node
Chebychev interpolation |, on both D, and D,. From [Hip15, Rem. 6.1.90] we recall the deep result that
in this case the Lebesgue constant is bounded as

Alg) < %log(Z +49)+1 VgeN. (2.2.84)

The function x +— G(x,y) has an analytic extension to the interior of the Bernstein ellipse &, for all
y € Dy, if p > 1 is chosen according to (2.2.76). Thus, invoking Thm. 2.2.73, we get exponential
convergence of the interpolation error

X
H{x — ((1d — Iq)G)(x,y)}HLw(DX) for q— oo,
whose speed will be determined by p and, indirectly, by the admissibility measure of the box Dy x D,.

Up to a logarithmic factor in g this will also hold for the total approximation error HG — éHL (DaxDy)’
(o] X y

Experiment 2.2.85 (Tensor-product Chebychev interpolation of singular kernel) |

For d = 1 we consider the singular asymptotically smooth kernel function

G(x,y) := X#FY .

x—y|’

We employ tensor-product Chebychev interpolation of degree g — 1 with qz interpolation nodes on the
rectangular boxes

By := [0.55+ k- 0.05,0.75 + k - 0.05] x [0.25 — k - 0.05,0.45 — k- 0.05], k€ {0,...,5}.

These boxes are shown in Fig. 72 and their admissibility measures 77( By ) according to (2.2.57) are given
in the following table:
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k o] 1] 2 |383]|4] 5
n(Bi) [[20]1.0]0.66 | 05| 0.4 | 0.33
y
1 — 2
10 —
£ |
= s
8 10*2 4
% 107
% 10°
E 10°
%10""7
<
L S T T R B
Fig. 73 Degree d
Fig. 72 1
In Fig. 73 we observe exponential convergence of HG — 6H in the degree, the faster the larger k,

Loo(Bk)
which also corresponds to smaller admissibility measure of the box.

The previous experiment is repeated with the boxes

Bri=[3(V2-1)8+5,5(V2+ )8 + 3] x [-3(V2=1)¢ + 3, -3 (V2 + 1)E + 3],
¢ € {0.05,0.09,0.13,...,0.41} ,

whose size increases with increasing distance from the diagonal, keeping their admissibility measures
1(Bz) at the constant value v/2.

1 10' ‘
d-2
€ ——d=4
= —<—d=6
0sh S 10 —%—d=8 [
I WW =10
8
—1 107" J
06} )
<
=1 A e a—<— . 4
< \// — 4///4 < <t <
> -: 72
’_F ] s 10
——— £
04f | 5
]
= 1070
©
£
02t =
S
3 107t
a
<
or 10’5 L L L L L L L
‘ ‘ ‘ ‘ ‘ ‘ 005 0. 015 02 025 03 035 04 045
0 0.2 04 0.6 08 1 (Fig. 75 Parameter &

Fig. 74 X

We observe that the interpolation error HG — éHLoo(B ) is almost constant for a family of rectangles with

¢
about the same admissibility measure. Exponential convergence in the degree is well preserved.

Inspired by the findings of our investigations into the separable approximation of asymptotically smooth
singular kernels we will make a general assumption:
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Assumption 2.2.86. Rank-g separable approximation on admissible boxes

For the kernel function G : R? x R? — R under consideration there is a decreasing function
0 :R™ — [0, 1] such that for any disjoint closed sets Dy, D,, C R%, D, N D, = @, there is a family

{éq}qu of rank-g separable approximations such that

HG - (;},H <6(n(Dy x D)7 VgeN, (2.2.87)

L (Dyxx Dy)

where 7 is the admissibility measure from (2.2.57).

2.3 Clustering Techniques

In this section we develop an algorithm that paves the way for data-sparse approximations in the sense
of § 2.2.1 of kernel collocation matrices associated with asymptotically smooth (— Rem. 2.2.51) singular
kernel functions, see Ex. 2.1.17 for examples.

Throughout this section we assume that we are given, cf. Def. 2.1.15,

4 an asymptotically smooth singular kernel function
G=G(xry) , GeC?([0,1*\{x=y}),

allowing point evaluation for any admissible pair of arguments,
4 collocation points x € [0,1]%,i =1,...,n,andy/ € [0,1],j =1,...,m, m,n € N.

The kernel function may be available only in procedural form as subroutine providing point evaluations.

2.3.1 Local Separable Approximation

Recall the admissibility measure of a box B := D, x Dy, Dy, D, C [0,1]%, defined in (2.2.57):

_ max{diam(Dy), diam(Dy)}
n=n(B) = 2dist(Dy; Dy) ’

(2.2.57)

The bottom line of Section 2.2.2.1 and Section 2.2.2.2 for d = 1 was that rank-g separable approximation
of asymptotically smooth singular kernel functions is possible with fast asymptotic exponential conver-
gence for g — oo on boxes B := D, x D, with small admissibility measure 7 (B).

@ Idea: Partition [0,1]¢ x [0,1]" into boxes By, ..., Bk, K € N, By = Dt x Dﬁ, Dy, Dy C
[0,1]% (also called a tiling)

0,11 % [0,1] =ByU---UBx , ByNBy=0 ,ifl#m,

such that o
only O(m + n) pairs (x',3/) of collocation points are contained in boxes
with an admissibility measure 57 > 1, for prescribed 779 > 0.
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(2.3.1) Near-field and far-field boxes

Formally we split the set B := {Bj,..., Bk} of boxes into 7p-admissible boxes (“far-field” boxes) and
remainder (“near-field” boxes):

Bfar = {B €B: U(B) < 770} ’

B = Biyr U Brear ,
far = onear s B ar = {B € B: 5(B) > 1o} .

y
Qualitative visualization of near-field <+ far-field split-
ting of [0,1]% ford = 1 >
S Far-field boxes with admissibility measure
<. N
Boxes abutting or close to the diagonal {x = y} form oy
the set of near-field boxes (not marked). D §
By
X
Fig. 76

What we have learned in Section 2.2, refer to Ass. 2.2.86:
Separable approximation in the far field

Rank-g separable approximation of G by expansion (— Section 2.2.1.1) or interpolation (— Sec-
tion 2.2.1.2/Section 2.2.1.3) is possible on far-field boxes with exponentially decreasing error for
g — oo.

177

$ <1 A picture helping you to remember the location of
near-field and far-field boxes ind = 1

S Near field: No exponentially convergent
S separable approximation possible

S Far field: Expansion or interpolation pro-
vide exponentially convergent separable
approximation.
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Meaning of #7(B) < 1 for size of far-field boxes:

e Accurate separable approximation possible
— only on small rectangles near the diago-
nal
— also on large rectangies-farfrom the diag-
onal

Aiming for 17(B) ~ 1 fixes size of far-field boxes:

Fig. 78 0 1

(2.3.3) Block partitioning of the kernel collocation matrix |

Assume a partitioning of [0,1]% x [0,1]¢ into boxes By := DX x Dy < [0,1]*, k = 1,...,K, D§, Dy C
[0,1]%:
0,19 x[0,1] =By U---UBx , ByNBy=Q@ ,ifl#m.

Based on the given collocation points x' € [0,1]%,i =1,...,n,y/ € [0,1]%,j = 1,...,m, this induces a

block-partitioning of the kernel collocation matrix M = [G(xi,yf)}ij € R™™. Set

I := {ie {1,...,n}: ¥' Dﬂ‘c} ,

Jk == {]'E{l,...,m}: yiED{;}, (234
B D= {1,...,n}><{1,...,m}:LKJIkx]k , (2.3.5)
k=1
(LexJ)N(In X Jw) =0 & L#m,
and define the matrix blocks by
M; = [G(xi, yf)] o ERMA k=1, K. (2.3.6)

J€Jk
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y
1
]7?,’{ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
I B e R B For d = 1 and assuming sorted collocation points
e (o o e o o o o o |o 0§€1<§2<<§1’l§1 ’
® (o o o (o o o o o [@ 0§771<772<<77m§1/
S JRN [ — the geometric boxes By, directly correspond to matrix
/ blocks.
| s /: oo o o |e < e point (&,7/) € R* « entry of M
T]b: [ ) [ ) [ ] [ ] [ ] [ ] [ ] [ ] [ ]
X
o 0 }(:1 - - + + + + + + (:‘.;,n 41

However, block partitionings of M (rearrangement of indices allowed) induced by a partitioning (2.3.5) of
the set D := {1,...,n} x {1,...,m} of index pairs are more general that geometric partitionings of
[0, 1]2d. Therefore, we can now formulate the following objective (in not entirely rigorous terms).

Goal: admissible and efficient block partitioning
Find a partitioning of D = {1,...,n} x {1,...,m}
K
D:UIkX]k/ Ik/]kCN 7 (IgX]g)m(ImX]m):® < Z;ém, (238)
k=1

such that, with a near-field — far-field splitting Fnear N Fzar = @, Frear U Fr = {1, ..., K},

2 #1Iy + 8]y = O(m + n)logf (m +n) , (2.3.9)
keIFfar

Z I - §]x = O(m + n) log? (m +n) , (2.3.10)
keIFnear

“for n,m — co” and some p € IN.

Remember our bid for data-sparse approximation (— § 2.2.1) by low-rank approximation of far-field blocks
to appreciate (2.3.9) and (2.3.10).

To characterize the sets Fy,, (“near-field” blocks of index pairs) and [Fy,, (“far-field” block of index pairs), we
define mutual admissibility of two sets of indices. To prepare its statement, we need the sets of collocation
points associated with index sets:

Ic{l,...n}: Pull)i={x":iel} , Jc{l,...m}y: P,(]):={y:je]}. (23.11)
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Definition 2.3.12. Bounding box of an index set

The x/y-bounding boxes of index sets are

IC{1,...,n}: boxy(I):= [min{xé}iepx(l),max{xé}iepx(l)] C RY,

R~ IR~

JCA{l,...,m}: box,(]) := [min{y]é}jepy(]),max{y]l;}jepy(])] CRY.

N
—_

This makes it possible to link an index set with a geometric box.

X2

e o < Axiparallel bounding box of a set {x'} of points e
in the plane.

X1

Bounding boxes are need to invoke geometric admissibility measure 7, which is an essential ingredient of
Ass. 2.2.86.

Definition 2.3.13. Admissibility of index sets

Given 179 > 0 we call the product I x | of two index sets I C {1,...,n} and ] C {1,...,m}
no-admissible, if

max{diam(box,(I)), diam(box,(]))}
2 dist(boxy(I); boxy(])) = "o,

7(boxx(I) x boxy(])) :=

where 7 is the admissibility measure from (2.2.57).

This gives a rigorous criterion to be met by the far field:

Definition 2.3.14. Far-field blocks of index pairs

Given 779 > 0 and a partitioning of D := {1,...,n} x {1,...,m}

K
D=UJkxJk, /kCN , (Ix])N(Inx]n) =0 & L#m, (238)
k=1

a corresponding 77p-admissible far-field set of products of index sets has to satisfy

Fear :={k € {1,...,K} : It X Jx no-admissible } . (2.3.15)
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Remark 2.3.16 (From block partitioning to local low-rank compression)

We assume that we are given a partitioning of D := {1,...,n} x {1,...,m}
K
D=JhkxJk, IlkCN , (ItxJ)N(IuX]Ju) =0 & (#m, (2.3.8)
k=1

and a near-field — far-field splitting Frear N Fryr = @, Frear U Fryre = {1, ..., K}, with an 7p-admissible
far field IF¢,, according to Def. 2.3.14.

Appealing to Ass. 2.2.86 , for every [, x |, € [F¢,. and g € IN, we can find a g-separable approximation
CE’; of G (depending on k, of course) such that

HG - él’;HLoo(B ) <6(n0)?, By :=boxy(I) x boxy(Ji) , (2.3.17)
k

where § : R™ — [0, 1] is the function introduced in Ass. 2.2.86.
Based on G we approximate the matrix blocks associated with [ x [ € IFg,, by rank-g matrices repre-
sented by their factors according to Lemma 2.2.10

(M) jer, ~ (Mq) ety [é§<x5yf>} o, = Uk Vi, U eR¥T, Ve R, (23.18)

j€lk j€lk j€lk
If I, X Ji € Frear, then the corresponding block of M is stored without any approximation:
I X Jr € Frear = <Mq> il = (M){elk = [G(xi, y])] el (2.3.19)
i€l I€lk i€l

From (2.2.11) we conclude

I X J € Fray = storage((ﬁ) e, ) = 4k + 2Ji)

IS

Iy X Jx € Frear = storage((ﬁ) iefk) =1 - 1k -

JE€Tk
This is the rationale behind the goals (2.3.9) and (2.3.10) stated above.

Storage requirements: Local low-rank compresssion

The approximate kernel collocation matrix M defined by (2.3.18) and (2.3.19) satisfies

storage(M) = 2 g8l + ) + 2 8L - 8]k (2.3.21)

kE]Ffar k€Fnear

(Short notation: k € [F, < I x J; € F))

The following two code snippets present a possible internal representation of M in C++ code based on
EIGEN (using namespace ; assumed).

C++11 code 2.3.22: Data structures for blocks of a local low-rank compressed matrix

2 | // Rank-q matrix block in factorized form
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; |[template<int g>

+ | struct FarFieldBlock {

5 const vector<int> i_idx ,j_idx; // contained indices
6 Matrix<double ,Dynamic,q> U,V; // low-rank factors

71}

o | // Submatrix; no special structure assumed

w0 | struct NearFieldBlock {

11 const vector<int> i_idx ,j_idx; // contained indices
12 MatrixXd Miloc; // matrix block

R

C++11 code 2.3.23: Data structures for low-rank compressed matrix

: |[template <int g>
s |[class PartMatrix {

+ [public:

5 PartMatrix (size_t n,size_t m);

6 // MatrixXvector operation

7 VectorXd operator x (const VectorXd &v) const;
s |private:

9 size t m,n; // dimensions of matrix

10 std :: vector<FarFieldBlock<g>> farField;
11 std :: vector<NearFieldBlock > nearField;

12 },

We are not only interested in economical use of memory, but also in fast execution of matrix x vector
multiplications. For local low-rank compressed matrices like M we get the crucial hint from

rank(M) =g = Cost(Mx vector) = O(q(n +m)) for n,m — oo, (2.2.12)

which, again, relies on the factorized form of rank-g matrices. This is available in the data structures of
Code 2.3.22 and, thus, an efficient implementation of M X vector is straightforward:

C++11 code 2.3.24: Matrix x vector multiplication for low-rank compressed matrix

2 |// Partitioned n X m—-matrix split in near-field and

3 |// far—-field blocks, the latter of rank g

+ [template <int g>

s |VectorXd PartMatrix<q>::operator x (const VectorXd &v) const {
6 if (v.size() !=m)

7 throw (std :: runtime_error("Size mismatch in x"));

8 VectorXd y(n); y.setZero(); // vector for returning result

9 // Traverse far field boxes

10 for (const FarFieldBlock<g> & : farField) {

11 // Get no. of x and y collocation points in box

12 const size_t nB = B.i_idx .size();

13 const size_t mB = B.j_idx .size();

14 // Obtain values of argument vector corresponding to y-points
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15 tmp(mB); for (int j=0;j<mB;j++) tmp(j) = v(B.j_idx[j]);
16 // Multiply vector with low-rank matrix: Effort #I+ ik
17 res(nB); res = B.Ux(B.V. () *tmp) ;
18 // Accumlate result into components of result vector
19 for (int i=0; i<nB;i++) y(B.i_idx[i]) += res(i);
20 }
21 // Traverse near field boxes
2 for (const NearFieldBlock & : nearField) {
23 // Get no. of x and y collocation points in box
24 const size_t nB = B.i_idx. () ;
2 const size_t mB = B.j_idx. ();
26 // Obtain values of argument vector corresponding to y-points
27 tmp(mB); for (int j=0;j<mB;j++) tmp(j) = v(B.j_idx[j]);
28 // Multiply vector with local collocation matrix
2 res(nB); res = B.Mlocxtmp;
30 // Accumlate result into components of result vector
a1 for (int i=0; i<nB;i++) y(B.i_idx[i]) += res(i);
32 }
33 return(y); // (Move) return result vector
34
}

Local low-rank compresssion: Cost of Matrix x vector

The approximate kernel collocation matrix M defined by (2.3.18) and (2.3.19) can be multiplied with
a vector at a cost of

cost(M x vector) = 2 g8l + ) + 2 {1 - ]k - (2.3.26)
kE]Ffar k€Fnear

Under Ass.2.2.86 we can easily estimate the deviation of M according to (2.3.18) and (2.3.19) from
the exact kernel collocation matrix M:

HM . K/L,HF < Vmné(n)! VgeN, (2.3.27)

where we also used (2.2.21). Hence we can achieve

loge — 1 log(mn) —
: > — < . 3.
Vis>e>0 g> { o8 510 [ HM MqHF_e (2.3.28)

B f for families of larger and larger sets of collocation points we find partitionings of ID according to
(2.3.8) satisfying (2.3.9) and (2.3.10), then local low-rank compression offers a data-sparse approx-
imate representation of the kernel collocation matrices meeting the requirements of § 2.2.1.

Now the key issue is to find a partitioning (2.3.8) of ID into far-field (— Def. 2.3.14) and near-field product
index sets, such that (2.3.9) and (2.3.10) are satisfied.
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2.3.2 Cluster Trees

As is has become clear in the previous section, the challenge is to find a partition of the set ID :=
{1,...,n} x{1,...,m} of index pairs (corresponding to the set of matrix entries) into products I; X Ji
of index sets Iy C {1,...,n} and Jy C {1,...,m} such that {Iy X Ji};_; g permits an economical
decomposition

{Ik X ]k}k:1,,,,,1< - IF:far U Fnear IF:far N Frear = D,

where, in the context of approximating a kernel collocation matrix (— Def. 2.1.15) IF¢,, is a valid 7p-
admissible far field according to Def. 2.3.14. By “economical” we subsume the requirements

Y #h+ )k =0(m+n), (2.3.9)
keIFfar

Ytk =O(m+n), (2.3.10)
ke]:Fnear

considered in the limit 7, m — oo for families of collocation points.

@ Idea: (inspired by “tree code” algorithm presented in § 2.1.12)

Use tree based decomposition of ID

| Example 2.3.29 (Quadtree-based admissible tiling of unit square)

We recall from § 4.1.9 that a partition of ID can be induced by a tiling (a geometric partition) of the tensor-
product domain D, X D,. In this example we consider D, = D, = [0,1], Dy x Dy is the unit square
[0, 1]2. We also restrict ourselves to m = n = 2L-1, [ € IN, and

i—1/2 j—1/2

equidistant collocation points: ¢&; := ” ;= i,jed{l,...,n}. (2.3.30)

Taking the cue from the clustering of stars in § 2.1.12, we propose the following recursive construction of
a box tiling of [0, 1] x [0, 1].

Pseudocode 2.3.31: Geometric tiling

split(B := [a,b] x [c,d]) { < Recursive construction of far-field/near-
if |b—a|+|d—c| < then return; field tiling of box C IR?. Invoke with
if 7(B) <7y then split([0, 1]).
8 s Wi L 81 AR D T T2 17(B) is the admissibility measure of the
else { box B = Dy x D
split([a, (a +b)] x [3(c +d),d]); g
SP“t([%(ﬂ +b),b] x [5(c+4d),d)); max{diam(Dy), diam(D, )}
split([a, 3(a + b)] x [c, 2(c +d))); n(B) = 2dist(Dy; D)
?pllt([%(a +b),b] x [c, 5(c +d)]); (2.2.57)

0 > 0 controls termination of subdivision.

The foIIowing figures display %—admissible boxes (shaded) as identified by the recursive algorithm on [0, 1]
with 6 = —
6
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We discuss the asymptotic cost of the induced block partitioning of the kernel collocation matrix for the

admissibility parameter 779 = % (see Fig. 81—Fig. 84). For the chosen equidistant collocation points it is

immediate that

f\g. 8X

iz Giclabl}, 8fj: njelab]} ~ [b—al. (2.3.32)

Hence, the “cost” of a box [a, b] x [c,d] € Fy,,, that is the amount of memory to store the rank-gq approxi-
mation of the associated block of the kernel collocation matrix is

cost([a,b] x [c,g]) =qn - (|b —a|+|d —c|) for [a,b] x[c,g| € Frar - (2.3.33)

We stop the recursion when there is only a single pair of collocation points left in a box and set 6 = 2~ L~1,
This implies that we willdo L — 1 = log, 1 levels of recursive calls of split.

We also observe that, cf. Fig. 81—Fig. 84, on recursion level £

#{boxes cut by diagonal} = 2¢, (2.3.34a)
#{boxes touching the diagonal} =2 - (2/ — 1), (2.3.34b)
#{new boxes € Fg,, } =621 —1), (2.3.34c)

because each box cut by the diagonal spawns two of the same kind and two touching the diagonal on the
next level, while each box touching the diagonal produces three far-field boxes.

The new far-field boxes on level ¢ contribute a total cost (proportional to their circumference by (2.3.33))
of gn2="-6(2"1 — 1), g € N the rank of the approximating matrix blocks, so that, by summing,

L
cost(B € Fe,) =qn- Y _6(1—27") =0(qnL), L=O0O(logn) . (2.3.35)
(=1
By our stopping criterion the cost of the near field boxes on the last level L is fixed “O(1)”, which, by
(2.3.34a) and (2.3.34b), yields the total cost O(2) = O(n) for dealing with the near field. Evidently
from (2.3.35), the storage required for the low-rank matrix blocks corresponding to far-field boxes is the
dominant contribution.

By the reasoning of Rem. 2.3.16 we conclude that for the chosen n equidistant collocation points

—~

storage(M), cost(M xvector) = O(qnlogn) for n— oo . (2.3.36)

Ex. 2.3.29 relied on a geometric quadtree to define a tiling. This leads to an economical partitioning of ID,
provided that the collocation points are equi-distributed. If this assumption is not satisfied, geometric tiling
may fail. Therefore we aim for a direct construction of block-partitionings

K
D=UhkxJk, IklkCN , (ItxJ)N(Inx]u) =@ ,itl#m, (2.3.8)
k=1
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The algorithm will rely on tree data structures defining partitionings of the index sets {1,...,n} and

{1,...,m}.

| (2.3.37) Trees |

From graph theory we recall the definition of a tree as a cycle-free directed graph.

Definition 2.3.38. Tree

Let )V be a finite node/vertex set and £ C V x V an edge set. For some r € V we call 7 :=
(V,r,E) a tree with root 7, if for each v € V there is exactly one sequence vy, v1,...,vy € V,
I € INp such that

vo=r, vy=v, (vi1,v)€e€ Vi=1,...,0.

2 Notation: We write root(7") for the root of a tree 7. Regularly, we will use the same symbol, e.g. 7T,
for a tree and its node set.

We also refresh the rich terminology connected with trees:

Definition 2.3.39. Concepts connected with trees

Let 7 := (V,r,E) be atree. For each v € V we call
sons(v) :={weV: (v,w) € £}

the set of sons of the node v. If sons(v) = @, then v is called a leaf.
If, forv € V), thereis aw € V such that (w,v) € &, that w is unique and called the father of v.

<1 Visualization of a tree
s root r = root(7) of T
@®@® : nodes/vertices of T
@ : leaves of tree
% @®® : sonsof v: sons(v)

Obviously, only the root of a tree has no father.
Fig. 85 s

A special kind of trees are binary trees, for which each node is either a leaf or has two sons:

fsons(v) € {0,2} YoeT.

A tree has a natural multilevel structure based on the distance of vertices from the root.

Definition 2.3.40. Level of nodes of tree

Foratree 7 := (V,r, &) we can inductively define the function

level : ¥V — INp,

o —

level(v) := 0 ’f ¢ _ rroot) , YoeV.
level(w) +1 , if wis the father of v,
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This is valid definition, since, except for the root, every node has a unique father.
Level 3

—  Level 2

—  Levell

Fig. 86 7 - Level 0

The depth of atree 7 = (V, 1, £) is the maximal level of its nodes
depth(7) := max{level(v) : v € V}.

Hence, ?? displays a tree of depth 3.

A tree is an intrinsically recursive data structure which each node carrying a sub-tree.

Definition 2.3.41. Sub-trees

Let 7 := (V,r,€) beatreeand w € V. Set set
Vy i = {v eV: Jug,v,...,v0 €V, LENy: vo=w, vy =01, (v;_1,v;) €EVie{l,..., [} }

is the set of descendants of w and (V,,, w, £ N (Vy X Vy)) is a tree, called sub-tree of 7 with
root w.
For w € )V the ancestors of w form the set

{veV: Fuyov,...,0 €V, LeENy: vg=0v, vy=w, (vji_1,v;) €EEVie{l,... (} }.

[ ) o [ ] [ ]
Sub-tree T, attached to a node w of a tree. > e \\'/ '/
®® : nodes/vertices of sub-tree T, \ //
7

w is the root of the subtree.

Fig. 87 7

Now we introduce a key concept that defines a sequence of nested partitions of index sets by means of a
tree.

Definition 2.3.42. Cluster tree

LetT € N anindex set, 7 := (V,r,&),and Z : V — 21 a mapping that assigns a subset of I to
every node of 7. We call Ty := (V,r,E,1,Z) a cluster tree for I, if

(i) the subset corresponding to the rootis I: Z(r) =T,

(i) the subset associated with each non-leaf node is the union of the subsets of its sons

Z(w) = {Z(v) : v esons(w)} Vw eV, sons(w) # D, (2.3.43)
(iii) the sets belonging to different sons of a node are disjoint

Vw e V: vy, €sons(w) = Z(v)NZ(vp) =D. (2.3.44)
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Terminology:  The nodes of a cluster tree are also called clusters.

2 Notation: If 7y is a cluster tree, we write Ly for the set of its leaves

Example 2.3.45 (General cluster tree)

{1},{\2}\{3}<1% }5} {?}/{7} {8} «leaves  |ndexsetl:={1,...,8}.

{1,2} {3,4,5} {6,7,8 < sons < Cluster three with 3 levels.
{1,2, 3,4\,5,48} < root Note: Not a binary cluster tree.

(2.3.46) Bounding boxes of clusters

In the context of approximating kernel collocation matrices we know the collocation points x' € RY,
icl:={1,...,n},andy/ € R j € J:= {1,...,m}. Thus every subset of indices also describes a
cloud of points, recall (2.3.11). For instance , if Ty := (V,r,&,1,7) is a cluster tree associated with the
x-direction, then the

node v € Ty holds the points Py (Z(v)) := {x‘}, I(o)
1S

The smallest axi-parallel box containing all the collocation points held by a cluster is called it bounding
box, cf. Def. 2.3.12.

Definition 2.3.47. Bounding boxes of clusters

Let Tk = (V,r,E,K,I) be a cluster tree (— Def. 2.3.42) for the index set K C IN and
{z"},cx € R? a set of points. Then for every node v € Tk we define its bounding box as
the bounding box of contained points:

(2.3.48) Construction of cluster trees

Matching the recursive nature of the tree data structure, a natural way to construct a cluster tree is by
recursion. We demonstrate this by means of a simple C++ code building a d-dimensional binary cluster
tree.

C++11 code 2.3.49: Data structures for a collocation points and bounding boxes =*GITLAB

» [template<int d> // dimension d as template argument

s | struct Point {

4 size_t idx; // number of collocation point
5 Matrix<double ,d,1> x; // coordinate vector

6};

» [template<int d> // dimension d as template argument
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s | struct BBox {

4 // Bounding box from sequence of points
5 BBox(const vector<Point<d>> pts);

6 // Size diam(B) of a bounding box

7 double diam(void) const {

8 return (maxc—minc) .cwiseAbs () .maxCoeff () ; }
9 // Corner points of bounding box
10 Matrix<double,d,1> minc,maxc;

11 };

w2 |// distance of [a,b] and [c,d]

13 |double dist(double a,double b,double c,double d) {
14 if (b<a) swap(a,b); if (d<c) swap(c,d);

15 if (c<a) { swap(a,c); swap(b,d); }

16 return (c<b)?0.0:c—b;

17 }
18 | // distance of d-dimensional boxes

1w |template<int d>

» |double dist(const BBox<d> &bx,const BBox<d> &by) ({

21 double dst = 0.0;

2 for(int [=0;l<d;++1)

2 dst += pow(dist(bx.minc[I],bx.maxc[|],by.minc[l],by.maxc[l]) ,2);
24 return sqrt(dst);

2 |}

The directed edges of the cluster tree are represented by pointers to other nodes. Moreover a node holds
information about its associated collocation points.

C++11 code 2.3.50: Data type for a node of the cluster tree =*GITLAB

» [template <int d>
s |class CtNode {

+ [public:

5 const static size_t dim = d;

6 // Constructors taking a sequence of points

7 CtNode(const vector<Point<d>> _pts,int _dir=0):
8 pts(_pts) ,sons{nullptr ,nullptr}, dir(_dir) {}
9 // Destructor (also attempts to destroy sons!)

10 virtual ~CtNode(void) {
1 if (sons[0]) delete sons[0];

12 if (sons[1]) delete sons[1];

13 }

14 // Number of indices owned by the cluster

15 size_t noldx(void) const { return pts.size(); }
16 // Function I: access to owned indices

17 vector<size_t> |(void) const;

18 // Access to bounding box

19 BBox<d> getBBox(void) const { return BBox<d>(pts); }
20 // Is the node a leaf node ?
21 inline bool isLeaf(void) const { return(!sons[0] || !sons[1]); }
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22 // Output operator

23 template<int dim>

24 friend ostream &operator << (ostream &o,const CtNode<dim> &node) ;
25 // Pointers to sons

2 CtNode xsons[2];

27 // Points contained in the cluster
28 vector<Point<d>> pts;

29 // Direction for sorting

30 int dir;

31 };

A cluster tree object essentially holds a pointer to the root of the cluster tree.

C++11 code 2.3.51: “Envelope” data structure for cluster tree =>GITLAB

» |[template <class Node>
s |class ClusterTree {

+ [public:

5 const static size t dim = Node::dim; // space dimension d

6 // Idle constructor

7 ClusterTree(void) :root(nullptr) {}

8 // Effective Constructor taking a sequence of points

9 // (needed, because polynorphism not supported in constructor)

10 void init(const vector<Point<dim>> pts,size_t minpts = 1);

1 virtual ~ClusterTree(void) { if (root) delete root; }

12 // Output of tree

13 template <class Nd>

14 friend ostream &operator << (ostream &o,const ClusterTree <Nd> &T);
15 |protected:

16 // Recursive construction

17 virtual void buildRec (Node xnptr,size_t minpts) ;

18 // Node factory

19 virtual Nodex createNode(const vector<Point<dim>> pts,int dir) {
20 return new Node(pts,dir); }

21 public:

22 Node *xroot; // pointer to root node

23 };

The argument minpts to the constructor specifies the minimial number —1 of indices contained in a
non-leaf cluster.

In order to cope with non-uniform distributions of collocation points, the recursive construction of the
binary cluster tree does not merely split the bounding boxes of clusters in half. Instead, in order to obtain
a balanced cluster tree the splitting of collocation point sets is done according to the rule:

Balanced nodal index sets

Rule: the index sets of the sons of a node must have the same cardinalities (£1).

This is achieved by alternating directional splitting: Let us assume that the collocation points {xi}iez(w)
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owned by a node w € 7Ty are sorted according to their /-th component:

ikeZ(w),i<k = x@ﬁx’g, forsome (€ {1,...,d}. (2.3.53)

Then we assign the following index subsets to the sons of w

Z(1stsonof w) := {1,..., {@J } ,

(2.3.54)
rente - {| 22 1)
son of w) := > +1,... 4Z(w) ¢ .
The direction ¢ cycles through {1,...,d} as we advanced towards the leaves of the cluster tree.
C++11 code 2.3.55: Construction of a cluster tree from collocation points =*GITLAB
» |[template<class Node>
s |[void ClusterTree<Node>::init (const vector<Point<dim>> pts, size_t
minpts) {
4 if (!(root = createNode(pts,0)))
5 throw (runtime_error("Cannot allocate root"));
6 if (minpts < 1)
7 throw (runtime_error(" minpts must be at least 1"));
8 buildRec (root , minpts) ;
@ |}
» |[template<class Node>
s |[void ClusterTree <Node>::buildRec (Node xnptr,size_t minpts) {
4 const size_t n = nptr—pts.size(); // Number of held indices
5 // Leaf, if minimal number of indices reached
6 if (n > minpts) { //
7 // Polints have to be copied and sorted according to direction dir
8 vector<Point<dim>> tpts (nptr—pts);
9 // next sorting direction
10 const int dir = (nptr—dir + 1)%dim;
11 // call sort function from standard library
12 sort(tpts.begin() ,tpts.end() ,
13 [dir] (const Point<dim> &p1,const Point<dim> &p2)
14 —> bool { return (bool)(p1.x[dir] < p2.x[dir]); });
15 // Split point sequence and construct sons
16 const size_t m = n/2; // integer arithmeric, m>0 ensured
17 const vector<Point<dim>> low_pts (tpts.cbegin() ,tpts.cbegin()+m);
18 // First son gets “lower half” of sorted points
19 if (!(nptr—>sons[0] = createNode(low_pts, dir)))
20 throw (runtime_error("Cannot allocate first son"));
21 buildRec (nptr—sons[0] , minpts); // recurse into first son
22 // Second son get “upper half” of sorted points
2 const vector<Point<dim>> up_pts(tpts.cbegin()+m,tpts.cend());
24 if (!(nptr—>sons[1] = createNode(up_pts, dir)))
25 throw (runtime_error("Cannot allocate second son"));
2 buildRec ( nptr—>sons[1], minpts); // recurse into 2nd son
27 }
2 |}
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Taking into account sorting the total computational effort for BuildRec in the case of n := #I = 2L is

i(k +1)(L —k)2k"F = O(nlog?n) .
k=0

Example 2.3.56 (Binary cluster tree for d = 1)

6 For d = 1 with collocation points

Gi=y/5i=1..nn=64.

level
N

< Balanced binary cluster tree
(center of bounding box drawn for each cluster)

Fig. 88 X

Example 2.3.57 (Unbalanced cluster tree)

The construction of a binary cluster tree could also be based on a purely geometry-based distribution of
the indices to the sons. For instance, for d = 1, w € 7Ty a cluster owning the collocation points {G; };c7(w)»
we could set

Z(1stsonof w) ={i € Z(w) : & < Yyw},
Z(2ndsonof w) = {i € Z(w) : & > Yuw},

where vy, = %(max{gi}iez(w) + min{¢; }icz(w)) is the “midpoint” of the cluster w.

{¢7} {Cs}

< Geometry-based cluster tree for n = 8 and the
non-uniformly distributed collocation points
G=2"" i=1,...,n

At each level exactly one point will be split off, lead-
ing to a highly imbalanced cluster tree.

Fig. 89
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2.3.3 Far-Field Blocks

Cluster trees of {1,...,n} or {1,...,m} provide a hierarchy of partitions of these index sets. However,
what we are aiming for is a partition of the product set D := {1,...,n} x {1,...,m}. We construct it
based on cluster trees.

| Example 2.3.58 (Quadtree partition from cluster trees)

We reconsider the quadtree-based tiling of [0, 1]? from Ex. 2.3.29 and the induced partition of a kernel
collocation matrix based on equidistant collocation points in 1D.

{1y _{2; {31 {4} {5} {6} {7y 18} « leaves
\\ NN/ /K |
1,2} {3,4} {5,6} 7 < Natural binary cluster tree for
N/ \ the index set {1,...,2%} (4
{1/2/3/ } {5/6/7/ } IeVGIS).
N, 7
{1,2,3,4,5,6,7,8} + root

The nodes of the balanced binary cluster tree (— Def. 2.3.42) for the index set {1,...,2L} on level
¢ =1,...,L are associated with the index sets:

Tppo={(k—1)-2b"C41,.. k20, ¢=1,...,2°.

The square matrix blocks arising from quadtree t|I|ng are submatrices belonging to products of such index
sets (from the same level): <M) e R2 2 Thisis displayed in the following figure for L = 5:

Ty L m
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35 X I3ks6 X I3k

35 X 37

3,3 X ]13, 3,4 X ]13,‘

3 X 113,

]]3/1 X ]I3/ 2 X 1[3,‘

I35 x I3

Fig. 90

Now we take the cue from the algorithm in Ex. 2.3.29 to devise a recursive algorithm that builds a near-
field/far-field matrix partition from binary cluster trees of the index sets {1,...,n} and {1,...,m}. It wil
be based on an abstract admissibility condition:
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Definition 2.3.59. Abstract admissibility condition

Let 7y and Ty be cluster trees (— Def. 2.3.42) forindex sets I := {1,...,n} andJ := {1,...,m},
A mapping

adm : Ty x Ty — {true, false}
is called an admissibility condition for 7y and 7y, if “admissibility in inherited by the sons”:

adm(t,0) = adm(t',0) VT e Ty, o €Ty, v’ €sons(t),
adm(t,0) = adm(t,0’') Vte Ty, oc€Ty, o €sons(o).

The next code snippet contains the definition a class that can construct and represent the partition of a
matrix into two kinds of blocks: near-field blocks and far-field blocks. Node must be a type compliant with
CtNode from Code 2.3.50.

C++11 code 2.3.60: Class describing a far-field/near-field matrix partition =GITLAB

» |[template <class Node,typename FFB,typename NFB>
s [class BlockPartition {

+ [public:

5 // Idle constructor

6 BlockPartition (const ClusterTree <Node> & xT,

7 const ClusterTree<Node> & yT):

8 xT(_xT),yT(_yT) {}

9 // Trigger recursive construction of partition

10 // (Needed, because polymorphic functions not available in
constructor)

1 void init (double eta0 = 0.5);

12 virtual ~BlockPartition(void) {}

13 // Admissibility condition adm, see Def. 2.3.59

14 virtual bool adm(const Node *xnx,const Node xny,double eta0) const;
15 |protected:

16 // Recursive construction from cluster pair

17 virtual void buildRec(const Node xnx,const Node xny,double eta0);
18 // Construct an instance of far—-field block type

19 virtual FFB makeFarFieldBlock (const Node &nx,const Node &ny) const
20 { return FFB(nx,ny); }

21 // Construct an instance of near—field block type

2 virtual NFB makeNearFieldBlock(const Node &nx,const Node &ny) const
2 { return NFB(nx,ny); }

2 | public:

2 const ClusterTree<Node> &xT,&yT; // underlying cluster trees

2 vector<FFB> farField; // index blocks in the far field

27 vector<NFB> nearField; // index blocks in the near field

28 static bool dbg; // Debugging flag

29 };

The vectors farField and nearField contain objects that store two index sets each. A suitable data
type may be defined as follows.
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C++11 code 2.3.61: Data structure for matrix block =*GITLAB

» |[template <class Node>
s | struct IndexBlock {

4 // Constructors extracts indices from clusters

5 IndexBlock (const Node & nx,const Node & ny):

6 nx(_nx) ,ny(_ny),i_idx(_nx.1()),j_idx(ny.1()) {}

7 virtual ~IndexBlock(void) {}

8 const Node &nx,&ny; // contributing clusters

9 const vector<size_t> i_idx ,j_idx; // contained indices

The partitioning of ID := I x J is built recursively by climbing up both cluster trees in tandem identifying

admissible pairs of clusters on the way:
4+ If one of the clusters is a leaf, then put the pair in the near field,
4+ else if the pair of clusters is admissible, then assign it to the far field
4 else continue recursion with all pairs of sons.

This is implemented in the following functions:

C++11 code 2.3.62: Recursive construction of matrix partition =GITLAB

» |[template <class Node,typename FFB,typename NFB>

s |[void BlockPartition <Node,FFB,NFB>::init (double eta0) {
4 buildRec (xT.root ,yT.root ,eta0) ;

5 |}

» |[template <class Node,typename FFB,typename NFB>

s |void BlockPartition <Node,FFB,NFB>::

+ |buildRec (const Node xnx,const Node xny,double eta0) {
5 if (nx & ny) {

6 // Add admissible pair to far field

7 if (adm(nx,ny,eta0)) //

8 farField .push_back(makeFarFieldBlock (xnx,*xny)) ;
9 else {

10 bool rec = false;

1 for (int isx=0;isx <=1; isx++) {

12 for (int isy=0;isy <=1; isy++) {

13 if (nx—>sons[isx] && ny—>sons[isy]) {

14 // Next level of recursion for non—-leaves

15 rec= true; buildRec(nx—sons[isx],ny—>sons[isy],eta0);
16 H}

17 // At least one leaf cluster:

18 // Add cluster pair to near field

19 if (!rec) //

20 nearField.push_back(makeNearFieldBlock(xnx,xny)) ;
21 }

22 }

23 else
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24 throw (runtime_error("Invalid node pointers"));

2 |}

In compliance with Def. 2.3.13 and Def. 2.3.14, the implementation of the adm () method will rely on a
geometric admissibility condition invoking the admissibility measure 7 (B) from Eq. (2.2.57), where B is
the product of the bounding boxes of the two clusters. More precisely, a pair of clusters (v, w) € Ty X 7]]
qualifies as 7p-admissible, 779 > 0, if

1 (box(v),box(w)) < 1o,
adm(v, w) = true < and (2.3.63)
v and w is not a leaf

The following implementation of the adm () -method realizes (2.3.63). The implementations of dist ()
and diam () for bounding boxes are given in Code 2.3.49.

C++11 code 2.3.64: Geometric admissibility condition adm =*GITLAB

» [template <class Node,typename FFB,typename NFB>
s |bool BlockPartition <Node,FFB,NFB>::adm(const Node x*nx,

4 const Node xny,

5 double eta0) const {

6 // Neither node must be a leaf.

7 if (nx—isLeaf() || ny—isLeaf()) return false;

8 // Geometric admissibility condition, see Eq. (2.2.57)

9 const BBox<Node::dim> Bx = nx—>getBBox() ,By = ny—>getBBox () ;
10 const double eta = max(Bx.diam () ,By.diam())/(2xdist (Bx,By)) ;
1 return (eta < eta0l);

The following pictures illustrate what is happening during first few calls of buildRec; to be continued by
the reader by supplementing Fig. 96.

Yy Yy

Fig. 91 Fig. 92
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B

Fig. 93 Fig. 94

Fig. 95 Fig. 96

Example 2.3.65 (Near- and far-field boxes constructed from cluster trees in 1D)

We apply the algorithm of Code 2.3.62 with 179 = % for equispaced and non-equispaced sets of points and
visualize the resulting block partition: « = near field point pair, L] = product of bounding boxes for far-field
cluster pairs.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 210



Fig. 97

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

1 n = 0.500000 N n = 0.500000
ooood %—‘ E—
0.9} %%gggmﬁﬁg 0.9——‘—‘ %} H H
. DDDDDSSD%%%%DSS | %‘ ‘l:ll:ll:l [
08y mmgggg%ﬁ%gggﬁ o — %EE%%E ﬁ
DpoEdn it o —— 55505 B
! Dgggmgﬁmggmmmﬂ ee—s = DEEEEE%
l:ll:ll:l[l[l[l ﬁ DDDDI:H:' — = EESS:3§D D
o [ e ~s— S LJasagiits -
[ R e = S SeERiiiEetinng
g i T SHanooL L
EmE i + 1 B NO000000000
o_zgggggﬁgggggmm ot 1 11..00000000000
§ == L
Ou%%moaggc’;"—o‘il—‘ oa 0).(5 06 07 os 09 Foas % o1 oz o5 oa 0).(5 06 07 08 08 ]
Gi=ni=4¢.i=0,...64 Gi=ni=1/gi=0,.. .64

2.3.4 Storing Block-Partitioned Kernel Collocation Matrix

We aim for economically storing the local low-rank approximation M € ]R”'f” of a kernel collocation matrix
(— Def.2.1.15) M = [G(xl,y])] ier, L:={1,...,n},J:={1,...,m}, ',y €0, 1]d. We assume that
j€y

we are given

4+ two binary cluster trees (— Def. 2.3.42) Ty (“x-tree”) and Ty (“y-tree”) for the index sets I and J.
Both are available as instances of ClusterTree, see Code 2.3.51.

% Notation: We use the symbol v for clusters € Ty, and w for clusters € Ty

4+ afar-field/near-field block partition of ID := I x J built from the cluster trees 7y and 7y by “admissi-
ble” recursive subdivision as done by buildRec in Code 2.3.62. The block partition is represented
as an instance of type BlockPartition as defined in Code 2.3.60.

Asin § 4.1.9 we write [F¢,, and [F ¢, for the near field and far field, which are sets of pairs of clusters
<> sets of pairs of index sets.

Recall that each cluster carries an index set accessible through the function Z, e.g. Z : Ty — 21, see
Def. 2.3.42. We adopt the following shorthand notation for blocks of the matrix M associated with pairs of
clusters:

veT, ZI(v)

= {i1, ..., i}, . . o
w e 7I], I(w) = {]'1, M’vxw = [(M)Z’J i, e R™", (2.3.66)

el

We remind of the gist of local low-rank approximation of kernel matrices:

If (v,w) € g, the sub-matrix M| ., is approximated by a rank-g matrix arising from a rank-g
separable approximation (2.2.15) G of Gpox(v) xbox(w) With ¢ < min{#Z(v), 1Z(w)}.

The bounding box of a cluster is defined in Def. 2.3.47.

(2.3.67) G from uni-directional interpolation — Section 2.2.1.2
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As explained in § 2.2.36, in the case of uni-directional interpolation we rely on the rank-g separable ap-
proximation

G(x,y) ~ Z bé G(tl,y), (x,y) € box(v) x box(w), (2.3.68)
:igf(x) =hy(y)

for any par of far-field clusters v € Ty, w € Ty. Here b] : box(v) — R, £ = 1,...,q, are the cardinal
functions associated with the interpolation operator in x-direction, see (2.2.35).

This leads to the rank-q approximation in factorized form

= [bZ(xi)] iezw) € R¥ ()4 ’
M|, ., ~M| =U.VT, e (2.3.69)
oxw oxw Vo= [G(tf,,y])} . c RIZW)g

5:1, A

To indicate the dependence of the interpolation nodes and of the cardinal functions on the cluster v in
(2.3.69) we wrote tﬁ and bj.

Depdence of local low-rank factors
For (v,w) € Ty, the low-rank factor U according to (2.3.69) depends on v only, whereas V
depends on both clusters and the kernel function G.

B> Store low-rank factor U in cluster (= node of cluster tree); enables reuse for several far-field cluster

pairs sharing the same x-cluster.

Required storage = O(gnlogn) for n — oco.

(2.3.71) G from bi-directional interpolation — Section 2.2.1.3

From (2.2.46) we learn the form the rank-g separable kernel resulting from interpolation in both x- and
y-direction, here given for the same number g of interpolation points in both directions.

G(x,y) ~ Z Z G(th, ) bY( x)J b/ (y) , (x,y) € box(v) x box(w).  (2.3.72)

=1/=1 g
=gk (%) =h(y)

As above, we write {t’z‘,}k:1 and {t}, oo 1,...q for the sets of interpolation nodes on the tensor-product

domains box(v) and box(w), respectlvely. Agaln, by and b}/ designate the associated cardinal functions
for the underlying interpolation operators.

As in (2.2.47) we obtain a rank-gq approximation of the block of the kernel collocation matrix in triple-factor
form:

] c R, (2.3.73)
k/l=1,...,1
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Dependence of local matrix factors

For (v, w) € IFy,, the matrix factor U, solely depends on the cluster v, the matrix factor V., solely

on the cluster w, while both clusters and the kernel function G contribute to C.

B The matrices U, and V, can be computed and stored in the clusters before even without knowing

the kernel function.

Required storage = O(gnlogn)/O(gmlogm) for n,m — oo .

(2.3.75) Bi-directional interpolastion: Data structures for cluster pairs

We take the cue from (2.3.73) and the observation that the matrix factors U, and V, actually “belong to”
a single cluster. This suggests that we extend the data structure for clusters through a derived class type.

C++11 code 2.3.76: Extended cluster data structure for interpolatory kernel approximation

=*GITLAB

» [template <int d>
s |class InterpNode: public CtNode<d> ({

+ [public:

5 // Constructor from sequence of points; initializes V

6 InterpNode (const vector<Point<d>> _pts,size_t _q,int _dir=0):

7 CtNode<d>(_pts,_dir) ,q(_q) ,sons{nullptr , nullptr} k(_pts.size())

8 { initvV(); }

9 virtual ~InterpNode(void) {}
w0 |protected:

11 // Initialization of matrix V
12 void initV (void) ;

13 |public:

14 const int q; // Rank, no of interpolation nodes

15 size_t k; // Number of indices contained

16 MatrixXd V; // low-rank factor V € R

17 InterpNode x*sons[2]; // Pointers to sons (of type InterpNode!)

To accommodate the extended argment list of the constructor, also the data structure for ClusterTree

needs to be extended:

C++11 code 2.3.77: Extended cluster tree data type built for InterpNode from Code 2.3.76

-*GITLAB

: |[template <class Node>
s |class LowRankClusterTree: public ClusterTree <Node> {
« [public:

5 // Idle constructor just setting rank argument g
6 LowRankClusterTree(size_t _q):q(_q) {}
7 // Actual constructor taking a sequence of points

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques

213


https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp
https://gitlab.math.ethz.ch/AdvNumCSE/Code/tree/master/HMAT/CLUSTERING/Clustering.cpp

AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

8 void init(const vector<Point<Node::dim>> pts,size_t minpts = 1);
9 virtual ~LowRankClusterTree(void) {}

w0 |protected:

11 // factory method for relevant type of node takine rank argument
12 virtual Nodex createNode(const vector<Point<Node::dim>> pts,int
dir) {

13 return new Node(pts,q,dir); }
1 |public:
15 const size_t q; // rank of degenerate approximation on cluster boxes

16 };

1 |[template <class Node>

19 |void LowRankClusterTree<Node>::init (const vector<Point <Node::dim>>
pts,size_t minpts)

» |{ ClusterTree<Node>::init (pts,minpts); }

In (2.3.73) the matrix factor C € IR%7 “belongs to” the cluster pair (v, w). Therefore this matrix should be
stored in the object representing the far-field cluster pair.

C++11 code 2.3.78: Data type for a far-field cluster pair & bidirectional interpolation =*GITLAB

» [template <class Node,typename KERNEL>

s |class BiDirCheblnterpBlock: public IndexBlock<Node> {
+ [public:

5 using kernel_t = KERNEL;

6 BiDirCheblnterpBlock (const Node &nx,const Node &ny,

7 kernel_t G,size_t _q);
8 virtual ~BiDirCheblnterpBlock (void) {}
9 // Invalid constructor throwing exception

10 BiDirCheblnterpBlock (const Node &nx,const Node &ny) ;

12 const kernel t G; // kernel function G
13 const int q; // No of interpolation nodes
1 MatrixXd C; // Ce R

Remark 2.3.79 (Bi-directional polynomial interpolation)

The low-rank triple-factor approximation of a kernel collocation matrix as introduced in Section 2.2.1.3
involves the two matrix factors

U:=[b}(x)] im0 eR™ V= [b)(y)] =.m € R™, (2.3.80)

j=1
(=1,...,9 (=1,..q
see (2.2.47). Here, xl e R, i = 1,...,n,and yf € ]Rd,j =1,...,m, are collocation points (— Def. 2.1.15),
and the function b7}, bz, ¢=1,...,q, are cardinal basis functions (— (2.2.35)) for the underlying interpo-
lation operator and for interpolation nodes ¢y, t;, € R, £ =1,...,q.

We employ tensor-product polynomial interpolation, cf. § 2.2.38 and § 2.2.42. From [Hip15, § 5.2.27] we
recall the barycentric interpolation formula in 1D: Given the set {t!,...,#1} C R of interpolation nodes
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on the real line the unique polynomial p € P, satisfying the interpolation conditions p(tf) = y;j for given
Y1,---,Y7 € R, can be written as

q A; q A; -1

— i - : 2.3.81
Y Y ; sl I (2.3.81)
1

with weights A = o iy @ = F ) (¢ — ) (F = f) *

i=1,...,9. (2.3.82)

The cardinal basis functions for polynomial interpolation are the Lagrange polynomials

T x ¢
1—[ t, xeR, gzl,,ﬁ] = Lg(tk)zf&,k, g,kzl,...,q. (2.2.39)
”y

For them we get the barycentric formula

-1
.2
Lo(x) = <2x_lt1> , o x#t, 0=1,...,q, (2.3.83)

i=1
to be supplemented with L, (') = 1.

Now we discuss the case d = 2 and the computation of U = [bf(xf)} . We assume a tensor-product grid
of interpolation points

. k
th = l:ﬂ , kme{l,...,q}, j=(k—-1)g+m,

based on sets of one-dimensional interpolation points {t},...,t1} and {t},...,t1}. As explained in
§ 2.2.42, cf. (2.2.43), in this case the cardinal functions are given by products of 1D Lagrange polynomials

X .
bi (x) = Li(x1) - L3(x2), x= {xi] , kme{l,...,q}, j=(k—-1)g+m. (2.3.84)
This suggests the following algorithm for the computations of U:

O For x = 1,2 precompute the weights

1
A = — , , i=1,...,q9.
L =) (= D (=YY (=) 1

. X
® For all collocation points x/ = [ ]1] do:
)

(i) Compute L*( ) x = 1,2, using the formula (2.3.83).

q
(i) Form the tensor product matrix L; : [Ll( ) L7-( )]k . e R,
M=

(i) Reshape K; is a row vector of length q2 and insert it into U as j-th row.

(2.3.85) Storage requirements
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A general expression for the amount of storage required by an instance of BlockPartition (— Code 2.3.60)
has already been given in (2.3.21):

storage(M) = Y q(#lc+8Jk) + Y. -tk - (2.3.21)

ke]Ffar ke]Fnear

Now we are going to refine this expression for the partition generated by the clustering algorithm of
Code 2.3.62 based on the cluster tree recursively built as in Code 2.3.55 and with the admissibility condi-
tion (2.3.63). To obtain the rank-g far-field blocks we employ bi-directional interpolation, which results in a
matrix factorization as in (2.3.73)

M = Uy Coxw- Vg, , (2.3.86)

oXw

U, e RZOA | Cpup e R, V] e RE®A, (2.3.87)

The factors U, and V, are stored in the respective nodes.

The if-statement in Line 6 of ClusterTree<Node>: :buildRec () ensures thatthere is a small num-
ber r; € IN that bounds the number of indices held by the leaves of the cluster trees:

Vu e T visleaf = #Z(u) <r., x=1]7. (2.3.88)

On the one hand, in BlockPartition<>::buildRec () from Code 2.3.62 the admissibility check
of Line 7 rules out that a cluster pair containing one leaf cluster is added to the far field set. On the other
hand, the if-statement of Line 19 has such a cluster pair invariably added to the near field set:

(v,w) € Frear = visleafof Ty or wisleafof 7y . (2.3.89)
These insights combined lead to the estimate
(0,w) € Frear = #Z(v)-Z(w) < r.(§Z(v) +4Z(w)) . (2.3.90)

Thus, the amount of memory required by an instance of BlockPartition is bounded by

strage(M) < ) ¢+ ), q-tZ(v)+ ) q-4Z(w)+ ), ri(tZ(0) +tZ(w)) .

(v,w) €Fgy, veTr weTy (0,w) EFnear

For the last three terms in this sum the cluster tree structure immediately gives the estimates

Y 4Z(v) < depth(Ty)-n , Y -#Z(w) < depth(Ty)-m. (2.3.91)
veTy weTy

To tackle the sum over the far-field pairs we have to make an assumption on the sparsity of the block
partition [GHO3]:

Definition 2.3.92. Sparsity measure of block partition

Let IF := {I; x Ji} be a block partition of ID := I x J based on the cluster trees 7y and 7j. Then
the sparsity measure of [F bounds the number of occurrences of a cluster in cluster pairs

spm(F) := max{maxﬁ{w €Ty: (v,w) € F},maxfi{v € Ty : (v,w) € IF}} . (2.3.93)
veTy weTy

Thus, the sparsity measure spm([Fg,,) counts the maximal number of far-field blocks to which a single
cluster can contribute.
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<

Nodes occurring together with
node e in block partition are
marked as e :

{e}

—{veTi: (v, 8 )EF}.

They define a set whose car-
dinality is taken into account
in the definition of the sparsity
measure.

Fig. 99
The next estimates are immediate from the definition of the sparsity measure:

Y 1= Y HweTy: (vw) €Fy} = Y o€ Ty: (v,w) € Fry}

(ow)eFg,  v€Th weTy

< spm(F) - min{#7y, £ 75} ,

Y, Z(v) +4Z(w) <spm(F)- | } tZ(v)+ ) #Z(w)

(U/w)eanear U€7i ZUG'E[

< spm(F) - (n depth(7y) + m depth(Ty)) .

For the cluster trees 71 and Ty the total number of clusters is smaller than depth(7y) - £I or depth(7y) -
£, respectively. Thus we conclude

) 7* < ¢* spm(F) - min{depth(7y) - n, depth(7y) - m} , (2.3.94)

(U/w) EFg,

which highlights the key role of the sparsity measure when gauging the efficiency of clustering algorithms.
For balanced binary cluster trees as built by buildRec () we obtain

storage(M) < ((re + ¢*)spm(F) + q) - (n[log, n] + m[log,m]) . (2.3.95)

Remark 2.3.96 (Bounding the sparsity measure)
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Our policy of using balanced trees as basis for block partitions as implemented in the buildRec () func-
tions of Code 2.3.55 and Code 2.3.62 does not permit us to bound the sparsity measure of the resulting
F := Ff,, U [Fpear, unless some uniformity of the distribution of collocation points is assumed.

An alternative geometric clustering policy similar to the quadtree-based approach of Ex. 2.3.29 [GH03]
makes possible rigorous bounds on spm(IF), but for general locations of collocation points the depth of
the cluster trees may grow linearly with flI/f].

Experiment 2.3.97 (Sparsity measure for clustering in 1D)

2.3.5 Matrix xVector: Efficient Implementation

We discuss the implementation of M- 7, fi € R™ in the setting of the previous section and for separable
kernel approximation by bi-directional interpolation, see § 2.3.71, in particular (2.3.73): For a cluster pair
(v,w) € Fray, v € Ty (“x-cluster tree”), w € Ty (“y-cluster tree”) we have

v T j k 40 , ( i
M — UZ)CZ)X?UVZ() - [bz (xl):| ieT(v) |:G<tU’ tw>:| -~ € Rq q |:b20<y]>:| jeZ(w)
VX W k=1,...q =Leq , (=1,..
N — N~ N’
cRIZ(0)4 SN cRIZ(w)

We adapt the general algorithm given in Code 2.3.24 to this situation. To elucidate the ideas we introduce
two essential operations and their matrix representations:

@ Reduce-to-cluster: For w € 7 we define
Hja
Ry : R"™ — R Ry(f):= | : |, with Z(w)={j1,...,j;}, {:=4T(w). (2.3.98)
Hie
This is a linear mapping and can be described by a “fat” matrix R,, € {0,1}Z®@).m,
® Expand-from-cluster: For v € Ty we introduce
vy Lifip=1,

0 ,ifk%I(v),With Z(v) ={i1,... ik}, k:=14Z(v) .

Eo: R 5 R" , (E,¥); ;:{

(2.3.99)
The matrix associated with E,, will be denoted by E, € {0,1}"%#(),
Remark 2.3.100 (Expand and reduce as adjoint operations)
If I = J and 75 = 7Ty (m — n and same cluster tree for both directions), then we have E, = RJ.
The operations make it possible to write the multiplication of M with a vector in a concise way:
Mji = Y E,- M| - Ryji
(0,w) EFarUFnear vxw
(2.3.101)

= Y E-M

(v,w) EFpear

W : Rwﬁ + Z (EvUv)Cwa(V;Rw)ﬁ .

VX
(0,w) EFpear
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This suggests a 3-pass approach:
(I) Foreach w € Ty compute @y := V. Ryji € R (@)
B Total effort = } e 77 742 (w) = O(qmlogm)  for m — co.
(1) In parallel carry out the following operations:
e For each cluster pair (v, w) € Fy,, update Zv — ZU + Cor @i, ZU e R¥HZ(),

e For each cluster pair (v, w) € Fpear update @, < ¢, + M|, ., Ruofi, §, € RIZ(0)

Total effort = ?
() Foreachv € Tydo B < B+ Ey(Usl, + ,), p € R™.
B Total effort = )7 17 (w) = O(nlogn)

Of course, all vectors into which we accumulate results have to be initialized with zero.

(2.3.102) Complexity Estimates

We adopt the setting and notations of § 2.3.85. In Section 2.3.1 we have derived a general estimate for
the effort of matrix x vector multiplication with M:

cost(M x vector) = Y q(8L + i) + Y. 8L 4]k - (2.3.26)
keFg,, k€Fnear

Since this bound is the same that for the storage requirements in (2.3.21), we can appeal to the derivation
of (2.3.95) and get

cost(M x vector) < rpspm(F) - (n[log, n] + m[log, m]) . (2.3.103)

2.3.6 Panel Clustering

We discuss the application of clustering techniques for the local low-rank compression of boundary el-
ement Galerkin matrices as they have been introduced in Section 1.4 and Section 1.5. We recall the
general setting

4+ The domain Q C R? d = 2,3, is a bounded curved Lipschitz polygon/polyhedron with boundary
I':=0Q.

4 The boundary I is equipped with a mesh G = {rrk}kK:l according to Def. 1.4.16 (d = 2) or
Def. 1.5.4 (d = 3).

4 Based on G we build a boundary element space Vy, either 8;_11(9) or 82(9), p € N, see
(1.4.21)/(1.5.11) and (1.4.22)/(1.5.12), piecewise polynomial under edge/face-wise pullback to the
parameter domain.

4+ The boundary element space is spanned by locally supported nodal basis functions:
VN = Span{b1 ,...,b%} , N:=dimVy.

Refer to Ex. 1.4.28, Ex. 1.4.30, Ex. 1.5.24, and Ex. 1.5.25 for concrete examples.

2. Local Low-Rank Compression of Non-Local Operators, 2.3. Clustering Techniques 219



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

Then the entries of the Galerkin matrix associated with the single layer boundary integral operator V for
—A read

. N
R 1 N,N
V= | [ Jr G, y) by (y) by (x) dS(y) dS(x)]i,j_l e RVN, (2.3.104)
with the fundamental solution
—L1 — ifd=2,
GO(x,y) = 4 S ze o8lx =yl i (1.2.44)

= Jifd =3.
47 lx—yl|

Note that G2 provides an asymptotically smooth singular kernel function, see Rem. 2.2.51. As such it
allows rank-q separable approximation on “admissible” boxes C RY x R, exponentially accurate in g, in
the spirit of Ass. 2.2.86.

In order to transfer the clustering techniques from kernel collocation matrices to V we have to answer two
questions:

Q1 What will play the role of the collocation points x' and yf?

Q2 How to obtain low-rank approximations of “admissible” blocks of V?

(2.3.105) Answer to Q1 |

The index setswillbel = J = {1,..., N}, thatisn,m = N, and instead of collocation points we consider
the basis functions by, i = 1,..., N. Recall that each basis function has a small support supp(b};) C I.
These will be used to define bounding boxes for sets of basis functions, cf. Def. 2.3.47. For I C I we
define

d
i _ ; . i . i
box{bN}ieI = €|_|1 [mm{xg tx € iGUIsupp(bN)},max{xg tx € iGUIsupp(bN)},] . (2.3.106)

This also defines the bounding box box(v) of each node v of a cluster tree (— Def. 2.3.42) for I, because
v can be identified with a unique subset of indices/basis functions. Given bounding boxes we can compute
the diameter of a cluster and the distance of two clusters in the usual way, see Code 2.3.49.

The following could be a replacement of the Point class from Code 2.3.49.

C++11 code 2.3.107: Data type boundary element basis function =*GITLAB

» [template<int d> // dimension d as template argument

s | struct BasisFn {

4 size_t idx; // Index of basis function
5 Matrix<double ,d,1> xmin,xmax; // Corners of bounding box

6};

(2.3.108) Answer to Q2

Assume that we have run the clustering algorithm and constructed far-field/near-field block partition. Con-
sider a cluster (v, w) € Fy,,.. Hence (i,j) € Z(v) x Z(w) means that

supp (bly) x supp(bg\]) C B :=box(v) x box(w), n(B) <mno, (2.3.109)
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1 (B) the admissibility measure from (2.2.57) and 779 > 0 the admissibility threshold.

Thanks to Ass. 2.2.86, on B we can get a rank-q separable approximation of G? by means of bi-directional
interpolation, see (2.2.46),

’ x,v) ZZGA ty,ty)ci(x)cl(y), (x,y)€B. (2.3.110)
=1/=1

with interpolation nodes #£ for box(v), tﬁ for box(w), and associated cardinal basis functions ¢ and

cZ. We plug this approximation into the double integrals defining the entries of the Galerkin matrix V from
(2.3.104):

9 1
V‘vxw ~ Z Z GA tk t/ frcﬂ fFCk dS( ) )
k=1/(=1 i€Z(v)
JEZ(w)
T
ka x) dS(x) . [GA(tk,tf)] fcg y)dS(y) (23.11)
I€I) Y ko=, |T jeZ(w)
—1,..q (=1,

=U,-C-V] ¢ RAZ()4Z(w)
which gives us a rank-g matrix already in triple-factor form, cf. (2.2.47).

If we rely on tensor-product polynomial interpolation, the cardinal functions c; and cZ will be product of
Lagrange polynomials. As a consequence, the integrands of the integrals defining the matrices U and
V will be analytic after local analytic pullback to the parameter domain/reference element. For instance,
the contribution of a single panel 7t with associated local parameterization 7y, : K-> (— § 1.4.35,
§ 1.5.21)is

[ b () dS(x) = [ (32 (R)F(R) y/det(Dy (%) D (3)) diF, (2:3.112)

where b/ : K — R is the polynomial (!) reference shape function spawning bi;: b/ = Vi byl . see
(1.4.38). The integrand in (2.3.112) will inherit analyticity from 4 and can be evaluated accurately by
(expoentially converging) families of high-order numerical quadrature rules on K.

Remark 2.3.113 (Compressing discrete BIEs with double layer kernels)

The entries of boundary element Galerkin matrices for the double layer boundary integral operator K with
the integral representation formula

K(b)(x) = / x;yd -n(y)v(y)dS(y), x & smoothpartofI, (1.3.80)
I wgllx =yl

are given by the singular integrals

b= [ [ n(y) b () B(x) dS(y) dS(x), 23114
ey

N
where {bé\,} - is a nodal basis of SQ(g) p € N, and {B } _, anodal basis of S 1(G), see Sec-
tion 1.4.2.3 and Section 1.5.2.2.

Following the policy of § 2.3.108 and interpolating the singular, asymptotically smooth kernel kg (x,y) :=

ﬁ -n(y) on far-field boxes encounters difficulties, because it requires its evaluation also off the
wyl||x—y
boundary I', where the normal vector field n is not defined!
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We remember that

x p—
ki (x,y) == 7yd ‘n(y) = grad, Gx,y)-n(y), x,yel, x#y. (2.3.115)
wallx =y
@ Idea: Obtain a separable approximation of the double layer kernel kx by applying the
differential operator n(y) - grady to a birectional interpolant of G*!

Recalling (2.3.110), this leads to the rank-g separable approximation

q

ki (x,y) kZuZ1GA tlfc,té) P(x )(gradci)(y) -n(y), (x,y)€eBNT, (2.3.116)

where B ¢ R? x R? is a far-field box as in (2.3.109), associated to the cluster pair (v, w). We end up
with the rank-q matrix block

Ky Lzl Pl G (84 1) i (grad c/(y) () Vo (9) dS(0) - fy k(0 (008 ()|
je€Z(w)
. T
_ [f c; (x)biy (x) dS(x )} - [GA(, )] [f (grad ci(y) -n(y))by(y) d5<y)}
ieZ(v) kt=1,..9|T JEL(w)
k=1,...9 (=1,...9
= U, -C-V, e REZ@Z@)
(2.3.117)

Remark 2.3.118 (lterative solution methods for linear systems of equations — [Hip15,
Chapter 10])

After local low-rank compression the boundary element Galerkin matrices are available only in a special
data format like PartMatrix from Code 2.3.23. However, direct solution algorithms for dense linear sys-
tems of equations like Gaussian elimination [Hip15, Section 2.3] usually operate on matrices stored in
contiguous memory.

Direct elimination-based solution methods for linear systems of equations cannot be applied to
system matrices compressed with clustering techniques.

Fortunately, the matrix data formats arising from local low-rank compression support fast matrix x vector
operations, see Code 2.3.24 and Section 2.3.5. Thus, they well mesh with iterative solution methods for
linear systems of equations that can compute approximate solutions with a prescribed tolerance based on
system matrix x vector operations alone.

The typical generic interface to these methods reads:

template <typename MatrixType, typename Rhs, typename Dest, typename
Preconditioner>
void iterative_solver(const MatrixType& mat, const Rhs& rhs, Desté& x,
const Preconditioner& precond, size_t maxit,
typename Dest::RealScalar& tol_error);
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Rhs, Dest have to be vector types, for instance, Eigen::VectorXd. The argument rhs holds the
right-hand side vector and x contains the initial guess and is also used to return the approximate
solution after the iteration has terminated.

MatrixType has to provide a method Rhs operator x= (const Dest &) const thatimplements
the matrix x vector product. The argument mat of this type passes the system matrix, more pre-
cisely, the linear operator described by the system matrix.

The argument max it specifies the maximal number of iterations and tol_error a relative toler-
ance for termination.

Preconditioner is a type for a linear operator providing a method Dest solve (const Rhs
&) const that is supposed to emulate an approximate inverse of the system matrix. It is meant to
accelerate convergence, see [Hip15, Section 10.3]. Default is the identity mapping.

The following iterative solution methods are widely used. They all belong to the class of Krylov subspace
methods.

Conjugate Gradient Method (CG) [Hip15, Section 10.2]:

Applicable to linear systems of equations with symmetric positive definite (s.p.d.) system matrices,
like those arising from the Galerkin boundary element discretization of first-kind direct or indirect
BIEs for boundary value problems for —A, see Section 1.3.5.1, § 1.3.138 and § 1.3.142.

A single step of the iteration involves one evaluation A xvector, one evaluation P xvector, three dot
products and 3 elementary vector (SAXPY) operations.

Speed of convergence (measured in the energy norm induced by the system matrix) is governed by
the spectral condition number x(PA ), where A is the system matrix and P the matrix representation
of the preconditioner, see [Hip15, Thm. 10.2.25].

Note that for boundary element Galerkin matrices A on families of uniformly shape-regular curve/-
surface meshes we observe k(A) = o(hr;iln), hmin = minimal size of panels of the mesh. There-
fore, without preconditioner, the CG will converge more slowly on finer meshes.

Bi-Conjugate Gradient Stabilized Method (BiCGStab) [Hip15, Section 10.4.2]:

This iterative method can be applied to general linear systems of equations. Unfortunately, no rigor-
ous convergence theory is available. One step, beside a few dot products and SAXPY operations,
one step executes two A xvector and P xvector evaluations.

Generalized Mimimal Residual Method (GMRES) [Hip15, Section 10.4.1]:

This is another iterative solution method for general linear systems of equations. It enjoys robust
convergence, but in the /-th step ¢ dot products and SAXPY operations have to be carried out,
beside a single A xvector and P xvector product.

24

2.41

Hierarchical Matrices

Definition

The clustering algorithm as presented in Section 2.3 yielded a data-sparse approximate representation
M € R of kernel collocation matrices M € IR"" for asymptotically smooth singular kernels like

1 ,(x—y)-f(w
x =y |x — |

(x,y) — —logllx —y|| , || , x,yeRY x £y,
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see Rem. 2.2.51 for the definition. Key elements of the data structure are

4+ cluster trees (— Def. 2.3.42) Ty and 7y defining subsets (clusters) and partitions of the index sets
I:={1,...,n},J:={1,...,m},

4+ a far-field/near-field block partition F = ¢, U [Frear Of the product index set ID := I x J recur-
sively built by the algorithm implemented in the method buildRec () of Code 2.3.62 based on an
admissibility condition according to Def. 2.3.59.

4 alow-rank factorized representation of the sub-matrices of M corresponding to the far-field blocks.

Recall that each cluster v € Ty and w € Ty can be identified with a subset of indices Z(v) C I, Z(w) C J.
This endows [F¢,,, Frear, and IF := [Fg, . U Fyeqr with two meanings

1. as sets of subsets of the product index set I x ],

2. as set of cluster pairs (v, w), v € Ty, w € Tj.

We also remind of the notation X|,. ., := (f() for sub-matrices of a matrix X € R,
Z(v),Z(w)

/

A special name has been introduced for the data structure built by the clustering algorithm:

Definition 2.4.1. Hierarchical matrix

Givenn,m € IN, g € IN, a matrix H € R""™ is called a hierarchical matrix or 7/ -matrix of local
rank g, if there exist

e cluster trees 7y (row tree) and Ty (column tree) for I := {1,...,n} andJ := {1,...,m},

e and an abstract admissibility condition adm : 7y x 7y — {true, false}
such that

rank(H| <gq VY(v,w) € F:=Fpy UFnear C T1 X Ty,

UXZU)

where

{Z(0) x Z(w) } 0,0y ek = {Z(0) X (W)} (o )iy, YAZ(0) X Z(W) } (0,0) € Foear

is a partition of I x J generated by the algorithm implemented in the method buildRec () of
Code 2.3.62 based on adm().

The essence of the hierarchical matrix data structure

for binary trees 7y and 7Ty is captured in the figure
beside:

< M = matrix blocks in the far field € F¢,,

O = matrix blocks in the near field € Frear

A Note that Fig. 100 illustrates the

rather special case of n=m,
Ti = Ty and that [Frear contains only
products of leaves of 7Ty.

=

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 224



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

% Notation: Bold greek letters o, T, p will be used for elements of 7 x 7Ty, so-called blocks.
Given X € R, a block o = (v, w) singles out the sub-matrix X|, := X|,, -

The algorithm of bui1dRec for the construction of a hierarchical matrix ensures

(v, w) € Feyy = adm(v,w) = true, (2.4.2)
(v, w) € Frear = visaleafof 7y or wis aleaf of 7j. (2.4.3)

Lemma 2.2.10 guarantees that for a hierarchical matrix H € R™"™

Vo = (v,w) € Fe: 3A, € RE@4 B, e RZ@A: H| = A, B[ . (2.4.4)

Assumption 2.4.5. Availability of low-rank factor matrices

Whenever we regard a hierarchical matrix H (— Def. 2.4.1) as given, we assume that for each block
o = (v,w) € Fy,, all entries of the matrices A, and B, as in (2.4.4) can be accessed with small
constant effort.

Our implementation of bui 1dRec () in Code 2.3.55 always creates binary cluster trees. This matches the
following assumption, which is made for the sake of simplicity and by no means essential for hierarchical
matrices and their handling.

Assumption 2.4.6. Binary cluster trees

Below we assume that all cluster trees underlying hierarchical matrices are binary trees (but not
necessarily balanced).

(2.4.7) Block tree

The “tiling” of the matrix depicted in Fig. 101 is
obviously one that can be described by a two-
dimensional tree of quadiree type, for which a node
can have up to four sons. More generally, the
block partition of every hierarchical matrix H induced
by [F := F¢,. U Frear is related to a “quadtree-type”
tree, whose leaves are in one-to-one correspon-
dence to product index sets (<+ submatrices of H)
in IF.

Fig. 101
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The following figures illustrate levels 1—4 of the two-dimensional tree underlying the matrix partition show
beside.

Each node of the tree has four sons, unless it is a leaf: geometrically, each square is split into four smaller
squares.

I I I
Fig. 102 ——; . lﬂ g5 ]]T

Level 1 Level 2 Level 3 Level 4

Now we formalize what we have just observed. Recall that IF := Fy,. U Feqr is the set of all matrix blocks
occurring in the hierarchical matrix, cf. Def. 2.4.1.

Definition 2.4.8. Block tree underlying a hierarchical matrix

The block tree By, for a hierarchical matrix based on the row tree 71 and column tree 7]} is a tree
(V,r,E) (— Def. 2.3.38)
4 with pairs of clusters as vertices

V C {(v,w) € Tt x Ty : Z(v) x Z(v) is the union of product index sets in IF} ,

4 with root r := 1y X rj, where r, is the root of 7, * = I, J,
4 and with the son-father relation defined as

(sons(v) x sons(w)) NV ,if sons(v) # @ and sons(w) # @,
sons(o) = < ({v} x sons(w)) NV ,if sons(v) = @ and sons(w) # @, (2.4.9)
(sons(v) x {w}) NV ,if sons(v) # @ and sons(w) = @,

forall o = (v,w) € V.

The algorithm implemented in bui 1dRec() ensures that Def. 2.4.8 defines a tree in the sense of Def. 2.3.38.

B2 The set of leaf nodes of a block tree can be identified with the set IF of matrix blocks.

Remark 2.4.10 (Hierarchical matrices — a recursive data structure)
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=

Ty

Fig. 106

Ti

Let H € R be a hierarchical matrix with local rank
q based on the cluster trees Ty and 7. Forov € Ty
and w € 7Ty such that (v, w) belongs to the block
tree By (— Def. 2.4.8), (v, w) € By, denote by
T, and Ty, the sub-trees (— Def. 2.3.41) of 7} and
7Ty with roots v and w, respectively.

Then H|,,, € RZ©(®) js another hierarchical
matrix of local rank g based on 7, and 7. The ad-
missibility condition remains the same.

<1 hierarchical sub-matrix belonging to a pair of clus-
ters ().

In other words, every sub-tree of the block tree BHX]] defines, through its root, a sub-matrix of H, which is

a valid hierarchical matrix of the same local rank.

(2.4.11) Recursive algorithm for 7{-matrix x vector

Hierarchical matrices may not be stored in a linear fashion in a data structure similar to that given in
Code 2.3.23, but in a recursive fashion through a block tree data structure. Of course, also in this case
the multiplication of a hierarchical matrix with a vector can be done by the algorithm implemented in
Code 2.3.24, but loops have to be replaced with tree traversal.

Pseudocode 2.4.12: Recursive { = { + Hiji

<1 The argument H should be a hierarchi-
cal matrix in recursive block-tree-based

; |void hmv(H € R"" ref { € R",ji € R™) {
2 o := root of block tree for H ;

s if (sons(c)=®@) { // a leaf €F

4 if (0¢€Fgu) {

; =0+ A, (Bil); // — (22.13)
6 }

. else { { :=C + H-7; }

8 else

o foreach (7t = (v,w) € sons(0)) {

“ | hmv(H|T,§‘v, ul,)

1 }

12 }

format. Then this argument need only
pass a node of the block tree, cf. Line 2.

Line 9: see (2.4.9).

The cost of hmv () remains the same
as the estimate (2.3.103) found in
§ 2.3.102:

| cost(hmv) = O((n + m)log(n + m))

for n,m — oo, where the constants will
depend on the sparsity measure spm([F),

see Def. 2.3.92.

Our goal in this section is to find an algorithm that can be used to approximately solve linear systems of
equations whose coefficient matrix is provided in hierarchical matrix (7{-matrix) format, refer to Def. 2.4.1
and Ass. 2.4.5. This will turn out to be a highly complex algorithm with many components. Those are

provided in the following sections.
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Example 2.4.13 (Preview: multiplication of hierarchical matrices)

IE
J

Goal: Approximate the product Y - Z by an n x n-hierarchical matrix based on row/column tree 7 and
the same admissibility condition, that is, the same block structure, the same Fpear, ey,

We consider square hierarchical matrices
Y,Z € R""" with local rank g based on the same
binary balanced row and column cluster tree 7y,
I:=<{1,...,n}. We used

adm(v,w) =true & Z(v)NZ(w)=0Q0.

< block structure of simple hierarchical matrices in
this example

Fig. 107

The following situations are encountered when forming the matrix product:

X = Y .

To compute the upper left block of the matrix product we face
E % | E +

To accomplish this we have to
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e compute the product of two smaller hierarchical matrices » recursion,
e add a rank-g matrix, namely the product of two rank-q blocks, to a hierarchical matrix.

The evaluation of the upper right block boils down to

_ B ad § [

To accomplish this we have to
e compute the product of a hierarchical matrix with a rank-g matrix in any order,

e incorporate the sum of two rank-g matrices into a rank-g block.

2.4.2 Low-Rank Matrices: Algorithms

We repeat a fundamental concepts and algorithms from numerical linear algebra.

(2.4.14) (Economical) Singular value decomposition — [Hip15, Section 3.4]

Theorem 2.4.15. Singular Value Decomposition (SVD)

Forany X € R k,1 € N, r := min{k,1} there are matrices U € R*" and V € R with
orthonormal columns and a diagonal matrix £ € IR™" with non-negative entries such

X=U-Z-V'. (2.4.16)

Recall that a matrix Y € R¥ has orthonormal columns, if YTY = I, I; £ k x k-identity matrix.

The matrix factorization (2.4.16) is called the economical singular value decomposition (SVD) of X.
For k > I is can be visualized as follows.
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The diagonal entries of £ € R"" are called the (non-zero) singular values of X, denoted by 07, 0>, ..., 0
and assumed to be ordered

0<o <0 1<---<o0.

The computation of the singular value decomposition of a matrix relies on a sophisticated algorithm
[GV13, Sect. 8.6]. This algorithm is perfectly stable and returns the results with relative error of the same
size as the machine precision eps. The effort for computing the SVD of a densely populated matrix is
substantial:

cost(economical SVD of X € R*) = O(min{k,[}kl) for kI — oo . (2.4.17)

The following C++ function computes the factors of the singular value decomposition of a matrix in EIGEN,
see also [Hip15, Code 3.4.13]. Note that EIGEN has to be instructed to compute the economical version
instead of the full SVD with square orthogonal factors. Of course, one usually does not build the matrix X
as a dense matrix.

C++11 code 2.4.18: Computing the economical SVD in EIGEN

1 | std :: tuple <MatrixXd , MatrixXd , MatrixXd> svd_eco (const MatrixXd& X) {

2 Eigen ::JacobiSVD<MatrixXd> svd (X, Eigen::ComputeThinU |

Eigen ::ComputeThinV) ;

3 MatrixXd U svd.matrixU () ; // get unitary (square) matrix U

4 MatrixXd V svd. matrixV () ; // get unitary (square) matrix V

5 VectorXd sv = svd.singularValues(); // get singular values as vector
6 MatrixXd Sigma = sv.asDiagonal(); // build diagonal matrix XL

7 return std::tuple <MatrixXd , MatrixXd , MatrixXd > (U, Sigma,V) ;

In numerical algorithms the SVD owes its key role in numerical algorithms to the fact that it paves the way
for computing the rank-g best approximation of a given matrix.

Theorem 2.4.19. best low rank approximation — [Hip15, Thm. 3.4.48]

LetX = UZV' be the SVD of X € R™" (— Thm. 2.4.15). For1 < q < rank(X) set U, :=
(U),, € R", Vg := (V). , € R™, &, := diag(cy,...,04) € R?. Then, for ||| = [-[|p and
Il = |I-|l5, holds true

Hx - U,,):qVqTH < ||X—F|| VFeR", rank(F) =4,

that is, the truncated SVD realizes the rank-q best approximation of X with respect to both the
Frobenius norm (2.2.7) and the Euclidean matrix norm.

Norms of approximation error can be computed easily: Writing X; := Uq):}qVqT we have rank(X;) < gq
and

Tg+1 for [[-[| = [|[l
X=X =2 =2l = ¢ /3 2 tor 11| — (2.4.20)
Vot + ot dor | =
This is a straightforward consequence of the fact that both norms satisfy
IOX[|p = [IX]lp , [[UX],=[IX], ¥X€eRM, UeR, UTU=1,. (2.4.21)
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(2.4.22) QR-decomposition — [Hip15, Section 3.3.3]
Appealing to the Gram-Schmidt orthonormalization algorithm we derived the following theorem about a
special matrix factorization:

Theorem 2.4.23. Economical QR-decomposition

For any matrix X € R*!, k,1 € N, k > I, with rank(X) = [ there exists a unique matrix Q € R*!
with orthonormal columns Q ' Q = 1, and a unique upper triamgular matrix R € R" with (R); ; >
0,1 <i <, such that

X=0Q-R. (2.4.24)

The factorization (2.4.24) of X is called QR-decomposition. It can be visualized in the following way:

X=0Q-R, Q€ K" , Re K/ upper triangular ,

X _ Q , (2.4.25)

A stable algorithm for computing the QR-decomposition of a dense matrix relies on successive House-
holder transformations, see [Hip15, § 3.3.15]. The asymptotic effort required for finding a QR-decomposition
are the same as for computing the SVD:

cost(economical QR-decomposition of X € R*) = O(min{k,[}kl) for kI oo .  (2.4.26)

(2.4.27) Low-rank approximation of low-rank matrices

Assume that the matrix X € R*! with rank(X) = p < min{k, [} is given in factorized form
X=A-B', AcR, BeR"”,

according to Lemma 2.2.10. In order to obtain further compression we want to determine the rank-g best
approximation Y of X for some g < p

Y € RY, rank(Y) = q: X = Y||p < [X—F|[; VF &R, rank(F) =q.
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Of course, we want to find the low-rank factors A € Rk, B € R!7 of Y suchthat Y = A - B .

We start with an (economical) QR-decomposition of A according to Thm. 2.4.23: A = QR, Q € R¥?,
R € RP? upper triangular. The we compute the (economical) SVD of RBT € RP/:

RB' =UZV', UeRMP, TR, VecRM,

where U and V have orthonormal columns and X is a diagonal matrix with non-negative entries. Com-
bining the two factorizations yields

X =AB' =QRB' =QUEV' = ULV' , U:=QU, U'U=U'Q'UQ=1,. (2.4.28)
h\,_/
SVD of X!

Thus, invoking Thm. 2.4.19 and adopting its notations, we have found

T ._ - -
Y — Uq quq 7 Uq - (U>,q 7 Zq - (Z)lq,lq 7 Vq o <V),q . (2429)

\/j\’—/

—:A :ZET
Pseudocode 2.4.30: Low-rank “recompression”
. |[Matrix , Matrix] <+ low_rank_recompress ( The asymptotic computational effort
) Matrix A, Matrix B, int q) { oflc?w_rank_recompressisde-
s| k= A.rows(); | := B.rows(); termined by the calls to qr() and
«| if (q > min(k,1)) { return(A,B); } svd().
.| [Q.R] = qr(A): If A € R*?, B € R'P, then from
. [U,Z,V] = SVd(RBT), (2417) and (2426) we conclude
7 U := Q-U; // see (2.4.28)
8 A = (U).,; // first q columns of U cost(low_rank_recompress)

- zl 2
o| B = VI, // see (24.29) =O(p~(k+1)) for kI — co.
| return (A, B); (2.4.31)

Remark 2.4.32 (Adaptive low-rank recompression)

According to (2.4.20) the discarded singular values provide information about the error committed during
low-rank compression of a matrix. Thus, writing o4 > 02 > - - - > 0, for the singular values of X available
as diagonal entries of X in (2.4.28), we may set (041 := 0)

ge{l,...,p}: o441 <rtol-oq, (2.4.33)

for some prescribed relative tolerance rtol > 0. This gives control of the recompression error.

(2.4.34) Recompression of sums of low-rank matrices

We are given two rank-g matrices

X;=AB', A cRM, B,cR", i=1,2,
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and want to compute the rank-q best approximation of X; + X;. This can be done with a single call to
low_rank_recompress from Code 2.4.30, because, thanks to

BT

X1+Xo=[A1 Ay]- [Bﬂ , (2.4.35)
2

we immediately have a rank-2g factorization of X; + X at our disposal.

Pseudocode 2.4.36: Approximation of sum of low-rank matrices

1 | [Matrix , Matrix] low_rank_sum(Matrix A;, MatrixBq,

2 Matrix Ay, matrix By) {
3 q := A.cols(); // target rank for compression

4 A* = [Al Az}; B* = [Bl Bz};

5 return low_rank_recompress(A*,B*,q) ;

o |}

The asymptotic cost is O (g% (I + k)) for k, I — oo.

(2.4.37) Compressing stacked low-rank matrices

We arrange s € IN rank-q matrices
X;=AB' cRNi, A;eRM, B;eR¥", cN, i=1,...,s,
next to each other,
Z:=[X5 X2 ... (] eRM, =01+ +1.

and aim to determine a rank-g best approximation Y = A - B', A € R, B € R, of Z in factorized
form.

Of course, as in § 2.4.27 we use Thm. 2.4.19 but, again, we cannot afford to compute the SVD of Z
directly. As in § 2.4.27 it can be obtained efficiently via QR-decompositions (— Thm. 2.4.23) of low-rank
factors:

B, = Q;R;, QZTQ,- =1I,, R; upper triangular .

This yields as factorization of Z

Z=[AR] ... ASR;F]J.

=:ZcRksq QT

Obviously, the transpose of the second factor features orthogonal columns. Then compute the SVD of
the first factor according to Thm. 2.4.15

0
~ (%
Z=U-2. V', UcR", = o € RIS, Ve RS,

qu
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U'U = VTV = I, gives the SVD of Z:

Q/

T Q,

Z=U-Z-|V (2.4.38)
Q/
VTR
Thus, the low-rank factors of the rank=g best approximation are
01
~ (%) 4.
T4
B .= (V) | ERM. (2.4.39D)
51,9

The total asymptotic computational effort is dominated by the cost of computing SVD and QR-decomposition.
For sq < k it amounts to

cost = O((sq)?(k+1)) for kI — . (2.4.40)

2.4.3 7H-Addition of Hierarchical Matrices

Armed with the algorithm of Code 2.4.36 we can efficiently add and recompress two hierarchical matrices
X, Y € R™"™ provided that

4 they are based on the same row and column cluster trees,

4+ their far-field/near-field block partitions coincide (which will follow, if the same admissibility condition
is used for their construction).

Due to recompression -addition differs from the exact addition of the matrices. Therefore we designate
it with a special symbol.

% Notation: We write &5 for the addition with recompression of hierarchical matrices.
The following pseudocode performs the operation H <— H + H’ for two hierarchical matrices of the same

local rank g, whose far-field blocks are provided in factorized form H|, = A,Bl and H'|, = AL(B,) ",
o € Fq,,, according to (2.4.4). Note that the block trees of H and H' agree.
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Pseudocode 2.4.41: In-situ summation and recompression of hierarchical matrices
i |[void hmat_add(ref H—matrix H € R const H—matrix H € R"™) {

2 o := root of block tree for H;
3 if (sons(0) =Q@) { // leaf of block tree
4 if (c €Fg) { // sum and truncate
5 [A;,Bs] := low_rank_sum(A,,B,,A, ,B.);
6
}
7 else { // dense near-field block
8 H = H + H;

9 }

10 }

1 else { // recursion

12 foreach (7 = (v,w) € sons(0)) {
13 hmat_add(H|_,H'|,)

14 }

15 }

16 }

(2.4.42) Low-Rank Modification of a Hierarchical Matrix

Let a row tree 7y for I := {1,...,n} and a column tree Ty :=€ {1,...,m}, n,m € N, be given (and
some admissibilty condition according to Def. 2.3.59). Since the rank of a sub-matrix is at least as big as
the rank of the matrix itself, it is clear that any rank-g matrix Y = UVT € R*", U € R™, V € R4, can
be treated as a hierarchical matrix based on 7y and 7j.

Pseudocode 2.4.43: Recursive low-rank update of 7{-matrix

1 |void low_rank_update(ref H—matrix H € R"",
2 Matrix U e R™, Matrix V € R"1) {
3 o := root of block tree for H;
4 if (sons(0) =Q@) { // leaf of block tree
2 if (0¢€Fgp) {
6 [As,Bs] := low_rank_sum(A,,B,,U,V);
7
}
8 else { // near-field block
9 H:=H + U.-V;
10 }
1 else {
12 foreach (7t = (v,w) € sons(c)) {
19 low_rank_update (H|,(U)z() . (V)z(w),) ;
14 }
15 }
16 |}

A\ Given a hierarchical matrix H € IR™™ with local rank g stored in a block tree compatible format this
code computes recursively H+ UV ! for U € R and V € R"9, and stores the result in H again.

Refer to Code 2.4.12 for a related algorithm.
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2.4.4 H-Multiplication of Hierarchical Matrices

We are given two hierarchical matrices Y € R"* Z € R*", n,k,m € N with local ranks gy and gz,
respectively, according to Def. 2.4.1. Our goal is to compute an approximation X ~ y - z, which is itself a
hierarchical matrix.

We assume that
4 Y is based on the binary cluster trees Ty of I := {1,...,n} and Tx of K := {1,...,k},
4 Zis based on the binary cluster trees T of K := {1,...,k},and Ty of J := {1,...,m}.
4+ X € R™" is based on the binary cluster trees Ty of I := {1,...,n} and Ty of J := {1,...,m}.

A Note that the column tree of Y and the row tree of Z have to agree.

The sets of matrix blocks of X, Y, and Z will be denoted by IF*, x = X, Y, Z. Superscripts X, Y, Z will
also tag the corresponding far-field and near field blocks: IF{ , Fi..., * = X, Y, Z. We take for granted

that far-field matrix block are available in factorized form (2.4.4):
Vo = (v,w) € FY;: 3AX e RZ@4, BX e RZ@4: H| = AX. (BY)',

Vo = (v,u) € Bl JAY e RT®I, BY e RZWa. H| = AY.(BY)', (2.4.44)
Vo = (u,w) € FZ: JAZ e RZWA, BZ e RE@4: H| = AZ.(BZ)' .

far

We also point out that the matrix blocks corresponding to near-field cluster pairs are stored as dense
matrices, e.g.

(u,w) € FZ e RZAL[®) s directly accessible.

near

= matrix Z|,,

Note that the admissibility condition admy : 7y x 7y — {true, false} used for X need not have any-
thing to do with the admissibility conditions underlying Y and Z. For ease of presentation we assume
g := gx = qy = qz and that every leaf cluster contains at most » < g indices:

veTr, sons(v) =0 = #Z(v)<q,
we Ty, sons(w)=0 = #I(w)<q,
ueTg, sons(u) =0 = #Z(u)<gq, (2:449)

Thus, matrix blocks defined by leaves are small, need not be stored in low-rank factorized form, and will
invariably be assigned to the near field:

(x.y) € F*, sons(x) =@ or sons(y) =@ = (x,y)€ Fpear - (2.4.46)

We remind of the constraint that near-field cluster pairs contain at least one leaf

(v,w) € FX,. = sons(v) =@ or sons(w)=0Q),
(v,u) € Fl,,, = sons(v) =@ or sons(u) =0, (2.4.47)
(u,w) € FX,, = sons(u) =@ or sons(w)=0Q.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 236



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

As a consequence of (2.4.45) and (2.4.47), near-field matrix blocks will be small in one dimension and, in
particular, have rank < g.

All these constraints are satisfied by partitions generated by the algorithm implemented in buildRec() in
Code 2.3.62 provided that the admissibility condition from (2.3.63) is used.

Assumption 2.4.48. Structure of result matrix

The matrix product Y - Z € IR""™ allows an approximate representation by a hierarchical matrix X
with local rank gx € IN based on the cluster trees 7y and 7y.

Thus, similar to the case of adding hierarchical matrices we will resort to low-rank truncation while carrying
out the operations of matrix multiplication.

(2.4.49) Recursive matrix multiplication

Inspired by Ex. 2.4.13 we aim for a recursive algorithm: Let (v, w) = ¢ = root(By) be the root of the
block tree for X, that is, v = root(7y) and w = root(7y).

e If neither v nor w is a leaf, the two son clusters both induce a 2 x 2 block partition of X.

51 51
X11 X12 Y,

Ti Ti

t ty t ta
Fig. 108 \/;j \/.7]-]

X51><t1 - Y51><1’ ' Zl’th 7

SOl’lS(U) = {81,52} , > Xsl><t2 = Yslxr : ertz ’
SOl’lS(ZU) = {tl’ tZ} XSzXl’l - YSzXI’ ' Zl’th s

XSzXl’z - YSzXI’ ' Zl’th s

r := root(7Tk) . (2.4.50)

e The cluster w is a leaf, but not v. The sons of v induce a 2 x 1 block partition of X

S S
1 X1 1 Yl
= Z
52 52
Xz Y2
Tt T
Fig. 109 ) 751 Y ,7]']
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Xs1><w:Ys1xr'Z/

sons(v) = 151,52 =
( ) { } stxw:Yszxr'Z/

r:= root(TK) . (2.4.51)

e The cluster v is a leaf, but not w. The sons of w induce a 1 x 2 block partition of X

Ti Ti

t tr t %)
Fig. 110 \/;E[ \/.7]']

XZ)Xf1 =Y Zr><t1 s
X'U><l’2 =Y- Zl’th ’

sons(w) = {fy, tr} - r:=root(Tk) . (2.4.52)

Note that all the sub-matrices occurring in (2.4.50), (2.4.51), and (2.4.52), are themselves hierarchical
matrices based on sub-trees of the cluster trees, see Rem. 2.4.10.

The following pseudocode demonstrates the approximation of the operation X := X + Y © Z in “H-arithmetic
with hierarchical matrices as above. The the recursion stops when we have reached a leaf of the block
tree associated with X. Note that the full 7{-matrices are passed in each recursive call and that block are
selected through specifying cluster pairs.

Pseudocode 2.4.53: Recursive H-multiplication (preliminary version)
1+ |void hmat_mult_add(ref H—matrix X € R"",

2 H—matrix Y € R, H—matrix Z € RF™) {

3 (v,w) := root of block tree associated with X ;

+ | r := rootof cluster tree Tk ;

5 switch {

6 case ((v,w) € FX,.): { nearfield_block_mul(X,Y,Z); break; }
7 case ((v,w) € F¥): { farfield_block_mul(X,Y,Z); break; }
8 default: { // (v,w) does not correspond to a partition block of X
o if (sons(v) =0Q0) {

10 if (sons(w)=0) {

1 error("Non—leaf block must have sons");

12 }

13 else { // case (2.4.52)

" {t1,t2} :=sons(w) ;

15 hmat_mult_add(X|vxt1, Y, Z|rxt1);

16 hmat_mult_add(X|vxt2, Y, Z|rxt2);

17 }

18 else { // Case (2.4.51)

10 {s1,82}:=sons(v);
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20 if (sons(w)=Q) { // case (2.4.51)

21 hmat_mult_add (X[, ..., Y5, Z);

2 hmat_mult_add (X[, ..., Y|s,x,» Z);

. }

24 else { // case (2.4.50)

2 {t1,t2} :=sons(w) ;

2 hmat_mult_add (X[, .., , Yls, s Zlixy,) s
27 hmat_mult_add (X[, ;.. Yls«» Zlixs,) s
2 hmat_mult_add (X[ ,..; , Yls,«,» Zlixy,) s
2 hmat_mult_add (X[ .., , Yls,«,» Zlixs,) s
30 }

a }

32 }

33 }

4 }

35 }

To understand the challenges involved in implementing nearfield_block_mult() and farfield_block_mult()
we now focus on a single block X|,, (v, w) = ¢ € FX, a leaf of the block tree for X. In Ex. 2.4.13 we
could already catch a glimpse of the substantial additional complications compared to addition. The fol-
lowing drawing illustrates that blocks of various kinds and levels contribute to a single block of the matrix
product.

X = Y

In order to compute X| . we have to sum products of blocks Y|,

In other words, we accumulate the products Y|, , - Z|, ., in X

and Z|,, ., for suitable clusters u € Tk.
- SO that the basic operation is

oXu

X|, < X|,+ Y|,y Z| for suitable u € Tk . (2.4.54)

oXu uxw

To simplify the presentation, we introduce the concept that a cluster pair is contained in a block partition,
for instance for the matrix Y and its far field,

(v,u) € i x Tx: (v, u)CFE, = 3, u) € FE: I(v) x T(u) CZ(v')xI(u').

The same notations will be used for the other matrices and their associated block partitions.
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Ti

< (v,w) C F¥

far

The matrix block defined by (v, w) lies completely
in a far-field block of X.

Ty

Fig. 111
Since, in (2.4.54) we have to admit rather arbitrary clusters u € T, we have to distinguish several cases:

©® p:=(u,w)C F/ < adm”(u,0) = true (contained in a far-field block of Z)

By Ass. 2.4.5 we have Aj € R*Z(1)1 and BS € RPZ(®).7 at our disposal such that

T T
Z’p =Ap- Bp = Y|z)><u ) Z|p = Y’vquPBp .

Therefore, in this case (2.4.54) amounts to a rank-g modification of X
by calling low_rank_update() from Code 2.4.43 with the arguments

-+ Which can be accomplished

H < X, , U+ Y,,A ,V < B.

oxutrp

The matrix Y|v><uAP can be computed by feeding the columns of A, to the function hmv from
Code 2.4.12 (as argument i), supplying the hierarchical matrix (— Rem. 2.4.10) Y|, , as H-argument.

® 7:=(v,u)C ]F}gr & ade(v,u) = true (contained in a far-field block of Y)

According to Ass. 2.4.5 we know the factorization

Y, =A; B, A, cRZOM B, cRIWA,

T
T
> Y|Tz|u><w:AT'BT'Z’u><w: Az '\(Z’uxw'BT> ) .
=:U ~
=V

Thus we have to do a rank-q update of X
from Code 2.4.43.

-+ Which can be accomplished by means of low_rank_update()

The next three cases deal with near-field blocks.

® p:= (u,w)C Ff, anduis aleaf of Tk.

In this case #Z(u) < g such that the product

Y|z)><u ' Z|

P

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 240



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

is the factorized form of a rank-g matrix already. The matrix Z]p is immediately available, whereas

Y|, , may have to be computed, because (v, 1) € By need not be a leaf of By. In this case we simply

use the function hmv from Code 2.4.12 to multiply unit vectors with the hierarchical matrix Y|, .

Once Y|, , and Z|p are available, they supply the arguments U and B in a call to low_rank_update()
from Code 2.4.43 (with X| ) as H-argument).
@ p:= (u,w)C FZ

near

and w is a leaf of 7j.

Now we know {7 (w) < g such that the product Y|, , - Z|
has at most g columns. Therefore we first compute Y]vxu . Z\p by multiplying the hierarchical matrix
Y|UX” with the columns of Z|p (via hmv from Code 2.4.12) and then call low_rank_update() from
Code 2.4.43 with a suitable identity matrix as V-argument.

, is a rank-g matrix already, because Z|,

® 7:= (v,u)C )., anduis aleaf of Tk.

> will be captured by case @ already.

® 7:= (v,u)C F).., andvis aleaf of 7y.

We know that 7 (v) < g, so that Y|_ has at most g rows. We compute V := Z|IXWY|I by multiplying

the columns of Y|I with Z|wa. This can be done with an algorithm similar to hmv() from Code 2.4.12.

This gives the V-argument for low_rank_update() from Code 2.4.43. The U-argument must be chosen
as identity matrix.

@ Neither 7 := (v,u) C FY nor p = (u,w) C F*
To achieve a concise notation we write
X=0,UW.

] sons(x) ,if sons(x) # @,
sons™ (x) := {{x} clse /

The sons-functions refer to the cluster trees 7Ty, 7k, and Ty, respectively. In a recursive fashion we
move on to the sons of v, u, and w:

foreach v’ € sons™ (v) do
foreach w’ € sons™ (w) do

(iy If (v/,w') € IFX (corresponds to a matrix block), that if, both v and w are leaves, then
perform

X’U’XW’ < X’U’XW’ + Y‘U’XL[’ . Z‘Mlxw/ foreach Z/l/ € SOHS+<M) .

(i) If (v/,w') & FX we are visiting a sub-block of X, because (v/,w’) = IFX. This can be
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the following situation

X| - Y|

oXw

Z|

oXu

uxw

w u w

In this case, as indicated by the dashed red lines, we are forced to consider sub-blocks
of X[, ., though (v, w) € FX!

oXw

Since we have no matrix block to add to we have to use a temporary matrix T € R¥Z (0)4Z(w),
initialized to O. Each pair (¢, w") will correspond to a sub-matrix of T, which we will
designate by T| ., .,. We regard T as a hierarchical matrix with local rank g and a block
tree of depth 1.

Recursion: Apply the algorithm for the multiplication of hierarchical matrices to compute
T|v’><w/ — T|v’><w/ + Y|v’><u/ ’ Z|

vy Toreachu' € sons™(u) .

Compression: Apply the algorithm of § 2.4.37 for the best rank-q approximation of block
matrices with rank-g blocks to T and add the result to X|,, -

end

The reader is now encouraged to “run” the algorithm for the following far-field block of X:

(2.4.55) H-multiplication: Interleaved tree traversals

The multiplication as implemented in Code 2.4.53 involves hidden repeated traversals of the cluster tree
T, which compromises efficiency. The following algoritm relies on interleaving of the tree traversals, thus
improving efficiency.

2. Local Low-Rank Compression of Non-Local Operators, 2.4. Hierarchical Matrices 242



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

Pseudocode 2.4.56: Recursive H-multiplication (interleaved version)

1 |[void hmat_mult_add(ref H—matrix X € R"™",

- H—matrix Y € R H—matrix Z ¢ Rb™) {
s (v,w) € Ty x Ty := root of block tree associated with X
4 (v,u) € Ty X Tk := root of block tree associated with Y
5 (u,w) € T x Ty := root of block tree associated with Z
6 switch {

7 case ((u,w)€FZ) {

) low_rank_update (X,Y A7, . B{, ,));

9 break;

10 }

. case ((u,w) € FZ, and uc Tk is leaf) {

12 low_rank_update(X, Y-Z, I);

13 break;

14 }

is case ((u,w) €%, and we Ty is leaf) {

16 X += YZ,

17 break;

18 }

10 case ((v,u) € lFfar) {

2 low_rank_update (X, A{W) , ZT B{v,u)) ;

21 break;

22 }

2 case ((v,u) €Y. and vec Ty is leaf) {

24 X += (ZT'YT)T

2 break;

26 }

27 case ((v,u) € FY, and u € Tk is leaf) {

28 low_rank_update (X, Y, ZT);

2 break;

. }

31 default: { // recursion, no leaf clusters
% foreach s € sons(v) {

5 foreach t € sons(w) {

34 foreach r € sons(u) {

% hmat_mult_add(X|,..;, Yl.;s Z|,o;);
36 }

37 }

38 }

39 if (U,ZU) far {

40 Merge blocks of X into rank-g factorized form;

41 }

42 }

43 }

“Merge” in Line 40 means the recompression of a matrix comprised of possibly low-rank blocks into a

rank-g-matrix, using the algorithm discussed in § 2.4.37.
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Remark 2.4.57 (Asymptotic complexity of 7-multiplication)

Estimating the complexity of the algorithm hmat_mult_add from Code 2.4.56 is a formidable task and
can only be done under some restrictive assumptions, see [Hac15, Sect. 7.8.3], [Bér17, Sect. 5.7]. For
balanced binary cluster trees, we obtain

cost(hmat_mult_add) = O(¢*(n +m +k)) for n,mk — oo . (2.4.58)

2.4.5 Hierarchical LU-Decomposition

(2.4.59) LU-decomposition: definition and existence

In [Hip15, Section 2.3.2] the LU-decomposition of square matrices was introduced as a matrix factorization
leading to an algorithm for implementing Gaussian elimination in a two-stage way.

Definition 2.4.60. LU-dcomposition

Given a square matrix A € R™", an upper triangular matrix U € R and a normalized lower
triangular matrix L € IR™" provide an LU-decomposition of A, if A =L - U.

Refer to [Hip15, Def. 1.1.5] to learn the defintion of a (hormalized) triangular matrix, that is, a triangular
matrix with all diagonal entries = 1.

Without reordering an LU-decomposition of a square matrix may not exists, see [Hip15, Lemma 2.3.47].
[Hip15, Lemma 2.8.9] and [Hip15, Thm. 2.8.11] give us matrix properties ensuring the existence of an
LU-decomposition, for instance the following:

Theorem 2.4.61. LU-decomposition of s.p.d. matrices

If A € R™" js symmetric positive definite (s.p.d.), then it has a unique LU-decomposition A = L - U
according to Def. 2.4.60.

Remark 2.4.62 (S.p.d. boundary element Galerkin matrices)

S.p.d. Galerkin matrices usually arise from the boundary element discretization of the single layer and hy-
persingular boundary integral operators associated with Lu := — div(A grad u), A s.p.d., see Thm. 1.3.114,
Thm. 1.3.118, and Thm. 1.3.123 for details.
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From now we consider a symmetric positive definite square hierarchical matrix H € R"" with fixed local
rank g based on the same binary cluster tree Ty of I :=€ {1, ...,n} for both rows and columns.

(2.4.63) Compatible ordering

Obviously, the property of a matrix to be triangular will be destroyed by reordering its rows and columns.
To make sense of a “triangular hierarchical matrix” the ordering of the index set has to match the structure
of the cluster trees. To that end we assume a compatible ordering of the indices, namely

1. that the sons of non-leaf clusters are ordered; we write  sons(v) = (sq,s2) Vo € Tr.

2. that

sons(v) = (s1,5) = {i€Z(s1) , j€I(s) = i<j}. (2.4.64)

A compatible ordering can easily be achieved by an index re-mapping built based on
depth-first pre-order tree traversal.

Assumption 2.4.65.

For any square hierarchical matrix based on a binary row/column cluster tree and designated as
triangular a compatible ordering of the index set is assumed.

Goal: Find (lower/upper) triangular square hierarchical matrices Ly, and Uy, of local rank g based on
the same row and column cluster trees as H and with the same block partition as H such that

H ~ Ly - Uy with a small error in a relevant matrix norm.

(2.4.66) Triangular linear systems of equations

The rationale for trying to find 4 -LU factors Ly, and Uy is the same as for the computation of an exact
LU-decomposition, see [Hip15, § 2.3.30]. With LU-factors Ly and Uy of H at our disposal we can
(approximately) solve the linear system of equations by successive forward and backward substitution

O Solve L%z =

2.4.67
@ Solve Uyp = ( )

Sove Hi=¢ < {

~IQL

Thus we need efficient algorithms for solving linear systems of equations with triangular hierarchical coef-
ficient matrices.

Let Ly € R™" be a square invertible lower triangular hierarchical matrix based on the row and column
cluster tree 77. Wee seek

[eR": Lyl=¢, $cR". (2.4.68)

For Ly, to be invertible its diagonal blocks must be regular and cannot have low rank (compared to their
size). They should all be near-field blocks:
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Assumption 2.4.69. Near-field diagonal blocks

adm(v,v) = false Vv € Tp

In particular, for all leaves v € Ty the matrix blocks Ly, |
gular matrices directly available in the data structure.

@ Recursion for solving (2.4.68): If

sons(root(7y)) = (s1,52) ,

.x are densely populated, invertible, lower trian-

LH’51><51 O g’sl ¢‘51
~ = ’

LH’szxsl LH’SzXSz g’SZ @‘52 (2470)
> g = (LH’s]x:ﬁ)il(_ﬂsl ’ C = (LH|52><52)71 (¢|Sz - LH|52><51§’51> ’

51

B L=

<[

52

with e regular square lower triangular H-matrices LH]S1 .y LH\52XS2,

e general rectangular H-matrix Ly, . -

Pseudocode 2.4.71: Solving a triangular linear system with 7{-coefficient matrix

1 |vector hmat_forw_elim(const H—matrix Ly, const vector @) {
2 v := root of cluster tree 7y, on which Ly, is based

3 if (sons(v) =@) return L71¢; // standard forward elimination
4 else { // recursion according to (2.4.70)

5 (s1,82) := sons(v) ;

6 py = hinat_forw_elim(LH|Slxsli (o|sl);

7 | vector [ = 0; hmv(Lyls, s, » &5 Fy)s

g T = ¢|sz - C;

o return hmat_forw_elim(LH|S2xsz, T);

10 }

1 }

(2.4.72) Recursive tiling algorithm for LU-decomposition — [Hip15, Rem. 2.3.27]

The recursive computation of the LU-decomposition of an s.p.d. matrix H € IR"" is immediate from the
following block matrix product:

L;| O } l Uy | Upp ] [ Hy; | Hpp ]
L-U=H < . = . 2.4.73
l Ly | Lo O | Uy Hy; | H ( )

Equating matching matrix blocks leads to the following steps for finding the unknown blocks of the nor-
malized lower triangular matrix L and the upper triangular matrix U (I + k = n)
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@ FindL;;, Uy € RM*: Ly - Uy = Hyy
® Find Up, € RY: LU = Hyp
Find Ly; € RUA: L1Uy1 = Hyy
© Find Ly, Uy € RY: Ly - Up = Hy — Ly Uypp

LU-decomposition > recursion,
forward elimination,
forward elimination,
LU-decomposition > recursion.

[E I T

The same scheme can be applied to an s.p.d. hierarchical matrix H € IR™" seeking triangular hierarchical
matrices Ly, Uy € IR™" based on the same row/column cluster tree 7y, with one new twist however:

In the set of hierarchical matrices we cannot solve the matrix equations exactly, but only approxi-
mately.

@ Find triangular H-matrices L11, Uy; € R Ly - Uy ~Hypp 2 H-LU-decomposition,
> recursion.
® Find #-matrix Uy, € R L1Upp~Hyp = forward elimination,
Find H-matrix Ly; € R L, U3 ~ Hyy = forward elimination,
® Find triangular H-matrices Ly, Uy € R Loy - Uy H> &Ly ©Uqp = LU-decomposition,
> recursion.

Note that the matrix operation Hyy& Ly ©Up, has to be conducted in H-arithmetic, because storage of
any intermediate dense matrix will exceed the memory constraints of the data-sparse approach. Fortu-
nately, this operation can be delivered by the H-arithmetic routine hmat_mult_add() from Code 2.4.53.

(2.4.74) Staggered matrix equations in H-arithmetic

A key component of the recursive computation of an ‘H-LU-decomposition is the approximate solution of
the linear system of equations

LyXy =Yy,

where

4+ Ly € R™"is alower triangular hierarchical matrix based on row/column cluster tree 7y, with an ad-
missibility condition satisfying Ass. 2.4.69 and a compatible ordering of the index set, cf. Ass. 2.4.65.

4+ Y € R is a general hierarchical matrix based on the row cluster tree 7y and column cluster tree

Ty,
4+ Xy € R"™™ is the unknown general H-matrix based on the row cluster tree 7y and column cluster
tree 7Ty.
In order to motivate the recursive algorithm we single out two clusters: veTr , we 7]]

If Z(v) =€ {1,...,n1}, n1 < n, and the indices in Z(w) are assumed to be contiguous, then the matrix
equations can be block-partitioned as follows

LH|U><U o * XH| * * Y'H| *

oXw oXw
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= LH’UXU' XH’vxw = Y"H’vxw . (2.4.75)

Depending on the cluster pair (v, w) € Ty x Ty, which corresponds to a block of both X7, and Y4, we
distinguish several cases:

0 (vw) e ]Fr}l(ear = Iprllfear (XH’vxw’ X’H‘vxw = near-field blocks)

In this case, while Ly, ., has to be regarded as a general lower triangular invertible hierarchical
matrix, both Xy|,..,, and Xy, are stored as densely populated small matrices and we can apply
hmat_forw_elim() from Code 2.4.71 to find the columns of Xy, because

L7'l|v><v (X7'l|v><w) k— (YH|UXZ{J) Kk’ ke I(w) .

i s

O o = (Z]I w) - ]FX — ]FY (XH‘UXW’ XH’ZJXU] = far-field bIOCkS)

far far

and X’H‘

Both XH\ are rank-g matrices stored in factorized form, e.g.

oXw oXw

Vitloxw = Ar- (BY)T, AL e RZW4 B, € RIZW)A (2.4.76)

We have to find the corresponding low-rank factors AX and BX for Xy .

We resort to hmat_forw_elim() from Code 2.4.71 to determine the columns of Aff and just copy Bg

Lidoco (A7), = (A7), k=1eq . BY =B, (2.4.77)

s

which ensures Ly |, - X2t loww = Yoo

©: (v,w) ¢ FX =T
In this case neither v is a leaf of 7 nor w is a leaf of 7]] and both will have two sons:
sons(v) =: (s1,sp) [ordered] , sons(w) =:{fy,tp} .

The block-wise matrix product yields recursive formulas analogous to those derived from (2.4.70) and
implemented in Code 2.4.71. deduced from

LH’S]XSQ O X’Hlslel X’H‘Slxtz YH‘slxtl YH’51Xf2
LH|52X51 LH’SzXSQ XH|Sz><f1 XH|52Xt2 YH|52Xt1 YH|Sz><f2
LH’S]XSZXIH|51XH = YH|51><f1 4
> LH’51><51 XH‘Slxtz = YH‘Slxtz 4

LH’52X52XH|52X1’1 = YH|52><1’1 o LH|52X51 © XH|51><1’1 4
LH’SQXSZXH‘Szfo = YH‘SzXfZ @ L'H‘szxsl @ XH’51Xf2 4

where the operations © and © indicate that some right-hand side matrices have to be computed using
‘H-arithmetic, more precisely the function hmat_mult_add() from (2.4.53).
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Pseudocode 2.4.78: Approximately solving a triangular matrix equation in 7{-arithmetic

1 |H—matrix < hmat_triag_solve (H—matrix Ly, H—matrix Yy) {

2 Xy := H-matrix with block structure of Yy

s | (v,w) := root of block tree of Ly

4 switch {

5 case ((v,w) € ]FKear): { // Case @: dense near-field block
6 foreach k € Z(w) {

7 (X).x := hmat_forw_elim(Ly;, (Yo[yxz). ;) 5

8 }

9 break;

" }

12 // In this case low-rank factorized representation: Xy = AX(BX)T
13 for k:=1 to q { // column-by-column triangular solve

14 (A%)., := hmat_forw_elim(Ly,(AY) ,);

15 }

" BX := BY; break;

17 }

18 default: { // Case ®: recursion

19 (s1,52) :==sons(v); (t1,tp) := sons(v);

20 Xals, <, 1= hmat_triag_solve (Lyls s » Yals xs,) 5
21 Xaels, xt, = hmat_triag_solve(LH|51XS1,YH|S1xt2 ;
2 hmat_mult_add (Yz|s s, » Lals,us, 0 Xatls,xt,) s

2 hmat_mult_add (Yo, ., » Laels,us, » Xtls,xr,) 5

2 X3ls,xt, 1= hmat_triag_solve (Ly|, ., Y7'l|sz><t1);
25 X3ls,xt, 1= hmat_triag_solve (Lyly s » Yals,xs,) s

. }
27 }

28 return Xy ;

2 |}

1 case ((v,w) € IFfar): { // case @®: far-field cluster pair

(2.4.79) Recursive LU-decomposition in 7{-arithmetic — § 2.4.72

Armed with the function hmat_triag_solve() from Code 2.4.78 we can implement the recursive algorithm

outlined in § 2.4.72.

Pseudocode 2.4.80: Recursive 7-LU decomposition

i+ | [H—matrix H—matrix] < hmat_lu_dec(H—matrix Hy) {
2 r := root of cluster three Ty, on which Hy, is based ;

3 if (sons(r) ==Q@) { // leaf block

4 return lu_dec(Hy); // standard LU-decomposition
5 }

6 else {

7 (s1,82) := sons(v) ;

8 Ly, Uy := H-matrices with the same block structure as Hy
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o [Lals,xs;» Untls,xs,] 1= hmat_lu_dec(Hy]| ., );
10 U|51XS hmat_triag_solve ( L|S 51 H|51><sz);
1 ;L[|SZ><S1 hmat_triag_solve ( U|s s © H7'[|sz><s1 ;
12 hmat_mult_add(H| .. ., —Lulg,xs,» Unls, xs,)

19 [Lals,ns,» Ulyls,xs,] = hmat_lu_dec(Hy|,, . ) ;
14 return [Ly, Uyl;

15 }

Remark 2.4.81 (7{-LU decomposition as preconditioner)

On the one hand, thanks to powerful error estimates for the local separable approximation of singular
asymptotically smooth kernels (— Section 2.2.2), we have a rather good control of error committed when
approximating a kernel collocation matrix or a boundary element Galerkin matrix by means of clustering
techniques with geometric admissibility conditions.

On the other hand, the errors introduced by H -arithmetic, which offers only an approximation of linear alge-
bra operations, are very difficult to estimate. Therefore, the use of H-LU decompositions Hy; = Ly, - Uy
together with hmat_forw_elim() as an approximate solver for the linear system of equations Hy ji = @ is
not recommended.

Fortunately, preconditioners to be supplied to iterative Krylov subspace solvers (— Rem. 2.3.118) need
supply only approximate solvers. If the approximation is bad, convergence of the iterative solver will usually
suffer, but it will not break down. Poor approximation afflicting 7 -arithmetic can thus be offset.

Preconditioners based on #-arithmetic

Inverses and LU-decompositions computed by 7#-arithmetic should be used for preconditioning
iterative solvers.

2.4.6 7{>-Matrices

(2.4.83) Triple-factor low-rank factorization

Let us return to the local rank-q separable approximation by bi-directional interpolation as introduced
and analyzed in Section 2.2.1.3. Recall that on a box B C Dy x D, C R? x R the kernel function
G : Dy x Dy — Ris replaced with

~ q o
Glx,y) =) ) Gt 1) bi(x) bi(y) , (2.4.84)
k=1/=1 A
=:8k¢(x) =:hyo(y)

where 4 tie Dy k=1,...,q,andt; € Dy, k =1,...,q are interpolation nodes, and

4 0bf: Dy -+ Rand bz : Dy, — R are the cardinal functions of the underlying interpolation
operator, see § 2.2.28.
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Thus, given collocation points xl,...,x" € Dy yl, ...,y"™ € D,, the approximate kernel collocation ma-
trix M € R™™ is based on G, has rank g, and can be represented in a special triple-factor form

q .
( ) ZZG (5, BB (y), i=1,m, j=1,...,m

1/4=1

—~ o k ¢/ ,
B> wM=vucv', C:= [G(tafv t}/)] et ge € RIT, (2.2.47)

A very similar triple-factor low-rank representation arises from bi-directional interpolation combined with
clustering local low-rank compression applied to boundary element Galerkin matrices, see (2.3.111) in
Section 2.3.6.

Assume we use clustering with local rank-g separable approximation of a singular asymptotically smooth
kernel obtained by bi-directional interpolation to build a hierarchical matrix representation My € R (—
Def. 2.4.1) of a kernel collocation matrix M € IR™" based on cluster trees Ty (row cluster tree) and 7y (col-
umn cluster tree). Then, using the notations of Def. 2.4.1 and, for a far-field cluster pair o = (v, w) € Fqy,,
writing A, € R¥Z(©)4 and B, € R¥Z(@)4 for the low-rank factors of H] according to (2.4.4), we can
choose

oXw

A=UC , B=V or A=U , B=VvC'.

Do we really have to break the beautiful symmetry inherent in bi-directional interpolation in this way? Of
course not, because we can simply retain the three matrix factors as we have already seen in § 2.3.75.

Example 2.4.85 (Storage requirements of double-factor and triple-factor representations)

In this example we revisit Ex. 2.3.29, which discussed clustering for ¢ = 1 applied to a kernel collocation
matrix M = [G(¢;, 77j)] :ljzl € R™", n = 2!~ and equidistant collocation points

i—1/2 —1/2 ..
&= ” , nj::]T, i,jed{l,...,n}. (2.3.30)

We use the geometric admissibility condition 77(B) < % based on the admissibility measure 77 as defined

n (2.2.57). Here we adopt the convention that a single collocation point has a centered square bounding
box of width 1 . We use the same row and column balanced binary cluster tree, whose leaves contain s
single coIIocatlon point, see Fig. 100. Far-field cluster pairs must not comprise leaves.
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EEEEEEEEEEE:::EEEEEEEEEE <1 Visualization of hierarchical matrix structure for
L R B R R S5 0 R L=6.
N e e I e e Each - corresponds to a matrix entry.
~ HEMooooogi [ = far-field blocks

Fig. 112

Counting as in Ex. 2.3.29, see (2.3.34), we find

#{near-field blocks} = 32F — 8,
#{far-field blocks on level ¢} = 6(2° —1), ¢=1,...,L—3.

Each near field block contains a single matrix entry, each far-field block on level £ € {1,...,L — 3} holds
2L=0=2 indices. Hence the total floating-point storage requirements for the standard hierarchical matrix
data structure with local rank g are

L-3
storage(H-matrix) = 3-2L -84 )" 6(2/ —1) 29212 =0(Ln) for L—oc0. (2.4.86)
(=1

\ T~

near-field blocks no. of far-field blocks low-rank factors
In § 2.3.71 we learned that once a triple-factor representation of far-field blocks o = (v, w) € Ty x Ty is
available, the matrices U, and V, depend only on the clusters v and w, respectively, see (2.3.73). Thus
they can be stored in the nodes of the cluster trees (except for the leaf level in this example). Only the
coupling matrices C, remain to be stored in the far-field blocks. This leads to total floating point storage
requirements
L-3 L—1
storage(“§2.3.71") =3-2L — 8+ ¥ 4%6(2' —1) +2- ¥ 20-2L=C = O(Ln) for L — .
(=1 (=0

\ \ (2.4.87)

near-field blocks storage for C, storage for U,, V,
We observe that the asymptotic storage requirements are determined by the last term!

(2.4.88) Transfer matrices

Let us assume that in Eq. (2.2.47) we use a bi-directional interpolation scheme based on tensor-product
polynomial interpolation of degree p € IN, as explained in § 2.2.42. This means, 4 = (p + 1)d. The
space, in which we approximate the kernel (x,y) — G(x, y) on every far-field cluster box box(v) x box(w),
(v, w) € Fe,,, will be the same for all far-field clusters, namely the tensor-product polynomial space
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TPP(IRZ”I) (— Def. 1.4.148). Moreover, for all clusters v € Ty, w € Ty, the spaced spanned by the
cardinal functions (aka tensor-product Lagrange polynomials) x — b (x) and y bz (y), respectively,
will coincide with 7P, (R):

Vo € Ti: Span{bj}]_, = TPs(R") , Vo€ Ti: Span{b)}]_, = TPs(R?). (2.4.89)

Though not expressed by the notation, the cardinal functions depend on the clusters, of course.

Let us restrict ourselves to the row tree 7y and focus on non-leaf clusters v € 7. For the associated
cardinal functions € TPP(]Rd) we write b7, k =1,...,g, Owing to (2.4.89) they can be represented by
linear combinations of the cardinal functions of each son cluster:

Vs € sons(v): Z bl b = b)), (2.4.90)

with {t{,...,t;} C box(s) standing for the set of interpolation nodes on the son cluster s € 7y. The

formula for the expansion coefficients t , Is immediate from (2.2.34). This permits us to rewrite the low-
rank factor matrix U, for the cluster v in terms of the corresponding matrices for its sons:

9
(Up)ix = bi(x Z toby(x'), i€Z(v), k=1,...4q, (2.4.91a)

B scsons(v) = (Uo)ik = Z tkv(US)lV , 1€Z(s) . (2.4.91b)

For a cluster v € 7y and one of its sons s € sons(v) we collect the coefficients tks from (2.4.91) in the
transfer matrix T%* € R%1:
(T”’S) = kv—bk(ts) kv=1,...,q9. (2.4.92)

In the particular case of a binary cluster tree 7y with sons(v) = (s1, s2), the rules of matrix multiplication
imply

(2.4.93)

% Notation: Since every cluster, except for the root cluster, has exactly one father, we may associate the
transfer matrix T with the son cluster s and, when doing so, denote it by T.

| (2.4.94) Storing hierarchical matrix based on transfer matrices

Let us assume the setting of the previous paragraph § 2.4.88 with triple-factor low-rank representation
Myl, = UUCUV;Ur of the far-field matrix blocks as in (2.2.47). The relationship (2.4.93) suggests a more
efficient way to store the hierarchical matrix M.

@ Idea: 4 Store U,/Vy, in the leaf nodes only.
4 Store the transfer matrices T,/T, in all (son) clusters v € Ty/w € 7]']

B> storage(transfer matrices) = ¢* - (175 + £77) - (2.4.95)
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In the case of balanced binary trees, we know §7; < 24l and 7y < 2#] and in this case
B> storage(transfer matrices) < 24%(m +n) .

Recall that in Ex. 2.4.85 the asymptotically largest amount of storage was used for the cluster-specific
factors of the triple-factor low-rank factorization, cf. (2.4.87). So a data structure relying on transfer
matrices can achieve an asymptotic memory complexity of O(7) in this example!

(2.4.96) H>-matrices

Storing hierarchical matrices with triple-factor low-rank representations of far-field blocks and the possibility
of a “leaf-down” successive computation of the cluster-specific transfer matrices according to (2.4.93) can
be abstracted into a new variant of hierarchical matrices.

Definition 2.4.97. H{2-matrices

Given n,m € IN, a matrix H € R is a H?-matrix with local rank g, if there exist
e cluster trees 7y (row tree) and Ty (column tree) for I := {1,...,n}andJ := {1,...,m},
e an abstract admissibility condition adm : 7y x 7y — {true, false},
e transfer matrices T,/Ty, for allv € Ty \ {root(7y) }/w € Ty \ {root(Ty)},

such that

Ue RﬁI(v),q ,

() Hlyyp =UoClou)Va ', C € R71, V(v,w) € Fey, (2.4.98a)
V € RHZ@)

(iy U, = [US(TS)TLGSOHS(U), veTy , Vo= [Vt(Tt)T]tesonS(w), weTy, (2.4.98b)

(i) 4Z(v),8Z(w) <gq Vleavesv e Ty, w e Ty, (2.4.98c)

where the far field IF¢,, C 7Ty x 7y is defined as in Def. 2.4.1.

The matrices Uy, v € Ty, are called the row cluster bases, V, w € 7]'] the column cluster basis, and
C (s, the coupling matrices.

The estimate
B> storage(transfer matrices) = ¢* - (£71 + £7j) - (2.4.95)

for the amount of memory needed to store the transfer matrices still holds for H2-matrices. For leaf clus-
ters v, w of Ty or Ty, respectively, we have to keep U, or V,, which will consume another < q(7; + #7y)
floating point numbers. For estimates addressing the amount of storage needed for the coupling matrices
and the near-field blocks refer to § 2.3.85 and (2.3.95); the role of the sparsity measure spm(IF) from
Def. 2.3.92 remains unchanged. Summing up, we can bound

storage (H2-matrix) < Z 47 (v) + HZ(w) + (spm(Fgoy) + 1)g% - (#771 + 87y) - (2.4.99)

(v,w) EFnear

In the special case of a balanced binary tree as constructed by buildRec from Code 2.3.62, the number
of near-field blocks and the number of clusters is bounded by n + m, which implies

storage (H2-matrix from buildRec()) = O(g*(m +n)) for n,m — co. (2.4.100)
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Remark 2.4.101 (Data structure for 7{>-matrices)

Any object of a type compatible with the concept of an H?-matrix with local rank g according to Def. 2.4.97
must provide

e access to suitable objects for both row and column cluster tree 7y and 7y,
e instant access to

the cluster bases Uy, € R¥Z(@4 and V,, € R¥ ()4 for leaf nodes,

the tranfer matrices T, € R%7, T, € R forallv € Ty and w € Tj.

the coupling matrices C(,, .y € IR% for all far-field cluster pairs (v, w) € Fry,

c Rﬁz(v),ﬁf(w) for all (U, ZU) € Fpear-

the dense near-field blocks H| ., ,,

(2.4.102) 7{?-matrix x vector multiplication

We extend the considerations of Section 2.3.5 about how to organize the matrix x vector product efficiently
in the case of local triple-factor low-rank representation

M :UU'C'V;, (U/w)e]Ffar/

oXw

of the matrix M to H2-matrices, which faeture the additional component of transfer matrices, see ??,
(2.4.98D).

Recall the reduce-to-cluster restriction and index remapping operation for w € Ty
M
Ry : R"™ — R Ry(i):= | : |, with Z(w)={ji,...,js}, {:=4T(w). (2.3.98)
Hie
and the expand-from-cluster assembly operation for a row cluster v € Ty:

Vy ,ifl'gIZ',

0 itk¢I(o) ’with Z(v) = {i1,..., ik}, k:=4Z(v),

Eo: RZ 5 R" , (E,¥); ;:{
(2.3.99)

with associated matrices Ry, and E,. Consider a far-field cluster pair (v, w) € IFy,, consisting of non-leaf
clusters with

sons(v) = {s1,s2} , sons(w) = {t1,tr} .

Then, in light of Def. 2.4.97, (2.4.98b), the key operation of multiplying a snippet of a vector zi € R with
a far-field block of an H2-matrix becomes:

E,U,C(,)V ' Ruji = | Es Uy, T, +E,Us, Tg, | -Cry - | Ty VIR, + Ty, VIR, | i
~—~ ~~ ~~

N~~~
FtS FtS StF StF
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We observe that reduce-to-cluster and multiplication with the column cluster basis as well as multiplication
with the row cluster basis and expand-from-cluster can be done on the level of the sons. This has to be
supplemented by son—father (StF) and father—son (FtS) transformations through the transfer matrices.
Thus, by recursion all reduction and expansion operations can be pushed to the leaf level of the cluster

trees.

The following algorithm does this for reduce-to-cluster and multiplication with the column cluster bases

and implements the so-called forward transformation.

Pseudocode 2.4.103: Recursive transformation into column cluster bases

i |void forward_trf(H2matrix M, cluster w € Ty,

2 vector zi € R™, ref vectors (c?)w)weﬁ) {
3 if (sons(w)==0) { \\ leaf cluster

: @w = Vil

5 }

6 else { // recurse into sons for father clusters
7 foreach t € sons(w) {

8 forward_trf (M, ¢, i, (a}w>we7j);

9 ‘ (?Jw += Tt(rJ|I(t);

10 }

11 }

12 }

The backward transformation realizes the multiplication with the row cluster bases U, for each v € 7} and

the subsequent expand-from-cluster operation:

Pseudocode 2.4.104: Recursive transformation into column cluster bases

1 ‘void backward_trf(?—[z—matrix M, cluster ve 7Ty,

e | vectors (ZU) , ref vector p € R") {
veTL

3

if (sons(v) ==®) { \\ leaf cluster
ﬁ|Z(v) += UUCZ);

4

o

else { // recurse into sons for father clusters
foreach s € sons(v) {

gs += T;—Cv;
backward trf(M, s, (q) . P)
ward_trf ( - - p)

@

©

|
|
}
|
|

The argument vector p used for returning the result has to be initialized with zero.

These two recursive functions are building blocks for a 3-pass computation of Mji analogous to the algo-

rithm from Section 2.3.5:
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Pseudocode 2.4.105: Recursive transformation into column cluster bases

[
1

vector «+ h2mv(H?*-matrix M, vector ji € R") {
vectors (‘_&w)weﬁ = 0; forward_trf(M, root(7y), fi, (@w

vectors <H> =0;
gv veETH

\ foreach ((v,w) € Fg,,) | ZU += Clyu0)@w; }
6 ‘ // near—field blocks: direct multiplication
‘ foreach ((U/w) € Fhear) { gv += H|U><wd)w; }
| vector pe€R" := 0; backward_trf(M, root(7y), (Zv)

return g;

3
veETY

// far—field blocks: multiplication with coupling matrices

[ 21 Review question(s) 2.4.106.

|

1. We can define a class H* of n x m hierarchical matrices, n, m € IN by fixing the row and column

cluster trees and the block partition IF. Outline an algorithm that, given M € IR constructs

H" := argmin||M — H|| .
HeCh*
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Chapter 3

Convolution Quadrature

This chapter studies a class of modern numerical methods for particular evolution problems, which are
models with a particular direction of propagation, usually called time. In these models we can distinguish
past and future and the latter must not have any influence on the former, a feature called causality. The
mathematical description of many evolution models relies on initial value problems (IVP) for ordinary differ-
ential equations (ODEs), see [Hip15, Section 11.1]. They seek an for an unknown functiony : I C IR — V
satisfying (the symbol " stands for the derivative with respect to time t)

y=1£(ty) ., y(to)=yo, (3.0.1)

withyp € Vand f: I x V — V. Here, V is the state space, either V = RY, d € N, or a more gen-
eral Banach space. The latter case also covers evolution problems for partial differential equations like
parabolic initial boundary value problems [Hip16, Section 6.1] and wave equations [Hip16, Section 6.2]. In
this case V will be a Sobolev space like H!(Q).

One may call (3.3.15) a “time-local” evolution, because the direction of evolution depends only on the
current state. This is in contrast to causal evolution problems with memory, which will be in our focus now.
In these problems (the change of) the current state will be influenced by the entire past from some initial
time. This will entail fundamentally new approaches to the construction of stable and efficient numerical
integrators (timestepping schemes).
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3.5 Runge-Kutta Convolution Quadrature . ... ... .................. 298
3.6 Fast Oblivious Convolution Quadrature . .. ... ... ... ........c.... 298

3.1 Basic Concepts and Tools

3.1.1 Convolution of Causal Functions

From calculus recall a fundamental binary operation on absolutely integrable functions R — IR, that func-
tions belonging to

LY(R) := {f : R — R integrable: /]R |f(x)|dx < oo} . (3.1.1)

Definition 3.1.2. Convolution on the real line

Given two functions f,¢ € L'(IR), their convolution f * ¢ € L'(RR) is defined as

(F9)t) = [ fE-D)g@dl = [ f@)gt—2)dz, teR,

From the very definition we conclude that
1 LI(R) x L'(R) — L'(IR) is continous, bilinear, and symmetric.
Interchanging orders of integration (“Fubini’'s theorem”) reveals another important property of convolution:

Corollary 3.1.3. Associativity of convolution

(f*xg)*h=fx(gxh) VfgheL(R)

Example 3.1.4 (Some special convolutions)

1 ,ift>0,, . . .
boils down to integration

e Convolution with the Heaviside function: f(t) = _
0 ,ift<O.

t

(f*g)(t) = /g(g)dg, FER.

— 00

e Convolution reproduces (complex) exponentials:

(e e]

(f % {t = exp(iwt)}) = exp(iwt) - /f(g) exp(—iwg)dé, teR.

— 00

Sloppily speaking, when considering the convolution with a fixed function f as a linear mapping
g — f * g, then the exponentials {t — exp(iwt)} can be regarded as eigenfunctions. However,
note that they do not belong to L!(IR)!

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 259



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

Remark 3.1.5 (Convolution in L” (IR )-spaces)

As a generalization of L!(R), for 1 < p < oo and an interval I C IR we may consider the space of func-
tions

LP(I) == {f : I R integrable: [[f[}7, , := A\f(x)\ﬁ dx < oo} . (3.1.6)

This family is completed by L*(IR) the space of essentially bounded functions equipped with a gener-
alized supremum norm. All these spaces are Banach spaces. We can define the convolution on certain
pairs of them.

Theorem 3.1.7. Young’s inequality for convolutions [McL00, Thm. 3.1]

Ifp,q,7 € [1,00] satisfy p~* + g~ = 1 +r"1, then the convolution can be extended to a continu-
ous mapping * : LP(R) x L1(R) — L"(R), in particular

1f* 8l )y < I fllrwy - I8llawy Y € LP(R), g € LI(R). (o3

The case p = r = o0, g = 1, furnishes pointwise estimates

(F*)®) < flpnw)  I8lliow) YF €L'R), g€L®(R). (3.1.9)

Remark 3.1.10 (Convolution of distributions [Rud73, pp. 170])

Sloppily speaking, a distribution on IR is a linear functional on the space Cg"(lR) of smooth compactly
supported functions. The evaluation of a distribution ¢ for ¢ € C°(IR) is usually written as a formal
integral:

0(g) =t (9.8) = | #(@)8(0)de, VgeCTR).

In this sense, we can read the convolution of a distribution with a smooth compactly supported function
g € C7(R)

(98)(1) = [ 9(t=0)g(@)dz = [ (@)t —)dE = (g (G g(t=)}), teR. @11

In some cases the resulting expression remains meaningful even for functions ¢ of limited smoothness.
One such case is the o-distribution

Iy :CT(R) =R , 6x(g):=g(x) xeR, (3.1.12)
for which convolution becomes a shift operation that makes sense for for very general functions

6y g)(t) =g(t—x), g€L™(R). (3.1.13)
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(3.1.14) Causal functions

Causal evolutions model processes that start at some point t = 0 in time. They can be described by
functions on IR that vanish for t < 0.

Definition 3.1.15. Causal functions

For a vector space X an integrable function f : R — X is called causal, if f(#) = 0 for almost all
t <O0.

Note that causal functions are defined on all of R. Thus, a causal function g that is continuous will auto-
matically satisfy ¢(0) = 0. If g is k-times continuously differentiable, then ¢{*)(0) = 0 for all 0 < ¢ < k.

The convolution of two IR-valued causal functions takes a special form and yields another causal function

fgcawsal = (Fxg)() = [ ft-0g@di= [ f@st-Daz , 120, @119
= (fxg)(t) dependson f|[0’ﬂ, g|[0’ﬂ only. (3.1.17)

Thus, in the causal case, Thm. 3.1.7 leads to the estimates
1 *&llero,ry < Wflleecro,myy - 1811 oo r) - (3.1.18)

if p,q,7 € [1,00] satisfy the assumptions of Thm.3.1.7: p~ L +47 1 =1+ L.

(3.1.19) Signal-processing background

A function f: IR — IR can be regarded as a time-continuous, analog signal. Such a signal can be
sent over a causal, linear, time-invariant channel, which, mathematically speaking, is a linear operator
T:L®°(R) — L*(R) that

4+ maps causal functions to causal functions, that is, g(#) = 0 for t < 0 then (Tg)(#) = 0 for t < 0,
too.

4 satisfies

T{t—=gt=0)}() = (Tg)(t=¢), VgelL®(R), VieR. (3.1.20)

Then thereis a f € L'(IR) such that
Tg=fxg VgeL®(R).

The function f is called the (impulse) response function of T, because “f = T(dp)” hints that it can be
obtained as output, when feeding the “impulse” §; into the channel.
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(3.1.21) Convolutions of operators

In Def. 3.1.2, we considered the convolution of two real-valued functions. By componentwise considera-
tion, we can instantly extend this to integrable matrix-valued and vector-valued functions

F:R—R" , g:R—R".
B (Frg)(t)i= [ F(1-0)-g(e)dc = [ F@)-gl-dieR", teR.

Here, - designates the matrix x vector product. Generalizations of the associativity property, Cor. 3.1.3,
and 3.1.7 to this case are straightforward. Of course, this kind of convolution can no longer be commuta-
tive.

We can even go one step further and for Banach spaces X, Y consider the convolution with a one-
parameter family of bounded linear operators represented by an integrable “linear-operator-valued” func-
tionf: R — L(X,Y), L(X,Y) the vector space of bounded linear mappings X — Y

f:R > L(X,Y), g:R—X: (f*g)(t)::/Rf(t—g)(g(g))dg, fER.

(3.1.22) Convolution equations

As in § 3.1.21, let X, Y be Banach spaces. Given a causal continuous function y : R — Y and a causal
operator-valued function f : R — L(X,Y'), we can state the convolution equation

(fxu)(t) = /(;tf(t —¢)(u(g))dd =y(t), teR, (3.1.23)

for the unknown causal function u : IR — X. At first glance this looks like a simpler form of the integral
equations tackled in Chapter 1, but it is fundamentally different because it encodes a direction of propa-
gation, since u‘[O,T] should depend on y‘[O,T} only (causality!). This is also reflected by the fact that the
domain of integration depends on f unlike in the case of integral equations of the form

W:T - R /rk(x,y)u(y) ds(y) =y(x), yer.

This chapter will be dedicated to

1. approximating the convolution (3.1.16) of causal functions, given in a particular form, namely through
their Laplace transform.

2. approximately solving convolution equations like (3.1.23).

Since both types of tasks address evolution problems, the methods will have the flavor of timestepping
schemes.
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3.1.2 Discrete Convolutions

(3.1.24) Sequences
We consider the sampling of a continuous function f : R — X, X a vector space, on an equidistant lattice
with step size T > 0,
This yields a sequence (fo):Z = X, fo:=f(te), L€Z “(fi) = flg,™

% Notation: We write (x,) for a sequence Z — X with terms x, € X. Sometimes the index range will be
restricted to subset of Z

Replacing the improper integral in Def. 3.1.2 with a bi-infinite sum yields the convolution of real-valued
absolutely summable sequences:

Definition 3.1.26. Convolution of sequences

If the sequences (f;), (g/) : Z — R satisfy } 7 | fo| < coand Y yc7 |g¢| < oo, then

(o) * ()= fot-8=)Y ft-8nt, NEZ.

leZ leZ

defines another summable sequence Z — R the discrete convolution of (f;) and (gy).

The discrete convolution operation enjoys similar properties as the convolution on IR:
Theorem 3.1.27. Properties of discrete convolution of sequences

The discrete convolution according to Def. 3.1.26 is a symmetric, bilinear, and associative mapping
of the space (' (Z) of summable sequences into itself

Young’s inequality of Thm. 3.1.7 also carries over:

1

( ) ’((fe)*(ge))n!r>r < ( 3 W)

n=—oo n=-—oo

1

0 q
< Y |ge|”’> (3.1.28)

n=-—oo

==

for p,q,r € [1,00] with p~1 + 471 =1+7r"! and for all sequences for which the right hand side of
(8.1.28) is finite. If p,r = o0, g = 1, the maximum modulus term of the sequence has to be picked.

Remark 3.1.29 (Sequences as distributions)

Given a sequence (f;) C R, for T > 0 we can define the distribution

¢:= Y feby, 06 = d-distribution located at T/, cf (3.1.12). (3.1.30)

f=—c0

Following (3.1.11) we find that for ¢ € C°(R)

(p*g)(t) = {t— i feg(t—tl)} € C*(R) . (3.1.31)

{=—c0
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A closer inspection shows that with ¢ given in (3.1.30)

(px8)lg. = (fo) *(8lg,) - (3.1.32)

Beware: the *x on the left designated the convolution of functions according to Def. 3.1.2, whereas the *
on the right means the convolution of sequences from Def. 3.1.26.

(3.1.33) Causal sequences

If f : R — Xis causal, the sequence (f;) := f|g_is causalin the sense that f; = 0 for £ < 0. In analogy
to (3.1.16) the discrete convolution of two causal sequences yields another causal sequence according
to

(), (g0) causal = ()% @)=Y fov-ge=Y fi-gne, nE€Ny . (3134
/=0 /=0

Causal sequences are a powerful abstraction:

e In a signal-processing context a causal sequence represents a time-discrete analog signal, recall
[Hip15, § 4.0.1]. Regarding the causal sequence (gy) as input the convolution (f;) * (g¢) represents
the output of a time-invariant, linear, causal filter with impulse response (f;): the impulse g, at
t =ty triggers the response (fk_g)kzg and the output signal results from the linear superposition of
all these responses. More details are given in [Hip15, Section 4.1].

e A causal sequence (gy) is related to a formal power series
(g0) < (2(g90))(z) = Zggzl , z€C. (3.1.35)
(=0
which is called the z-transform of (g,). If (g/) is summable, then the series will converge inside

the unit disc {z € C : |z| < 1} C C and define an analytic function there.

For (formal) power series the discrete convolution formula (3.1.34) agrees with the Cauchy product
of the two sequences. An important consequence is that the product of z-transforms of two summable
causal sequences is equivalent to the power series expansion of the discrete convolution of the given
sequences.

Theorem 3.1.36. z-Transform and discrete convolution

If (g¢) and (fy) are causal summable sequences, then

Z((f) * (8))(2) = Z2((fo))(2) - 2((80))(2) , Vze{zeC: |z <1}. (3.1.37)

Note that in (3.1.37) - is the multiplication in C.

(3.1.38) Operator-valued sequences

The generalization pursued in § 3.1.21 can also be pursued for causal sequences. For normed vector
spaces X, Y let (f;) C L(X,Y) stand for a causal sequence of bounded linear operators X — Y, and
(g¢) C X. The natural way to extend the discrete convolution to these sequences is

() % (80 = Y Faslge) = 3 flgnc) €Y, n€Ny. (3.1.39)
/=0 /=0
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A discrete convolution equation for causal sequences has the simple structure of an infinite triangular
linear system of operator equations. If (f;) C L(X,Y), (y,) C Y are causal sequences, then

_f() o ... ... ... ... ] _Z/IO_ _]/0_
f1 f() o ... u Al
(F) % () = (ye) & |2 fo O w| _ |y (3.1.40)

If and only if fy is invertible, this operator equation can be solved recursively similar to the forward elimi-
nation step in Gaussian elimination:

n—1
fou, = Yn — Z fo_1_uy, n€Np. (3.1.41)
/=0

This simple scheme is also known as marching on in time (MOT) algorithm in the area of timestepping
methods for evolution problems.

Our goal will be the disretization of the convolution of causal functions through replacement by a dis-

crete convolution: for causal f : R — L(X,Y), g : R — X we seek T-dependent sequences (w?’T)

of convolution weights such that

(F*8)lg ~ (W) ) * glg. (3.1.42)
0
/f ) dE ~ an 8(lt), (3.1.43)

where “~” should be read as “convergence in a suitable norm for T — 0”. The origin of the name
convolution quadrature for this approximation is clear, because (3.1.43) can be regarded as the
approximation of an integral value by a weighted sum, similar to a quadrature formula as defined in
Def. 1.4.109.

We consider the approximation problem for f * g in a particular setting: the function f may have awkward

properties or not be available at all. Instead, its Laplace transform may be simple and known and we

should rely on it to determine the convolution weights wé’T.

3.1.3 Laplace Transform

The exponentials e, : t — exp(st) have the unique property that they are “eigenfunctions” of both the
differentiation operator 4 : C®(IR) — C*(R) and the translations g — ¢(- — 1), T € R:

%{t — exp(st)} =s{t—exp(st)} , exp(s(t—T1)) = exp(—sT)exp(st) .

So exponentials are the right building blocks for function spaces to use, when dealing with (linear) equa-
tions involving differentiation and translations. The latter play a prominent role in convolutions.
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(3.1.44) Fourier transform on R

Considering the exponentials on the entire real line IR and demanding that they or their LP-norms are
bounded, leaves s := 1w, w € R as the only option, which leads to the famous Fourier transform

FiI(R) = I®(R) , Fflw)i= \/%/]Rf(t)exp(—zwt) dt . (3.1.45)
By the Plancherel theorem JF gives rise to an isometric isomorphism of L?(IR):
£y = 1Ffllzwy Vf € L2(R) (3.1.46)
which means
B2 dt = / F 2dw .
JUfOR = [ 1Ff) de

Thus the Fourier transform is invertible on L?(IR) and for F(f) € L2(R) N L'(R) we have the inversion
formula

£(t) = \/% [ Fw)expit) de (3.1.47)

Morally speaking, by means of the Fourier transform, a function f : R — C can be broken down into a
superposition of exponentials {t — exp(1wt)}.

On the half real line ]Rar a much larger family of exponentials does not blow up: {t — exp(st)} for
Re(s) < 0. This gives much more freedom for writing functions as a superposition of exponentials.

Definition 3.1.48. Causal polynomially bounded functions

For a vector space X denote by C.F(X) the space of causal (— Def. 3.1.15) continuous functions
IR — X satisfying a polynomials growth bound:

VfeCF(X): 3IM>0, meN: |[f(t)]ly <M1+ [t)" VteR.

In the case X = R the space CF(X) is closed under convolution: f,g € CF(X) = f*g € CF(X),
because the convolution of two polynomial causal functions is another polynomial causal function.

Definition 3.1.49. Laplace transform

For f € CF(X), its Laplace transform Lf is an X-valued function on the right half plane
C*t:={z € C: Re(z) > 0} defined as

Lf(s) = /Ooof(t) eStdt, seCh.

The improper integral is well defined because

£ (e | < I1F (D)l exp(—Re(s)) - < M(1+ )™ exp(— Re(s)t) .

3. Convolution Quadrature, 3.1. Basic Concepts and Tools 266



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

The bound on the right-hand side is an integrable function of ¢ for any Re(s) > 0.

The next theorem is proved by differentiation under the integral and a limit argument (Weierstrass theorem)
to deal with the improper integral.

Theorem 3.1.50. Analyticity of Laplace transforms
For every f € CF(X) its Laplace transform Lf is an analytic function (— Def. 1.4.136) on C™.

Analytic functions initially defined on open subsets of C possess an intrinsic extension to a maximal
domain of definition. This also applies to Laplace transforms.

Example 3.1.51 (Laplace transform of causal power function)

We consider the causal power function

, g>-—1.

t1 fort >0
t) =t1 = -
f(H) + {0 fort <0

(The constraint g > —1 is meant to ensure integrability, because for g < 0 the function has a singularity
at t = 0.) This function belongs to CF(IR).

We directly compute the Laplace transform

Lf(s) = /tq e s dt = /(g)qe_”s_l dy  [Subst. 17 := st]
0

where I' stands for the Gamma function, which interpolates the factorials.
Im

We can rewrite s~ (7)) = exp(—(gq + 1) log(s)) to
find the maximal domain of analyticity of Lf: The
(main branch of the) complex logarithm is analytic in
C \ [—o0, 0], which also yields the domain of analyt-
icity of Lf:

Re
L{t — t] }is analyticin C \ [0, 0]

Obviously this domain of analyticity extends far be-
yond C .

Fig. 113

Remark 3.1.52 (Complex contour integrals)
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In complex analysis you have seen complex contour integrals, the integral of a function f : D C C — C
along a Clljw—curve I' C D, given by a parameterization v : I C R — C, T := «(I), I aninterval:

/f 2) dz —/f (&) dE, (3.1.53)

where - is multiplication in C, and 7 is the derivative with respect to the parameter.

For example, the unit circle S C C around 0 viewed as an oriented closed curve has the the parameteri-
zation ¢ — exp(2mg), ¢ € I := [0, 1]. Hence, the contour integral of a C-valued function f defined in a
neighborhood of S can be computed via

Slf(,z) dz =2m /Olf(exp(Zm(j)) exp(2md) d¢ .

(3.1.54) Laplace inversion formula

Restricting the Laplace transform to a line parallel to the imaginary axis reveals a close connection with the
Fourier transform on R addressed in § 3.1.44. For an integrable causal function f € CF(X) we formally
compute

o0

s=otiw = Lf(s)= /f(t)e @HOE G = 2 F({t s e () (w),  (3.1.55)

— 00

where we have splits € C™ into real and imaginary part: s = ¢ + 1w, ¢ € R™, w € R. Apply the Fourier
inversion formula

FAG(H) =

5 G(w) exp(iwt)dw , teR, (3.1.47)
T

8\8

to (3.1.55) to obtain

(o]

I Lf(o+1w) exp(iwt) dw

\/E

Multiply with exp(ct) and recall the tool of complex contour integration from Rem. 3.1.52, which permits
us to rewrite

V2me 7f(t) = FHw = (Lf) (0 + 1)} (1)

/ﬁf(c7+zw) exp(( + 100)t) dew = %L+IR£f(s) exp(st) ds ,

where ¢ 4 1R is a “curve” in C, a line parallel to the imaginary axis, for which we have used the natural
parametertization w — ¢ + 1w.

Theorem 3.1.56. Inverse Laplace transform

IfF : CT — X is analytic in C* and satisfies the decay condition
IF(s)]lx < [s|* for uw<—1, (3.1.57)

then, for any o > 0, F is the Laplace transform of the causal function given by the improper contour
integral

1

(LR = 5

/ F(s) exp(st)ds, teR (3.1.58)
oc+1R
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The decay of s — F(s) stipulated by (3.3.2) guarantees the existence of the improper integral. By the
Cauchy integral theorem that we recall next

e the value of the contour integral does not depend on ¢ > 0, and

e the function from (3.1.58) is causal.

Theorem 3.1.59. Cauchy integral theorem

Let D C C be open and simply connected. If f : D — C is analytic on D and I’ C D is a closed
C}DW -curve then the contour integral (— Rem. 3.1.52) of f overI vanishes

/f(z) dz=0.
r
| Now, for c > 0 and R > 0 consider the contour
m
R | I'r:={c+1[—R,R|}U
{|z— | =R, Re(z) > 0},
marked in color beside. By the Cauchy integral the-
orem
/ F(s)e'ds =0.
I'r
Re
If t < 0, then |e'| < 1foralls € C* and, thanks to
the decay property (3.3.2),
lim F(s)et'ds=0.
R—o0
|z—o|=R
— R Re(z)>0

Hence, also the integral over o + 1R has to vanish.

(3.1.60) Differentiation in Laplace domain

Now we will reap a first fruit of the fact that exponentials are “eigenfunctions” of the differentiation operator.

Theorem 3.1.61. Differentiation formula for Laplace transform

For a causal continuously differentiable function f € CF(X) N C}(R) (“of time”)

Lf(s)=s-Lf(s), seCT,

where f is the (temporal) derivative of f.

The proof is straightforward integration by parts. We mention two consequences of this theorem.

© The Laplace transform converts linear ordinary differential equations (ODEs) with constant coefficients
into algebraic equations in “Laplace domain”

For the initial value problem for a second-order ODE,

i(t) —a*y(t) =c(t), acR , y(0)=y(0)=0,
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set Y(s) := Ly(s) and obtain

$2Y(s) = a®Y(s) + Lc(s) BB Y(s) = % :

® Thm. 3.1.61 makes it possible to extend the Laplace inversion formula to functions violating the decay
condition (3.3.2), see also [Say16, Prop. 3.1.2]

Let F: C™ — X be analytic and comply with the power-law growth bound
JeR, M>0: ||F(s)|yx < M]s|". (3.1.62)
Then, by Thm. 3.1.56, for m € IN, m > u + 1, the function

1

Fult) = 2_m/a%smz:(s)e5f ds, tER,

is causal and its Laplace transform satisfies
s" - Lfu(s) =F(s) VseC".
Then, we can invoke Thm. 3.1.61 and find

L(f)=F for f:= d;];m

defined in the sense of distributions,

3.1.4 Diagonalizing Convolutions

We started Section 3.1.3 by pointing out that exponentials e; : t — exp(st) are “eigenfunctions” of every
translation operator in L*°(IR). Note that convolution

(Fx8)H) = [ f@)gt-2)de, teR,

seen as an operator ¢ — f * g is essentially a superposition of translations of g. Hence, it comes as no
surprise that exponentials will also be “eigenfunctions” of this convolution operator: For f € L'(R)

Few = - /H;f(«j) exp(—1w) A& = ewo - (Ff)(w), w€R, (3.1.63)

where F is the Fourier transform on IR. This immediately leads to the famous convolution theorem for the
Fourier transform.

Theorem 3.1.64. Convolution theorem for Fourier transform

Forall f,g € L"(R): F(fx*g)=Ff-Fg pointwise onTR.

Proof (formal). Appeal to the inverse Fourier transform and boldly exchange convolution and integration:

(F)(B) = (Fx [ (Fo) @) ew()dw)(t) = [ (Fg)(w) (f *ew)(t) dew
_ /]R (F)(@)(Ff) (@) er(t) dew by (3.163).
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Demanding that f is causal (— Def. 3.1.15) we can admit s € C™ in the above reasoning, which gives us
a similar result for the Laplace transform. Again, relying on formal computations for causal f,g € CF(C)
and (3.1.16)

L)) = [ [ F@gt -2 de exp(—stydt = [ | [exp(=st)f(@)g(t—2)at | ¢
00 0 \¢
= [exp(=s2)f(@) - [ exp(=s(t —2))3(t —€)dtd = (L)) - (£g)(s), seC.
0 ¢

The next theorem restates this result in the more general context of vector-valued/operator-valued causal
functions, cf. § 3.1.21.

Theorem 3.1.65. Convolution theorem for Laplace transform

For Banach spaces X,Y and g € CF(X),f € CF(L(X,Y)) holds

L(f+g)(s) = (Lf)(s)((Lg)(s)) , seCT.

(3.1.66) Operational calculus

Convolution with f € CF(L(X,Y)) is now regarded as a family of linear mappings CF (X) — CF(Y),
g — f x g parameterized by f. If the Laplace transform F(s) := Lf is more easily accessible than f itself,
we can also use F as “parameter”. This leads to the “operational calculus” view of convolution, introduced
by Ch. Lubich [Lub88].

Definition 3.1.67. Operational calculus

For F : C™ — C analytic we define the linear operator
o) { CF(X)NCP(R,X) — CFY)NC*(R,Y)
F Bt .
8 = F(3r)g:= L ({s = F(s) - Lg(s)})

induced by the transfer function F.

Equivalently, we can write

(LF(9)g)(s) = F(s) - Lg(s), seCT, (3.1.68)

Def. 3.1.67 =
F(o;)g =L 'Fxg , (3.1.69)
where the last identity is a consequence of Thm. 3.1.65. Hence, the operational calculus is another way
to encode causal convolution with emphasis on the Laplace transform of one factor.

Operational calculus can also be viewed as a generalization of differentiation, because Thm. 3.1.61 implies
form € INp
d'g

F(s)=s" = F(a)g(t) = 77 (1)

teR. (3.1.70)

Already these formulas hint that the restriction to ¢ € CF(X) N C*®(R, X) in Def. 3.1.67 is not nec-
essary. If the growth of F admits a polynomial bound, argument functions of finite smoothness can be
accommodated.
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Lemma 3.1.71. Pointwise estimate for convolution

Assume that F : C* — C is analytic and satisfies the power law growth bound
JueR, M>0: [F(s)| <Mls|" VseCT,. (3.1.72)

Then, for every m € IN, m > 11 + 1, there holds the pointwise estimate

t
ot E
IE@ Wk < [etsm@] de-5 [ Tolas, ter, @i

0 c+1R

for all causal ¢ € CF (X)) for which the right-hand side is finite.

Proof. For the sake of simplicity, consider X = C. Thm. 3.1.61 gives the identity (¢ > 0)

Fo0g(t) = 5 [ () eregenetas= o [ (53] cgmioetas.
oc+1R c+1R

The assertion of the lemma follows from the estimate

(e e]

£ )| = | [ g e arl < [t g lar, seotR,
0 0

and the fact that F(d;)g(t) depends on gl ; only. O

Knowing the growth of F(s), the right-hand side of (3.1.73) can be estimated further, which yields the
following refined bound after elementary but tedious calculus.

Theorem 3.1.74. Pointwise estimate for convolution Il [Say16, Prop. 3.2.2]

Assume that
4+ the operator-valued function H : C* — L(X,Y), X,Y Banach spaces, is analytic, and
4 satisfies the power law growth bound

Ju>0, meN, M>0: |[[H(s)|| < Mmax{l, (Res)™}|s| VseCT, (3.1.75)

4 and that the causal X-valued function g € CF(X) belongs to C" (IR, X) for some n € IN,
n>u-+1, and
4 that its n-th derivative g(”) is integrable on IR.
Then we can estimate

1+ 6t max{1,t"}

< M
IH@)g(®)lly < M2 —=—r=4

dt,
X

I (s

withé :=n — (u+1).

Next, we turn our attention to discrete convolutions (3.1.34) of causal sequences (f;) C C and (g,) C C

((fe) * an (8= Zfz-gn_e, n€Np. (3.1.34)
=0
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In computations, we are interested in only a finite number N + 1, N € IN, of terms,

yn = (fo)* (& )y=_ fat-8=Y ft- 8, n=0,...,N. (3.1.76)
(=0 =0

which can be expressed as, see also (3.1.40),

(Y0 fo O ... ... ... 0 o0
: fi fo 0 : )

& y=Kg, KeCNTUNTL  (3177)

o i S 0

: : o 0 5
LYN _fN fN—l fz f1 f() | LN

that is, a matrix x vector multiplication with a lower-triangular matrix K of a very special structure.

We now revisit [Hip15, Chapter 4], which in great detail discusses the relationships of and algorithms for
periodic convolutions (— [Hip15, Def. 4.1.33]) and causal discrete convolution, see [Hip15, Section 4.1]
and, in particular, [Hip15, Rem. 4.1.40]. As explained in [Hip15, Section 4.2.1], diagonalization of periodic
convolutions will lead to the discrete Fourier transform (DFT) as the fundamental linear transformation
underlying all algorithms connected with discrete convolutions. The Fast Fourier Transform (FFT) offers
an optimal-complexity implementation of DFT, see [Hip15, Section 4.3]. We give a summary of the con-
siderations leading to an optimal algorithm for causal discrete convolution.

(3.1.78) Tool: Circulant matrices — [Hip15, § 4.1.37]

Definition 3.1.79. circulant matrix — _

[ ) ] pPo Pn-1 Pn-2 --° P2 P
P1 Po p2
A matrix C € C"" neIN, is circu- :
. . . p2
lant, if there exists an n-periodic sequence .
(pk)kez such that C =
(Cej=pe—j, 1<bj<n. : P s
Pn—-2 Pn—-1
A sequence (py)rez is n-periodic, if pri, = pi [Pn1 Pn2 - P2 P11 Po

forall k € Z.

B> The columns and rows of a circulant 7 x n-matrix can be generated by successive cycling shifting of
the entries of an n-vector.

The multiplication of a circulant matrix C € C"" generated by the n-periodic sequence (py) with a vector
X = [x1,..., %] € C" amounts to periodic discrete convolution [Hip15, Def. 4.1.33]:

n
(Cx), =Y puexe, n=1,...,N. (3.1.80)
(=1

An elementary and fundamental observation is that all circulant matrices € C™" commute and, therefore,
share the same basis of eigenvectors.
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Theorem 3.1.81. Diagonalization of circulant matrices

For any circulant matrix C € C"",n € N, (C); = py—;, (px) an n-periodic sequence of complex
numbers, holds

M Po
CF, = F, diag(Ay,...,An) | =F,| , (3.1.82)
)\n Pn—1
where F,, € C"" s the Fourier matrix
-1)(j—1 )
<Fn>g,]' = w,(l )G=1) , Lije{l,...,n}, wy:= exp(—%) . (3.1.83)

The elementary proof of this theorem is given in [Hip15, § 4.2.6]. Since w,, is a root of unity, the Fourier
matrix as defined in (3.1.83) is, up to scaling with ﬁ unitary — [Hip15, Lemma 4.2.14],

1
-1 H
F," = _F, = _Fu, (3.1.84)

which implies the diagonalization formula [Hip15, Eq. (4.2.17)]
C = F,! diag(Ay,...,An)Fy (3.1.85)

that is, the columns of the Fourier matrix provide an eigenbasis for every circulant matrix.

The multiplication of a Fourier matrix F,, with a vector is known as discrete Fourier transform (DFT):

c=Fy & y= %Fnc ,oe=lalioy y = [.’/j]?zl e "

. L k—1)(j—1 1 & C(k—1)(i-1 , (3.1.86)
ck=Zij£ U= o yj:_zckwn( U ), kj=1,...,n.
j=1 =
2 Notation: We write FFT(y) := F,y and IFFT(c) := F, 'c

Thanks to (3.1.85), the multiplication of a vector with a circulant matrix C € C"*"* generated by the n-
periodic sequence (px) can be expressed as

Cc = IFFT(FFT([po, ..., pu_1] ). * EFT(c)) . (3.1.87)

A C++ implementation based on a DFT library function of EIGEN is given in [Hip15, Code 4.2.25].

(3.1.88) Fast Fourier Transform (FFT)

The Fast Fourier Transform is a divide-and-conquer algorithm for the efficient computation of the discrete
Fourier transform of complex vectors, see [Hip15, Section 4.3].
Asymptotic computational effort for DFT

cost(DFT of a vector € C") = O(nlogn) for n — oo
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= Owing to (3.1.87) the asymptotic computational effort for multiplying a circulant matrix € C™" with
a vector is

cost(circulant n x n- matrixx vector) = = O(nlogn) for n — oo

(3.1.90) Techniques for Toeplitz matrices

We observe that the matrix K € CNTLN*1 from (3.1.77) has “constant (off-)diagonals” and, therefore,
belongs to a special class of matrices — [Hip15, Def. 4.5.8].

Definition 3.1.91. Toeplitz matrix up Uy - Tt Up—
u_1 Uy Uy :

T € C™", m,neIN, is a Toeplitz matrix
generated by the sequence (#_;;41,...,Uy—1) of T —
n 4+ m — 1 complex numbers, if

(T)l]:u],l, 1§l§m, 1§]§n : Ui
Ul_pm - S U1 U

Obviously a Toeplitz matrix T € C™" has an information content of merely m 4+ n 4+ 1 numbers. This sets
a strict lower bound for the asymptotic complexity of operations involving Toeplitz matrices.

@ Idea behind fast algorithms for Toeplitz matrices:
Circulant augmentation: embed Teoplitz matrix into larger circulant matrix

Lemma 3.1.92. Circulant augmentation of Toeplitz matrix

Given a sequence (U_ ;1 1,...,U,_1) of m+n — 1 numbers, let C € C"t""+1 pe the circulant
matrix (— Def. 3.1.79) generated by the m + n-periodic sequence

(uOI U_q, U2, ., U_m+t1, 0, Up—1,Un—2,---, ul) .

Then the upper-left m x n-block (C)1.y,1., of C is the m x n Toeplitz matrix (— Def. 3.1.91) gen-
erated by the sequence

(u—m+1/ U_m42/---, Uy oy Un—2, ul’l—l) o

Appropriately the matrix C is called the circulant augmentation of T.

The following formula demonstrates the structure of C in the case m = n with the Toeplitz block highlighted
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in color.

up U Up—1| 0 Uy u_q

u_1 Uy w1 0 :
Uq : - Ulp

C— | Mn U1 Ug | up—1 0
0 w1y e Up | Ug U © Uy

Up—1 0 u_1 up U :

Ul—n 3

G Up—1 0 |uyy u-1 Uy

The case of a rectangular Toeplitz block with 7 = 6, n = 4 is shown next:

[ Up 251 Us Us 0 U_5 U_4 U_3 U U_q i
U_q Uy U] Uy | U3 0 u_.5 u_4 u_3 U_p
U_p U_q{ Uy U] | Uy U3 0 u.s5 u_4 u_j
U3 U_p U_q1 Uy | U Uy U3 0 u_.5 u_y4
C— U_y U_3 U_p2 U_71]| U 251 Uus Uus 0 Uu_s5
o U5 U_y4 U_3 U_p2|U_1 U [Z5] Us Uus 0
0 U_5 U_4 U_3|U_2 U_71 U u Uy us
us 0 U_5 U_4|U_3 U_p2 U_1 U [Z5] U
Uun us 0 U_ 5| U_4 U_3 U_2 U_1 U ui
L W1 Uz Us 0 Us U_y4 U3 U U1 Uy |

The message of Lemma 3.1.92 is that for a given Toeplitz matrix T € C™", we can find a circulant matrix
C ¢ Cmnm+n gych that

(3.1.93)

C = l;l: :] , * = matrix blocks of suitable size.

As a consequence the product of a Toeplitz matrix T € C™" with a vector u € C" can be computed by
the multiplication of its circulant augmentation with a “zero-padded” argument vector:

u T x| |u Tu
o)== 16} = %]
where C € C™ "™+ js the circulant matrix from Lemma 3.1.92 with (C)1.,, 1., = T. This shows how to
harness the power of FFT for multiplying a Toeplitz matrix with a vector.

(3.1.94)

Toeplitz matrix x vector

The multiplication of a Toeplitz matrix with a vector can be converted to the multiplication of a ciculant
matrix with a vector:

cost(m x n Toeplitz matrix x vector) = O((m + n) log(m + n)) for m,n — oo
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(3.1.96) Diagonalization-based algorithms for discrete convolutions

It is clear from (3.1.77) that the FFT-based multiplication of a general Toeplitz matrix with a vector can
immediately be applied for the computation of the initial N + 1 terms of a discrete convolution (3.1.98) of
causal sequences, because

fo 0 ... 0 ]
fi fo O
K :— j?— fl .jTO 0 c CN+LN+1
0
N fna1 - 2 i fo

obviously is a Toeplitz matrix generated by the sequence
(fN, fn—1,--+, f0,0,...,0) € C2N*1,

The N + 1 first terms of the discrete convolution of causal sequences can be computed with an
asymptotic effort of O(N log N) for N — oo.

(3.1.97) Efficient solution of convolution equations

We consider the (truncated) convolution equation (3.1.40) in the simple setting X = Y = C. Giveny € C"
we seek a vector u € C" such that

fo O ... ... ... 0 R n
fi fo 0 : . .

o S o 0 - & Ku=y. (3.1.98)

: o 0 : :
| fo-1 fa—2 - fo fi fo | LUnl LYn ]
We assume f # 0, which ensures that the lower-triangular coefficient matrix of (3.1.98) is invertible. The
simple forward elimination according to (3.1.41),

-1
ué:fo_1<y€_2fé—kuk>/ gzl/"'/n//
k=1

gives the result vector with an asymptotic effort of O(nz) for n — oco. A faster method uses the efficient
algorithms for Toeplitz matrices from § 3.1.90.

@ ldea: Divide-and-conquer algorithm:

Apply recursion to 2 x 2-block split linear system
For 1 < k < n, preferably k ~ n/2, consider
K) 151k o } { (w)1x } { (¥)1:x }
Kaev o | e s [ @]
y (K)k+1:n,1:k (K)k+1:m,k+1,n (u)k+1,n (Y)k—i-l,n
and note that
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4+ both (K)1.4 1.4 and (K)1. k+1,, are lower-triangular Toeplitz matrices again, and
4 (K)jt1:1,1:k is a Toeplitz matrix.
This suggests the following algorithm:

O solve (K)i1x(u)ix = (y)1x > recursion
® Compute t:= (y)kt1: — (K)kr1m14(u)1  (Toeplitz matrix x vector)
® Solve (K)iitmkttn(Wir1n =t > recursion

The asymptotic complexity can easily determined for the case n = 27, where at each level of the recur-
sion the task is split into two problems of half the size. Denoting by W(p) the computational effort for
n = 2P and taking into account that the multiplication of a vector with an 2P x 27 Toeplitz matrix involves
asymptotic computational cost of O(p2?), by trivial induction we arrive at the estimate [BHS80]

W(p) <2W(p—1)+C2’p >  W(p) < C2Fp?

Hence, in this case, the discrete convolution equation can be solved with an asymptotic effort of O(n log2 n).
This holds for all system sizes.

The asymptotic cost for computing 7 components of the solution of the discrete convolution equation
(3.1.40) is O(nlog® n).

3.2 Convolution Equations: Examples

Convolution equations occur in a wide range of mathematical models of phenomena with non-local inter-
actions and, in particular, “memory in time”. We highlight a few simple examples.

3.2.1 Tomography: Abel Integral Equation

<1 2D cross-section of a tomography set-up.

In X-ray tomography parallel X-rays are shot through an ob-
ject and their attenuation is measured. From the attenuation
regarded as a function of the ray line the spatial density distri-
bution of the object can be computed by means of the Radon
transform [Rie03, Sect. 1.1].

This method is the mathematical foundation of CT-scans, which
is a widely used technology in medical imaging.

We study only a substantially simplified setting.

Fig. 115
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X-ray receiver

We assume that the object is a long straight circu-

lar cylinder with radius 1 and that its density p is X2

a function of the radius only: p = p(x1,x2) = p(r), V
ri=/x? 4 x3.

Hence, only a single ray direction is required, let it be

T e N
h " P
f[he x;_—qlwechon. The ray position can be character- é’<><><><>;3§<;>*
ized by its x1-coordinate. <§§§§§55%§§
(e
Let I = I(xy, x2) denote the intensity of the X-rays. ST TR SRS TS TSI
; : : AR STATS LT AT
It is governed by the attenuation equation ST AT A
TR R
o1 e
=—(x1,x2) = —p(x1, x2)[(x1,%2) ,  (3.2.1) S T TR IR ARTA TS TIT AT
90X R L AR AR AT ST AT L
e
. . . . . . . T 2o T L SR>
a §|mple linear ordinary qlf.fe.rentlal equation with x; ~<><><><>;§§%<_\§
acting as a parameter. Dividing by I(x1,x2) we get <5§§97‘?

from the chain rule

d
a—leog(l(xl,xz)) = —p(x1,x2) . (3.2.2) /_\

Fig. 116 X-ray source

X1

Write Is = Is(x7) for the intensity at the source, and Iz = Iz(x7) for the intensity measured by the re-
ceiver. Integrating (3.2.2) in x,-direction over [—1,1] yields (p(x1, x2) = 0 for x3 + x5 > 1)

Vi

R(x1) _, / o(x1,x)dvy, —1<x <1, (3.2.3)
0

Is(x1)

g(x1) := —log

where we also used the symmetry of p: p(x1, x2) = p(x1, —x2).

The task is to tease out p = p(y/x% + x3) from the data ¢ = g(x1), which have to satisfy g(—1) = g(1) =0

and g(—x71) = g(x1). This amounts to seeking a non-negative function p = p(r) defined on [0, 1] and
solving the integral equation

Vg
2 p(y/x2+x3)dxy =g(x1), 0<x <1 . (3.2.4)
b[ 1 2

[

We perform the substitutions
ti=1-—x} = x1=Vv1-t,
C:zl—x‘%—x% = xp=+/t—¢, d¢ = —2xpdxp,

which converts the integral equation (3.2.4) into

0
t/p(ivtl__;)dgzg( 1—1), 0<t<1. (3.2.5)

We continue with substitutions and set

u(@) :=p(V1-¢), 0<¢<1 , y(t)=—g(V1i-t), 0<t<1,

3. Convolution Quadrature, 3.2. Convolution Equations: Examples 279



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

and, finally, end up with the Abel integral equation for u : [0,1] — R

I

R

t
/ O) g —y(t), 0<t<1 . (3.2.6)
0

Notice the structure of a convolution equation (with singular kernel k(t, &) = ﬁ) for causal functions

as presented abstractly in § 3.1.22. An equivalent way to write (3.2.6) is
1
(Au)(t) == ({t — ﬁ}*u)(t) =y(t), 0<t<1, (3.2.7)

where A is known as Abel integral operator. The restriction to the finite interval [0, 1] is irrelevant thanks
to causality.

In Ex. 3.1.51 we established

L{t 177} (s) =T (1/2)s7 2 = V7 , s€Ct. (3.2.8)
NG
Thus, the Abel integral operator can be fit into operational calculus
, JT
A=TF(d;) with F(s) = —. 3.2.9
@) ()= 329)

Remark 3.2.10 (The square of the Abel integral operator)

From (3.2.9) we conclude

LA2u(s) = \/—\/gﬁAu(s) - g(ﬁu)(s) .

Thm. 3.1.61 tells us that division by s in the Laplace domain corresponds to integration in time domain:
for a continuous causal function f satisfying a polynomial growth condition we have

t 1
Lites / f(T)dTh(s) = < (Lf)(s), sect. (3.2.11)
0
Inverting the Laplace transform this implies for a continuous causal function u € CO(IR)

(A2u)(t) = N/Otu(r) dr, t>0,

= SRy =mu(t), >0

In a sense, the Abel integral operator A is the square root of the antiderivative.

3.2.2 Impedance Boundary Conditions

A typical task in computational electromagnetics: A straight co-axial cable extends in x3-direction. The
electromagnetic properties of its conducting (copper) core are characterized by
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e a constant “large” conductivity o > 0, [0] = ¢,

e a constant magnetic permeability 1 > 0, [p] = 2=

The core’s cross-section occupies the bounded do-
main Q¢ C R

The core is surrounded by a cladding carrying a
time-dependent current j(x, ) = j(x1, x2, H[001]"
in  xs-direction, which provides the exciting
stpply) source in the model. The spatial support of j,
Q; = supp(j) C R?, is bounded and outside Q.
The source current is switched on at time t = 0.

The space outside ()¢ is considered homogeneous
with magnetic permeability ¢ > 0, and vanishing
Fig. 117 conductivity.

Unless j displays very rapid variation in time, the appropriate model is the eddy current model, a degen-
erate linear parabolic initial-boundary value problem for the x3-component u(x,t), x = [xl,xz]T, of the

electric field:
O (o)) — du = F(x ) = 1 (x,8) in R x [0,T]
ot M = W= R ek (3.2.12)
u(x,00 =0 in R?,
with U(x):{g :: gg\’ (3.2.13)

By linearity, the evolution problem (3.2.12) can be transformed from time domain to the Laplace domain
using Thm. 3.1.61. We apply the Laplace transform on both sides of the PDE in (3.2.12) and arrive at

-~

so(x)u(Lu)(s) — A(Lu)(s) = f(s) := L{t — f(-, ) }(s) . (3.2.14)
In the sequel we write ii(s) := (Lu(s). Note that s € C " can be regarded as a parameter in (3.2.14).

Two approximations are commonly applied to the model (3.2.14):

(I) Instead on the whole space IR> the spatial computational domain is truncated to a bounded domain
Q C RR? containing both () and ()¢ and indicated by the outer box in Fig. 117,

(I) The interaction of the conducting core and the electromagnetic fields is taken into account by im-
posing impedance boundary conditions on the surface of ():

grad ii(x,s) - n(x) = —/syii(x,s) foral xe€dQc, (3.2.15)

where # is the unit normal vectorfield on dQ)¢ pointing into the interior of Q) ¢, and 17 := /.
Imposing homogeneous Neumann boundary conditions for i at the artificial truncation boundary, the final
boundary value problem in Laplace domain seeks i = ii(x, s) satisfying
grad  ii(-,s) -n= —/sni(-,s) on 9Qc, (3.2.16)
grad, -ii(-,s)-n=0 on 0Q).
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This is a second-order elliptic boundary value problem with linear impedance-type boundary condi-
tions. As explained in [Hip16, Ex. 2.9.6] its weak (variational) formulation reads: Given any s € C* seek
ii(s) € HY(Q,) such that

/grad i(s) - grad vdx + / Vsnii(s)odxdS = /]?(s)vdx Vo € HY(Q) . (3.2.17)
o} 30 0O,

Appealing to Thm. 3.1.61 again, we can transform (3.2.17) back into time domain. We obtain an evolution
problem for u = u(x, t) with the following spatial variational formulation: seek u(t) € H'(Q),)

/grad u(t) -gradvdx + /(:k(t —T) / nu(t)v dxdS = /f(t)v dx Voe HY(Q,). (3.2.18)
Qe ' A0 O

J/

convolution term

Note that the multiplication with /s in Laplace domain has become a convolution in time domain. What
we know about the convolution kernel k in (3.2.18) is its Laplace transform: (Lk)(s) = s"/>.

| Remark 3.2.19 (Kernel with known Laplace transform) |

This example illustrates a mathematical model with a convolution term in time, whose kernel has a simple
Laplace transform.

| Remark 3.2.20 (Finite element discretization) |

In the spirit of the method of lines introduced in [Hip16, Section 6.1.4] we can achieve the spatial semi-
discretization of (3.2.18) through a Galerkin approach using Hl(QE)-conforming finite elements on a
triangulation of (),. The simplest choice would be triangular linear Lagrangian finite elements, see [Hip16,
Section 3.4].

Writing N € IN for the dimension of the finite element space and ji(t) for coefficient vector of the basis
expansion of the finite element approximation of u(t), this will result in the convolution equation

Ag(t) 4 (Ko gi)(2)

¢(t), K(7) =k(1)B, (3.2.21)

where > A € RNV is the finite element Galerkin matrix (“stiffness matrix”) for —A,
> B € RN arises from the boundary bilinear form in (3.2.18).

Remark 3.2.22 (Derivation of impedance conditions)

3.2.3 Time-Domain Boundary Integral Equations

(3.2.23) Acoustic Scattering
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Freely propagating acoustic waves are described by a time-dependent pressure distribution 1 = u(x, t)
in the air region Q) C IR3, governed by the linear wave equation, cf. [Hip16, § 6.2.10]

02 ,

a—tf —2Ap=0 in Qx]0,T[, (3.2.24)
for fixed final observation time T > 0. Here, ¢ > 0 is the constant wave speed, [c] = =, which agrees with
the maximal speed of propagation in the model. For in-depth explanations refer to [Hip16, Section 6.2.2].

We are interested in simulating the scattering of an
incident plane acoustic wave propagating in direction
dcR3 |d|| =1,

Pinc
/,J%\’ 2
AT O TG T T ,4 Pinc(x,1) == ¥(d - x+ct), xf]ﬁ , (3.2.25)
At -tk <
\QQTETE% Dy with smooth ¥ : R — R, (3.2.26)
TS N . .
L impinging on a sound-soft () object occupying

D C RS.

Fig. 118

(*) “Sound-soft” means that p(t) =0 on I' := dD for all times ¢: the total pressure field p satisfies
homogeneous Dirichlet boundary conditions on dD.

We assume that pin is causal: pinc(x,f) = 0 for t < 0 and x in a neighborhood of D. To simplify the
presentation, we also rescale units of space and time to achieve ¢ = 1.

This scattering problem is modeled by an exterior Dirichlet problem for the unknown scattered field
U := P — Pinc ON the unbounded spatial domain Q) := R3\ D:

0%u _
Fr Ayu=0 in Qx]0,T], (3.2.27a)
u(x,t) = —pinc(x,t) for x€9dD, t€|0,T[, (3.2.27b)
u(x,0) = g—?(x,()) =0 for x€Q. (3.2.27¢)

(3.2.28) Scattering boundary integral equations in Laplace domain

Since u is causal as a function of time and all the equations in (3.2.27) are linear, we can apply the
Laplace transform in time and get the follpowing parameterized family of boundary value problems for the
transformed unknown i (x, s) := (L{t — u(x,t)})(s),s € CT,

$?1i(x,s) — Ayii(x,8) =0 in Q) (3.2.29a)
i(x,s) = —TpPinc(%,5), Pinc := LPinc, for x€9D. (3.2.29b)

Forno s € C™ the solution ii(s) may suffer blow-up as ||x|| — co. Therfore we supplement (3.2.29) with
decay conditions at oo, analogous to what we did in Section 1.1.7.

i(x,s) >0 for x| — 0. (3.2.30)

Note that (3.2.29) is an exterior Dirichlet boundary value problem (BVP) for the parameterized partial
differential equation —Aii(s) + s?#i(s) = 0. If the term s%ii(s) was not present, we would already know a
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way to solve it: As elaborated in § 1.3.138 in this case we can convert the BVP into an equivalent indirect
first-kind boundary integral equation (1.3.139) for the unknown Neumann data. The only obstacle to doing
this for the more general PDE (3.2.29a) is the missing fundamental solution. The next lemma will provide
it.

Lemma 3.2.31. Fundamental solution for L := —A + s?

The fundamental solution for the second-order linear differential operator Lu := —Au + s%u,
s € C™*, in three dimensions is

_ exp(=sllx—yl)
Gs(x,y) = mx—yl| XFY. (3.2.32)

Of course, for s = 0 we recover the fundamental solution (1.2.44) for the Laplacian —A. Also notice that
x — Gs(x,y) decays exponentially for ||x|| — oo.

Lemma 3.2.31 can be proved by a slight generalization of the computations presented in Ex. 1.2.35, see
[STEO09b]. We remark that all essential results of Section 1.2, in particular the representation formula from
Thm. 1.2.60, and of Section 1.3, in particular the jump relations from Thm. 1.3.65, carry over to the more
general differential operator L.

Thus, following the policy of Section 1.3.6 we represent ii(s) in () by means of the single layer potential
acting on an s-dependent unknown density ¢(s) € H2(0Q), T := 9Qx:

-~ _ wS (A : S _ ‘exp(—s||x—y||)
ixs) = ¥ (Fs)(x) I O, ¥y (p)(x) = r/ gl P®)dSy), xeT.
(3.2.33)

We apply the Dirichlet trace operator Tp on I' := 9D and take into account the prescribed Dirichlet data
(3.2.27b), which yields the boundary integral equation (also given in variational form)

V(s)P(s) = Tppime(s) in H2(3Q) (3.2.34)
)
(V(s)¢(s)) (x)p(x)dS(x) = /rﬁmc(x,S)iP(x)dS(x)
Vi € H2(3Q)),

§(s) € H2(30): a(s;¢(s), ) := /

r

with the s-dependent single-layer boundary integral operator

H™:(0Q) — Hz2(3Q)

V(s) : b o (V)W) ::/exigt—||s;||f;”y\l)¢(y)ds(y), cer. (3235

(3.2.36) Boundary element discretization — Section 1.5

As explained in Section 1.5 the s-dependent variational problem (3.2.34) set in H2 (0Q)) is amenable to
Galerkin boundary element discretization using piecewise constant trial and test functions on a surface
mesh (— Def. 1.5.4) G of I': use S; (M) as trial and test space.
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The main challenge faced when computing the entries of the Galerkin matrix arises from the singularity
of the integral kernel. Up to a modulation with the continuous functions (x,y) — exp(—s||x — y||), this
singularity is the same as the one for the single-layer boundary integral operator for the Laplacian —A.
Therefore, the techniques from Section 1.5.3 can be applied unchanged.

This gives us a family of linear systems of equations, parameterized with s:
V(s)p(s) =p(s), seCT, (3.2.37)

with a dense boundary element Galerkin matrix V(s) € CN'N, N := dim S; ' (M), and ¢ standing for
the basis expansion coefficient vector of the approximate solution.

(3.2.38) Retarded potential integral equations

The left-hand side of (3.2.34) is a bilinear expression, a product, involving the s-dependent boundary inte-
gral operator V(s) € L(H_%(BQ),H%@Q)) and the s-dependent density ¢(s) € H_%(aﬂ). According
to the rule “multiplication in Laplace domain corresponds to convolution in time domain” expressed in
Thm. 3.1.65, the boundary integral equation (3.2.34) can be transformed back to time domain and we

obtain a convolution equation for the time-dependent density ¢ : [0, T| — H_%(aﬂ)
(v (P)(t> = Tpuinc(t) , tE€ [O/ T] ’ (3.2.39)

with kernel ky : [0, T] — L(H~2(3Q)), H2(3Q))), whose Laplace transform is explicitly available from
(3.2.35).

In fact, by the inverse Laplace transform, we can obtain an explicit formula for K;;,,, and the convolution in
(3.2.39). Recall the formal inverse Laplace transform of an exponential:

L7V ({s = exp(—sT)})(t) =6(t—1T), T>0,

where ¢ is the d-distribution. This formula can be used to deal with the numerator of the fundamental
solution Gs(x,):

s VR0 = [ [ /4> =1 45,
0 r

arllx -y artllx -y

where p = ¢p(y,t) := L™ {s — ¢(y,s)},y € T,0 < t < T, is atime-dependent surface density. Hence,
the time-domain version of the integral equations (3.2.34) reads:

¢y, t— llx—yl)
dS = Pin xlt 7 xer/ OStST/ (3240)
/ e dS(y) = pinc(

for obvious reasons called a retarded-potential boundary integral equation. From its solution ¢ the scat-
tered pressure field can be reconstructed through

¢y —yl)
(x, 1) / 47T||x — y“ dS(y), x€Q. (3.2.41)

This is called a Kirchhoff representation formula; the scattered field is given by the superposition of fields
radiated by time-dependent point sources on the boundary I of the scatterer.
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3.3 Implicit-Euler Convolution Quadrature

3.3.1 Setting and Goal

Throughout we are given a transfer function F(s) := Lf(s), the Laplace transform (— Def. 3.1.49) of a
causal function f : R — C.

Assumption 3.3.1. Properties of transfer function

F : C*t — Cis analytic on the right half plane and satisfies the decay condition

IM > 0: |F(s)| < MJs|* VseC" andsome p < —1. (3.3.2)

Recall that G; = TZ for some timestep T > 0 denotes an equidistant temporal grid. Also remember
operational calculus introduced in Def. 3.1.67, here, for the sake of simplicity, used with X =Y = C:

/f >dc=/f<t—c>g<c>dc.
0 0

(F(9:)8)(t) :=

The goal of convolution quadrature is to find a linear mapping
CQ;: {F:C" — C, F satisfies Ass. 3.3.1} — {causal sequencesZ — C},
depending on the timestep T > 0, such that
F(91)8lg. = CQ:(F) x glg. for g€ CF(C)NCF(R,C), (3.3.3)
where ~ means the convergence requirement

%1310” F(at)gygmm — CQ<(F) * g’gTﬁ[O,T} H =0 Vg “sufficiently smooth”, (3.3.4)

for some finite time T > 0 and a suitable (semi-)norm ||-|| on the space of causal sequences Z — C.

The terms of the sequence CQ.(F) : Z — C are called convolution quadrature weights. They will
usually depend on both F and T and, therefore we write wf TeC,lez:

CQe(F) =: (w}™), > CQF)*glg, = (an ggé> , 8e=g(lT).
nez

We mention two desirable algebraic structural properties of CQ:

O CQ should preserve the neutral element of convolution:

CQ:({s = 1}) = (90,0) pez » (3.3.5)
® and CQ should be compatible with the convolution theorem for the Laplace transform

CQ:(F - R) =CQ:(F) *CQ: (k) , (3.3.6)
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for transfer functions F;, F, : C* — C complying with Ass. 3.3.1. Note that in (3.3.6) * is the
discrete convolution of causal sequences, see (3.1.34). Thus this formula is the discrete counterpart
of the relationship

(F-R)©@)g = (fixf2)xg = fi*x(faxg) = F1(3:)(F2(01)g) ,

which reflects the associativity of convolution, cf. Cor. 3.1.3.

Remark 3.3.7 (Approximately solving convolution equations by convolution quadrature)

As in § 3.1.22 let us consider a convolution equation

weCF©): [F@ut) = (f=n) =] [ f-0u@ =y), 1R, @39

for given causal y € CF(C). By the convolution theorem for the Laplace transform Thm. 3.1.65 we can
lift (3.3.8) to Laplace domain

[ fe-0u@ =yl) & FO) (Lo = (L6, sect, @39

where the transfer function F is the Laplace transform of f € CF(C).

Applying convolution quadrature to the convolution equation (3.3.8) converts it to a discrete convolution
equation, cf. (3.1.40),

(un) : Z — Ccausal:  CQ(F) * (un) = (yn) :== ylg, , (3.3.10)

set in the space causal sequences.

Assume that F(s) # Oforalls € C*. Thens — F(s)~! will also be analytic in C* and the solution of the
convolution equation can be obtained as

Lu(s) =F1(s)-Ly(s) & u(t)=LYF ' Ly). (3.3.11)

The key observation is that the properties (3.3.5) and (3.3.6) enable an analoguous formula on the discrete
level

CQ<(F) * (un) = (yn) A CQT(F_l) * CQ(F) * (un) = CQT(F_l) * (Yn)

C&Y CQe(F - F) % (un) = CQe(F 1) * (yn) (33.12)
B (un) = CQFY) * () -

Thus, if convolution quadrature satisfies the structural properties (3.3.5) and (3.3.6), then a convolution
equation can be solved approximately by a simple discrete convolution.

3.3.2 Derivation

Let F: C™ — C be a transfer function satisfying Ass. 3.3.1 related to a causal function/distribution f
through Laplace transform (— Def. 3.1.49) and its inverse (— Thm. 3.1.56)

(]

F) = [flne e o F) = [ Fe)etds, o>0.

2m
0 c+1R
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(3.3.13) Reduction to ordinary differential equations

Using the Laplace inversion formula and boldly changing the order of integration permits us to rewrite
convolution

F@)g(t) = (F+9)(t) = [ flt—)g(e) de
0

t t
[ [ et Dds g@dz =1 [ Fis)- [0 Dg(0)dgas
0 0

c+1R oc+1R

=:y(s;t)

Surprisingly, the highlighted integral expression, in the sequel abbreviated by y(s; t) is related to a family
of simple initial value problems for ordinary differential equations.

Lemma 3.3.14. Variation of constants formula

For a continuous causal function ¢ : R — C and any s € C the solution t — y(s;t) of the initial
value problem (IVP)

y(t) =sy(t)+g(t), teR , y(0)=0, (38.3.15)

has the integral representation

t
y(s; ) = / =8 o(F)dE . (3.3.16)
0

Proof.  The initial value problem (3.3.15) for a simple scalar linear ordinary differential equation has a
solution v : R — C. We make the transformation

z(t) =e*ty(t) & yt) =e€'z(t), teR.
By the product rule we find

£(8) = —se~My(6) + e g(t) = —se*ty(t) + e~ (sy(t) + 8(1)) = e~ g (1)
N=[et@dr o yi= [ e Dg@dz, teR.

0
O

As a consequence the convolution F(d;)g can be written as a contour integral involving solutions of a
family of linear initial value problems

F(at)zzim [ Fo)ysinds, ter. (33.17)
oc+1R
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@ Idea: Use numerical integration of the IVPs for 7 = sy + g(t) on the temporal grid G-,
producing a sequence

(Yn(8)) ez Yn(s) =y(s;nT), (3.3.18)

and then, inspired by (3.3.17), approximate

F(at)(nr>z2i [ F) yls) ds (33.19)

71
oc+1R

(3.3.20) Implicit Euler (IE)/backward Euler timestepping — [Hip15, Section 11.2.2]

The implicit Euler method converts the ordinary differential equation (ODE) y = g(y, t) into a difference
equation by using a backward difference quotient to approximate the temporal derivative

> Yy —ylt—1) _

y=g(y,t) g(y(t),t) with timestep T >0,
and restricting the difference quotient to the temporal grid G-:
Yn —Yn-1=T8WYn, tn), thi=7n, kEZ. (3.3.21)

Thinking of timestepping v,—1 — Vu, given y,,_1 this is an equation for y,,. Consult [Hip15, Rem. 11.2.14]
for an explanation why (3.3.21) has a unique solution 1, provided that ¢ is differentiable w.r.t ¥ and the
timestep T is sufficiently small.

(3.3.22) Implicit Euler for scalar linear ODEs

We elaborate the above idea in the concrete case of numerical integration by means of the implicit Euler
method. We apply implicit Euler timestepping (3.3.21) to (3.3.15), that is, for g(y,t) = sy + g(t) and
Yo(s) :=y(0) = 0. As in (3.3.18) we write (1,(s)) for the resulting causal sequence, which, if Ts # 1, it
is defined by (n € IN)

Yn(s) = yu—1(s) + tsyn(s) + tg(tn) , yo(s) =0

Yn(s) = (1= 15) " (yn-1(s) + 78(Tn)) .

- () =1L (1—715)"WHe, , , neN, g :=g(t0), (3.3.23)

because we have ggp = g(0) = 0 for the causal continuous function g.

If ¢ < 1, then we can plug (3.3.23) into (3.3.19):

1 1 n
F(or)(n7) = 7— / E(s)yn(s)ds = 5— / F(s)T Y (1—15)""g, ,ds (3.3.24)
c+1R o+1R /=0
- Z 27.[1 / ~(F D gs - Sn—t -
c+1R
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Strikingly, this amounts to a discrete convolution:

n
F(0)(nt) ~ Z w;'T “Qn—¢ With wE’T = % / F(s)(1— Ts)_(“l) ds . (3.3.25)
=0 c+1R

We have found our first convolution quadrature scheme!

Definition 3.3.26. Implicit Euler convolution quadrature (IE-CQ)

Given the transfer function F : C™ — C, convolution quadrature based on implicit Euler timestep-
ping with timestep T > 0 is defined as (0 < o < 1)

By . |, Fr._ T _ o)~ (€+1)
CQE(F) = | wf™ = 5= / F(s)(1 — s)~ (41 ds
oc+1R leNy

Remark 3.3.27 (Well-defined IE-CQ)

An elementary estimate yields |1 — 7s| > T|s| — 1, which implies |(1 — 7s)~(“+D| < (1[s| — 1)~ (+1),
Thus under the decay condition from Ass. 3.3.1, the improper contour integrals in the definition of CQ™F (F)
are always well-defined for £ € Ny, if ¢ < 71

Remark 3.3.28 (Convolution quadrature based on explicit Euler timestepping ?)

Another simple timestepping scheme is the explicit Euler method which replaces the temporal derivative
with a forward difference quotient, see [Hip15, Section 11.2.1]:

e Ty

y =gyt g(y(t),t) with timestep T > 0.

For the initial value problem (3.3.15) and uniform timestep T > 0 this yields the recurrence
n
Yni1(s) = Yn(s) + Tsyn(s) + 780, yo=0 B y,(s) =) (1475) gy (3.3.29)
(=1

This would lead to convolution weights defined by

T

_ T ¢ .:
Wy = 5 / F(s)(1+1ts)"'ds, €N, wy:=0.

c+1R

Yet, |1+ 7s| > t|s| — 1 such that the improper integrals will in general diverge for almost all ¢ € IN,
unless F decays exponentially for |s| — oo, which cannot be expected. Hence, explicit Euler timestepping
is not suitable for defining a convolution quadrature scheme.

(3.3.30) CQ weights through Taylor expansion
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To manipulate the formula for the convolution quadrature weights for IE-CQ from Def. 3.3.26

Fr._ T —(¢
w/ﬁ_ZEL/P@Mkwm)de& (eEN, O<o<l,

oc+1R
Im note that the integrand
s+ F(s)(1 — ts)~ ¢+
R |
is analytic in C* \ {t~'}. Thus by the Cauchy in-
tegral theorem Thm. 3.1.59 its path integral over the
contour
FZ: FUUFRUF;/,
[y :=0+1[—-R,R],
IR:={s: |s| =R, Rez >0},
Re I,o={s:|s—1=r},
withr, R > 0, R > 7! + r and suitable orientations
of the pieces, vanishes. Thanks to the decay proper-
ties of F from Ass. 3.3.1, we have
/ F(s)(1 —ts)"“*Vds -0 for R — oo.
—RL I'r

Hence, the convolution quadrature weight can also be computed by integrating over a small circle centered
at 7! and oriented counter-clockwise:

Fr._ T g (D) Z_L_/ g (6+D)
W, =5 / F(s)(1 — 7s) ds 5rs F(s)(1 — 7s) ds
c+1R |s—%|:r
N L) ge— L[ F)
5o / F(s)(1 —7s) ds Y- S ds .

s=1|=r 5= 1=

A fundamental result of complex analysis reveals the benefit of switching to an integration contour sur-
rounding 7.

Theorem 3.3.31. Cauchy integral formula [Rem84, §7.2]

Ifg:D CC — CisanalyticinD,c € D,andB :={z:|z—c| <r} C D forsomer > 0, then

_ 1 1380
g(z)—zma S_st Vz € B,
B

where the integral is a complex contour integral and the circle 9B is oriented counterclockwise.

By formal differentiation under the integral we obtain a similar representation of all derivatives of g:
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Corollary 3.3.32. Cauchy differentiation formula [Rem84, §7.3.4]

Ifg:D CC — CisanalyticinD,ce€ D,andB:={z:|z—c| <r} C D forsomer > 0, then
the (-th derivative of ¢ can be computed as the contour integral

0! (s)
(0) () — g
g\ (2) zma{ (s—z)“lds VzeB, (€Np.

Use this formulawith g = F,z =1/r,B:={z € C: |z— 1 Y| =r},r<t ! -0t

e 1 / F(s) D ey 1 1—z
YT T Jo (Tl =)t ds = it " (t/7) = 0" dzt {z= K T ) o
ls—z[=r B

Recall the local Taylor expansion for a function ¢ that is analytic in an neighborhood of ¢ € C:
gz) =Y Eg(l)(c)(z —c)f forall z: |z — c| sufficiently small.

Obviously, the convolution weights are the Taylor coefficients of {z — F(1=%)} when expanded around
z = 0.

Lemma 3.3.33. Convolution quadrature weights are Taylor expansion coefficients

IfF:C* — C is analytic and complies with Ass. 3.3.1, then z — F (1%2) is a generating function
for the convolution quadrature weights from Def. 3.3.26, that is,

1 _ o0
F(— Y=Y Wb for Jz] < 1. (3.3.34)
/=0

Note that the power series in (3.3.34) converges for |z| < 1, because z — F(l%) is analytic for Rez < 1.
Also note that this formula makes sense for any F that is analytic in a neighborhood of 1 and, thus, extends
Def. 3.3.26, which requires decay properties of F.

Remark 3.3.35 (Real-valued convolution quadrature weights)

If F(s) € Rfors € R, then

1—z

G(z) := F( JeER, if zeR.

Hence, all derivatives G(m)(O) will be real and so will be the convolution quadrature weights w?'T for
|E-CQ.

Example 3.3.36 (Direct computation of convolution quadrature weights)

For simple transfer functions F Lemma 3.3.33 paves the way for computing the convolution quadrature
weights wa ¢ € Ny, by Taylor expansion/repeated differentiation. We elaborate this for two examples
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() fF(s) = s, u € R\ Np, then

Ga) = F(—2) =t *(1 -2,
= GOE) =T ) =) (= L (A2
B GO0 =t () = 1) (u - L1,
- i =
G(z) =) 7 H*(-1) z
(=0 o k+1
Thus we find the IE-CQ weights
(-1 u— k
(l):T =T H , U)é:’T = T_‘u(—l)g H k—|-—1 ’ ¢ eN. (3337)
k=0

(Il) For F(s) = (s> + w?) !, w > 0, we rely on a factorization approach:

1—z 1 1 1
F( ) = = 1= T
T <1—;Z>2+w2 2w 2w
T2 o] B [} B
= m . (7;)(1 —l(JJT> nZn) . <YZZ:O(1 +1(JJT) nz”) ,

where the last step employed the geometric series. By the Cauchy product formula for power series,
cf. Thm. 3.1.36, we obtain the convolution quadrature weights by discrete convolution:

2 l

T _ _
O = e 20(1 —1wt) "1+ wr)™", LeNg. (3.3.38)
n—=

3.3.3 Properties of implicit-Euler Convolution Quadrature
Does the convolution quadrature scheme as introduced in the previous section (— Def. 3.3.26, Lemma 3.3.33)
satisfy the crucial properties (3.3.5) and (3.3.6)?

©® We consider the constant transfer function F(s) = 1 and use Lemma 3.3.33 that obviously gives
w7 — 5,5, which is (3.3.5).

® Given two analytic transfer functions F;, F> : C™ — C, we appeal to Lemma 3.3.33

1_2 ZwFTE i=12 , (F-EBE) i 2Bt

The Cauchy product formula for power series immediately gives

oo |
(R B)C) = RO RO (Z”’> <W”>222w532w£2'f-

Comparing Taylor coefficients we conclude

w7 = Zwﬁliwfﬂ & CQE(R-B) =CQ¥(R)«CQE(R) =(3.36). (3.3.39)
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Remark 3.3.40 (“Differentiation theorem” for convolution quadrature)

Consider the transfer function F(s) = s, for which we have by the differentiation formula for the Laplace
transform (— Thm. 3.1.61)

d
F@)g(t) = (), teR,
see also (3.1.70). The corresponding convolution quadrature is straightforward by Lemma 3.3.33:
1 1 1/t for/ =0,
—z —z
F( ) = . & <CQITE<S+—>S)>E: —1/r forl{ =1,
0 else.

This means that convolution quadrature is reduced to applying the backward difference quotient:

Cd—T,

CQE({s — s}) * 8lg. = (%) —8| (3.3.41)
leZ Gr

where we have used the shift operator

Te:CF(C)—CF(C) , (Tg)(t):=g(t—1), T>0.
The right-hand side in (3.3.41) can be regarded as an approximation of Z—f in the points of the temporal
mesh G.

Generalizing these considerations we immediately get the convolution quadratures induced by powers as
transfer functions

IE m Id—T\"
CQr ({s = s"}) x glg, = - gl - (3.3.42)
Gr
Again, we recognize difference quotient approximations of g(’”).
Finally, we can combine these formulas with (3.3.6) and get
Id—T-\"
CQE({s — s"F(s)}) * glg. = CQE(F) * { ( = T) g} , (3.3.43)
AL Gr

a CQ-counterpart of Thm. 3.1.61. approximation of g()

(3.3.44) Continuous-in-time convolution quadrature [Say16, Sect. 4.4]

A new perspective is opened by considering an alternative motivation for implicit Euler convolution quadra-
ture. Remember the shift operator
Te:CF(C)—CF(C) , (Teg)(t):=g(t—1), T>0.

Recall the following correspondences for the Laplace transform:

time domain Laplace domain
d
Derivative: — S-
dt
, . 1-T d 1 —exp(—s7)
Backward difference quotient: ~ T — s
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We point out that the backward difference quotient is the approximation of the derivative underlying the
implicit Euler timestepping scheme, cf. § 3.3.20.

We define a modified transfer function

1 —exp(—st

Fr(s) := F( - )) , Fr:C" — C analytic. (3.3.45)

The formula for the convolution quadrature weights from Lemma 3.3.33

1 _
%) Zw” Cfor |zl <1, (3.3.34)

with z := e~ °T gives us

Fo(s) = F(2 - &P=5T) =t SIS T
(=0

Recall the Laplace transform of a shifted J-distribution
L{t s 6(t—T)}(s) = /]Ré(t — ) exp(—st) i * = exp(—sT) . (3.3.46)
This gives us the time-domain counterpart of F; as a causal distribution:
fo(t) == L7F (1) Z w, Tt —LT) . (3.3.47)

Convolution with this comb function is straightforward:

F:(9)g = (fr* 9)( Z w) gt — (3.3.48)
Using the definition of convolution quadrature, this can be rewritten as

CQE(F) * 8lg, = Fr(9:)glg, - (3.3.49)

Continuous-in-time convolution quadrature

Implicit-Euler convolution quadrature realizes (continuous) operational calculus with
1 —exp(—sT
F replaced with Fr(s) := P(#).

This again confirms (3.3.6) for IE-CQ as a simple consequence of the obvious fact (F; - F>)r = Fir - For
and of the convolution theorem for the Laplace transform Thm. 3.1.65.

3.3.4 Convergence

This section present quantitative results about the asymptotic convergence of convolution quadrature as
the timestep T — 0. In particular we are interested in the maximum error at points of the temporal grid in
a finite time interval [0, T], T > 0:

err(T) := max |F(d¢)g(tn) — (CQITE(F) * g‘gT)n

T:=T/N, NeN, (3.3.51)
n=0,...,.N
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for a given causal function ¢ : R — C. We first report some empiric results in order to see what kind of
convergence can be expected.

Experiment 3.3.52 (Convergence of implicit Euler convolution quadrature)

Throughout this experiment we consider F(s) = % which corresponds to Abel integral operator,

t
E(d1)g / 8(%) dz |
0

Vi) Jt=¢

We choose T = 1.

1 g(t) = exp(-t) on [0,1]

10
QO We conS|der ¢g(t)=1—e¢t and find

1072F ] (at) ( ) (\/_ FD(\/Z))s where FD
’g is the Dawson functlon
E . g
Ew?) ] Fp(t) = e_tz/ &’ dz .
g 0
* -4
Fha i <0 We observe algebraic convergence of order 1:

—t—err( 1)
s o) err(t) =O(t) for T—0.
10 107 1072 10t
timestep 7

o g(t) = sqrt(t) on [0,1]

102 ® Now we choose the non-smooth ¢(t) = /¢, which
g implies F(0;)g(t) = \/7tt/2.
%10 3 < Though ¢ is not continuously differentiable on
& [0,1], we still observe algebraic convergence of
= order 1:
T 10 “

e err(7) =O(t) for T—0.
. o)
. 10 1073 1072 107t

timestep 7

In both cases we observe first-order algebraic convergence as T — 0.

We provide a rigorous justification of the convergence observed in Exp. 3.3.52 for the case X = C and
assuming at most polynomial growth of F.

Assumption 3.3.53. Polynomial growth of F

We assume that F : C™ — C is analytic and satisfies the growth condition

IM > 0: |F(s)] < M|s|' VseC" andsome pu>0. (3.3.54)
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The starting point is the fundamental relationship (3.3.49) from § 3.3.44
CQE(F) « 8lg. = Fr(91)glg. - _max_ F(9;)g(tn) — (CQE(F) = 8lg.),
< sup |(F—F)(d)g(t)],

0<t<T

with [0, T] the time interval of interest and T > 0 the timestep. Pointwise estimates for convolutions are
available through Thm. 3.1.74 and we intend to apply this theorem with F < F — F..

@ Idea: Verify the assumption (3.1.75) of Thm. 3.1.74 for F — F; with

M < Ct , C>0independentof T.

To begin with, we use the mean value theorem for complex-valued functions

F(s) — Fe(s) = E(s) — F(A=OPESDy 0 17050 Py, (3:355)
T T z€E(s)
with the line segment Z(s) C C connecting s and PLT(_ST):
E(s) := {€s+<1—€)Lﬁ(_sr), 0<¢< 1} :

By Taylor expansion for small |s| and elementary estimates for large |s| one can bound the length of E(s)
by
1 —exp(—s7)
T

1
s < C;|TS|2 = Ctls|?, (3.3.56)

with some universal constant C > 0.

Next, we tackle |F’(z)| by means of the Cauchy formula,

0! F(s _
F(Z)(z)zzm/(w_(ziéﬂdw VzeB, zediskBCC", /&N,
0B

from Cor. 3.3.32 taking into account that F is analytic in the right half-plane C .

Onthecircle {w : |z — w| = 2 Re(z)} we have Rew > I Rezand |w| < 3|z
(M > 0 from Ass. 3.3.53)

, which yields the estimate

2
|F'(z)] < M(g)ﬂ@\zyﬂ VzeCt. (3.3.57)
Again by Taylor expansion and elementary estimates we see

1 — _
for z€ E(s): Rez> min{Res,ReM} > %min{l,Res} ,

1 —exp(—sT) 1} <Cls
T — 4

|z < max{]s],
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with another universal constant C > 0.

CM
= ! < — T |s|¥ = + 3.
IF'(z)] < min{1, Res] s|¥ VzeE(s), seCT, (3.3.58)

with C > 0 independent of s and 7. Combine this with the estimate (3.3.56) for the length of the segment
E(s):
CM

— — _|s|#t? *. .3.59
min{1,Res} st vsec (3:3:59)

[F(s) = Fe(s)| <7

Plugging this into the estimate provided by Thm. 3.1.74 (for m = 1) gives us

[((F—F)(91)g)(t) <CMT , 0<t<T, (3.3.60)

Zg

with n € IN, n > u + 3, and C > 0 independent of T, but, of course, depending on T" > 0. Finally, we
invoke (3.3.4)

Theorem 3.3.61. Convergence of IE-CQ
Under Ass. 3.3.53 on F and assuming g to be causal and g € C"(IR), n > u + 3, we have
I n
Y g(O(r
(=0

max [F@)g(on) — (CQF(F)  glg),

with C > 0 independent of ¢ and T.

3.4 Multistep Convolution Quadrature

3.4.1 Multistep Numerical Integrators
3.4.2 Convolution Weights

3.4.3 Convolution Quadrature: Algorithms

3.5 Runge-Kutta Convolution Quadrature

3.6 Fast Oblivious Convolution Quadrature

Example: B =2,t = 157

t 157 14t 127
/...dgz/...d§_|_/...d§_|_/ d§_|_/
0 147 1t 8
—¢ely —eel, t— Celz s 5613
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t =151
t =141
t =131
t =121
t=111
t =101
t =971
t =81
t=71
t=6T
t =51
t =4t
t =31

t =271

Integration interval

Fig. 122 t =11

t—1 <71 (“nea
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Chapter 4

(Algebraic) Multigrid Methods

% Supplementary reading. [TOSO00] is a comprehensive textbook about and introduction into the
foundations and algorithmic aspects of various kinds of multigrid methods:
e An outline of geometric multigrid is given in Chapter 2¢ “Basic Multigrid I”,

e Appendix A titled “Introduction to Algebraic Multigrid” is the text underlying parts of the presen-
tation in 2?.

4.1 Solvers for Finite Element Linear Systems

[Hip16, Chapter 3] introduced low-order finite element methods with small fixed polynomial degree of the
local trial spaces for the approximate solution of second-order elliptic boundary value problems. However,
the discussion completely glossed over a key issue: How can we solve the arising large sparse linear
systems of equations fast?

Here, “large” hints at huge matrix dimensions that can go up to billions as of 2018.

4.1.1 Elliptic Model Boundary Value Problems
The focus in this chapter is on scalar elliptic boundary value problems with homogeneous Dirichlet bound-
ary conditions on bounded connected polyhedral domains [Hip16, Section 2.5] QO ¢ R9, d = 2, 3:
—div(A(x)gradu) +c(x)u=f in Q , u=0 on 9. (4.1.1)

The unknown is a function u : () — IR and the source function f must be square integrable: f € L?(Q)).
Further, A : O — R is a matrix-valued function, often called diffusion coefficient. We demand that

(i) A e (CgW(Q)d'd, that is, A is piecewise continuous with respect to a subdomain partition of 2,

(i) A(x) is symmetric for all x € (), and

(iii) A is bounded and uniformly positive definite [Hip16, Def. 2.2.23]: there are constants 0 < a~ < a™
such that

o |z|P < zTA()z <at|z|]*> VzeRY, vxeQ. (4.1.2)
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The function ¢ : () — R is called reaction coefficient, has to belong to ng(()) and to satisfy c¢(x) > 0
forall x € Q).

Example 4.1.3 (Poission equation)

In the special case A(x) = I (identity matrix) and ¢ = 0, we face a homogeneous Dirichlet boundary
value problem for the Poisson equation

—Au=f in O, u=0 on 00. (4.1.4)

(4.1.5) Two-point boundary value problems

A special case is d = 1, where Q) =|a,b[,a,b € R, a < b. Then (4.1.1) reads:

d du

ﬁ(a(x)a(x)) = f(x) for x€lab] , u(a)=u(b)=0. (4.1.6)

| (4.1.7) Variational formulation

The finite element method relies on the variational formulation of (4.1.1), also known as the weak form:
seek u € H}(Q)

/ A(x) grad u(x) - grad v(x) + c(x)u(x)o(x) dx = / f(x)o(x)dx Yoe HY(Q).  (4.1.8)
(@) Q

J/

-~

=:a(u,v) =(v)

For the Sobolev space H(l,(Q) refer to [Hip16, Section 2.3.4]. Under the above assumptions on A and c
existence and uniqueness of solutions of (4.1.8) can be taken for granted.

(4.1.9) Equivalent minimization problem

As explained in [Hip16, Section 2.4] the linear variational problem (4.1.8) is equivalent to the quadratic
minimization problem

u=argmin(v) , J(v):= 3a(v,v)—£(0). (4.1.10)
veEH}(Q)

(4.1.11) Finite element Galerkin discretization
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We equip () with a simplicial mesh/triangulation M |
in the sense of [Hip16, Def. 3.5.2]. Ford = 1 it will be
a partitioning of the interval () into smaller intervals '
(cells), for d = 2 a special tiling of () with triangles.

05F-

A triangular mesh in 2D, edges drawn in blue, those
on the boundary 0Q) in red >

We take for granted that the interior angles of all tri-
angles are above a fixed threshold, which ensures a '
uniformly bounded shape-regularity measure [Hip16,
Def. 5.3.37].
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The finite element method converts (4.1.8) into a discrete vasriational formulation by replacing H(l](Q)
by a finite-dimensional subspace V), a procedure called Ritz-Galerkin discretization [Hip16, ??]: seek

up € Vy

/ A(x) grad u, (x) - grad v, (x) + c(x)uy (x)op (x) dx = / F(X)op(x)dx Yo, € Vy.  (41.12)
(@) (@)

J

=:a(uy,op)

We restrict ourselves to linear Lagrangian finite ele-
ments and use V}, = S} (M), see [Hip16, § 3.3.3]
(1D) and [Hip16, Section 3.4.2] (2D). We use “tent
function” locally supported nodal basis functions as
explained in [Hip16, Section 3.4.3]. They provide a
cardinal basis of SSO(M) with respect to point eval-
uation at interior vertices of M.

A single “tent function” on a triangular mesh >

=:(vp)

(Graph is a pyramid with height 1.) Fig. 124

Inserting the nodal basis expansion of u;, € 8?0(/\/{), the discrete variational problem can be converted

into an equivalent linear system of equations Aji = ¢, where A €

RNN is the Galerkin matrix, je RN

the vector of the basis expansion coefficients of u;, € V},,and ¢ € RN the load vector. Throughout N € IN
will stand for the dimension of the finite element space N := dim V/,. It agrees with the number of interior

nodes of M.

The structure of the variational problem (4.1.8) implies particular properties of Galerkin matrices:

Lemma 4.1.13. Symmetric positive definite Galerkin matrices

Every matrix A € RN'N arising from a Galerkin discretization of (4.1.8) based on the trial and test
space V), C H}) (Q) will be symmtric and positive definite, that is

A=AT and vV'AT>0 ¥v# eRN\{0}. (4.1.14)

(4.1.15) Finite element computations based on local quadrature rules

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 302



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

The occurrence in (4.1.8) of “general functions” A = A(x), ¢ = ¢(x), and f = f(x) that may be acces-
sible through point evaluation only entails using numerical quadrature on the cells of the mesh in order to
evaluate a(uy,, v,) and £(vy,) approximately.

For V), = S?,o(/\/w it is sufficient to rely on the composite trapezoidal rule, locally defined by
/ ¢(x)dx ~ LK|(p(a') + ¢(a®) + ¢(a®)) , K € M triangle with vertices a', a,a®, (4.1.16)
K

for the approximation of all integrals.

| (4.1.17) Sparsity of finite element Galerkin matrices

The nodal basis functions bl, .. .,b;ll\] of v, = S?/O(M) are “tent functions” associated with the interior
nodes/vertices x?, ..., xN of the mesh M. Since

supp(b}) = LH{K: KeM, x' €K}, (4.1.18)
that is, the support of a basis function is the union of the (closed) triangles adjacent to the associated

vertex, the S{)O(M)—Galerkin matrix A € RN for the bilinear form a(-, -) from (4.1.8) satisfies:

{ Nodes ', x/ € V(M)

i iy L
not connected by an edge < VOI(Supp(bh) x supp(bh)) - 0} = (A)l] 0.

(4.1.19)
0 (TN <A
N
50,“_."' N ".._..~.. . .... L . Lt
100:. :
This means that A is sparse in the sense of [Hip16, 150f - T
Notion 3.4.18]: most of their entries will be zero. '. .
200t - "

Non-zero entries of the S) (M)-Galerkin matrix |
arising from discretizing (4.1.8) on the triangular sso| . -
mesh displayed in 123. > |

300

ket .
350 - *

400k 2 ‘ ‘ R R T P
0 50 100 150 200 250 300 350 400
Fig. 125 nz = 2670

Sparsity of finite element Galerkin matrices

N x N Galerkin matrices for low-order finite element methods
have O(N) non-zero entries for N — oo.

As a consequence

4+ It takes only O(N) memory to store an N x N finite element Galerkin matrix
(> data-sparse matrices),
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4+ the computational effort for the multiplication of an N x N finite element Galerkin matrix with a
vector scales like O(N) for N — oo.

Example 4.1.21 (Poisson matrix)

We consider the finite element Galerkin discretiza-
tion of the Poisson equation (4.1.4) on the unit
square Q) =0, 1[? using linear finite elements on the
“equidistant triangular tensor-product mesh” M dis-
played beside.

Line-by-line lexikographic numbering of the interior
nodes () is assumed, cf. [Hip16, Section 4.1].

If there are n cells in each direction, the total number
of interior nodes willbe N := (1 — 1)2, which agrees
with dim 87 (M).

Fig. 126

As explained in [Hip16, Section 4.1.1], we end up with an N x N block-tridiagonal Galerkin matrix, known
as Poisson matrix

T -1 0 - -+ 0 4 -1 0 0
-1 T -I : ~1 4 -1

A=|0 DT - =] O 14 A “l erIL (4.1.22)
: -1 T -I : ~1 4 -1
o -+ -+ 0 —-1T 0O -« -+~ 0 —1 4

We are going to rely on this matrix in several numerical experiments.

4.1.2 Sparse Elimination Solvers

Recall Gaussian elimination and its rewriting through the LU-decomposition of matrices, [Hip15, Sec-
tion 2.3]. Gaussian elimination does not mesh smoothly with the sparse matrices obtained from finite
element discretization:

A [Hip15, Ex. 2.7.45]: LU-factors of a sparse matrix need not be sparse

- fill-in [Hip15, Def. 2.7.47]

Let A € RN'N be a large sparse finite element Galerkin matrix for a 2D or 3D BVP with “O(N)” non-zero
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entries:
Dream: Cost for solving Aji =¢ = O(N)
Reality Cost for solving Aji =¢ = O(N*), 15<a <2

The exponent « depends on the details of the method and tends to be bigger for 3D problems. In practice
one observes

e « ~ 1.5 for 2D finite element Galerkin matrices,

e n ~ 2 for finite element Galerkin matrices arising from 3D problems.

Experiment 4.1.23 (Cost of direct elimination solvers)

3 I
10F - E . . .
W raddnia 1< Runtime measurements for direct solution of FE
o[ | — Complexity o(1.801) linear systems, courtesy of Prof. O. Schenk, USI
3 — - Complexity O(1.449)

Lugano

4 Sparse solver code PARDISO 6.1 [SGO06]

4+ Domain O =]0,1[%, A £ Poisson-Galerkin
matrix on uniforrm 2D/3D tensor product mesh
(5-point/9-point stencil)

4 OS: Ubuntu Linux 18.04,
Compiler: gcc-7, -O8, single core,

e 7 ' CPU: I2ntel Xeon CPU E7-4880@2.50GHz
Fig. 127 Matrix size

4.1.3 Stationary Linear Iterations

The O(N*), a > 2 asymptotic computational cost of direct elimination solvers becomes prohibitive for
N ~ 107 even on HPC systems. Is there an alternative?

(4.1.24) Iterative solution of linear systems of equations

As an alternative to the direct solution of Aji = @, A € RNN sparse, we could try iterative methods that
produce sequences (ﬁ(k)>k N of approximate solutions that, ideally, fast converge to the exact solution
€INp

limHﬁ(k) —i* =0, Aif=g.

k—o0

Interative methods may be preferred for several reasons often relevant in the context of finite element
computations:

(I) The sheer size of the linear system of equations rules out the use of methods whose memory
requirements scale like O(N*) as N — oo for some a > 1.

(1) In light of inevitable discretization errors highly accurate solutions of the linear systems are not
needed; early termination of the iteration may be possible.

(1) 1If a rather good approximation of the solution is available already, a sufficiently accurate solution
may be obtained after only a few iterations.
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(4.1.25) Gauss-Seidel method

The Gauss-Seidel method is an iterative solution method for general square linear systems of equations:
Given

+ the coefficient matrix A € RNN, N € N, with non-zero diagonal elements, (A); ; # 0,
4 any right-hand-side vector ¢ € RV,
4+ and an initial guess 7, € RY,

it can be implemented as follows (the argument 7i both passes the initial guess and serves to return the
approximate solution):

Pseudocode 4.1.26: Gauss-Seidel method for Aji = ¢

i |void GaussSeidel (const A € RNN const @ € RN, ref i € RN, double TOL) {
2 do {
3 double deltanorm = 0; // squared norm of update in one step
4 // Update all components of the approximate solution
5 for (int 1=0; i<N; i++) { \\
1 o N -
6 | double du := <A—>i,i<(g0)i—]§1(A)ilj(,u)j>,
7 (H); += Om;
5 deltanorm += (du)?;
0 }oW

10 }

1 while (sqrt(deltanorm) < TOL-||#||); // Termination criterion

12 }

The outer loop in Code 4.1.26 embodies the steps of the Gauss-Seidel method. At step i of the inner loop
(Line 5-Line 9) the solution component () . is adjusted so that the i-th row of the LSE Aji = ¢ is satisfied
exactly.

Obviously, the computational effort for a single step of the Gauss-Seidel method is proportional to the
number of non-zero entries of A, hence O(N) for finite element Galerkin matrices and N — oo, remember
§4.1.17.

(4.1.27) Gauss-Seidel method as stationary linear iteration

The operations in the inner loop of Code 4.1.26 from Line 5 through Line 9 boil down to
N
(A)ii(#), = (P), — Z(A)i,j(y)]. , i=1,...,N. (4.1.28)

j=1

Thus, the entire inner loop of the Gauss-Seidel method from Code 4.1.26 can be rewritten as

i < i+ tril(A) '8 with residual B := (¢ — Aji) , (4.1.29)
T p p:=(¢—Ap
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where tril(A) € RN'N extracts the lower-triangular part of the matrix A. Assuming, (A);; # Oforalli
ensures that tril(A) is invertible.

Hence, the Gauss-Seidel method is an iteration generating the vector sequence ﬁ(o),ﬁ(l),ﬁ(z),... ac-
cording to the rule

0=, , A% =% Mm@ —Ai®)  with M= tril(A) . (4.1.30)

An itaration of the form ﬁ(kH) = y?k) +M(p — Aﬁ(k)) is called a stationary linear iteration consistent

with the linear system of equations Aji = @.

Obviously, any solution of the LSE Aji = ¢ provides a fixed point of the associated linear stationary
iteration

A0 =g = H*D =50 (4.1.31)

This is the meaning of “consistent”. Moreover, every fixed point gives a solution of the LSE provided that
M is invertible

i=ji+M@-An) MEEC Ai=g. (4.1.32)
(4.1.33) Error recursion for stationary linear iterations
We consider a stationary linear iteration
Y = 50 L M(p— A®))  with invertible M € RN, (4.1.34)

consistent with the N x N linear system of equations (LSE) Aji = ¢, A € RVN, g € RV,

Assuming that A is invertible, we write 1" € R for the unique solution of the LSE: Aji* = @. A one-line
elementary calculation yields the error recursion

gt — (1-MA)2® for the iteration error &%) = 7i* — g | (4.1.35)

The matrix E := I — MA is called the error propagation matrix for the stationary linear iteration (4.1.34).

Corollary 4.1.36. Convergence of stationary linear iterations

Let ||-|| be a matrix norm induced by the vector norm ||-|| on RN. If p := ||[I — MA|| < 1, the
stationary linear iteration (4.1.34) converges to ji* := A~1@ linearly with rate p.

“Linear convergence” of an iteration is defined in [Hip15, Def. 8.1.9] and means that

T ﬁ(kH) H < p’

i —ﬁ(k)H forsome p <1.

4. (Algebraic) Multigrid Methods, 4.1. Solvers for Finite Element Linear Systems 307



AdvNCSE, AT’18, Prof. Carlos Jerez-Hanckes (©SAM, ETH Zurich, 2018

Remark 4.1.37 (Asymptotic decay of iteration error)

As in § 4.1.33 we consider the stationary linear iteration (4.1.34). From the error recursion (4.1.35) we

learn that the sequence of error vectors (8(0), é(l), 8(2), ...) is generated by a power iteration. Therefore,
we know

=]

€

im — = Apax(I = MA) :=max{|A| : A €c(I-MA)}, (4.1.38)
k— o0 Hé’(k) H

for any vector norm ||-||: Asymptotically the decay of the iteration error will be determined by the largest

eigenvalue of the error propagation matrix.

Remark 4.1.39 (Measuring rates of convergence of stationary linear iterations)

Write Amax (X) for the largest (in modulus) eigenvalue of the matrix X € RNN:
Amax(X) :== max{|A|: A € c(X)}, o(X) := spectrum of X . (4.1.40)
Then, for any matrix norm ||- || induced by a vector norm
Hx"H 5 Amax(X)F for k— 0. (4.1.41)

Hence, the spectral radius Amax(X) will give precise information about the so-called asymptotic rate of
linear convergence, which, after several steps, is a good approximation of the actual rate.

The computation of Amax(X) relies on the power iteration, see [Hip15, Section 9.3.1] and Code 4.1.42

C++11 code 4.1.42: Power method for computing A .y (X), X € RN

; |double comp_Imax(const X € RNN) {
.| ¥ €RN := random vector;
3 Anew = 0
4 do {
5 Aold = Anew ;

= v , ,
6 ‘ V.= W; // normalization

v

7 = X17,
8 Anew ‘= ||17 i // new guess for largest eigenvalue
o | }

|AneW - /\Old| > TOL

| Anew]|
1 return (Apew) ;

10 ‘ while ( ); // Terminate in case small relative change

Experiment 4.1.43 (Convergence of Gauss-Seidel method for Poisson matrix)
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We measure the (asymptotic) rate of linear convergence of the Gauss-Seidel method from Code 4.1.26
when applied to the linear system of equations Aji = ¢, where A is the N x N Poisson matrix from
(4.1.22) and ¢ = 1 is the vector of all ones.

We investigate the matrix sizes N := (n —1)?,
10 n=2%¢=2,...,10, and compute a guess for the
rate of linear convergence by means of the power it-
eration with TOL=10"3.

5 As initial guess we used 0.

We observe a massive deterioration
o2 of the rate of convergence for increas-
ing matrix size.

Fig. 128

A simple heuristic argument can make this observation plausible: If ¥, € RN, ||Umin|| = 1, is an eigen-
vector of the Poisson matrix A belonging to the smallest eigenvalue xmin, then we expect (||-|| the Eu-
clidean norm)

H (I — tril(A) " A)Fpmin

zl_Amin-

The eigenvectors and eigenfunctions of the Poisson matrix are well-known [St099, Ex. 3.1], [Hac94,
Sect. 4.1): fork,m € {1,...,n — 1} we find

. n—1 . n—1
eigenvectors : {sin(nik)} ® {sin(nim)} c RV,
odi= o= (4.1.44)
k7t mr k7t mr
' lues :  Ap, =4 —2cos(—) —2cos(——) = 4sin®(=—) +4sin®(-—) .
eigenvalues km cos( , ) — 2 cos( » ) sin <2n)+ sin <2n )

As a consequence we have Aynin = O(Nfl) for N — co and the asymptotic rate of convergence of the

Gauss-Seidel iteration will behave like 1 — O(N~!). Hence, writing ,ii(k) for the Gauss-Seidel iterates,
from (4.1.35) we can expect that after a few steps and for large N

c>o0: ||#* *("“)Hé( c

i 1-3)

i =i

In order to achieve error reduction by a factor of € < 1, we have to carry out at least

log e S log e
Tlog(1-&)~ C
& N

N =0O(N) for N— o0

Gauss-Seidel steps. Since each step involves computational cost O(N), we arrive at an asymptotic
effort of O(NZ) for solving Aji = ¢ approximately up to a prescribed error level. This does not compare
favorably with the effort required by a modern sparse direct solver, see Section 4.1.2.

(4.1.45) Composition of stationary linear iterations

Let us consider to interleaved stationary linear iterations

figmp = A" + My (@ — Ai'™)  with invertible  M; € RNN,
(4.1.46)
AT =iy + Mo(§ — Ajiy,,)  with invertible My € RN
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By elementary algebra, this yields another stationary linear iteration
D =750 L M(g— AiM), M= M; + M, — MpAM; . (4.1.47)

Naturally, its error propagation matrix must be the product of the two error propagation matrices of the
involved stationary linear iterations:

I-MA = (I—MA)(I-M;A). (4.1.48)

4.1.4 Conjugate Gradient Method (CG)

From Lemma 4.1.13 we learn that finite element discretizations will lead to linear systems of equations with
large spare symmetric positive definite coefficient matrices. For this class of linear systems, the conjugate
gradient method (CG) [Hip15, Section 10.2] is the most important iterative method.

(4.1.49) CG algorithm [Hip15, Section 10.2.2]

The next pseudocode gives a mathematical definition of the conjugate gradient method applied to the LSE
Aji = @. For the derivation refer to [Hip15, Section 10.2].

Pseudocode 4.1.50: Conjugate gradient method

1 <1 CG-Algorithm for solving

i |Vector cg(A € RVN, ¢ € RV, UM | LSEAj =4
— o o o 0 .
| =Py =9 A out
3 for( j=1; j < maxit; ++j) { hput: _ NN
=T, 4 S.p.d. matrix A € R,
) ‘ ﬁ(j) :: ﬁ(jfl) i Cj Pi—1 Z ‘ + right—hand-sidg vector @,
ZjTAZj J + initial guess u(©) € RN,
ZTﬁ 4 tolerance TOL for termination crite-
S JFj-1 2. [
g ‘ B =01~ *TA* AZ;; ‘ rion.
g]' 2 g%'q Return value: approximate solution.
- S (Agj) P~
6\ ng:pj—WCj, \ Cost of CG step
] - :
. o = =)y . A single CG step requires one
! ‘ ' (prH < UL HPOH) UL (G227 ‘ A xvector multiply plus a small

number of vector operations.

= The cost for a single CG step applied to an N x N finite element linear system is
O(N) asymptotically for N — oo.

(4.1.52) Convergence of CG [Hip15, Section 10.2.3]
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For a symmetric positive definite matrix A € RN we denote by ||-|| , the energy norm induced by A:
17]% :=v"AV, veRN. (4.1.53)

This energy norm is fundamental in the theory of the CG method [Hip15, Cor. 10.2.23] and it is in this
energy norm that convergence estimates are stated. We also need the notion of the spectral condition
number of an invertible matrix

_ Amax(A)  max{[A|: A € o(A)}

K(A): Amin(A)  min{|A|: A € c(A)}

(4.1.54)

Theorem 4.1.55. Convergence of the CG method [Hip15, Thm. 10.2.25]

The iterates of the CG method for solving Aji = @ (see Code 4.1.50) with A = AT € RNN s.p.d.
satisfy

I
|7 -7, <2 Vr(A) -1 7 -7 ., 1
A S pr|,, LeN,
A VE(A) +1 A
where Aji* = @.
> The larger k(A) the slower the convergence of CG!

Experiment 4.1.56 (Convergence of CG for the Poisson matrix) |

We apply the CG method to a linear system with the Poisson matrix (4.1.22) as coefficient matrix.

| Convergence of CG

We record the “approximate asymptotic convergence

09 1 rates”

0.8

=(30) _ o
07F 0 H H a
rate ~ ’
0.6 - ﬁ(zo) o
A

rate

0.5

0.4

L forii* =1and 5% = 0.

03 ]
We measure these rates of convergence for

IN=mn-1)?%n=5,6,...,30.

02r

0.1

1 We observe a pronounced deterioration of CG

10 20 30 40 50 60 70 80 90 100 convergence for larger N.
n

(4.1.57) CG convergence for FE linear systems

The observation made in the previous experiment can be concluded from Thm. 4.1.55 and [Hip16, Lemma 6.1.112].

That theorem told us that for finite element Galerkin matrices A for second-order scalar elliptic boundary
value problems (4.1.8) and trial/test spaces 880(/\/1) we have

0 < Amin(A) <C , Amax(A) > C'hyy, (4.1.58)
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with constants C, C’ > 0 depending only on the shape-regularity measure (— [Hip16, Def. 5.3.37]) and
quasi-uniformity of the mesh M. As a consequence

K(A) > Chy7 . (4.1.59)

Hence, by Thm. 4.1.55 we expect slower convergence on finer meshes, exactly what we have observed
in Exp. 4.1.56. In fact, x(A) ~ hﬁ, which gives, asymptotically on sequences of uniformly and regularly
refined meshes

it =% <200-0(m))*

7 — 70 HA for meshwidth /1, — 0. (4.1.60)

In two dimensions we have N = O(hj\j), which means that we get an asymptotic reduction of the energy
norm of the CG iteration error by a factor of € < 1, if we carry out at least

loge

1
K> _ > 9B NI — O(VN) for N — oo
log(1 — CN™2) C

CG steps. We conclude an asymptotic computational effort of O(N%) for solving Aji = ¢ up to a pre-
scribed relative accuracy. This is superior to the Gauss-Seidel method, but not better than the advanced
sparse direct solvers mentioned in Section 4.1.2.

4.2 Geometric Multigrid Method

Recall the Gauss-Seidel iteration for solving the linear system of equations Az = @,

ﬁ(O)

=7, , %Y =u® £ M@ — AE®) with M= til(A), (4.1.30)
for which we found the error recursion

el — (1—-MA)2®  for the iteration error &) .= i* — 7" | (4.1.35)

Idea: Study the eigenvector belonging to the largest (in modulus) eigenvalue of
I-MA

= slowest converging error component!

Experiment 4.2.1 (Convergence of Gauss-Seidel Il, see also Exp. 4.1.43)

As in Exp. 4.1.43 we study the Gauss-Seidel iteration

—(k+1)

D = 50 4 wi(A) (g - A1),

for the 2D Poisson matrix A as defined in (4.1.22). We choose @ := A" with a random vector i* € RN
(entries equidistributed in [0, 1]), and initial guess ﬁ(o) = 0.

O For N = 100 we we plot the finite element “error” functions elgk) € S?O(M) with nodal coefficient
vectors 7" — ﬁ(k) generated by the Gauss-Seidel iteration (4.1.30).
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We observe that after several steps of the Gauss-Seidel iteration the iteration error viewed as a finite
element function becomes smooth.

® For the Poisson matrix A given in (4.1.22) we inspect the finite element functions defined by the
eigenvectors of the error propagation matrix E := 1 — tril(A)_lA belonging to the largest eigenvalue.

Az =0.88302 A =0.96624 A =0.99096

o
o

FE function

o

0.05

02 Fig. 13 v 0 o 02 Fig. 13

N = 64, Amax (E) = 0.88302 N = 256, Amax(E) = 0.96624 N = 1024, Amax (E) = 0.99096

We observe that the “slowest converging” error functions are smooth and their per-step reduction as
measured by Amax(E) becomes smaller with increasing N: Apax(E) — 1as N — oo,

® Now we examine the finite element function defined by the eigenfunction of the Gauss-Seidel error
propagation matrix E belonging to the smallest (in modulus) eigenvalue.

I
o

Amin =0 Amin = 0 Amin

FE function
)
=
o o
>

FE function
)
=

FE function

o ¢
o

i a 0.2
v 0 o X Fig. 13 v 0 o X Fig. 13 v 0 o

N =64 Amin(E) =0 N = 256, Apin(E) =0 N = 1024, Apin(E) = 0

Obviously, the “fastest converging” error functions are highly localized and they experience an (almost)
N-independent per-step reduction given by Apin (E).

Behavior of the Gauss-Seidel iteration error

When applied to LSE arising from the finite element discretization of scalar 2nd-order elliptic bound-
ary value problems on fine meshes (large N, small /1,4), the Gauss-Seidel iteration
4 effects a fast reduction of highly-oscillatory error components,
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4 fails to reduce smooth error components significantly.

4.2.1 Subspace Correction Methods

The relationship between variational problems, linear systems of equations, and minimization problems,
hinted at in § 4.1.9 suggests an abstract approach to the construction of iterative solution methods for
finite element linear systems of equations with s.p.d. coefficient matrix.

Let us assume that A is spawned by the Galerkin discretization of a linear variational problem

up € Vira(uy,op) =L(vy) Yo, €V, (4.2.3)
using the finite-dimensional trial/test space V), and its basis {b}, .. .,b,ll\]} C V, N := dim V},. Thus, we
assume (A), : :=a(b}, b}),1 <i,j <N.

If the bilinear form a(-,-) is symmetric and positive definite, then (4.2.3) is equivalent to the quadratic
minimization problem

wy = argminJ(v) , J(v) = ta(v,v) — ((0) . (4.2.4)
v eV

The scheme outlined next is a natural iterative approach to solving (4.2.4).

Definition 4.2.5. (Successive) subspace correction method

Given an additive decomposition (not necessarily direct)

M
V=Y Vi, withsubspaces V,, CV, MeN, (4.2.6)
m=1
a single step u,(ik) — u,(qkﬂ) of the induced (successive) subspace correction iteration is defined
as

u;(lkﬂ) = uﬁlk) , uﬁlkH) — u;(lkﬂ) + argmin](u}(lkﬂ) + wm) , m=1,...,n. (4.2.7)

Wi € Vi

Remember from [Hip16, Section 2.4.2] that the necessary and sufficient optimality conditions for a quadratic
minimization problem with s.p.d. bilinear form amount to a linear variational problem. Thus, any successive
subspace correction method can also be reformulated in terms of linear variational problems restricted to
the subspaces V;,;, because

J(up + W) = 3a(Wy, W) — (E(wi) — a(uy, W) + a(uy, uy) — L(uy)

is a quadratic functional in w,, € V,;,. Hence, by the equivalence of linear variational problems with s.p.d.
bilinear forms and quadratic minimization problems,

. k+1
U = argmm](u}(l )y Wi )
Wi € Vin

U;n - V;/”: a(U;n, ZU;/”) — T(I/lh}ZUm> = E(ZU”/[) - a(uh, ZU;/”) VZUm c V;/” 7
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with the residual linear form w +— r(uy; w) := £(w) — a(uy, w), w € Vj,. As a consequence, the sub-
space correction iteration (4.2.7) can be recast as

u£k+1) — u}(lk) )
V. Y = (D, vV v (4.2.8)
Um € Vit a(Urn/ wm) r(uh /wm> Wm € Vi,
(k+1) (k+1) m=1L....M.
uh <— uh + Om ,

We switch to an algebraic perspective: Assume that we are given a basis {b}n, ceey b}}{’”} of Vi, Ny, := dim Vp,.
Then we can express v,, from (4.2.8) as a linear combination

an
U =Y (V) bk, forsome 7, € RNn .
k=1

The coefficient vector v, € RN" can be computed as the solution of the N, x N, linear system of
equations

— (b i
(Am)l.,]. =a(by,b},), i,je{l,...,Nu}, 42,9

(P (up)); = r(up, b)), i€{1,...,Ny}.

Since V,,, C V},, the basis functions b{'ﬂ are linear combinations of the basis functions b;‘l of Vj:

) N
B 3p, c RN bl =Y (P by, i€{l,...,Nu}, m=1,...,M. (4.2.10)
k=1

Exploiting the bilinarity of a(-, -) and the linearity of r(uy, -), we find
Ay = P;;APm ’ (4.2.11)
P () = P, (¢ — Afi) (4.2.12)

where ji € RN is the coefficient vector of 1, € V}, with respect to the basis {b},...,bN} of V. This
implies that the solution of (4.2.9) reads

-1
7= (PhAP,) P (@A),

k+1) (k+1)

with the coefficient vector ﬁ( of u,~ . Also v, describes a function in V;;, C V}, and this function is
represented by a coefficient vector v, € RN, too:
= ~ T L = (k+1)
Vi = Pyt = Py <PmAPm> P (p— AntD) . (4.2.13)
This gives the final algebraic version of (4.2.8):
—(k+1) ._ =(k
”( ) .— ”( ) ,
— _1 — —
Vin := Py (P;AP’”) P; (¢ o A”(k+1)) ! m = 1, ce ,M . (4-2-14)

ﬁ(k+1) « ﬁ(k+1) + 17711 ,
The highlighted formula provides the subspace correction in the direction of V,,.

The following pseudocode implements a subspace correction iteration for the linear system of equations
Aji = @. The function takes the right-hand side vector € RY and the initial guess 7 as arguments
and returns the final approximation in 7i. The codes assumes that the basis transformation matrices P,,,
m =1,..., M, are known. Termination triggered when the relative size of the update of i drops below a
specified threshold TOL.
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Pseudocode 4.2.15: Algebraic (successive) subspace correction method

void ssc(const ¢ € RV, ref i, double
TOL) {

// Precompute Galerkin matrices in subspaces
Compute A, := P,AP, € RNwNn =1, .  M;
do {
Pold == H;
for (int m=1; mdM; m++) {
Compute g, := P} (¢ — Aji);
Solve A7 =p;
i< ji+7; // Update in the direction of Vy
}

}
while (|| — i 4l > TOL- ||7Z||); // Termination test

From (4.2.14) it is clear that

(i) the correction in the direction of V), already defines a stationary linear iteration of the form (4.1.34)

with M = P, (PTAPnz)_lPr}Tz’

m

(i) the whole subspace correction iteration is the composition of subspace corrections in individual

directions as introduced in § 4.1.45.

Hence, from § 4.1.45 and, in particular (4.1.48), we learn that the whole subspace correction iteration is a
stationary linear iterative method, whose error propagation matrix is

m

-1 -1
Essc =1 — MycA = (I— P, (PTAP,H> PIA)--- (1-P, (PlT AP1> P/A).

(4.2.17) Gauss-Seidel as a subspace correction method

Now we view the Gauss-Seidel stationary linear iteration for a s.p.d.

(4.2.16)

finite element Galerkin matrix

A € RN-N a5 defined in Code 4.1.26/(4.1.30) from a new angle and identify it as a particular subspace
correction method.

To that end, we consider the very special situation

M=N , Ny,=1 , b, =0b",

which yields a subspace correction method with one-dimensional subspaces spanned by a single basis
function of V), each. In this case we have

P, =€, = m-thcoordinatevector , Ay, = (A)ym , m=1,...

This means

N
i PaAs P A = (B (o (@)m—zm)m,j(ﬁ)j
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This perfectly agrees with what is done in the inner loop body of the Gauss-Seidel implementation
Code 4.1.26. Carrying out (4.2.18) sequentially for m = 1,..., N, we recover one step of the Gauss-
Seidel method for the LSE Aji = ¢! Hence, Gauss-Seidel is a subspace correction iteration based on the
special type of splitting (4.2.6)

N
Vi, = Y _ Span{b}'} . (4.2.19)
m=1

Gauss-Seidel

Gauss-Seidel for a finite-element linear system of equations realizes a successive subspace cor-
rection in the directions of finite elements basis functions.

Since finite element basis functions invariably have localized supports, it is not suprising that, when applied
on fine meshes, the Gauss-Seidel iteration cannot cope with smooth, that is, long-range error components.

4.2.2 Coarse-Grid Correction

Now we discuss a remedy for the failure of the Gauss-Seidel iteration from Code 4.1.26 to reduce smooth/long-
range error components effectively. This remedy is suggested by the subspace correction interpretation
of the Gauss-Seidel method elaborated in § 4.2.17.

Idea: Augment the subspace splitting (4.2.19) defining the Gauss-Seidel iteration by
another subspace Vi C V), capable of representing smooth functions with global
support.

Of course, the dimension of this extra subspace must not be too large, in order to keep the cost of com-
puting the subspace correction affordable.

Idea: Choose V} as finite element space on a coarse mesh M g of the computational
domain Q) with significantly fewer cells than M, e.g., Vg := S?O(MH).

A For unrelated M, Mg the requirement Vi C V), will not be met in general.

Fortunately, [Hip16, § 5.1.19] discusses a special situation, in which Vi; C V), is guaranteed for Lagrangian
finite elements: the case of nested meshes.

Definition 4.2.21. Nested finite element meshes

Two finite element meshes M,,, My (— [Hip16, Def. 3.5.2]) of a computational domain () C IR?
are nested, My < M,, if every (closed) cell of My is the union of closed cells of M,,.

Lemma 4.2.22. Nesting of meshes implies nesting of finite element spaces

In the case of nested meshes My < M, we have S ((Mpy) C 8 (M,,).
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Proof. The assertion is immediate from the definition [Hip16, Def. 3.6.2] of the Lagrangian finite element
space SY(M): thanks to the nesting property My < M, every function in S?O(MH) is affine linear on

every cell of M},. Continuity and boundary conditions are immediate. -

On pairs of nested meshes we can thus defined an enhanced Gauss-Seidel method supplemented with a
so-called coarse grid correction. The resulting subspace correction method is known as two-grid iteration.

Two-grid iteration

The two-grid method based on nested meshes My < M, carrying nested finite element spaces
Vi C Vj, is the successive subspace correction method according to Def. 4.2.5 using the subspace
decomposition

N .
Vi, =Y Span{b, }+Vy, (4.2.24)
j=1

where {b}, ..., b}, N := dim V},, is the nodal basis of V,.

In finite element applications nested meshes are usually generated by means of local or global refinement.

We focus on the global regular refinement
of 2D triangular meshes as achieved by
splitting every triangle into four smaller
ones, see figure beside.

Fig. 140

< Regular refinement of triangle K into
four congruent triangles Ty, T, T3, Ty

Two nested triangular mesh created by uniform reg-
ular refinement >

—: edges of coarse mesh My
—: new edges of fine mesh M,

M: interior nodes of coarse mesh My
e: new interior nodes of fine mesh M,

o dim S} (Mpy) =3,
o dim S} (M},) =17,

Fig. 141

For two given nested triangular meshes My < M), with associated linear Lagrangian finite element
spaces V, := 880(/\/1;1) and Vi := S?/O(MH) we now explain the computation of the so-called prolon-
gation matrix Pr; € RN, N := dim V},, Ny := dim V with respect to the nodal bases {b},...,bN}
and {b},..., bgf’} of V}, and Vy, respectively. Remember that P; is a basis transformation matrix and,
thus, the entries of P;; are defined by the relationship

N |
w=2 (Pu); by, i=1,...,Nu. (4.2.25)
=1

We number the interior nodes/vertices of meshes:

o {x},...,x]V} = interior nodes of the fine mesh M,
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o {xl,... } interior nodes of the coarse mesh M.

Since the nodal basis functions are are one-on-one associated with interior nodes, we assume that the
numbering of both matches. Therefore,

(X)) =6, ije{l,....N} , by(xy) =36, ije{l,....Nu}. (4.2.26)

From this cardinal basis property we conclude for the prolongation matrix

(Pr);,; = bi(x)) , 1<i<Ny 1<j<N. (4.2.27)

Notice that the new nodes of M, those that do not coincide with nodes of My are midpoints of edges
of M ,see Fig. 141. The function b is linear on all edges of the coarse mesh and attains the value at

all midpoints of edges adjacent to xiq. From this observation and (4.2.26) we infer

ifx =,
hTH 1<i<N,

(PH)i,j = , if x;;is midpoint of an edge of My adjacent to xél ;o ; j g N (4.2.28)

S NI~ =

, otherwise,

Evidently, the prolongation matrix P; is a sparse matrix, with important consequences:

Applying the basis transformation matrix

The asymptotic cost of multiplying a vector with P;; or P}, is O(N) for N — .

Assuming that the basis transform matrix P; is available, the two-grid iteration for solving the linear system
of equations Aji = ¢ can be implemented as follows on the algebraic level:

Pseudocode 4.2.30: Two-grid iteration algorithm

i |void two_grid_iteration (const A € RVY const ¢ € RN, ref ) {
2 Ay = PI—SAPH; // build Galerkin matrix on Mgy

3 do {
J Fog = H;
5 for (i=1 ; i<N ; i++) { // Inner Gauss-Seidel loop

1 N

_":— _)‘— A_’>,
L = gy (@) D),
j#i

7 Y /7
8 P, =@ — Aji; // Residual vector € RN
9 ﬁH = Pgﬁh; // Residual vector € RNH by restriction
10 Solve  ApVp = py; // Correction in Vg

11 ﬁ<—ﬁ+PH17H; // Prolongation and update of approximate solution

12
}
13 while (|| —ji 4l > TOL - ||fi||); // Termination test

Here, the argument 7i both passes the initial guess and serves as variable to return the final approximate
solution. As has already been mentioned, the operations in lines 8—11 of Code 4.2.30 are usually called
coarse-grid correction. The Gauss-Seidel loop comprising lines 5-7 is often dubbed the smoothener.
What is implemented in Code 4.2.30 is pre-smoothening, because the smoothener comes before the
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coarse-grid correction. Of course, the coarse-grid correction and the smoothener can also be swapped
and this will result in post-smoothening.

A simple inspection of the algorithm reveals its computational cost:
Cost of two-grid method

Apart from solving the linear system Ay = p; the asymptotic computational cost of the two-grid
method from Code 4.2.30 is O(N) provided that A is a sparse finite element matrix.

Moreover, the two grid method is the composition in the sense of § 4.1.45 of the Gauss-Seidel iteration
and a subspace correction in the direction of V. Hence, from (4.1.48) and (4.1.30) we draw the following
conclusions:

Corollary 4.2.32. Two-grid method as stationary linear iteration

the two-grid method from Code 4.2.30 is a stationary linear iteration with error propagation matrix

Ercm = (I-PyA,'PTA)(I —tril(A)'A) . (4.2.33)

| Example 4.2.34 (A concrete basis transformation matrix)

We examine the two nested meshes My < M,
sketched beside, see also Fig. 141.

The interior nodes of both meshes are numbered as
indicated, with the coinciding nodes numbered first
on the fine mesh.

We use piecewise linear Lagrangian finite el-
ements on both meshes: V=S8 (M),

VH = S?IO(MH).

According to the rule (4.2.28), we have

10033 %0% 300000000
T 1 1 1 1 1 3,17
P;,=|10100004 302020000 1|ecrR¥W. (4.2.35)
00100000% 3303073310

Experiment 4.2.36 (Two-grid method for the Poisson matrix)
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Apply the two-grid method to the Poisson matrix
A € RNN N = (n—1)?, from (4.1.22).

: We investigate the matrix sizes N := (n —1)?,
o3s n=2%¢=2...,10, and compute a guess for the
rate of linear convergence by means of the power it-
eration with TOL=10"3.

Fig. 143

In sharp contrast to the behavior of the Gauss-Seidel and CG iterations, the convergence
of the two-grid method does not deteriorate on fine meshes; it is /-uniform.

4.2.3 Multigrid Iteration

9

H The coarse grid linear system Ay = p; may still be too big for direct elimination solvers.

Idea: (Recursion) If also My arises from refining an even coarser mesh, iteratively
solve AV = Py approximately by another two-grid iteration.

Assumption 4.2.37. Mesh hierarchy

We assume that a hierarchy of nested meshes
Mog< My <---<Mp, LeN,

is available.

. J

The subscript ¢ of M is called the level of a mesh.
This gives us a sequence of nested finite element spaces
VWCV,C-CVyi=Vp ,eg, Vii=38]y(My). (4.2.38)
All these spaces are equipped with (nodal) finite element bases:
V; = Span{b}, .. .,b?]‘} , Ny:=dimV,. (4.2.39)

This fixes the finite element Galerkin matrices A, € RNe-Ne for all levels £ =0,...,L. We can also
compute the prolongation matrices P, ; , € RN“Ni-1 through, cf. (4.2.25)

Ny

by =Y (Pro1); by (4.2.40)
=i

At this point we have all ingredients ready for the (geometric) multigrid iteration, whose recursive imple-
mentation is given next:
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Pseudocode 4.2.41: Multigrid iteration: recursive algorithm (adaptive cycle)

i |void multi_grid_iteration(const ¢ € RN, ref j,

2 int /, double TOL, int max_n_steps) {

3 if (/{ == 0) { Directly Ajti=¢@; }

4 else {

5 for (nsteps = 0; nsteps < max_n_steps; nsteps++) {

6 Polg == H;

7 ﬁ%ﬁ—l—trﬂ(A)_l((]))—Aﬁ); // Gauss-Seidel step, pre-smoothening
8 P, =@ — Aji; // Residual vector e RN

9 ﬁH = Ilﬁh’ // Residual vector € RNe-1

10 Vg :=0; // Natural initial guess for correction

1 multi_grid_iteration(Ay,_q, gy, vy, £—1, TOL, max_n_steps); //
12 ﬁ<—ﬁ+PH17H; // Update approximate solution

15 if (||f —fyq4ll <TOL-||7#||) break; // Termination test

14 }

15 error("No convergence") ;

16 }

17 }

The algorithm assumes that all Galerkin matrices A, € RN¢Ne on all levels ¢ = 1,...,L, have been
precomputed. Again, the code in lines 8—?? represents the coarse-grid correction and ?? is a compact
way to express Gauss-Seidel pre-smoothening. The corresponding variant with post-smoothening should
be clear.

In practice, one prefers to apply both pre- and post-smoothening together and in a symmetric fashion. In
Code 4.2.41 this can be realized by inserting the backward Gauss-Seidel smoothening step

ji i+ triu(A) T (@ — Aji)

after Line 12. Here triu designates the upper triangular part of the matrix A.

(4.2.42) Cost of multigrid iteration

Let us supplement Ass. 4.2.37 with the additional requirement that the number of cells on coarser meshes
decreases geometrically

ﬂ./\/lg_lzlﬂj./\/lg for 0<g<1, {=1,...,L. (4.2.43)

This is the case, e.g., if the sequence of nested meshes My < M7 < --- < M is generated by re-
peated global regular refinement, recall Section 4.2.2. In 2D in this case we obtain g = %. A consequence
of (4.2.43) is that

Ny i=dimSY (M) ~ g ‘No, €=1,...,L. (4.2.44)

As we have already noted, apart from Line 11 the cost of a function call in Code 4.2.41 is
~ N,. Summing the geometric series, we conclude that the total cost for all recursive calls
ofmulti_grid_iteration() is O(Np)!

Remark 4.2.45 (Multigrid iteration as successive subspace correction method)
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It was a major discovery that the complete multigrid iteration as implemented in Code 4.2.41 is a genuine
successive subspace correction method according to Def. 4.2.5, see [TOS00, Appendix B].

Theorem 4.2.46. Multigrid = multi-level subspace correction [Xu92]

The multigrid iteration from Code 4.2.41 with max_n_steps= 1 is a successive subspace correc-
tion method based on the space decomposition

L Ny

Vi=Vo+ Y. Y Span{t]}. (4.2.47)

(=1j=1

This interpretation of the geometric multigrid method made it possible to establish /-uniform convergence
for finite element linear systems.

Theorem 4.2.48. Convergence of geometric multigrid [BY93]

Consider the Galerkin discretization of (4.1.8) by means of linear Lagrangian finite elements. Let the
multigrid iteration from Code 4.2.41 withmax_n_ steps= 1 be based on a uniformly shape-regular
and quasi-uniform family of nested triangular meshes. Then the energy operator norm of the error
propagation operator of the multigrid iteration is bounded by a constant 0 < p < 1 that depends
only on the shape-regularity and quasi-uniformity of the meshes and the coefficient functions A and

Na

In particular, geometric multigrid enjoys a rate of linear convergence, which does not depend on the
number L of levels involved.

(4.2.49) Nested iteration

One crucial issue remains: How do we choose the initial guess?

Idea: (Recursion) Use “low-accuracy” solution obtained by multigrid iteration on next

coarser level as initial guess.

This policy is known as nested iteration and a recursive implementation is given next. Again, the Galerkin
matrices A, € RN¢Nt are supposed to be available.

Pseudocode 4.2.50: Nested multigrid iteration: recursive algorithm

1

RN—vector mg_solve(const ¢ € RM, int ¢, double TOL, int max_n_steps)

{

if (/{ == 0) { Directly Ajti=¢; }

else {
Py = PL],@’?
fig = mg_solve(Ay_q, ¢y, {—1, p-TOL, max_n_steps);
ﬁh = P(a’—],ﬁﬁH;

multi_grid_iteration(A,, @, s, ¢, TOL, max_n_steps); // Code
Code 4.2.41

}

return (i) ;

}
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Here the factor p > 1 takes into account that on coarser meshes we expect a larger discretization error,
which justifies relaxed accuracy requirements there. The concrete choice of p can be guided by asymptotic
a-priori error estimates for finite element Galerkin solutions: If we expect an asymptotic convergence like
O(hj‘w) for some « > 0in a norm of interest, and assume regular global refinement, then choosing p = 2
is the proper value.

4.2.4 Multigrid Preconditioning

(4.2.51) Preconditioned conjugate gradient method (PCG)

In § 4.1.57 we saw that the comjugate gradient (CG) iterative solvers is haunted by a similar degradation
of performance for large finite element linear systems Azi = ¢, A € RN'N sp.d., as the Gauss-Seidel
method. Fortunately, there is a powerful technique for accelerating the convergence of CG known as
preconditioning, cf [Hip15, Section 10.3]. It relies on the availability of a linear operator RN — RN,
henceforth incarnated by an s.p.d. matrix B € RN, The resulting algorithm for the preconditioned
conjugate gradient method (PCG) is given next.

Pseudocode 4.2.52: PCG method

i |void pcg(A € RNV, € RN, ref 7,

2 . . B § R, dguble ToL) { <1 Preconditioned conjugate gradient
S /i ReSldeiq"eCtor method for solving Az = ¢ with
4 m=Bp; Hi=m; o= P; preconditioner B.

5 for( j=1; | < maxit; ++j) { (1 passes the initial guess and also re-
6 B = B turns the result.)

! v ‘_ 517 Computational effort per step:

° ‘ & g’ ‘ e One A x vector operation

o ji< fi+ait; // update solution e One A x vector operation

10 p< p—ay;, // update residual e 3 dot products

1 7+ BE; e 3 AXPY operations

e | B 5 | B> PCG requires only the application of
13 if (|71Tﬁ| < TOL-1p) break; the linear operators described by A
14 T+ 1+ B7; and B to a vector.

15 }

16 |}

Cost of PCG step

If A and B are sparse matrices with “O(N) number of non-zero entries”, then the computational
cost per PCG step is O(N) for N — co.

The assertion of Thm. 4.1.55 remains valid for PCG, provided that x(A) is replaced with x(BA):
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Theorem 4.2.54. Convergence of the PCG method [Hip15, Thm. 10.2.25]

The iterates of the PCG method with preconditioner B € RN'N for solving Aji = @ (see
Code 4.2.52) withA = A",B =B € RNN sp.d. satisfy

7 _ 70

ﬁ*_ﬁ(l)H <2<K<BA>1>1” i
A7\ Vx(BA) +1

, 1leN,

I

where Aji* = @.

Summing up, a good preconditioner B must satisfy that
(I) B is symmetric and positive definite,
(I) the cost of B xvector is proportional to N, and

(1) the spectral condition number x(BA) is small independently of N.

How to build preconditioners? The good news is that stationary linear iterations for solving Aji = @,
A € RNN

A = 50 Mg — A"y, M e RN regular, (4.1.34)
are a source for preconditioners:

Theorem 4.2.55. Preconditioners from stationary linear iterations

If the stationary linear iteration (4.1.34) enjoys an asymptotic rate of convergence p < 1, then

—_

+

i)

k(MA) <

—_
=)

Proof. As explained in § 4.1.33 we have Amax(I — MA) < p, which implies

1-Al<p
0 for all eigenvalues A € c(MA) .
1-p<A<1+p

The claim follows from the definition of x(MA) := Amax(MA)A_L (MA). -

Thus, the stationary linear iteration induced by the multigrid method is a promising candidate for a precon-
ditioner, provided that it supplies a symmetric M! Thm. 4.2.46 together with the following lemma tell us
how to achieve this.

Lemma 4.2.56. Symmetric successive subspace correction

The error propagation matrix Essc of a successive subspace correction method according to
Def. 4.2.5 satisfies

AEssc = EdscA,

ifA=AT andVy_j.1=V,j=1,...,M.
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Proof. Using (4.2.16) we conclude

-1
E'A=(1—A"P,(P/AP,) P[A)--(1-ATP,(P AP,) ‘Pl A)
—(I-A"P, (P,,,AP,,,) PIA) - (1-ATP, (PlT APl) N

— AE,

because A = AT,

If the assumptions of the lemma are satisfied, we have

Ml = A (I - Edge) = (I — A "B A)A ! Hommat298

I— A 'AEgsc)A ™!

= Msgc .

The symmetry of the subspace splitting, VijH = V/ j=1,..., M, can be ensured by using symmetric
pre- and post-smoothening steps, that is, we employ Gauss-Seidel iterations with opposite directions. This

results in the following algorithm:

Pseudocode 4.2.57: Multigrid iteration: recursive algorithm (symmetric V-cycle)

i |void mgsym_iteration(const € RN, ref 7, int £) {
2 if ({ ==0) { Directly solve Api=¢; }

3 else {

J o := B

5 i — ji+tril(A)~Y(¢ — Aji); // Gauss-Seidel step, pre-smoothening
6 P, =@ — Aji; // Residual vector € RM

7 P = Pgﬁh; // Residual vector € RNt

8 Vg :=0; // Natural initial guess for correction

o mgsym_iteration(A,_1, py, Vg, €—1); //

10 ﬁ%y—i—PHI—/’H; // Update approximate solution

1

1 i — ji+triu(A)~1(¢ — Aji); // Gauss-Seidel step, post-smoothening

Then the multigrid preconditioner can be realized as follows
7:=Bp <«— 17:=0; mgsym_iteration(g,7,L),

where L is the refinement level of the finest mesh in the hierarchy, cf. Ass. 4.2.37.

4.3 AMG: Matrix-Based Multigrid

(4.2.58)

(4.3.1) Need for black-box iterative solvers

4.3.1 AMG Framework

4. (Algebraic) Multigrid Methods, 4.3. AMG: Matrix-Based Multigrid
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(4.3.2) Building multigrid components algebraically

(4.3.3) Mesh from matrix graph

Remark 4.3.4 (The AMG fill-in challenge)

4.3.2 AMG Heuristics
4.3.3 Coarse Grid Selection

4.3.4 AMG Prolongation
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acoustic wave equation, 287
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barycentric interpolation formula, 217
Bernstein ellipse, 120, 186
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BIO = boundary integral equations, 54, 75
BIO = boundary integral operator, 54
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Block tree underlying a hierarchical matrix, 230
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mirror symmetry, 23
boundary element space, 86
boundary integral equations, 54, 75
boundary integral operators, 54
Boundary integral operators for —A, 68
boundary value problem

elliptic, 305
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Bounding box of an index set, 195
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cardinal basis property, 324
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characteristic function, 90
charge density, 25
Chebychev interpolation, 96, 186
error estimates, 185
Chebychev nodes, 185
circulant matrix, 278
Clenshaw-Curtis quadrature rule, 114
cluster bases
for H2-matrix, 259
Cluster tree, 203
cluster tree, 203
co-normal trace, 63
coarse-grid correction, 323, 325
coefficient vector, 86
collocation
of a kernel, 170
column cluster bases
for H2-matrix, 259
column tree, 228
compatibility conditions
for H1(Q)), 22
complex contour integral, 272
Concepts connected with trees, 201
configuration space, 24
conjugate gradient method, 315
convergence
algebraic, 116
exponential, 116
convolution, 44, 263
associativity, 263
of distributions, 264
of operators, 266
convolution equation, 266, 291
Convolution of functions in RY, 44
Convolution of sequences, 267
Convolution on the real line, 263
convolution quadrature, 291
convolution quadrature weights, 291
Corollary: Associativity of convolution, 263
Corollary: Cauchy differentiation formula, 296
Corollary: Continuous, piecewise-C! functions in
H2(T), 58
Corollary: Convergence of stationary linear itera-
tions, 313
Corollary: Direct 1st-kind variational BIE for trans-
mission problem, 160

Corollary: Embedding of H%(F) 57

Corollary: Mapping properties of Dirichlet trace,
56

Corollary: Mapping properties of the Newton po-
tential, 45

Corollary: Two-grid method as stationary linear
iteration, 325

Coulomb force, 18, 37

coupling matrix

for H2-matrix, 259

curl operator, 18

curl-free, 18

curved polygon, 36, 87

curvilinear polyhedron, 36

d.o.f. mapper, 100

data sparse, 171

decay conditions, 32

delta distribution, 41

density, 55

density unknowns, 82

diffusion coefficient, 305

Dirichlet BVP, 77, 92

Dirichlet trace operator, 55
Dirichlet trace space, 56

discrete variational problem, 85, 86
distributions, 41

Double layer potential, 50
Doxygen, 84

Dual norm for source charge distributions, 34
duality, 34, 62

eddy current model, 285
edge, 134
edge set

of a tree, 201
Electrostatic field energy [Hip16, Eq. (2.2.20)], 17
elliptic, 147

bilinear form, 78
elliptic boundary value problem, 305
energy norm

for Neumann trace space, 60
equilibrium principle, 26
error propagation matrix, 312
error recursion

for stationary linear iterations, 312
expand-from-cluster, 260
exponential convergence, 116

Corollary: Embeddings of boundary element spaces,  face, 134
89 Far field, 192
Corollary: Green’s function integral representa- far field, 192, 195
tions, 52 Far-field blocks of index pairs, 195
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fill-in, 310

First-kind BIE, 79

forward transformation, 260
Fourier transform, 270
Fundamental solution, 40
fundamental solution, 40, 51

Galerkin approximation, 85
Galerkin discretization, 84
Gauss quadrature, 113

generalized, 115
Gauss-Seidel method, 311
generating function, 297
global shape functions (GSF), 138
Gram determinant, 37
Green’s first formula, 29
Green’s function, 51

for disk, 52

for half space, 53

h-refinement, 146

h-uniform convergence, 326

half space, 53

hat function, 91

Hierarchical matrix, 228

hierarchical matrix, 228

Hilbert BEM library, 83

Hilbert space of square integrable functions [Hip16,
Def. 2.3.4], 21

impedance boundary conditions, 286
Implicit Euler convolution quadrature (IE-CQ), 294
implicit Euler method, 293
initial guess, 311
integration by parts
multidimensional, 29
interpolation, 176
polynomial, 96
interpolation nodes, 176
intrinsic norm, 59
irrotational, 18
iteration error, 312

Jacobian, 19
jump

of traces, 65
jump relations, 67

kernel

of an integral operator, 44, 48, 69
Kernel collocation matrix, 170
kernel collocation matrix, 169, 170
kernel function, 170

Krylov subspace method, 226

Lagrangian multiplier, 94
Laplace inversion formula, 273
Laplace transform, 270
Laplacian, 43
spherical coordinates, 42
layer potential, 54
leaf
of a tree, 201
Lebesgue constant, 188
Legendre polynomials, 92
Lemma: Arclength integration by parts, 72
Lemma: Chebychev interpolation error estimate,
185
Lemma: Circulant augmentation of Toeplitz ma-
trix, 280
Lemma: Convolution quadrature weights are Tay-
lor expansion coefficients, 297
Lemma: Ellipticity of ¢, 160
Lemma: Fundamental solution for L := —A + 52,
288
Lemma: Generalized orthogonal polynomials, 115
Lemma: Nesting of meshes implies nesting of fi-
nite element spaces, 323
Lemma: Pointwise estimate for convolution, 276
Lemma: Properties of |, 176
Lemma: Quadrature error and best-approximation
error, 118
Lemma: Representation of low-rank matrices, 172
Lemma: Smoothness of double layer potential,
51
Lemma: Smoothness of single layer potential, 49
Lemma: Symmetric positive definite Galerkin ma-
trices, 307
Lemma: Symmetric successive subspace correc-
tion, 331
Lemma: Variation of constants formula, 293
level
of mesh, 327
of the nodes of a tree, 202
Level of nodes of tree, 202
Linear interpolation operator, 176
Linear variational problem, 27
local parameterization, 91
local shape functions (LSF), 139
local—global index map, 100
LU-dcomposition, 248
LU-decomposition, 248

marching on in time (MOT), 269
mesh, 134
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of a curve, 88
mesh hierarchy, 327
Mesh/partitioning of a curve, 88
Meshwidth, 148
meshwidth, 148
Minimal angle, 148
mirror symmetry, 23
MOT = marching on in time, 269
Multivariate polynomials, 136

Near field, 192
near field, 192
Nested finite element meshes, 323
nested meshes, 323
Neumann BVP, 77, 82, 92
Neumann trace, 59
Neumann trace operator, 59
Neumann trace space, 60
Newton potential, 44
nodal interpolation operator, 150
nodal interpolation operators, 138
node

quadrature, 113
node set

of a tree, 201
nodes

of a mesh, 88
Non-local operator, 165
normal component trace, 23
numerical quadrature, 112

offset function, 154
Operational calculus, 276
operational calculus, 275
order

of quadrature formula, 113
Order of a quadrature rule, 113

panels

of a mesh, 88
parameterization, 87
partitioning

of a curve, 88
PEC boundary conditions, 23
Piecewise Sobolev spaces on I', 148
plane wave, 287
point charge, 37
Poisson integral formula, 53
Poisson matrix, 309
polygon

curved, 87
polynomial interpolation, 96

polynomials

degree, 136

multivariate, 136
post-smmoothening, 325
potential

electrostatic, 19
pre-smmoothening, 325
preconditioners, 254
procedural form, 93
prolongation matrix, 324
pullback, 89
Pullback from a curve, 89

quadratic minimization problem, 306
quadrature error, 116
quadrature formula
order, 113
quadrature node, 113
quadrature weight, 113

Rank of a matrix, 172
reaction coefficient, 306
Real analytic functions, 119
real analytic, 119
reduce-to-cluster, 260
reference interval, 91
reference shape function, 91
reference shape functions, 91
relative distance

of panels, 133
residual linear form, 320
root

of a tree, 201
Rotation invariance, 41
rotation operator, 18
rotation-invariant, 41
row cluster bases

for H2-matrix, 259
row tree, 228

scattered field, 288
separation of variables, 42
shape function
reference, 91
shape functions
global, 90, 138
local, 91
shape regularity, 148
shift operator, 299
Single layer potential, 48
single layer potential, 48
singularity, 38
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smoothener, 325
Sobolev norm, 148
Sobolev space
higher-order, 148
on surfaces, 69
Sobolev space H' (Q)), [Hip16, Def. 2.3.25], 21
sons
in a tree, 201
sound-soft, 287
source charge distribution, 26
Space of function with square-integrable Lapla-
cian, 61
sparse matrix, 308
sparsity measure
of a block partition, 219
Sparsity measure of block partition, 219
spectral condition number, 316
spherical coordinates, 42, 145
stationary linear iterations
error recursion, 312
sub-tree, 202
Sub-trees, 202
subspace correction method, 319, 322
surface gradient, 74
surface integral, 36
surface mesh, 135

tangent vector, 72
tangential component trace, 23
Taylor expansion, 19, 174
tensor product polynomials, 123, 178
tensor-product interpolation, 178
Tensor-product polynomials, 123
tensor-product quadrature, 122
tent function, 91
test space

for Galerkin discretization, 85
Theorem: z-Transform and discrete convolution,

268

Theorem: L2(T')-duality between H2 (T') and H~2(T),

62
Theorem: “Higher” continuity of BIOs, 69
Theorem: Analyticity of Laplace transforms, 271
Theorem: Asymptotic interpolation/projection er-
ror estimates, 151
Theorem: best low rank approximation, 235
Theorem: Cauchy integral formula, 296
Theorem: Cauchy integral theorem, 273
Theorem: Cea’s lemma, 147
Theorem: Characterization of Cauchy data, 76
Theorem: Chebychev interpolation of analytic func-
tions, 186

Theorem: Compatibility conditions for piecewise
smooth functions in H(Q)), 22
Theorem: Continuity of boundary integral opera-
tors, 68

Theorem: Continuity of single layer potential in
energy (trace) spaces, 64

Theorem: Continuity of the double layer potential
in energy trace spaces, 64

Theorem: Continuity of the Neumann trace on
H(A,Q), 61

Theorem: Continuity of the single layer potential,
49

Theorem: Convergence of geometric multigrid,
328

Theorem: Convergence of IE-CQ, 303

Theorem: Convergence of the CG method, 316

Theorem: Convergence of the PCG method, 330

Theorem: Convolution theorem for Fourier trans-
form, 275

Theorem: Convolution theorem for Laplace trans-
form, 275

Theorem: Decay of Newton potential, 45

Theorem: Diagonalization of circulant matrices,
278

Theorem: Differentiation formula for Laplace trans-
form, 274

Theorem: Dimensions of BE spaces on curves,
89

Theorem: Dimensions of BE spaces on triangu-
lated surfaces, 137

Theorem: Economical QR-decomposition, 235

Theorem: Electric fields are irrotational/curl-free,
18

Theorem: Ellipticity of ay in 2D, 78

Theorem: Ellipticity of ay in 3D, 78

Theorem: Ellipticity of ay, 79

Theorem: Embedding of H~2(T), 62

Theorem: Equivalence theorem for quadratic min-
imization problems, 28

Theorem: Existence and uniqueness of energy
minimizing potentials, 27

Theorem: Existence of electrostatic potential, 20

Theorem: Gauss(-Legendre) quadrature, 113

Theorem: Generalized Gauss quadrature, 116

Theorem: Green’s first formula, 29

Theorem: Green’s second formula, 35

Theorem: Higher order trace theorem, 150

Theorem: Independence of Galerkin solution of
choice of basis, 86

Theorem: Integral representation formula, 46

Theorem: Integral representation formula for 3D
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exterior domains, 47

Theorem: Integral representation of ayy in 2D, 74

Theorem: Integral representation of ayy in 3D, 74

Theorem: Inverse Laplace transform, 273

Theorem: Jump relations for layer potentials, 67

Theorem: Jump representation formula, 66

Theorem: LU-decomposition of s.p.d. matrices,
249

Theorem: Main approximation theorem for S, (G),
149

Theorem: Main approximation theorem for Sg(g),
149

Theorem: Multigrid = multi-level subspace cor-
rection, 328

Theorem: Multiplicative trace inequality, 56

Theorem: Pointwise estimate for convolution II,
277

Theorem: Polynomial approximation of analytic
functions, 120

Theorem: Positivity of Clenshaw-Curtis weights,
114

Theorem: Preconditioners from stationary linear
iterations, 331

Theorem: Properties of discrete convolution of
sequences, 267

Theorem: Quadrature error estimate for integrands
with finite smoothness, 119

Theorem: Singular Value Decomposition (SVD),
233

Theorem: Uniqueness of fundamental solutions,
41

Theorem: Validity of 1st-kind indirect BIE for Dirich-
let problem, 82

Theorem: Validity of 1st-kind indirect BIE for Neu-
mann problem, 82

Theorem: Young’s inequality for convolutions, 264

tiling, 191

time-invariant channel, 265

Toeplitz matrix, 279

tomography, 283

trace

normal component, 23
tangential component, 23

Trace operator, 48

trace operator, 54

transfer function, 276

transfer matrix, 258

translation-invariant, 41

transmission conditions, 157

transmission problems, 156

trapezoidal rule, 113

Tree, 201
tree, 201
trial space
for Galerkin discretization, 85
Triangular planar mesh/triangulation, 134
Triangular surface mesh/surface triangulation, 135
triangulation, 134
triple-factor low-rank factorization, 255

uniform cone condition, 128
unisolvence
of interpolation nodes, 176

V-cycle
of multigrid, 331
variational crimes, 153
variational problem
discrete, 85, 86
vertex, 134
vertex set
of a tree, 201
virtual work principle, 26
volume integral operator, 44
volume potential, 44

weight
quadrature, 113
weight function, 115
weights
convolution quadrature, 291

Young’s inequality
for convolutions, 264
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List of Symbols

A

Cll,w(ﬁ) = continuous, piecewise continuously
differentiable functions, 23

(xy) = sequence (usually on Z), 267

* = convolution (binary operation), 263

Div =divergence of a vector field, 29

t{ 2 interpolation nodes associated with cluster
v, 215

D(Q)’ = space of distributions on (), 41

Ly = set of leaves of a cluster tree 7y, 203

Q,(RY), 123

u, Fo, Fw 2 functions in H2(T'), 56
H(A, Q) = space of function with square-integrable
Laplacian, 61

) = Sobolev space, see Def. 1.1.21, 21
) = space of bounded functions on D, 49
= gpace of integrable functions on D, 49
= Hilbert space of square integrable func-
tions, see Def. 1.1.22, 21
||-|| = Euclidean norm of a vector € R", 36
Il-Il1> [I-1l2» ||-|lec = vector norms and associated
matrix norms, 171
|| 71(q) = norm of Sobolev space H'((2), 21
[l r2(y = norm of L2(Q), 21
A,B,C,... (matrices), 86
T, = transfer matrix in 72-matrix format, 258
adm = abstract admissibility condition, 210
&min(G) = minimal angle of mesh G, 148
{T} = average of a trace, 65
B,(x) = ball with center x and radius r > 0, 32
CT:={zeC: Re(z) > 0},270
D:={1,...,n} x {1,...,m} = index pairs for
kernel collocation matrix, 193
[F = matrix block partition for a hierarchical ma-
trix, 228
box = bounding box, 203
box = bounding box for collocation points, 195
grad = surface gradient, 74
Q) := R\ O = complement of a domain Q C
R%, 17
P = sets of collocation points belonging to an

334

index set, 194

CQE = implicit Euler convolution quadrature, 294

D = total derivative operator, 19

dist(X;Y) £ (Euclidean) distance of two set R,
184

dist(X;Y) = distance of two sets X,Y C R¥,
133

f,"y = derivative of a function depending on a

single parameter (“time”), 36

arclength derivative, 71

arclength derivative, 71

G*(x,y) = fundamental solutions, 39

v*f = pullback under parameterization -y, 89

[T]p = jump of a trace, 65

k(A) = spectral condition number of the invert-
ible matrix A, 316

L, =/(-th Lagrange polynomial for polnomial in-
terpolation, 178

L(X,Y) = vector space of bounded (continous)
linear operators (mappings) X — Y, 266

My < M), = nesting of meshes, 323

Na = Newton potential operator, 44

T,,x = normal component trace, 23

Tn = Neumann trace on I', 59

FFT = discrete Fourier transform, 279

depth(7) = depth of a tree T, 202

spm = sparsity measure of a cluster-based block
partitioning, 220

tril = lower-triangular part of a matrix, 312

triu = upper triangular part of a matrix, 328

@ = H-addition of hierarchical matrices, 239

Pp(le) = space of d-variate polynomials, 136

Pp(]Rd) = d-variate polynomials of total degree
<p, 88

HE, (0Q)) = piecewise Sobolev space on I' :=
0}, 148

Sp_l(g) £ discontinuous, piecewise polynomial
BE functions of degree p, 89, 137

rank(M) = rank of a matrix M, 172

T = reference interval ]-1.,1[, 91

M| = matrix block belonging to a pair of clus-
ters, 214

df
ds
d
ds

A
A

oXw
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Sg(g) £ continuous, piecewise polynomial BE
functions of degree p, 89, 137

fM £ cardinality (no. of elements) of the set M,
89

Ty = tangential component trace, 23

Tr = trace operator for matrices, 43

root(7") = root of a tree T, 201

i, E, ... (coefficient vectors), 86

V(G) £ set of vertices of mesh G, 91

b, ..., bY = basis function for BE space, 90

bj = (-th cardinal function belonging to cluster v,
215

cqop = convolution quadrature operator, 291

diam = diameter of a set in R?, 184

hg = meshwidth of mesh G, 148

sH%(aQ) = functions in H2 (0€2) with vanishing
mean, 79

L(X,Y) = vector space of bounded (= continu-
ous) linear mappings X — Y, 266

Gr = mesh of curve/surface I', 88

E(G) = edge set of a mesh, 135

V(G) £ vertex set of a mesh, 135

a,...,x,y,Bz = small vectors/points, 17

LIST OF SYMBOLS, LIST OF SYMBOLS
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Examples and Remarks

‘H-LU decomposition as preconditioner, 254

Global bi-directional interpolation of singular ker-
nel, 180

“L,Gt = 4y”, 41

“Continuity” of functions in H2 (I'), 57

“Differentiation theorem” for convolution quadra-
ture, 299

“First-kind”, 79

“Second-kind”, 81

A basis for S, 1(G), 90

A concrete basis transformation matrix, 325

Adaptive Clenshaw-Curtis quadrature, 122

Adaptive low-rank recompression, 237

Admissible source charge distributions, 26

Affine space V, 85

Approximately solving convolution equations by
convolution quadrature, 291

Approximation of surfaces, 138

Assembly of Galerkin matrix for double layer BIO
K, 101

Asymptotic complexity of H-multiplication, 248

Asymptotic decay of iteration error, 313

Asymptotically smooth kernels, 181

Behavior of quadrature errors for global quadra-
ture rules, 117

Bi-directional interpolation of smooth kernel func-
tion, 180

Bi-directional polynomial interpolation, 217

BIEs for general second-order scalar differential
operators, 76

Binary cluster tree for d = 1, 207

Bounding the sparsity measure, 221

Co-normal trace, 63

Complex contour integrals, 272

Compressing discrete BIEs with double layer ker-
nels, 225

Computing G2 in 3D, 41

Convergence of CG for the Poisson matrix, 317

Convergence of Gauss-Seidel Il, 318

Convergence of Gauss-Seidel method for Pois-
son matrix, 314

336

Convergence of implicit Euler convolution quadra-
ture, 301

Convolution in L7 (IR)-spaces, 264

Convolution of distributions  [Rud73, pp. 170], 264

Convolution quadrature based on explicit Euler
timestepping ?, 295

Cost of direct elimination solvers, 310

Data structure for H2-matrices, 259
Density argument, 55
Derivation of impedance conditions, 287

Direct computation of convolution quadrature weights,

297

Electrostatic interpretation of ¥g; , 49

Electrostatic meaning of ¥4, , 51

Electrostatics in homogeneous isotropic media,
30

Expand and reduce as adjoint operations, 222

Finite element discretization, 287

Fixed potential boundary conditions, 25

Fixing the potential, 25

From block partitioning to local low-rank compres-
sion, 196

Fundamental solution for 2nd-order partial differ-
ential operator, 42

Galerkin error estimates for 2nd-kind BIE, 147
Gauss’ law, 30

General cluster tree, 203

General layer potentials, 64

Global quadrature of analytic integrand, 120
Globally supported singular kernel functions, 170
Green’s function for —A on a disk, 52

Green’s function for a half space, 53

Hierarchical matrices — a recursive data structure,
231

Impact of kernel approximation on kernel matrix,
173

Integral representation formula for exterior domains,
46 )

Intrinsic norm of H2(T'), 59
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lterative solution methods for linear systems of
equations, 226

Kernel with known Laplace transform, 286

Laplace transform of causal power function, 271

Layer potentials and traces, 48

local—global index map, 100

Logarithmic kernel in 1D: Separable approxima-
tion by Taylor expansion, 175

Meaning of “density unknowns” ¢» and v, 82

Measuring rates of convergence of stationary lin-
ear iterations, 313

More general surface meshes, 136

Multigrid iteration as successive subspace cor-
rection method, 328

Near- and far-field boxes constructed from cluster
trees in 1D, 213

Necessity of decay conditions, 32

Nodal basis for S?(G), 90

Nodal interpolation operators, 138

Pairing of traces, 60

Poission equation, 306

Poisson integral formula, 53

Poisson matrix, 309

Potentials on unbounded domains, 21

Precomputing complex quadrature formula, 144

Preview: multiplication of hierarchical matrices,
232

Properties of the potential due to a point charge,
38

Properties of the potential of a point charge in 2D,
39

Quadtree partition from cluster trees, 208
Quadtree-based admissible tiling of unit square,
199

Real-valued convolution quadrature weights, 297
Reference shape functions for So_l(g), 140
Reference shape functions for SP(G), 140

S.p.d. boundary element Galerkin matrices, 249

Scalar potentials and work, 20

Scaling of electromagnetic field problems, cf. [Hip16,
Rem. 1.2.10], 17

Separable approximation by truncated power se-
ries, 174

Sequences as distributions, 267

Simplification of right-hand side, 158

Some special convolutions, 263

Sparsity measure for clustering in 1D, 221

Stable evaluation of integrands, 131

Storage requirements of double-factor and triple-
factor representations, 256

Surface meshes as traces of volume meshes, 136

Tensor-product Chebychev interpolation of singu-
lar kernel, 189

The AMG fill-in challenge, 332

The Neumann trace is not defined on H'(Q)), 59

The Newton potential from a physics perspective,
45

The square of the Abel integral operator, 285

Trapezoidal rule, 113

Two-grid method for the Poisson matrix, 326

Unbalanced cluster tree, 2(;1)7
Unbounded functions in H2(T"), 58

Well-defined IE-CQ, 295
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