NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

ETH Lecture 401-0663-00L Numerical Methods for CSE

Numerical Methods for
Computational Science and Engineering

Prof. R. Hiptmair, SAM, ETH Zurich

(with contributions from Prof. P. Arbenz and Dr. V. Gradinaru)

Autumn Term 2020
(C) Seminar fur Angewandte Mathematik, ETH Zirich

Link to the current version of this lecture document

In
Progress!

Always under construction!

The online version will always be work in progress and subject
to change.

(Nevertheless, structure and main contents can be expected to
be stable)

> Do not print before the end of term!

https://www.sam.math.ethz.ch/~grsam/NCSE20/NumCSE_Lecture_Document.pdf

Contents

0

Introduction 8
0.1 Course Fundamentals L 8
0.1.1 FocusofthisCourse 8
0.1.2 Goals e e 11
0.1.3 Literature e e 11

0.2 Teaching Styleand Model 12
0.2.1 Flipped Classroom e e e 12
0.21.1 CourseVideos 12

0.2.1.2 Followingthe Course e 20

0.2.2 Toavoid misunderstandings e 20
0.2.3 Assignments e e e 22
0.2.4 Information on Examinations L oL 23

0.3 Programming in C++ 24
0.3.1 Function Arguments and Overloading 24
0.3.2 Templates e 26
0.3.3 Function Objects and Lambda Functions 27
0.3.4 Multiple Return Values 28
0.35 AVectorClass e 29
Computing with Matrices and Vectors 42
1.1 Fundamentals L 43
1.1.1 Notations e 43
1.1.2 Classesof Matrices e 45

1.2 Software and Libraries 47
1.21 EIGEN . . . e 47
1.22 PYTHON . . . o 53
1.2.3 (Dense) Matrix Storage Formats L L L. 54

1.3 Basic Linear Algebra Operations 59
1.3.1 Elementary Matrix-Vector Calculus 59
1.3.2 BLAS —Basic Linear Algebra Subprograms L. 65

1.4 Computational Effort 71
1.4.1 (Asymptotic) Computational Complexity 72
1.4.2 Cost of Basic Linear-Algebra Operations 74
1.4.3 Improving Complexity in Numerical Linear Algebra: Some Tricks 75

1.5 Machine Arithmetic and Consequences 79
1.5.1 Experiment: Loss of Orthogonality 79
1.5.2 Machine Numbers e 82
1.5.3 Roundoff Errors e e 86
1.5.4 Cancellation e 90
1.5.5 Numerical Stability 105

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

2 Direct Methods for (Square) Linear Systems of Equations 112
2.1 Introduction: Linear Systems of Equations (LSE) 113
2.2 Theory: Linear Systems of Equations (LSE) 116

2.2.1 LSE: Existence and Uniqueness of Solutions 116
2.2.2 Sensitivity/Conditioning of Linear Systems 117

2.3 Gaussian Elimination (GE) 122
2.3.1 BasicAlgorithm 122
2.3.2 LU-Decomposition e 129
233 Pivoting e e 137

2.4 Stability of Gaussian Elimination oo 143
2.5 Survey: Elimination Solvers for Linear Systems of Equations 150
2.6 Exploiting Structure when Solving Linear Systems, 155
2.7 SparselLinear Systems 162
2.7.1 Sparse Matrix Storage Formats Lo 163
2.7.2 Sparse Matricesin EIGEN 166
2.7.3 Direct Solution of Sparse Linear Systems of Equations 174
2.7.4 LU-Factorization of Sparse Matrices L. 177
2.7.5 Banded Matrices [DR08, Sect. 3.7] 183

2.8 Stable Gaussian Elimination Without Pivoting 190
3 Direct Methods for Linear Least Squares Problems 198
3.0.1 Overdetermined Linear Systems of Equations: Examples 199

3.1 Least Squares Solution Concepts 202
3.1.1 Least Squares Solutions: Definition 203
3.1.2 Normal Equations 205
3.1.3 Moore-Penrose Pseudoinverse o 211
3.1.4 Sensitivity of Least Squares Problems 213

3.2 Normal Equation Methods [DR08, Sect. 4.2], [Han02,Ch. 11] 214
3.3 Orthogonal Transformation Methods [DR08, Sect. 4.4.2] 218
3.3.1 Transformationldea 218
3.3.2 Orthogonal/Unitary Matrices 220
3.3.3 QR-Decomposition [Han02, Sect. 13], [Gut09, Sect. 7.3] 220
3.3.3.1 QR-Decomposition: Theory 221

3.3.3.2 Computation of QR-Decomposition 224

3.3.3.3 QR-Decomposition: Stability 0L 232

3.3.3.4 QR-Decompositionin EIGEN 233

3.3.4 QR-Based Solver for Linear Least Squares Problems 235
3.3.5 Modification Techniques for QR-Decomposition 240
3.3.5.1 Rank-1 Modifications 240

3.35.2 AddingaColumn 242

3.8353 AddingaRow 245

3.4 Singular Value Decomposition (SVD) L 247
3.4.1 SVD:Definitionand Theory 247
3.42 SVDINEIGEN e 251
3.4.3 Solving General Least-Squares Problems by SVD 254
3.4.4 SVD-Based Optimization and Approximation 257
3.4.4.1 Norm-Constrained Extrema of Quadratic Forms 257

3.44.2 BestLow-Rank Approximation 260

3.4.4.3 Principal Component Data Analysis (PCA) 265

3.5 TotalLeastSquares e 277
3.6 Constrained Least Squares 278

CONTENTS, CONTENTS 3

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

3.6.1 Solution via Lagrangian Multipliers oL 279
3.6.2 SolutionviaSVD 281

4 Filtering Algorithms 284
4.1 Filtersand Convolutions 285
4.1.1 Discrete Finite Linear Time-Invariant Causal Channels/Filters 285
4.1.2 LT-FIR Linear Mappings o 0 i i e e e e 287
4.1.3 Discrete Convolutions 290
4.1.4 Periodic Convolutions 293

4.2 Discrete Fourier Transform (DFT) o 298
4.2.1 Diagonalizing Circulant Matrices Lo 298
4.2.2 Discrete Convolution via Discrete Fourier Transform 305
4.2.3 Frequency filteringvia DFT 307
424 RealDFT e 313
425 Two-dimensional DFT 314
4.2.6 Semi-discrete Fourier Transform [QSS00, Sect. 10.11] 322

4.3 Fast Fourier Transform (FFT) o 331
4.4 Trigonometric Transformations 340
441 Sinetransform 340
442 Cosinetransform 346

4.5 Toeplitz Matrix Techniques 348
4.5.1 Matrices with Constant Diagonals 348
4.5.2 Toeplitz Matrix Arithmetic 350
4.5.3 The Levinson Algorithm L 351

5 Data Interpolation and Data Fitting in 1D 356
5.1 Abstract Interpolation (Al) 356
5.2 Global Polynomial Interpolation 364
5.2.1 Uni-Variate Polynomials 364
5.2.2 Polynomial Interpolation: Theory 366
5.2.3 Polynomial Interpolation: Algorithms oL 370
5.2.3.1 Multiple evaluations L 371

5.2.3.2 Singleevaluation L 374

5.2.3.3 ExtrapolationtoZero L 376

5.2.3.4 Newton Basis and Divided Differences 380

5.2.4 Polynomial Interpolation: Sensitivity 385

5.3 Shape-Preserving Interpolation 389
5.3.1 Shape Properties of FunctionsandData 390
5.3.2 Piecewise Linear Interpolation L Lo 392
5.3.3 Cubic Hermite Interpolation 393
5.3.8.1 Definition and Algorithms Lo Lo 394

5.3.3.2 Local Monotonicity-Preserving Hermite Interpolation 397

5.4 Splines 401
5.4.1 Spline Function Spaces 401
5.4.2 Cubic-Spline Interpolationo 402
5.4.3 Structural Properties of Cubic Spline Interpolants 407
5.4.4 Shape Preserving Spline Interpolation 411

5.5 Algorithms for Curve Design 415
5.5.1 CAD Task: Curves from Control Points 416
552 BezierCurves e e e e 418
553 SplineCurves 422

5.6 Trigonometric Interpolation L 426

CONTENTS, CONTENTS 4

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

5.6.1 Trigonometric Polynomials 427
5.6.2 Reduction to Lagrange Interpolationo Lo 428
5.6.3 Equidistant Trigonometric Interpolation 430

5.7 LeastSquares Data Fitting 434
6 Approximation of Functions in 1D 442
6.1 Introduction. e 442
6.2 Approximation by Global Polynomials, 445
6.2.1 Polynomial Approximation: Theory, 446
6.2.2 Error Estimates for Polynomial Interpolation 452
6.2.2.1 Convergence of Interpolation Errorso 452

6.2.2.2 Interpolands of Finite Smoothness, 456

6.2.2.3 AnalyticInterpolands 461

6.2.3 Chebychev Interpolation 467
6.2.3.1 Motivation and Definition o000 467

6.2.3.2 Chebychev Interpolation Error Estimates 471

6.2.3.3 Chebychev Interpolation: Computational Aspects 477

6.3 Mean Square Best Approximation L L L 482
6.3.1 Abstract Theory e 482
6.3.1.1 MeanSquare Norms 482

6.3.1.2 Normal Equations 483

6.3.1.3 OrthonormalBases 485

6.3.2 Polynomial Mean Square Best Approximation 487

6.4 Uniform Best Approximation 493
6.5 Approximation by Trigonometric Polynomials 497
6.5.1 Approximation by Trigonometric Interpolation 498
6.5.2 Trigonometric Interpolation Error Estimates 500
6.5.3 Trigonometric Interpolation of Analytic Periodic Functions 506

6.6 Approximation by Piecewise Polynomials 512
6.6.1 Piecewise Polynomial Lagrange Interpolation 513
6.6.2 Cubic Hermite Interpolation: Error Estimates 517
6.6.3 Cubic Spline Interpolation: Error Estimates [Han02,Ch. 47] 518

7 Numerical Quadrature 522
7.1 Introduction 522
7.2 Quadrature Formulas — Quadrature Rules 524
7.3 Polynomial Quadrature Formulaso 528
7.4 GaussQuadrature L 531
7.41 OrderofaQuadrature Rule 531
742 Maximal-Order Quadrature Rules 534
7.4.3 Quadrature Error Estimates 542

7.5 Composite Quadrature e e 546
7.6 Adaptive Quadrature L 555
8 Iterative Methods for Non-Linear Systems of Equations 563
8.1 Introduction. 563
8.2 lterative Methods 566
8.2.1 Fundamental Concepts 566
8.2.2 SpeedofConvergence 569
8.2.3 Termination Criteria/Stopping Rules 574

8.3 Fixed-Point lterations 578
8.3.1 Consistent Fixed-Point Iterations oL 578
CONTENTS, CONTENTS 5

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

8.3.2 Convergence of Fixed-Point lterations 580

8.4 Finding Zeros of Scalar Functions 587
8.4.1 Bisection e 587
8.4.2 Model FunctionMethods 589
8.4.2.1 Newton Method inthe ScalarCase 589

8.4.2.2 Special One-PointMethods 593

8.4.2.3 Multi-PointMethods 597

8.4.3 Asymptotic Efficiency of Iterative Methods for Zero Finding 602

8.5 Newton’s Method inIR"™ 605
8.5.1 The Newton lteration 605
8.5.2 Convergence of Newton’s Method 617
8.5.3 Termination of Newton lteration 620
8.5.4 Damped NewtonMethod 622

8.6 Quasi-Newton Method L 625
8.7 Non-linear Least Squares [DR08,Ch.6], 632
8.7.1 (Damped) Newton Method 635
8.7.2 Gauss-Newton Method 637
8.7.3 Trust Region Method (Levenberg-Marquardt Method) 640

9 Computation of Eigenvalues and Eigenvectors 644
9.1 Theory of eigenvalue problems L 647
9.2 “Direct”Eigensolvers 649
9.3 PowerMethods e e e e 652
9.3.1 Directpowermethod 652
9.3.2 Inverse lteration [DR08, Sect. 7.6], [QSS00, Sect. 5.32] 659
9.3.3 Preconditioned inverse iteration (PINVIT) 670
9.3.4 Subspaceiterations 672
9.3.4.1 Orthogonalization 676

9.3.4.2 Ritzprojection 679

9.4 Krylov Subspace Methods 683
10 Krylov Methods for Linear Systems of Equations 695
10.1 Descent Methods [QSS00, Sect. 4.3.3] 696
10.1.1 Quadratic minimizationcontext L L. 696
10.1.2 Abstract steepestdescent L 697
10.1.3 Gradient method for s.p.d. linear system of equations 698
10.1.4 Convergence of the gradientmethod 699

10.2 Conjugate gradient method (CG) [Han02, Ch. 9], [DR08, Sect. 13.4], [QSS00, Sect. 4.3.4] . 703
10.2.1 Krylovspaces e 704
10.2.2 Implementation of CG 705
10.2.3 Convergence of CG e 708

10.3 Preconditioning [DR08, Sect. 13.5], [Han02, Ch. 10], [QSS00, Sect. 4.35] 712
10.4 Survey of Krylov Subspace Methods 718
10.4.1 Minimal residual methods 718
10.4.2 lterations with short recursions [QSS00, Sect. 4.5] 719

11 Numerical Integration — Single Step Methods 723
11.1 Initial-Value Problems (IVP) for ODEs, 723
11.1.1 Modeling with ordinary differential equations: Examples 725
11.1.2 Theory of Initial-Value-Problems (IVPs) 728
11.1.3 Evolution Operators 732

11.2 Introduction: Polygonal Approximation Methods 734

CONTENTS, CONTENTS 6

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

11.2.1 Explicit Eulermethod 735
11.2.2 Implicit Eulermethod 737
11.2.3 Implicit midpoint method 738
11.3 General single stepmethods 739
11.3.1 Definition e e 739
11.3.2 (Asymptotic) Convergence of Single-Step Methods 742

11.4 Explicit Runge-Kutta Methods L 748
11.5 Adaptive Stepsize Control 755
12 Single Step Methods for Stiff Initial Value Problems 770
12.1 Model Problem Analysis 771
12.2 Stiff Initial Value Problems 784
12.3 Implicit Runge-Kutta Single Step Methods 788
12.3.1 The implicit Euler method for stiff IVPs 789
12.3.2 Collocation single stepmethods 790
12.3.3 General implicit RK-SSMs 793
12.3.4 Model Problem Analysis for Implicit Runge-Kutta Sinlge-Step Method (IRK-SSMs) . 795

12.4 Semi-implicit Runge-Kutta Methods 801
12.5 Splitting methods 803
Index 810
Symbols 825
Examples 827
Glossary 835

CONTENTS, CONTENTS 7

Chapter 0

Introduction

0.1 Course Fundamentals

0.1.1 Focus of this Course

Emphasis is put
> on algorithms (principles, computational cost, scope, and limitations),

> on (efficient and stable) implementation in C++ based on the numerical linear algebra EIGEN, a
Domain Specific Language (DSL) embedded into C++.

> on numerical experiments (design and interpretation).

§0.1.1.1 (Aspects outside the scope of this course) No emphasis will be put on
e theory and proofs (unless essential for derivation and understanding of algorithms).

=y 401-3651-00L Numerical Methods for Elliptic and Parabolic Partial Differential Equations
401-3652-00L Numerical Methods for Hyperbolic Partial Differential Equations
(both courses offered in BSc Mathematics)

e hardware aware implementation (cache hierarchies, CPU pipelining, vectorization, etc.)
i 263-0007-00L Advanced System Lab (How To Write Fast Numerical Code, Prof. M. Plschel, D-
INFK)
e issues of high-performance computing (HPC, shard and distributed memory parallelisation, vector-
ization)

s 151-0107-20L High Performance Computing for Science and Engineering (HPCSE,
Prof. P. Koumoutsakos, D-MAVT)
263-2800-00L Design of Parallel and High-Performance Computing (Prof. T. H6fler, D-INFK)

However, note that these other courses partly rely on knowledge of elementary numerical methods, which
is covered in this course. J

http://eigen.tuxfamily.org

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Contents

§0.1.1.2 (Prequisites) This course will take for granted basic knowledge of linear algebra, calculus, and
programming, that you should have acquired during your first year at ETH.

Numerical Methods

=
© <@ 0 2 c —
£ o g S S S 2 ™
o S o @ g cC® S
B 2 o g O 2 E © 3
> ES‘] n B o < -B (@) e o ¢ o o
. 3 7 9 g9 | =
@ © a 2 q = o]
g ° = o o Q g =
f= o — €< L
_| Re) -

i

Analysis Linear algebra Programming (in C++)

§0.1.1.3 (Numerical methods: A motley toolbox)

This course discusses elementary numerical methods and techniques

They are vastly different in terms of ideas, design, analysis, and scope of application. They are the
items in a toolbox, some only loosely related by the common purpose of being building blocks for
codes for numerical simulation.

> Do not expect much coherence between the chapters of this course!

A purpose-oriented notion of “Numerical methods for
CSE™:

A: “Stop putting a hammer, a level, and duct tape
in one box! They have nothing to do with each
other!”

B: “I'might need any of these tools when fixing some-
thing about the house”

Fig. 1
|

§0.1.1.4 (Dependencies of topics) Despite the diverse nature of the individual topics covered in this
course, some depend on others for providing essential building blocks. The following directed graph tries
to capture these relationships. The arrows have to be read as “uses results or algorithms of”.

0. Introduction, 0.1. Course Fundamentals 9

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Numerical integration
y = £(t,y), Chapter 11

Quadrature —— '
ff(x) dx Eigenvalues Krylov methods
Chapter 7 Ax~= Ax, Chapter 9 Chapter 10

" \

. L Least sguares, .
Function approximation, |Ax — b|\— min L Non-linear least squares,
Chapter 6 Chaptlr 3 ’ ||IF(x)|| —\min, Section 8.7
\ Y
Interpolation Linear systems Non-linear systems
é » !
Y.iaib(x;) = f(x;), Chapter 5 Ax = b, Chapter 2 F(x) = 0, Chapter 8
7 N
Filtering, Chapter 4 Sparse matrices, Section 2.7
~ /7
Computing with matrices and vectors, Ch. 1 Zero finding f(x) 20

Any one-semester course “Numerical methods for CSE” will cover only selected chapters and sec-
tions of this document. Only topics addressed in class or in homework problems will be relevant
for exams!

§0.1.1.5 (Relevance of this course) | am a student of computer science. After the exam, may | safely
forget everything | have learned in this mandatory “numerical methods” course? No, because it is highly
likely that other courses or projects will rely on the contents of this course:

singular value decomposition } - Computational statistics, machine learning

least squares

function approximation
numerical quadrature B> Numerical methods for PDEs
numerical integration

interpolation } B> Computer graphics

least squares
elgenso!vers - Graph theoretic algorithms
sparse linear systems

numerical integration } B Computer animation

and many more applications of fundamental numerical methods

0. Introduction, 0.1. Course Fundamentals 10

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Hardly anyone will need everything covered in this course, but most of you will need something.

0.1.2 Goals

This course is meant to impart

*
*

+

knowledge of some fundamental algorithms forming the basis of numerical simulations,

familiarity with essential terms in numerical mathematics and the techniques used for the analysis
of numerical algorithms

the skill to choose the appropriate numerical methods for concrete problems,
the ability to interpret numerical results,

proficiency in implementing numerical algorithms efficiently in C++, using numerical libraries.

Indispensable: Learning by doing (= exercises)

0.1.3 Literature

Parts of the following textbooks may be used as supplementary reading for this course. References to
relevant sections will be provided in the course material.

Studying extra literature is not important for following this course!

[AG11] U. AscHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

Comprehensive introduction to numerical methods with an algorithmic focus based on MATLAB.
(Target audience: students of engineering subjects)

[DRO8] W. DAHMEN AND A. REUSKEN, Numerik fiir Ingenieure und Naturwissenschaftler, Springer,
Heidelberg, 2006.

Good reference for large parts of this course; provides a lot of simple examples and lucid explana-
tions, but also rigorous mathematical treatment.

(Target audience: undergraduate students in science and engineering)

Available for download at PDF

[Han02] M. HANKE-BOURGEOIS, Grundlagen der Numerischen Mathematik und des Wis-
senschaftlichen Rechnens, Mathematische Leitfaden, B.G. Teubner, Stuttgart, 2002.

Gives detailed description and mathematical analysis of algorithms and relies on MATLAB. Profound
treatment of theory way beyond the scope of this course. (Target audience: undergraduates in
mathematics)

[QSS00] A. QUARTERONI, R. SAccoO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in
Applied Mathematics, Springer, New York, 2000.

0. Introduction, 0.1. Course Fundamentals 11

https://books.google.ch/books/about/A_First_Course_on_Numerical_Methods.html?id=gJjh6QcBrlEC&redir_esc=y
http://books.google.de/books?id=zWenT-hxDxEC
http://link.springer.com/book/10.1007%2F978-3-540-76493-9
http://books.google.de/books?id=NxzXX04UBIYC
http://books.google.de/books?id=31m4ahn_KfkC

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Classical introductory numerical analysis text with many examples and detailed discussion of algo-
rithms. (Target audience: undergraduates in mathematics and engineering)
Can be obtained from website.

4 [DHO3] P. DEUFLHARD AND A. HOHMANN, Numerische Mathematik. Eine algorithmisch orientierte
Einfiihrung, DeGruyter, Berlin, 1 ed., 1991.

Modern discussion of numerical methods with profound treatment of theoretical aspects (Target
audience: undergraduate students in mathematics).

4+ [GGK14]: W.. GANDER, M.J. GANDER, AND F. KwOK, Scientific Computing, Text in Computational
Science and Engineering, springer, 2014.

Comprehensive treatment of elementary numerical methods with an algorithmic focus.

D-INFK maintains a webpage with links to some of these books.

Essential prerequisite for this course is a solid knowledge in linear algebra and calculus. Familiarity with
the topics covered in the first semester courses is taken for granted, see

4+ [NSO02] K. NIPP AND D. STOFFER, Lineare Algebra, vdf Hochschulverlag, Zlrich, 5 ed., 2002.
4 [Gut09] M. GUTKNECHT, Lineare algebra, lecture notes, SAM, ETH Ziirich, 2009, available online.

4 [Str09] M. STRUWE, Analysis fir Informatiker. Lecture notes, ETH Zirich, 2009, available online.

0.2 Teaching Style and Model

0.2.1 Flipped Classroom

This course will depart from the usual academic teaching arrangement centering around classes taught
by a lecturer addressing an audience in a lecture hall.
A flipped-classroom course

This course will follow the flipped-classroom paradigm:

Learning by self-study guided by

instruction videos interactive .
lecture notes) tutorial classes
tablet notes Q&A sessions

All the course material will be published online through the course Moodle Page. All notes jotted down by
the lecturer during the creation of videos or during the Q&A sessions will be made available as PDF.

0.2.1.1 Course Videos

In the flipped-classroom teaching model regular lectures will be replaced with pre-recorded videos. These
videos are not commercial-grade clips, but resemble video recordings from a standard classroom setting;
they convey the development of the material on a tablet accompanied by the lecturer’s voice.

0. Introduction, 0.2. Teaching Style and Model 12

http://link.springer.com/book/10.1007%2Fb98885
http://books.google.de/books?id=1oDXWLb9qEkC
http://www.springer.com/de/book/9783319043241
http://textbooks.inf.ethz.ch/lectures/compulsory-courses/7/
http://books.google.de/books?id=BvcHtRVy_N8C
http://www.sam.math.ethz.ch/~mhg/unt/LA/HS07/
http://www.math.ethz.ch/~struwe/Skripten/InfAnalysis-I-II-31-7-09.pdf
https://en.wikipedia.org/wiki/Flipped_classroom

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Eile Edit View History Bookmarks Tools Help

Numerical Methods for CSE X | +
<« e © | @ https:/jvideo.ethz.chlectu math/2019/autumn/401-01 ++ @ ¥ | Q ETHVideoPortal = YIND e mETe0O » =

" MathSciNet ¥ Most Visited @ WhatsApp # eDoz # Gox OALD FICAL = PersETH i Refresh Teaching

ETHziirich

¢ Video portal | +Campus | + Conference:

D-ARCH Numerical Methods for CSE The VldeOS W|” be pUblIShed '[hI’OUgh the
b — course Moodle Page.

Every video comes with a PDF contain-
ing the tablet notes taken during the cre-
ation of the video. However, the PDF may
have been corrected, updated, or supple-
mented later.

2019

Autumn

Analysis |

Details Close —

Analysis |

Numerical Methods for CSE
Analysis Il Hiptmair, Ralf
Analysis Il AR
Case Studies Seminar

20.12.2019
Lineare Algebra
Lineare Algebra * Direct Methods for linear systems of equations
* Least Squares Techniques
* Data Interpolation and Fitting
Machine Learning of Dynamic [Filtering Algorithms, optional]
Processes with Applications to Appeedmation of Fildlians
Forecasing * Numerical Quadrature

* Iterative Methods for non-linear systems of equations
Mathematik | * Single Step Methods for ODES

* Siiff Integrators.

Lineare Algebra |

Mathematik Il

Fig. 2

Al rghts reservec.
Numerical Methods for CSE e

§0.2.1.2 (“Pause” and “fast forward”) Videos have two big advantages:

You can stop a video at any time, whenever
e you need more time to think,
e you want to look up related information,
e you want to work for yourself.
Make use of this possibility!
Fig. 3
The video portal also allows you to play the videos at 7.5x speed. This can be useful, if the current topic
is very clear to you. You can also skip entire parts using the scroll bar. The same functionality (fast playing
and skipping) is offered by most video players, for instance the VLC media player. 2

§0.2.1.3 (Review questions) Most lecture units (corresponding to a video) are accompanied with a list of
review questions. You should try to answer them off the top of your head without consulting any written
material shortly after you have finished studying the unit .

Failure to answer a review question indicates that you need resume studying some of the unit’s topics.

§0.2.1.4 (List of available tutorial videos) This is the list of available video tutorials as of January 22,
2021:

Video tutorial for Section 1.1.1 “Notations and Classes of Matrices”: (26 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 1.2.1 "EIGEN ": (21 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 1.2.3 "(Dense) Matrix Storage Formats": (18 minutes) Polybox link,
tablet notes (Updated!)

o

0. Introduction, 0.2. Teaching Style and Model 13

https://www.videolan.org/vlc/index.html
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_1_1_Notations.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_1_1_Notations.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_2_1_Eigen.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_2_1_Eigen.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_2_3_MatrixStorageFormats.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_2_3_MatrixStorageFormats.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

P

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Video tutorial for Section 1.4 "Computational Effort": (57 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 1.5 "Machine Arithmetic and Consequences": (30 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 1.5.4 "Cancellation": (48 minutes) Polybox link, tablet notes (Up-
dated!)

Video tutorial for Section 1.5.5 "Numerical Stability": (34 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 2.1 & Section 2.2.1 "Introduction and Theory: Linear Systems of
Equations (LSEs)": (10 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Ex. 2.1.0.3 "Nodal Analysis of Linear Electric Circuits": (16 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 2.2.2 "Sensitivity of Linear Systems": (33 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 2.3 & Section 2.5 "Gaussian Elimination": (33 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 2.6 "Exploiting Structure when Solving Linear Systems": (35 min-
utes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 2.7.1 "Sparse Matrix Storage Formats": (21 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 2.7.2 "Sparse Matrices in EIGEN ": (12 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 2.7.3 "Direct Solution of Sparse Linear Systems of Equations": (18
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.0.1 "Overdetermined Linear Systems of Equations: Examples":
(22 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.1.1 "Least Squares Solutions": (17 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 3.1.2 "Normal Equations": (30 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 3.1.3 "Moore-Penrose Pseudoinverse": (14 minutes) Polybox link,
tablet notes (Updated!)

0. Introduction, 0.2. Teaching Style and Model 14

https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_4_ComputationalEffort.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_4_ComputationalEffort.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_5_MachineArithmetic.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_5_MachineArithmetic.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_5_4_Cancellation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_5_4_Cancellation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_1_5_5_NumericalStability.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_1_5_5_NumericalStability.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_1_LSE_Intro.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_1_LSE_Intro.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_1_0_3_Example_Nodal_Analysis.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_1_0_3_Example_Nodal_Analysis.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_2_2_SensitivityLSE.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_2_2_SensitivityLSE.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_3+2_5_GaussianElimination.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_3+2_5_GaussianElimination.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_6_ExploitingStructureInLSE.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_6_ExploitingStructureInLSE.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_7_1_SparseMatrixStorageFormats.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_7_1_SparseMatrixStorageFormats.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_7_2_SparseMatricesEigen.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_7_2_SparseMatricesEigen.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_2_7_3_DirectSolutionSparseLSE.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_2_7_3_DirectSolutionSparseLSE.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_0_1_Overdetermined_LSE_Examples.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_0_1_Overdetermined_LSE_Examples.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_1_1_LeastSquaresSolutions.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_1_1_LeastSquaresSolutions.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_1_2_NormalEquations.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_1_2_NormalEquations.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_1_3_Pseudoinverse.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_1_3_Pseudoinverse.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

no
o

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Video tutorial for Section 3.2 "Normal Equation Methods": (25 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 3.3 "Orthogonal Transformation Methods": (17 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.3.3.1 "QR-Decomposition: Theory": (17 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 3.3.3.2 & Section 3.3.3.4 "Computation of QR-Decomposition, QR-
Decomposition in EIGEN ": (58 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.3.4 "QR-Based Solver for Linear Least Squares Problems": (16
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.3.5 "Modification Techniques for QR-Decomposition”: (46 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.4.1 "Singular Value Decomposition: Definition and Theory": (25
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.4.2 "SVD in EIGEN ": (15 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 3.4.3 "Solving General Least-Squares Problems by SVD": (24
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.4.4.1 "Norm-Constrained Extrema of Quadratic Forms": (22 min-
utes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.4.4.2 "Best Low-Rank Approximation": (24 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 3.4.4.3 "Principal Component Data Analysis (PCA)": (54 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 3.6 "Constrained Least Squares": (45 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.1.1 "Discrete Finite Linear Time-Invariant Causal Channels/Filters":
(20 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 4.1.2 "LT-FIR Linear Mappings": (23 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.1.3 "Discrete Convolutions": (17 minutes) Polybox link,
tablet notes (Updated!)

0. Introduction, 0.2. Teaching Style and Model 15

https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_2_NormalEquationMethods.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_2_NormalEquationMethods.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_3_1+3_3_2_OrthogonalTransformationMethods.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_3_1+3_3_2_OrthogonalTransformationMethods.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_3_3_QR_Decomposition.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_3_3_QR_Decomposition.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_3_3_2_ComputationQRDecomposition.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_3_3_2_ComputationQRDecomposition.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_3_4_QRBasedSolverLSQ.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_3_4_QRBasedSolverLSQ.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_3_5_ModificationTechniquesQR.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_3_5_ModificationTechniquesQR.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_4_1_SVD_Definition_Theory.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_4_1_SVD_Definition_Theory.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_4_2_SVD_Eigen.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_4_2_SVD_Eigen.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_4_3_LSQbySVD.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_4_3_LSQbySVD.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_4_4_1_NormConstrainedExtrema.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_4_4_1_NormConstrainedExtrema.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_4_4_2_BestLowRankApproximation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_4_4_2_BestLowRankApproximation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_4_4_3_PCA.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_4_4_3_PCA.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_3_6_ConstrainedLeastSquares.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_3_6_ConstrainedLeastSquares.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_1_1_LTFIR.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_1_1_LTFIR.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_1_1_FilterLinearMappings.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_1_1_FilterLinearMappings.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_1_3_DiscreteConvolutions.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_1_3_DiscreteConvolutions.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

w w w w
© © ™~ o

N
o

N I N I IN I N
®© ™~ o o > @ N

N
©

o
o

51.

Video tutorial for Section 4.1.4 "Periodic Convolutions": (24 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.2.1 "Diagonalizing Circulant Matrices": (33 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.2.2 "Discrete Convolution via DFT": (13 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.2.3 "Frequency filtering via DFT": (40 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.2.5 "Two-Dimensional DFT": (37 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.3 "Fast Fourier Transform (FFT)": (29 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 4.5 "Toeplitz Matrix Techniques": (36 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.1 "Abstract Interpolation": (29 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 5.2.1 "Uni-Variate Polynomials": (11 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.2.2 "Polynomial Interpolation: Theory": (09 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.2.3 "Polynomial Interpolation: Algorithms": (32 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 5.2.3.3 "Extrapolation to Zero": (24 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.2.3.4 "Newton Basis and Divided Differences": (31 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 5.2.4 "Polynomial Interpolation: Sensitivity": (23 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 5.3 "Shape-Preserving Interpolation": (47 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.4.1 "Spline Function Spaces": (16 minutes) Polybox link,
tablet notes (Updated!)

0. Introduction, 0.2. Teaching Style and Model 16

https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_1_4_PeriodicConvolutions.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_1_4_PeriodicConvolutions.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_2_1_DiagonalizingCirculantMatrices.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_2_1_DiagonalizingCirculantMatrices.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_2_2_DiscreteConvolutionViaDFT.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_2_2_DiscreteConvolutionViaDFT.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_2_3_FrequencyFilteringDFT.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_2_3_FrequencyFilteringDFT.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_2_5_TwoDimensionalDFT.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_2_5_TwoDimensionalDFT.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_3_FFT.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_3_FFT.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_4_5_ToeplitzMatrixTechniques.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_4_5_ToeplitzMatrixTechniques.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_1_AbstractInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_1_AbstractInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_2_Polynomials.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_2_Polynomials.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_2_2_PolynomialInterpolationTheory.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_2_2_PolynomialInterpolationTheory.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_2_3_PolynomialInterpolationAlgorithms.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_2_3_PolynomialInterpolationAlgorithms.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_2_3_3_ExtrapolationToZero.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_2_3_3_ExtrapolationToZero.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_2_3_4_DividedDifferences.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_2_3_4_DividedDifferences.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_2_4_PolynomialInterpolationSensitivity.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_2_4_PolynomialInterpolationSensitivity.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_3_ShapePreservingInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_3_ShapePreservingInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_4_1_SplineFunctions.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_4_1_SplineFunctions.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Video tutorial for Section 5.4.2 "Cubic Spline Interpolation": (26 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.4.3 "Structural Properties of Cubic Spline Interpolants": (23 min-
utes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 5.6 "Trigonometric Interpolation”: (29 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 5.7 "Least Squares Data Fitting": (26 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 6.1 "Approximation of Functions in 1D: Introduction”: (13 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.2 "Polynomial Approximation: Theory": (25 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 6.2.2 "Error Estimates for Polynomial Interpolation™: (23 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.2.2.2 "Error Estimates for Polynomial Interpolation: Interpolands
of Finite Smoothness": (31 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.2.2.3 "Error Estimates for Polynomial Interpolation: Analytic Inter-
polands": (52 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.2.3.1 "Chebychev Interpolation: Motivation and Definition": (21
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.2.3.2 "Chebychev Interpolation Error Estimates”: (26 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.2.3.3 "Chebychev Interpolation: Computational Aspects": (21
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.5.1 "Approximation by Trigonometric Interpolation”: (07 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.5.2 "Trigonometric Interpolation Error Estimates": (26 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.5.3 "Trigonometric Interpolation of Analytic Periodic Functions":
(27 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 6.6.1 "Piecewise Polynomial Lagrange Interpolation": (30 minutes)
Polybox link, tablet notes (Updated!)

0. Introduction, 0.2. Teaching Style and Model 17

https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_4_2_CubicSplineInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_4_2_CubicSplineInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_4_3_StructuralPropertiesCSI.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_4_3_StructuralPropertiesCSI.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_6_TrigonometricInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_6_TrigonometricInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_5_7_LeastSquaresDataFitting.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_5_7_LeastSquaresDataFitting.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_1_FunctionApproximationIntroduction.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_1_FunctionApproximationIntroduction.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_1_PolynomialApproximationTheory.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_1_PolynomialApproximationTheory.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_2_ErrorEstimatesPolynomialInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_2_ErrorEstimatesPolynomialInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_2_3_FiniteSmoothnessInterpolands.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_2_3_FiniteSmoothnessInterpolands.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_2_2_AnalyticInterpolands.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_2_2_AnalyticInterpolands.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_3_1_ChybchevInterpolationMotivation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_3_1_ChybchevInterpolationMotivation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_3_2_ChybchevInterpolationErrorEstimates.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_3_2_ChybchevInterpolationErrorEstimates.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_2_3_3_ChybchevInterpolationAlgorithms.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_2_3_3_ChybchevInterpolationAlgorithms.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_5_1_ApproximationTrigonometricInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_5_1_ApproximationTrigonometricInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_5_2_TrigonometricInterpolationErrorEstimates.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_5_2_TrigonometricInterpolationErrorEstimates.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_5_3_TrigonometricInterpolationAnalyticInterpolands.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_5_3_TrigonometricInterpolationAnalyticInterpolands.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_6_1_PiecewisePolynomialLagrangeInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_6_1_PiecewisePolynomialLagrangeInterpolation.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Video tutorial for Section 6.6.2 "Cubic Hermite and Spline Interpolation: Error Estimates": (16
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 7.1 "Numerical Quadrature: Introduction": (06 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 7.2 "Quadrature Formulas/Rules": (24 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 7.3 "Polynomial Quadrature Formulas": (16 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 7.4.1 "Order of a Quadrature Rule": (15 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 7.4.2 "Maximal-Order Quadrature Rules": (30 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 7.4.3 "(Gauss-Legendre) Quadrature Error Estimates": (32 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 7.5 "Composite Quadrature": (34 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 7.6 "Adaptive Quadrature": (24 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 8.1 "lterative Methods for Non-Linear Systems of Equations: Intro-
duction": (08 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.2.1 "lterative Methods: Fundamental Concepts": (10 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.2.2 "lterative Methods: Speed of Convergence": (26 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.2.3 "lterative Methods: Termination Criteria/Stopping Rules": (25
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.3 "Fixed-Point Iterations": (20 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 8.4.1 "Finding Zeros of Scalar Functions: Bisection": (11 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.4.2.1 "Newton Method in the Scalar Case": (36 minutes)
Polybox link, tablet notes (Updated!)

0. Introduction, 0.2. Teaching Style and Model 18

https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_6_6_2_3_CubicHermiteSplineInterpolation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_6_6_2_3_CubicHermiteSplineInterpolation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_1_NumericalQuadratureIntroduction.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_1_NumericalQuadratureIntroduction.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_2_QuadratureFormulas.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_2_QuadratureFormulas.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_3_PolynomialQuadratureFormulas.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_3_PolynomialQuadratureFormulas.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_4_1_OrderQuadratureRule.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_4_1_OrderQuadratureRule.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_4_2_GaussLegendreQuadrature.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_4_2_GaussLegendreQuadrature.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_4_3_GaussLegendreQuadratureErrorEstimates.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_4_3_GaussLegendreQuadratureErrorEstimates.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_5_CompositeQuadrature.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_5_CompositeQuadrature.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_7_6_AdaptiveQuadrature.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_7_6_AdaptiveQuadrature.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_1_IntroIterativeMethodsNonlinearSystems.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_1_IntroIterativeMethodsNonlinearSystems.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_2_1_IterativeMethodsFundamentalConcepts.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_2_1_IterativeMethodsFundamentalConcepts.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_2_2_IterativeMethodsSpeedOfConvergence.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_2_2_IterativeMethodsSpeedOfConvergence.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_2_3_TerminationCriteria.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_2_3_TerminationCriteria.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_3_FixedPointIterations.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_3_FixedPointIterations.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_4_1_Bisection.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_4_1_Bisection.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_4_2_1_NewtonMethod1D.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_4_2_1_NewtonMethod1D.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

b

Video tutorial for Section 8.4.2.3 "Multi-Point Methods": (23 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 8.4.3 "Asymptotic Efficiency of Iterative Methods for Zero Finding":
(17 minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.5.1 "The Newton lteration in IR (I)": (17 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for § 8.5.1.15 "Multi-dimensional Differentiation": (34 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 8.5.1 "The Newton lteration in IR” (I)": (29 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 8.5.2 "Convergence of Newton’s Method": (16 minutes)
Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.5.3 "Termination of Newton lteration": (12 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 8.5.4 "Damped Newton Method": (20 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 8.6 "Quasi-Newton Method": (27 minutes) Polybox link, tablet notes
(Updated!)

Video tutorial for Section 8.7 "Non-linear Least Squares": (11 minutes) Polybox link,
tablet notes (Updated!)

Video tutorial for Section 8.7.1 "Non-linear Least Squares: (Damped) Newton Method": (19
minutes) Polybox link, tablet notes (Updated!)

Video tutorial for Section 8.7.2 "(Trust-region) Gauss-Newton Method": (22 minutes)
Polybox link, tablet notes (Updated!)

-
Necessary corrections and updates of the lecture document will sometimes lead to changes
in the numbering of paragraphs and formulas, which, of course, cannot be applied to the
recorded videos.
However, these changes will be taken into account into the tablet notes supplied for every
video.

0. Introduction, 0.2. Teaching Style and Model 19

https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_4_2_3_MultiPointMethods.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_4_2_3_MultiPointMethods.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_4_3_AsymptoticEfficiencyIterativeMethods.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_4_3_AsymptoticEfficiencyIterativeMethods.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_5_1_NewtonIterationI.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_5_1_NewtonIterationI.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_5_1_MultiDimensionalDifferentiation.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_5_1_MultiDimensionalDifferentiation.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_5_1_NewtonIterationII.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_5_1_NewtonIterationII.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_5_2_NewtonsMethodConvergence.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_5_2_NewtonsMethodConvergence.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_5_3_NewtonsMethodTermination.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_5_3_NewtonsMethodTermination.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_5_4_DampedNewtonMethod.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_5_4_DampedNewtonMethod.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_6_QuasiNewtonMethod.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_6_QuasiNewtonMethod.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_7_NonLinearLeastSquares.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_7_NonLinearLeastSquares.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_7_1_NLSQNewtonMethod.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_7_1_NLSQNewtonMethod.pdf
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/Videos/NCSEVideo_8_7_2_GaussNewtonMethod.mp4
https://polybox.ethz.ch/remote.php/webdav/Lectures/NCSE20/TabletNotes/NCSEVideo_8_7_2_GaussNewtonMethod.pdf

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

0.2.1.2 Following the Course

Weekly study assignments

e For every week there is a list of course units and associated videos published on the course
Moodle Page.

e The corresponding contents must be studied in that same week.

§0.2.1.6 (How to organize your learning)

@« Develop a routine: Plan fixed slots, with a total duration of four hours, for studying for the course
material in your weekly calendar. This does not include homework.

@ Choose a stable setting, in which you can really concentrate (quiet area, headphones, coffee, etc.)

@ Take breaks, when concentration is declining, usually after 20 to 45 minutes, but avoid online dis-
fractions during breaks.

You must not procrastinate!
A Do not put off studying for this course. Dependencies between the topics will make it very

hard to catch up.

§0.2.1.7 (“Personalized learning’) The flipped classroom model allows students to pursue their preferred
ways of studying. The following approaches can be tried.

e Traditional: You watch the assigned videos similar to attending a conventional classroom lecture.
Afterwards digest the material based on the tablet notes and/or the lecture document. Finally, answer
the review questions and look up more information in the lecture document.

e Reading-centered: You work through the unit reading the tablet notes, and, sometimes, related
sections of the lecture document. You occasionally watch parts of the videos, in case some consid-
erations and arguments have not become clear to you already.

Collaborative studying is encouraged:
e You may watch course videos together with
classmates.
e You may meet to discuss course units.
e You may solve homework problems in a group
assigning different parts to different members.

@ Explaining to others is a great way to deepen
understanding.

@& |t is easy to sustain motivation and avoid dis-
traction in a peer study group.

Fig. 4

0.2.2 To avoid misunderstandings ...

The PDF you are reading is referred to as lecture document and is an important source of information, but

0. Introduction, 0.2. Teaching Style and Model 20

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

§0.2.2.1 (“Lecture notes™)

This course document is neither a textbook nor comprehensive lecture notes.
They are meant to supplement and be supplemented by explanations given in class.

Some pieces of advice:

4 Thelecture document is only partly designed to be self-contained and can/should be studied in parts
in addition to attending to watching the course videos and/or reading the tablet notes.

This text is not meant for mere reading, but for working with,
Turn pages all the time and follow the numerous cross-references,

study the relevant section of the course material when doing homework problems,

+ 4+ 4+ 4

You may study referenced literature to refresh prerequisite knowledge and for alternative presen-
tation of the material (from a different angle, maybe), but be careful about not getting confused or
distracted by information overload.

_l

§0.2.2.2 (Reporting errors) As the documents for this course will always be in a state of flux, they will
inevitably and invariably teem with small errors, mainly typos and omissions.

Please report errors in the lecture material through the Course Moodie Page!

When reporting an error, please specify the section and the number of the paragraph, remark, equation,
etc. where it hides. You need not give a page number. J
§0.2.2.3 (Comprehension is a process .. .)
4 This course will require
hard work - perseverance - patience
4+ Do not expect to understand everything at once. Most students will

e understand about one third of the material when watching videos and studying the course
material

e understand another third when making a serious effort to solve the homework problems,

e hopefully understand the remaining third when studying for the main examination after the end
of the course.

Perseverance will be rewarded! I

_

§0.2.2.4 (Expected workload) This course has been awarded 8 ECTS credits. Though a very loose
relationship, this roughly indicates a total workload of 240 hours:

240 hours = 160 hours -+ 80 hours
——— ——

during term exam preparation

This indicates that you should brace for an

0. Introduction, 0.2. Teaching Style and Model 21

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

average workload ~ 11 — 12 hours per week.

| recommend a rather even split between

e watching videos and/or studying the course material: ~ 4 hours/week,

e and solving homework problems: ~ 5 hours/week.

e attending Q&A sessions and tutorials =~ 3 hours/week.

All these are averages and the workload may vary between different weeks. 2

0.2.3 Assignments

A steady and persistent effort spent on homework problems is essential for success in this course.

You should expect to spend 3-5 hours per week on trying to solve the homework problems. Since many
involve small coding projects, the time it will take an individual student to arrive at a solution is hard to
predict.

For the sake of efficiency:
Avoid coding errors (bugs) in your homework coding projects!

The problems are published online together with plenty of hints. A master solution will also be made
available, but it is foolish to read the master solution parallel to working on a problem sheet, because
trying to find the solution on one’s own is essential for developing problem solving skills, though it may
occasionally be frustrating.

§0.2.3.1 (Homeworks and tutors’ corrections)

4

The weekly assignments will be a few problems from the NCSE Problem Collection available on-
line as PDF, see course Moodle page for the link. The particular problems to be solved will be
communicated through that Moodle page every week.

Please note that this problem collection is being extended throughout the semester. Thus, make
sure that you obtain the most current version every week. A polybox link will also be distributed;
if you install the Polybox Client the most current version of all course documents will always be
uploaded to your machine.

Some or all of the problems of an assignment sheet will be discussed in the tutorial classes at least
one week after the problems have been assigned.

Your tutors are happy to examine your solutions and give you feedback : You may either hand
them your solution papers during the tutorial session (put your name on every sheet and clearly
mark the problems you want to be inspected) or upload a scan/photo through the Moodle upload
interface for the course, see the course Moodle page for details. You are encouraged to hand in
incomplete and wrong solutions, so that you can receive valuable feedback even on incomplete or
failed attempts.

Your tutors will automatically have access to all your homework codes, see § 0.2.3.2 below.

0. Introduction, 0.2. Teaching Style and Model 22

https://polyboxdoc.ethz.ch/using-the-desktop-client/

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

§0.2.3.2 (CoDEEXPERT C++ online IDE and testing evironment)

CODEEXPERT has been developed at ETH as on on-
line IDE for small programming assignment and cod-
ing homeworks. It will be used in this course for all
C++ homework problems.

Please study the documentation!
Note that CODEEXPERT will also be using for the coding problems of the main examination. _

0.2.4 Information on Examinations

§0.2.4.1 (Examinations during the teaching period) From the ETH course directory:

Computer based examination involving coding problems beside theoretical questions. Parts
of the lecture documents and other materials will be made available online during the exami-
nation. A 30-minute mid-term exam and a 30-minute end term exam will be held during the
teaching period on dates specified in the beginning of the semester. Points earned in these
exams will be taken into account through a bonus of up to 20% of the full (100%) points in
the final session exam.

Both will be closed book examinations on paper. The dates of the exams will be communicated in the
beginning of the term and published on the course webpage. a
§0.2.4.2 (Main examination during exam session)

4 Three-hour written examination involving coding problems to be done at the computer. The date of
the exam will be set and communicated by the ETH exam office, and will also be published on the
course webpage.

4 The coding part of the exam has to be done using CODEEXPERT.
4 Subjects of examination:

e All topics, which have been addressed in class or in a homework problem (including the home-
work problems not labelled as “core problems”)

The lecture document contains much more material than covered in class. All these extra topics are
not relevant for the exam.

4 Lecture document (as PDF), the EIGEN documentation, and the online C++ REFERENCE PAGES will
be available PDF during the examination. The corresponding final version of the lecture document
will be made available at least two weeks before the exam.

No other materials may be used during the exam.
The homework problem collection cannot be accessed during the exam.

The exam questions will be asked in English.

¢+ 4+

In case you come to the conclusion that you have too little time to prepare for the main exam a few
weeks before the exam, contemplate withdrawing in order not to squander an attempt.

§0.2.4.3 (Repeating the main exam)

0. Introduction, 0.2. Teaching Style and Model 23

https://www.code-expert.net/
https://www.code-expert.net/
https://www.code-expert.net/students
https://www.code-expert.net/
https://www.code-expert.net/
https://en.cppreference.com/w/

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e Bonus points earned in term exams in last year’s course can be taken into account for this course’s
main exam.

e |f you want to take this option, please declare this intention by email to the course organizers before
the mid-term exam. Otherwise, your bonus will be based on the results of this year’s term exams.

0.3 Programming in C++

C++17 is the current ANSI/ISO standard for the programming language C++. On the one hand, it offers
a wealth of features and possibilities. On the other hand, this can be confusing and even be prone to
inconsistencies. A major cause of inconsistent design is the requirement with backward compatibility with
the C programming language and the earlier standard C++ 98.

However, C++ has become the main language in computational science and engineering and high per-
formance computing. Therefore this course relies on C++ to discuss the implementation of numerical
methods.

In fact C++ is a blend of different programming paradigms:

e an object oriented core providing classes, inheritance, and runtime polymorphism,

e a powerful template mechanism for parametric types and partial specialization, enabling template
meta-programming and compile-time polymorphism,

e a collection of abstract data containers and basic algorithms provided by the Standard Template
Libary (STL).
& Supplementary literature. A popular book for learning C++ that has been upgraded to include
the C++11 standard is [LLM12].

The book [Jos12] gives a comprehensive presentation of the new features of C++11 compared to
earlier versions of C++.

There are plenty of online reference pages for C++, for instance
http://en.cppreference.comand http://www.cplusplus.com/.

The following sections highlight a few particular aspects of C++ that may be important for code develop-
ment in this course.

0.3.1 Function Arguments and Overloading

§0.3.1.1 (Function overloading, [LLM12, Sect. 6.4]) Argument types are an integral part of a function
declaration in C++. Hence the following functions are different

int« f£(int); // use this in the case of a single numeric argument
double f(int x); // use only, if pointer to a integer is given
void f(const MyClass &); // use when called for a MyClass object

0. Introduction, 0.3. Programming in C++ 24

http://en.cppreference.com
http://www.cplusplus.com/

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

and the compiler selects the function to be used depending on the type of the arguments following rather
sophisticated rules, refer to overload resolution rules. Complications arise, because implicit type conver-
sions have to be taken into account. In case of ambiguity a compile-time error will be triggered. Functions
cannot be distinguished by return type!

For member functions (methods) of classes an additional distinction can be introduced by the const spec-
ifier:
struct MyClass {

double f (double); // use for a mutable object of type MyClass
double f (double) const; // use this version for a constant object

}i

The second version of the method £ is invoked for constant objects of type MyClass. J
§0.3.1.2 (Operator overloading [LLM12, Chapter 14]) In C++ unary and binary operators like =, ==, +,
- % /== %=, /=%, &6&, | |, «, », etc. are regarded as functions with a fixed number of arguments

(one or two). For built-in numeric and logic types they are defined already. They can be extended to any
other type, for instance

MyClass operator +(const MyClass &,const MyClass §&);
MyClass operator +(const MyClass &, double);
MyClass operator +(const MyClass &); // unary + !

The same selection rules as for function overloading apply. Of course, operators can also be introduced
as class member functions.

C++ gives complete freedom to overload operators. However, the semantics of the new operators should
be close to the customary use of the operator. a

§0.3.1.3 (Passing arguments by value and by reference [LLM12, Sect. 6.2]) Consider a generic func-
tion declared as follows:
void f (MyClass x); // Argument x passed by value.

When f is invoked, a temporary copy of the argument is created through the copy constructor or the move
constructor of MyClass. The new temporary object is a local variable inside the function body.

When a function is declared as follows
void f (MyClass &x); // Argument x passed by reference.
then the argument is passed to the scope of the function and can be changed inside the function. No

copies are created. If one wants to avoid the creation of temporary objects, which may be costly, but also
wants to indicate that the argument will not be modified inside £, then the declaration should read

void f (const MyClass &x); // Argument x passed by constant referene.

New in C++11 is move semantics, enabled in the following definition
void f(const MyClass &&x); // Optional shallow copy
In this case, if the scope of the object passed as the argument is merely the function or std: : move ()

tags it as disposable, the move constructor of MyClass is invoked, which will usually do a shallow copy
only. Refer to Code 0.3.5.10 for an example. 4

0. Introduction, 0.3. Programming in C++ 25

http://en.cppreference.com/w/cpp/language/overload_resolution.html
http://en.cppreference.com/w/cpp/language/operators.html
http://en.cppreference.com/w/cpp/language/expressions.html#Operators

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

0.3.2 Templates

§0.3.2.1 (Function templates) The template mechanism supports parameterization of definitions of
classes and functions by type. An example of a function templates is

template <typename ScalarType, typename VectorType>
VectorType saxpy (ScalarType alpha, const VectorType &x, const
VectorType &y)
{ return (alphaxx+ty); }

Depending on the concrete type of the arguments the compiler will instantiate particular versions of this
function, for instance saxpy<float, double>, when alpha is of type f1oat and both x and y are of
type double. In this case the return type will be float.

For the above example the compiler will be able to deduce the types ScalarType and VectorType
from the arguments. The programmer can also specify the types directly through the < >-syntax as in

saxpy<double, double> (a, x,v) ;

If an instantiation for all arguments of type double is desired. In case, the arguments do not supply
enough information about the type parameters, specifying (some of) them through < > is mandatory. _

§0.3.2.2 (Class templates) A class template defines a class depending on one or more type parameters,
for instance

template <typename T>
class MyClsTempl ({

public:
using parm_t = T; // T—-dependent type
MyClsTempl (void) ; // Default constructor
MyClsTempl (const T&); // Constructor with an argument

template <typename U>

T memfn(const T&,const U&) const; // Templated member function
private:

T xptr; // Data member, T-pointer

i

Types MyClsTempl<T> for a concrete choice of T are instantiated when a corresponding object is de-
clared, for instance via

double x = 3.14;

MyClass myobj; // Default construction of an object

MyClsTempl<double> tinstd; // Instantiation for T = double

MyClsTempl<MyClass> mytinst (myobj); // Instantiation for T = MyClass

MyClass ret = mytinst.memfn (myobij,x); // Instantiation of member
function for U = double, automatic type deduction

The types spawned by a template for different parameter types have nothing to do with each other. 2

Requirements on parameter types

The parameter types for a template have to provide all type definitions, member functions, operators,
and data to make possible the instantiation (“compilation”) of the class of function template.

0. Introduction, 0.3. Programming in C++ 26

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

0.3.3 Function Objects and Lambda Functions

A function object is an object of a type that provides an overloaded “function call” operator (). Function
objects can be implemented in two different ways:

(I) through special classes like the following that realizes a function R — R

class MyFun {
public:

double operator (double x) const; // Evaluation operator

}i

The evaluation operator can take more than one argument and need not be declared const.

(1) through lambda functions, an “anonymous function” defined as

[<capture list>] (<arguments>) -> <return type> { body; }

where <capture list> s a list of variables from the local scope to be passed to the lambda func-
tion; an & indicates passing by reference,
<arguments> is a comma separated list of function arguments complete with types,
<return type> is an optional return type; often the compiler will be able to deduce the
return type from the definition of the function.

Function classes should be used, when the function is needed in different places, whereas lambda func-
tions for short functions intended for single use.

C++ code 0.3.3.1: Demonstration of use of lambda function = GITLAB

int main() {
// initialize a vector from an initializer 1ist
std :: vector<double> v({1.2,2.3,3.4,4.5,5.6,6.7,7.8});
// A vector of the same length
std :: vector<double> w(v.size());
// Do cumulative summation of v and store result in w
double sum = 0;
std :: transform(v.begin () ,v.end () ,w.begin () ,
[&sum] (double x) { sum += x; return sum;}) ;

© ® N o g &~ W N =

10 cout << "sum = << sum << ", w=[";
11 for(auto x: w) cout << x << ’ ’; cout << ']’ << endl;
12 return (0) ;

In this code the lambda function captures the local variable sum by reference, which enables the lambda
function to change its value in the surrounding scope.

§0.3.3.2 (Function type wrappers) The special class std: : function provides types for general poly-
morphic function wrappers.

std: : function<return type (arg types)>

C++ code 0.3.3.3: Use of std: : function =* GITLAB
1+ | double binop (double arg1 ,double arg2) { return (argl/arg2); }

2
s |void stdfunctiontest (void) {

0. Introduction, 0.3. Programming in C++ 27

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/lambdatransform.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/fnvec.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

4 // Vector of objects of a particular signature
5 std :: vector<std :: function <double(double,double)>> fnvec;
6 // Store reference to a regular function
7 fnvec.push_back (binop) ;
8 // Store a lambda function
9 fnvec.push_back ([] (double x,double y) — double { return y/x; });
10 for (auto fn : fnvec) { std::cout << fn(3,2) << std::endl; }
11
}

In this example an object of type std: : funct ion<double (double, double) > can hold a regular func-
tion taking two double arguments and returning another double or a lambda function with the same
signature. Guess the output of stdfunctiontest!

0.3.4 Multiple Return Values

_

In PYTHON it is customary to return several variables from a function call, which, in fact, amounts to
returning a tuple of mixed-type objects:

1
2
3

def f(a, b):
return min(a, b), max(a, b), (a+b)/2
X, y, z="f(1, 2)

In C++ this is also possible by using the tuple utility. For instance, the following function computes the
mimimal and maximal element of a vector and also returns its cumulative sum. It returns all these values.

C++ code 0.3.4.1: Function with multiple return values =* GITLAB

1 | template <typename T>

2 | std::tuple<T, T, std :: vector<T>> extcumsum(const std::vector<T> &v) {
3 // Local summation variable captured by reference by lambda function
4 T sum{};

5 // temporary vector for returning cumulative sum

6 std :: vector<T> w{};

7 // cumulative summation

8 std :: transform (v.cbegin () ,v.cend () ,back_inserter (w) ,

9 [&sum] (T x) { sum += x; return(sum); });

10 return (std::make_tuple(xstd:: min_element(v.cbegin(), v.cend()),
0 xstd :: max_element(v.cbegin (), v.cend()),
12 std ::move(w))) ;

13 |}

This code snippet shows how to extract the individual components of the tuple returned by the previous
function.

C++ code 0.3.4.2: Calling a function with multiple return values =* GITLAB

int main () {
// initialize a vector from an initializer 1ist
std :: vector<double> v({1.2,2.3,3.4,4.5,5.6,6.7,7.8});
// Variables for return values
double minv,maxv; // Extremal elements
std :: vector<double> cs; // Cumulative sums
std :: tie (minv,maxv,cs) = extcumsum(v) ;
cout << "min = " << minv << ", max = " << maxv << endl;
cout << "cs = ["; for(double x: cs) cout << x << ’ ’; cout << "]" << endl;

© ® N o o A @ N =

0. Introduction, 0.3. Programming in C++

28

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/tietuple.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/tietuple.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

10 return (0) ;

1|}

Be careful: many temporary objects might be created! A demonstration of this hidden cost is given in
Exp. 0.3.5.27. From C++17 a more compact syntax is available:

C++ code 0.3.4.3: Calling a function with multiple return values =* GITLAB

int main () {
// initialize a vector from an initializer 1list
std :: vector<double> v({1.2,2.3,3.4,4.5,5.6,6.7,7.8});
// Definition of variables and assignment of return values all at once

auto [minv, maxv, cs] = extcumsum(v) ;
cout << "min = " << minv << ", max = " << maxv << endl;
cout << "cs = ["; for(double x: cs) cout << x << ’ ’; cout << "]" << endl;

return (0) ;

© ®©® N o O &~ @ o=

Remark 0.3.4.4 (“auto” considered harmful) C++ is a strongly typed programming language and every
variable must have a precise type. However, the developer of templated classes and functions may not
know the type of some variables in advance, because it can be deduced only after instantiation through
the compiler. The auto keyword has been introduced to handle this situation.

There is a temptation to use auto profligately, because it is convenient, in particular when using templated
data types. However, this denies a major benefit of types, consistency checking at compile time and, as a
developer, one may eventually lose track of the types completely, which can lead to errors that are hard to
detect.

Thus, the use of auto should be avoided, unless in the following situations:

e for variables inside templated functions or classes, whose precise type will only become clear during
instantiation,

e for lambda functions, see Section 0.3.3,

e for return values of templated library (member) functions, whose type is “impossible to deduce” by
the user. An example is expression templates in EIGEN, refer to Rem. 1.2.1.11 below.

0.3.5 A Vector Class

Since C++ is an object oriented programming language, datatypes defined by classes play a pivotal role in
every C++ program. Here, we demonstrate the main ingredients of a class definition and other important
facilities of C++ for the class MyVector meant for objects representing vectors from IR”. The codes can
be found in =* GITLAB. A similar vector class is presented in [Fri19, Ch. 6].

C++ 11 class 0.3.5.1: Definition of a simple vector class MyVector =+ GITLAB

1 | namespace myvec {

> | class MyVector {

s | public:

4 using value_t = double;

5 // Constructor creating constant vector, also default constructor

0. Introduction, 0.3. Programming in C++ 29

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/tietuple.cpp
https://en.wikipedia.org/wiki/Considered_harmful
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

explicit MyVector(std::size_t n = 0,double val = 0.0);

// Constructor: initialization from an STL container
template <typename Container> MyVector(const Container &v);

// Constructor: initialization from an STL iterator range

10 template <typename Iterator > MyVector(lterator first ,lterator last);
w | // Copy constructor, computational cost O(n)
12 MyVector(const MyVector &mv) ;

13 | // Move constructor, computational cost O(1)
14 MyVector(MyVector &&mv) ;

15 // Copy assignment operator, computational cost O(n)
16 MyVector &operator = (const MyVector &mv) ;
17 // Move assignment operator, computational cost O(l)

18 MyVector &operator = (MyVector &&mv) ;
19 // Destructor

20 virtual ~MyVector(void);
21 // Type conversion to STL vector
22 operator std::vector<double> () const;

24 // Returns length of vector

25 std::size_t size(void) const { return n; }

26 // Access operators: rvalue & lvalue, with range check
27 double operator [] (std::size_t i) const;

28 double &operator [] (std::size_t i);

29 // Comparison operators

30 bool operator == (const MyVector &mv) const;

31 bool operator != (const MyVector &mv) const;

2 // Transformation of a vector by a function R — R

33 template <typename Functor>

34 MyVector &transform (Functor &&f);

36 // Overloaded arithmetic operators

a7 // In place vector addition: x += y;

38 MyVector &operator +=(const MyVector &mv) ;

39 // In place vector subtraction: x—= y;

40 MyVector &operator —=(const MyVector &mv) ;

41 // In place scalar multiplication: Xx *= a;
42 MyVector &operator x=(double alpha);

43 // In place scalar division: x /= a;

44 MyVector &operator /=(double alpha);
45 // Vector addition

46 MyVector operator + (MyVector mv) const;

47 // Vector subtraction

48 MyVector operator — (const MyVector &mv) const;

49 // Scalar multiplication from right and left: x = a#*y; X = y#*a
50 MyVector operator x (double alpha) const;

51 friend MyVector operator *x (double alpha,const MyVector &);
52 // Scalar divsion: x = y/a;

53 MyVector operator / (double alpha) const;

54

55 // Euclidean norm

56 double norm(void) const;

57 // Euclidean inner product

58 double operator x(const MyVector &) const;

59 // Output operator

60 friend std::ostream &

61 operator << (std::ostream &,const MyVector &mv) ;

63 static bool dbg; // Flag for verbose output
64 | private:
65 std::size_t n; // Length of vector

0. Introduction, 0.3. Programming in C++

30

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

66 double x ;. // data array (standard C array)
o | };
68 |}

Note the use of a public static data member dbg in Line 63 that can be used to control debugging output
by setting MyVector: :dbg = true or MyVector: :dbg = false.

Remark 0.3.5.2 (Contiguous arrays in C++) The class MyVector uses a C-style array and dynamic
memory management with new and delete to store the vector components. This is for demonstration
purposes only and not recommended.

Arrays in C++

In C++ use the STL container std::vector<T> for storing data in contiguous memory locations.
Exception: use std::array<T>, if the number of elements is known at compile time.

§0.3.5.4 (Member and friend functions of MyVector =* GITLAB)

C++ code 0.3.5.5: Constructor for constant vector, also default constructor, see Line 28

1 | MyVector:: MyVector(std :: size_t _n,double _a):n(_n), (nullptr) {
2 if (dbg) cout << "{Constructor MyVector(" << _n

3 << ") called" << '}’ << endl;

4 if (n > 0) = new double [_n];

5 for (std::size_t 1=0;l<n;++1) [I] = _a;

6

}

This constructor can also serve as default constructor (a constructor that can be invoked without any
argument), because defaults are supplied for all its arguments.

The following two constructors initialize a vector from sequential containers according to the conventions
of the STL.

C++ code 0.3.5.6: Templated constructors copying vector entries from an STL container
-+ GITLAB

template <typename Container>
MyVector :: MyVector(const Container &v):n(v. (), (nullptr) {
if (dbg) cout << "{MyVector(length " << n
<< ") constructed from container" << '}’ << endl;

if (n>0) {
double xtmp = (= new double [n]) ;
for(auto i: v) xtmp++ = i; // foreach loop

}

© © N o O A 0 N o=

}

Note the use of the new C++ 11 facility of a “foreach loop” iterating through a container in Line 7.

0. Introduction, 0.3. Programming in C++ 31

http://en.cppreference.com/w/cpp/container/vector.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

C++ code 0.3.5.7: Constructor initializing vector from STL iterator range =* GITLAB

template <typename Iterator >
MyVector:: MyVector(Iterator first ,lterator last):n(0), (nullptr) {

|
2

3 n = std::distance (first ,last);

4 if (dbg) cout << "{MyVector(length " << n

5 << ") constructed from range" << '}’ << endl;
6 if (n > 0) {

7 = new double [n];

8 std ::copy (first , last,) ;

9

}

}

o

The use of these constructors is demonstrated in the following code

C++ code 0.3.5.8: Initialization of a MyVector object from an STL vector => GITLAB

int main() {
myvec : : MyVector::dbg = true;
std :: vector<int> ivec = { 1,2,3,5,7,11,18 }; // initializer 1ist

myvec : : MyVector
myvec : : MyVector

vi(ivec.cbegin() ,ivec.cend());
v2(ivec);
vr (ivec.crbegin() ,ivec.crend());

myvec : : MyVector
cout << "vi "
cout << "v2
cout << "vr
return (0) ;

<< vl << endl;
<< V2 << endl;
<< Vr << endl;

© © N o O A W N =
I n

o

—

The following output is produced:

{MyVector(length 7) constructed from range}
{MyVector(length 7) constructed from container}
{MyVector(length 7) constructed from range}

vi [1,2,3,5,7,11,13]

v2 = [1,2,3,5,7,11,13]

vr = [13,11,7,5,3,2,1]

{Destructor for MyVector(length = 7)}
{Destructor for MyVector(length = 7)}
{Destructor for MyVector(length = 7)}

The copy constructor listed next relies on the STL algorithm std: : copy to copy the elements of an

existing object into a newly created object. This takes 1 operations.

C++ code 0.3.5.9: Copy constructor = GITLAB

1 [MyVector :: MyVector(const MyVector &mv) :n(mv.n) , (nullptr) {
2 if (dbg) cout << "{Copy construction of MyVector(length "

3 << n << ")" << '}’ << endl;

4 if (n> 0) {

5 = new double [n];

6 std :: copy_n (mv. ,n,);

7 }

s |}

An important new feature of C++11 is move semantics which helps avoid expensive copy operations. The

0. Introduction, 0.3. Programming in C++

32

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
http://en.cppreference.com/w/cpp/language/move_constructor.html

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

following implementation just performs a shallow copy of pointers and, thus, for large » is much cheaper
than a call to the copy constructor from Code 0.3.5.9. The source vector is left in an empty vector state.

C++ code 0.3.5.10: Move constructor =* GITLAB

1
2
3
4
5

MyVector :: MyVector(MyVector &&mv) :n(mv.n), (mv.) |
if (dbg) cout << "{Move construction of MyVector(length "
<< n << ")" << '}’ << endl;
mv. = nullptr; mv.n = 0; // Reset victim of data theft

The following code demonstrates the use of std: : move () to mark a vector object as disposable and
allow the compiler the use of the move constructor. The code also uses left multiplication with a scalar,
see Code 0.3.5.23.

C++ code 0.3.5.11: Invocation of copy and move constructors => GITLAB

© © N o o A~ 0 N =

- o

int main() {
myvec : : MyVector::dbg = true;
myvec : : MyVector v1(std::vector<double>(
{1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9}));
myvec :: MyVector v2(2.0xv1); // Scalar multiplication
myvec : : MyVector v3(std::move(v1l));
cout << "vi " << vl << endl;
cout << "v2 << V2 << endl;
cout << "v3 << v3 << endl;
return (0);

This code produces the following output. We observe that v1 is empty after its data have been “stolen” by

V2.

{MyVector(length 8) constructed from container}
{operator ax, MyVector of length 8}

{ construction of MyVector(length 8)}
{operator %=, MyVector of length 8}

{

construction of MyVector(length 8)}

{Destructor for MyVector(length = 0)}

{

construction of MyVector(length 8)}

vi = []
v2 = [2.4,4.6,6.8,9,11.2,13.4,15.6,17.8]
v3 = [1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9]

{Destructor for MyVector(length
{Destructor for MyVector(length
{Destructor for MyVector(length

8)}
}
}

8)
0)

We observe that the object v 1 is reset after having been moved to v 3.

structor. Otherwise a 'move’ will trigger a plain copy operation. In particular, do not use

: Use std: :move only for special purposes like above and only if an object has a move con-

std: :move on objects at the end of their scope, e.g., within return statements.

The next operator effects copy assignment of an rvalue MyVector object to an Ivalue MyVector. This
involves O(n) operations.

0. Introduction, 0.3. Programming in C++ 33

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

C++ code 0.3.5.12: Copy assignment operator =+ GITLAB

© ® N o O &~ W N =

MyVector &MyVector:: operator = (const MyVector &mv) {
if (dbg) cout << "{Copy assignment of MyVector(length "

<< n << "<—" << mv.n << ")"<< '}’ << endl;
if (this == &mv) return(xthis);
if (n!= mv.n) {
n=mv.n;
if (data != nullptr) delete [] data;

if (n > 0) data = new double [n]; else data = nullptr;
}
if (n > 0) std::copy_n(mv.data,n,data);
return(xthis) ;

The move semantics is realized by an assignment operator relying on shallow copying.

C++ code 0.3.5.13: Move assignment operator <> GITLAB

1
2
3
4
5
6
7
8

MyVector &MyVector:: operator = (MyVector &&mv) {
if (dbg) cout << "{Move assignment of MyVector(length "
<< n << "<—" << mv.n << ")"<< '}’ << endl;
if (data != nullptr) delete [] data;
n = mv.n; data = mv.data;
mv.n = 0; mv.data = nullptr;

return(xthis) ;

The destructor releases memory allocated by new during construction or assignment.

C++ code 0.3.5.14: Destructor: releases allocated memory =* GITLAB

1
2
3
4
5

MyVector::~MyVector(void) {
if (dbg) cout << "{Destructor for MyVector(length =
<< n << ")" << '}’ << endl;
if (data != nullptr) delete [] data;

The operator keyword is also use to define implicit type conversions.

C++ code 0.3.5.15: Type conversion operator: copies contents of vector into STL vector

-> GITLAB

1
2
3
4

MyVector :: operator std::vector<double> () const {
if (dbg) cout << "{Conversion to std::vector, length = " << n << '}’
return std::vector<double>(data,data+n);

}

<< endl;

The bracket operator [] can be used to fetch and set vector components. Note that index range checking
is performed; an exception is thrown for invalid indices. The following code also gives an example of
operator overloading as discussed in § 0.3.1.2.

0. Introduction, 0.3. Programming in C++

34

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
http://en.cppreference.com/w/cpp/language/implicit_cast.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

C++ code 0.3.5.16: rvalue and Ivalue access operators =* GITLAB

double MyVector::operator [] (std::size_t i) const {
if (i >= n) throw(std::logic_error("[] out of range"));
return [i];

}

double &MyVector:: operator [] (std::size_t i) {
if (i >= n) throw(std::logic_error("[] out of range"));
return [i];

© ® N o O &~ W N =

Componentwise direct comparison of vectors. Can be dangerous in numerical codes,cf. Rem. 1.5.3.15.

C++ code 0.3.5.17: Comparison operators => GITLAB

1+ | bool MyVector:: operator == (const MyVector &mv) const
2
{
3 if (dbg) cout << "{Comparison ==: " << n << " <> " << mv.n <<
4 if (n != mv.n) return(false);
5 else {
6 for(std::size_t 1=0;l<n;++1)
7 if ([1T != mv. [1]) return(false);
8 }
9 return(true);
10 |}
1
12 | bool MyVector:: operator != (const MyVector &mv) const {
13 return !(xthis == mv);
4 |}

¥

<< endl;

The transform method applies a function to every vector component and overwrites it with the value
returned by the function. The function is passed as an object of a type providing a () -operator that accepts
a single argument convertible to doub1e and returns a value convertible to double.

C++ code 0.3.5.18: Transformation of a vector through a functor double — double

-> GITLAB

1 | template <typename Functor>

2 | MyVector &MyVector::transform (Functor &&f) {

3 for(std::size_t 1=0;l<n;++1) [1] = f([rn;
4 return(xthis) ;

5

}

The following code demonstrates the use of the t ransform method in combination with

1. a function object of the following type

C++ code 0.3.5.19: A functor type

struct SimpleFunction {
SimpleFunction(double _a = 1.0):cnt(0) ,a(_a) {}
double operator () (double x) { cnt++; return(x+a); }
int cnt; // internal counter
const double a; // increment value

® o A o N =

0. Introduction, 0.3. Programming in C++

35

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

2. alambda function defined directly inside the call to t ransform.

C++ code 0.3.5.20: transformation of a vector via a functor object

int main() {
myvec : : MyVector::dbg = false;
double a = 2.0; // increment
int cnt = 0; // external counter used by lambda function
myvec : : MyVector mv(std:: vector<double>(
{1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9}));
mv.transform ([a,&cnt] (double x) { cnt++; return(x+a); });
cout << cnt << " operations, mv transformed = " << mv << endl;
SimpleFunction trf(a); mv.transform(trf);
10 cout << trf.cnt << " operations, mv transformed =
e mv. transform (SimpleFunction(—4.0)) ;
12 cout << "Final vector = " << mv << endl;
13 return (0) ;

© ® N o o A& W o=

<< mv << endl;

The output is

8 operations, mv transformed = [3.2,4.3,5.4,6.5,7.6,8.7,9.8,10.
8 operations, mv transformed = [5.2,6.3,7.4,8.5,9.6,10.7,11.8,1
Final vector = [1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9]

9
2.

]
9]

Operator overloading provides the “natural” vector operations in IR” both in place and with a new vector

created for the result.

C++ code 0.3.5.21: In place arithmetic operations (one argumnt) => GITLAB

MyVector &MyVector:: operator +=(const MyVector &mv) {
if (dbg) cout << "{operator +=, MyVector of length "

]
2

3 << n << '}’ << endl;

4 if (n != mv.n) throw(std::logic_error ("+=: vector size mismatch")) ;
5 for(std::size_t 1=0;l<n;++1) data[l] += mv.data[l];

6 return(xthis) ;

7|}

8

9 | MyVector &MyVector:: operator —=(const MyVector &mv) {

10 if (dbg) cout << "{operator —=, MyVector of length "

11 << n << '}’ << endl;

12 if (n != mv.n) throw(std::logic_error ("—=: vector size mismatch"));
13 for(std::size_t 1=0;l<n;++1) data[l] —= mv.data[l];

14 return(xthis) ;

15 |}

17 | MyVector &MyVector:: operator x=(double alpha) {

18 if (dbg) cout << "{operator %=, MyVector of length "
19 << n << '}’ << endl;

20 for(std::size_t 1=0;l<n;++1) data[l] x= alpha;

21 return(xthis) ;

2 |}

2« | MyVector &MyVector:: operator /=(double alpha) {
25 if (dbg) cout << "{operator /=, MyVector of length "

26 << n << '}’ << endl;

0. Introduction, 0.3. Programming in C++

36

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

27 for(std::size_t 1=0;l<n;++1) data[l] /= alpha;
28 return(xthis) ;
2 |}

C++ code 0.3.5.22: Binary arithmetic operators (two arguments) => GITLAB

MyVector MyVector:: operator + (MyVector mv) const {

|
2 if (dbg) cout << "{operator +, MyVector of length "

3 << n << '}’ << endl;

4 if (n != mv.n) throw(std::logic_error ("+: vector size mismatch"));
5 mv += xthis;

6 return(mv) ;

70}

8

9 | MyVector MyVector:: operator — (const MyVector &mv) const {

10 if (dbg) cout << "{operator —, MyVector of length "

11 << n << '}’ << endl;

12 if (n != mv.n) throw(std::logic_error ("+: vector size mismatch")) ;
13 MyVector tmp(xthis); tmp —= mv;

14 return (tmp) ;

15 |}

17 | MyVector MyVector:: operator x (double alpha) const {

18 if (dbg) cout << "{operator xa, MyVector of length "
19 << n << '}’ << endl;

20 MyVector tmp(xthis); tmp x= alpha;

21 return (tmp) ;

2 |}

2« | MyVector MyVector:: operator / (double alpha) const {

25 if (dbg) cout << "{operator /, MyVector of length " << n << '}’ << endl;
26 MyVector tmp(xthis); tmp /= alpha;

27 return (tmp) ;

2 |}

C++ code 0.3.5.23: Non-member function for left multiplication with a scalar =+ GITLAB

1 | MyVector operator x (double alpha,const MyVector &mv) {

2 if (MyVector::dbg) cout << "{operator ax, MyVector of length "
3 << mv.n << '}’ << endl;

4 MyVector tmp(mv); tmp *= alpha;

5 return (tmp) ;

6

}

C++ code 0.3.5.24: Euclidean norm = GITLAB

1+ |double MyVector::norm(void) const {

2 if (dbg) cout << "{norm: MyVector of length " << n << '}’ << endl;
3 double s = 0;

4 for(std::size_t 1=0;l<n;++1) s += (data[l]xdata[l]);
5 return(std ::sqrt(s));
6

}

Adopting the notation in some linear algebra texts, the operator + has been chosen to designate the

Euclidean inner product:

0. Introduction, 0.3. Programming in C++

37

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

C++ code 0.3.5.25: Euclidean inner product =* GITLAB

double MyVector::operator x(const MyVector &mv) const {

|
2 if (dbg) cout << "{dot %, MyVector of length " << n << '}’ << endl;
3 if (n != mv.n) throw(std::logic_error ("dot: vector size mismatch")) ;
4 double s = 0;

5 for(std::size_t 1=0;l<n;++1) s += ([1]*mv. [rn;

6 return(s) ;

7|}

At least for debugging purposes every reasonably complex class should be equipped with output function-

ality.

C++ code 0.3.5.26: Non-member function output operator =+ GITLAB

1 | std ::ostream &operator << (std::ostream &o,const MyVector &mv) {
2 o<< "[";

3 for(std::size_t 1=0;l<mv.n;++1)

4 0 << mv. [1] << (l==mv.n—1?" ":’’);

5 return(o << "]1");

s |}

_

EXPERIMENT 0.3.5.27 (“Behind the scenes” of MyVector arithmetic) The following code highlights

the use of operator overloading to obtain readable and compact expressions for vector arithmetic.

C++ code 0.3.5.28:

int main() {

|
2 myvec : : MyVector::dbg = true;
3 myvec : : MyVector x(std::vector<double>({1.2,2.3,3.4,4.5,5.6,6.7, 1))
4 myvec : : MyVector y(std::vector<double>({2.1,3.2,4.3,5.4,6.5,7.6,8.7,9.8}))
5 auto z = x+(xxy)*x+2.0%xy/(x—y) . () ;
6

}

We run the code and trace calls. This is printed to the console:

{MyVector(length 8) constructed from container}
{MyVector(length 8) constructed from container}
{dot x, MyVector of length 8}

{operator ax, MyVector of length 8}

{ construction of MyVector(length 8)}
{operator %=, MyVector of length 8}

{operator +, MyVector of length 8}

{operator +=, MyVector of length 8}

{ construction of MyVector(length 8)}
{operator ax, MyVector of length 8}
{ construction of MyVector(length 8)}

{operator %=, MyVector of length 8}
{operator —, MyVector of length 8}

{ construction of MyVector(length 8)}
{operator —=, MyVector of length 8}
{norm: MyVector of length 8}

0. Introduction, 0.3. Programming in C++

38

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

{operator /, MyVector of length 8}

{ construction of MyVector(length 8)}
{operator /=, MyVector of length 8}
{operator +, MyVector of length 8}
{operator +=, MyVector of length 8}

{ construction of MyVector(length 8)}
{Destructor for MyVector(length = 0)}
{Destructor for MyVector(length = 8)}
{Destructor for MyVector(length = 8
{Destructor for MyVector(length = 8
{Destructor for MyVector(length = 0
{Destructor for MyVector(length = 8
{Destructor for MyVector(length = 8
{Destructor for MyVector(length = 8

e~~~ o~ o~ o~~~

Several temporary objects are created and destroyed and quite a few copy operations take place. The
situation would be worse unless move semantics was available; if we had not supplied a move constructor,
a few more copy operations would have been triggered. Even worse, the frequent copying of data runs a
high risk of cache misses. This is certainly not an efficient way to do elementary vector operations though
it looks elegant at first glance. a

EXAMPLE 0.3.5.29 (Gram-Schmidt orthonormalization based on MyVector implementation) Gram-
Schmidt orthonormalization has been taught in linear algebra and its theory will be revisited in § 1.5.1.1.
Here we use this simple algorithm from linear algebra to demonstrate the use of the vector class MyVector
defined in Code 0.3.5.1.

The templated function gramschmidt takes a sequence of vectors stored in a std::vector object. The
actual vector type is passed as a template parameter. It has to supply 1length and member
functions as well as in place arithmetic operations —=, / and =. Note the use of the highlighted methods
of the std::vector class.

C++ code 0.3.5.30: templated function for Gram-Schmidt orthonormalization => GITLAB

template <typename Vec>

|

2 | std::vector<Vec> gramschmidt(const std::vector<Vec> &A,double eps=1E—14) {

3 const int k = A. (); // no. of vectors to orthogonalize

4 const int n = A[0]. (); // length of vectors

5 cout << "gramschmidt orthogonalization for " << k <<’ ’ << n << "—vectors" <<
endl;

6 std :: vector<Vec> Q({A[0]/A[0]. ()}); // output vectors

7 for(int j=1;(j<k) && (j<n);++j) {

8 Q.push_back (A[j]) ;

9 for(int 1=0;l<j;++1) Q.back() —= (A[j]*xQ[I])*Q[I];

10 if (Q.back(). () < eps*A[j]. ()) { // premature termination ?

1 Q.pop_back () ; break;

12 }

13 Q.back() /= Q.back() . (); // normalization
14 }

15 return (Q); // return at end of local scope

This driver program calls a function that initializes a sequence of vectors and then orthonormalizes them
by means of the Gram-Schmidt algorithm. Eventually orthonormality of the computed vectors is tested.
Please pay attention to

0. Introduction, 0.3. Programming in C++ 39

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CppTutorial/myvector.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e the use of auto to avoid cumbersome type declarations,
e the for loops following the “foreach” syntax.

e automatic indirect template type deduction for the templated function gramschmidt from its argu-
ment. In Line 6 the function gramschmidt<MyVector> is instantiated.

C++ code 0.3.5.31: Driver code for Gram-Schmidt orthonormalization

int main() {

|
2 myvec : : MyVector ::dbg = false;

3 const int n = 7; const int k = 7;

4 auto A(initvectors(n,k,[] (int i,int j)

5 { return std::min(i+1,j+1); }));

6 auto Q(gramschmidt(A)); // instantiate template for MyVector
7 cout << "Set of vectors to be orthonormalized:" << endl;

8 for (const auto &a: A) { cout << a << endl; }

9 cout << "Output of Gram-Schmidt orthonormalization: " << endl;

10 for (const auto &q: Q) { cout << g << endl; }

1 cout << "Testing orthogonality:" << endl;

12 for (const auto &qgi: Q) {

13 for (const auto &gj: Q)

14 cout << std::setprecision(3) << std::setw(9) << qixqj << ’ ’;
15 cout << endl; }

16 return (0) ;

This initialization function takes a functor argument as discussed in Section 0.3.3.

C++ code 0.3.5.32: Initialization of a set of vectors through a functor with two arguments

template <typename Functor>
std :: vector<myvec : : MyVector>
initvectors (std::size_t n,std::size_t k,Functor &&f) {
std :: vector<MyVector> A{};
for(int j=0;j<k;++j) {
A.push_back (MyVector(n)) ;
for(int i=0;i<n;++i)
(A.back ())[i] = f(i,j);
}

return(A) ;

© ® N o o A~ W o=

o

}

0. Introduction, 0.3. Programming in C++ 40

Bibliography

[AG11]

[DRO8]
[DHO3]

[Fri19]
[GGK14]

[Gut09]
[Han02]

[Jos12]
[LLM12]

[NS02]
[QSS00]

[Str0g]

Uri M. Ascher and Chen Greif. A first course in numerical methods. Vol. 7. Computational
Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2011, pp. xxii+552. DOI; 10.1137/1.9780898719987 (cit. on p. 11).

W. Dahmen and A. Reusken. Numerik fir Ingenieure und Naturwissenschaftler. Heidelberg:
Springer, 2008 (cit. on p. 11).

P. Deuflhard and A. Hohmann. Numerical Analysis in Modern Scientific Computing. Vol. 43.
Texts in Applied Mathematics. Springer, 2003 (cit. on p. 12).

F. Friedrich. Datenstrukturen und Algorithmen. Lecture slides. 2019 (cit. on p. 29).

W. Gander, M.J. Gander, and F. Kwok. Scientific Computing. Vol. 11. Texts in Computational
Science and Engineering. Heidelberg: Springer, 2014 (cit. on p. 12).

M.H. Gutknecht. Lineare Algebra. Lecture Notes. SAM, ETH Zlrich, 2009 (cit. on p. 12).

M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen
Rechnens. Mathematische Leitfaden. Stuttgart: B.G. Teubner, 2002 (cit. on p. 11).

N.M. Josuttis. The C++ Standard Library. Boston, MA: Addison-Wesley, 2012 (cit. on p. 24).
S. Lippman, J. Lajoie, and B. Moo. C++ Primer. 5th. Boston: Addison-Wesley, 2012 (cit. on
pp. 24, 25).

K. Nipp and D. Stoffer. Lineare Algebra. 5th ed. Zurich: vdf Hochschulverlag, 2002 (cit. on
p. 12).

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37. Texts in Applied Math-
ematics. New York: Springer, 2000 (cit. on p. 11).

M. Struwe. Analysis fiir Informatiker. Lecture notes, ETH Zirich. 2009 (cit. on p. 12).

41

https://doi.org/10.1137/1.9780898719987

Chapter 1

Computing with Matrices and Vectors

§1.0.0.1 (Prerequisite knowledge for Chapter 1) The reader must master the basics of linear vector
and matrix calculus as covered in every introductory course on linear algebra [NS02, Ch. 2].

On a few occasions we will also need results of 1D real calculus like Taylor’'s formula [Str09, Sect. 5.5]. _

§1.0.0.2 (Levels of operations in simulation codes) The lowest level of real arithmetic available on
computers are the elementary operations “+”, “—", “x”, \ “N” “usually implemented in hardware. The next
level comprises computations on finite arrays of real numbers, the elementary linear algebra operations

(BLAS). On top of them we build complex algorithms involving iterations and approximations.

Complex iterative/recursive/approximative algorithms

Linear algebra operations on arrays (BLAS)

Elementary operations in IR

Hardly ever anyone will contemplate implementing elementary operations on binary data formats; similarly,
well tested and optimised code libraries should be used for all elementary linear algebra operations in

simulation codes. This chapter will introduce you to such libraries and how to use them smartly. _|
Contents
11 Fundamentals it i ittt ittt e e e e e e e e e e e 43
1.1.1 Notations e 43
1.1.2 Classesof Matrices o v v v i i e e e e e e 45
1.2 Softwareand Libraries. e 47
1.21 EIGEN . . . e e e e 47
122 PYTHON o e e e e e e e e e e e 53
1.2.3 (Dense) Matrix Storage Formats 54
1.3 Basic Linear AlgebraOperations 59
1.3.1 Elementary Matrix-Vector Calculus 59
1.3.2 BLAS - Basic Linear Algebra Subprograms 65
1.4 Computational Effort i, 71
141 (Asymptotic) Computational Complexity 72
1.4.2 Cost of Basic Linear-Algebra Operations 74
1.4.3 Improving Complexity in Numerical Linear Algebra: Some Tricks 75
1.5 Machine Arithmetic and Consequences 79
1.5.1 Experiment: Loss of Orthogonality 79
1.5.2 Machine Numbers e 82
1.5.3 Roundoff Errors. e 86
154 Cancellation e e 90

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1.5.5 Numerical Stability o oo 105

1.1 Fundamentals

1.1.1 Notations

The notations in this course try to adhere to established conventions. Since these may not be universal,
idiosyncrasies cannot be avoided completely. Notations in textbooks may be different, beware!

Many considerations apply to real (field IR) and complex (field C) numbers alike. Therefore we adopt the
notatin IK for a generic field of numbers. Thus, in this course, K will designate either IR (real numbers) or
C (complex numbers); complex arithmetic [Str09, Sect. 2.5] plays a crucial role in many applications, for
instance in signal processing.

§1.1.1.1 (Notations for vectors)
4 Vectors = are n-tuples (n € IN) with components € K.
vector = one-dimensional array (of real/complex numbers)

4 Default in this lecture: vectors = column vectors

X1
n 1,n
e K [x1-- %] €K
Xn
column vector row vector

A

K™ = vector space of column vectors with n components in K.

“Linear algebra convention”: Unless stated otherwise, in mathematical formulas vector com-
ponents are indexed from 1!

% notation for column vectors: bold small roman letters, e.g. x,y, z

. column vector +— row vector
4+ Transposing:

row vector — column vector

% Notation for row vectors: x',y ',z
4 Addressing vector components:
% two notations: X =[X1,...,Xn .
x € K" - (x); i=1,...,n
4 Selecting sub-vectors:

% notation: x = [x;...x,] > (X)) = (X ..., x] , 1<k<I<n

1. Computing with Matrices and Vectors, 1.1. Fundamentals 43

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

4+ j-th unit vector: e]- = [O, . .,1,. . .,0 , (e]')i = 51']', l,] = 1,. (R

& notation: Kronecker symbol, also called “Kronecker delta”, and defined as 51']- =1,ifi =,
5,']‘ = 0, if i 75]

§1.1.1.2 (Notations and notions for matrices)

4+ Matrices = two-dimensional arrays of real/complex numbers

alr ... Am
A = GH(H,T”, n,m € IN.
anl oo a;[mJ
vector space of n x m-matrices: (n = number of rows, m = number of columns)
% notation for matrices: bold CAPITAL roman letters, e.g., A,S,Y
Special cases: K™*! « columnvectors, K" <« row vectors
4+ Writing a matrix as a tuple of its columns or rows
C €]Kn, i=1,....m > A:= [Cl,Cz,...,Cm] e K™ ,
rf
r,eK" i=1,...,.n > A:=|:]| e K",
I,

4 Addressing matrix entries & sub-matrices (% notations):

— matrix entry/matrix element (A);;:=a;;, 1<i<n 1<j<m,

ay ... i —ithrow, 1 <i<mn: (A);.:=[aj1,...,08u, .
A= : — jtheolumn, 1 <j<m: (A).;:= [a,...,anj] ,
1<k</t<n
ayp ... 4 i — [a..] == ’
nl nm — matrix block (A)t,rs == [aif] el 1 ZpZs<m
(sub-matrix) "
k- Oy A s The colon (:) range notation is inspired by

MATLAB’s/PYTHON’s matrix addressing conventions.
(A)g. s isamatrix of size (I —k+1) x (s —r +1).

{ — Ay ay,s Note that in PYTHON the : notation
describes slightly different ranges: the

end value is excluded.
Fig. 5 j: i

4 Transposed matrix:

Al = | : : = | D | e KM

1. Computing with Matrices and Vectors, 1.1. Fundamentals 44

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

4 Adjoint matrix (Hermitian transposed):

allr ... Mm ailr ... an
A= | : = | D | e K™
anl e anm alm . e a_mn
% notation: a; = Me(a;;) — iJm(a;j) complex conjugate of a;;. Of course, for A € R™™ we

have AH = AT,

1.1.2 Classes of Matrices

Most matrices occurring in mathematical modelling have a special structure. This section presents a few
of these. More will come up throughout the remainder of this chapter; see also [AG11, Sect. 4.3].

§1.1.2.1 (Special matrices) Terminology and notations for a few very special matrices:

1 0
Identity matrix: I:=1,:= c K",
0 1
0O ... 0
Zero matrix: O:=0up:=|: . | e K",
0 ... 0
dl 0
Diagonal matrix: diag(dy, ..., dn) := c K", dieK, j=1,...,n.
0 d,

The creation of special matrices can usually be done by special commands or functions in the various
languages or libraries dedicated to numerical linear algebra, see § 1.2.1.3. J

§1.1.2.2 (Diagonal and triangular matrices) A little terminology to quickly refer to matrices whose non-
zero entries occupy special locations:

Definition 1.1.2.3. Types of matrices

A matrix A = [a;;] € K""is a
e diagonal matrix, if a;; = 0 fori # j,
e upper triangular matrix, ifa;; = 0fori > j,
e lower triangular matrix, if a;; = 0 fori <j.
A triangular matrix is normalized, ifa;; = 1,i = 1,..., min{m, n}.

1. Computing with Matrices and Vectors, 1.1. Fundamentals 45

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

diagonal matrix upper triangular lower triangular

§1.1.2.4 (Symmetric matrices)

Definition 1.1.2.5. Hermitian/symmetric matrices

A matrix M € K™", n € N, is Hermitian, if MH = M. If K = R, the matrix is called symmetric.

Definition 1.1.2.6. Symmetric positive definite (s.p.d.) matrices — | , Def. 3.31],

[, Def. 1.22]

M € K"*" n € IN, is symmetric (Hermitian) positive definite (s.p.d.), if

M=M" and ¥xe K" x'Mx>0 < x#0.

If x{Mx > Oforallx € K* > M positive semi-definite.

Lemma 1.1.2.7. Necessary conditions for s.p.d. — [DR08, Satz 3.33], [QSS00, Prop. 1.18]

For a symmetric/Hermitian positive definite matrix M = MY e K" holds true:
1. my; >0,i=1,...,n,
2. m;imjj — |m,']'|2 >0 ViI<i<j<m,
3. all eigenvalues of M are positive. (< also sufficient for symmetric/Hermitian M)

_I

Remark 1.1.2.8 (S.p.d. Hessians) Recall from analysis: in an isolated local minimum x* of a C2-function
f:R"+— R » Hessian D? f(x*) s.p.d. (see Def. 8.5.1.18 for the definition of the Hessian)

To compute the minimum of a C2-function iteratively by means of Newton’s method (— Sect. 8.5) a linear
system of equations with the s.p.d. Hessian as system matrix has to be solved in each step.

The solutions of many equations in science and engineering boils down to finding the minimum of some
(energy, entropy, etc.) function, which accounts for the prominent role of s.p.d. linear systems in applica-
tions. ¥

Review question(s) 1.1.2.9 (Notations, matrix-vector calculus, and special matrices)

(Q1.1.2.9.A) Give a compact notation for the row vector containing the diagonal entries of a square matrix
SeR", nelN.

(Q1.1.2.9.B) How can you write down the s X s-submatrix, s € IN, in the upper right corner of C € R,
n,m > s.

1. Computing with Matrices and Vectors, 1.1. Fundamentals 46

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(Q@1.1.2.9.C) We consider two matrices A, B € R, both with at most N € IN non-zero entries. What
is the maximal number of non-zero entries of A + B?

(@1.1.2.9.D) A matrix A € IR"*™ enjoys the following property (banded matrix):
ie{l,....n}, je{l,....m},i—j¢{-B-,...,B1} = (A);=0,

for given B_, B, € INp. What is the maximal number of non-zero entries of A.

(Q1.1.2.9.E) A matrix A with real entries is known to be skew-symmetric: AT = — A What does this tell
us about A and its entries?

A

1.2 Software and Libraries

Whenever algorithms involve matrices and vectors (in the sense of linear algebra) it is advisable to rely on
suitable code libraries or numerical programming environments.

1.2.1 EIGEN

Currently, the most widely used programming language for the development of new simulation software
in scientific and industrial high-performance computing is C++. In this course we are going to use and
discuss EIGEN as an example for a C++ library for numerical linear algebra (“embedded” domain specific
language: DSL).

EIGEN is a header-only C++ template library designed to enable easy, natural and efficient numerical
linear algebra: it provides data structures and a wide range of operations for matrices and vectors, see
below. EIGEN also implements many more fundamental algorithms documentation page or the discussion
below).

EIGEN relies on expression templates to allow the efficient evaluation of complex expressions involving
matrices and vectors. Refer to the example given in the EIGEN documentation for details.

w Link to an “EIGEN Cheat Sheet” (quick reference relating to MATLAB commands)

§1.2.1.1 (Matrix and vector data types in EIGEN) A generic matrix data type is given by the templated
class

: :Matrix<typename Scalar,
int RowsAtCompileTime, int ColsAtCompileTime>

Here Scalar is the underlying scalar type of the matrix entries, which must support the usual operations
'+, and '+=, *=", 7, etc. Usually the scalar type will be either double, float, or complex<>. The
cardinal template arguments RowsAtCompileTime and ColsAtCompileTime can pass a fixed size
of the matrix, if it is known at compile time. There is a specialization selected by the template argument

Eigen: :Dynamic supporting variable size “dynamic” matrices.

C++-code 1.2.1.2: Vector type and their use in EIGEN => GITLAB

1 |#include < /Dense >
2

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 47

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox
https://en.wikipedia.org/wiki/Expression_templates
http://eigen.tuxfamily.org/dox/TopicInsideEigenExample.html
http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/EigenTutorial/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

s | template <typename Scalar >
4 | void eigenTypeDemo(unsigned int dim)
5!
{
6 // General dynamic (variable size) matrices
7 using dynMat_t = Eigen:: Matrix<Scalar , Eigen ::Dynamic, Eigen :: Dynamic>;
8 // Dynamic (variable size) column vectors
9 using dynColVec_t = Eigen:: Matrix<Scalar , Eigen::Dynamic,1 >;
10 // Dynamic (variable size) row vectors
11 using dynRowVec_t = Eigen::Matrix<Scalar,1,Eigen::Dynamic>;
12 using index_t = typename dynMat_t::Index;
13 using entry_t = typename dynMat_t:: Scalar;
14
15 // Declare vectors of size ’dim’; not yet initialized
16 dynColVec_t colvec (dim) ;
17 dynRowVec_t rowvec (dim) ;
18 // Initialisation through component access
19 for(index_t i=0; i< colvec.size(); ++i) colvec[i] = (Scalar)i;
20 for(index_t i=0; i< rowvec.size(); ++i) rowvec[i] = (Scalar)1/(i+1);
21 colvec[0] = (Scalar)3.14; rowvec[dim—1] = (Scalar)2.718;
22 // Form tensor product, a matrix, see Section 1.3.1
23 dynMat_t vecprod = colvec+*rowvec;

24 const int nrows vecprod .rows () ;
25 const int ncols = vecprod.cols () ;

Note that in Line 23 we could have relied on automatic type deduction via auto vectprod =
However, as argued in Rem. 0.3.4.4 often it is safer to forgo this option and specify the type directly

The following convenience data types are provided by EIGEN, see ¥ EIGEN documentation:
e MatrixXd = generic variable size matrix with double precision entries

e VectorXd, RowVectorXd = dynamic column and row vectors
(= dynamic matrices with one dimension equal to 1)

e MatrixNd with N = 2, 3, 4 for small fixed size square N x N-matrices (type double)
e VectorNd with N = 2, 3, 4 for small column vectors with fixed length N.

The d in the type name may be replaced with i (for int), £ (for float), and cd (for
complex<double>) to select another basic scalar type.

All matrix type feature the methods cols (), rows (),and size () telling the number of columns, rows,
and total number of entries.

Access to individual matrix entries and vector components, both as Rvalue and Lvalue, is possible through
the () -operator taking two arguments of type index_t. If only one argument is supplied, the matrix is
accessed as a linear array according to its memory layout. For vectors, that is, matrices where one
dimension is fixed to 1, the []-operator can replace () with one argument, see Line 21 of Code 1.2.1.2.
J

§1.2.1.3 (Initialization of dense matrices in EIGEN, 8 EIGEN documentation) The entry access oper-
ator (int i,int 7j) allowsthe most direct setting of matrix entries; there is hardly any runtime penalty.

Of course, in EIGEN dedicated functions take care of the initialization of the special matrices introduced in
§1.1.2.1:

Eigen::MatrixXd I = Eigen::MatrixXd::Identity(n,n);

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 48

https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
https://eigen.tuxfamily.org/dox/group__TutorialAdvancedInitialization.html

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Eigen::MatrixXd O = Eigen::MatrixXd::Zero(n,m);

FEigen::MatrixXd D

d_vector.asDiagonal ();

C++-code 1.2.1.4: Initializing special matrices in EIGEN, =* GITLAB

© © N o O A N o=

#include <Eigen/Dense >

// Just allocate space for matrix, no initialisation
Eigen:: MatrixXd A(rows, cols) ;

// Zero matrix. Similar to matlab command zeros(rows, cols);
Eigen:: MatrixXd B = MatrixXd ::Zero(rows, cols);

// Ones matrix. Similar to matlab command ones(rows, cols);
Eigen:: MatrixXXd C = MatrixXd ::Ones(rows, cols);

// Matrix with all entries same as value.

Eigen:: MatrixXd D = MatrixXd :: Constant(rows, cols, value);

// Random matrix, entries uniformly distributed in [0,1]
Eigen:: MatrixXd E = MatrixXd ::Random(rows, cols);

// (Generalized) identity matrix, 1 on main diagonal
Eigen:: MatrixXd | = MatrixXd:: ldentity (rows, cols);

", << A.cols () <<

std ::cout << "size of A = (" << A.rows() << ’,’ ")’ << std::endl;

A versatile way to initialize a matrix relies on a combination of the operators « and , , which allows the
construction of a matrix from blocks, see =+ GITLAB, function blockinit ().

MatrixXd mat3(6,6);

mat3 <<
MatrixXd: :Constant(4,2,1.5), // top row, first block
MatrixXd: :Constant (4,3,3.5), // top row, second block
MatrixXd: :Constant(4,1,7.5), // top row, third block
MatrixXd::Constant(2,4,2.5), // bottom row, left block
MatrixXd: :Constant(2,2,4.5); // bottom row, right block

The matrix is filled top to bottom left to right, block dimensions have to match (like in MATLAB).

_

§1.2.1.5 (Access to submatrices in EIGEN, 8 EIGEN documentation) The method b1 ock (int i, int
j,int p,int g) returns a reference to the submatrix with upper left corner at position (7,) and size

pxq.

The methods row (int 1) and col (int j) provide a reference to the corresponding row and column of
the matrix. Even more specialised access methods are

topLeftCorner(p,q),bottomLeftCorner (p,q),
topRightCorner (p,q), bottomRightCorner (p,q),
topRows (), bottomRows (q),

leftCols(p),and rightCols (q),

with obvious purposes.

C++ code 1.2.1.6: Demonstration code for access to matrix blocks in EIGEN = GITLAB

® N o o 9~ 0 N

template <typename MatType>

void blockAccess(Eigen:: MatrixBase <MatType> &M)

{
using index_t = typename Eigen::MatrixBase <MatType>::Index;
using entry_t = typename Eigen::MatrixBase <MatType>::Scalar;
const index_t nrows(M.rows()); // No. of rows
const index_t ncols(M.cols()); // No. of columns

1. Computing with Matrices and Vectors, 1.2. Software and Libraries

49

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/EigenTutorial/main.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/EigenTutorial/main.cpp
https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/blockOps/Eigen/blockOps.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Note: Unless the preprocessor switch NDEBUG is set, EIGEN performs range checks on all indices.

cout << "Matrix M = " << endl << M << endl; // Print matrix
// Block size half the size of the matrix
index_t p = nrows/2,q = ncols/2;
// Output submatrix with left upper entry at position (i)
for(index_t i=0; i < min(p,q); i++)

cout << "Block (" << i << ', " << i << ', << p << ', << (@

<< ") = " << M.block(i,i,p,q) << endl;

// l-value access: modify sub-matrix by adding a constant
M.block(1,1,p,q) += Eigen:: MatrixBase <MatType >:: Constant(p,q,1.0) ;
cout << "M = " << endl << M << endl;
// r-value access: extract sub-matrix
MatrixXd B = M.block(1,1,p,q);
cout << "lIsolated modified block =
// Special sub-matrices
cout << p << " top rows of m =
cout << p << " bottom rows of m =
cout << q << left cols of m= " << M.leftCols(q) << endl;
cout << q << " right cols of m= " << M.rightCols(p) << endl;
// r—-value access to upper triangular part
const MatrixXd T = M.template triangularView <Upper>(); //
cout << "Upper triangular part = " << endl << T << endl;
// 1-value access to upper triangular part
M.template triangularView <Lower>() x= —1.5; //
cout << "Matrix M= " << endl << M << endl;

<< endl << B << endl;
" << M.topRows(p) << endl;
" << M.bottomRows(p) << endl;

M.triangularView<XX> ()

e Note that the function blockAccess () is templated and that the matrix argument passed through
M has a type derived from Eigen::MatrixBase. The deeper reason for this alien looking signature of
blockAccess () is explained in @ EIGEN documentation.

e EIGEN offers views for access to triangular parts of a matrix, see Line 29 and Line 32, according to

where XX can stand for one of the following: Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper,
UnitLower, see ¥ EIGEN documentation.

e For column and row vectors references to sub-vectors can be obtained by the methods head (int
length), tail (int length), and segment (int pos,int length).

_

§1.2.1.7 (Componentwise operations in EIGEN) Running out of overloadable operators, EIGEN uses the
Array concept to furnish entry-wise operations on matrices. An EIGEN-Array contains the same data as a
matrix, supports the same methods for initialisation and access, but replaces the operators of matrix arith-
metic with entry-wise actions. Matrices and arrays can be converted into each other by the arravy () and
matrix () methods, see 8 EIGEN documentation for details. Information about functions that enable
entry-wise operation is available in the B EIGEN documentation.

C++ code 1.2.1.8: Using Array in EIGEN =* GITLAB

2
3
4
5
6

void matArray (int nrows,int ncols) {

Eigen:: MairixXd mi(nrows, ncols) ,m2(nrows, ncols);

for(int i = 0; i < ml.rows(); i++)
for(int j=0; j < ml.cols(); j++) {
mi(i,j) = (double) (i+1)/(j+1);

1. Computing with Matrices and Vectors, 1.2. Software and Libraries

50

https://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
https://eigen.tuxfamily.org/dox/group__QuickRefPage.html
https://eigen.tuxfamily.org/dox/group__TutorialArrayClass.html
https://eigen.tuxfamily.org/dox/group__CoeffwiseMathFunctions.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/matArray/Eigen/matArray.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

7 m2(i,j) = (double)(j+1)/(i+1);
8
}
9 // Entry-wise product, not a matrix product
10 Eigen:: MatrixXd m3 = (mi1.array () x m2.array()).matrix() ;
11 // Explicit entry-wise operations on matrices are possible
12 Eigen :: MatrixXd m4(mi.cwiseProduct (m2)) ;
13 // Entry-wise logarithm

14 cout << "Log(m1) = " << endl << log(mi.array()) << endl;
15 // Entry-wise boolean expression, true cases counted
16 cout << (mi.array() > 3).count() << " entries of ml > 3" << endl;

The application of a functor (— Section 0.3.3) to all entries of a matrix can also be done via the
unaryExpr () method of a matrix:

// Apply a lambda function to all entries of a matrix
auto fnct = [] (double x) { return (x+1.0/x); };
cout << "f(ml) = " << endl << ml.unaryExpr (fnct) << endl;

_I

§1.2.1.9 (Reduction operations in EIGEN) According to EIGEN’s terminology, reductions are op-
erations that access all entries of a matrix and accumulate some information in the process
B EIGEN documentation. A typical example is the summation of the entries.

C++ code 1.2.1.10: Summation reduction in EIGEN = GITLAB

> |template <class Matrix>
s |void sumEntries (Eigen:: MatrixBase <Matrix> 8M) {
4 using Scalar = typename Eigen::MatrixBase <Matrix >::Scalar;
5 // Compute sum of all entries
6 const Scalar s = M.sum() ;
7 // Row-wise and column-wise sum of entries: results are vectors
8 Eigen:: Matrix<Scalar, 1, Eigen::Dynamic> colsums{M.rowwise () .sum() };
9 Eigen:: Matrix<Scalar, Eigen::Dynamic, 1> rowsums{M.colwise().sum() };
10 std ::cout << M.rows() << 'X’ << M.cols() << "—matrix: " << colsums.sum()
11 << " =" << rowsums.sum() << " = " << s << std::endl;
12
}

_

Remark 1.2.1.11 ("auto’ in EIGEN codes) The expression template programming model (— explanations
from EIGEN documentation) relies on complex intermediary data types hidden from the user . They support
the efficient evaluation of complex expressions B EIGEN documentation. Let us look at the following two
code snippets that assume that both M and R are of type Eigen::MatrixXd.

Code I:

auto D = M.diagonal () .asDiagonal(); R = D.inverse();

Code ll:

Figen::MatrixXd D = M.diagonal ().asDiagonal (); R = D.inverse|();

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 51

https://eigen.tuxfamily.org/dox/group__TutorialReductionsVisitorsBroadcasting.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/EigenTutorial/eigenreductions.cpp
http://eigen.tuxfamily.org/index.php?title=Expression_templates
http://eigen.tuxfamily.org/index.php?title=Expression_templates
https://eigen.tuxfamily.org/dox/TopicInsideEigenExample.html

Fig. 6

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

inversion of diagonal matrices
performance vs. matrix size

— explicit .

00 T (Quad-Core Intel Core i7 @ 3.1 GHz L2 256 KB, L3
8MB, Mem 16 GB, macOS 10.15.5, clang version
11.0.3 -02, NDEBUG)

10% §
1 We observe that for large matrices Code | (“auto”, —
, values < 0.5us suppressed) runs much faster than
Code Il (“explicit”, —) though they are “algebraically
equivalent”.

time [ps]

102 4

10! 4

10° 4

T T
10! 102
matrix size (n)

The reason is that in Code | D is of a complex type that preserves the information that the matrix is diagonal.
Of course, inverting a diagonal matrix is cheap. Conversely forcing D to be of type Eigen::MatrixXd loses
this information and the expensive invert () method for a generic densely populated matrix is invoked.

This is one of the exceptions to Rem. 0.3.4.4: for variables holding the result of EIGEN expressions auto
is recommended. u

Remark 1.2.1.12 (EIGEN-based code: debug mode and release mode) If you want a C++ code built
using the EIGEN library run fast, for instance, for large computations or runtime measurements, you should
compile in release mode, that is, with the compiler switches —02 —-DNDEBUG (for gcc or clang). In a
cmake-based build system you can achieve this by setting the flag CMAKE_BUILD_TYPE to “Release”.

The default setting for EIGEN is debug mode, which makes EIGEN do a lot of consistency
A checking and considerably slows down execution of a code.

B> For “production runs” EIGEN-based codes must be compiled in release mode!

Remark 1.2.1.13 (EIGEN in use)

1= EIGEN is used as one of the base libraries for the Robot Operating System (ROS), an open source
project with strong ETH participation.

== The geometry processing library libigl uses EIGEN as its basic linear algebra engine. It is being used
and developed at ETH Zurich, at the Interactive Geometry Lab and Advanced Technologies Lab.

Review question(s) 1.2.1.14 (EIGEN)
For the following questions you may consult the EIGEN documentation.

(Q1.2.1.14.A) Outline a C++ function
template <typename Matrix>
void replaceWithId(FEigen::DenseBase<Matrix> &M);
that checks whether the matrix is an n x n-matrix with even n € IN and then replaces its upper right
n/2 x n/2-block with an identity matrix. Do not use any C++ loops.

(Q1.2.1.14.B) Given an Eigen::VectorXd object v (+» v € IR"), sketch a C++ code snippet that replaces
it with a vector v defined by

(¥), = {(v)n fori=1,

(v);q fori=2,...,n.

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 52

http://www.ros.org/
http://libigl.github.io/libigl/
http://igl.ethz.ch/
http://ait.inf.ethz.ch/

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Do not use C++ loops. Can you see a problem?

(Q1.2.1.14.C) Given a matrix M € IR™" stored in an Eigen::MatrixXd object M write down a C++ code
snipper that initializes another variable Mext of type Eigen::MatrixXd corresponding to

N - — M 0 m+1,n+1
e M0

using EIGEN’s << matrix construction operator B EIGEN documentation.

(Q1.2.1.14.D) Learn about the methods () and () from the EIGEN documentation and ex-
press them by means of the () method applied to the same variable.

1.2.2 PYTHON

PYTHON is a widely used general-purpose and open source programming language. Together with the
packages like NUMPY and MATPLOTLIB it delivers similar functionality like MATLAB for free. For interactive
computing IPYTHON can be used. All those packages belong to the SCIPY ecosystem.

PYTHON features a good documentation and several scientific distributions are available (e.g. Anaconda,
Enthought) which contain the most important packages. On most Linux-distributions the SCIPY ecosystem
is also available in the software repository, as well as many other packages including for example the
Spyder IDE delivered with Anaconda.

A good introduction tutorial to numerical PYTHON are the ScCIPY-lectures. The full documentation of
NUMPY and ScIPY can be found here. For former MATLAB-users there’s also a guide. The scripts in this
lecture notes follow the official PYTHON style guide.

Note that in PYTHON we have to import the numerical packages explicitly before use. This is normally done
at the beginning of the file with lines like numpy np and matplotlib

pyplot plt. Those import statements are often skipped in this lecture notes to focus on the actual
computations. But you can always assume the import statements as given here, e.g. np.ravel (A) is
a call to a NUMPY function and plt.loglog (x, y) isacalltoa MATPLOTLIB pyplot function.

PYTHON is not used in the current version of the lecture. Nevertheless a few PYTHON codes are supplied
in order to convey similarities and differences to implementations in MATLAB and C++.

§1.2.2.1 (Matrices and Vectors in PYTHON) The basic numeric data type in PYTHON are NUMPY’s n-
dimensional arrays. Vectors are normally implemented as 1D arrays and no distinction is made between
row and column vectors. Matrices are represented as 2D arrays.

I v = np.array([1, 2, 3]) creates a 1D array with the three elements 1, 2 and 3.

I A = np.array ([[1, 2], [3, 4]] createsa 2D array.
1 A.shape gives the n-dimensional size of an array.
== A . size gives the total number of entries in an array.

Note: There’s also a matrix class in NUMPY with different semantics but its use is officially discouraged

and it might even be removed in future release.
_l

§1.2.2.2 (Manipulating arrays in PYTHON) There are many possibilities listed in the documentation how
to create, index and manipulate arrays.

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 53

https://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html
http://www.python.org/
http://scipy.org/
http://www.python.org/doc/
http://www.continuum.io/
http://enthought.com/
http://www.scipy-lectures.org/
http://docs.scipy.org
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
https://www.python.org/dev/peps/pep-0008/
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

An important difference to MATLAB is, that all arithmetic operations are normally performed element-wise,
e.g. A = B s not the matrix-matrix product but element-wise multiplication (in MATLAB: A. xA). Also A

x v does a broadcasted element-wise product. For the matrix product one has to use np.dot (A, B)
or A.dot (B) explicitly. N

1.2.3 (Dense) Matrix Storage Formats

All numerical libraries store the entries of a (generic = dense) matrix A € K" in a linear array of length
mn (or longer). Accessing entries entails suitable index computations.

Two natural options for “vectorisation” of a matrix: row major, column major

Row major (C-arrays, bitmaps, Python):
|Aa_arr|[1]2]3]4]|5]6]7]8]9]
Column major (Fortran, MATLAB, EIGEN):
|Aa_arr|[1]4]7]2]|5][8]3]6]9]

1 2 3
A=|4 56
7 8 9

Access to entry (A);; of A € K™,

i=1,....nj=1,...,m: . S e / / / / / / /

o i e = NIRRT

row major: /:/ —— / / / / / / /
(A);<>A_arr(m*(i-1)+(-1)) —_— :::

lumn major: — — il ///////

ST = H OO

(A);¢>B_arr(n*(-1)+(-1)) o o L TLTIYIYIYTY

row major column major

EXAMPLE 1.2.3.1 (Accessing matrix data as a vector) In EIGEN the single index access operator relies
on the linear data layout:

In EIGEN the data layout can be controlled by a template argument; default is column major.

C++ code 1.2.3.2: Single index access of matrix entries in EIGEN =* GITLAB

> |void storageOrder(int nrows=6,int ncols=7)
3
{
4 cout << "Different matrix storage layouts in Eigen" << endl;
5 // Template parameter ColMajor selects column major data layout
6 <double , Dynamic, Dynamic, ColMajor> mcm(nrows , ncols) ;
7 // Template parameter RowMajor selects row major data layout
8 <double , Dynamic, Dynamic, RowMajor> mrm(nrows, ncols) ;
9 // Direct initialization; lazy option: use int as index type
10 for (int |I=1,i= 0; i< nrows; i++)
11 for (int j= 0; j< ncols; j++,|++)
12 mem(i,j) = mm(i,j) = |;
13
14 cout << "Matrix mm = " << endl << mm << endl;
15 cout << "mom linear = ";
16 for (int 1=0;1 < mcm. (); 1++) cout << mem(Il) << ’,’;
17 cout << endl;
18
19 cout << "mm linear = ";

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 54

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/storageorder/Eigen/storageOrder.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

20 for (int 1=0;l < mm. (); I++) cout << mm(l) << *,;
21 cout << endl;
2 |}

The function call storageOrder (3, 3), cf. Code 1.2.3.2 yields the output

1+ Different storage layouts in
2 mrm =

s 123

« 456

s 7 89

¢ mcm linear = 1,4,7,2,5,8,3,6,9,

; mm linear = 1,2,3,4,5,6,7,8,9,

In PYTHON the default data layout is row major, but it can be explicitly set. Further, array transposition
does not change any data, but only the memory order and array shape.

PyTHON-code 1.2.3.3: Storage order in PYTHON

array creation
A = np.array ([[1, 2], [38, 4]]) # default (row major) storage
B = np.array ([[1, 2], [3, 4]], order="F’') # column major storage

show internal storage
np.ravel (A, 'K’) # array elements as stored in memory: [1, 2, 3, 4]
np.ravel (B, 'K’) # array elements as stored in memory: [1, 3, 2, 4]

© ® N o o A~ W N =

nothing happens to the data on transpose, just the storage order

changes
1o |np.ravel (A.T, 'K’') # array elements as stored in memory: [1, 2, 3, 4]
1 |np.ravel(B.T, 'K’) # array elements as stored in memory: [1, 3, 2, 4]

13 |# storage order can be accessed by checking the array’s flags
14 |A.flags ['C_CONTIGUOUS’] # True

15 |B.flags ['F_CONTIGUOUS’] # True

16 |A.T.flags ['F_ CONTIGUOUS’] # True

17 [B.T.flags ['C_CONTIGUOUS'] # True

Remark 1.2.3.4 (Vectorisation of a matrix) Mapping a column-major matrix to a column vector with the
same number of entries is called vectorization or linearization in numerical linear algebra, in symbols

vec: K" — K"™ | vec(A) := J e R (1.2.3.5)

_l

Remark 1.2.3.6 (Reshaping matrices in EIGEN) If you need a reshaped view of a matrix’ data in EIGEN
you can obtain it via the raw data vector belonging to the matrix. Then use this information to create a
matrix view by means of Map — documentation.

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 55

https://eigen.tuxfamily.org/dox/group__TutorialMapClass.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

C++ code 1.2.3.7: Demonstration on how reshape a matrix in EIGEN =* GITLAB

template <typename MatType>

void reshapetest(MatType &M)

{
using index_t typename MaitType :: Index ;
using entry_t = typename MatType:: Scalar;
const index_t nsize (M.size());

© ©® N o o B~ W N

// reshaping possible only for matrices with non-prime dimensions
w0 | if ((nsize %2) == 0) {
11 entry_t xMdat = M.data(); // raw data array for M

12 // Reinterpretation of data of M

13 Map<Eigen :: Matrix<entry_t ,Dynamic, Dynamic>> R(Mdat,2,nsize/2) ;

14 // (Deep) copy data of M into matrix of different size
15 Eigen:: Matrix<entry_t ,Dynamic,Dynamic> S =

16 Map<Eigen :: Matrix<entry_t ,Dynamic, Dynamic>>(Mdat,2 , nsize /2) ;

17

18 cout << "Matrix M = " << endl << M << endl;

19 cout << "reshaped to " << R.rows() << X’ << R.cols ()

20 << " =" << endl << R << endl;

21 // Modifying R affects M, because they share the data space !
22 R %= —1.5;

23 cout << "Scaled (!) matrix M = " << endl << M << endl;

24 // Matrix S 1is not affected, because of deep copy

25 cout << "Matrix S = " << endl << S << endl;

This function has to be called with a mutable (I-value) matrix type object. A sample output is printed next:

1

Matrix M =
0—-1-2-3—-4-5-6
i 0—-1-2-3-4-5
2 1 0-1-2-3-4
3 2 1 0-1-2-3
4 3 2 1 0-1-=-2
5 4 3 2 1 0 -1
reshaped to 2x21 =
o 2 41 1 320 2-3—-1 1-4-2 0-5-3-1-6-4-2
1 3502 41 1 320 2-3—-1 1-4-2 0-5-3-1
Scaled (!) matrix M =
-0 1.5 3 4.5 6 7.5 9
—-15 -0 1.5 3 4.5 6 7.5
-3 —-15 -0 1.5 3 4.5 6
—45 -3 —-15 -0 1.5 3 4.5
-6 —45 -3 -15 -0 1.5 3
-75 -6 —-45 -3 -15 -0 1.5
Matrix S =
o 2 41 1 320 2-3-1 1-4-2 0-5-3-1-6-4-2
1 3502 41 1 320 2-3—-1 1-4-2 0-5-3-1

_

Remark 1.2.3.8 (NUMPY function reshape) NUMPY offers the function np . reshape for changing the
dimensions of a matrix A € IK™":

1.

Computing with Matrices and Vectors, 1.2. Software and Libraries 56

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/reshape/Eigen/reshape.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

read elements of A in row major order (default)

= np.reshape (A, (k, 1)) # error, in case kl # mn

= np.reshape(A, (k, 1), order='C’") # same as above
read elements of A in column major order

= np.reshape(d, (k, 1), order='F')

read elements of A as stored in memory

= np.reshape(A, (k, 1), order="A")

00 % 00 % W W %

This command will create an k x [-array by reinterpreting the array of entries of A as data for an array
with k rows and 1 columns. The order in which the elements of A are be read can be set by the order
argument to row major (default, * C’), column major (* £’) or A’s internal storage order, i.e. row major if
A is row major or column major if A is column major (" A"). J

EXPERIMENT 1.2.3.9 (Impact of matrix data access patterns on runtime) Modern CPU feature several
levels of memories (registers, L1 cache, L2 cache, ..., main memory) of different latency, bandwidth, and
size. Frequently accessing memory locations with widely different addresses results in many cache misses
and will considerably slow down the CPU.

The following C++ code sequentially runs through the entries of a column major matrix (EIGEN’s de-
fault) in two ways and measures the (average) time required for the loops to complete. It relies on the
std: : chrono library ©

C++-code 1.2.3.10: Timing for row and column oriented matrix access for EIGEN =* GITLAB

2 |void rowcolaccesstiming(void)
3
{
4 const int K = 3; // Number of repetitions
5 const int N.min = 5; // Smalles matrix size 32
6 const int Nmax = 13; // Scan until matrix size of 8192
7 unsigned long n = (1L << N_min) ;
8 il times (N_max—N_min+1,3) ;
9
10 for(int I=N_min; I<= N_max; |++, nx=2) {
e i A = i o (n,n);
12 double t1 = 1000.0;
13 for(int k=0;k<K;k++) {
14 auto tic = high_resolution_clock ::now() ;
15 for(int j=0; j < n—1; j++) A.row(j+1) —= A.row(j); // row access
16 auto toc = high_resolution_clock ::now() ;
17 double t = (double)duration_cast <microseconds>(toc—tic).count()/1E6;
18 t1 = std::min(t1,t);
19 }
20 double t2 = 1000.0;
21 for(int k=0;k<K;k++) {
22 auto tic = high_resolution_clock ::now() ;
23 for(int j=0; j < n—1; j++) A.col(j+1) —= A.col(]); //column access
24 auto toc = high_resolution_clock ::now() ;
25 double t = (double)duration_cast <microseconds>(toc—tic).count()/1E6;
26 t2 = std::min(t2,1t);
27 }
28 times (I-N_min,0) = n; times (I-N_min,1) = t1; times (I-N_min,2) = t2;
29 }
30 std ::cout << times << std::endl;
31
}

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 57

http://en.cppreference.com/w/cpp/chrono
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/accesstiming/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

101; T

+ A1) = AGHT) - AG) 1
* 0 A@+1,) = Ai+1,:) - A, *] .
" Sgen owacoses 51 < Plot of average runtimes as measured
107 £ eigen column access E| .
: * . with code Code 1.2.3.10.
o + 1

o
T
I

+ A Platform:
] 4 ubuntu 14.04 LTS

0 %

ol 7% 1 4 i7-3517UCPU @ 1.90GHz A— 4

E . s | 4 L132KB, L2 256 KB, L3 4096 KB,
S0t ¥ 0 a Mem 8 GB

i P g | 4 gcc4.8.4,-03, -DNDEBUG

The compiler flags —03 and —DNDEBRUG
| are essential. The C++ code would be
. | significantly slower if the default compiler
° | options were used!

106 ‘ :
10! 102 108 104
n

We observe a blatant discrepancy of CPU time required for accessing entries of a matrix in rowwise or
columnwise fashion. This reflects the impact of features of the unterlying hardware architecture, like cache
size and memory bandwidth:

Interpretation of timings: Since standard matrices in EIGEN are stored column major all the matrix el-
ements in a column occupy contiguous memory locations, which will all reside in the cache together.
Hence, column oriented access will mainly operate on data in the cache even for large matrices. Con-
versely, row oriented access addresses matrix entries that are stored in distant memory locations, which
incurs frequent cash misses (cache thrashing).

The impact of hardware architecture on the performance of algorithms will not be taken into account in
this course, because hardware features tend to be both intricate and ephemeral. However, for modern
high performance computing it is essential to adapt implementations to the hardware on which the code is
supposed to run. J

Review question(s) 1.2.3.11 (Dense matrix storage formats)

(Q1.2.3.11.A) Write efficient elementary C++ loops that realize the matrixxvector product Mx,
m € R"™" x € R", where M is stored in an Eigen::MatrixXd object M and x given as a
Eigen::VectorXd object x. Assume the default (Column major) memory layout for M. Discuss the
memory access pattern.

(Q1.2.3.11.B) A black-box function has the following signature:

template <typename Vector>
double processVector(const Eigen::DenseBase<Vector> &v);

It is known that it accesses each vector entry only once.

Recall that the vectorisation of a matrix A € K""is defined as

vec: K" — K"™ | vec(A) := J e RM (1.2.3.5)

Given a matrix A € IR"" stored in an Eigen::MatrixXd object A (column major memory layout), how
can you efficiently realize the following function calls in C++:

1. Computing with Matrices and Vectors, 1.2. Software and Libraries 58

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e processVector(vec(A)),

e processVector(vec(AT)) ?

1.3 Basic Linear Algebra Operations

First we refresh the basic rules of vector and matrix calculus. Then we will learn about a very old program-
ming interface for simple dense linear algebra operations.

1.3.1 Elementary Matrix-Vector Calculus

What you should know from linear algebra [NS02, Sect. 2.2]:

4 vector space operations in matrix space IK""" (addition, multiplication with scalars)

‘ n

dotproduct: x,y € K", n € N: xy:=x"y=) zy, €K

i=1

(in EIGEN: x.dot (y) or x.adJjoint () =y, x,y = column vectors)
+ H

tensor product: x € K",y e K", n € N: xy" = (x7;) iz1,.m € K™"

j=1,...n

(in EIGEN: x*y.adjoint (), x,y = column vectors)

4 All are special cases of the matrix product:
n
AcK™, BeK'"™: AB=|) a;b; e K™ (1.3.1.1)
j=1 i=1,..,m

I=1,...k

Recall from linear algebra basic properties of the matrix product: for all K-matrices A, B, C (of suitable
sizes), o, p € K

associative: (AB)C = A(BC) ,
bi-linear: («A + BB)C = a(AC) + B(BC), C(aA + BB) = a(CA) + B(CB),
non-commutative: AB # BA ingeneral .

§1.3.1.2 (Visualisation of (special) matrix products) Dependency of an entry of a product matrix:

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations 59

Fig. 10

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

dot product tensor product
-

Remark 1.3.1.3 (Row-wise & column-wise view of matrix product) To understand what is going on
when forming a matrix product, it is often useful to decompose it into matrix x vector operations in one of
the following two ways:

A € K" B e K"k

AB = [A(B).; ... A(B). , AB =

(A).B ' (1.3.1.4)
1 }

matrix assembled from columns matrix assembled from rows

For notations refer to Sect. 1.1.1. a

Remark 1.3.1.5 (Understanding the structure of product matrices) A “mental image” of matrix multi-
plication is useful for telling special properties of product matrices.

For instance, zero blocks of the product matrix can be predicted easily in the following situations using the
idea explained in Rem. 1.3.1.3 (iry to understand how):

Fig. 11 k

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations 60

NumCSE, AT’20, Prof. Ralf Hiptmair

(©SAM, ETH Zurich, 2020

Fig. 12

A clear understanding of matrix multiplication enables you to “see”, which parts of a matrix factor matter

in a product:

irrelevant matrix entries

Fig. 13

“Seeing” the structure/pattern of a matrix product:

These nice renderings of the so-called patterns of matrices, that is, the distribution of their non-zero entries

have been created by a special plotting command spy () of matplotlibcpp.

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations

61

https://github.com/lava/matplotlib-cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

C++ code 1.3.1.6: Visualizing the structure of matrices in EIGEN =* GITLAB

2 ‘#include "matplotlibcpp.h" // Tools for plotting, see
https://github.com/lava/matplotlib-cpp
#include < /Dense>

3
4 |#include <string >

5 |namespace plt = matplotlibcpp ;
6 |using namespace ;
7

8

9

// Produce spy-plot of a dense Eigen matrix.
void spy(const oS &M, const std::string &fname) ({
10 plt::figure () ;

11 plt ::spy(M, {{"marker", "0"}, {"markersize", "2"}, {"color", "b"}});

12 plt::title ("nnz =
13 plt ::savefig (fname) ;

4 |}

+ std ::to_string (M.nonZeros ())) ;

1 |int main() {

17 int n = 100;

18 A(n, n), B(n, n);

19 A. ();

20 B. ();

21 // Initialize matrices, see Fig. 13

22 A. () = i (n, 1, n);

23 A. (n—1) = i (n, 1, n);

24 A. (n—1) = i (n, 1, n);

B =A. 0 - 0
2 // Matrix products
27 C=A=xA, D=A x B;

28 spy (A, "Aspy_cpp.eps"); // Sparse arrow matrix

29 spy(B, "Bspy _cpp.eps"); // Sparse arrow matrix

30 spy(C, "Cspy_cpp.eps"); // Fully populated matrix

31 spy (D, "Dspy cpp.eps"); // Sparse "framed" matrix

32 return 0;

33 |}
This code also demonstrates the use of (), col (), row() for L-value access to parts of a
matrix.

PYTHON/MATPLOTLIB-command for visualizing the structure of a matrix: plt.spy (M)

PYTHON-code 1.3.1.7: Visualizing the structure of matrices in PYTHON

1 |n = 100
2 |A np.diag (np.mgrid[:n])

s |A[:, —1] = A[—1, :] = np.mgrid[:n]
4 | plt.spy(A)
5
6
7

plt.spy(A[::—1, :1)
plt.spy(np.dot(A, A))
plt.spy(np.dot(A, B))

_

Remark 1.3.1.8 (Multiplying triangular matrices) The following result is useful when dealing with matrix

decompositions that often involve triangular matrices.

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations

62

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/mmstruc/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Lemma 1.3.1.9. Group of regular diagonal/triangular matrices

diagonal diagonal
A, B { upper triangular = AB and Al { upper triangular .
lower triangular lower triangular

(assumes that A is regular)

“Proof by visualization” — Rem. 1.3.1.5

b T (B T

|

EXPERIMENT 1.3.1.10 (Scaling a matrix) Scaling = multiplication with diagonal matrices (with non-zero
diagonal entries):

It is important to know the different effect of multiplying with a diagonal matrix from left or right:

4+ multiplication with diagonal matrix from left » row scaling

dl 0 0 ainr 42 ... Ay dlall dllllz R dlalm d1(A)1 '
0 dr 0 |41 ax yy | |dodny doapy ... dydry| o
0 0 dn anl ﬂnz . e anm dnanl dnanz PP dnanm 7’!()7’!

4+ multiplication with diagonal matrix from right » column scaling

a1 a2 ... Ay dl 0 0 —dlan d2a12 ‘e dmalm

ay1 a2 aym | | 0 da 0| [|dian doaxn ... duaoy

anl ﬂnz . e anm 0 0 dm _dlanl dzanz “.e dmanm
= |d1(A)1 i (A):m

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations 63

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Timings for different ways to do scaling

Multiplication with a scaling matrix D = . ; ;

diag(dy,...,d,) € R™" in EIGEN can be realised T o
in three ways, see Code 1.3.1.11, Line 9-Line 11, ol
Line 13, and Line 15.) .

10
T
¥

Measured runtimes (Ubuntu Linux 14.04 LTS, Intel
Core(TM) i7-3517U CPU @ 1.90GHz X 4, 64-bit,

time [s]

+

gcc 4.8.4, -03 -DNDEBUG) > il) .
The code will be slowed down massively in case ol + .t

a temporary dense matrix is created inadvertently. Al * . ° °

Notice that EIGEN’s expression templates avoid this 1o o *

pointless effort, see Line 15. % . . .

- 10 102 109
vector length n

Fig. 14

C++ code 1.3.1.11: Timing multiplication with scaling matrix in EIGEN =* GITLAB

2 int nruns = 3, minExp = 2, maxExp = 14;
3 tms (maxExp—minExp+1,4) ;
4 for(int i = 0; i <= maxExp—minExp; ++i){
5 Timer tbad, tgood, topt; // timer class
6 int n = std::pow(2, minExp + i);
7 d = i (n,1), x = i (n,1), y(n);
8 for(int j = 0; j < nruns; ++j) {
9 D = d.asDiagonal(); //
10 // matrix vector multiplication
1 tbad.start(); y = Dxx; tbad.stop(); //
12 // componentwise multiplication
13 tgood . start (); y= d. (x); tgood.stop(); //
14 // matrix multiplication optimized by Eigen
15 topt.start(); y = d.asDiagonal()xx; topt.stop(); //
16
}
17 tms(i,0)=n;
18 tms(i,1)=tgood.min(); tms(i,2)=tbad.min(); tms(i,3)= topt.min();
19 }

Hardly surprising, the component-wise multiplication of the two vectors is way faster than the intermit-
tent initialisation of a diagonal matrix (main populated by zeros) and the computation of a matrix x vector
product. Nevertheless, such blunders keep on haunting numerical codes. Do not rely solely on EIGEN

optimizations!

_

Remark 1.3.1.12 (Row and column transformations) Simple operations on rows/columns of matrices,
cf. what was done in Exp. 1.2.3.9, can often be expressed as multiplication with special matrices: For

instance, given A € K™ we obtain B by adding row (A);.to row (A)j 1., 1 <j <n.
" -

Realisation through matrix - 1

B = A.

product 11

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations

64

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/scaletiming/Eigen/scaletiming.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The matrix multiplying A from the left is a specimen of a transformation matrix, a matrix that coincides
with the identity matrix I except for a single off-diagonal entry.

left-multiplication . . , row transformations

. . with transformation matrices = .

right-multiplication column transformations
Row/column transformations will play a central role in Section 2.3. 2

§1.3.1.13 (Block matrix product) Given matrix dimensions M, N,K € IN block sizes 1 < n < N
n:=N-n),1<m<M(@m :=M-m),1 <k< K(kK := K- k) we start from the following
matrices:

A € K™ Ay € IKm’n, B € K"k B; €]Kn’k,
Ay €K Ay e KW 7 By € KPK By € KWA

This matrices serve as sub-matrices or matrix blocks and are assembled into larger matrices

Ay Alz} M,N {Bn Blz} N,K
A= e K" , B= e K™
[A21 An By B

It turns out that the matrix product AB can be computed by the same formula as the product of simple
2 X 2-matrices:

- [All Alz] {Bn Blz} _ lAlan + AxBy; A11312+A12322} ' (13.1.14)
Az1 Axn] B By A21B11 + AnBy Az Bio + A2pBop

N k k/ K

Fig. 15 K

Bottom line: one can compute with block-structured matrices in almost (x) the same ways as with matrices
with real/complex entries, see [QSS00, Sect. 1.3.3].

c (*): you must not use the commutativity of multiplication (because matrix multiplication is not

commutative).
|

1.3.2 BLAS - Basic Linear Algebra Subprograms

BLAS (Basic Linear Algebra Subprograms) is a specification (API) that prescribes a set of low-level rou-
tines for performing common linear algebra operations such as vector addition, scalar multiplication, dot

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations 65

http://www.netlib.org/blas/

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

products, linear combinations, and matrix multiplication. They are the de facto low-level routines for linear

algebra libraries (Wikipedia).

The BLAS APl is standardised by the BLAS technical forum and, due to its history dating back to the 70s,
follows conventions of FORTRAN 77, see the Quick Reference Guide for examples. However, wrappers for
other programming languages are available. CPU manufacturers and/or developers of operating systems

usually supply highly optimised implementations:

e OpenBLAS: open source implementation with some general optimisations, available under BSD

license.

e ATLAS (Automatically Tuned Linear Algebra Software): open source BLAS implementation with
auto-tuning capabilities. Comes with C and FORTRAN interfaces and is included in Linux distribu-

tions.

e Intel MKL (Math Kernel Library): commercial highly optimised BLAS implemetation available for all

Intel CPUs. Used by most proprietory simulation software and also MATLAB.

EXPERIMENT 1.3.2.1 (Multiplying matrices in EIGEN)

The following EIGEN-based C++ code performs a multiplication of densely populated matrices in three

different ways:
1. Direct implementation of three nested loops
2. Realization by matrix x vector products

3. Use of buit-in matrix multiplication of EIGEN

C++ code 1.3.2.2: Timing different implementations of matrix multiplication in EIGEN

=> GITLAB

2 |void mmtiming () {

3 int nruns = 3, minExp = 2, maxExp = 10;

4 timings (maxExp — minExp + 1, 5);

5 for (int p = 0; p <= maxExp — minExp; ++p) {

6 Timer t1, t2, t3, t4; // timer class

7 int n = std::pow(2, minExp + p);

8 A = i (n, n);

9 B = i (n, n);

10 C = (n, n);

11 for (int g = 0; g < nruns; ++q) {

12 // Loop based implementation no template magic
13 t1.start () ;

14 for (int i = 0; i < n; ++i)

15 for (int j = 0; | < n; ++j)

16 for (int k = 0; k < n; ++k)

17 C(i, j) += A(i, k) %= B(k, j);

18 t1.stop () ;

19 // dot product based implementation little template magic
20 t2.start () ;

21 for (int i = 0; i < n; ++i)

22 for (int j = 0; | < n; ++j)

23 C(i, j) = A.row(i).dot(B.col(j));

24 t2 . stop () ;

25 // matrix—-vector based implementation middle template magic
26 t3.start () ;

27 for (int j = 0; | < n; ++j)

28 C. (j) = A x B. (j);

29 t3.stop () ;

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations

66

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://netlib.org/blas/blast-forum/
http://www.netlib.org/blas/
http://www.openblas.net/
http://math-atlas.sourceforge.net/
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/mmtiming/Eigen/mmtiming.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

30
31
32
33
34
35
36
37
38
39
40
41

time [s]

t4 . start () ;

C = A % B;

t4 . stop () ;
1
timings (p,
timings (p,
timings (p,
timings (p,
timings (p,

}

// Eigen matrix multiplication template magic optimized

= t4 .min

std ::cout << std::

n;

t1 . min
t2 . min
t3 . min

scientific << std::setprecision(3) << timings << std::endl;

Timings: Different implementations of matrix multiplication
T

——+— loop implementation

—— dot-product implementation
100 F —-A— matrix-vector implementation
—#— Eigen matrix product

/ 1 Platform:

ubuntu 14.04 LTS

i7-3517U CPU @ 1.90GHz

L1 32 KB, L2 256 KB, L3 4096 KB, Mem 8 GB
gcc 4.8.4, -083

+e 44

n EIGEN we can achieve some gain in execution
speed by relying on compact matrix/vector opera-
tions that invoke efficient EIGEN built-in functions.
However, compiler optimizations make plain and
simple loops almost competitive.

102 10° 104

matrix size n

|

BLAS routines are grouped into “levels” according to the amount of data and computation involved (asymp-
totic complexity, see Section 1.4.1 and [GV89, Sect. 1.1.12]):

e Level 1: vector operations such as scalar products and vector norms.
asymptotic complexity O(#), (with n = vector length),
e.g.: dot product: p = x "y

e Level 2: vector-matrix operations such as matrix-vector multiplications.
asymptotic complexity O (mn),(with (m, 1) = matrix size),
e.g.: matrix x vector multiplication: y = aAx + By

e Level 3: matrix-matrix operations such as matrix additions or multiplications.
asymptotic complexity often O(nmk),(with (12, m, k) = matrix sizes),
e.g.: matrix product: C = AB

Syntax of BLAS calls:
The functions have been implemented for different types, and are distinguished by the first letter of the
function name. E.g. sdot is the dot product implementation for single precision and ddot for double
precision.

4 BLAS LEVEL 1: vector operations, asymptotic complexity O(#), n = vector length

e dotproduct p=x'y

xDOT (N, X, INCX, Y, INCY)

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations 67

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

x € {S,D}, scalar type: S = type float, D = type double

N = length of vector (modulo stride INCX)

X = vector x: array of type x

INCX = stride for traversing vector X

Y = vector y: array of type x

INCY = stride for traversing vector Y

e vector operations y = ax+y

xAXPY (N, ALPHA, X, INCX, Y, INCY)

x € {S,D,C,Z},S = type float, D = type double, C = type complex

N = length of vector (modulo stride INCX)

ALPHA = scalar «

X = vector x: array of type x

INCX = stride for traversing vector X

Y = vector y: array of type x

INCY = stride for traversing vector Y

4 BLAS LEVEL 2: matrix-vector operations, asymptotic complexity O(mmn), (m,n) = matrix size

e matrix X vector multiplication y = aAx + By

xGEMV (TRANS, M, N, ALPHA, A, LDA, X,

INCX, BETA, Y, INCY)

x € {S,D,C,Z}, scalar type: S = type float, D = type double, C = type complex

— M, N = size of matrix A
— ALPHA = scalar parameter «

— A = matrix A stored in linear array of length M - N (column major arrangement)
— LDA = “leading dimension” of A € K™ that is, the number 7 of rows.

— X = vector x: array of type x

— INCX = stride for traversing vector X

— BETA = scalar paramter 8

— Y = vector y: array of type x

— INCY = stride for traversing vector Y

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations 68

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

e BLAS LEVEL 3: matrix-matrix operations, asymptotic complexity O (mnk), (m,n, k) = matrix

sizes

— matrix x matrix multiplicaton C = a«AB + BC

xGEMM (TRANSA, TRANSB, M, N
ALPHA,A,LDA, X, B, L
BETA, C, LDC)

(= meaning of arguments as above)

’
D

K,
B,

Remark 1.3.2.3 (BLAS calling conventions) The BLAS calling syntax seems queer in light of modern
object oriented programming paradigms, but it is a legacy of FORTRAN77, which was (and partly still is)

the programming language, in which the BLAS routines were coded.

It is a very common situation in scientific computing that one has to rely on old codes and libraries imple-

mented in an old-fashioned style.

|

EXAMPLE 1.3.2.4 (Calling BLAS routines from C/C++) When calling BLAS library functions from C, all
arguments have to be passed by reference (as pointers), in order to comply with the argument passing

mechanism of FORTRAN77, which is the model followed by BLAS.

C++-code 1.3.2.5: BLAS-based SAXPY operation in C++

#define daxpy_ daxpy
#include <iostream >

// Definition of the required BLAS function. This is usually done
// in a header file like blas.h that is included in the EIGENJ3
// distribution
extern "C" {
int daxpy_(const intx n, const doublex da, const doublex dx,
const intx incx, doublex dy, const intx incy);

© ©®© N o o A 0 N =

10 |}

12 |using namespace std;

14 [int main() {

15 const int n = 5; // length of vector
16 const int incx = 1; // stride

17 const int incy = 1; // stride

18 double alpha = 2.5; // scaling factor

20 // Allocated raw arrays of doubles
21 doublex x = new double [n];

22 doublex y = new double [n];
24 for (size_t i=0; i<n; i++){
25 x[i] 3.1415 % i;

2 ylil 1.0 / (double) (i+1);

27 }

29 cout << "x=["; for (size_t i=0; i<n; i++) cout << x[i] << ~ ’;
30 cout << "]" << endl;
31 cout << "y=["; for (size_t i=0; i<n; i++) cout << y[i] << ~ ’;
32 cout << "]" << endl;

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations

69

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

34 // Call the BLAS library function passing pointers to all arguments
35 // (Necessary when calling FORTRAN routines from C
36 daxpy_(&n, &alpha, x, &incx, y, &incy);

37

38 cout << "y = " << alpha << " * x +y = |";
39 for (int i=0; i<n; i++) cout << y[i] << ’ ’; cout << "]" << endl;
40 return (0) ;

41 |}

When using EIGEN in a mode that includes an external BLAS library, all this calls are wrapped into EIGEN
methods. -

EXAMPLE 1.3.2.6 (Using Intel Math Kernel Library (Intel MKL) from EIGEN) The
Intel Math Kernel Library is a highly optimized math library for Intel processors and can be called
directly from EIGEN, see B EIGEN documentation on “Using Intel(® Math Kernel Library from Eigen”.

C++-code 1.3.2.7: Timing of matrix multiplication in EIGEN for MKL comparison =* GITLAB
2 | /71

script for timing different implementations of matrix
multiplications
3 | void mmeigenmkl () {
4 int nruns = 3, minExp = 6, maxExp = 13;
5 timings (maxExp—minExp+1,2) ;
6 for(int p = 0; p <= maxExp—minExp; ++p){
7 Timer t1; // timer class
8
9

int n = std::pow(2, minExp + p);
A = s (n,n);
10 B = (n,n);
11 C = i (n,n);
12 for(int q = 0; g < nruns; ++q){
13 t1.start () ;
14 C = A x B;
15 t1.stop () ;
16 }
17 timings (p,0)=n; timings (p,1)=t1.min();
18
}

19 std::cout << std::scientific << std::setprecision(3) << timings << std::endl;

20 |}

Timing results:

n EIGEN sequential [s] EIGEN parallel [s] MKL sequential [s] MKL parallel [s]
64 1.318e-04 1.304e-04 6.442e-05 2.401e-05
128 7.168e-04 2.490e-04 4.386e-04 1.336e-04
256 6.641e-03 1.987e-03 3.000e-03 1.041e-03
512 2.609e-02 1.410e-02 1.356e-02 8.243e-03
1024 1.952e-01 1.069e-01 1.020e-01 5.728e-02
2048 1.531e+00 8.477e-01 8.581e-01 4.729e-01
4096 1.212e+01 6.635e+00 7.075e+00 3.827e+00
8192 9.801e+01 6.426e+01 5.731e+01 3.598e+01

1. Computing with Matrices and Vectors, 1.3. Basic Linear Algebra Operations

70

https://software.intel.com/en-us/intel-mkl
https://eigen.tuxfamily.org/dox/TopicUsingIntelMKL.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/mmeigenmkl/Eigen/mmeigenmkl.hpp

Fi

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

102

—+— Eigen sequential
—— Eigen parallel
—A— MKL sequential
E | —©— MLK parallel

—+— Eigen sequential
—%— Eigen parallel
—4A— MKL sequential
—6— MLK parallel

=)

sl

o
)

=)

10'10 -

=)
o

execution time [s]

>
execution time divided by n

104 E

5 . . 10-11
0 2 3 4 10 102 108 104
10 10 10 1n

matrix size n Fig. matrix size n
ubuntu 14.04 LTS

i7-3517U CPU @ 1.90GHz

L1 32 KB, L2 256 KB, L3 4096 KB, Mem 8 GB

gcc 4.8.4, -03

Timing environment:

+e+

1.4 Computational Effort

Large scale numerical computations require immense resources and execution time of numerical codes
often becomes a central concern. Therefore, much emphasis has to be put on

1. designing algorithms that produce a desired result with (nearly) minimal computational effort (de-
fined precisely below),

2. exploit possibilities for parallel and vectorised execution,
3. organising algorithms in order to make them fit memory hierarchies,
4. implementing codes that make optimal use of hardware resources and capabilities,

While Item 2-Item 4 are out of the scope of this course and will be treated in more advanced lectures,
Item 1 will be a recurring theme.

The following definition encapsulates what is regarded as a measure for the “cost” of an algorithm in
computational mathematics.

Definition 1.4.0.1. Computational effort

The computational effort/computational cost required/incurred by a numerical code amounts to
the number of elementary operations (additions,subtractions,multiplications,divisions,square roots)
executed in a run.

§1.4.0.2 (What computational effort does not tell us) Fifty years ago counting elementary operations
provided good predictions of runtimes, but nowadays this is no longer true.

1. Computing with Matrices and Vectors, 1.4. Computational Effort 71

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

“Computational effort ;¢ runtime”

The computational effort involved in a run of a numerical code is only loosely related
to overall execution time on modern computers.

This is conspicuous in Exp. 1.2.3.9, where algorithms incurring exactly the same computational effort took
different times to execute.

The reason is that on today’s computers a key bottleneck for fast execution is latency and bandwidth of
memory, cf. the discussion at the end of Exp. 1.2.3.9 and [KWO03]. Thus, concepts like 1/O-complexity

[AV88; GJ10] might be more appropriate for gauging the efficiency of a code, because they take into
account the pattern of memory access. _|

1.4.1 (Asymptotic) Computational Complexity

The concept of computational effort from Def. 1.4.0.1 is still useful in a particular context:

Definition 1.4.1.1. (Asymptotic) complexity

The asymptotic (computational) complexity of an algorithm characterises the worst-case depen-
dence of its computational effort (— Def. 1.4.0.1) on one or more problem size parameter(s) when
these tend to co.

e Problem size parameters in numerical linear algebra usually are the lengths and dimensions of the
vectors and matrices that an algorithm takes as inputs.

e Worst case indicates that the maximum effort over a set of admissible data is taken into account.

When dealing with asymptotic complexities a mathematical formalism comes handy:

Definition 1.4.1.2. Landau symbol [

We write F(n) = O(G(n)) for two functions F, G : N — R, if there exists a constant C > 0 and
ny € IN such that

F(n) <CG(n) Vn>n,.

More generally, F(1y,...,1;) = O(G(ny,...,n;)) for two functions F, G : IN* — R implies the
existence of a constant C > 0 and a threshold value n, € IN such that

F(Tll,...,l’lk) SCG(Tll,...,I’Zk) Vny,...,n € N, Ny > Ny, {=1,...,k.

Remark 1.4.1.3 (Meaningful “O-bounds” for complexity) Of course, the definition of the Landau sym-
bol leaves ample freedom for stating meaningless bounds; an algorithm that runs with linear complexity
O(n) can be correctly labelled as possessing O(exp(n)) complexity.

Yet, whenever the Landau notation is used to describe asymptotic complexities, the bounds have to be
sharp in the sense that no function with slower asymptotic growth will be possible inside the O. To make
this precise we stipulate the following.

1. Computing with Matrices and Vectors, 1.4. Computational Effort 72

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Sharpness of a complexity bound

Whenever the asymptotic complexity of an algorithm is stated as O(n” logﬁ nexp(yn®)) with non-
negative parameters «, 3,7, > 0 in terms of the problem size parameter n, we take for granted
that choosing a smaller value for any of the parameters will no longer yield a valid (or provable)
asymptotic bound.

In particular
4+ complexity O(n) means that the complexity is not O(n*) for any & < 1,
4+ complexity O(exp(n)) excludes asymptotic complexity O(n”) for any p € R.
Terminology: If the asymptotic complexity of an algorithm is O(n?) with p = 1,2, 3 we say that it is of

“linear”, “quadratic”, and “cubic” complexity, respectively.
-

Remark 1.4.1.5 (Relevance of asymptotic complexity) § 8.4.3.14 warned us that computational effort
and, thus, asymptotic complexity, of an algorithm for a concrete problem on a particular platform may
not have much to do with the actual runtime (the blame goes to memory hierarchies, internal pipelining,
vectorisation, etc.).

Then, why do we pay so much attention to asymptotic complexity in this course?

To a certain extent, the asymptotic complexity allows to predict the dependence of the runtime of a
particular implementation of an algorithm on the problem size (for large problems).

For instance, an algorithm with asymptotic complexity O(nz) is likely to take 4x as much time when the
problem size is doubled. J
§1.4.1.6 (Concluding polynomial complexity from runtime measurements)

Available: “Measured runtimes” t; = t;(n;) for different values 11,1y, ..., ny, n; € N,
of the problem size parameter

Conjectured: power law dependence t; ~ Cn{ (also “algebraic dependence”), x € R
How can we glean evidence that supports or refutes our conjecture from the data? Look at the data in
doubly logarithmic scale!

ti=Cn; = log(t;) =~logC+uwalog(n;), i=1,...,N.

B> If the conjecture holds true, then the points (7;,t;) will approximately lie on a straight
line with slope a in a doubly logarithmic plot (which can be created in PYTHON by the
Imatplotlib.pyplot.loglog plotting command.

> Offers a quick “visual test” of conjectured asymptotic complexity

More rigorous: Perform linear regression on (log n;,logt;),i =1,...,N (— Chapter 3)

1. Computing with Matrices and Vectors, 1.4. Computational Effort 73

Fig. 19

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

1.4.2 Cost of Basic Linear-Algebra Operations

Performing elementary BLAS-type operations through simple (nested) loops, we arrive at the following
obvious complexity bounds:

operation description #mul/div | #add/sub | asymp. complexity
dotproduct | (x € R",y € R") — x'y n n—1 O(n)
tensor product | (x € R",y € R") — xy™ nm 0 O(mn)
Matrix xvector | (x € R", A € R™") — Ax mn (n—1)m O(mn)
matrix product*) | (A € R™",B € R*") — AB | mnk | mk(n—1) O(mnk)

EXPERIMENT 1.4.2.1 (Runtimes of elementary linear algebra operations in EIGEN)

Measured runtimes, code eigenopstiming.cpp

—+— matrix-vector product
3 —*— matrix-matrix product
— 0(n?)
10°§ e O(n?)

runtime (microseconds)

T
10!

T
10%

T
10°

problem size parameter n

|

Timing code =* GITLAB, m = n

Linux kernel 5.5.9-100.fc30.x86_64, Fedora 30
gcc 9.3.1 -0O2, Release mode

Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

Runtime data points approximately on lines in doubly
logarithmic plot, see § 1.4.1.6: Asymptotic behavior
of measured runtimes match predictions from above
table for large n.

Remark 1.4.2.2 (“Fast” matrix multiplication)

(%): The O(mnk) complexity bound applies to “straightforward” matrix multiplication according to

(1.3.1.1).

For m = n = k there are (sophisticated) variants with better asymptotic complexity, e.g., the divide-and-
conquer Strassen algorithm [Str69] with asymptotic complexity O(nlogz 7:

Start from A, B € K" with n = 2/, / € IN. The idea relies on the block matrix product (1.3.1.14) with

A

elementary computations reveal

@
~
|

Qo +0Q3—0Qs4+0Q¢,

Q; +Qs3,
Q) +Qy,

Qo +Q2—-0Q;+0s5,

where the Q; € K¢, k =0,. .., 6 are obtained from

Qo = (A11+Ax)*(Bj1+Bx),

Q:
Q2
Qs
Qq

(Az1 + Ax) * Byg,
A+ (B2 — B),
Ay * (—B11 +B2p),
(A11 +A1z) * B,

Qs = (—Ai;1+Apy)* (B +Byp),

ijBij € KL, i,j € {1,2}. Let C := AB be partitioned accordingly: C = [C“ Clz] Then tedious

Cy C2

1. Computing with Matrices and Vectors, 1.4. Computational Effort

74

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/EigenTutorial/eigenopstiming.cpp
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Strassen_algorithm

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Qs = (Ap—Ap)*(By +Bp).

Beside a considerable number of matrix additions (computational effort O(nz)) it takes only 7 multiplica-
tions of matrices of size /2 to compute C! Strassen’s algorithm boils down to the recursive application
of these formulas for n = 2%, k € IN.

A refined algorithm of this type can achieve complexity O(17%3¢), see [CW90]. g

1.4.3 Improving Complexity in Numerical Linear Algebra: Some Tricks

In computations involving matrices and vectors complexity of algoritms can often be reduced by performing
the operations in a particular order:

EXAMPLE 1.4.3.1 (Efficient associative matrix multiplication) We consider the multiplication with a
rank-1-matrix. Matrices with rank 1 can always be obtained as the tensor product of two vectors, that is,
the matrix product of a column vector and a row vector. Given a € K™, b € K", x € K" we may compute
the vector y = ab ' x in two ways:

y = (abT>x . (1.4.3.2) y = a(bTx> . (1.4.3.3)
T = (axb.transpose()) *x; t = axb.dot (x);
» complexity O(mn) » complexity O(n + m) (“linear complexity”)

Visualization of evaluation according to (1.4.3.2):

Visualization of evaluation according to (1.4.3.3):

1. Computing with Matrices and Vectors, 1.4. Computational Effort 75

Fi

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Timings for rank 1 matrix-vector multiplications
T T T

10°

% effcontsvaluaton < average runtimes for efficient/inefficient
1L o(n, +4
L A R matrix X vector multiplication with rank-1 ma-
+ - . 0 0
w2l -7 trices , see § 1.4.1.6 for the rationale behind

choosing a doubly logarithmic plot.
Platform:

4 ubuntu 14.04 LTS

4 i7-3517U CPU @ 1.90GHz A— 4
4 L1 32 KB, L2 256 KB, L3 4096 KB,
4 8 GB main memory

4 gcc 4.84,-03

average runtime (s)

100 10! 102 10° 104
problem size n

C++ code 1.4.3.4: EIGEN code for Ex. 1.4.3.1 = GITLAB

2 |//! This function compares the runtimes for the multiplication
s |//! of a vector with a rank-1 matrix ab', ab e R"

4« |//! wusing different associative evaluations.

5 |//! Runtime measurements consider minimal time for

6 |//! several (nruns) runs
7
8
9

MatrixXd dottenstiming () {
const int nruns = 3, minExp = 2, maxExp = 13;
// Matrix for storing recorded runtimes
10 MatrixXd timings (maxExp—minExp+1,3);

11 for(int i = 0; i <= maxExp—minExp; ++i){
12 Timer tfool, tsmart; // Timer objects
13 const int n = std::pow(2, minExp + i);
14 VectorXd a = VectorXd ::LinSpaced(n,1,n);

15 VectorXd b = VectorXd ::LinSpaced(n,1,n).reverse() ;

16 VectorXd x = VectorXd ::Random(n,1), y(n);

17 for(int j = 0; | < nruns; ++j){

18 // Grossly wasteful evaluation

19 tfool.start(); y = (axb.transpose())x*x; tfool.stop();
20 // Efficient implementation

21 tsmart.start(); y = a * b.dot(x); tsmart.stop();
22 }

23 timings (i ,0)=n;

2 timings (i ,1)=tsmart.min(); timings(i,2)=tfool.min();
25 }

26 return timings;

27 |}

Complexity can sometimes be reduced by reusing intermediate results.

EXAMPLE 1.4.3.5 (Hidden summation) The asymptotic complexity of the EIGEN code

Eigen::MatrixXd AB = AxB.transpose();
y = AB.triangularView<Eigen: :Upper> () *x;

when supplied with two low-rank matrices A, B € IK™F, p < n, in terms of n — oo obviously is O(n?),
because an intermediate n x n-matrix ABT is built.

First, consider the case of a tensor product (= rank-1) matrix, thatis, p = 1, A <> a = [ay,...,a,] ' € K",

1. Computing with Matrices and Vectors, 1.4. Computational Effort 76

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/effmatmult/Eigen/effmatmult.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

B+ b= [bl,...,bn] € K". Then

-albl ﬂlbz R R albn _xl-
0 azbz (12b3 e e agbn
y = triu(ab?)x =
L O 0 anbn i _xn
oy 1l o 17 /1y 1 T2y
o 1 1 1 .
i an] | 10 01 | \L bn] Lxn.
T

The brackets indicate the order of the matrix xvector multiplications. Thus, the core problem is
the fast multiplication of a vector with an upper triangular matrix T described in EIGEN syntax by
Eigen::MatrixXd: :0nes (n,n) .triangularView<Eigen: :Upper> (). Note that multipli-
cation of a vector x with T yields a vector of partial sums of components of x starting from last compo-
nent:

1 1 o1 _vl_ _STZ_
01 1 1 Sy 1
. "
= ,osi=), 0
k=n—j+1
0 ... o0 1 |loal Ls

This can be achieved by invoking the special C++ command std: :partial_sum from the C++ stan-
dard library (documentation). We also observe that

so that the computations for the special case p = 1 discussed above can simply be reused p times!

C++ code 1.4.3.6: Efficient multiplication with the upper diagonal part of a rank-p-matrix in
EIGEN = GITLAB

//! Computation of y = triu(ABT)x

2

3 |//! Efficient implementation with backward cumulative sum
4 | /1] (partial_sum)

5 |template<class Vec, class Mai>

6 |void Irtrimulteff(const Mat& A, const Mat& B, const Vec& x, Vec& y){
7 const int n = A.rows(), p = A.cols();

8 assert(n == B.rows() & p == B.cols()); // size missmatch

9 for(int | = 0; | < p; ++1){

Vec tmp = (B.col(l).array() * x.array()).matrix().reverse();
std :: partial_sum (tmp.data (), tmp.data()+n, tmp.data());

o

1. Computing with Matrices and Vectors, 1.4. Computational Effort 77

http://en.cppreference.com/w/cpp/algorithm/partial_sum
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lrtrimulteff/Eigen/lrtrimulteff.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

12 y += (A.col(l).array() * tmp.reverse ().array()).matrix();

This code enjoys the obvious complexity of O(pn) for p,n — oo, p < n. The code offers an example of a
function templated with its argument types, see § 0.3.2.1. The types Vec and Mat must fit the concept of
EIGEN vectors/matrices. J

The next concept from linear algebra is important in the context of computing with multi-dimensional arrays.

Definition 1.4.3.7.

The Kronecker product A ® B of two matrices A € K"™" and B € K'*, m,n,1,k € N, is the
(ml) x (nk)-matrix

[(A)11B (A)1pB (A)4B]
(A)21B (A)y2B :
A®B:= : : : e K"k
[(A)m1B (A)m2B (A)muB]

EXAMPLE 1.4.3.8 (Multiplication of Kronecker product with vector) The function (A ® B)x when
invoked with two matrices A € K™" and B € K'k and a vector x € K"X, will suffer an asymptotic
complexity of O(m - - 1 - k), determined by the size of the intermediate dense matrix A @ B € K"/,

Using the partitioning of the vector x into n equally long sub-vectors
X = . ’ Xj S Kk s

we find the representation
i (A)lllel + (A)LzBXZ + -+ (A)l,ann T

(A)21Bx! + (A)22Bx2 + - -+ + (A)p,BX"
(ARB)x= | :

(A)1BxX! + (A)y2BX? + -+ + (A) 4, BX" |

The idea is to form the products Bx/, j=1,...,n,once, and then combine them linearly with coefficients
given by the entries in the rows of A:

C++ code 1.4.3.9: Efficient multiplication of Kronecker product with vector in EIGEN
-+ GITLAB

> |template <class Matrix, class Vector>

s |void kronmultv (const Matrix &A, const Matrix &B, const Vector &x, Vector &y){
4 unsigned int m = A.rows(); unsigned int n = A.cols () ;

5 unsigned int | = B.rows(); unsigned int k = B.cols () ;

1. Computing with Matrices and Vectors, 1.4. Computational Effort 78

https://en.wikipedia.org/wiki/Kronecker_product
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/kronmultv/Eigen/kronmultv.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

6 // 1st matrix mult. computes the products Bx

7 // 2nd matrix mult. combines them linearly with the coefficients of
A

8

9 y = ::Map(t. (), m«l, 1);

t =B x ::Map(X. () .k,n) = A. O; //

Recall the reshaping of a matrix in EIGEN in order to understand this code: Rem. 1.2.3.6.

The asymptotic complexity of this code is determined by the two matrix multiplications in Line 8. This
yields the asymptotic complexity O(lkn + mnl) for I, k, m, n — oo.

PYTHON-code 1.4.3.10: Efficient multiplication of Kronecker product with vector in PYTHON

kronmultv (A, B, x):
n, k = A.shape[1], B.shape[1]
assert x.size == n % k, ’size mismatch’
xx = np.reshape(x, (n, k))
Z = np.dot(xx, B.T)
yy = np.dot(A, Z)
np.ravel (yy)

N o o A @ N o=

Note that different reshaping is used in the PYTHON code due to the default row major storage order. _
Review question(s) 1.4.3.11 (Computational effort)

(Q1.4.3.11.A) Explain why the classical concept of “computational effort” (= computational cost) is only
loosely related to the runtime of a concrete implementation of an algorithm.

(Q1.4.3.11.B) We are given two dense matrices A, B € R"”, n,p € IN, p < n fixed. What is the asmp-
totic complexity of each of the following two lines of code in terms of 1, p — c0?

:: AB = AxB. O);
y = AB.triangularView< : :Upper> () xx;

(@1.4.3.11.C) Given a vector u € R", n € IN, we consider the matrix
A € R™™ (A)i,j:ui+uj+uiu]-, i,jE {1,...,1’1} .

Outline an efficient algorithm for computing the matrix-vector product Ax, x € R".

1.5 Machine Arithmetic and Consequences

1.5.1 Experiment: Loss of Orthogonality

§1.5.1.1 (Gram-Schmidt orthogonalisation) From linear algebra [NS02, Sect. 4.4] or Ex. 0.3.5.29 we
recall the fundamental algorithm of Gram-Schmidt orthogonalisation of an ordered finite set {a’, .. ., ak},
k € IN, of vectors a‘ € K":

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 79

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Input: {a',...,a"} C K"

1. ql:= ﬁ % 1st output vector
2
2: for j=2,...,k do
{ % Ortthonal projection
3: q = a
4: for (=1,2,...,j—1 do (GS)
5: { d«d—-a-q'q" }
6: if (q/=0) then STOP
7: else { g+ 4 }
T T,
8: }
Output: {q',...,q/}
% Notation: ||-||, = Euclidean norm of a vector € K"

In linear algebra we have learnt that, if it does
not STOP prematurely, this algorithm will com-
pute orthonormal vectors ql, .. .,qk satisfying

Span{q',...,q'} = Span{al,...,a’},
(1.5.1.2)

forall ¢ € {1,...,k}.

More precisely, if a!, ..., a%, ¢ < k, are linearly
independent, then the Gram-Schmidt algorithm
will not terminate before the / + 1-th step.

The following code implements the Gram-Schmidt orthonormalization of a set of vectors passed as the
columns of a matrix A € R"™ . The template paramter Matrix should match the concept of a matrix type

in EIGEN like Eigen::MatrixXd or

C++ code 1.5.1.3: Gram-Schmidt orthogonalisation in EIGEN =* GITLAB

2 |template <class Matrix> Matrix gramschmidt(const Matrix &A) {

3 Matrix Q = A;

4 // First vector just gets normalized, Line 1 of (GS)

5 Q.col (0) .normalize () ;

6 for (unsigned int j = 1; | < A.cols(); ++j) {

7 // Replace inner loop over each previous vector in Q with fast
8 // matrix—-vector multiplication (Lines 4, 5 of (GS))

9 Q.col(j) —= Q. leftCols(j) =*

10 (Q.leftCols (j).adjoint() * A.col(j)); //

11 // Normalize vector, 1f possible.

12 // Otherwise colums of A must have been linearly dependent

13 if (Q.col(j).norm() <= 10e—9 % A.col(j).norm()) { //

14 std :: cerr << "Gram-Schmidt failed: A has lin. dep columns." << std::endl;
15 break ;

16 } else {

17 Q.col(j).normalize () ;

18 } // Line 7 of (GS)

19 }

20 return Q;

21 |}

We will soon learn the rationale behind the odd test in Line 13.

In PYTHON the same algorithm can be implemented as follows:

PYTHON-code 1.5.1.4: Gram-Schmidt orthogonalisation in PYTHON

1 | def gramschmidt(A) :

2 _, k = A.shape

3 Q = A[:, [0]] / np.linalg.norm(A[:, 0])

4 for j in range(1, k):

5 q = A[:, j] — np.dot(Q, np.dot(Q.T, A[:, 1))
6 ng = np.linalg .norm(q)

7 if ng < 1e—9 x np.linalg.norm(A[:,

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 80

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gramschmidt/Eigen/gramschmidt.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

8 break
9 Q = np.column_stack ([Q, g / nq])
10 return Q

Note the different loop range due to the zero-based indexing in PYTHON.

|

EXPERIMENT 1.5.1.5 (Unstable Gram-Schmidt orthonormalization) If {al, .. .,ak} are linearly inde-
pendent we expect the output vectors ql, ceey qk to be orthonormal:

@) q" =60, Lme{l,... k}. (1.5.1.6)

This property can be easily tested numerically, for instance by computing Q' Q for a matrix Q =
(q},...,q"] e R*.

C++ code 1.5.1.7: Wrong result from Gram-Schmidt orthogonalisation EIGEN =* GITLAB

void gsroundoff (MatrixXd& A){
// Gram—Schmidt orthogonalization of columns of A, see Code 1.5.1.3
MatrixXd Q = gramschmidt(A) ;
// Test orthonormality of columns of Q, which should be an
// orthogonal matrix according to theory
cout << setprecision(4) << fixed << "I ="
<< endl << Q.transpose()*Q << endl;
// EIGEN’s stable internal Gram-Schmidt orthogonalization by
10 // OR—decomposition, see Rem. 1.5.1.9 below
11 HouseholderQR<MatrixXd > qr(A.rows() ,A.cols()); //
12 gr.compute (A) ; MatrixXd Q1 = qr.householderQ (); //
13 // Test orthonormality
14 cout << "lI1 = " << endl << Qf.transpose ()*Q1 << endl;
15 // Check orthonormality and span property (1.5.1.2)
16 MatrixXd R1 = qr.matrixQR() .triangularView <Upper>() ;
17 cout << scientific << "AQ1*R1 = " << endl << A-Q1xR1 << endl;

© © N o o h~ @ N

We test the orthonormality of the output vectors of Gram-Schmidt orthogonalization for a special matrix
A € R'!%, a so-called Hilbert matrix, defined by (A),; = (i +j —1)~". Then Code 1.5.1.7 produces
the follwing output:

I =

1.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.0000 1.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
-0.0000 -0.0000 1.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.0000 0.0000 0.0000 1.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
-0.0000 -0.0000 -0.0000 -0.0000 1.0000 0.0000 -0.0008 -0.0007 -0.0007 -0.0006
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 -0.0540 -0.0430 -0.0360 -0.0289
-0.0000 -0.0000 -0.0000 -0.0000 -0.0008 -0.0540 1.0000 0.9999 0.9998 0.9996
-0.0000 -0.0000 -0.0000 -0.0000 -0.0007 -0.0430 0.9999 1.0000 1.0000 0.9999
-0.0000 -0.0000 -0.0000 -0.0000 -0.0007 -0.0360 0.9998 1.0000 1.0000 1.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0006 -0.0289 0.9996 0.9999 1.0000 1.0000

Obviously, the vectors produced by the function gramschmidt fail to be orthonormal, contrary to the
predictions of rigorous results from linear algebra!

However, Line 11, Line 12 of Code 1.5.1.7 demonstrate another way to orthonormalize the columns of a
matrix using EIGEN’s built-in class template HouseholderQR (more details in Section 3.3.3).

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 81

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gsroundoff/Eigen/gsroundoff.hpp
https://en.wikipedia.org/wiki/Hilbert_matrix

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Il =

1.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000

0.0000 -0.0000 1.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0000 0.0000 -0.0000 1.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000
-0.0000 0.0000 -0.0000 0.0000 1.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000
-0.0000 -0.0000 0.0000 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 0.0000 -0.0000
-0.0000 -0.0000 .0000 -0.0000 0.0000 -0.0000 1.0000 0.0000 0.0000 -0.0000
-0.0000 -0.0000 .0000 0.0000 -0.0000 -0.0000 0.0000 1.0000 -0.0000 0.0000
-0.0000 0.0000 .0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 1.0000 -0.0000

0.0000 -0.0000 .0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 1.0000

Now we observe apparently perfect orthogonality (1.5.1.6) of the columns of the matrix Q1 in Code 1.5.1.7.
Obviously, there is another algorithm that reliably yields the theoretical output of Gram-Schmidt orthogo-
nalization. There is no denying that it is possible to compute Gram-Schmidt orthonormalization in a “clean”
way. J

o O O O

“Computers cannot compute”

Computers cannot compute “properly” in IR: numerical computations may not respect the laws of
analysis and linear algebra!

This introduces an important new aspect in the study of numerical algorithms.

Remark 1.5.1.9 (Stable orthonormalization by QR-decomposition) In Code 1.5.1.7 we saw the use of
the EIGEN class HousholderQR<MatrixType> for the purpose of Gram-Schmidt orthogonalisation.
The underlying theory and algorithms will be explained later in Section 3.3.3. There we will have the
following insight:

> Up to signs the columns of the matrix Q available from the QR-decomposition of A are the same
vectors as produced by the Gram-Schmidt orthogonalisation of the columns of A.

Code 1.5.1.7 demonstrates a case where a desired result can be obtained by two algebraically

equivalent computations, that is, they yield the same result in a mathematical sense. Yet, when
. implemented on a computer, the results can be vastly different. One algorithm may produce junk

(“unstable algorithm”), whereas the other lives up to the expectations (“stable algorithm”)

Supplement to Exp. 1.5.1.5: despite its ability to produce orthonormal vectors, we get as output for
D=A-Q1xR1 in Code 1.5.1.7:

D =

2.2204e-16 3.3307e-16 3.3307e-16 1.9429e-16 1.9429e-16 5.5511e-17 1.3878e-16 6.9389%e-17 8.3267e-17 9.7145e-17

0.0000e+00 1.1102e-16 8.3267e-17 5.5511le-17 0.0000e+00 5.5511le-17 -2.7756e-17 0.0000e+00 0.0000e+00 4.1633e-17
-5.5511e-17 5.5511e-17 2.7756e-17 5.5511e-17 0.0000e+00 0.0000e+00 0.0000e+00 -1.3878e-17 1.3878e-17 1.3878e-17

0.0000e+00 5.5511e-17 2.7756e-17 2.7756e-17 0.0000e+00 1.3878e-17 -1.3878e-17 0.0000e+00 1.3878e-17 2.7756e-17

0.0000e+00 2.7756e-17 0.0000e+00 1.3878e-17 1.3878e-17 1.3878e-17 0.0000e+00 1.3878e-17 1.3878e-17 4.1633e-17
-2.7756e-17 2.7756e-17 1.3878e-17 4.1633e-17 2.7756e-17 1.3878e-17 0.0000e+00 -1.3878e-17 2.7756e-17 2.7756e-17

0.0000e+00 2.7756e-17 0.0000e+00 2.7756e-17 2.7756e-17 1.3878e-17 0.0000e+00 1.3878e-17 2.7756e-17 2.0817e-17

0.0000e+00 2.7756e-17 2.7756e-17 1.3878e-17 1.3878e-17 1.3878e-17 0.0000e+00 1.3878e-17 2.0817e-17 2.7756e-17

1.3878e-17 1.3878e-17 1.3878e-17 2.7756e-17 1.3878e-17 0.0000e+00 -1.3878e-17 6.9389e-18 -6.9389e-18 1.3878e-17

0.0000e+00 2.7756e-17 1.3878e-17 1.3878e-17 1.3878e-17 0.0000e+00 0.0000e+00 0.0000e+00 1.3878e-17 1.3878e-17
w The computed QR-decomposition apparently fails to meet the exact algebraic requirements stipulated

H H "

by Thm. 3.3.3.4. However, note the tiny size of the “defect”. J

1.5.2 Machine Numbers

§1.5.2.1 (The finite and discrete set of machine numbers) The reason, why computers must fail to
execute exact computations with real numbers is clear:

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 82

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

[Computer = finite automaton] > [can handle only finitely many numbers, not IR]

machine numbers, set M

Essential property: M is a finite, discrete subset of IR (its numbers separated by gaps)

The set of machine numbers M cannot be closed under elementary arithmetic operations
+,—,-,/, that is, when adding, multiplying, etc., two machine numbers the result may not belong
to M.

The results of elementary operations with operands in IM have to be mapped back to IM, an oper-
ation called rounding.

> roundoff errors (ger.: Rundungsfehler) are inevitable

_

The impact of roundoff means that mathematical identities may not carry over to the computational realm.
As we have seen above in Exp. 1.5.1.5

[Computers cannot compute “properly” !]

—~—g—

analysis

numerical computations # linear algebra

This introduces a new and important aspect in the study of numerical algorithms!

§1.5.2.2 (Internal representation of machine numbers) Now we give a brief sketch of the internal
structure of machine numbers € IM. The main insight will be that

“Computers use floating point numbers (scientific notation)”

EXAMPLE 1.5.2.3 (Decimal floating point numbers) Some 3-digit normalized decimal floating point
numbers:

020 —0.801-10°

valid: 0.723 - 10? -
, 1.333-107% , —0.002-10°

invalid: - 10
General form of an m-digit normalized decimal floating point number:

never = 0 |

E
x==+0]. .10
| I 7N

m digits of mantissa exponent € Z

Of course, computers are restricted to a finite range of exponents:

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 83

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Definition 1.5.2.4. Machine numbers/floating point numbers — [, Sect. 2.2]

Given = basis Be N\ {1},
= exponent range {eminr v /emax}a €min, €max € Z! €min < €max;
i number m € IN of digits (for mantissa),

the corresponding set of machine numbers is

M:={d-BE:d=i-B™",i=B""',...,B" —1,E € {emin,---,emax} }

never = 0 !

machine number € M : x==+|0]|. - B digits for exponent

m digits fgrrmantissa
-
Remark 1.5.2.5 (Extremal numbers in IM) Clearly, there is a largest element of M and two that are
closest to zero. These are mainly determined by the range for the exponent E, cf. Def. 1.5.2.4.
B> Largest machine number (in modulus) : Xmax = max |M| = (1 — B~ . Bémax
Smallest machine number (in modulus) : Xy, = min M| = B! . Bmin
In C++ these extremal machine numbers are accessible through the

std: :numeric_limits<double>: :max ()
and std: :numeric_limits<double>::min ()

functions. Other properties of arithmetic types can be queried accordingly from the numeric_limits header.
-

Remark 1.5.2.6 (Distribution of machine numbers) From Def. 1.5.2.4 it is clear that there are equi-
spaced sections of M and that the gaps between machine numbers are bigger for larger numbers, see
also [AG11, Fig. 2.3].

Bemin_1
b 00000000COO O O © O© O© O O O o o [] [] [) [] [] [) [] [] [) [)
spacing Bemin~" gpacing Bémn—m+1 spacing Bemin—"1+2

ap partly filled with non-normalized numbers

Non-normalized numbers violate the lower bound for the mantissa i in Def. 1.5.2.4. J

§1.5.2.7 (IEEE standard 754 for machine numbers — [Ove01], [AG11, Sect. 2.4], — link) No sur-
prise: for modern computers B = 2 (binary system), the other parameters of the universally implemented
machine number system are

single precision :m = 24*,E € {—125,...,128} > 4 bytes
double precision : m = 53*,E € {—1021,...,1024} > 8 bytes

*: including bit indicating sign

The standardisation of machine numbers is important, because it ensures that the same numerical algo-

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 84

http://en.cppreference.com/w/cpp/types/numeric_limits
http://en.wikipedia.org/wiki/IEEE_754

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

rithm, executed on different computers will nevertheless produce the same result. J

Remark 1.5.2.8 (Special cases in IEEE standard)

The IEEE standard makes provisions for exceptions triggered by overflow or invalid floating point opera-
tions. The following C++ code snippet shows cases when these “flags” are raised.

double x = exp(1000), y = 3/x, z = x*sin(M_PI), w = xxlog(l);
cout << x << endl << y << endl << z << endl << w << endl;

1 inf

2 0
Output: s inf

4+ —Nan

E = emax; M # 0 = NaN = Not a number — exception

E = emax, M = 0 = Inf = Infinity — overflow

E=0 = Non-normalized numbers — underflow
E=0M=0 £ number 0

In C++ these flags can be tested with the functions std::isnan() © and
std::isinf () © . _,

§1.5.2.9 (Characteristic parameters of IEEE floating point numbers (double precision))

i C++ does not always fulfill the requirements of the IEEE 754 standard and it needs to be checked
with std: :numeric_limits<T>::is_iec559.

C++-code 1.5.2.10: Querying characteristics of double numbers => GITLAB

#include <limits >
#include <iostream >
#include <iomanip>

using namespace std;

int main() {
cout << std::numeric_limits <double>::is_iec559 << endl

© ® N o o &~ w N

10 << std::defaultfloat << numeric_limits <double>::min() << endl
11 << std:: hexfloat << numeric_limits <double>::min() << endl
12 << std::defaultfloat << numeric_limits <double >::max() << endl
13 << std:: hexfloat << numeric_limits <double >::max() << endl;
4 |}

1 true

2 2.22507e—308

. 3
Output 0010000000000000

+ 1.79769e+308
s 7fefffffffffffff

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 85

http://en.cppreference.com/w/cpp/numeric/math/isnan
http://en.cppreference.com/w/cpp/numeric/math/isinf
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/ieeecpp/Eigen/ieeecpp.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1.5.3 Roundoff Errors

EXPERIMENT 1.5.3.1 (Input errors and roundoff errors) The following computations would always result
in 0, if done in exact arithmetic.

C++-code 1.5.3.2: Demonstration of roundoff errors = GITLAB

#include <iostream >

int main() {
std ::cout. precision (15);
double a = 4.0/3.0, b = a—1, ¢ = 3xb, e
std ::cout << e << std::endl;
a = 1012.0/113.0; b = a—9; ¢ = 113xb; e = 5+c;
std ::cout << e << std::endl;
a = 83810206.0/6789.0; b = a—12345; ¢
std ::cout << e << std::endl;

[

—
|

(@]

© © N o o A~ W N

6789xb; e = c—1;

o

—

| 2.22044604925031e—16
Output: . 6.75015598972095e—14
» —1.60798663273454e—09

Can you devise a similar calculation, whose result is even farther off zero? Apparently the rounding that
inevitably accompanies arithmetic operations in IM can lead to results that are far away from the true
result. a

For the discussion of errors introduced by rounding we need important notions.

Definition 1.5.3.3. Absolute and relative error — [, Sect. 1.2]

Let x € KK be an approximation of x € IK. Then its absolute error is given by
€abs ‘= |x _f| ’

and its relative error is defined as

Remark 1.5.3.4 (Relative error and number of correct digits) The number of correct (significant, valid)
digits of an approximation x of x € K is defined through the relative error:

[x—%]
|x]

If €1 1= < 107, then ¥ has ¢ correct digits, ¢ € N

_l
§1.5.3.5 (Floating point operations) We may think of the elementary binary operations 4, —, %, / in IM
comprising two steps:
© Compute the exact result of the operation.

® Perform rounding of the result of @ to map it back to M.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 86

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/roundoff/Eigen/roundoff.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Definition 1.5.3.6. Correct rounding

Correct rounding (“rounding up”) is given by the function

d - R — M
" x +— maxargmingp,|x — x| .

(Recall that argmin . F(x) is the set of arguments of a real valued function F that makes it attain its (global)
minimum.)

Of course, @ above is not possible in a strict sense, but the effect of both steps can be realised and yields
a floating point realization of x € {4, —, -, / }.

% Notation: write % for the floating point realization of x € {+, —,-, / }:

Then @ and ® may be summed up into
For e {+,—, -/} x¥y:=rd(x*y).
_l

Remark 1.5.3.7 (Breakdown of associativity) As a consequence of rounding addition ¥+ and multiplica-
tion * as implemented on computers fail to be associative. They will usually be commutative, though this
is not guaranteed. |

§1.5.3.8 (Estimating roundoff errors — [AG11, p. 23]) Let us denote by EPS the largest relative error
(— Def. 1.5.3.3) incurred through rounding:

| rd(x) — x|
EPS :(= max ——————

’ 1.5.3.9
A] (1539)

where I = [min M|, max |[M|] N M is the range of positive machine numbers.

For machine numbers according to Def. 1.5.2.4 EPS can be computed from the defining parameters B
(base) and m (length of mantissa) [AG11, p. 24]:

EPS = 1B . (1.5.3.10)
_

However, when studying roundoff errors, we do not want to delve into the intricacies of the internal repre-
sentation of machine numbers. This can be avoided by just using a single bound for the relative error due
to rounding, and, thus, also for the relative error potentially suffered in each elementary operation.

Assumption 1.5.3.11. “Axiom” of roundoff analysis

There is a small positive number EPS, the machine precision, such that for the elementary arithmetic
operations x € {+, —, -, / } and “hard-wired” functions™ f € {exp, sin, cos,log, ...} holds

xFy=(xxy)(14+0) , f(x)=f(x)1+6) Vx,yeM,

with [§] < EPS.

+: this is an ideal, which may not be accomplished even by modern CPUs.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 87

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

= relative roundoff errors of elementary steps in a program bounded by machine precision !

EXAMPLE 1.5.3.12 (Machine precision for IEEE standard) C++ tells the machine precision as fol-
lowing:

C++ code 1.5.3.13: Finding out EPS in C++ => GITLAB

2 |#include <iostream >

s |#include <limits> // get various properties of arithmetic types
4 |int main() {

5 std ::cout. precision(15);

6 std ::cout << std::numeric_limits<double >::epsilon() << std::endl;

7

}

Output:
1 2.22044604925031e—16

Knowing the machine precision can be important for checking the validity of computations or coding ter-
mination conditions for iterative approximations. J

EXPERIMENT 1.5.3.14 (Adding EPS to 1)

cout.precision(25);
double eps = numeric_limits<double>::epsilon();
cout << fixed << 1.0 + 0.5+eps << endl

In fact, the following “definition”
<< 1.0 - 0.5%eps << endl

of EPS is sometimes used:

<< (1.0 + 2/eps) - 2/eps << endl;
) EPS is the smallest posi-
Output: tive number € M for which
1+ 1.0000000000000000000000000 1+EPS # 1 (in M):

> 0.9999999999999998889776975
s 0.0000000000000000000000000

We find that 1+EPS = 1 actually complies with the “axiom” of roundoff error analysis, Ass. 1.5.3.11:

EPS

1= (1+EPS)(1+J ol = EPS
+E)(140) = o] = || < s,
2 2 EPS

— = (14 —7)(1 o = EPS .
s~ Itgglto) = 1 ‘2+EPS’<

Do we have to worry about these tiny roundoff errors ?

YES (— Exp. 1.5.1.5): e accumulation of roundoff errors
[| e amplification of roundoff errors

Remark 1.5.3.15 (Testing equality with zero)

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 88

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/eps/Eigen/eps.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Since results of numerical computations are almost always polluted by roundoff errors:

Tests like if (x == 0) are pointless and even dangerous, if x contains the result
of a numerical computation.
= Remedy: Test if (abs(x) < tolxs) ...,

s = positive number, compared to which |x| should be small.
tol = “suitable” tolerance, often tol ~ EPS

We saw a first example of this practise in Code 1.5.1.3, Line 13. 2

Remark 1.5.3.16 (Overflow and underflow) Since the set of machine numbers IM is a finite set, the
result of an arithmetic operation can lie outside the range covered by it. In this case we have to deal with

overflow = |result of an elementary operation| > max{M}
= |[EEE standard = Inf

underflow = 0 < |result of an elementary operation| < min{|M \ {0}|}
= |[EEE standard =- use non-normalized numbers (!)

The Axiom of roundoff analysis Ass. 1.5.3.11 does not hold once non-normalized numbers are encoun-
tered:

C++-code 1.5.3.17: Demonstration of over-/underflow => GITLAB

#include <iostream >
#define _USE_MATH_DEFINES
#include <cmath>
#include <limits >
using namespace std;
int main() {
cout.precision(15);
double min = numeric_limits<double >::min () ;

© ® N o o &~ » N

10 double res1 = M_Plxmin/123456789101112;
11 double res2 = res1%x123456789101112/min;
12 cout << res1 << endl << res2 << endl;
13 |}
1 5.68175492717434e—322
Output: 2 3.15248510554597
- Try to avoid underflow and overflow

A simple example teaching how to avoid overflow during the computation of the norm of a 2D vector [AG11,
Ex. 2.9]:

Y I r:{mm it x> Jy|

_ _ ylvV1+(79)> iyl > |«
straightforward evaluation: overflow, when |x| >

vmax M| or |y| > {/max |M|. > no overflow!

Review question(s) 1.5.3.18 (Machine arithmetic)

(Q1.5.3.18.A) The set of two-digit decimal numbers is
D, :={xy-10°: x,y € {0,...,9}, x #0, e € Z} .

Give a sharp bound for the relative error of (correct) rounding in ID5.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 89

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/underflow/Eigen/underflow.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(Q1.5.3.18.B) Given two variables of type Eigen::VectorXd, how can you safely check in a C++ code
that the vectors they describe are

e linearly dependent,

e orthogonal?

1.5.4 Cancellation

In general, predicting the impact of roundoff errors on the result of a multi-stage computation is very diffi-
cult, if possible at all. However, there is a constellation that is particularly prone to dangerous amplification
of roundoff errors and still can be detected easily.

EXAMPLE 1.5.4.1 (Computing the zeros of a quadratic polynomial) The following simple EIGEN code
computes the real roots of a quadratic polynomial p(¢) = & + a& + p by the discriminant formula

p(E) = p(&) =0, &= %(—aﬂ: \/E) Jif Di=a?—48>0. (1.5.4.2)

C++ code 1.5.4.3: Discriminant formula for the real roots of p(¢) = &> + af + B =* GITLAB

2 |//! C++ function computing the zeros of a quadratic polynomial
s |//1 E— & +alf+ B by means of the familiar discriminant
//! formula §1p = 5(—a+ /a2 —4B). However
//! this implementation is vulnerable to round-off! The zeros are
//! returned in a column vector
zerosquadpol (double alpha, double beta) {
zZ;

double D = std::pow(alpha, 2) — 4 x beta; // discriminant
10 if (D< 0)
11 throw "no real zeros";
12 else {
13 // The famous discriminant formula
14 double wD = std::sqrt(D);
15 z << (—alpha — wD) / 2, (—alpha + wD) / 2; //
16 }
17 return z;

This formula is applied to the quadratic polynomial p(¢) = (& — 7)(¢ — %) after its coefficients «, B have

been computed from 7y, which will have introduced small relative roundoff errors (of size EPS).

C++ code 1.5.4.4: Testing the accuracy of computed roots of a quadratic polynomial
> GITLAB

2 |//! Eigen Function for testing the computation of the zeros of a
parabola
void compzeros () {
int n = 100;
res(n, 4);
gamma = - (n, 2, 992);
for (int i = 0; i <n; ++i) {
double alpha = —(gamma(i) + 1. / gamma(i));
double beta = 1.;

© ® N o o &~

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 90

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/roots/Eigen/zerosquadpol.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/compzero/Eigen/compzeros.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

10 z1 = zerosquadpol(alpha, beta);
e z2 = zerosquadpolstab(alpha, beta);
12 double ztrue = 1. / gamma(i), z2true = gamma(i);
13 res(i, 0) = gamma(i);
14 res(i, 1) = std::abs((z1(0) — ztrue) / ztrue);
15 res(i, 2) = std::abs((z2(0) — ztrue) / ztrue);
16 res(i, 3) = std::abs((z1(1) — z2true) / z2true);
17 }
as 10711 i F\:oots of?parabola compt:ted in ar: unstablye manne'r
+ small root
Plot of relative errors Def. 1.5.3.3 > 3t + +
N
We observe that roundoff incurred during the compu- 25} +
tation of « and p leads to “wrong” roots. o5
For large - the computed small root may be fairly & *f
inaccurate as regards its relative error, which can be § "
. . o 15 + o+ o+ LA
several orders of magnitude larger than machine pre- 2) .
cision EPS. el T ", .
+ ++++ .
. . +
The large root always enjoys a small relative error sl s L
. + + +
about the size of EPS. PP o

b
y i i 3 ol
100 200 300 400 500 600 700 800 900 100C

Fig. 21

In order to understand why the small root is much more severely affected by roundoff, note that its com-
putation involves the subtraction of two large numbers, if 7y is large. This is the typical situation, in which
cancellation occurs. J

§1.5.4.5 (Visualisation of cancellation effect) We look at the exact subtraction of two almost equal
positive numbers both of which have small relative errors (red boxes) with respect to some desired exact
value (indicated by blue boxes). The result of the subtraction will be small, but the errors may add up
during the subtraction, ultimately constituting a large fraction of the result.

(absolute) errors

Cancellation

= Subtraction of almost equal numbers

- = (> extreme amplification of relative errors)

o2 (< Roundoff error introduced by subtraction itself is negligi-
ble.)

|

EXAMPLE 1.5.4.6 (Cancellation in decimal system) We consider two positive numbers x, vy
of about the same size afflicted with relative errors ~ 10=7. This means that their sev-
enth decimal digits are perturbed, here indicated by *. When we subtract the two numbers
the perturbed digits are shifted to the left, resulting in a possible relative error of ~ 1073:

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 91

http://en.wikipedia.org/wiki/Loss_of_significance

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

x = 0.123467+« < 7th digit perturbed

y = 0.123456% < 7th digit perturbed

x—y = 0.000011* = 0.11+000 - 10~* <« 3rd digit perturbed
A

padded zeroes

Again, this example demonstrates that cancellation wreaks havoc through error amplification, not through
the roundoff error due to the subtraction. 4

EXAMPLE 1.5.4.7 (Cancellation when evaluating difference quotients — [DR08, Sect. 8.2.6], [AG11,
Ex. 1.3]) From analysis we know that the derivative of a differentiable function f : I C IR — IR at a point
x € [is the limit of a difference quotient

) — pim FE D) £

h—0 h

This suggests the following approximation of the derivative by a difference quotient with small but finite
h>0
x+h)— f(x
Fi ~ LSO oy 1
Results from analysis tell us that the approximation error should tend to zero for 1 — 0. More precise
quantitative information is provided by the Taylor formula for a twice continuously differentiable function
[AG11, p. 5]

flx+h) = f(x) + f(x)h + 1 f"(E)h* forsome ¢ = &(x,h) € [min{x,x + h}, max{x,x + h}],

(1.5.4.8)
from which we infer
flx+ h})l — f(%) — f'(x) = 3hf"(g) forsome &= Z(x,h) € [min{x,x + h}, max{x,x +h}].
(1.5.4.9)

We investigate the approximation of the derivative by difference quotients for f = exp, x = 0, and different
values of i > 0:

C++ code 1.5.4.10: Difference quotient approximation

of the derivative of exp => GITLAB logy(h) _relative error
: : S 1 0.05170918075648
2 | // leference'quotllent approximation 2 0.00501670841679
j Cgidoziﬁfqe()dfnvat”e of exp 3 0.00050016670838
.| double h - 0.1, x = 0.0: -4 0.00005000166714
6 for (int i = 1; i <= 16; ++i) { -5 0.00000500000696
7 double df = (exp(x + h) — exp(x)) / h; -6 0.00000049996218
8 cout << setprecision(14) << fixed; -7 0.00000004943368
9 cout << setw(5) << —i << setw(20) << abs(df -8 0.00000000607747
— 1) << endl; -9 0.00000008274037
0 il = e 410 0.00000008274037
e |3 } 11 0.00000008274037
12 0.00008890058234

-13 0.00079927783736
. -14 0.00079927783736
Measured relative errors > 15 0.11022302462516

We observe an initial decrease of the relative approximation er- -16 1.00000000000000

ror followed by a steep increase when /1 drops below 1078.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 92

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/diffq/Eigen/diffq.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

, L) :) L : : L L
T T T T T 1 T T =T LU T T T T
-

10-

iy i That the observed errors are really due to
o - round-off errors is confirmed by the nu-
5 . 1 merical results reported besides, using a
% ° 1 variable precision floating point module of
1 EIGEN, the MPFRC++ Support module,
o i which is no longer available now.
T i
—— 10bits || The C++ used to generate these results
7] Enasll| can be found in = GITLAB.
— 70 bits
—+—— 90 bits |7
L —+—— 110 bits [
130 bits

| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

_10-18

0 107 1072 10 10° 10
h

Fig. 23

B> Obvious culprit for what we see in Fig. 23: cancellation when computing the numerator of the
difference quotient for small |1| leads to a strong amplification of inevitable errors introduced by
the evaluation of the transcendent exponential function.

We witness the competition of two opposite effects: Smaller % results in a better approximation of the
derivative by the difference quotient, but the impact of cancellation is the stronger the smaller |k|.

flx+h) - f(x)
h

Impact of roundoff — co

—0

Approximation error f'(x) — ash — 0

In order to provide a rigorous underpinning for our conjecture, in this example we embark on our first
roundoff error analysis merely based on the “Axiom of roundoff analysis” Ass. 1.5.3.11: As in the compu-
tational example above we study the approximation of f’(x) = e* for f = exp, x € R.

¢ ' |

correction factors take into account roundoff:

xX+h X
af — ¢ {(1 . 51)} ¢ {(1 + 52)} (— "‘axiom of roundoff analysis”, Ass. 1.5.3.11)
N h

B ex(eh_l N (516h _52> ‘51‘/’52‘ < eps .
1+0(h) O(h™1) forh —0

= |af] < ex<ehh—1+eps1+h‘fh>s//
——

(Note that the estimate for the term (¢ — 1)/ is a particular case of (1.5.4.9).)

= relative error:
ex h

Y —df 2
¢ ‘%h—l— °P% . min forh = \/2eps.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 93

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/expnumdiff/Eigen/expnumdiff.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

In double precision: /2eps = 2.107342425544702 - 108 J

Remark 1.5.4.11 (Cancellation during the computation of relative errors) In the numerical experiment
of Ex. 1.5.4.7 we computed the relative error of the result by subtraction, see Code 1.5.4.10. Of course,
massive cancellation will occur! Do we have to worry?

In this case cancellation can be tolerated, because we are interested only in the magnitude of the relative
error. Even if it was affected itself by a large relative error, this information is still not compromised.

For example, if the relative error has the exact value 10~8, but can be computed only with a huge relative
error of 10%, then the perturbed value would still be in the range [0.9 - 1078, 1.1 - 10~8]. Therefore it will
still have the correct magnitude and still permit us to conclude the number of valid digits correcily. g

Remark 1.5.4.12 (Cancellation in Gram-Schmidt orthogonalisation of Exp. 1.5.1.5) The Hilbert matrix
A € R, (A);; = (i+j—1)"", considered in Exp. 1.5.1.5 has columns that are almost linearly
dependent.

Cancellation when computing orthogonal projection

of vector a onto space spanned by vector b >
p
_,_ab,
pP= b-b a

If a, b point in almost the same direction, ||p| <
||al|, ||b]|, so that a “tiny” vector p is obtained by
subtracting two “long” vectors, which implies cancel-
lation. Fig. 24

This can happen in Line 10 of Code 1.5.1.3.
_I

EXAMPLE 1.5.4.13 (Cancellation: roundoff error analysis) We consider a simple arithmetic expression
written in two ways:

> —b*=(a+b)(a—b), abcR;.

We evaluate this term by means of two algebraically equivalent algorithms for the input data a = 1.3,
b = 1.2 in 2-digit decimal arithmetic with standard rounding. (“Algebraically equivalent” means that two
algorithms will produce the same results in the absence of roundoff errors.

Algorithm A Algorithm B
x :=a~a = 1.7 (rounded) x := a+b = 2.5 (exact)
y := b~b = 1.4 (rounded) y:=a—b = 0.1 (exact)
x—y = 0.30 (exact) x *y = 0.25 (exact)

Algorithm B produces the exact result, whereas Algorithm A fails to do so. Is this pure coincidence or an
indication of the superiority of algorithm B? This question can be answered by roundoff error analysis. We
demonstrate the approach for the two algorithms A & B and general input a,b € RR.

Roundoff error analysis heavily relies on Ass. 1.5.3.11 and dropping terms of “higher order” in the machine
precision, that is terms that behave like O(EPS7), g > 1. It involves introducing the relative roundoff error
for every elementary operation through a factor (1 +), |d| < EPS.

Algorithm A:
x=a*(14+61),y =b*(1+6)

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 94

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

F=(2(1468)—*(1+8))(1+83) = f+ a6 — b?6, + (a®> — b*)d3 + O(EPS?)
—~—————

GEE

f /I
|f]

< EPS

+ O(EPS?) = EPS (1 + 15— (1.5.4.14)

will be neglected

B> For a ~ b the relative error of the result of Algorithm A will be much larger than the machine
precision EPS. This reflects cancellation in the last subtraction step.

Algorithm B:

x=(a+b)(1+4),y=(a—>b)(1+d)
f=(a+b)(a—=b)(1+8)(1+6)(1+08) = f+ (a® = b*) (61 + 62 + 63) + O(EPS?)

—~—g——

f /I
|f]

B> Relative error of the result of Algorithm B is always ~ EPS !

< |61 + 6> + 03| + O(EPS?) < 3EPS + O(EPS?) . (1.5.4.15)

In this example we see a general guideline at work:

If inevitable, subtractions prone to cancellation should be done as early as possible.

The reason is that input data and and initial intermediate results are usually not as much tainted by roundoff
errors as numbers computed after many steps. _I

§1.5.4.16 (Avoiding disastrous cancellation) The following examples demonstrate a few fundamental
techniques for steering clear of cancellation by using alternative formulas that yield the same value (in
exact arithmetic), but do not entail subtracting two numbers of almost equal size.

EXAMPLE 1.5.4.17 (Stable discriminant formula — Ex. 1.5.4.1, [AG11, Ex. 2.10]) If ¢; and ¢, are
the two roots of the quadratic polynomial p(¢) = &2 + a& + B, then &; - & = B (Vieta’s formula). Thus
once we have computed a root, we can obtain the other by simple division.

Idea: .
© Depending on the sign of « compute “stable root” without cancellation.
® Compute other root from Vieta’s formula (avoiding subtraction)

C++ code 1.5.4.18: Stable computation of real root of a quadratic polynomial =* GITLAB

//! C++ function computing the zeros of a quadratic polynomial
//! &— & +al+ B by means of the familiar discriminant
//! formula §1p = 2(—a+/aZ—4p).
//! This is a stable implementation based on Vieta’s theorem.
//! The zeros are returned in a column vector
VectorXd zerosquadpolstab(double alpha, double beta) {

Vector2d z(2);

® N o o A~ W N

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 95

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/zeroquadpolstab/Eigen/zerosquadpolstab.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

9 double D = std::pow(alpha, 2) — 4 x beta; // discriminant

10 if (D< 0)

11 throw "no real zeros";

12 else {

13 double wD = std ::sqrt(D);

14 // Use discriminant formula only for zero far away from 0
15 // in order to avoid cancellation. For the other zero
16 // use Vieta’s formula.

7 if (alpha >= 0) {

18 double t = 0.5 % (—alpha — wD); //

19 z << t, beta / t;

20 } else {

21 double t = 0.5 * (—alpha + wD); //

22 Z << beta / t, t;

23 }

24 }

25 return z;

% |}

= |nvariably, we add numbers with the same sign in Line 18 and Line 21.

35 w101 Roundoff in the computation of zeros of a parabola
+ unstable
% stable
3+ + + 3
, . . N
Numerical experiment based on the driver code 25l . |
Code 1.5.4.4. o
= 2t i
Observation: £ .
;qzj 151 + o+ ++ : 4+ + +M
The new code can also compute the small root of & . N
. = + +
the polynomial p(¢) = (& — v)(¢ — %) (expanded i N i
in monomials) with a relative error ~ EPS. . " + 7
T ++ s * + + : : +]
+ +
S A N i

100 200 300 400 500 600 700 800 900 100C

Fig. 25 v

|

EXAMPLE 1.5.4.19 (Exploiting trigonometric identities to avoid cancellation) The task is to evaluate
the integral

X
/ sintdf = 1—cosx = 2sin?(x/2) for 0<x <1, (1.5.4.20)
0 HI/—/ ———
11

and this can be done by the two different formulas [and I1.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 96

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Unstable computation of 1-cos(x)
T T T T

Relative error of expression [(l-cos(x))
with respect to equivalent expression 1[I
(2*sin(x/2)"{2}) >

Expression [is affected by cancellation for |x| < 1,
since then cos x ~ 1, whereas expression II can be
evaluated with a relative error ~ EPS for all x. N

relative error of 1-cos(x)

Analytic manipulations offer ample opportunity to rewrite expressions in equivalent form immune to
cancellation.

EXAMPLE 1.5.4.21 (Switching to equivalent formulas to avoid cancellation)

Now we see an example of a computation allegedly dating back to
Archimedes, who tried to approximate the area of a circle by the areas
of inscribed regular polygons.

Approximation of a circle by a regular n-gon, n € IN >
Fig. 27
sin &
We focus on the unit circle. The area of the inscribed
n-gon is Fy
&n
cos
A &, . &, N . n . (21 2
= Nncos — sin — = —sina, = —sin| — | .
" 272 272 n .
an
Recursion formula for A,, derived from fo o

oy, /1 — cosa,, \/1—\/1—sin2an
Sy =V 2 2 ’

Initial approximation: Ag = %\/5 .

C++ code 1.5.4.22: Tentative computation of circumference of regular polygon => GITLAB

2 |//! Approximation of Pi by approximating the circumference of a
3 |//! regular polygon
4 | MatrixXd ApproxPlinstable (double tol = 1e—8, int maxlt = 50){

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 97

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/ApproxPIinstable/Eigen/ApproxPIinstable.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

res(it ,0) = n;
res(it,2) = An — M_PI;

6, it = 0;

double s=sqrt(3)/2.; double An=3.xs;// initialization (hexagon case)
unsigned int n =

res(maxlt,4); // matrix for storing results

res(it,1) = An;

res (it ,3)=s;

10 while (it < maxlt & s > tol){// terminate when s is ’‘small enough’
11 s = sqrt((1.— sqrt(1.—sx*s))/2.);// recursion for area

12 n x= 2; An = n/2.x%s; // new estimate for circumference

13 ++it;

14 res(it ,0) =n; res(it,1) =An;// store results and (absolute) error
15 res (it ,2) = An — M_PI; res(it ,3)=s;

16 }

17 return res. (it);

The approximation deteriorates after applying the recursion formula many times:

n A, A, —T sinay,
6 2.598076211353316 -0.543516442236477 0.866025403784439
12 3.000000000000000 -0.141592653589794 0.500000000000000
24 3.105828541230250 -0.035764112359543 0.258819045102521
48 3.132628613281237 -0.008964040308556 0.130526192220052
96 3.139350203046872 -0.002242450542921 0.065403129230143
192 3.141031950890530 -0.000560702699263 0.032719082821776
384 3.141452472285344 -0.000140181304449 0.016361731626486
768 3.141557607911622 -0.000035045678171 0.008181139603937
1536 3.141583892148936 -0.000008761440857 0.004090604026236
3072 3.141590463236762 -0.000002190353031 0.002045306291170
6144 3.141592106043048 -0.000000547546745 0.001022653680353
12288 3.141592516588155 -0.000000137001638 0.000511326906997
24576 3.141592618640789 -0.000000034949004 0.000255663461803
49152 3.141592645321216 -0.000000008268577 0.000127831731987
98304 3.141592645321216 -0.000000008268577 0.000063915865994
196608 3.141592645321216 -0.000000008268577 0.000031957932997
393216 3.141592645321216 -0.000000008268577 0.000015978966498
786432 3.141593669849427 0.000001016259634 0.000007989485855
1572864 3.141592303811738 -0.000000349778055 0.000003994741190
3145728 3.141608696224804 0.000016042635011 0.000001997381017
6291456 3.141586839655041 -0.000005813934752 0.000000998683561
12582912 3.141674265021758 0.000081611431964 0.000000499355676
25165824 3.141674265021758 0.000081611431964 0.000000249677838
50331648 3.143072740170040 0.001480086580246 0.000000124894489
100663296 3.159806164941135 0.018213511351342 0.000000062779708
201326592 3.181980515339464 0.040387861749671 0.000000031610136
402653184 3.354101966249685 0.212509312659892 0.000000016660005
805306368 4.242640687119286 1.101048033529493 0.000000010536712
1610612736 6.000000000000000 2.858407346410207 0.000000007450581

Where does cancellation occur in Line 11 of Code 1.5.4.22? Since s < 1, computing 1 — s will not trigger

cancellation. However, the subtraction 1—+/1 — s? will, because v/1 —s2 ~ 1 for s < 1:

Fora, < 1: \/1—sin2¢xnz1
.y /1 — cosay 1_\/1—‘51112%]—\
sin — = — = >

> =

Cancellation here!

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences

98

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

We arrive at an equivalent formula not vulnerable to cancellation essentially using the identity (a + b)(a —
b) = a> — b? in order to eliminate the difference of square roots in the numerator.

X, 1—+/1—sin®a, 1—+/1—sin’a, 1+1-sin®a,

Sin_ — =
2 2 2 14+ V1 —sin®a,

1—(1—sin®ay,) sin &y,

201+ V1—sinfay) \/2(1+m)'

C++ code 1.5.4.23: Stable recursion for area of regular n-gon =* GITLAB

© ® N o g &~ @ N

//! Approximation of Pi by approximating the circumference of a
//! regular polygon
MatrixXd apprpistable (double tol = 1e—8, int maxlt = 50){
double s=sqrt(3)/2.; double An=3.xs;// initialization (hexagon case)
unsigned int n = 6, it = 0;
MatrixXd res(maxlt,4); // matrix for storing results
res(it ,0) = n; res(it,1) = An;
res(it ,2) = An — M_PI; res(it,3)=s;
while (it < maxlt & s > tol){// terminate when s is ’‘small enough’
s = s/sqrt(2x(1+sqrt((1+s)x(1—s))));// Stable recursion without

cancellation ‘ ‘
n x= 2; An = n/2.%xs; // new estimate for circumference

++it;
res (it ,0) =n; res(it,1) =An;// store results and (absolute) error
res(it,2) = An — M_PI; res(it,3)=s;

}

return res.topRows(it);

Using the stable recursion, we observe better approximation for polygons with more corners:

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences

99

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/apprpistable/Eigen/apprpistable.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

sinay,

0.866025403784439
0.500000000000000
0.258819045102521
0.130526192220052
0.065403129230143
0.032719082821776
0.016361731626487
0.008181139603937
0.004090604026235
0.002045306291164
0.001022653680338
0.000511326907014
0.000255663461862
0.000127831731976
0.000063915866118
0.000031957933076
0.000015978966540
0.000007989483270
0.000003994741635
0.000001997370818
0.000000998685409
0.000000499342704
0.000000249671352
0.000000124835676
0.000000062417838
0.000000031208919
0.000000015604460
0.000000007802230
0.000000003901115

Recursion for the area of a regular n-gon
T T

n A, A, — T
6 2.598076211353316 -0.543516442236477
12 3.000000000000000 -0.141592653589793
24 3.105828541230249 -0.035764112359544
48 3.132628613281238 -0.008964040308555
96 3.139350203046867 -0.002242450542926
192 3.141031950890509 -0.000560702699284
384 3.141452472285462 -0.000140181304332
768 3.141557607911857 -0.000035045677936
1536 3.141583892148318 -0.000008761441475
3072 3.141590463228050 -0.000002190361744
6144 3.141592105999271 -0.000000547590522
12288 3.141592516692156 -0.000000136897637
24576 3.141592619365383 -0.000000034224410
49152 3.141592645033690 -0.000000008556103
98304 3.141592651450766 -0.000000002139027
196608 3.141592653055036 -0.000000000534757
393216 3.141592653456104 -0.000000000133690
786432 3.141592653556371 -0.000000000033422
1572864 3.141592653581438 -0.000000000008355
3145728 3.141592653587705 -0.000000000002089
6291456 3.141592653589271 -0.000000000000522
12582912 3.141592653589663 -0.000000000000130
25165824 3.141592653589761 -0.000000000000032
50331648 3.141592653589786 -0.000000000000008
100663296 3.141592653589791 -0.000000000000002
201326592 3.141592653589794 0.000000000000000
402653184 3.141592653589794 0.000000000000001
805306368 3.141592653589794 0.000000000000001
1610612736 3.141592653589794 0.000000000000001
102
10° *
Plot of errors for approximations of 7t as computed by 02k : *

the two algebraically equivalent recursion formulas>
Observation, cf. Ex. 1.5.4.7

Amplified roundoff errors due to cancellation super-

sedes approximation error for n > 10°.

Roundoff errors merely of magnitude EPS in the case 1072

of stable recursion

approximation error

+ unstable recursion *
% stable recursion *

Fi¢

EXAMPLE 1.5.4.24 (Summation of exponential series)

1010

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences

100

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

In principle, the function value exp(x) can
be approximated up to any accuracy by
summing sufficiently many terms of the
globally convergent exponential series.

o .k
exp(x):zﬁ
k=0 "

x2 X3 oy
14X+

C++ code 1.5.4.25: Summation of exponential se-

ries => GITLAB

double expeval (double x,

double tol=1e—8){

// Initialization

double y = 1.0, term = 1.0;

long int k = 1;

// Termination criterion

while (abs(term) > tolxy) {

term *= x/k; // next summand

© © N o o B~ W N

6 24

10 y += term; // Summation
11 ++k;

12 }

13 return y;

Results for tol = 10~%, exp designates the approximate value for exp(x) returned by the function from
Code 1.5.4.25. Rightmost column lists relative errors, which tells us the number of valid digits in the

approximate result.

X

Approximation exp(x)

exp(x)

| exp(x) —exp(x)|
exp(x)

-20 6.1475618242e-09
-18 1.5983720359¢e-08
-16 1.1247503300e-07
-14 8.3154417874e-07
-12 6.1442105142e-06
-10 4.5399929604e-05
-8 3.3546262812e-04
-6 2.4787521758e-03
-4 1.8315638879¢e-02
-2 1.3533528320e-01
0 1.0000000000e+00

2 7.3890560954e+00

4 5.4598149928e+01

6 4.0342879295e+02

8 2.9809579808e+03
10 2.2026465748e+04
12 1.6275479114e+05
14 1.2026042798e+06
16 8.8861105010e+06
18 6.5659968911e+07
20 4.8516519307e+08

2.0611536224e-09
1.5229979745e-08
1.1253517472e-07
8.3152871910e-07
6.1442123533e-06
4.5399929762e-05
3.3546262790e-04
2.4787521767e-03
1.8315638889¢e-02
1.3533528324e-01
1.0000000000e+00
7.3890560989e+00
5.4598150033e+01
4.0342879349e+02
2.9809579870e+03
2.2026465795e+04
1.6275479142e+05
1.2026042842e+06
8.8861105205e+06
6.5659969137e+07
4.8516519541e+08

1.982583033727893
0.049490585500089
0.000534425951530
0.000018591829627
0.000000299321453
0.000000003501044
0.000000000662004
0.000000000332519
0.000000000530724
0.000000000273603
0.000000000000000
0.000000000479969
0.000000001923058
0.000000001344248
0.000000002102584
0.000000002143799
0.000000001723845
0.000000003634135
0.000000002197990
0.000000003450972
0.000000004828737

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences

101

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/expeval/Eigen/expeval.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

x10" Terms in exponential sum for x = -20
T T T T T T

Observation:
Large relative approximation errors for x < 0.

For x < 0 we have exp(x)| < 1, but this value
is computed by summing large numbers of opposite
sign.

value of k-th summand
o

Terms summed up for x = —20 > sl

.
: 0 5 10 15 20 25 30 35 40 5 50
Fig. 30 index k of summand

Remedy: Cancellation can be avoided by using identity

@ exp(x):%x) Jf x<0.

exp(

|

EXAMPLE 1.5.4.26 (Trade cancellation for approximation) In a computer code we have to provide a
routine for the evaluation of the “hidden difference quotient”

1 ~1
I(a) := / et dt = % forany a>0, (1.5.4.27)
0

cf. the discussion of cancellation in the context of numerical differentiation in Ex. 1.5.4.7. There we
observed massive cancellation.

Trick. Recall the Taylor expansion formula in one dimension for a function that is m + 1 times continu-
ously differentiable in a neighborhood of x [Str09, Satz 5.5.1]

1

mf<m+1)(§)hm+1 . (1.5.4.28)

Flxo+h) = Z;d (x0)* + Ry (x0, 1), Ryn(x0, 1) =

for some ¢ € [min{xo, xo + i}, max{xo, xo + h}], and for all sufficiently small [1|. Here R(xo,h) is
called the remainder term and f(¥) denotes the k-th derivative of f.

Cancellation in (1.5.4.27) can be avoided by replacing exp(a), a > 0, with a suitable Taylor expansion of
a — e" around a = 0 and then dividing by a:

-1 m 1 1
eXL? _ ;) T R, Rul0) = e exp(§)a” forsome 0 < £ <.

Then use as an approximation the point value of the Taylor polynomial

I(a) = I(a) := Y. (k—il 'ak

For a similar discussion see [AG11, Ex. 2.12].

Issue: A finite Taylor sum usually offers only an approximation and we incur an approximation error. This
begs the question how to choose the number m of terms to be retained in the Taylor expansion. We have
to pick m large enough such that the relative approximation error remains below a prescribed threshold

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 102

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

tol. To estimate the relative approximation error, we use the expression for the remainder together with
the simple estimate (exp(a) —1)/a > 1foralla > 0:

@) ~u@)| (/0 b e

rel. err. = —

|[1(a)] (e7—1)/a
1

< - m
1)l exp(a)a

For a = 1073 we get

ml t+ | 2 | 8 | 4 | 5 |
| 1.0010e-03 | 5.0050e-07 | 1.6683e-10 | 4.1708e-14 | 8.3417e-18 |

Hence, keeping m = 3 terms is enough for achieving about 10 valid digits.

Relative error of unstable formula Wbty
(exp(a)-1.0)/a and relative error, when . +*+
. . . . 107 F +
using a Taylor expansion approximation for small ar> +,
10°°
if (abs(a) < 1E-3) 5 o
o 10 ++
v =1.0+ (1.0/2 + 1.0/6%*a)*a; 5 +
(] 1011
else E e,
v = (exp(a)-1.0)/a; S0 L s
end 10 + **.*.
. . el * %
Error computed by comparison with the PYTHON 1 * * Uk
library function numpy.expml () that provides a '} N L
stable implementation of exp(x) — 1. - R S ,* #]
10710 10® 10 104 102 10'
Fig. 31 argument a
_ |

EXAMPLE 1.5.4.29 (Complex step differentiation [LM67]) This is a technique from complex analysis
that can be applied to real-valued analytic functions. Let f : I — R, I C IR an interval, be analytic in a
neighborhood of xy € I, which means that it can be written as a convergent power series there, see also
Def. 6.2.2.48:

Z (x —x09)) Vx:|x—x9| <p andsome p >0, a € R. (1.5.4.30)

Note that f is infinitely many times differentiable in a neighborhood of xy and that its derivatives satisfy
£ (x9) = n'a, € R, n € Ny.

A power series like in (6.2.2.36)
approximate f in a neighborhood of xy by means of a complex Taylor polynomial

f(xg +ih) = f(x0) + f'(x0)ih — f" (xo)h* + O(h®) for he R —0. (1.5.4.31)
Trick. Take the imaginary part on both sides of (1.5.4.31) using that all derivatives are real:
B f(xg+ih) =hf'(x) +O(®) for he R—0.
As a consequence we obtain the approximation

f(x0) = Eﬁ%ﬁﬂﬁ O(H*) for heR =0,

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 103

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

which suggests that we may rely on the cancellation-free expression

f/(XO) ~ Imf(x; + ll’l)

for h ~ \/EPS to compute the derivative of f in xj. 4

Remark 1.5.4.32 (A broader view of cancellation) Cancellation can be viewed as a particular case of a
situation, in which severe amplification of relative errors is possible. Consider a function

F:R" = R of class C?, twice continuously differentiable,

which has a simple zeroin [x], ... ,xj;]T% 0:
F(xj,...,x;) =0 , gradF(x],...,x;) #0.

We supply arguments x; € IR with small relative errors €;, i = 1, ..., n, and study the resulting relative
error ¢ of the result

F(xy(1+e€1),...,x0(1+€4)) = F(x1,...,x2) (1 +9)
Thanks to the smoothness of F, we can employ Taylor approximation

€1X1
F(x1(1+e1),...,xy(14+€,)) = F(x1,...,xp) —|—gradl—“(x1,...,xn)T : + R(x,€),
€EnXn

R(x,€) =O(e]+---+€3) for € —0.

This yields
€1X1
grad F(x1,...,x,) | ¢ | +R(x,€)
5— €nXn
F(x1,...,%n)

If x; ~ x;" we also use Taylor approximation in the denominator:

€1X1
grad F(x1,...,x,) | ¢ | +R(x,€)
5= €nXn
X1 — X]
grad F(xj,..., x5) " : + R(x*,x — x*)
Xp — X

In case (grad F(xi,...,x,)); #0, [x;] >0, and max; |x; — x| < |e;x;| we can thus encounter
0 > mayx; |€;|, which indicates a potentially massive amplification of relative errors.

e “Classical cancellation” as discussed in § 1.5.4.5 fits this setting and corresponds to the special
choice F : R?> — R, F(x1,x2) := x1 — xo.

e The effect found above can be observed for the simple trigonometric functions sin and cos!

Review question(s) 1.5.4.33.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 104

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(Q1.5.4.33.A) Give an expression for

b
I(a,b) := / 1y dx

that allows cancellation-free evaluation for integration bounds 1 < a ~ b.

(Q1.5.4.33.B) For integration bounds a,b > 1, a ~ b, propose a numerically sound way of computing

b
I(a,b) ::/ ! dx .

1+ a2

Hints.

1
T4+x27
_ tan(a) —tanp
~ 1-+tan(a)tan(B)

d
ﬁ{x — arctan(x)} =

tan(a — B)

(Q1.5.4.33.C) What is the problem with the C++ expression
y = std::log(std::cosh(x));

where x is of type double? Rewrite this line of code into an algebraically equivalent one so that problem
does no longer occur.

A

1.5.5 Numerical Stability

We have seen that a particular “problem” can be tackled by different “algorithms”, which produce different
results due to roundoff errors. This section will clarify what distinguishes a “good” algorithm from a rather
abstract point of view.

§1.5.5.1 (The “problem”)
A mathematical notion of “problem”:

4 data space X, usually X C R”
4 result space Y, usually Y C R
4 mapping (problem function) F : X — Y

A problem is a well defined function that assigns
to each datum a result.

Fig-32

Note: In this course, both the data space X and the result space Y will always be subsets of finite dimen-
sional vector spaces.

EXAMPLE 1.5.5.2 (The “matrix x vector-multiplication problem”) We consider the “problem” of com-
puting the product Ax for a given matrix A € K"" and a given vector x € K".

> e Data space X = K™ x K" (input is a matrix and a vector)
e Result space Y = IR" (space of column vectors)

e Problem function F : X — Y, F(a,x) := Ax

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 105

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

§1.5.5.3 (Norms on spaces of vectors and matrices) Norms provide tools for measuring errors. Recall
from linear algebra and calculus [NS02, Sect. 4.3], [Gut09, Sect. 6.1]:

Definition 1.5.5.4. Norm

X = vector space over field K, K = C,R. Amap || - || : X — Ry is anorm on X, if it satisfies
i) VxeX: x#0 & |x|| >0 (definite),
(i) |IAx]] = |Alllx]] ¥x € X,A € K (homogeneous),
(i) |Ix+yll <|Ixll + 1yl Vx,y€ X (triangle inequality).

Examples: (for vector space K", vector x = (x1,x2,...,x,) € K"

name : definition EIGEN function
Euclidean norm : ||x||, := \/|x1|2 + -+ |xy]2 x.norm()
1-norm s Il =l -+ x] x.1lpNorm<1> ()

co-norm, max norm : x|, := max{|x1|,...,|xs|} x.lpNorm<Eigen::Infinity> ()

Remark 1.5.5.5 (Inequalities between vector norms) All norms on the vector space K", n € IN, are
equivalent in the sense that for arbitrary two norms ||-||; and |- ||, we can always find a constant C > 0
such that

Ivl, < Cllvll, VveK". (1.5.5.6)

Of course, the constant C will usually depend on n and the norms under consideration.

For the vector norms introduced above, explicit expressions for the constants “C” are available: for all
x € K"

Ixlly < fixlly < Vallxl,, (155.7)
Ixlleo < lIxll, < vVl (15.5.8)
IxXl[eo < lixlly < nlixlles - (15.5.9)

_

The matrix space K™" is a vector space, of course, and can also be equipped with various norms. Of
particular importance are norms induced by vector norms on K" and IKK™.

Definition 1.5.5.10. Matrix norm

Given vector norms |||, and |||, on K" and K™, respectively, the associated matrix norm is
defined by

o IMx]],
M e R™": |[M| := sup X
x€R"\ {0} x

By virtue of definition the matrix norms enjoy an important property, they are sub-multiplicative:

VA € K" B ¢ K™ ||AB|| < ||A|/|B] . (1.5.5.11)

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 106

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

& notations for matrix norms for quadratic matrices associated with standard vector norms:

x[lo = [[M]

2 Xl = Ml ixllee = (M|

EXAMPLE 1.5.5.12 (Matrix norm associated with co-norm and 1-norm) Rather simple formulas are
available for the matrix norms induced by the vector norms ||- ||, and |||,

e.g. for M € K*?: |Mx||., = max{|nmy1x1 + mipxal, |[ma1xq + mopxa|}
< max{|my| + [mz|, [mar| + [maa|} || x| ,
IMx||; = |my1x1 + mypx2| + [ma1x1 + Mmoo
< max{|mu1| + [ma|, [miz| + [ma|} (21| + [x2]) -

For general M € K"

n
> matrix norm < |||, = rowsumnorm ||M] = _max Y |mijl (1.5.5.13)
1= m
j=1
m
> matrix norm < [|-[[; = columnsumnorm [[M[; := max) [m;j|. (1.5.5.14)
=L..,n;=5

Sometimes special formulas for the Euclidean matrix norm come handy [GV89, Sect. 2.3.3]:

Lemma 1.5.5.15. Formula for Euclidean norm of a Hermitian matrix

H
A
AcK", A=A" = ||A||2:ma(>)<7’x d
70 [Ix]2

Proof. Recall from linear algebra: Hermitian matrices (a special class of normal matrices) enjoy unitary
similarity to diagonal matrices:

JU € K™", diagonal D € R™: U '=U" and A =U"DU.
Since multiplication with an unitary matrix preserves the 2-norm of a vector, we conclude

|All, = |[U"DU|| = [D|l, = max ||, D =diag(dy,...,d).

On the other hand, for the same reason:

max x7Ax = max (Ux)?D(Ux) = max y"Dy = max |d;] .
[[x[l,=1 [Ix]l,=1 llyll,=1 i=1,..i

Hence, both expressions in the statement of the lemma agree with the largest modulus of eigenvalues of

A.
O

Corollary 1.5.5.16. Euclidean matrix norm and eigenvalues

For A € K"™" the Euclidean matrix norm ||A||, is the square root of the largest (in modulus)
eigenvalue of AT A.

For a normal matrix A € K" (thatis, A satisfies AHA = AAH) the Euclidean matrix norm agrees
with the modulus of the largest eigenvalue.

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 107

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

_I

§1.5.5.17 ((Numerical) algorithm) When we talk about an “algorithm” we have in mind a concrete code
function in MATLAB or C++; the only way to describe an algorithm is through a piece of code. We assume
that this function defines another mapping F : X — Y on the data space of the problem. Of course,
we can only feed data to the MATLAB/C++-function, if they can be represented in the set M of machine
numbers. Hence, implicit in the definition of F is the assumption that input data are subject to rounding
before passing them to the code function proper.

Problem Algorithm

F:XCR" 5YCR"|F: X 3YCM

§1.5.5.18 (Stable algorithm — [AG11, Sect. 1.3]) [Stable algorithm]
4+ We study a problem (— § 1.5.5.1) F : X — Y on data space X into result space Y.

4 We assume that both X and Y are equipped with norms ||-||x and |||y, respectively (—
Def. 1.5.5.4).

4 We consider a concrete algorithm F:X—Y accordingto § 1.5.5.17.

We write w(x), x € X, for the computational effort (— Def. 1.4.0.1, “number of elementary operations”)
required by the algorithm for input x.

Definition 1.5.5.19. Stable algorithm

An algorithm F for solving a problem F : X +— Y is numerically stable if for all x € X its result f(x)
(possibly affected by roundoff) is the exact result for “slightly perturbed” data:

IC~1: WxeX: KeX: |x—X|x < Cw(x)EPS|x||y A F(x)=F(X).

Here EPS should be read as machine precision according to the “Axiom” of roundoff analysis Ass. 1.5.3.11.

F
— ‘
lllustration of Def. 1.5.5.19 > =
(y = exact result for exact data x)

Terminology:
Def. 1.5.5.19 introduces stability in the sense of
backward error analysis

Fig. 33

Sloppily speaking, the impact of roundoff () on a stable algorithm is of the same order of magnitude
as the effect of the inevitable perturbations due to rounding of the input data.

> For stable algorithms roundoff errors are “harmless”.

(*) In some cases the definition of F will also involve some approximations as in Ex. 1.5.4.26. Then the
above statement also includes approximation errors. J

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 108

Fig. 34

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

EXAMPLE 1.5.5.20 (Testing stability of matrix x vector multiplication) Assume you are given a black
box implementation of a function

VectorXd mvmult (const MatrixX &A, const VectorXd &x)

that purports to provide a stable implementation of Ax for A € K"" x € K", ¢f Ex. 1.5.5.2. How can
we verify this claim for particular data. Both, IK"" and K" are equipped with the Euclidean norm.

The task is, given y € K" as returned by the function, to find conditions on y that ensure the existence of
a A € K"" such that

Ax =y and HK—AHZSCmnEPS||A||2, (1.5.5.21)

for a small constant ~ 1.

In fact we can choose (easy computation)

- —A
A=A+zx" , Z:.= yizx ",
1x[[2
and we find
. x-wlz| ly — Ax|
[A-al, =], = sup = <l lelly = P
weKn\ {0} 2 2

Hence, in principle stability of an algorithm for computing Ax is confirmed, if for every x € R" the
computed result y = mvmult(A, x) satisfies

Iy — Ax|l, < CmnEPS [|x[|,||All; ,

with a small constant C > 0 independent of data and problem size.

|

Remark 1.5.5.22 (Numerical stability and sensitive dependence on data)

F A problem shows sensitive dependence on the data,
if small perturbations of input data lead to large per-
turbations of the output. Such problems are also
called ill-conditioned. For such problems stability
of an algorithm is easily accomplished.

< “Mental image”: ill-conditioned problem: slightly
different data (w.r.t. ||-||x) yield vastly different re-
sults (||[y — ¥||y large).

Example: The problem is the prediction of the po-
sition of the billard ball after ten bounces given the
initial position, velocity, and spin.

It is well known, that tiny changes of the initial condi-
tions can shift the final location of the ball to virtually
any point on the table: the billard problem is chaotic.

Hence, a stable algorithm for its solution may just out-
put a fixed or random position without even using the
initial conditions!

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 109

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Review question(s) 1.5.5.23 (Numerical stability)

(Q1.5.5.23.A) We consider the problem of multiplying the Kronecker product of two real n x n matrices
with a vector. Give the formula for the problem mapping and characterize the (largest possible))data
space and result space.

(@1.5.5.23.B) Fill in the blanks in the following definition of a stable algorithm:

Definition . Stable algorithm

An algorithm F for solving a problem F : X — Y is numerically stable if for all x € X its result
F (x) (possibly affected by roundoff) is the exact result for “slightly perturbed” data:

< Cu() BPS|[x|l A f([:) =P< [:]) .

(Q1.5.5.23.C) Suppose you have to examine a black-box function

double add(double x, double v);

that just adds the two numbers given as arguments. Derive conditions on the returned result that, when
satisfied, imply the stability of the implementation of add () . Of course, the norm on R is just |-|.

A

Learning Outcomes

Principal take-home knowledge and skills from this chapter:

e Learning by doing: Knowledge about the syntax of fundamental operations on matrices and vectors
in EIGEN.

e Understanding of the concepts of computational effort/cost and asymptotic complexity in numerics.
e Awareness of the asymptotic complexity of basic linear algebra operations

e Ability to determine the (asymptotic) computational effort for a concrete (numerical linear algebra)
algorithm.

e Ability to manipulate simple expressions involving matrices and vectors in order to reduce the com-
putational cost for their evaluation.

e Knowledge about round-off and machine precision.

e Familiarity with the phenomenon of “cancellation”: cause, effect, remedies, and tricks

1. Computing with Matrices and Vectors, 1.5. Machine Arithmetic and Consequences 110

Bibliography

[AV8S]

[AG11]

[CW90]
[DROS]
[GV89]

[GJ10]

[Gutog]
[KW03]
[LM67]
[NS02]
[Ove01]
[QSS00]
[Str69]

[Str09]
[Van00]

A. Aggarwal and J.S. Vitter. “The input/output complexity of sorting and related problems”. In:
Communications of the ACM 31.9 (1988), pp. 1116—1127 (cit. on p. 72).

Uri M. Ascher and Chen Greif. A first course in numerical methods. Vol. 7. Computational
Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2011, pp. xxii+552. DOI: 10.1137/1.9780898719987 (cit. on pp. 45, 72, 84, 86, 87,
89, 92, 95, 102, 108).

D. Coppersmith and S. Winograd. “Matrix multiplication via arithmetic progression”. In: J. Sym-
bgolic Computing 9.3 (1990), pp. 251-280 (cit. on p. 75).

W. Dahmen and A. Reusken. Numerik fir Ingenieure und Naturwissenschaftler. Heidelberg:
Springer, 2008 (cit. on pp. 46, 92).

G.H. Golub and C.F. Van Loan. Matrix computations. 2nd. Baltimore, London: John Hopkins
University Press, 1989 (cit. on pp. 67, 107).

Gero Greiner and Riko Jacob. “The I/O Complexity of Sparse Matrix Dense Matrix Multipli-
cation”. In: LATIN 2010: THEORETICAL INFORMATICS. Ed. by LopezOrtiz, A. Vol. 6034.
Lecture Notes in Computer Science. Microsoft Res; Yahoo Res; Univ Waterloo. 2010, 143—
156.DOI: {10.1007/978-3-642-12200-2_141} (cit. on p. 72).

M.H. Gutknecht. Lineare Algebra. Lecture Notes. SAM, ETH Zirich, 2009 (cit. on p. 106).

M. Kowarschik and C. Weiss. “An Overview of Cache Optimization Techniques and Cache-
Aware Numerical Algorithms”. In: Algorithms for Memory Hierarchies. Vol. 2625. Lecture Notes
in Computer Science. Heidelberg: Springer, 2003, pp. 213—-232 (cit. on p. 72).

J. N. Lyness and C. B. Moler. “Numerical differentiation of analytic functions”. In: SIAM J.
Numer. Anal. 4 (1967), pp. 202—-210 (cit. on p. 103).

K. Nipp and D. Stoffer. Lineare Algebra. 5th ed. Zlrich: vdf Hochschulverlag, 2002 (cit. on
pp. 42, 59, 79, 106).

M.L. Overton. Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia, PA:
SIAM, 2001 (cit. on p. 84).

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37. Texts in Applied Math-
ematics. New York: Springer, 2000 (cit. on pp. 46, 65).

V. Strassen. “Gaussian elimination is not optimal”. In: Numer. Math. 13 (1969), pp. 354—356
(cit. on p. 74).

M. Struwe. Analysis fir Informatiker. Lecture notes, ETH Zirich. 2009 (cit. on pp. 42, 43, 102).
Charles F. Van Loan. “The ubiquitous Kronecker product”. In: J. Comput. Appl. Math. 123.1-2
(2000), pp. 85-100. DOI: 10.1016/S0377-0427 (00) 00393-09.

111

https://doi.org/10.1137/1.9780898719987
https://doi.org/{10.1007/978-3-642-12200-2_14}
https://doi.org/10.1016/S0377-0427(00)00393-9

Chapter 2

Direct Methods for (Square) Linear Systems of
Equations

§2.0.0.1 (Required prior knowledge for Chapter 2) Also this chapter heavily relies on concepts and
techniques from linear algebra as taught in the 1st semester introductory course. Knowledge of the fol-
lowing topics from linear algebra will be taken for granted and they should be refreshed in case of gaps:

e Operations involving matrices and vectors [NS02, Ch. 2], already covered in Chapter 1

Computations with block-structured matrices, cf. § 1.3.1.13

Linear systems of equations: existence and uniqueness of solutions [NS02, Sects. 1.2, 3.3]

e Gaussian elimination [NS02, Ch. 2]
e LU-decomposition and its connection with Gaussian elimination [NS02, Sect. 2.4]
|
Contents
2.1 Introduction: Linear Systems of Equations (LSE) 113
2.2 Theory: Linear Systems of Equations(LSE) 116
2.2.1 LSE: Existence and Uniqueness of Solutions 116
2.2.2 Sensitivity/Conditioning of Linear Systems 117
2.3 Gaussian Elimination(GE) 122
231 BasicAlgorithm 122
232 LU-Decomposition 129
233 Pivoting e 137
2.4 Stability of Gaussian Elimination 143
2.5 Survey: Elimination Solvers for Linear Systems of Equations 150
2.6 Exploiting Structure when Solving Linear Systems 155
27 SparseLinearSystems i e e 162
271 Sparse Matrix Storage Formats 163
2.7.2 Sparse Matricesin EIGEN 166
2.7.3 Direct Solution of Sparse Linear Systems of Equations 174
2.7.4 LU-Factorization of Sparse Matrices 177
2.7.5 Banded Matrices [DRO8, Sect.3.7] 183
2.8 Stable Gaussian Elimination Without Pivoting 190

112

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

2.1 Introduction: Linear Systems of Equations (LSE)

§2.1.0.1 (The problem: solving a linear system) What is “the problem” considered in this chapter,
when we apply the notion of “Problem” introduced in § 1.5.5.1, that is, which functions do “Direct Methods
for Linear Systems of Equations (LSE)” attempt to evaluate and what suitable data spaces X and result
spaces Y?

Input/data : square matrix A € K" vectorb € K", n € N > dataspace X = K"" x K"

Output/result : solution vector x € K": Ax=Db < (square) linear system of equations (LSE)

> result space Y = K"

(Terminology: A = system matrix/coefficient matrix, b = right hand side vector)

Linear systems with rectangular system matrices A € K""", called “overdetermined” for m > n, and
“underdetermined” for m < n will be treated in Chapter 3. J

Remark 2.1.0.2 (LSE: key components of mathematical models in many fields) Linear systems of
equations are ubiquitous in computational science: they are encountered

e with discrete linear models in network theory (see Ex. 2.1.0.3), control, statistics;

e in the case of discretized boundary value problems for ordinary and partial differential equations (—
course “Numerical methods for partial differential equations”, 4th semester);

e as a result of linearization (e.g, “Newton’s method” — Section 8.5).

EXAMPLE 2.1.0.3 (Nodal analysis of (linear) electric circuit [QSS00, Sect. 4.7.1])

Now we study a very important application of numerical simulation, where (large, sparse) linear systems
of equations play a central role: Numerical circuit analysis. We begin with linear circuits in the frequency
domain, which are directly modelled by complex linear systems of equations. In later chapters we will
tackle circuits with non-linear elements, see Ex. 8.1.0.1, and, finally, will learn about numerical methods
for computing the transient (time-dependent) behavior of circuits, see Ex. 11.1.1.9.

Modeling of simple linear circuits takes only elementary physical laws as covered in any introductory
course of physics (or even in secondary school physics). There is no sophisticated physics or mathematics
involved. Circuits are composed of so-called circuit elements connected by (ideal) wires.

A circuit diagram >
o: Nodes that is, junctions of wires

We number the nodes 1,...,n and write I;; (physi- u(
cal units, [I;;] = 1A) for the electric current flowing
from node k to node j. Currents have a sign:

Iyj = —Ijk

2. Direct Methods for (Square) Linear Systems of Equations, 2.1. Introduction: Linear Systems of Equations (LSEJB

http://en.wikipedia.org/wiki/Nodal_analysis
https://en.wikipedia.org/wiki/Circuit_diagram

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The most fundamental relationship is the Kirchhoff current law (KCL) that demands that the sum of node
currents vanishes:

Vke{l,...,n}: Tl ;=0 . (2.1.0.4)

The unknowns of the model are the nodal potentials Uy, k = 1,...,n. (Some of them may be known, for
instance those for grounded nodes: ® in Fig. 36, and nodes connected to voltage sources: @ in Fig. 36.)
The difference of the nodal potentials of two connected nodes is called the branch voltage.

The circuit elements are characterized by current-voltage relationships, so-called constitutive relations,
here given in frequency domain for angular frequency w > 0 (physical units [w] = 1s~1). We consider
only the following simple circuit elements:

u
e Ohmic resistor: I = &, [R] = 1VA~! RN (U, — ;) ,
e capacitor: | = 1wCU, capacitance [C] = 1AsV~! > [i; = ¢ wC(U — U;) ,
u 17—
e coil/inductor : I = oL’ inductance [L] = 1VsA~! —1w 'L (U — Uj) .

% notation: 1 = imaginary unit “z := /—17, 1 = exp(17/2), 1> = —1

Here we face the special case of a linear circuit: all relationships between branch currents and voltages
are of the form

ij = ockj(uk — U]) with Akj € C. (2.1.0.5)

The concrete value of X is determined by the circuit element connecting node k and node ;.

These constitutive relations are derived by assuming a harmonic time-dependence of all quantities, which
is termed circuit analysis in the frequency domain (AC-mode).

voltage: u(t) = Re{Uexp(rwt)} , current: i(t) = Re{lexp(rwt)} . (2.1.0.6)
Here U, I € C are called complex amplitudes. This implies for temporal derivatives (denoted by a dot):

du di
E(t)—Re{zwllexp(zwt)} T

For a capacitor the total charge is proportional to the applied voltage:

(t) = Re{wwl exp(rwt)} . (2.1.0.7)

, d

(1) =31 "
q(t) = Cu(t) i(t) = C(t) -

For a coil the voltage is proportional to the rate of change of current: u(t) = L4 (t). Combined with

(2.1.0.6) and (2.1.0.7) this leads to the above constitutive relations.

sl

Now we combine the constitutive relations with the Kirchhoff current law (2.1.0.4). We end up with a linear
system of equations!

@: 1wC(Uy—Uy) + RN Uy — Us) — 1w 'L~ Uy — Uy) + Ry N (U — Us) = 0,
O Rfl(U3—U2)+sz2(U3—U5) = 0,
@: Ry (Uy—Uh) — 1w 'L YUy — Up) + Ry N (Us — Us) = 0,
®: Ry 1 (Us — Up) +1wCy(Us — Uz) + RN (Us — Uy) + Ry H(Us — Ug) = 0,

2. Direct Methods for (Square) Linear Systems of Equations, 2.1. Introduction: Linear Systems of Equations (LSE#

http://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Inductor

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Uy =U , Ug=0.

We do not get equations for the nodes @ and ®, because these nodes are connected to the “outside
world” so that the Kirchhoff current law (2.1.0.4) does not hold (from a local perspective). This is fitting,
because the voltages in these nodes are known anyway.

1 i 1 1 i 1
whtg oty T WL R; Uy wC U
_Rll R—1—|-la)C2 0 —1wCy Us 0
i 1 i 1 1 = 1
WL 0 R @l TR, -x; 1 54 rsU
i _ 1 1 1 p- 0
R; 1wy R; R; +1wCr+ R; +R5 5

This is a linear system of equations with complex coefficients: A € C**, b € C*. For the algorithms to
be discussed below this does not matter, because they work alike for real and complex numbers. J

Review question(s) 2.1.0.8 (Nodal analysis of linear electric circuits)

(Q2.1.0.8.A) [A simple resistive circuit]

In the electric circuit drawn beside all re-
sistors have the same resistance R > 0.
Which nodal potentials are already
known?

Derive the linear system of equations for
the remaining unkown nodal potentials.

Fig. 37

(Q@2.1.0.8.B) [Current source] The voltage source with strength U in Fig. 37 is replaced with a current
source, which drives a known current I through the circuit branch it is attached to.

Which linear system of equations has to be solved in order to determine the unknown nodal potentials
ul/ u?_/ u3/ u4?

(Q2.1.0.8.C) A linear mapping L : R" — IR" is represented by the matrix A € IR™" with respect to the
standard basis of IR” comprising Cartesian coordinate vectors ey, / =1, ..., n.

Explain, how one can compute the matrix representation of L with respect to the basis

([2] 1171 o1 [o] [0])
1 2 1 :
0 1)

: 0 1
PRI
of |:
1l o
A 21 |1
o| |0] LO 1] (2]

by merely solving 7 linear systems of equations and forming matrix products.
A

2. Direct Methods for (Square) Linear Systems of Equations, 2.1. Introduction: Linear Systems of Equations (LSED

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

2.2 Theory: Linear Systems of Equations (LSE)

2.2.1 LSE: Existence and Uniqueness of Solutions

The following concepts and results are known from linear algebra [NS02, Sect. 1.2], [Gut09, Sect. 1.3]:

Definition 2.2.1.1. Invertible matrix — [, Sect. 2.3]

A € K" invertible/regular & 3;Be K" AB=BA=1.

B is called the inverse of A, (™ notation B = A1)

Now, recall a few notions from linear algebra needed to state criteria for the invertibility of a matrix.

Definition 2.2.1.2. Image space and kernel of a matrix

Given A € K™ the range/image (space) of A is the subspace of K" spanned by the columns of
A

R(A):={Ax, xe K"} C R".
The kernel/nullspace of A is

N(A):={zeR": Az=0}.

Definition 2.2.1.3. Rank of a matrix — [, Sect. 2.4], [, Sect. 1.5]

The rank of a matrix M € K™, denoted by rank(M), is the maximal number of linearly indepen-
dent rows/columns of M. Equivalently, rank(A) = dimR(A).

Theorem 2.2.1.4. Criteria for invertibility of matrix — [NS02, Sect. 2.3 & Cor. 3.8]

A square matrix A € K" is invertible/regular if one of the following equivalent conditions is satis-
fied:

dB € K"": BA = AB =1,

x — Ax defines an endomorphism of K",

the columns of A are linearly independent (full column rank),

the rows of A are linearly independent (full row rank),

detA # 0 (non-vanishing determinant),

rank(A) =n (full rank).

OO RN N =~

§2.2.1.5 (Solution of a LSE as a “problem”, recall § 2.1.0.1) Linear algebra give us a formal way to
denote solution of LSE:

AcK"regular & Ax=b = x=A"'b.

N

inverse matrix

Now recall our notion of “problem” from § 1.5.5.1 as a function F mapping data in a data space X to a

2. Direct Methods for (Square) Linear Systems of Equations, 2.2. Theory: Linear Systems of Equations (LSE) 116

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

result in a result space Y. Concretely, for n x n linear systems of equations:

. X =KMxK!' — Y:=K"
(A,b) — A~ b

& notation: (open) set of regular matrices C IK"":

K" .= {A € K" : A regular/invertible — Def. 2.2.1.1} .

|

Remark 2.2.1.6 (The inverse matrix and solution of a LSE) In principle, in EIGEN the inverse of a matrix
A is available through the member function inverse () of matrix type, see ¥ EIGEN documentation.
However, there are only a few case that always involve fixed-size small matrices, where the actual compu-
tation of the inverse of a matrix is warranted. The general advice is the following:

Avoid computing the inverse of a matrix (which can almost always be avoided)!
In particular, never ever even contemplate using x = A.inverse () *b to solve the
linear system of equations Ax = b, cf. Exp. 2.4.0.13. The next sections present a sound way
to do this.

Another reason for this advice is given in Exp. 2.4.0.13. J

Review question(s) 2.2.1.7 (LSE: Existence and Uniqueness of Solutions)

(Q@2.2.1.7.A) [Diagonal linear systems of equations] How can you tell that a square linear system of
equations with a diagonal system matrix has a unique solution?

(Q2.2.1.7.B) Outline a practical algorithm that checks whether an upper triangular matrix A € R™",
n € IN, is invertible.

(Q2.2.1.7.C) A square matrix A € R has the following entries

1 ,ifj>1,
(A),; =<wa ,ifi=nj=1, ije{l,...,n}, aecR.
0 elsewhere,

For what values of « is A regular?

2.2.2 Sensitivity/Conditioning of Linear Systems

The sensitivity/samterm*conditioning of a problem (for given data) gauges
the impact of small perturbations of the data on the result.

Before we examine sensitivity for linear systems of equations, we look at the simpler problem of
matrix X vector multiplication.

EXAMPLE 2.2.2.1 (Sensitivity of linear mappings) For a fixed given regular A € K" we study the
problem map

F: K" - K" , x— Ax,

that is, now we consider only the vector x as data.

2. Direct Methods for (Square) Linear Systems of Equations, 2.2. Theory: Linear Systems of Equations (LSE) 117

https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Goal: Estimate relative perturbations in F(x) due to relative perturbations in x.

We assume that K" is equipped with some vector norm (— Def. 1.5.5.4) and we use the induced matrix
norm (— Def. 1.5.5.10) on IK""*. Using linearity and the elementary estimate ||Mx|| < ||M]||||x]||, which
is a direct consequence of the definition of an induced matrix norm, we obtain

Ax=y = |x| < [a7||lyl
A(x+Ax) =y+A8y = Adx=Ay = |ay] < [A]]ax|

A AllllA A
Iyl = a1~ x| 1]
relative perturbation in result relative perturbation in data

We have found that the quantity || Al HA*l H bounds amplification of relative errors in the argument vector
in a matrix x vector-multiplication with the matrix A. 2

Now we study the sensitivity of the problem of finding the solution of a linear system of equations Ax = b,
A € R"" regular, b € R, see § 2.1.0.1. We write X for the solution of the perturbed linear system.

Question: To what extent do perturbations in the data A, b cause a

(normwise) relative error: € 1= = X]
B [N
(||| = suitable vector norm, e.g., maximum norm ||-||..)
Perturbed linear system:
Ax=b < (A+AA)X=b+Ab B (A +AA)(X—x)=Ab— AAx. (2.2.2.3)

—~—g——

Theorem 2.2.2.4. Conditioning of LSEs — [QSS00, Thm. 3.1], [GGK14, Thm 3.5]

If A regular, ||[AA|| < HA‘lH_1 and (2.2.2.3), then
(i) A + AA is regular/invertible,

(ii)
Ix=x| _ a1l <||Ab|| ||AA||) .
IxlI = 1= JATTIAAA /AN (Bl [A]
O Y
relative error of data relative perturbations

The proof is based on the following fundamental result:
Lemma 2.2.2.5. Perturbation lemma — [QSS00, Thm. 1.5]
1

BeR"™ |[B| <1 = I+B regular A H(1+B)—1H < T
Proof. We start with the /AA-inequality
T+ B)x|| = ([Ix]| = [Bx])) = (1 —[B})[Ix]| Vvx e R". (2.2.2.6)
——

£0

2. Direct Methods for (Square) Linear Systems of Equations, 2.2. Theory: Linear Systems of Equations (LSE) 118

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

We conclude that I + B must have trivial kernel N'(I + B) = {0}, which implies that the square matrix
I 4 B is regular. We continue using this fact, the definition of the matrix norm, and (2.2.2.6):

I+B) x 1
[a+8) = sup [a+B) 7 Iyl .
gy I yerrt (o) 1T+ B)y[= T—[B]
O
Proof. (of Thm. 2.2.2.4) We use a slightly generalized version of Lemma 2.2.2.5, which gives us
A7
A+AA —1H< | .
|(a+aa) ST |A-TAA|
We combine this estimate with (2.2.2.3):
A~ [atlIAl [Ab] | [[AA]
Ix1 < 1 amsay 1801+ laaxl) < e (ke + e i
1—[[A~1AA]| L= [[AZT[[[AA[XAl [[A]l
O

Note that the term || A ||| A~ || occurs frequently. Therefore it has been given a special name:

Definition 2.2.2.7. Condition (number) of a matrix

Condition (number) of a matrix A € R"": cond(A) := HA*H A

Note: cond (A) depends on the matrix norm ||-|| !

Rewriting estimate of Thm. 2.2.2.4 with Ab = 0,

_Ix=%| __cond(A)o

. 84|
a x| — 1—cond(A)d, ’

5= 120 (2.2.2.8)
Al

From (2.2.2.8) we conclude important messsages of cond (A):

4+ If cond(A) > 1, small perturbations in A can lead to large relative errors in the solution of
the LSE.

4 | If cond(A) > 1, a stable algorithm (— Def. 1.5.5.19) can produce solutionsw
with large relative error !

Recall Thm. 2.2.2.4: for regular A € IK™", small AA, generic vector/matrix norm ||- |

Ax=Db ||x — x| - cond(A) <||Ab|| |AA|

. 2.2.2.
(A+AAR=b+ab x| — 1—cond(A)[AA]/[A]\ [||A||) (2.229)

- cond(A) >1 > small relative changes of data A, b may effect huge relative changes in so-
lution.

2. Direct Methods for (Square) Linear Systems of Equations, 2.2. Theory: Linear Systems of Equations (LSE) 119

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

> cond(A) indicates sensitivity of “LSE problem” (A,b) — x = A~'b
(as “amplification factor” of (worst-case) relative perturbations in the data A, b).

Terminology:
Small changes of data = small perturbations of result : well-conditioned problem
Small changes of data = large perturbations of result : ill-conditioned problem
Note: sensitivity gauge depends on the chosen norm !

EXAMPLE 2.2.2.10 (Intersection of lines in 2D) Solving a 2 x 2 linear system of equations amounts to
finding the intersection of two lines in the coordinate plane: This relationship allows a geometric view of
“sensitivity of a linear system”, when using the distance metric (Euclidean vector norm).

Remember the Hessian normal form of a straight line in the plane. We are given the Hessian normal
forms of two lines L; and L, and want to compute the coordinate vector x € IR? of the point in which they
intersect:

Li:{xe]RZ: xTni:di}, neR%,deR, i=1,2.

T
= LSE for finding intersection: {an} X — [dl])
nz dz
\v/
=:A)
where the n; are (unit) direction vectors, and the d; € R give the (signed) distance to the origin.

Now we perturb the right-hand side vector b and wonder how this will impact the intersection points. The
situation is illustrated by the following two pictures, in which the original and perturbed lines are drawn in
black and red, respectively.

K

nearly orthogonal intersection: well-conditioned glancing intersection: ill-conditioned

Obviously, if the lines are almost parallel, a small shift in their position will lead to a big shift of the inter-
section point.

. . . " |1
The following EIGEN-based C++ code investigates condition numbers for the matrix 0 Ziﬁg that can

arise when computing the intersection of two lines enclosing the angle ¢. As usual the directive using
namespace ; was given in the beginning of the file.

C++-code 2.2.2.11: condition numbers of 2 x 2 matrices => GITLAB

2 phi = - (50, M_PI / 200, M_PI / 2);
3 res (phi. (), 3);

4 A;

5 A0, 0) = 1;

s | A(1, 0) = O;

7 for (int i = 0; i < phi. (O); ++i) {

2. Direct Methods for (Square) Linear Systems of Equations, 2.2. Theory: Linear Systems of Equations (LSE) 120

http://mathworld.wolfram.com/HessianNormalForm.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/linesec/Eigen/linesec.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

A(0, 1) = std::cos(phi(i));

A(1, 1) = std::sin(phi(i));

// L2 condition number is the quotient of the maximal

// and minimal singular value of A

JacobiSVD< > (A);

double C2 = .singularValues () (0)
.singularValues () (

// L-infinity condition number

I //
.singularValues () .

0 —1);

16 double Cinf =

17 A. 0 - 0 - 0 (- 0
18 A. 0 - 0 - 0 O: //

19 res(i, 0) = phi(i);

20 res(i, 1) = C2;

21 res(i, 2) = Cinf;

22 }

In Line 13 we compute the condition number of A with respect to the Euclidean vector norm using special

EIGEN built-in functions.

Line 18 evaluated the condition number of a matrix for the maximum norm, recall Ex. 1.5.5.12.

We clearly observe a blow-up of cond(A) (with re-
spect to the Euclidean vector norms) as the angle

enclosed by the two lines shrinks.

This corresponds to a large sensitivity of the location
of the intersection point in the case of glancing inci-

dence.

Fig. 38

Heuristics for predicting large cond (A)

condition numbers

140

120

o
S

80

60

40

20

2-norm
— — — max-norm

cond(A) > 1 < columns/rows of A “almost linearly dependent”

Review question(s) 2.2.2.12 (Sensitivity of linear systems)

(Q@2.2.2.12.A) Analyze the sensitivity of a linear system of equations with diagonal system matrix relying
on the Euclidean vector and matrix norms. Consider perturbations of the right-hand side vector and of

the diagonal elements and investigate the amplification of relative errors.

A

2. Direct Methods for (Square) Linear Systems of Equations, 2.2. Theory: Linear Systems of Equations (LSE) 121

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm

The problem of solving a linear system of equations is rather special compared to many other numerical

tasks:

' An exceptional feature of linear systems of equations (LSE) is that its “exact” solution com-
putable with finitely many elementary operations.

The algorithm is Gaussian elimination (GE) (— secondary school, linear algebra,)
Familiarity with the algorithm of Gaussian elimination for a square linear system of equations will be taken
for granted.
% Supplementary literature. In case you cannot remember the main facts about Gaussian elimi-
nation, very detailed accounts and examples can be found in
e M. Gutknecht’s lecture notes [Gut09, Ch. 1],
e the textbook by Nipp & Stoffer [NS02, Ch. 1],
e the numerical analysis text by Quarteroni et al. [QSS00, Sects. 3.2 & 3.3],
e the textbook by Ascher & Greif [AG11, Sect. 5.1],
and, to some extend, below, see Ex. 2.3.1.1.

Wikipedia: Although the method is named after mathematician Carl Friedrich Gauss, the earliest pre-
sentation of it can be found in the important Chinese mathematical text Jiuzhang suanshu or
The Nine Chapters on the Mathematical Art, dated approximately 150 B.C., and commented
on by Liu Hui in the 3rd century.

The idea of Gaussian elimination is the transformation of a linear system of equa-
tions into a “simpler”, but equivalent LSE by means of successive (invertible) row
transformations.

Rem. 1.3.1.12: row transformations <> left-multiplication with transformation matrix

Obviously, left multiplication with a regular matrix does not affect the solution of an LSE: for any regular
T e K"

Ax=b = A'x=Db" ,ift A'=TA, b =Tb.

So we may try to convert the linear system of equations to a form that can be solved more easily by
multiplying with regular matrices from left, which boils down to applying row transformations. A suitable
target format is a diagonal linear system of equations, for which all equations are completely decoupled.
This is the gist of Gaussian elimination.

EXAMPLE 2.3.1.1 (Gaussian elimination)

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 122

http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Liu_Hui

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Stage @ (Forward) elimination:
1 1 0 X1 4 X1 4+ x = 4
2 1 —1||x|=|1 — 2x1 + xp — x3 = 1 .
3 -1 -1 X3 -3 3.X1 — X2 — X3 = -3
2 1 -1 1 > 0 -1 -1 -7
3 -1 -1 -3 3 -1 -1 -3
4 1 1 0 4
> |0 -1 —1 —7 > | o [FI —7
0 —4 -1 —15 0O 0 3 13
—U
- = pivot row, pivot element bold.
- We have transformed the LSE to upper triangular form
Stage @ Solve by back substitution:
X1+ X = 4 x3 = 2
— Xp — x3 = —7 = XQ:7—13—3:%
More detailed examples are given in [Gut09, Sect. 1.1], [NS02, Sect. 1.1]. g
More general:
a1x1 + apx2 + + apxn = b
ax x1 + axnxy + + az xn by
g1 X1 + apa X2 + + awpxp = by
e i-throw - [;1- 1st row (pivot row), I;1 := a1/ay, i =2,...,1
a1x1 + apxy + + awxn = b
ag) X, + + ag_}q) Xp = bél) with
. 1 3
: : al() aij - alj lil/ 1,] = 2/ N,
: : : bil) = b —b1ly, i=2,...,n.
ax + o 4 a = b
o i-throw- - 2nd row (pivot row), lpp 1= a /all), i = 3,...,n.
appx1 + appx2 + 413Xz + + ap Xy, by
aé? Xy + a%) X3 + + agl) Xy, = bél)
2 2 2
T
N
2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 123

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

B Aftern—1 steps: linear systems of equations in upper triangular form
a1xy + apxy + axz + o0+ dpxyg = by
1 1 1 1
N R
gy X3+ -0+ Az xp = by
A = b
Terminology: all,ag),a:%), . .,afln__lzr)l_l = pivots/pivot elements

Graphical depiction:

0.

DY 0. .0

* = the pivot entry (necessarily # 0, which we assume here), - = pivot row
In k-th step (starting from A € K™", 1 < k < n, pivot row a):

transformation: Ax=b » A'x=Vb".

with
ik ..
a;i — —ag; fork <i,j<m, a: _
/ PR = , bi— Kb fork<i<nmn,
Tij =30 fork<i<mj=k, bi'=) Ak | (2.3.1.2)
‘ else.
aj; else, !

multipliers I

§2.3.1.3 (Gaussian elimination: algorithm) Here we give a direct EIGEN implementation of Gaussian
elimination for LSE Ax = b (grossly inefficient!).

C++ code 2.3.1.4: Solving LSE Ax = b with Gaussian elimination => GITLAB

//! Gauss elimination without pivoting, x = A\b

//! A must be an nmXn-matrix, b an n-vector

//! The result is returned in x

void gausselimsolve (const MatrixXd &A, const VectorXd& b,
VectorXd& x) {

® o &~ ® N

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 124

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gausselimsolve/Eigen/gausselimsolve.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

7 int n = A. 0);

8 Ab(n,n+1); // Augmented matrix [A,Db]

9 Ab << A, b; //

10 // Forward elimination (cf. step @ in Ex. 2.3.1.1)

11 for(int i = 0; i < n—1; ++i) {

12 double pivot = Ab(i,i);

13 for(int kK = i+1; k < n; ++k) {

14 double fac = Ab(k, i) / pivot; // the multiplier

15 Ab. (k,i+1,1,n—i)—= fac * Ab. (i,i+1,1,n—=i); //

16 }

17 }

18 // Back substitution (cf. step @ in Ex. 2.3.1.1)
w | Ab(n—1,n) = Ab(n—1,n) / Ab(n—1,n—1):

20 for(int i = n=2; i >= 0; —i) {

a1 for(nt | = i+1; | <n; ++1) Ab(i,n) —= Ab(l,n)*Ab(i,);
22 Ab(i,n) /= Ab(i ,i);

1
24 x = Ab. (1); // Solution in rightmost column!

e In Line 9 the right hand side vector set as last column of matrix, which facilitates simultaneous row
transformations of matrix and r.h.s.

e In Line 14 the variable fac is the multiplier from (2.3.1.2).

e In Line 24 we extract solution from last column of the transformed matrix.

§2.3.1.5 (Computational effort of Gaussian elimination) We examine Code 2.3.1.4.

e Forward elimination involves three nested loops (note that the compact vector operation in Line 15
involves another loop from i 4 1 to m).

e Back substitution can be done with two nested loops.

computational cost (<> number of elementary operations) of Gaussian elimination [NS02, Sect. 1.3]:
- . n—1 . .

forward elimination : Zi:l (n—i)2(n—i)+3) =n(n—1)(3n+Z) Ops.,

i (2.3.1.6)
back substitution :) . 2(n —i)+1= n? Ops. .

asymptotic complexity (— Section 1.4) of Gaussian elimination

= 2483 2y _ 3
(without pivoting) for generic LSE Ax = b, A € R™" = s +0) =00

EXPERIMENT 2.3.1.7 (Runtime of Gaussian elimination) In this experiment we compare the efficiency
of our hand-coded Gaussian elimination with that of library functions.

C++ code 2.3.1.8: Measuring runtimes of Code 2.3.1.4 vs. EIGEN lu()-operator vs. MKL
> GITLAB

//! Eigen code for timing numerical solution of linear systems
gausstiming () {
std :: vector<int> n = {8,16,32,64,128,256,512,1024,2048,4096,8192};
int nruns = 3;
times (n. (),3);
for(int i = 0; i < n. (); ++i){

2
3
4
5
6
7

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 125

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gausstiming/Eigen/gausstiming.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

8 Timer t1, t2; // timer class
J A= (n[i],n[i]) + n[i]* (nfi],n[i]);
10 b = (n[i]);
" x(nlil);
12 for(int j = 0; | < nruns; ++j){
13 t1.start(); x = A.lu(). (b); t1.stop();// Eigen implementation
14 #ifndef EIGEN_ USE MKL ALL // only test own algorithm without MKL
15 if (n[i] <= 4096) // Prevent long runs
16 t2.start(); gausselimsolve (A,b,x); t2.stop(); // own gauss
elimination
17 #endif
18 }
19 times(i,0) = n[i]; times(i,1) = t1.min(); times(i,2) = t2.min();
20
21 ieturn times ;
2 |}
10* T
o gmuessimiahe.
—A— MLK solver sequential
02k MLK solver paralle i
Platform: om?)
4 ubuntu 14.04 LTS
4 i7-3517U CPU @ 1.90GHz 100
A—a @,
4+ L1 32 KB, L2 256 KB, L3 £
4096 KB, Mem 8 GB c ot
4+ gcc4.8.4,-03 §
B> EiGen is about two or- © O
ders of magnitude faster
than a direct implementa- 10ek b=
tion, MKL is even faster.
10-8 L L | L T R | L T R S| L L
100 10° 102 108 104
matrix size n
n Code2.3.1.4[s] EIGEN Iu() [s] MKL sequential [s] MKL parallel [s]
8 6.340e-07 1.140e-06 3.615e-06 2.273e-06
16 2.662e-06 3.203e-06 9.603e-06 1.408e-05
32 1.617e-05 1.331e-05 1.603e-05 2.495e-05
64 1.214e-04 5.836e-05 5.142e-05 7.416e-05
128 2.126e-03 3.180e-04 2.041e-04 3.176e-04
256 3.464e-02 2.093e-03 1.178e-03 1.221e-03
512 3.954e-01 1.326e-02 7.724e-03 8.175e-03
1024 4.822e+00 9.073e-02 4.457e-02 4.864e-02
2048 5.741e+01 6.260e-01 3.347¢e-01 3.378e-01
4096 5.727e+02 4.531e+00 2.644e+00 1.619e+00
8192 - 3.510e+01 2.064e+01 1.360e+01

Never implement Gaussian elimination yourself !

use numerical libraries (LAPACK/MKL) or EIGEN !

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE)

126

http://www.netlib.org/lapack/

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

A concise list of libraries for numerical linear algebra and related problems can be found here.

Remark 2.3.1.9 (Gaussian elimination for non-square matrices) In Code 2.3.1.4: the right hand side
vector b was first appended to matrix A as rightmost column, and then forward elimination and back
substitution were carried out on the resulting matrix. This can be generalized to a Gaussian elimination for
rectangular matrices A € K" 1|

Consider a “fat matrix” A € K" m>n:

7L R

forward elimination back substitution
Recall Code 2.3.1.4 (m = n + 1): the solution vector x = A~ !b was recovered as the rightmost column

of the augmented matrix (A, b) after forward elimination and back substitution. In the above cartoon it
would be contained in the yellow part of the matrix on the right.

1

With this technique we have an efficient way for simultaneously solving of
LSEs with multiple right hand sides . These multiple right-hand side can be passed as the column
of a matrix B and the problem of solving an LSE for several right-hand-side vectors can be stated as
follows:

Given regular A € K", B € K"k, seek X € K" such that
AX=B & X=A"'B

Usually library functions meant to solve LSEs also accept a matrix instead of a right-hand-side vector and
then return a matrix of solution vectors. For instance, in EIGEN the following function call accomplishes
this:

X = A.lu() .solve (B);
lts asymptotic complexityis O(n?(n+k) forn,k — co.

C++ code 2.3.1.10: Gaussian elimination with multiple r.h.s. — Code 2.3.1.4 =* GITLAB

//! Gauss elimination without pivoting, X = A"!B
//! A must be an nXn-matrix, B an n X m-matrix
//! Result is returned in matrix X

2

3

4

5 | void gausselimsolvemult (const &A, const & B,

6 & X) {

7 int n = A. (), m= B. 0);

8 AB(n, n+m); // Augmented matrix [A,B]

9 AB << A, B;

10 // Forward elimination, do not forget the B part of the Matrix
11 for(int i = 0; i < n—1; ++i){

12 double pivot = AB(i,i);

13 for(int kK = i+1; k < n; ++k){

14 double fac = AB(k,i)/pivot;

15 AB. (k,i+1,1,mn—i —1)—= fac * AB. (i, i+1,1,mn—i—1);

16 }

17 }

18 // Back substitution

19 AB. (n=1, n,1, m) /= AB(n—1,n—1);

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 127

http://www.netlib.org/utk/people/JackDongarra/la-sw.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gausselim/Eigen/gausselim.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

20 for(int i = n-2; i >= 0; —i) {

21 for(int | = i+1; | < n; ++1) {

22 AB. (i,n,1,m) —= AB. (I,n,1,m)«xAB(i,I);
23 }

24 AB. (i,n,1,m) /= AB(i,i);

25 }

2 X = AB. (m) ;

27 |}

|

Concerning the next two remarks: For understanding or analyzing special variants of Gaussian elimination,
it is useful to be aware of

e the effects of elimination steps on the level of matrix blocks, cf. § 1.3.1.13,
e and of the recursive nature of Gaussian elimination.

We can view Gaus-
Then the first step

Remark 2.3.1.11 (Gaussian elimination via rank-1 modifications)
sian elimination from the perspective of matrix block operations:

of Gaussian elimination with pivot a« # 0), cf. (2.3.1.2), can be expressed as
[« cl 1 [« cl 1
A= — A= T 2.3.1.12
d C 0 c.—c_9 ()
o

rank-1 modification of C

Terminology: Adding a tensor product of two vectors to a matrix is called a rank-1 modification of that
matrix, see also § 2.6.0.12 below.

Notive that the transformation (2.3.1.12) is applied to the resulting lower-right block C’ in the next elimina-
tion step. Thus Gaussian elimination can be realized by successive rank-1 modifications applied to smaller
and smaller lower-right blocks of the matrix. An implementation in this spirit is given in Code 2.3.1.13.

C++ code 2.3.1.13: GE by rank-1 modification => GITLAB

/7!
/7!
/7!
void
int
for

© ©® N o o »~ W N

rh.s. b ~ A(:, end) | :

A.

in-situ Gaussian elimination, no pivoting
right hand side in rightmost column of A
back substitution is not done in this code!
blockgs (&A) {

n = A.
(int i

0

= i< n; ++i){

1,

// rank-1 modification of C
A.

(i—1).

(n—i ,n—i+1)
A. (i—1). (n—i) *x A.
A(i —1,i—1);

(i — 1).

(n—i+1) /

(n—i). (); // set d=0

2. Direct Methods for (Square) Linear Systems

of Equations, 2.3. Gaussian Elimination (GE)

128

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/blockgs/Eigen/blockgs.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

In this code the Gaussian elimination is carried out in situ: the matrix A is replaced with the transformed
matrices during elimination. If the matrix is not needed later this offers maximum efficiency. An in-situ
LU-decomposition as described in Rem. 2.3.2.11 could also be performed by Code 2.3.1.13 after a modi-
fication of Line 10. J

Remark 2.3.1.14 (Block Gaussian elimination) Recall the “principle” from § 1.3.1.13: deal with block
matrices (“matrices of matrices”) like regular matrices (except for commutativity of multiplication!). This
suggests a block view of Gaussian elimination:

Given: regular matrix A € IK™" with sub-matrices/blocks
A= (A ke > A= (A)ikksin
Ar = (A)isinik > A2 = (A)kttmktin
and a right-hand-side vector b € K" split into by = (b)1.x, bo = (b)ky1.,

k < n,

We apply the usual row transformations from (2.3.1.2) on the level of matrix block to this block-partitioned
linear system using Aq; as pivot block. Of course, we have to assume that A is invertible, generalizing
the assumption that eligible pivot elements must not be zero. Again, the manipulations can be broken
down into an elimination step @ and a backsubstitution step @.

[Anin A | by } LN [A App by }
Ay Ay | by 0 Axp-— A21Aﬁ1A12 by — A21A;11b1
(2] I O Ail (bl — Alzs_lbs))
0 I S~ lpg "
where we abbreviated S := Ay — A21Af11A12, a matrix known as Schur complement, see

Rem.2.3.2.19,and bs:= by — Ay A;'b;.

We can read off the solution of the block-partitioned linear system from the above Gaussian elimina-
tion:

-1
[A“ A”} lxl} = [bl} L =5 "bs, (2.3.1.15)
Az Ax||x2 b, x1 = Ay (b — A;pS~'bs) .

2.3.2 LU-Decomposition

A matrix factorization (ger. Matrixzerlegung) expresses a general matrix A as product of two special (fac-
tor) matrices. Requirements for these special matrices define the matrix factorization. Matrix factorizations
come with the mathematical issue of existence & uniqueness, and pose the numerical challenge of finding
algorithms for computing the factor matrices (efficiently and stably).

Matrix factorizations
1= often capture the essence of algorithms in compact form (here: Gaussian elimination),
1= are important building blocks for complex algorithms,
1= are key theoretical tools for algorithm analysis.

In this section the forward elimination step of Gaussian elimination will be related to a special matrix
factorization, the so-called LU-decomposition or LU-factorization.

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 129

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

& Supplementary literature. The LU-factorization should be well known from the introductory

linear algebra course. In case you need to refresh your knowledge, please consult one of the
following:

e textbook by Nipp & Stoffer [NS02, Sect. 2.4],

book by M. Hanke-Bourgeois [Han02, p. 11.4],

linear algebra lecture notes by M. Gutknecht [Gut09, Sect. 3.1],
textbook by Quarteroni et al. [QSS00, Sect.3.3.1],

Sect. 3.5 of the book by Dahmen & Reusken,
Sect. 5.1 of the textbook by Ascher & Greif [AG11].

See also (2.3.2.1) below.

Recall the gist of Gaussian elimination split into the two steps of forward elimination and backsubstitution
with (multiple) right-hand-side vectors appended to the coefficient matrix as rightmost columns:

"y 0
— —
0 0\
/ \ 1
row transformations row transformations

Here: row transformation = adding a multiple of a matrix row to another row, or multiplying a row with
a non-zero scalar (number) swapping two rows (more special row transfor-
mations are discussed in Rem. 1.3.1.12)

Note: Row transformations preserve regularity of a matrix and, thus, are suitable for transforming linear
systems of equations: they will not affect the solution when applied to both the coefficient matrix
and right-hand-side vector.

Rem. 1.3.1.12: row transformations can be realized by multiplication from left with suitable transformation
matrices. When multiplying these transformation matrices we can emulate the effect to successive row
transformations through left multiplication with a matrix T

s TA=A'.

_ row transformations _ L
Now we want to determine the T for the forward elimination step of Gaussian elimination.

EXAMPLE 2.3.2.1 (Gaussian elimination and LU-factorization — [NS02, Sect. 2.4], [Han02, p. 11.4],
[Gut09, Sect. 3.1]) We revisit the LSE from Ex. 2.3.1.1 and carry out (forward) Gaussian elimination:

1 1 0 X1 4 X1 + Xp = 4
2 1 —1||x|=|1 — 2x1 + xp — x3 = 1
3 -1 —1]| |x3 -3 3y — xp — x3 = —3

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 130

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1 1 1 0 4 1 -) 4

1 2 1 -1 1 > |21 0 —1 —1 71 »
1 3 -1 —1 -3 01 3 -1 —1 -3

1 4 1 1 1 0 4

2 1 0 -1 —1 —7 > [21 o- -7

301 0 —4 —1 -15 3 41 0 0 3 13

=:L =U
As before we highlight the pivot rows with [l and write the pivot element in bold. In addition, we let
the negative multipliers take the places of matrix entries made to vanish; we color these entries red.

After this replacement we make the “surprising” observation that A = L U! 2

The link between Gaussian elimination and matrix factorization, an explanations for the observation made
in Ex. 2.3.2.1, becomes clear by recalling that row transformations result from multiplications with elimina-
tion matrices:

1 0 -« -+ 0] [ay a
—% 1 . 0 175) 0
mA0 B |- e a3l = |0 . (2.3.2.2)
_—Z—’ll 0 1] |an | 0]

> -1 steps of Gaussian forward elimination immediately give rise to a matrix factorization (non-zero
pivot elements assumed)

elimination matrices L;, i =1,...,n—1,

b =L oo LU, t upper triangular matrix U € R™" .
(1 0 - 1T] 1 0]
I, 1 0 1 0 I 1 0
I3 ..o. 0 hy 1 — Iz hy 1
ln 0]. _O hn 0]._ _ln hn O]._
= The matrix products Ly - - - - - L,,_1 yield normalized lower triangular matrices,

whose entries are the multipliers —Z—;’]‘(from (2.3.1.2) — Ex.2.3.1.1.

The matrix factorization that “automatically” emerges during Gaussian forward elimination has a special
name:

Definition 2.3.2.3. LU-decomposition/LU-factorization

Given a square matrix A € K", an upper triangular matrix U € K™" and a normalized lower
triangular matrix (— Def. 1.1.2.3) form an LU-decomposition/LU-factorization of A, if A = LU.

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 131

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

A = L . U.

Using this notion we can summarize what we have learned from studying elimination matrices:

The (forward) Gaussian elimination (without pivoting), for Ax = b, A € R""", if possible, is alge-
braically equivalent to an LU-factorization/LU-decomposition A = LU of A into a normalized lower
triangular matrix L and an upper triangular matrix U, [DR08, Thm. 3.2.1], [NS02, Thm. 2.10], [Gut09,
Sect. 3.1].

Algebraically equivalent = when carrying out the forward elimination in situ as in Code 2.3.1.4 and storing
the multipliers in a lower triangular matrix as in Ex. 2.3.2.1, then the latter will contain the L-factor and the
original matrix will be replaced with the U-factor.

Lemma 2.3.2.4. Existence of LU-decomposition

The LU-decomposition of A € K" exists, if all submatrices (A)1.x1.x, 1 < k < n, are regular.

Proof. We adopt a block matrix perspective (— § 1.3.1.13) and employ induction w.r.t. n:
n = 1: assertion trivial

n — 1—n: Induction hypothesis ensures existence of normalized lower triangular matrix L and regular
upper triangular matrix U such that A = LU, where A is the upper left (n — 1) x (n — 1) block of A:

A2 F) oo

Then solve
(1) fy =b — provides y € K",
(2] x'U=a' — provides x € K",
(3] xTy +C=u — provides ¢ € K.

Regularity of A involves ¢ # 0 (why?) so that U will be regular, too. -

§2.3.2.5 (Uniqueness of LlLI-decomposition) Regular upper triangular matrices and normalized lower
triangular matrices form matrix groups (— Lemma 1.3.1.9). Their only common element is the identity
matrix.

L,U; =LU, = L,'Li=U,U;'=1.

Since inverses of matrices are unique, so are the LU-factors: U; = Uy and L; = Lj. _

§2.3.2.6 (Basic algorithm for computing LU-decomposition) There are direct ways to determine the
factor matrices of the LU-decomposition [Gut09, Sect. 3.1], [QSS00, Sect. 3.3.3] and, of course, they are

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 132

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

closely related to forward Gaussian elimination. To derive the algorithm we study the entries of the product

of a normalized lower triangular and an upper triangular matrix, see Def. 1.1.2.3:

\ LL U]
L - L —‘ - L -
Taking into account the zero entries known a priori, we arrive at
min{i,k} ;;% lz']'lxl]'k + 1 uy ,ifi < k,
LU=A = aj = Z ll’]’u]'k = 1 .
j=1 Zj:l l,-jujk + likukk Jifi > k.

(2.3.2.7)

This reveals how to compute the entries of L and U sequentially. We start with the top row of U, which

agrees with that of A, and then work our way towards to bottom right corner:

» e row by row computation of U 12

e column by column computation of L 3

Entries of A can be replaced with those of L, U ! 4

(so-called in situ/in place computation)

1
(Crout’s algorithm, [Gut09, Alg. 3.1]) 2 3
= rows of U
= columns of L
Fig. 40
The following code follows this sequential computation scheme:

C++ code 2.3.2.8: LU-factorization =+ GITLAB
2 |//! Algorithm of Crout: LU-factorization of A € K""
3 | std::pair< , > lufak (const &A) {
4 int n = A. ();
5 assert(n == A. ()); // Ensure matrix is square
6 L{ s (n, n)};
7 U{ 2t (n, n)};
8 for (int k = 0; k < n; ++k) {
9 // Compute row of U
10 for (int j = k; | < n; ++j)
1" Uk, j) = Ak, j) — (L. (k, 0, 1, k) * U. (0, j, k, 1))(0, 0);
12 // Compute column of L
13 for (int i =k + 1; i <n; ++i)
14 L(i, k) = (A(i, k) — (L. (i, 0, 1, k) * U. (0, k, k, 1))(0, 0))
15 U(k, k),
16 }
17 return { L, U };
18 |}

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE)

133

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lufak/Eigen/lufak.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

It is instructive to compare this code with a simple implementation of the matrix product of a normalized
lower triangular and an upper triangular matrix. From this perspective the LU-factorization looks like the
“‘inversion” of matrix multiplication:

C++ code 2.3.2.9: matrix multiplication L - U =* GITLAB

2 |//! Multiplication of normalized lower/upper triangular matrices
3 i lumult (const &L, const &U) {

4 int n = L. 0);

5 assert(n == L. () && n == U. () && n == U. 0));

6 i A{ i (n, n)};

7 for (int k = 0; k < n; ++k) {

8 for (int j = k; | < n; ++j)

9 A(k, j) = Uk, j) + (L. (k, 0, 1, k) = U (0, j, k, 1))(0, 0);
10 for (int i =k + 1; i < n; ++i)

1 A(i, k) =

12 (L (i, 0, 1, k) « U (0, k, k, 1))(0, 0) + L(i, k) = U(k, k);
13 }

14 return A;

15 |}

Observe: Solving for entries L (i, k) of L and U (k, j) of U in the multiplication of an upper triangular
and normalized lower triangular matrix (— Code 2.3.2.9) yields the algorithm for LU-factorization (—
Code 2.3.2.8). 3

The computational cost of LU-factorization is immediate from Code 2.3.2.8 and the same as for Gaussian
elimination, cf. § 2.3.1.5:

Asymptotic complexity of LU-factorization of A € IR™" W (2.3.2.10)

=213+ O(n*) = O(n?) forn — oo

Remark 2.3.2.11 (In-situ LU-decomposition) “In situ” is Latin and means “in place”. Many library
routines provide routines that overwrite the matrix A with its LU-factors in order to save memory when
the original matrix is no longer needed. This is possible because the number of unknown entries of the
LU-factors combined exactly agrees with the number of entries of A. The convention is to replace the
strict lower-triangular part of A with L, and the upper triangular part with U:

U

|

Remark 2.3.2.12 (Recursive LU-factorization) Recall Rem. 2.3.1.11 and the recursive view of Gaussian
elimination it suggests, because in (2.3.1.12) an analoguous row transformation can be applied to the
remaining right-lower block C’.

In light of the close relationship between Gaussian elimination and LU-factorization there will also be a
recursive version of LU-factorization.

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 134

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lumult/Eigen/lumult.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

The following code implements the recursive in situ (in place) LU-decomposition of A € R™" (without
pivoting). It is closely related to Code 2.3.1.13, but now both L and U are stored in place of A:

C++ code 2.3.2.13: Recursive LU-factorization = GITLAB

2 |//! 1in situ recursive LU-factorization

3 lurec (const &A) {

4 int n = A. ();

5 result(n,n);

6 if(n> 1){

7 fac = A. (0). (n—1) / A(0,0);//

8 result. (n—=1,n—1) = lurec(A. (n—1,n—1)
— fac * A.row(0). (n=1));//

9 result. (0) = A. (0); result. (0) . (n—1) = fac;

10 return result;

e }

12 return A;

1B |}

Refer to (2.3.1.12) to understand lurec: the rank-1 modification of the lower (n — 1) x (n — 1)-block of
the matrix is done in Line 7-Line 8 of the code.

C++ code 2.3.2.14: Driver for recursive LU-factorization of Code 2.3.2.13 =* GITLAB

2 |//! post-processing: extract L and U

s |void lurecdriver (const &A, &L, &U) {
4 A_dec = lurec(A);

5 // post—-processing:

6 //extract L and U

7 U = A _dec. < >();

8 L. 0

9 L += A _dec. <StrictlyLower >() ;

o
—

_

§2.3.2.15 (Using LU-factorization to solve a linear system of equations) An intermediate
LU-factorization paves the way for a three-stage procedure for solving an n x n linear system of equations.

@ LU-decomposition A = LU, #elementary operations = %n(n —1)(n+1)
Ax=Db : @ forward substitution, solve Lz = b, #elementary operations = 1n(n — 1)

@ backward substitution, solve Ux = z, #elementary operations = %n(n + 1)

> The asymptotic complexity of the complete three-stage algorithm is (in leading order) the same as for
Gaussian elimination (The bulk of computational cost is incurred in the factorization step @).

However, the perspective of LU-factorization reveals that the solution of linear systems of equations can be
split into two separate phases with different asymptotic complexity in terms of the number n of unknowns:

setup phase elimination phase
(factorization) + (forward/backward substition)
Cost: O(n?) Cost: O(n?)

Remark 2.3.2.16 (Rationale for using LU-decomposition in algorithms) Gauss elimination and
LU-factorization for the solution of a linear system of equations (— § 2.3.2.15) are equivalent and only

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 135

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lurec/Eigen/lurec.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lurec/Eigen/lurecdriver.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

differ in the ordering of the steps.
Then, why is it important to know about LU-factorization?

Because in the case of LU-factorization the expensive forward elimination and the less expensive (for-
ward/backward) substitutions are separated, which sometimes can be exploited to reduce computational
cost, as highlighted in Rem. 2.5.0.10 below. _|

Remark 2.3.2.17 ("‘Partial LU-decompositions” of principal minors) The algorithm from § 2.3.2.6
reveals that the the computation of the LU-decomposition of a matrix proceeds from top-left to bottom-
right. This implies the locality property discussed in this remark. To understands its heading we remind
that a principal minor refers to the left upper block of a matrix

The following “visual rule” help identify the structure of the LU-factors of a matrix.

(2.3.2.18)

The left-upper blocks of both L and U in the LU-factorization of A depend only on the corresponding
left-upper block of Al 4

Remark 2.3.2.19 (Block LU-factorization) In the spirit of § 1.3.1.13 we can also adopt a matrix-block
perspective of LU-factorization. This is a natural idea in light of the close connection between matrix multi-
plication and matrix factorization, cf. the relationship between matrix factorization and matrix multiplication
found in § 2.3.2.6:

Block matrix multiplication (1.3.1.14) = block LU-decomposition:
We consider a block-partitioned matrix
A — A1 Ap A € K*" regular, A € K"
- |Ax Ap Ay € K™, Ar € K"™™

The block LU-decomposition arises from the block Gaussian forward elimination of Rem. 2.3.1.14 in the
same way as the standard LU-decomposition is spawned by the entry-wise Gaussian elimination:

With

with Schur complement

A Alz} { I O] [An Alz}
_ B , 2.3.2.20
{A21 A A211A111 I 0 S | S:= Ay — A21Ai1A12 ()

block LU-factorization

Under the assumption that A1y is invertible, the Schur complement matrix S is invertible, if and only if this
holds for A. r

Review question(s) 2.3.2.21 (Gaussian elimination and LU-decomposition)

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 136

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(@2.3.2.21.A) Performing Gaussian elimination by hand compute the solution of the following 4 x 4 linear
system of equations

(Q@2.3.2.21.B) Give an example of a 2 x 2-matrix, for which there does not exist an LU-decomposition.

(Q2.3.2.21.C) Assume that one of the LU-factors of a square matrix A € IR""" is diagonal. What proper-
ties of A can you infer?

(Q2.3.2.21.D) Suppose the LU-factors L, U € IR™*" of a sqaure matrix A € R™" exist and have been
computed already. Sketch an algorithm for computing the determinant det A.

From linear algebra remember that the determinant of the product of two square matrices is the product
of the determinants of its factors.

(Q2.3.2.21.E) Compute the block LU-decomposition of the partitioned matrix

.
Azﬁg BO]E]R”’”, BeR", kell,...,n—1}.

When is this matrix regular?

(Q2.3.2.21.F) Predict the asymptotic computational effort of an efficient algorithm for computing the block
LU-decomposition of

.
A:E;(BO}GIR””“, BeR" M ke{1,...,n—1},

in terms of n, k — co.

(Q2.3.2.21.G) What is the inverse of the block matrix
[O A

AT O} e R | A € R samemp*regular ?

Use block Gaussian elimination to find it and express it in terms of A~!.

2.3.3 Pivoting
Known from linear algebra [NS02, Sect. 1.1]:
0 1 X1| bl 10 X1 bZ
1OXZ_b2 01XQ_b1
v v

breakdown of Gaussian elimination Gaussian elimination feasible
pivot element = 0

ldea (in linear algebra): Avoid zero pivot elements by swapping rows

EXAMPLE 2.3.3.1 (Pivoting and numerical stability — [DRO08, Example 3.2.3])

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 137

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

2 A(2, 2); Output:
3 A << 5.0e—17, 1.0, 1.0, 1.0;
4 b(2), x2(2); i x1 =
5 b << 1.0, 2.0; PO
6 x1 = A.fullPivLu (). (b); s 1
7 gausselimsolve (A, b, x2); // see Code 2.3.1.10 X2 —
8 auto [L,U] = lufak (A); // see Code 2.3.2.8 ! -
o z=L.lu(). (b): s 0
10 x3 = U.lu(). (z); s 1
11 cout << "x1 = \n" 7 X3 =
12 << x1 << "\nx2 = \n" s 0
13 << X2 << "\nx3 = \n" 1
14 << X3 << std::endl; o
1
e 1 1 1—-€e| _ |1
N I | e [T
1—¢€

What is wrong with EIGEN? Needed: insight into roundoff errors, which we already have
— Section 1.5.3

Armed with knowledge about the behavior of machine numbers and roundoff errors we can now under-
stand what is going on in Ex. 2.3.3.1

Straightforward LU-factorization: ife < %EPS, EPS = machine precision,
110 € 1 (0 le 1 , |
B L= Ll J , U= [o 1_61} = U:= lo —el] in M ! (2.3.3.2)

(%): because 1+2/EPS = 2/EPS, see Exp. 1.5.3.14.
B> Solution of LUx =b: x = {1 Eeze} (meaningless result !)

LU-factorization after swapping rows:

11 10 1 1] _~ [11] .
A—[e 1} = L—L 1}1 U—lg 1_4—U.—l0 1] inM . (2.3.3.3)
B> Solution of LUX = b: x = E t;i] (sufficiently accurate result !)

no row swapping, — (2.3.3.2): LU=A+E with E= {8 ﬂ B> unstable !

after row swapping, — (2.3.3.3): LU=A+E with E= {8 2} B> staple !

Introduction to the notion of stability — Section 1.5.5, Def. 1.5.5.19, see also [DR08, Sect. 2.3]. 4

Suitable pivoting essential for controlling impact of roundoff errors
on Gaussian elimination (— Section 1.5.5, [NS02, Sect. 2.5])

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 138

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

EXAMPLE 2.3.3.4 (Gaussian elimination with pivoting for 3 x 3-matrix)

1 2 2 o 2 =3 2 o 2 -3 2 o 2 =7 2 o 2 -7 2
A=|2 -3 2|=][]1 2 2|=|]0 35 1 [=|0 255 -1 |=|0 255 -1
1 24 0 1 24 0 0 255 -1 0 35 1 0 0 1373

swap rows 1 & 2.

elimination with top row as pivot row

swap rows 2 & 3

elimination with 2nd row as pivot row 4

oooe

§2.3.3.5 (Algorithm: Gaussian elimination with partial pivoting)

C++ code 2.3.3.6: Gaussian elimination with pivoting: extension of Code 2.3.1.4 =* GITLAB

2 |//! Solving an LSE Ax=Db by Gaussian elimination with partial pivoting

3 |//! A must be an nXmn-matrix, b an n-vector

4+ |void gepiv(const MatrixXd &A, const VectorXd& b, VectorXd& x){

5 int n = A.rows () ;

6 MatrixXd Ab(n,n+1);

7 Ab << A, b; //

8 // Forward elimination by rank-1 modification, see Rem. 2.3.1.11

9 for(int k = 0; k < n—1; ++k){

10 int j; double p; // p = relativly largest pivot, j = pivot row

1 p = l(ngt?.}i:ol(k) .tail (n—k) .cwiseAbs () .cwiseQuotient (
Ab.block (k,k,n—k,n—k) .cwiseAbs () . rowwise () . maxCoeff ())
) .maxCoeff(&j);//

12 if(p< std::numeric_limits<double>::epsilon () *
Ab.block(k,k,n—k,n—k) .norm())

13 throw std::logic_error("nearly singular");//

14 Ab.row(k).tail (n—k+1).swap(Ab.row (k+j).tail (n—k+1));//

15 Ab.bottomRightCorner (n—k—1,n—k) —= Ab.col (k). tail (n—k—1) x
Ab.row (k). tail (n—k) / Ab(k,k);//

16 }

17 // Back substitution (same as in Code 2.3.1.4)

18 Ab(n—1,n) = Ab(n—1,n) / Ab(n—1,n—1);

19 for(int i = n-2; i >= 0; —i){

20 for(int | = i+1; | < n; ++1){

21 Ab(i,n) —= Ab(l,n)*Ab(i,!I);

22 }

23 Ab(i,n) /= Ab(i,i);

24 }

25 x = Ab.rightCols(1); //

% |}

choice of pivot row index j (Line 11 of code): relatively largest pivot [NS02, Sect. 2.5],

|aji]
max{|ay|, I =k, ...,n}

je{k,...,n} suchthat — max (2.3.3.7)

fork=7j, ke {i,...,n}: partial pivoting
Explanations to Code 2.3.3.6:
Line 7: Augment matrix A by right hand side vector b, see comments on Code 2.3.1.4 for explanations.

Line 11: Select index j for pivot row according to the recipe of partial pivoting, see (2.3.3.7).

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 139

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gepiv/Eigen/gepiv.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Note: Inefficient implementation above (too many comparisons)! Try to do better!

Line 13: If the pivot element is still very small relative to the norm of the matrix, then we have encountered
an entire column that is close to zero. Gaussian elimination may not be possible in a stable
fashion for this matrix; warn user and terminate.

Line 14: A way to swap rows of a matrix in EIGEN.
Line 15: Forward elimination by means of rank-1-update, see (2.3.1.12).

Line 25: As in Code 2.3.1.4: after back substitution last column of augmented matrix supplies solution
x = A" b.

|

§2.3.3.8 (Algorithm: LU-factorization with pivoting) Recall: close relationship between
Gaussian elimination and LU-factorization

> LU-factorization with pivoting? Of course, just by rearranging the operations of Gaussian forward elim-
ination with pivoting.

EIGEN-code for in place LU-factorization of A € IR with partial pivoting:

C++ code 2.3.3.9: LU-factorization with partial pivoting =+ GITLAB

2 |void lupiv (&A){//insitu

3 int n = A. ();

4 for(int kK = 0; k < n—1; ++k){

5 int j; double p; // p = relativly largest pivot, j = pivot row
index

6 p = (A. (k). (n—k) . () - (
A. (k,k,n—k,n=k). (). () - 0)). (&]);
//

7 if(p < std::numeric_limits<double>::epsilon () =*
A. (k,k,n—k,n—k) . O) //

8 throw std::logic_error ("nearly singular");

9 A. (k) . (n—k—1).swap(A. (k+j) . (n—k—1));//

10 fac = A. (k). (n—k—1) / A(k,k);//

11 A. (n—k—1,n—k—1) —= fac * A. (k). (n—k—1);//

12 A. (k). (n—k—1) = fac;//

13 }

4 |}

Notice that the recursive call is omitted as in Rem. 2.3.1.11.
Explanations to Code 2.3.3.9:

Line 6: Find the relatively largest pivot element p and the index j of the corresponding row of the matrix,
see (2.3.3.7)

Line 7: If the pivot element is still very small relative to the norm of the matrix, then we have encountered
an entire column that is close to zero. The matrix is (close to) singular and LU-factorization does
not exist.

Line 9: Swap the first and the j-th row of the matrix.

Line 10: Initialize the vector of multiplier.

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 140

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lupiv/Eigen/lupiv.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Line 11: Call the routine for the lower right (1 — 1) x (n — 1)-block of the matrix after subtracting suitable
multiples of the first row from the other rows, ¢f Rem. 2.3.1.11 and Rem. 2.3.2.12.

Line 12: Reassemble the parts of the LU-factors. The vector of multipliers yields a column of L, see
Ex. 2.3.2.1.

_

Remark 2.3.3.10 (Rationale for partial pivoting policy (2.3.3.7) — [NS02, Page 47]) Why relatively
largest pivot element in (2.3.3.7)? scaling invariance desirable

Scale linear system of equations from Ex. 2.3.3.1:

[6 IR -6 R -1 -

No row swapping, if absolutely largest pivot element is used:

2 2] [10][2 2/ 1.1 0][2 2] .
{1 1]‘_1 1} 0 1—2/5]_{1 1} {0 —2/6} inM.

—— ———

L U
Using the rules of arithmetic in IM (— Exp. 1.5.3.14), we find

~ e q[-1 —1]2[17. (o
UL b= 2[0 e]e—l_l'

which is not an acceptable result.

Pivoting: Theoretical perspective

Definition 2.3.3.11. Permutation matrix

An n-permutation, n € IN, is a bijective mapping 77 : {1,...,n} — {1,...,n}. The corresponding
permutation matrix P, € IKK™" is defined by

(Pr)j = {1 =

0 else.

permutation (1,2,3,4) — (1,3,2,4) = P=

(el R
o= OO
oo = O
_ o oo

Note:
4+ P = P! for any permutation matrix P (— permutation matrices orthogonal/unitary)

4+ P A effects r-permutation of rows of A € K"
4+ AP effects 7t-permutation of columns of A € K™

Lemma 2.3.3.12. Existence of LU-factorization with pivoting — [DR08, Thm. 3.25], [Han02,
Thm. 4.4]

For any regular A € K" there is a permutation matrix (— Def. 2.3.3.11) P € IK'""", a normalized
lower triangular matrix L € IK"", and a regular upper triangular matrix U € KK"" (— Def. 1.1.2.3),
such that PA = LU .

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 141

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Proof. (by induction)

Every regular matrix A € K" admits a row permutation encoded by the permutation matrix P € K"",
such that A’ := (A)1.,—11.,—1 is regular (why ?).

By induction assumption there is a permutation matrix P’ € K"~ 1"~1 such that P’A’ possesses a
LU-factorization A’ = L'U’. There are x,y € K"~!, 4 € K such that

P’ 0], _ [P O][A" x] _ [L'U" x] _[L' 0][U d
0 1" 710 1ly" o] " |y" 9] |c¢" 1][0 af”’

d=(L)'x , c=W) Ty , a=9-c'd,

if we choose

which is always possible. O

EXAMPLE 2.3.3.13 (Ex. 2.3.3.4 cnt'd)

1 2 2 2 -3 2 2 -3 2 2 —7 2 2 —7 2
A=12 32|21 2 2|80 35 1 |80 255 —1|2|0 255 -1
1 24 0 1 24 0 0 255 —1 0 35 1 0 0 1373
v
2 -3 2 1 0 0 010
U=|025 -1 |, L=|05 1 0|, P=|001
0 0 1.1373 05 0.1373 1 100

>

Two permutations: in step @ swap rows #1 and #2, in step ® swap rows #2 and #3. Apply these swaps to
the identity matrix and you will recover P. See also [DR08, Ex. 3.30]. _

§2.3.3.14 (LU-decomposition in EIGEN) EIGEN provides various functions for computing the LU-
decomposition of a given matrix. They all perform the factorization in-situ — Rem. 2.3.2.11:

U

The resulting matrix can be retrieved and used to recover the LU-factors, as demonstrated in the next code
snippet. Note that the method mat rixLU returns just a single matrix, from which the LU-factors have to
be extracted using special view methods.

C++ code 2.3.3.15: Performing explicit LU-factorization in EIGEN => GITLAB

const g g ::Index n = A. O);
assert(n == A. ()); // ensure square matrix
::PartialPivLU< > (D) ;
// Normalized lower—-triangule factor
L = ::Identity(n, n);
L.triangularView<StrictlyLower> () += .matrixLU() ;

2. Direct Methods for (Square) Linear Systems of Equations, 2.3. Gaussian Elimination (GE) 142

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/3piv2/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

// Upper triangular factor

MatrixXd U = lu.matrixLU() .triangularView<Upper> () ;
// Permutation matrix, see Def. 2.3.3.11
MatrixXd P = lu.permutationP () ;

Note that for solving a linear system of equations by means of LU-decomposition (the standard algorithm)
we never have to extract the LU-factors. a

Remark 2.3.3.16 (Row swapping commutes with forward elimination) Any kind of pivoting only in-
volves comparisons and row/column permutations, but no arithmetic operations on the matrix entries.
This makes the following observation plausible:

The LU-factorization of A € K" with partial pivoting by § 2.3.3.8 is numerically equivalent to the LU-
factorization of PA without pivoting (— Code in § 2.3.2.6), when P is a permutation matrix gathering
the row swaps entailed by partial pivoting.

numerically equivalent = same result when executed with the same machine arithmetic

B> The above statement means that whenever we study the impact of roundoff errors on LU-
factorization it is safe to consider only the basic version without pivoting, because we can always

assume that row swaps have been conducted beforehand.
_I

2.4 Stability of Gaussian Elimination

It will turn out that when investigating the stability of algorithms meant to solve linear systems of equations,
a key quantity is the residual.

Definition 2.4.0.1. Residual

Given an approximate solution x € K" of the LSE Ax = b (A € K", b € K"), its residual is the
vector

r=>b— AX.

§2.4.0.2 (Probing stability of a direct solver for LSE) Assume that you have downloaded a direct solver
for a general (dense) linear system of equations Ax = b, A € K" regular, b € K". When given the data
A and b it returns the perturbed solution x. How can we tell that x is the exact solution of a linear system
with slightly perturbed data (in the sense of a tiny relative error of size ~ EPS, EPS the machine precision,
see § 1.5.3.8). That is, how can we tell that x is an acceptable solution in the sense of backward error
analysis, cf. Def. 1.5.5.19. A similar question was explored in Ex. 1.5.5.20 for matrix x vector multiplication.

©® x — X accounted for by perturbation of right hand side:

Ax=D>

AX—biAp = Ab=AX—b=:i—r (residual Def.24.0.1).

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination 143

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Hence, x can be accepted as a solution, if H < Cn® - EPS, for some small constant C ~ 1, see

Def. 1.5.5.19. Here, ||-|| can be any vector norm on K”.

® x — x accounted for by perturbation of system matrix:

[try perturbation AA = ux'l, ucK" |

rxi

u=——5 = AA= 5 -
[X1

As in Ex. 1.5.5.20 we find
[AAf el xll

1Al [[AllIx], — [[AX],

Thus, X is ok in the sense of backward error analysis, if H!:HH < Cn® - EPS.
X

A stable algorithm for solving an LSE yields a residual r := b — Ax small (in norm) relative to b.

_l

The roundoff error analysis of Gaussian elimination based Ass. 1.5.3.11 is rather involved. Here we merely
summarise the results:

Simplification: equivalence of Gaussian elimination and LU-factorization extends to machine arithmetic,
cf. Section 2.3.2

Lemma 2.4.0.3. Equivalence of Gaussian elimination and LU-factorization

The following algorithms for solving the LSE Ax = b (A € K", b € K") are
numerically equivalent:
@ Gaussian elimination (forward elimination and back substitution) without pivoting, see Algo-
rithm 2.3.1.3.
® [U-factorization of A (— Code in § 2.3.2.6) followed by forward and backward substitution,
see Algorithm 2.3.2.15.

Rem.2.3.3.16 > sufficient to consider LU-factorization without pivoting

A profound roundoff analysis of Gaussian elimination/LU-factorization can be found in [GV89, Sect. 3.3 &
3.5] and [Hig02, Sect. 9.3]. A less rigorous, but more lucid discussion is given in [TB97, Lecture 22].

Here we only quote a result due to Wilkinson, [Hig02, Thm. 9.5]:

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination 144

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Theorem 2.4.0.4. Stability of Gaussian elimination with partial pivoting

Let A € R™" pe regular and A%) € R"" k =1,...,1n— 1, denote the intermediate matrix arising
in the k-th step of § 2.3.3.8 (Gaussian elimination with partial pivoting) when carried out with exact
arithmetic.

For the approximate solutionx € IR" of the LSE Ax = b, b € IR", computed as in § 2.3.3.8 (based

on machine arithmetic with machine precision EPS, — Ass. 1.5.3.11) there is AA € R™" with

max |(AK);;

s (A®);)

1— 3nEps " s £ max |(A);]
L]

suchthat (A+AA)X=Db.

IAA], < 1

7

w Gaussian elimination with partial pivoting is stable (— Def. 1.5.5.19)

p “small”

If o is “small”, the computed solution of a LSE can be regarded as the exact solution of a LSE with “slightly
perturbed” system matrix (perturbations of size O(n3EPS)).

Bad news: exponential growth p ~ 2" is possible !

EXAMPLE 2.4.0.5 (Wilkinson’s counterexample) We confirm the bad news by means of a famous ex-
ample, known as the so-called Wilkinson matrix.

1 0 0 0 O O 0 0 0 1

10: -1 1 0 0 0 0 O 0 o0 1

-1 -1 1 0 0 0 0 0 0 1

| fizjvi=n, 1 -1 -1 1 0 0 0 0 0 1
pie b i A_|"1-1-1-11 0 0 0 01
if ’] ’ 1 -1 -1 -1 -1 1 0 0 0 1
0 else. -1 -1 -1 -1 -1 -1 1 0 0 1

-1 -1 -1 -1 -1 -1 -1 1 0 1

1 -1 -1 -1 -1 -1 -1 -1 1 1

-1 -1 -1 -1 -1 -1 -1 -1 -1 1]

Partial pivoting does not trigger row permutations !

1 Lifi=7], 1 Jfi=7j,
[SN A=LU, lij: -1 ,ifi>j, ujj = 7i—1 Jifj=mn,
0 else 0 else.

= Exponential blow-up of entries of U !

Blow-up of entries of U !

T (%) B> Evidence of Instability of Gaussian elimination!
However, cond;(A) is small!

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination 145

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

C++ code 2.4.0.6: Gaussian elimination for “Wilkinson system” in EIGEN => GITLAB

2 res(100,2);

s |for(int n = 10; n <= 100%10; n += 10){

4 A(n,n); A. 05

5 A. <StrictlyLower >() . (—=1);

6 A. <1>(). () ;

7 X = i (n,—1). (i (n,1,n),
[](double x, double y){return pow(x,y);});

8 double relerr = (A.lu () .solve (Axx)—x) . () /x. ();

9 res(n/10—1,0) = n; res(n/10—1,1) = relerr;

10 |}

n|// ... different solver(e.g. colPivHouseholderQr()), plotting

(*) If cond,(A) was huge, then big errors in the solution of a linear system can be caused by small per-
turbations of either the system matrix or the right hand side vector, see (2.4.0.12) and the message
of Thm. 2.2.2.4, (2.2.2.8). In this case, a stable algorithm can obviously produce a grossly “wrong”
solution, as was already explained after (2.2.2.8).

Hence, lack of stability of Gaussian elimination will only become apparent for linear systems with
well-conditioned system matrices.

.
A 10
400 Kfj] £
A
f 10
350 r I ,g
A G 10
2 =
300 A c
o 8
P 310
< 250 o S
Y f =1 —#— Gaussian elimination
-g A w 10 —+— QR-decomposition H
8 200 fg ,6 — — relative residual norm
. 2
.
QK 5 10
150 ff o
=
¢ 8 10 1
100 i o
XX 107" —
50 i 4
e -
i
L 10
0 L L L L L L L L L , . , . .
o a1 0 10200 300 400 500 600 700 80 900 1000 0 100 200 300 400 500 600 700 800 900 1000
'9- n Fig. 42 n

These observations match Thm. 2.4.0.4, because in this case we encounter an exponential growth of
p = p(n), see Ex. 2.4.0.5. g

Observation: In practice p (almost) always grows only mildly (like O(+/1)) with 1

Discussion in [TB97, Lecture 22]: growth factors larger than the orderO(+/n) are exponentially rare in
certain relevant classes of random matrices.

EXAMPLE 2.4.0.7 (Stability by small random perturbations) Spielman and Teng [ST96] discovered
that a tiny relative random perturbation of the Wilkinson matrix on the scale of the machine precision EPS
(— § 1.5.3.8) already remedies the instability of Gaussian elimination.

C++ code 2.4.0.8: Stabilization of Gaussian elimination with partial pivoting by small random
perturbations => GITLAB

2 //! Curing Wilkinson’s counterexample by random perturbation
3 res(20, 3);

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination 146

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/wilksol/Eigen/main.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/wilkpert/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

4 mt19937 gen(42); // seed
5 // normal distribution, mean = 0.0, stddev = 1.0
6 std :: normal_distribution<> bellcurve;
7 for (int n = 10; n <= 10 * 20; n += 10) {
8 // Build Wilkinson matrix
0 A(n, n); A. 05
10 A. <StrictlyLower >() . (—=1);
11 A. <1>(). ();
12 // imposed solution
- X = oc (n, —1). (
14 il (n, 1, n),
15 [](double x, double y) { return pow(x, y); });
16 double relerr = (A.lu (). (A *x x) — x). () / x. () ;
17 // Randomly perturbed Wilkinson matrix by matrix with iid
18 // N(0,eps) distributed entries
19 Ap = A.unaryExpr ([&](double x) {
20 return x + numeric_limits<double>::epsilon () *x bellcurve (gen);
21 s
22 double relerrp = (Ap.lu(). (Ap * x) — Xx). () / x. 0);
23 res(n / 10 — 1, 0) = n;
24 res(n / 10 — 1, 1) = relerr;
25 res(n / 10 — 1, 2) = relerrp;
26 }
10° T T EEE———— e
10
- Recall the statement made above about “improbabil-
ity” of matrices for which Gaussian elimination with
5" partial pivoting is unstable. This is now matched
2 0° | by the observation that a tiny random perturba-
3] tion of the matrix (almost certainly) cures the prob-
b lem. This is investigated by the brand-new field
10} 1 of smoothed analysis of numerical algorithms, see
[SSTO6].
107
10460 2‘0 4‘0 6‘0 B‘O 160 12‘0 1“10 1é0 1é0 200
Fig. 43 matrix size n
_

—~—g——

Gaussian elimination/LU-factorization with partial pivoting is stable ()
(for all practical purposes) !

(%): stability refers to maximum norm ||-|| ..
EXPERIMENT 2.4.0.9 (Conditioning and relative error — Exp. 2.4.0.10 cnt’d)

In the discussion of numerical stability (— Def. 1.5.5.19, Rem. 1.5.5.22) we have seen that a stable algo-
rithm may produce results with large errors for ill-conditioned problems. The conditioning of the problem of
solving a linear system of equations is determined by the condition number (— Def. 2.2.2.7) of the system
matrix, see Thm. 2.2.2.4.

Hence, for an ill-conditioned linear system, whose system matrix is beset with a huge condition number,
(stable) Gaussian elimination may return “solutions” with large errors. This will be demonstrated in this
experiment.

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination 147

http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/index.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

10
—*— cond(A)
/3\
10‘9//// \\ o
. / \X\ —i A A
Numerical experiment with nearly singular matrix 7+ \ R
10 F * . */ ,/ \\\)
from Exp. 2.4.0.10 \ 310
10" _
— T < \ 10 €
A=uv +e¢€l, S o ' :
_ 1 T 3 \ B
u=11,23,...,10)7, \
_ 1 11 1\T AN s
vV = (1/ 27 37 4rs ’ E) 10 * 10
10" \\4\\ 10
- \
10 10 10 10" 10 10 10° 107 10° 107
Fig. 44 €

|

The practical stability of Gaussian elimination for Ax = b is reflected by the size of a particular vector, the
residual r := b — AX, x the computed solution, that can easily be computed after the elimination solver
has finished:

In practice Gaussian elimination/LU-factorization with partial pivoting
produces “relatively small residual vectors”

Simple consideration as in § 2.4.0.2:
(A+AA)X=b = r=b—-—Ax=AAX = Ilr]| < [[AA][]|x]] ,

for any vector norm ||-||. This means that, if a direct solver for an LSE is stable in the sense of backward
error analysis, that is, the perturbed solution could be obtained as the exact solution for a slightly relatively
perturbed system matrix, then the residual will be (relatively) small.

EXPERIMENT 2.4.0.10 (Small residuals by Gaussian elimination)

Gaussian elimination works miracles in terms of delivering small residuals!

Numerical experiment with nearly singular matrix
— ol
A=uv +e€l, with

singular rank-1 matrix

C++ code 2.4.0.11: Small residuals for Gauss elimination = GITLAB

int n = 10;
// Initialize vectors u and Vv
VectorXd u VectorXd :: LinSpaced(n, 1, n) / 3.0;
VectorXd v u.cwiselnverse () . array () =*
VectorXd :: LinSpaced(n, 1, n)
.unaryExpr ([](double x) { return pow(—1, x); })
.array () ;
VectorXd x = VectorXd ::Ones(n) ;
10 double nx = x.IlpNorm<Infinity >();
11 VectorXd expo = VectorXd ::LinSpaced(19, —5, —14);
12 Eigen:: MatrixXd res(expo.size(), 4);

© ©® N o O h~ W N

13 for (int i = 0; i <= expo.size(); ++i) {

14 // Build coefficient matrix A

15 double epsilon = std::pow(10, expo(i));

16 MatrixXd A = u * v.transpose() + epsilon x* MatrixXd::ldentity(n, n);

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination 148

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/gaussstab/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

107"%

VectorXd b = A % x; // right-hand-side vector
double nb = b.lpNorm<Infinity >(); // maximum norm

VectorXd xt = A.lu().solve(b); // Gaussian elimination
VectorXd r = b — A x xt; // residual vector

res(i, 0) = epsilon;

res(i, 1) (x — xt).lpNorm<Infinity >() / nx;

res(i, 2) = r.lpNorm<Infinity >() / nb;

// L-infinity condition number

res(i, 3) = A.inverse () .cwiseAbs () .rowwise () .sum() . maxCoeff () =*
A.cwiseAbs () .rowwise () .sum() . maxCoeff () ;

T T T T T
/\ —+— relative error
- — — - i
- —— f — \/ —*— relative residual

~

Observations (w.r.t ||-||,-norm)

lution X
4+ small residuals for any €

13 -12

107" 10° 10 107" 107" 107 10° 107 10° 10°

Fig. 45

How can a large relative error be reconciled with a small relative residual ?

Ax=b <+ Ax=Db
{A(x—i):r = [Ix=x| < [|A7Y|[]x] N lIx —X||

4+ for € < 1 large relative error in computed so-

|| Il
< AHAlen (2.4.0.12)

Ax=b = o] <Al = IAIA e
> If cond(A) := ||A]|||[A71]| > 1, then a small relative residual may not imply a small relative error.
Also recall the discussion in Exp. 2.4.0.9. J

EXPERIMENT 2.4.0.13 (Instability of multiplication with inverse) An important justification for
Rem. 2.2.1.6 that advised us not to compute the inverse of a matrix in order to solve a linear system of
equations is conveyed by this experiment. We again consider the nearly singular matrix from Exp. 2.4.0.10.

A=uv' +el, . u=1(1,23,...,107,
wi _ 1 11 1\T
V = (_1/ 27 3747 /E)

singular rank-1 matrix

C++ code 2.4.0.14: Instability of multiplication with inverse =* GITLAB

® N o o

int n = 10;

VectorXd u = VectorXd ::LinSpaced(n,1,n) / 3.0;

VectorXd v = u.cwiselnverse () .array () * VectorXd ::LinSpaced(n,1,n).unaryExpr (
[](double x){return pow(—1,x);}).array();

VectorXd x = VectorXd ::Ones(n) ;

VectorXd expo = VectorXd ::LinSpaced(19,—5,—14);
MatrixXd res (expo.size () ,4);

for(int i = 0; i < expo.size(); ++i){

2. Direct Methods for (Square) Linear Systems of Equations, 2.4. Stability of Gaussian Elimination

149

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/invstab/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

9 double epsilon = std::pow(10, expo(i));

10 A = uxv. () + epsilon *x ((n,n) +
i (n,n))/2;

11 b =A% Xx;

12 double nb = b. <Infinity >();

13 xt = A.lu() .solve(b); // stable solving

14 r=>b— Axxt; // residual

15 B = A.inverse() ;

16 xi = Bxb; // solving via inverse

ri = b — Axxi; // residual
i (n,n) — AxB; // residual
res(i,0) epsilon; res(i,1) (r). <Infinity >()/nb;
res(i,2) ri. <Infinity >()/nb;
// L-infinity condition number
res(i,3) = R. <Infinity >() / B.

X

<Infinity >();

T T T
—+— Gaussian elimination
—— multiplication with inversel

inverse

The computation of the inverse is affected by round-
off errors, but does not benefit from the same favor-
able cancellation of roundoff errors as Gaussian elim-
ination.

relative residual

Fig. 46 €

2.5 Survey: Elimination Solvers for Linear Systems of Equations

All direct () solver algorithms for square linear systems of equations Ax = b with given matrix A €
K™ right hand side vector b € K" and unknown x € K" rely on variants of Gaussian elimination
with pivoting, see Section 2.3.3. Sophisticated, optimised and verified implementations are available in
numerical libraries like LAPACK/MKL.

(x): adirect solver terminates after a predictable finite number of elementary operations for every admis-
sible input.

Never contemplate implementing a general solver for linear systems of equations!

If possible, use algorithms from numerical libraries! (— Exp. 2.3.1.7)

Therefore, familiarity with details of Gaussian elimination is not required, but one must know when and
how to use the library functions and one must be able to assess the computational effort they involve.

2. Direct Methods for (Square) Linear Systems of Equations, 2.5. Survey: Elimination Solvers for Linear System$0

nf EAlintinne

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

§2.5.0.1 (Computational effort for direct elimination) We repeat the reasoning of § 2.3.1.5: Gaus-
sian elimination for a general (dense) matrix invariably involves three nested loops of length n, see
Code 2.3.1.4, Code 2.3.3.6.

Theorem 2.5.0.2. Cost of Gaussian elimination — §2.3.1.5

Given a linear system of equations Ax = b, A € K"" regular, b € K", n € IN, the asymptotic
computational effort (— Def. 1.4.0.1) for its direct solution by means of Gaussian elimination in
terms of the problem size parameter n is O(n3) forn — oo.

The constant hidden in the Landau symbol can be expected to be rather small (= 1) as is clear from
(2.3.1.6).

The cost for solving are substantially lower, if certain properties of the matrix A are known. This is clear,
if A is diagonal or orthogonal/unitary. It is also true for triangular matrices (— Def. 1.1.2.3), because they
can be solved by simple back substitution or forward elimination. We recall the observation made in see
§ 2.3.2.15.

Theorem 2.5.0.3. Cost for solving triangular systems — §2.3.1.5

In the setting of Thm. 2.5.0.2, the asymptotic computational effort for solving a triangular linear
system of equations is O(1n*) forn — co.

_

§2.5.0.4 (Direct solution of linear systems of equations in EIGEN) EIGEN supplies a rich suite of
functions for matrix decompositions and solving LSEs, see B EiceN documentation. The default solver is
Gaussian elimination with partial pivoting, accessible through the methods () and () of dense
matrix types:

Given: system/coefficient matrix A € K" regular <> A (n x n EIGEN matrix)
right hand side vectors B € K! « B (n x ¢ EIGEN matrix)
(corresponds to multiple right hand sides, cf. Code 2.3.1.10)

linear algebra | EIGEN

X=A1B= [A_l(B);,l,...,A_l(B):,g] ‘ X = A.lu() .solve (B)

Summarizing the detailed information given in § 2.3.2.15:
cost(x = A.lu().solve(B)) = =O(n’+In?) forn,| — oo
_

Remark 2.5.0.5 (Communicating special properties of system matrices in EIGEN) Sometimes, the
coefficient matrix of a linear system of equations is known to have certain analytic properties that a direct
solver can exploit to perform elimination more efficiently. These properties may even be impossible to
detect by an algorithm, because matrix entries that should vanish exactly might have been perturbed due
to roundoff.

Thus one needs to pass EIGEN these informations as follows:

2 |// A is lower triangular
3 |x = A.triangularView < i >() . (b);
4« |// A is upper triangular

2. Direct Methods for (Square) Linear Systems of Equations, 2.5. Survey: Elimination Solvers for Linear System$1

nf EAlintinne

https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

x = A.triangularView <Eigen :: Upper>().solve(b) ;

// A 1s hermitian / self adjoint and positive definite

x = A.selfadjointView <Eigen::Upper>(). It ().solve(b);

// A 1s hermiatin / self adjoint (poitive or negative semidefinite)
x = A.selfadjointView <Eigen::Upper>().Idlt().solve(b);

© ® N o Ou

The methods 11t () and 1d1t () rely on special factorizations for symmetric matrices, see § 2.8.0.13
below. ¥

EXPERIMENT 2.5.0.6 (Standard EIGEN lu() operator versus triangularView()) In this numerical ex-
periment we study the gain in efficiency achievable by make the direct solver aware of important matrix
properties.

C++ code 2.5.0.7: Direct solver applied to a upper triangular matrix =+ GITLAB

2 |//! Eigen code: assessing the gain from using special properties
s |//! of system matrices in Eigen
4 | MatrixXd timing () {
5 std ::vector<int> n = {16,32,64,128,256,512,1024,2048,4096,8192};
6 int nruns = 3;
7 MatrixXd times(n.size () ,3);
8 for(int i = 0; i < n.size(); ++i){
9 Timer t1, t2; // timer class
10 MatrixXd A = VectorXd ::LinSpaced(n[i],1,n[i]).asDiagonal() ;
e A += MatrixXd::Ones(n[i],n[i]) .triangularView <Upper>() ;
12 VectorXd b = VectorXd ::Random(n[i]) ;
13 VectorXd x1(n[i]), x2(n[i]);
14 for(int j = 0; j < nruns; ++j){
15 t1.start(); x1 = A.lu() .solve(b); t1.stop () ;
16 t2.start(); x2 = A.triangularView <Upper>() .solve(b); t2.stop();
17
}
18 times(i,0) = n[i]; times(i,1) = t1.min(); times(i,2) = t2.min();
19 }
20 return times;
21 |}
102 T
+ naive lu() +
% triangularView lu()
10" F E
1007 N i
Observation: > =
o 107" + E
Being told that only the upper triangular part of 3))
the matrix needs to be taken into account, Gaus- 8" . x 3
sian elimination reduces to cheap backward elimi- gme, + *]
nation, which is much faster than full elimination, ¢f £ + *
Thm. 2.5.0.2 vs. Thm. 2.5.0.3. ER . . ;
108k *]

10" 102 108 10'

matrix size n
_

§2.5.0.8 (Direct solvers for LSE in EIGEN) Invocation of direct solvers in EIGEN is a two stage process:

O Request a decomposition (LU,QR,LDLT) of the matrix and store it in a temporary “decomposition
object”.

® Perform backward & forward substitutions by calling the solve () method of the decomposition

2. Direct Methods for (Square) Linear Systems of Equations, 2.5. Survey: Elimination Solvers for Linear System$2

nf EAlintinne

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/linsolvetest/Eigen/linsolvetest.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

object.
The general format for invoking linear solvers in EIGEN is as follows:
Eigen: :SolverType<Eigen: :MatrixXd> solver (A);
Figen::VectorXd x = solver.solve(b);
This can be reduced to one line, as the solvers can also be used as methods acting on matrices:
FEigen::VectorXd x = A.solverType() .solve (b);

A full list of solvers can be found in the ¥ EIGEN documentation. The next code demonstrates a few of
the available decompositions that can serve as the basis for a linear solver:

C++-code 2.5.0.9: EIGEN based function solving a LSE =* GITLAB

// Gaussian elimination with partial pivoting, Code 2.3.3.6
void lu_solve (const MatrixXd &A, const VectorXd &b, VectorXd &x) {
x = A.lu().solve(b); // "1u()’ is short for ’‘partialPivLu()’

}

// Gaussian elimination with total pivoting
void fullpivliu_solve (const MatrixXd &A, const VectorXd &b, VectorXd &x) {
x = A.fullPivLu () .solve(b); // total pivoting

© ©® N o o b~ W N

10 |}

12 |// An elimination solver based on Householder transformations
13 |void qr_solve (const MatrixXd &A, const VectorXd &b, VectorXd &x) {

14 Eigen ::HouseholderQR<MatrixXd > solver (A); // see Section 3.3.3

15 x = solver.solve(b);

16 |}

18 |// Use singular value decomposition (SVD)

19 | void svd_solve (const MatrixXd &A, const VectorXd &b, VectorXd &x) {

20 // SVD based solvers, see Section 3.4

21 x = A.jacobiSvd (Eigen:: ComputeThinU | Eigen::ComputeThinV) .solve(b);

2 |}

The different decompositions trade speed for stability and accuracy: fully pivoted and QR-based decom-
positions also work for nearly singular matrices, for which the standard LU-factorization may non longer
be reliable. a

Remark 2.5.0.10 (Many sequential solutions of LSE) As we have seen in Code 2.5.0.9, EIGEN provides
functions that return decompositions of matrices. For instance, we can get an object “containing” the
LU-decomposition (— Section 2.3.2) of a matrix by the following commands:

Figen::MatrixXd A(n,n); // A dense square matrix object
auto ludec = A.lu(); // Perform LU-decomposition and store the
factors.

Based on the precomputed decompositions, a linear system of equations with coefficient matrix A € IK"™"
can be solved with asymptotic computational effort O (1), cf. § 2.3.2.15.

The following example illustrates a special situation, in which matrix decompositions can curb computa-
tional cost:

2. Direct Methods for (Square) Linear Systems of Equations, 2.5. Survey: Elimination Solvers for Linear System$3

nf EAlintinne

https://eigen.tuxfamily.org/dox/group__TopicLinearAlgebraDecompositions.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/decomposition/denseSolve.hpp
http://eigen.tuxfamily.org/dox/group__TopicLinearAlgebraDecompositions.html

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

C++ code 2.5.0.12: Smart approach!

C++ code 2.5.0.11: Wasteful approach!
-> GITLAB

-> GITLAB

2 |// Setting: N>1, |
2 |// Setting: N>1, |

s |// large matrix A € K" |
s |// large matrix A € K™" |

4+ |auto A_lu_dec = A.lu(); |

s [for(int j = 0; j < N; ++j){ |

s [for(int j = 0; j < N; ++j){ |
5 | x = A lu(). (b); |

6 | x = A_lu_dec. (b); |
6 | b = some_function (x) ; |

7 | b = some_function (x) ; |

computational effort O(Nn?)
computational effort O(1n® + Nn?)

EXAMPLE 2.5.0.13 (Reuse of LU-decomposition in inverse power iteration) A concrete example is
the so-called inverse power iteration, see Chapter 9, for which a skeleton code is given next. It computes
the iterates

*

= A Ix(®) (D) i X*” L k=0,1,2,..., (2.5.0.14)
X2

C++-code 2.5.0.15: Efficient implementation of inverse power method in EIGEN =* GITLAB

template<class VecType, class MatType>
VecType invpowit (const ::MatrixBase <MatType> &A,double tol)
{
using index_t = typename MatType ::Index;
using scalar_t = typename VecType :: Scalar;
// Make sure that the function is called with a square matrix
const index_t n = A.cols () ;

© ® N o g &~ @ N

const index_t m = A.rows() ;
10 eigen_assert(n == m);
11 // Request LU-decomposition
12 auto A_lu_dec = A.lu();
13 // Initial guess for inverse power iteration

14 VecType xo = VecType ::Zero(n);
15 VecType xn = VecType ::Random(n) ;

16 // Normalize vector

17 xn /= xn.norm¢() ;

18 // Terminate if relative (normwise) change below threshold
19 while ((xo—xn).norm() > xn.norm()x*tol) {

20 X0 = Xn;

21 xn = A_lu_dec.solve(xo0);

22 xn /= xn.norm¢() ;

23 }

24 return(xn) ;

2. Direct Methods for (Square) Linear Systems of Equations, 2.5. Survey: Elimination Solvers for Linear System$4

nf EAlintinne

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/seqsolvelse/Eigen/main.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/seqsolvelsesmart/Eigen/main.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/invpowit/Eigen/invpowit.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

The use of : :MatrixBase<MatType> makes it possible to call invpowit with an expression
argument:

2 A= (n,n);

3 B = oS (n,n);

4 ev = invpowit< >(A+B, tol);

This is necessary, because A+B will spawn an auxiliary object of a “strange” type determined by the
expression template mechanism. 2

Remark 2.5.0.16 (Access to LU-factors in EIGEN) LU-decomposition objects available in EIGEN provide
access to the computed LU-factors L and U through a member function mat rixLU (). This returns a
matrix object with L stored in its strictly lower triangular part, and U in its upper triangular part.

However note that EIGEN’s algorithms for LU-factorization invariably employ (partial) pivoting for the sake
of numerical stability, see Section 2.3.3 for a discussion. This has the effect that the LU-factors of a matrix
A € R'%" are actually those for a matrix PA, where P is a permutation matrix as stated in Lemma 2.3.3.12.
Thus matrixLU () provides the LU-factorization of A after some row permutation.

C++ code 2.5.0.17: Retrieving the LU-factors from an EIGEN lu object =* GITLAB

std :: pair< : , i >

lufak_eigen (const i &A) {
// Compute LU decomposition
auto ludec = A.lu();
// The LU-factors are computed by in-situ LU-decomposition,
// see Rem. 2.3.2.11, and are stored in a dense matrix of
// the same size as A

© ® N o o A~ W N

L { ludec.matrixLU (). < 2 UnitLower >() };
10 U { ludec.matrixLU (). < i >() };
11 // EIGEN employs partial pivoting, see § 2.3.3.5, which can be viewed
12 // as a prior permutation of the rows of A. We apply the inverse of
13 // ;ggébtation to the L-factor in order to achieve A = LU.
14 L.applyOnTheLeft(ludec.permutationP () . 0));
15 // Return LU-factors as members of a 2-tuple.

16 return { L , U };

2.6 Exploiting Structure when Solving Linear Systems

By “structure” of a linear system we mean prior knowledge that

4 either certain entries of the system matrix vanish,

4 or the system matrix is generated by a particular formula.
§2.6.0.1 (Triangular linear systems) Triangular linear systems are linear systems of equations whose
system matrix is a triangular matrix (— Def. 1.1.2.3).

Thm. 2.5.0.3 tells us that (dense) triangular linear systems can be solved by backward/forward elimination
with O(nz) asymptotic computational effort (n = number of unknowns) compared to an asymptotic com-
plexity of O(n3) for solving a generic (dense) linear system of equations (— Thm. 2.5.0.2, Exp. 2.5.0.6).

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear 155

CQyv/etame

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/lufak/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

This is the simplest case where exploiting special structure of the system matrix leads to faster algorithms
for the solution of a special class of linear systems. _|

§2.6.0.2 (Block elimination) Remember that thanks to the possibility to compute the matrix product in
a block-wise fashion (— § 1.3.1.13, Gaussian elimination can be conducted on the level of matrix blocks.
We recall Rem. 2.3.1.14 and Rem. 2.3.2.19.

For k, ¢ € IN consider the block partitioned square n x n, n := k + /¢, linear system

Ap1Ap | (x| |bg Aq € KM, Ay € KM LAy € KPF A € KO (2.6.0.3)
AriAxn | [x| — |ba|” x; € KK, x, e K, by € KK, b, € KE.

Using block matrix multiplication (applied to the matrix x vector product in (2.6.0.3)) we find an equivalent
way to write the block partitioned linear system of equations:

Ajix; + Apxo = by,

2.6.04
Ayix; + Apxo = bs. ()

We assume that Aqq is regular (invertible) so that we can solve for x; from the first equation.

> By elementary algebraic manipulations (“block Gaussian elimination”) we find
x1 = A (b1 — Apxp) ,
B (Ayn — AnA'An)xa =by— AyA by,

J/

v
Schur complement

The resulting ¢ x ¢ linear system of equations for the unknown vector x; is called the Schur complement
system for (2.6.0.3).

Unless A has a special structure that allows the efficient solution of linear systems with system matrix
Aq1, the Schur complement system is mainly of theoretical interest. 2

EXAMPLE 2.6.0.5 (Linear systems with arrow matrices) From n € IN, a diagonal matrix D € K",
ce K", b € K" and « € KK, we can build an (n 4+ 1) x (n + 1) arrow matrix.

0

A= (2.6.0.6)

b7 .

- = 12

.
0 2 4 6 8 10 12
Fig. 48 nz =31

We can apply the block partitioning (2.6.0.3) with k = 7 and ¢ = 1 to a linear system Ax = y with system
matrix A and obtain A7 = D, which can be inverted easily, provided that all diagonal entries of D are

different from zero. In this case
D c|[xg) V1
Ax = le IX} l‘;{} =y:= l”] , (2.6.0.7)

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear 156

CQyv/etame

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

‘: _ n— bTD_1Y1
= x—b D 1c’
X1 = D_l(yl — CC) .

(2.6.0.8)

These formulas make sense, if D is regular and « — b D~!c¢ # 0, which is another condition for the

invertibility of A.

Using the formula (2.6.0.8) we can solve the linear system (2.6.0.7) with an asymptotic complexity O(12)!
This superior speed compared to Gaussian elimination applied to the (dense) linear system is evident in

runtime measurements.

C++ code 2.6.0.9: Dense Gaussian elimination applied to arrow system = GITLAB

2 | VectorXd arrowsys_slow (const VectorXd &d, const VectorXd &c, const VectorXd &b,
3 const double alpha, const VectorXd &y) ({
4 int n = d.size();
5 MatrixXd A(n + 1, n + 1); // Empty dense matrix
6 A.setZero() ; // Initialize with all zeros.
7 A.diagonal () .head(n) = d; // Initializee matrix diagonal from a vector.
8 A.col(n).head(n) = c; // Set rightmost column c.
9 A.row(n).head(n) = b; // Set bottom row b'.
10 A(n, n) = alpha; // Set bottom-right entry «.
11 return A.lu().solve(y); // Gaussian elimination
12
}

= Asymptotic complexity O(13)!

(Due to the serious blunder of accidentally creating a matrix full of zeros, cf. Exp. 1.3.1.10.)

C++ code 2.6.0.10: Solving an arrow system according to (2.6.0.8) =* GITLAB

2 | VectorXd arrowsys_fast (const VectorXd &d, const VectorXd &c, const VectorXd &b,
const double alpha, const VectorXd &y) {

4 int n = d.size();

5 VectorXd z = c.array () / d.array(); // z=D7lc

6 VectorXd w = y.head(n).array () / d.array(); // w:D*1y1

7 const double den = alpha — b.dot(z); // denominator in (2.6.0.8)
8 // Check for (relatively!) small denominator

9 if (std::abs(den) <

10 std:: numeric_limits <double >::epsilon () * (b.norm() + std::abs(alpha))) {
1 throw std::runtime_error ("Nearly singular system");

12 }

13 const double xi = (y(n) — b.dot(w)) / den;

14 return (VectorXd(n + 1) << w— xi *x z, xi).finished () ;

B> Asymptotic complexity O(n) for 1 — oo

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear

CQyv/etame

157

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/arrowsys/Eigen/arrowsys_slow.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/arrowsys/Eigen/arrowsys_fast.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

10' T
—%— arrowsys slow
—+— arrowsys fast

100 L

Code for Runtime measurements can be ob-
tained from =+ GITLAB. w02k

(Intel i7-3517U CPU @ 1.90GHz, 64-bit,
Ubuntu Linux 14.04 LTS, gcc 4.8.4, -O3)

runtime [s]

No comment! >

10° 10! 102 108 104
Fi matrix size n

Remark 2.6.0.11 (Sacrificing numerical stability for efficiency) The vector based implementation of
the solver of Code 2.6.0.10 can be vulnerable to roundoff errors, because, upon closer inspection, the
algorithm turns out to be equivalent to Gaussian elimination without pivoting, cf. Section 2.3.3, Ex. 2.3.3.1.

Caution: stability at risk in Code 2.6.0.10

Yet, there are classes of matrices for which Gaussian elimination without pivoting is guaranteed to be
stable. For such matrices algorithms like that of Code 2.6.0.10 are safe. J

§2.6.0.12 (Solving LSE subject to low-rank modification of system matrix) Given a regular matrix
A € K"" let us assume that at some point in a code we are in a position to solve any linear system
Ax = b “fast”, because

4 either A has a favorable structure, eg. triangular, see § 2.6.0.1,
4 or an LU-decomposition of A is already available, see § 2.3.2.15.

Now, a A is obtained by changing a single entry of A:

AAcK"Y: 7= {”if) AT i, e {1,...,n}. (2.6.0.13)

- A:A—i—z-ei*eT

L (2.6.0.14)

(Recall: e; = i-th unit vector.) The question is whether we can reuse some of the computations spent on
solving Ax = b in order to solve Ax = b with less effort than entailed by a direct Gaussian elimination
from scratch.
We may also consider a matrix modification affecting a single row: Changing a single row: given z € K"
~ _ a;i Jif i £ 07, .
A A e K" ai]-:{ i , 7 e{1,...,n}.

(z)j+a;j ,ifi=i*,

- A=A+eq-zl |. (2.6.0.15)

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear 158

CQyv/etame

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/arrowsys/Eigen/arrowsystiming.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Both matrix modifications (2.6.0.13) and (2.6.0.15) represent rank-1-modifications of A. A generic

rank-1-modification reads
A€ K" A’::A+,«—n,—v~€41”.\ (2.6.0.16)

general rank-1-matrix
@ Trick: Block elimination of an extended linear system, see § 2.6.0.2

We consider the block partitioned linear system

Lﬁ; —ul] E] - m ' (26.0.17)

The Schur complement system after elimination of ¢ reads
(A+uv)Xx=b & AXx=Db. ! (2.6.0.18)

Hence, we have solved the modified LSE, once we have found the component x of the solution of the
extended linear system (2.6.0.17). We do block elimination again, now getting rid of x first, which yields
the other Schur complement system

(1+vIA lu) e =viA b (2.6.0.19)
HAfl

The generalization of this formula to rank-k-perturbations if given in the following lemma:

Lemma 2.6.0.21. Sherman-Morrison-Woodbury formula
For regular A € K"", and U,V € K" n,k € N, k < n, holds
(A+UviH)=l = A"l A lua+ viA~lu)tvEATT,

if 1+VIATIU s regular.

Proof. Straightforward algbra:

<A‘1 —A U+ VHA—1U)—1VHA—1> (A +UVH) =
I- AU+ VEATIU) L1+ vEATIU) VE AUV =11,

J

'

=I

Uniqueness of the inverse settles the case. -

We use this result to solve AX = b with A from (2.6.0.16) more efficiently than straightforward elimination
could deliver, provided that the LU-factorisation a = LU is already known. We apply Lemma 2.6.0.21 for
k =1 and get

- A (v)

2.6.0.22
14+ vH(A1u) ()

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear 159

CQyv/etame

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

We have to solve two linear systems of equations with system matrix A, which is "cheap" provided that
the LU-decomposition of A is available. This is another case, where precomputing the LU-decomposition
pays off.

Assuming that 11 passes an object that contains an LU-decomposition of A € IR™", the following code
demonstrates and efficient implementation with asymptotic complexity O(nz) for n — oo due to the back-
ward/forward substitutions in Lines 6-7.

C++ code 2.6.0.23: Solving a rank-1 modified LSE = GITLAB

// Solving rank—-1 updated LSE based on (2.6.0.22)
template <class LUDec>
Eigen ::VectorXd smw(const LUDec &lu, const Eigen::VectorXd &u,
const Eigen::VectorXd &v, const Eigen::VectorXd &b) ({
const Eigen::VectorXd z = lu.solve(b); // z=A"1b
const Eigen::VectorXd w = lu.solve(u); // w=A"lu
double alpha = 1.0 + v.dot(w); // Compute denominator of (2.6.0.22)
double beta = v.dot(z); // Factor for numerator of (2.6.0.22)
10 if (std::abs(alpha) < std::numeric_limits<double>::epsilon() * std::abs(beta))
1 throw std::runtime_error ("A nearly singular");
12 else
13 return (z — w x beta / alpha); // see (2.6.0.22)

2
3
4
5
6
7
8
9

_I

EXAMPLE 2.6.0.24 (Resistance to currents map) Many lineare systems with system matrices that differ
in a single entry only have to be solved when we want to determine the dependence of the total impedance
of a (linear) circuit from the parameters of a single component.

C1 R C1 R

Large (linear) electric circuit (modelling —
Ex. 2.1.0.3) >

Sought:

Dependence of (certain) branch currents
on “continuously varying” resistance R

(> currents for many different values of
Ry)

Fig. 50

B> Only a few entries of the nodal analysis matrix A (— Ex. 2.1.0.3) are affected by variation of R.!

(If Ry connects nodes i & j = only entries a;;, a;;, a;j, a;; of A depend on Ry)
_

Review question(s) 2.6.0.25 (Exploiting structure when solving linear systems of equations)

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear 160

CQyv/etame

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/smw/Eigen/smw.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(Q2.6.0.25.A) Compute the block Lu-decomposition for the arrow matrix

D € R™" regular, diagonal ,
A — , ¢belR",
n €R,

b’ «

according to the indicated (and natural) partitioning of the matrix.

(Q2.6.0.25.B) Sketch an efficient algorithm for solving the LSE

x=b, beR", ceR" !, a>0.

L OT a -
(Q2.6.0.25.C) Given a matrix A € IR™" find rank-1 modifications that replace its i-th row or column with
a given vector w € IR”.

(Q2.6.0.25.D) Given a regular matrix A € R"" and n € IR", we want to solve many linear systems of the
form A(&)x = b, where A(¢) is obtained by adding ¢ € R to every entry of A.

Propose an efficient implementation for a C++ class

class ConstModMatSolveLSE {
public:
ConstModMatSolveLSE (const Eigen::MatrixXd &A,
const Eigen::VectorXd &b);
Eigen::VectorXd solvemod (double xi) const;
private:

i

that serves this purpose. Do not forget to test for near-singularity of the matrix ;‘;(C)!

(Q2.6.0.25.E) [Z-shaped” matrix] Let A € R™" be “Z-shaped”

(A);

=04 ie{2... n=1},i+j#Fn+1

2. Direct Methods for (Square) Linear Systems of Equations, 2.6. Exploiting Structure when Solving Linear 161

CQyv/etame

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(% % % % % x x x %

*
* ok ok ok ok ok ok ok ok

1. Outline an efficient algorithm for solving a linear system of equations Ax = b, b € R,

2. Give a sufficient and necessary condition for A being regular/invertible.

2.7 Sparse Linear Systems
We start with a (rather fuzzy) classification of matrices according to their numbers of zeros:

Dense(ly populated) matrices) ‘ sparse(ly populated) matrices

Notion 2.7.0.1.

A € K™" m,n € N, is sparse, if

nnz(A) :=#{(i,j) € {1,...,m} x {1,...,n}:a;; # 0} < mn .

Sloppy parlance: matrix sparse :< “almost all” entries = 0 /“only a few percent of” entries % 0

J.H. Wilkinson’s informal working definition for a developer of simulation codes:

Notion 2.7.0.2. Sparse matrix

A matrix with enough zeros that it pays to take advantage of them should be treated as sparse.

A more rigorous “mathematical” definition:

Definition 2.7.0.3. Families of sparse matrices

Given a strictly increasing sequences m : IN — IN, n : IN — IN, a family (A(Z))ZGN of matrices
with A() e K™ js sparse (opposite: dense), if

Simple example: families of diagonal matrices (— Def. 1.1.2.3) of increasing size.

EXAMPLE 2.7.0.4 (Sparse LSE in circuit modelling) See Ex. 2.1.0.3 for the description of a linear

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 162

http://en.wikipedia.org/wiki/Sparse_matrix

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

electric circuit by means of a linear system of equations for nodal voltages. For large circuits the system
matrices will invariably be huge and sparse.

Modern electric circuits (VLSI chips):
10° — 107 circuit elements
e Each element is connected to only a few nodes
e Each node is connected to only a few elements E
[In the case of a linear circuit]

nodal analysis » sparse circuit matrix
(Impossible to even store as dense matrices)

Fig. 51 TEEER . W EREER W

Remark 2.7.0.5 (Sparse matrices from the discretization of linear partial differential equations)
Another important context in which sparse matrices usually arise:

@ gpatial discretization of linear boundary value problems for partial differential equations by means
of finite element (FE), finite volume (FV), or finite difference (FD) methods (— 4th semester course

“Numerical methods for PDES”).
|

2.7.1 Sparse Matrix Storage Formats

Sparse matrix storage formats for storing a “sparse matrix” A € IK"""* are designed to achieve two objec-
tives:

©® Amount of memory required is only slightly more than nnz(A) scalars.

@ Computational effort for matrix x vector multiplication is proportional to nnz(A).
In this section we see a few schemes used by numerical libraries.
§2.7.1.1 (Triplet/coordinate list (COO) format) In the case of a sparse matrix A € K", this format
stores triplets (7,,&;;), 1 <i<m,1 <j<m

struct Triplet {

size_t i; // row index

size t j; // column index

scalar_t a; // additive contribution to matrix entry
}i
using TripletMatrix = std::vector<Triplet>;

Here scalar_t is the underlying scalar type, either float, double, or std: : complex<double>.

The vector of triplets in a TripletMatrix has size > nnz(a). We write “>", because repetitions of index
pairs (i, j) are allowed. The matrix entry (A))i, j is defined to be the sum of all values «; ; associated with
the index pair (7, j). The next code clearly demonstrates this summation.

C++-code 2.7.1.2: Matrix x vector product y = Ax-+y in triplet format

1 [void multTripIMatvec (const TripletMatrix &A,
2 const vector<scalar_t> &x,

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 163

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

vector<scalar_t> &y)
for (size_t 1=0; I<A. (); 1++) {
y[A[1].i] += A[l].axx[A[I].]];
1

o o &~

Note that this code assumes that the result vector y has the appropriate length; no index checks are
performed.

Code 2.7.1.2: computational effort is proportional to the number of triplets. (This might be much larger
than nnz(A) in case of many repetitions of triplets.) g

Remark 2.7.1.3 (The zoo of sparse matrix formats) Special sparse matrix storage formats store only
non-zero entries:

e Compressed Row Storage (CRS)
e Compressed Column Storage (CCS) — used by MATLAB
Block Compressed Row Storage (BCRS)

e Compressed Diagonal Storage (CDS)

Jagged Diagonal Storage (JDS)
e Skyline Storage (SKS)

All of these formats achieve the two objectives stated above. Some have been designed for sparse matri-
ces with additional structure or for seamless cooperation with direct elimination algorithms (JDS,SKS). _

§2.7.1.4 (Compressed row-storage (CRS) format) The CRS format for a sparse matrix A = [a;;] €
K™ keeps the data in three contiguous arrays:

std::vector<scalar_t> val sizennz(A) := #{(i,j) € {1,...,n}?, a;j # 0}

std: :vector<size t> col ind size nnz(A)

std::vector<size_t> row_ptr sizen+1&row_ptr[n+1] =nnz(A)+1
(sentinel value)

As above we write nnz(A) = (number of nonzeros) of A

Access to matrix entry a;; # 0,1 <1i,j < n (“mathematical indexing”)

col_ind[k] =7,
= Uij - < k<
vallk] = a; { row_ptr[i| <k < row_ptr[i+1], 1<k<nnz(A).
val ij
col_ind .]
row_ptr / beginning of data for i-th row

~.

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 164

http://www.netlib.org/linalg/html_templates/node90.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

10 0 0 0 —2 O] val-vector:
3900 0 3 [10[-2[3]9[3[7[8[7][3..9[13[4]2]1|
0 787 0 0 col_ind-array:

A=13087 5 0 |1 |5]1]2]6]|2|3|4]1..5]6|2]5]6|
0 809 9 13 row_ptr-array:
0400 2 —1] [q]3]6[9[13][17]20]

Variant: diagonal CRS format (matrix diagonal stored in separate array)
The CCS format is equivalent to CRS format for the transposed matrix. 2

Review question(s) 2.7.1.5 (Sparse Matrix Storage Formats)

(Q@2.7.1.5.A) Explain why access to the source code of a function that computes the matrix x vector prod-
uct for a particular sparse-matrix storage format (encapsulated in a C++ class) already gives you full
information about that format.

(Q2.7.1.5.B) Let a matrix A € IR"" be given in COO/triplet format and by an TripletMatrix object A:

struct Triplet {

size t i; // row index

size_t Jj; // column index

scalar t a; // additive contribution to matrix entry
}i
using TripletMatrix = std::vector <Triplet>;

Outline the implementation of a function

Eigen::VectorXd mvTridiPart (const TripletMatrix &A,
const Figen::VectorXd &x);

that computes v := Ax, where A € R""" is defined as

~ oLt li—7 <
(A),:{(A)” ==t ey
L]

0 else,

(Q2.7.1.5.C) Let a matrix A € IR™" be given in COO/triplet format and by an TripletMatrix object A:

struct Triplet {

size t 1i; // row index

size_t j; // column index

scalar t a; // additive contribution to matrix entry
i
using TripletMatrix = std::vector<Triplet>;

Sketch a code that builds a TripletMatrix object corresponding to the matrix

R Iﬂ A 2n,2n
b [l A eroa

(Q2.7.1.5.D) Assume that a sparse matrix in CRS format is represented by an object of the type

struct CRSMatrix {
std::vector <double> val;
std::vector<std::size_t> col_ind;
std: :vector<std::size_t> row_ptr;
i

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 165

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Describe the implementation of a C++ function

CRSMatrix makeSecondDiffMat (unsigned int n);

that creates the CRSMatrix object for A € R""" defined as

2 Jifi=7j,
(M) =41 Jitli—jl=1, ije{l...n}.
0 else,

(Q2.7.1.5.E) For a given matrix A € R™", m,n € IN, we define the square matrix

Om,m A

VWa = l AT O

:| c Rm+n,m+n

Outline the implementation of an efficient C++ function

void crsAtoW(std::vector <double> s&val,
std: :vector <unsighed int> &col_ind,
std: :vector <unsighed int> &row_ptr);

whose arguments supply the three vectors defining the matrix A in CRS format and which overwrites
them with the corresponding vectors of the CRS-format description of W 4.

Remember that the CRS format of a matrix A € IR"""" is defined by

vallk] = (A);

’ { col_indl[k]| , 1<k<nnz(A).

=]
row_ptr[i] <k < row_ptr[i+1],

It may be convenient to use std: :vector: : resize (n) that resizes a vector so that it contains n
elements. If n is smaller than the current container size, the content is reduced to its first n elements,
removing those beyond (and destroying them). If n is greater than the current container size, the content
is expanded by inserting at the end as many elements as needed to reach a size of n using their default
value.

A

2.7.2 Sparse Matrices in EIGEN

Eigen can handle sparse matrices in the standard Compressed Row Storage (CRS) and Compressed
Column Storage (CCS) format, see § 2.7.1.4 and the & EIGEN documentation:

#include <Eigen/Sparse>

Eigen::SparseMatrix<int, Eigen::ColMajor> Asp(rows,cols); // CCS
format

Eigen: :SparseMatrix<double, Eigen::RowMajor> Bsp(rows,cols); // CRS
format

Usually sparse matrices in CRS/CCS format must not be filled by setting entries through index-pair access,
because this would entail frequently moving big chunks of memory. The matrix should first be assembled
in triplet format (— ¥ EiGEN documentation), from which a sparse matrix is built. EIGEN offers special
data types and facilities for handling triplets.

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 166

https://eigen.tuxfamily.org/dox/group__SparseQuickRefPage.html
http://eigen.tuxfamily.org/dox-devel/classEigen_1_1Triplet.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Triplet.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

std::vector <Eigen::Triplet <double > > triplets;

// .. fill the std::vector triplets

Eigen: :SparseMatrix<double, Eigen::RowMajor> spMat (rows, cols);
spMat .setFromTriplets (triplets.begin(), triplets.end());

A triplet object can be initialized as demonstrated in the following example:

unsigned int row_idx = 2;

unsigned int col_idx 4;

double value = 2.5;

Figen::Triplet<double> triplet (row_idx,col_idx,value);

std::cout << 7 (¥ << triplet.row() << ’,’ << triplet.col()
<< ’,’ << triplet.value() << ')’ << std::endl;

As shown, a Triplet object offers the access member functions row (), col (), and value () to fetch

the row index, column index, and scalar value storedina Triplet.

The statement that entry-wise initialization of sparse matrices is not efficient has to be qualified in Eigen.
Entries can be set, provided that enough space for each row (in RowMa jor format) is reserved in ad-
vance. This done by the reserve () method that takes an integer vector of maximal expected numbers

of non-zero entries per row:

C++-code 2.7.2.1: Accessing entries of a sparse matrix: potentially inefficient! => GITLAB

1 |unsigned int rows,cols,max_no_nnz_per_row;

s | Eigen :: SparseMatrix<double, Eigen::RowMajor> mat(rows, cols);
4 | mat.reserve (Eigen:: RowVectorXi :: Constant(rows, max_no_nnz_per_row)) ;
5 |// do many (incremental) initializations
e |for (int i = 0; i < rows; ++i) {
7 mat.insert(i, i) = —1.0; // only for matrix entries not yet set!
8 mat.insert(i, i + 1) = 1.0;
9 mat.coeffRef(i, 2 x i) —= 1.0; // access entry possibly not set yet
10
}

11 | mat.makeCompressed () ; // squeeze out zeros

insert (i.7) sets an entry of the sparse matrix, which is rather efficient, provided that enough space
has be reserved. coeffRef (i, j) gives |-value and r-value access to any matrix entry, creating a

non-zero entry, if needed: costly!

The usual matrix operations are supported for sparse matrices; addition and subtraction may involve only
sparse matrices stored in the same format. These operations may incur large hidden costs and have to

be used with care!

EXPERIMENT 2.7.2.2 (Initialization of sparse matrices in Eigen) We study the runtime behavior of the
initialization of a sparse matrix in Eigen. We use the methods described above. The code is available from

=> GITLAB.

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems

167

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/spaccess/Eigen/spaccess.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/eigensparseinit/Eigen/sparsetiming.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Triplets
coeffRef with space reserved
10° coeffRef without space reserve:

Runtimes (in ms) for the initialization of a banded ma-
trix (with 5 non-zero diagonals, that is, a maximum of

5 non-zero entries per row) using different techniques ol]

in Eigen. E //

Green line: timing for entry-wise initialization with Z /// |

only 4 non-zero entries per row reserved in advance. " // :
7

(OS: Ubuntu Linux 14.04, CPU: Intel i5@1.80 Ghz, e

Compiler: g++-4.8.2, -02)

. Size of matrix
Fig. 52

Observation: insufficient advance allocation of memory massively slows down the set-up of a sparse
matrix in the case of direct entry-wise initialization.

Reason: Massive internal copying of data is required to created space for “unexpected” entries. 2

Remark 2.7.2.3 (Extracting triplets from Eigen::SparseMatrix) Given an Eigen::SparseMatrix object
A describing a generic sparse matrix A € R"*" we have to create another Eigen::SparseMatrix object B
for a matrix B € IR"""", which agrees with A except that the entries in its first sub-diagonal are equal to the
entries of a vector v € R" 1

(B>i,j = {E‘Q

poLiti=j41,
ij

i,jed{l,...,n}.
else,

How can this be done efficiently? By temporarily creating a triplet representation of A, manipulating a few
triplets, and then using makeCompressed () to obtain B.

Thus we need a way to extract a triplet vector from an Eigen::SparseMatrix object. This is done by the
following fairly complicated code (— ¥ EIGEN documentation):

C++11 code 2.7.2.4: Extracting triplets from a Eigen::SparseMatrix

template <typename Scalar>
std :: vector<Eigen :: Triplet<Scalar>>
convertToTriplets(Eigen:: SparseMatrix<Scalar> &A) {
// Empty vector of triplets to be grown in the following loop
std :: vector<Eigen:: Triplet<Scalar>> triplets {};
// Loop over row/columns (depending on column/row major format
for (int k = 0; k < A.outerSize(); ++k) {
// Loop over inner dimension and obtain triplets corresponding
10 // to non—-zero entries.
1 for (typename Eigen::SparseMatrix<Scalar >::Innerlterator it (A, k); it;
12 ++it) {

© ® N o g A~ @ N

13 // Retrieve triplet data from iterator

14 triplets .emplace_back (it.row(), it.col(), it.value());
15 }

16 }

17 return triplets;

18 |}

_

EXAMPLE 2.7.2.5 (Smoothing of a triangulation) This example demonstrates that sparse linear systems
of equations naturally arise in the handling of triangulations.

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 168

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Definition 2.7.2.6. Planar triangulation

A planar triangulation (mesh) M consists of a set N of N € IN distinct points € IR? and a set T~
of triangles with vertices in V, such that the following two conditions are satisfied:
1. the interiors of the triangles are mutually disjoint (“no overlap”),
2. for every two closed distinct triangles € T their intersection satisfies exactly one of the fol-
lowing conditions:
(a) itis empty
(b) it is exactly one vertex from N/,
(c) itis a common edge of both triangles

The points in " are also called the nodes of the mesh, the triangles the cells, and all line segments
connecting two nodes and occurring as a side of a triangle form the set of edges. We always assume a
consecutive numbering of the nodes and cells of the triangulation (starting from 1, MATLAB’s convention).

Fig. 53
Valid planar triangulation Mesh with “illegal” hanging nodes

Triangulations are of fundamental importance for computer graphics, landscape models, geodesy, and
numerical methods. They need not be planar, but the algorithmic issues remain the same.

Common data structure for describing a triangulation with N nodes and M cells:
e column vector x € RN: x-coordinates of nodes

e column vector y € RY: y-coordinates of nodes

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 169

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e M x 3-matrix T whose rows contain the index numbers of the vertices of the cells.
(This matrix is a so-called triangle-node incidence matrix.)

T T T T T
- -

x
S

\O
PYTHON’s visualization add-on provides the function <
matplotlib.pyplot.triplot, which can be
used to draw planar triangulations. <

S

| .
S

o | | | | |

fess 0 0.2 0.4 0.6 0.8 1

The cells of a mesh may be rather distorted triangles (with very large and/or small angles), which is usually

not desirable. We study an algorithm for smoothing a mesh without changing the planar domain covered
by it.

Definition 2.7.2.7. Boundary edge

Every edge that is adjacent to only one cell is a boundary edge of the triangulation. Nodes that are
endpoints of boundary edges are boundary nodes.

% Notation: T C {1,...,N} = set of indices of boundary nodes.
% Notation: p’ = [p},p5]]" € R?= coordinate vector of node #i,i = 1,..., N
We define
S(i):={j€{l,...,N}: nodes iand jare connected by an edge} , (2.7.2.8)

as the set of node indices of the “neighbours” of the node with index number i.

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 170

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.triplot.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Definition 2.7.2.9. Smoothed triangulation

A triangulation is called smoothed, if

‘Z' p/ (2.7.2.10)

ﬂS(i)(pi)d: y (pj>d, d=1,2, foral iec{l,...,N}\T,

jes(i)

that is, every interior node is located in the center of gravity of its neighbours.

The relations (2.7.2.10) correspond to the lines of a sparse linear system of equations! In order to state it,
we insert the coordinates of all nodes into a column vector z € K2V, according to

i if1<i<
n=h oTlsisN, (2.7.2.11)
Py JIEN+1<i<2N.

For the sake of ease of presentation, in the sequel we assume (which is not the case in usual triangulation
data) that interior nodes have index numbers smaller than that of boundary nodes.

From (2.7.2.8) we infer that the system matrix C € R?"?N 5 := N — T, of that linear system has the
following structure:

4S(0) Lifti=7, ,
A O o _ ie{l,...,n},
_ N 7212
C [O A}’ (A); 1 ifjeS(i), ie{l,.. N} (2.7.2.12)
0 else,
B> (272100 & Cz=0. (2.7.2.13)

> nnz(A) < number of edges of M + number of interior nodes of M.
> The matrix C associated with M according to (2.7.2.12) is clearly sparse.
> The sum of the entries in every row of C vanishes.

We partition the vector z into coordinates of nodes in the interior and of nodes on the boundary

7z = int| ‘= [er---/anzn+1/-"/ZN/ZN—H/-"/ZN+n/ZN+n+1/---/ZZN}

This induces the following block partitioning of the linear system (2.7.2.13):
Zilnt
At Apa O O] |2z)%| _ o A €R"™,
(@) O At Apg Zi2nt T Ag € RWN-1

bd
Z)

0

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 171

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Aint |Apg B

| =o0. (2.7.2.14)
Aint Abd

The linear system (2.7.2.14) holds the key to the algorithmic realization of mesh smoothing; when smooth-
ing the mesh

(i) the node coordinates belonging to interior nodes have to be adjusted to satisfy the equilibrium con-
dition (2.7.2.10), they are unknowns,

(ii) the coordinates of nodes located on the boundary are fixed, that is, their values are known.

= unknown zi', zIt, known zbd, z5d

(yellow in (2.7.2.14)) (pink in (2.7.2.14))
(2.7.2.13)/(2.7.2.14) & Ajpe[2M 2] = —[Apgzid Apgzdd] . (2.7.2.15)

This is a square linear system with an n x n system matrix, to be solved for two different right hand side
vectors. The matrix Ajnt is also known as the matrix of the combinatorial graph Laplacian.

We examine the sparsity pattern of the system matrices A, for a sequence of triangulations created by
regular refinement.

Definition 2.7.2.16. Regular refinemnent of

a planar triangulation

The planar triangulation with cells obtained by E——
splitting all cells of a planar triangulation M
into four congruent triangles is called the reg-
ular refinement of M. Fig| 56
1

We start from the triangulation of Fig. 55 and in turns perform regular refinement and smoothing (left <>

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 172

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

after refinement, right <+ after smoothing)

Refined mesh level 1 Smoothed mesh level 1

Smoothed mesh level 2

\}

Refined mesh level

Refined mesh level 3

~I]
SE
ANAVAY, ==
NAVAV,p >
SO =
AN
ANAVANS Sesissensss]
NS QS
N SRR LR
X b/

S OROSRREAY
OOSRRRK

Below we give spy plots of the system matrices A;,; for the first three triangulations of the sequence:

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 173

Fig. 57

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

level 1: 30 points, 73 edges, 44 cells level 2: 103 points, 278 edges, 176 cells level 3: 381 points, 1084 edges, 704 cells

11111

a0 150 200
nnz = 471 nnz = 2165

Fig. 59
|

Review question(s) 2.7.2.17 (Sparse matrices in EIGEN)

(Q2.7.2.17.A) How would you implement the method setFromTriplets() of
Eigen::SparseMatrix<double> in order to achieve an asymptotic complexity O(ftriplets)?

2.7.3 Direct Solution of Sparse Linear Systems of Equations

Efficient Gaussian elimination for sparse matrices requires sophisticated algorithms that are encapsulated
in special types of solvers in EIGEN. Their calling syntax remains unchanged, however:

Figen: :SolverType<Eigen: :SparseMatrix<double>> solver (A);
Figen::VectorXd x = solver.solve(b);

The standard sparse solver is SparseLU.

C++-code 2.7.3.1: Function for solving a sparse LSE with EIGEN =* GITLAB

using SparseMatrix = Eigen::SparseMatrix<double>;
// Perform sparse elimination
void sparse_solve(const SparseMatrix &A, const VectorXd &b, VectorXd &x) {
Eigen ::SparseLU<SparseMatrix> solver (A);
if (solver.info() != Eigen::Success) {
throw "Matrix factorization failed";

© ©® N o O B~ W N

}
x = solver.solve(b);

o

}

The constructor of the solver object builds the actual sparse LU-decomposition. The solve method
then does forward and backward elimination, c¢f. § 2.3.2.15. It can be called multiple times, see
Rem. 2.5.0.10. For more sample codes see =* GITLAB.

EXPERIMENT 2.7.3.2 (Sparse elimination for arrow matrix) In Ex. 2.6.0.5 we saw that applying the
standard lu() solver to a sparse arrow matrix results in an extreme waste of computational resources.

Yet, EIGEN can do much better! The main mistake was the creation of a dense matrix instead of storing
the arrow matrix in sparse format. There are EIGEN solvers which rely on particular sparse elimination

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 174

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/decomposition/sparseSolve.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/spslveigen/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

techniques. They still rely of Gaussian elimination with (partial) pivoting (— Code 2.3.3.6), but take pains

to operate on non-zero entries only. This can greatly boost the speed of the elimination.

C++ code 2.7.3.3: Invoking sparse elimination solver for arrow matrix => GITLAB

Observation:

The sparse elimination solver is several orders

template <class solver_t>

VectorXd arrowsys_sparse (const VectorXd &d, const VectorXd &c, const VectorXd &b,

const double alpha, const VectorXd &y){
int n = d.size();

SparseMatrix<double> A(n+1, n+1); // default:
VectorXi reserveVec = VectorXi::Constant(n+1, 2); // nnz per col
// last full col

reserveVec(n) = n+1;
A.reserve (reserveVec) ;
for(int j = 0; | < n;

++
A.insert(j,j) = d(j)
A.insert(n,j) = b(j)
}
for(int i = 0; i < n; ++i){

A.insert(i,n) =

|
o
2=
—

}

A.insert(n,n) = alpha;
A.makeCompressed () ;

return solver_t (A).solve(y);

// last col

// bottomRight entry

column-major

Y{ // initalize along cols for efficency
] // diagonal entries
i // bottom row entries

of magnitude faster than 1u () operating on a

dense matrix.

The sparse solver is still slower than

runtime [s]

Code 2.6.0.10. The reason is that it is a
general algorithm that has to keep track of

non-zero entries and has to be prepared to do

pivoting.

10°6
100

—%— arrowsys slow
—+— arrowsys fast
arrowsys SparseLU
arrowsys iterative

e —
_— e
" \‘*’ —

—

10"

102
matrix size n

10°

104

EXPERIMENT 2.7.3.4 (Timing sparse elimination for the combinatorial graph Laplacian) We consider
a sequence of planar triangulations created by successive regular refinement (— Def. 2.7.2.16) of the
planar triangulation of Fig. 55, see Ex. 2.7.2.5. We use different EIGEN and MKL sparse solver for the
linear system of equations (2.7.2.15) associated with each mesh.

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems

175

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/arrowsys/Eigen/arrowsys_sparse.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

=}
S

T
—+— Eigen SparseLU

—— Eigen SimplicialLDLT

L | —A— Eigen ConjugateGradient
MKL PardisoLU

MKL PardisoLDLT
on's)

Timing results

\Y

=)
=)

Platform:
4 ubuntu 14.04 LTS
4 i7-3517U CPU @ 1.90GHz
4 L1 32KB, L2 256 KB, L3 4096 KB, Mem 8 GB
4 gcc4.84,-03

!

solution time [s
3

We observe an empirical asymptotic complexity (—
Def. 1.4.1.1) of O(n'), way better than the asymp-
totic complexity of O(n®) expected for Gaussian
elimination in the case of dense matrices.

\
10" 102 108 104 10° 108

Fig. 61 size of matrix A int

When solving linear systems of equations directly dedicated sparse elimination solvers from
numerical libraries have to be used!

System matrices are passed to these algorithms in sparse storage formats (— Section 2.7.1) to
convey information about zero entries.

@ Never ever even think about implementing a general sparse elimination solver by yourself!

For an survey of sparse solvers available in EIGEN see 8 EIGEN documentation.
§2.7.3.5 (Implementations of sparse solvers) Widely used implementations of sparse solvers are:
— SuperLU (http://www.cs.berkeley.edu/~demmel/SuperLU.html),

— UMFPACK (https://en.wikipedia.org/wiki/UMFPACK), used by MATLAB's \,
— PARDISO [SG04] (http://www.pardiso—-project.org/), incorporated into MKL

< fill-in (— Def. 2.7.4.3) during sparse elimination
with PARDISO

PARDISO has been developed by
Prof. O. Schenk and his group (for-
merly University of Basel, now USI

Lugano). SWISS

-

&

#

B
&
-y
=

) !" i
=
=

Fig. 62

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 176

https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html
http://www.cs.berkeley.edu/~demmel/SuperLU.html
https://en.wikipedia.org/wiki/UMFPACK
http://www.pardiso-project.org/
http://www.pardiso-project.org/

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

C++-code 2.7.3.6: Example code demonstrating the use of PARDISO with EIGEN =* GITLAB

void solveSparsePardiso(size_t n) {
using SpMat = i <double >;
// Initialize a sparse matrix
const SpMat M = initSparseMatrix <SpMat>(n) ;
const i b = i i

i x(n);
// Initalization of the sparse direct solver based on the Pardiso
library with
9| // directly passing the matrix M to the solver Pardiso is part of the

Intel
10 // MKL library, see also Ex. 1.3.2.6

1 :: PardisoLU<SpMat> solver (M) ;

12 // The checks of ?? are omitted
13 // solve the LSE

14 x = solver. (b);

(n);

® N o O A~ » N

Required is #include < /PardisoSupport>, the compilation flag ~-DEIGEN_USE_MKL_ALL,
and the inclusion of MKL libraries during the linking phase.

1+ COMPILER = clang++
2 FLAGS = —std=c++11 —m64 —I/usr/include/eigen3 —I$ {MKLROOT}/include —O3 —DNDEBUG
3

4 # Intel(R) MKL 11.3.2, Linux, None, GNU C/C++, Intel(R) 64, Static, LP64,

Sequential)
s FLAGS_LINK = —WI|,——start—group ${MKLROQOT}/lib/intel64/libmkl_intel_Ip64.a \
6 ${MKLROOT}/ lib/intel64/libmkl _core.a

${MKLROOT}/ lib/intel64/libmkl_sequential.a \

7 —WI|,——end—group —Ipthread —Im —IdI
8
s all: main.cpp
10 $ (COMPILER) $(FLAGS) —DEIGEN_USE_MKL_ALL $< —o main $(FLAGS_LINK)

2.7.4 LU-Factorization of Sparse Matrices
In Section 2.7.1 we have seen, how sparse matrices can be stored requiring O(nnz(A)) memory.

However, simple examples show that the product of sparse matrices need not be sparse, which means
that the multiplication of large sparse matrices will usually require an effort way bigger than the sum of the
numbers of their non-zero entries.

What is the situation concerning the solution of square linear systems of equations with sparse system
matrices? Generically, we have to brace for a computational effort O(n3) for matrix size n — co. Yet
Section 2.7.3 sends the message that a better asymptotic complexity can often be achieved, if the sparse
matrix has a particular structure and sophisticated library routines are used. In this section, we examine
some aspects of Gaussian elimination <+ LU-factorisation when applied in a sparse-matrix context.

EXAMPLE 2.7.4.1 (LU-factorization of sparse matrices) We examine the following “sparse” matrix with

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 177

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/eigenpardiso/Eigen/main.cpp

Fig. 63

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

a typical structure and inspect the pattern of the LU-factors returned by EIGEN, see Code 2.7.4.2.

[3 -1 —1 i
1 .

nn
1 3 e R"" nelN

C++ code 2.7.4.2: Visualizing LU-factors of a sparse matrix =* GITLAB

© ® N o o A~ @ N

// Build matrix

int n = 100;

RowVectorXd diag_el (5) ;

diag_el << —1, —1, 3, —1, —1;
VectorXi diag_no (5) ;

diag_no << —n, —1, 0, 1, n;

MatrixXd B = diag_el.replicate(2 * n,
B(n -1, 1) = 0;

B(n, 3) = 0; // delete elements
// A custom function from the Utils folder

SparseMatrix<double> A = spdiags (B, diag_no, 2 * n, 2 % n);

// It is not possible to access the LU-factors in the case of
// EIGEN’s LU-decomposition for sparse matrices.

// Therefore we have to resort to the dense version.

auto solver = MatrixXd(A).lu () ;

1);

MatrixXd L = MatrixXd :: ldentity(2 * n, 2 % n);
L += solver.matrixLU () .triangularView <StrictlyLower >() ;
MatrixXd U = solver.matrixLU () . triangularView <Upper>() ;

// Plotting

spy (A, "Sparse matrix", "sparseA_cpp.eps");
spy (L, "Sparse matrix: L factor", "sparselL_cpp.eps");
spy (U, "Sparse matrix: U factor", "sparseU_cpp.eps");

Sparse matrix

Sparse matrix: L factor

Sparse matrix: U factor

0

4 20}

4 a0t

1 60l

4 8ot

100

1 120+

1 140

1 1601

1 180

200-

20 40 60 80 100 120 140 160 1”#\(} "6\2‘

nz =796

Observation:

0

20

40

60 80 100 120
nz = 10299

A sparse % LU-factors sparse

140

160

g, 8%

1 20t

1 a0t

1 6ol

1 8ot

4 1001

4 120+

1 140

4 1601

1 180

200&

20

40

60

80 100 120 140 160
nz = 10299

180 200

Of course, in case the LU-factors of a sparse matrix possess many more non-zero entries than the matrix
itself, the effort for solving a linear system with direct elimination will increase significantly. This can be
quantified by means of the following concept:

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems

178

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/lufillin/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Definition 2.7.4.3. Fill-in

Let A = LU be an LU-factorization (— Section 2.3.2) of A € K"". If [;; # 0 or u;; # 0 though
a;j = 0, then we encounter fill-in at position (i,7).

EXAMPLE 2.7.4.4 (Sparse LU-factors) Ex. 2.7.4.1 > massive fill-in can occur for sparse matrices

This example demonstrates that fill-in can largely be avoided, if the matrix has favorable structure. In this
case a LSE with this particular system matrix A can be solved efficiently, that is, with a computational
effort O(nnz(A)) by Gaussian elimination.

C++ code 2.7.4.5: LU-factorization of sparse matrix => GITLAB

// Build matrix
MatrixXd A(11, 11);
A.setldentity () ;
A.col(10).setOnes () ;
A.row(10) .setOnes () ;
// A.reverselInPlace(); // used inEx. 2.7.4.6
auto solver = A.lu();

MatrixXd L = MatrixXd:: Identity (11, 11);

10 L += solver.matrixLU () .triangularView <StrictlyLower >() ;
11 MatrixXd U = solver.matrixLU () . triangularView <Upper > () ;
12 MatrixXd Ainv = A.inverse () ;

13 // Plotting

14 spy (A, "Pattern of A", "Apat_cpp.eps'
15 spy(L, "Pattern of L", "Lpat_cpp.eps'
16 spy (U, "Pattern of U", "Upat_cpp.eps'
17 spy (Ainv, "Pattern of AN—1}", "Ainvp

© © N o o A~ W N

)
)
)

at_cpp.eps");

A is called an “arrow matrix”, see the pattern of non-zero entries below and Ex. 2.6.0.5.

Recalling Rem. 2.3.2.17 it is easy to see that the LU-factors of A will be sparse and that their sparsity
patterns will be as depicted below. Observe that despite sparse LU-factors, A ~! will be densely populated.

Pattern of A Pattern of A™' Pattern of L Pattern of U

L, Usparse #= A !sparse!

Besides stability and efficiency issues, see Exp. 2.4.0.10, this is another reason why using x =
A.inverse () xyinsteadof y = A.1lu() .solve (b) is usually a major blunder. 1

EXAMPLE 2.7.4.6 (LU-decomposition of flipped “arrow matrix”) Recall the discussion in Ex. 2.6.0.5.
Here we look at an arrow matrix in a slightly different form:

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 179

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/arrowlu/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

neR,
, b,ceR"1,

Run the algorithm from § 2.3.2.6 (LU decompisition without pivoting):

4+ LU-decomposition dense factor matrices with O(1%) non-zero entries.

4 asymptotic computational cost: O(n3)

D € R"~"~1 regular diagonal matrix, — Def. 1.1.2.3

(2.7.4.7)

Output of modified
Code 2.7.4.5: of

Obvious fill-in (— Def. 2.7.43) .| I

Now it comes as a surprise that the arrow matrix A
from Ex. 2.6.0.5, (2.6.0.6) has sparse LU-factors!

Arrow matrix (2.6.0.6) >

bT

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems

180

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

A= . , c:=a—b' D lc.

b'D! 1 0 o

=:L

> In this case LU-factorisation is possible without fill-in, cost merely O(#)!

Idea: Transform A into A by row and column permutations before performing LU-
decomposition.

Details: Apply a cyclic permutation of rows/columns:

e 1st row/column — n-th row/column

e i-th row/column — i — 1-th row/column, i =2,...,n

0 0
. ° . .
2 ° ° 2r . °
. . . .
4 . . 4t . .
. . . .
6 . . R > 6 . .
. . . .
8 . . 8 . °
. . . .
10 o . 10 o o
.
2 2 4 6 8 10 12 . é 4 6 8 10 12
Fig. 66 nz = 31 Fig. 67 nz =31

> Then LU-factorization (without pivoting) of the resulting matrix requires O (1) operations.

C++ code 2.7.4.8: Permuting arrow matrix, see Fig. 66, Fig. 67 => GITLAB

2 MatrixXd A(11, 11);
3 A.setldentity () ;

4 A.col(0) .setOnes () ;

5 A.row(0) = RowVectorXd::LinSpaced(11, 11, 1);

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 181

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/arrowperm/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

6 // Permutation matrix (— Def. 2.3.3.11) encoding cyclic
7 // permutation

8 MatrixXd P(11, 11);

9 P.setZero () ;

10 P.topRightCorner (10, 10).setldentity () ;

11 P(10, 0) = 1;

12 spy (A, "A", "InvArrowSpy_cpp.eps");

13 spy(P x A = P.transpose(), "permuted A", "ArrowSpy_cpp.eps");

J

EXAMPLE 2.7.4.9 (Pivoting destroys sparsity) In Ex. 2.7.4.6 we found that permuting a matrix can make
it amenable to Gaussian elimination/LU-decomposition with much less fill-in (— Def. 2.7.4.3). However,
recall from Section 2.3.3 that pivoting, which may be essential for achieving numerical stability, amounts to
permuting the rows (or even columns) of the matrix. Thus, we may face the awkward situation that pivoting
tries to reverse the very permutation we applied to minimize fill-in! The next example shows that this can
happen for an arrow matrix.

C++ code 2.7.4.10: fill-in due to pivoting =* GITLAB

// Study of fill-in with LU-factorization due to pivoting
MatrixXd A(11, 11);

A.setZero () ;

A.diagonal () = VectorXd ::LinSpaced(11, 1, 11).cwiselnverse();
A.col(10).setConstant (2) ;

A.row(10) .setConstant (2) ;

auto solver = A.lu();

MatrixXd L = MatrixXd :: Identity (11, 11);

10 L += solver.matrixLU () .triangularView <StrictlyLower >() ;

1 MatrixXd U = solver.matrixLU () . triangularView <Upper>() ;

12 // Plotting

13 spy (A, "Arrow matrix A", "fillinpivotA .eps");

14 spy (L, "L factor", "fillinpivotL .eps");

15 spy (U, "U factor", "fillinpivotU.eps");

© ©® N o o h~ 0 N

16 std ::cout << A << std::endl;
B 57
1
5 2
A = : — arrow matrix, Ex. 2.7.4.4
1
9 2
2 2

The distributions of non-zero entries of the computed LU-factors (“spy-plots”) are as follows:

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 182

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/fillinpivot/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

A U
this case the solution of a LSE with system matrix A € R"" of the above type by means of Gaussian
elimination with partial pivoting would incur costs of O(1%). J

2.7.5 Banded Matrices [DR08, Sect. 3.7]

Banded matrices are a special class of sparse matrices (— Notion 2.7.0.1 with extra structure:

Definition 2.7.5.1. Bandwidth

For A = (a;;).. € K™" we call
174,

bw(A) := min{k € N: j —i > k = a;; = 0} upper bandwidth ,
bw(A) :=min{k € N:i —j >k = a;; = 0} lower bandwidth .

bw(A) :=bw(A) +bw(A) + 1 = bandwidth of A.

e bw(A) =1 > A diagonal matrix, — Def. 1.1.2.3
e bw(A) =bw(A) =1 > A tridiagonal matrix
e More general: A € R"™" with bw(A) < n = banded matrix

diagonal

super-diagonals

. . sub-diagonals

< bw(A) =3,bw(A) =2

n

or banded matrix A € T nnz < minym,n; bw
B> for banded matrix A € K" A) < mi bw(A

We now examine a generalization of the concept of a banded matrix that is particularly useful in the context
of Gaussian elimination:

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 183

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Definition 2.7.5.2. Matrix envelope

For A € K" define
row bandwidth beR(A) =max{0,i —j:a; #0,1<j<n}ie{l,., n}
column bandwidth bw]C(A) =max{0,j—i:a; #0,1<i<n}je{l,., n}
i—bwl(A)<j<i, }

N WP 2.
envelope env(A) =< (i,j) € {1,...,n}= j—bw]-C(A) <i<

EXAMPLE 2.7.5.3 (Envelope of a matrix) We give an example illustrating Def. 2.7.5.2.

(<0 % 000 0] bwi(A)=0

0+ 00 %00 bwa(d)=0

£ 0 % 00 0 | bwk(A)=2 i
A —

A=100 0 %« x 0 = bWzIf(A):O inévr(mog—zerridn?;[:f:mrya“750
0 «= 0 % x % 0 bwg(A):fi !
0000 « * 0| pwRa)=1
|00 x x 0 0 = | bwl(A) = 4

Starting from a “spy-plot”, it is easy to find the evelope:

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Fig. 68 nz =138 Fig. 69 nz =121

Note: the envelope of the arrow matrix from Ex. 2.7.4.4 is just the set of index pairs of its non-zero entries.
Hence, the following theorem provides another reason for the sparsity of the LU-factors in that example.

Theorem 2.7.5.4. Envelope and fill-in — [QSS00, Sect. 3.9]
If A € K"" js regular with LU-factorization A = LU, then fill-in (— Def. 2.7.4.3) is confined to
env(A).

Gaussian elimination without pivoting

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 184

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Proof. (by induction, version I) Examine first step of Gaussian elimination without pivoting, a1 # 0

-

A= |1 b'] _ 1C 0] jan b :

c A —< I||0o A-c<
——

ai
o

LM Ul
i (i i A ci_1 =20 ,ifi>j,
(i,]) g env(A) = b1 =0 ,ifi<].
= env(LW) c env(A), env(UY) Cenv(A).
.

Moreover, env(A — an by — env((A)y.,0.,) H

Proof. (by induction, version Il) Use block-LU-factorization, c¢f Rem. 2.3.2.19 and proof of
Lemma 2.3.2.4:

U'l=c,
OHU‘“} = _ ¢ (2.7.5.5)
1 Lu=>.

From Def. 2.7.5.2:

0
0 If mR(A) = m, thency,...,cp_m = O (entries of ¢
from (2.7.5.5))
If m$(A) = m, then by,..., b, = 0 (entries of b
— from (2.7.5.5))
0

< for lower triagular LSE:

lfci,...,c, =0thenly,..., [, =0
Ifbi,..., b =0,thenuq,..., uy =0
Fig. 70 U’

assertion of the theorem O

Thm. 2.7.5.4 immediately suggests a policy for saving cmputational effort when solving linear system
whose system matrix A € KK™" is sparse due to small envelope:

tenv(A) < n?

B> Policy [Confine elimination to envelope! J

Details will be given now:

B> Envelope-aware LU-factorization:

C++ code 2.7.5.6: Computing row bandwidths, — Def. 2.7.5.2 =+ GITLAB

//! computes rowbandwidth numbers mR(A) of A (sparse
//! matrix) according to Def. 2.7.5.2
template <class numeric_t>
VectorXi rowbandwidth (const SparseMatrix<numeric_t> &A) {
VectorXi m = VectorXi::Zero(A.rows());
for (int k = 0; k < A.outerSize(); ++k)
for (typename SparseMatrix<numeric_t>::Innerlterator it (A, k); it; ++it)

® N o o 9~ 0 N

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 185

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/rowbandwidth/Eigen/bandwidth.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

o m(it () =

10 std : : max< ::Scalar>(m(it. ()), it. () — it.
1 return m;

12 |}

1w |//! computes row bandwidth numbers mR(A) of A (dense
1w |//! matrix) according to Def. 2.7.5.2

15 |template <class Derived >

16 rowbandwidth (const MatrixBase <Derived> &A) {

17 m = i (A. 0));

18 for (int i = 1; i < A. (); ++i)

19 for (int j = 0; | < i; ++])

20 if (A(i, j) != 0) {

21 m(i) =i — j;

22 break;

23 }

24 return m;

25 |}

()

C++ code 2.7.5.7: Envelope aware forward substitution = GITLAB

2 |//! evelope aware forward substitution for Lx=Yy
s |//! (L = lower triangular matrix)

4 |//! argument mr: row bandwidth vector

5 substenv (const &L, const &y, const
6 int n = L. ();

7 x(n);

8 x(0) = y(0) / L(O, 0);

9 for (int i = 1; i <n; ++i) {

10 if (mr(i) > 0) {

11 double zeta =

12 L.row(i). (i —mr(i), mr(i)) * x.

15 x(i) = (y(i) — zeta) / L(i, i);

14 } else

5 x(i) = y(i) / L(i, i);

16 }

17 return x;

18 |}

(i — mr(i), mr(i));

&mr) {

Asymptotic complexity of envelope aware forward substitution, cf. § 2.3.2.15, for Lx = y, L € K"
regular lower triangular matrix is
O(#env(L)) !
By block LU-factorization (— Rem. 2.3.2.19) we find
(A)1n—1,1m-1 | (A)1n—1, } l L |0] l U |u]
S —— = , 2.7.5.8
(A)n,l:n—l ‘ (A)”/n lT ‘ 1 0 ‘ Y ()
= (A)p—11m-1=L1U1, Liu= (A)y_1,, Ujl=(A)) 1,1, TTut+y=(A)un.
(2.7.5.9)
C++ code 2.7.5.10: Envelope aware recursive LU-factorization =* GITLAB
2 |//! envelope aware recursive LU-factorization
3 |//! of structurally symmetric matrix
2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 186

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/substenv/Eigen/substenv.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/luenv/Eigen/luenv.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

4 |void luenv(const MatrixXd &A, MatrixXd &L, MatrixXd &U) {

5 int n = A.cols () ;

6 assert(n == A.rows() & & "A must be square");

7 if (n==1) {

8 L.setldentity () ;

9 U=A;

10 } else {

11 VectorXi mr = rowbandwidth (A); // = colbandwidth thanks to symmetry
12 double gamma;

13 MatrixXd Li(n— 1, n— 1), Ul(n — 1, n— 1);

14 luenv (A.topLeftCorner(n — 1, n— 1), L1, Ul);

15 VectorXd u = substenv (L1, A.col(n — 1).head(n — 1), mr);

16 VectorXd | =

17 substenv (U1.transpose(), A.row(n — 1).head(n — 1).transpose(), mr);
18 if (mr(n— 1) > 0)

19 gamma = A(n — 1, n— 1) — |.tail(mr(n — 1)).dot(u.tail (mr(n — 1)));
20 else

21 gamma = A(n — 1, n — 1);

22 L.topLeftCorner(n — 1, n — 1) = L1;

23 L.col(n — 1).setZero () ;

24 L.row(n — 1).head(n — 1) = |.transpose() ;

25 L(n—1, n— 1) = 1;

2 U.topLeftCorner(n — 1, n — 1) = U1;

27 U.col(n — 1).head(n — 1) = u;

28 U.row(n — 1).setZero();

29 Un— 1, n— 1) = gamma;

30 }

a1 |}

Implementation of envelope aware recursive LU-factorization (no pivoting !)

Assumption: A € K"" is structurally symmetric

B> Asymptotic complexity (A € K"") O(n-#env(A)) for n — oco.

Definition 2.7.5.11. Structurally symmetric matrix

A € K"" is structurally symmetric, if

(A)i,]' 75 0 & (A)j,i 7§ 0 Vi,j € {1,...,71} .

Since by Thm. 2.7.5.4 fill-in is confined to the envelope, we need store only the matrix entries a;;, (i,]) €
env(A) when computing (in situ) LU-factorization of structurally symmetricA € K"™"

» Storage required: n+ 2" ; m;(A) floating point numbers
» terminology: envelope oriented matrix storage

EXAMPLE 2.7.5.12 (Envelope oriented matrix storage) Linear envelope oriented matrix storage of
symmetric A = AT € R"":

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 187

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Two arrays: .
scalar t % wval size P, Indexing rule:
size_t * dptr sizen x 0 x Q 0 Q Q .
0 «x 00 x 0 0 dptr|j| =k
|l x 0 x 0 0 Q = U]
n A= 8 0 8 ¥ % 0 5 ()
P-:”ermi(A)- 0 % Q & x 0 vallk] = aj;
i=1 0 0 « x 0 0 =«
(2.7.5.13)
0]112(3(4|5|6|7|89|10|11|12|13(14|15|16(17
val 11 |A22 |31 |32 |33 |44 |52 |53 |A54 |55 | A65 |66 |A73 | A74 |A75 |A76 | A77
dptr|O| 1 |2 | 5|6 |10(12]17
Minimizing bandwidth/envelope:
Goal: Minimize m;(A),A = (a;;) € RN, by permuting rows/columns of A

EXAMPLE 2.7.5.14 (Reducing bandwidth by row/column permutations) Recall:

envelope:
envelope arrow matrix

0 T

L] L] L] L] L] [] [] [] L] L] L]
2 ° °

L] L]
4 ° °

L] L]
6 ° .

L] L]
8 ° °

L] L]
10 ° °

L] L]
120 2 4‘1 6 8 16

nz = 31

Another example:Reflection at cross diagonal

* % X OO*
OOOO* O
OOO* OO
* % * OO

* % * OO

>

cyclic permutation
of rows/columns of arrow matrix applied in Ex. 2.7.4.6. This can be viewed as a drastic shrinking of the

envelope arrow matrix
T

reduction of

* % * OO

* OO* % ¥

* OO* % ¥

* OO* % ¥

i< N+1-—i
#env(A) = 30#env(A) =22

EXAMPLE 2.7.5.15 (Reducing fill-in by reordering)

O

OO* O

* OO* % ¥

12

2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems

188

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Envelope reducing permutations are at the heart of all mod-

ern sparse solvers (— § 2.7.3.5). They employ elaborate algo-
rithms for the analysis of matrix graphs, that is, the connections
between components of the vector of unknowns defined by non-
zero entries of the matrix. For further discussion see [AG11,
Sect. 5.7].

150 100 50
T

200

EIGEN supplies a few ordering methods for sparse matrices.
These methods use permutations to aim for minimal band-
width/envelop of a given sparse matrix. We study an example
with a 347 X347 matrix M originating in the numerical solution
of partial differential equations, cf. Rem. 2.7.0.5. RN

250
T

300
=T

350

- .

0 50 100 1é0‘ : .260. = 2é0 36;
Patternof M = nnz = 2417
(Here: no row swaps from pivoting !)

C++ code 2.7.5.16: preordering in EIGEN => GITLAB

// L and U cannot be extracted from SparseLU —-> LDLT
SimplicialLDLT<SpMat_t, Lower, AMDOrdering<int> > solveri (M) ;
SimplicialLDLT<SpMat_t, Lower, NaturalOrdering <int> > solver2 (M) ;
MatrixXd U1 =
solver1l .matrixU() =*
MatrixXd :: Identity (
M.rows (), M.cols()); // explicit conversion fixes occasional

segfault
9 MatrixXd U2 = MatrixXd(solver2 . matrixU()) ;

10 // Plotting

1 spy (M, "Sparse matrix M", "MSpy.eps");

12 spy (U1, "U factor (approximate minimum degree)", "AMDUSpy.eps");
13 spy (U2, "U factor (no reordering)", "NaturalUSpy.eps");

® N o O A~ » N

Examine patterns of LU-factors (— Section 2.3.2) after reordering:

4
3 3r H "i
o,
sd
] MR
st K sk R ul i
. L H

VL L A 13 e T g “
8l G SRR R 2N 8l & i
- Q 3 & &%W P et - .
]
o v ¥
L. ., N
o o []
ar ar N ’-td
cups N V4,
i’~)
gt g R
g i 1 1 1 1 1 1 1 g i 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nnz = 20975 nnz = 3635
no reordering approximate minimum degree
2. Direct Methods for (Square) Linear Systems of Equations, 2.7. Sparse Linear Systems 189

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Sparse/bandwidthred/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

2.8 Stable Gaussian Elimination Without Pivoting

Recall some insights gained, and examples and experimnents seen so far in this chapter:

e Thm. 2.7.5.4 > special structure of the matrix helps avoid fill-in in Gaussian elimination/LU-
factorization without pivoting.

e Ex. 2.7.4.9 > pivoting can trigger huge fill-in that would not occur without it.

e Ex. 2.7.5.15 > fill-in reducing effect of reordering can be thwarted by later row swapping in the
course of pivoting.

e BUT pivoting is essential for stability of Gaussian elimination/LU-factorization — Ex. 2.3.3.1.
B> |t would be very desirable to have a priori criteria, when Gaussian elimination/LU-factorization re-

mains stable even without pivoting. This can help avoid the extra work for partial pivoting and makes
it possible to exploit structure without worrying about stability.

This section will introduce classes of matrices that allow Gaussian elimination without pivoting. Fortunately,
linear systems of equations featuring system matrices from these classes are very common in applications.

EXAMPLE 2.8.0.1 (Diagonally dominant matrices from nodal %alysis — E
@ 12 ® R

Consider:

electrical circuit entirely composed of
Ohmic resistors.

Circuit equations from nodal analysis, see
Ex. 2.1.0.3:

= @ ® © =
@: Ry (Ur—Uy) + Ry (Up — Us) + RN Uy — Uy) + Ry (U — Us) = 0,
OF Ry (Us — Up) + Ry (Us — Us) = 0,
@ : Ry (Uy—) + Ry (Us — Wp) + R Uy — Us) = 0,
®: Ry (Us — Ua) + Ry (Us — Us) + Ryg (Us — Us) 4+ Rsg(Us — Ug) = 0,
Uy =U , Ug=0.
v
1 1 1 1 1 1 1
Ro T Re TR TR "Ry, "Ry R Uy s
1 1 41 0 L u 0
Ry Ry ' Rss . . Rs5 3 — Lu
Ry 01 Ras +1R_45 1 1_R_451 1 54 Ria
Ry “Rs T Rs Ry TR T Rs TRl L0 0
> The matrix A € R""" arising from nodal analysis satisfies
e A=A" , au>0 , apj < Ofork #j, (2.8.0.2)
n
. Zak]-zo, k=1,...,n, (2.8.0.3)
j=1

2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting190

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e Asregular. (2.8.0.4)

All these properties are obvious except for the fact that A is regular.

Proof of (2.8.0.4): By Thm. 2.2.1.4 it suffices to show that the nullspace of A is trivial: Ax =0 = x=
0. So we pick x € R"”, Ax =0, and denote by i € {1,...,n} the index such that

x| = max{|xj|, j=1,...,n}.

Intermediate goal: show that all entries of x are the same:

ajj |aij]
Ax=0 = x;=) —xi = |x| <) —=|xi|. 2.8.0.5
* l Z-ﬂii] |l|_2’ﬂii\|]| ()
j#i j#
By (2.8.0.3) and the sign condition from (2.8.0.2) we conclude
a..
Z‘ il <1. (2.8.0.6)
i |a;;]
Hence, (2.8.0.6) combined with the above estimate (2.8.0.5) that tells us that the maximum is smaller
equal than a mean implies |x;| = [x;] forall j = 1,...,n. Finally, the sign condition ay; < 0 for k # j
enforces the same sign of all x;. Thus, we conclude, w.l.o.g., x; = x» = - - - = x;;. As

n
Jie{l,...,n}: Y a;>0 (strictinequality),
j=1

Ax = 0 is only possible for x = 0. a

§2.8.0.7 (Diagonally dominant matrices)

Definition 2.8.0.8. — [, Def. 1.24]

A € K" is diagonally dominant, if
Vk € {1,...,71}1 Z]#k|ak]| < |akk| .
The matrix A is called strictly diagonally dominant, if

Vk € {1,...,71}: Z].#k|ak]-| < |Elkk| .

Lemma 2.8.0.9. LU-factorization of diagonally dominant matrices

,) A has LU-factorization
regular, diagonally dominant 0

with positive diagonal o
P g Gaussian elimination feasible without plvotmg(*>

(*): In fact, when we apply partial pivoting to a diagonally dominant matrix it will trigger not a single row
permutation, because (2.3.3.7) will always be satisfied for j = k!

2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting191

http://en.wikipedia.org/wiki/Diagonally_dominant_matrix

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

> We can dispense with pivoting without compromising stability.

Proof.(of Lemma 2.8.0.9). Appealing to (2.3.1.12) we rely on induction w.r.t. n:

It is clear that partial pivoting in the first step selects a1 as pivot element, cf. (2.3.3.7). Thus after the 1st
step of elimination we obtain the modified entries

1 a'l .. 1
l'(j):aij_ialj/ 1/]:2/”'/1/1 = agi)>01

which we conclude from diagonal dominance. That also permits us to infer

W N, W) |, G | x| 8 ’
]au\ jzz\ai]] a;; ﬂllah jzzazj allﬂl]
j#i jFi
a a n n
Zaii ’ llH 11’ Z| 1]| ‘Z|a1]|
j=2
]#z i
ai1|la aq; 1
> — oallod Daqr o 2 > g~ 3yl 2 0,
j=1
i i

A regular, diagonally dominant = partial pivoting according to (2.3.3.7) selects i-th row in i-th step. _

§2.8.0.10 (Gaussian elimination for symmetric positive definite (s.p.d.) matrices) The class of sym-
metric positive definite (s.p.d.) matrices has been defined in Def. 1.1.2.6. They permit stable Gaussian
elimintation without pivoting:

Theorem 2.8.0.11. Gaussian elimination for s.p.d. matrices

Every symmetric/Hermitian positive definite matrix (s.p.d. — Def. 1.1.2.6) possesses an LU-
decomposition (— Section 2.3.2).

Equivalent to the assertion of the theorem is the assertion that for s.p.d. matrices Gaussian elimination is
feasible without pivoting.

In fact, this theorem is a corollary of Lemma 2.3.2.4, because all principal minors of an s.p.d. matrix are
s.p.d. themselves. However, we outline an alternative self-contained proof:

Proof. (of Thm. 2.8.0.11) we pursue a proof by induction with respect to the matrix size n. The assertion
in the case n = 1 is obviously true.

For the induction argument n — 1 = n consider the first step of the elimination algorithm

A {011 bj] 1. step o |m b’]

’ ~ T
b A Gaussian elimination 0 A-— %

This step has not problem, because all diagonal entries of an s.p.d. matrix are strictly positive.

The induction requires us to show that the right-lower block A-— o e R 1"l s also symmetric and
positive definite. lts symmetry is evident, but the demonstration of the s. p.d. property relies on a trick: As
A ists.p.d. (— Def. 1.1.2.6), for every y € R" "1\ {0}

T
y b A

0< m | =y (A-—)y.
2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting192

y a1

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

We conclude that A — % positive definite. Thus, according to the induction hypothesis, Gaussian

elimination without pivoting can now be applied to that right-lower block. -

The proof can also be based on the identities
(A)1n-11m-1 | (A)1n—1,0 } { L |0] { Up|u]
Sl 2 D | = , 2.7.5.8
(A)n,l:n—l ‘ (A)”/” lT ‘ 1 0 ‘ r ()
= (A)n-110-1=LU;, Liu=(A), 1., Ujl= (A),L;n_l , Tuty=(A)un,

noticing that the principal minor (A)lzn_m:n_l is also s.p.d. This allows a simple induction argument.

Note: no pivoting required (— Section 2.3.3)
(partial pivoting always picks current pivot row)

The next result gives a useful criterion for telling whether a given symmetric/Hermitian matrix is s.p.d.:

Lemma 2.8.0.12. Diagonal dominance and definiteness

A diagonally dominant Hermitian/symmetric matrix with non-negative diagonal entries is positive
semi-definite.

A strictly diagonally dominant Hermitian/symmetric matrix with positive diagonal entries is positive
definite.

Proof. For A = AH diagonally dominant, use inequality between arithmetic and geometric mean (AGM)
ab < 1(a® + b?):

n n
xHAx = Z(ai,-|xi|2 + Za,-jfixj) > Z(ﬂii|xi|2 - |ﬂij||xi||xj|>
i

i=1 i#] i#
AGM "
> Y il = 3 Y Ja (x4 %)
i=1 i#]
1 . 2 2 1 . 2 2
> 3Ll = Y lag 5P}) + 3 (o {aalx 2 = 3 lagl 1))
i=1 j#i =1 i£]
n
>Y |xi|2<ﬂii - Z|ﬂzj|> >0.
i=1 i

§2.8.0.13 (Cholesky decomposition)

Lemma 2.8.0.14. Cholesky decomposition for s.p.d. matrices — [Gut09, Sect. 3.4], [Han02,
Sect. I1.5], [@SS00, Thm. 3.6]

For any s.p.d. A € K", n € IN, there is a unique upper triangular matrix R € K" with r;; > 0,
i=1,...,n, such that A = RHR (Cholesky decomposition).

Proof. Thm. 2.8.0.11, Lemma 2.3.2.4 ensure the existence of a unique LU-decomposition of A: A =
LU, which we can rewrite as follows:

D = diagonal of U,

A=LDU , U = normalized upper triangular matrix — Def. 1.1.2.3

2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting193

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Due to the uniqueness of the LU-decomposition we infer

A=A" = U=DL' = | A=LDL' |,
with unique L, D (diagonal matrix)
x Ax>0 Vx#0 = y'Dy>0 Vy#0.

» The diagonal matrix D has a positive diagonal and, hence, we can take its “square root” and choose

R:= +/DLT.

O
We find formulas analogous to (2.3.2.7)
i-1 B .
min{i k} Fiitjk + Tt o if 1 <k,
H = j=1
RIR=A = ap=), T7irg=11, (2.8.0.15)
j=1) |1’]‘i|2+1’1-2i Jifi =k.
j=1

C++ code 2.8.0.16: Simple Cholesky factorization =+ GITLAB

2 |//! simple Cholesky factorization
s |void cholfac (const &A, &R) {
4 int n = A. 0);
5 R =A;
6 for(int kK = 0; k < n; ++k){
7 for(int j = k+1; j < n; ++j)
8 R.row(j). (n—j) —= R.row(k). (n—j)*R(k,j)/R(k,k);
9 R. (k). (n—k) /= std::sqrt(R(k,k));
10
}

11 R. <StrictlyLower >() . ();
12

}

Cost of Cholesky decomposition

The asymptotic computational cost (# elementary arithmetic operations) of computing the Cholesky
decomposition of an 1 x 1 s.p.d. matrix is 1 + O(n?) for matrix size n — .

This is “half the costs” of computing a general LU-factorization, ¢f. Code in § 2.3.2.6, but this does not
mean “twice as fast” in a concrete implementation, because memory access patterns will have a crucial
impact, see Rem. 1.4.1.5.

Gains of efficiency hardly justify the use of Cholesky decomposition in modern numerical algorithms.
Savings in memory compared to standard LU-factorization (only one factor R has to be stored) offer a
stronger reason to prefer the Cholesky decomposition. _|

§2.8.0.18 (Cholesky-type decompositions in EIGEN) Hardly surprising, EIGEN provides library routines
for the computation of the (generalized) Cholesky decomposition of an symmetric (positive definite) matrix.
For dense or sparse matrices these are the methods (— & EIGEN documentation)

e LLT () for computing a genuine Cholesky decomposition,

e ILDLT () for computing a factorization A = LDL " with a normalized lower-triangular matrix L and
a diagonal matrix D.

2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting194

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/MatVec/Dense/cholfac/Eigen/cholfac.hpp
https://eigen.tuxfamily.org/dox/group__TopicLinearAlgebraDecompositions.html

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

These methods are invoked like all other matrix decomposition methods, refer to § 2.5.0.8, where
solverType is to be replaced with either LLT or LDLT. Rem. 2.5.0.10 also applies. The LDLT-
decomposition can be attempted for any symmetric matrix, but need not exist. 2

§2.8.0.19 (Numerical stability of Cholesky decomposition) The computation of Cholesky-factorization
by means of the algorithm of Code 2.8.0.16 is numerically stable (— Def. 1.5.5.19)!

To understand this recall Thm. 2.4.0.4: Numerical instability of Gaussian elimination (with any kind of piv-
oting) manifests itself in massive growth of the entries of the intermediate matrices AK) arising during
elimination. Then use the relationship between LU-factorization and Cholesky decomposition, which tells
us that we only have to monitor the growth of entries of intermediate upper triangular “Cholesky factoriza-
tion matrices” A = (R(F))HRK) We consider the Euclidean vector norm/matrix norm (— Def. 1.5.5.10)

112

A=RUR = |A|,= sup x"RHRx = sup (Rx)"(Rx) = ||R|3.

[Ix[l;=1 Ix[l,=1
» For all intermediate Cholesky factorization matrices holds: H(R(k))HH2 = HR(">H2 — ||A|1Y%1 oOf

course, this rules out a blowup of entries of the RK),

Computation of the Cholesky decomposition largely agrees with the computation of LU-factorization (with-
out pivoting). Using the latter together with forward and backward substitution (— Section 2.3.2) to solve
a linear system of equations is algebraically and numerically equivalent to using Gaussian elimination
without pivoting. From these equivalences we conclude:

Solving LSE with s.p.d. system matrix via
Cholesky decomposition + forward & backward substitution
is numerically stable (— Def. 1.5.5.19)

0

Gaussian elimination for s.p.d. matrices

Gaussian elimination without pivoting is a numerically stable way to solve LSEs with s.p.d.
system matrix.

Learning Outcomes

Principal take-home knowledge and skills from this chapter:

e A clear understanding of the algorithm of Gaussian elimination with and without pivoting (prerequisite
knowledge from linear algebra)

e Insight into the relationship between Gaussian elimination and LU-decomposition and the algorith-
mic relevance of LU-decomposition

e Awareness of the asymptotic complexity of dense Gaussian elimination, LU-decomposition, and
elimination for special matrices

e Familiarity with “sparse matrices”: notion, data structures, initialization, benefits

2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting195

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

e Insight into the reduced computational complexity of the direct solution of sparse linear systems of
equations with special structural properties.

2. Direct Methods for (Square) Linear Systems of Equations, 2.8. Stable Gaussian Elimination Without Pivoting196

Bibliography

[AG11]

[DROS]
[GGK14]
[GV89]
[Gutog]
[Han02]
[Higo2]
[NS02]
[QSS00]

[SSTO6]

[SG04]

[ST96]

[TB97]

Uri M. Ascher and Chen Greif. A first course in numerical methods. Vol. 7. Computational
Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2011, pp. xxii+552. DOI: 10.1137/1.9780898719987 (cit. on pp. 122, 130, 189).

W. Dahmen and A. Reusken. Numerik fir Ingenieure und Naturwissenschaftler. Heidelberg:
Springer, 2008 (cit. on pp. 132, 137, 138, 141, 142, 183).

W. Gander, M.J. Gander, and F. Kwok. Scientific Computing. Vol. 11. Texts in Computational
Science and Engineering. Heidelberg: Springer, 2014 (cit. on p. 118).

G.H. Golub and C.F. Van Loan. Matrix computations. 2nd. Baltimore, London: John Hopkins
University Press, 1989 (cit. on p. 144).

M.H. Gutknecht. Lineare Algebra. Lecture Notes. SAM, ETH Zirich, 2009 (cit. on pp. 116, 122,
123, 130, 132, 133, 193).

M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen
Rechnens. Mathematische Leitfaden. Stuttgart: B.G. Teubner, 2002 (cit. on pp. 130, 141, 193).
N.J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia, PA: SIAM,
2002 (cit. on p. 144).

K. Nipp and D. Stoffer. Lineare Algebra. 5th ed. Zlrich: vdf Hochschulverlag, 2002 (cit. on
pp. 112, 116, 122, 123, 125, 130, 132, 137-139, 141).

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37. Texts in Applied Math-
ematics. New York: Springer, 2000 (cit. on pp. 113, 116, 118, 122, 130, 132, 184, 191, 193).
A. Sankar, D.A. Spielman, and S.-H. Teng. “Smoothed analysis of the condition numbers and
growth factors of matrices”. In: SIAM J. Matrix Anal. Appl. 28.2 (2006), pp. 446—476 (cit. on
p. 147).

O. Schenk and K. Gartner. “Solving Unsymmetric Sparse Systems of Linear Equations with
PARDISO". In: J. Future Generation Computer Systems 20.3 (2004), pp. 475-487 (cit. on
p. 176).

D.A. Spielman and Shang-Hua Teng. “Spectral partitioning works: planar graphs and finite el-
ement meshes”. In: Foundations of Computer Science, 1996. Proceedings., 37th Annual Sym-
posium on. Oct. 1996, pp. 96—105. DOI: 10.1109/SFCS.1996.548468 (cit. on p. 146).
L.N. Trefethen and D. Bau. Numerical Linear Algebra. Philadelphia, PA: SIAM, 1997 (cit. on
pp. 144, 146).

197

https://doi.org/10.1137/1.9780898719987
https://doi.org/10.1109/SFCS.1996.548468

Chapter 3

Direct Methods for Linear Least Squares
Problems

In this chapter we study numerical methods for overdetermined (OD) linear systems of equations, that
is, linear systems with a “tall” rectangular system matrix

x € R": “Ax=Db", (3.0.0.1)

beR", AcR™, m>n.

We point out that, in contrast to Chapter 1, Chapter 2, we will restrict ourselves to real linear systems in
this chapter.

Note that the quotation marks in (3.0.0.1) indicate that this is not a well-defined problem in the sense of
§ 1.5.5.1; Ax = b does no define a mapping (A, b) — x, because

e such a vector x € IR” may not exist,
e and, even if it exists, it may not be unique.

Therefore, first we have to establish a crisp concept of that we mean by a “solution” of (3.0.0.1).

Contents
3.0.1 Overdetermined Linear Systems of Equations: Examples 199
3.1 Least Squares SolutionConcepts 202
3.1.1 Least Squares Solutions: Definition. 203
3.1.2 Normal Equations, 205
3.1.3 Moore-Penrose Pseudoinverse 211
3.1.4 Sensitivity of Least Squares Problems 213
3.2 Normal Equation Methods [DRO0S, Sect. 4.2], [Han02,Ch.11] 214
3.3 Orthogonal Transformation Methods [DR0S, Sect. 4.4.2] 218
3.3.1 TransformationIdea 218
3.3.2 Orthogonal/Unitary Matrices 220
3.3.3 QR-Decomposition [Han02, Sect. 13], [Gut09, Sect.7.3] 220
3.34 QR-Based Solver for Linear Least Squares Problems 235
3.3.5 Modification Techniques for QR-Decomposition 240

198

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

3.4 Singular Value Decomposition(SVD). 247
341 SVD:Definitionand Theory 247
342 SVDInEIGEN 251
3.4.3 Solving General Least-Squares Problemsby SVD 254
3.4.4 SVD-Based Optimization and Approximation 257
35 Total LeastSquares e 277
3.6 Constrained LeastSquares 278
3.6.1 Solution via Lagrangian Multipliers 279
3.6.2 SolutionviaSVD 281

3.0.1 Overdetermined Linear Systems of Equations: Examples

You may think that overdetermined linear systems of equations are exotic, but this is not true. Rather they
are very common in mathematical models.

EXAMPLE 3.0.1.1 (Linear parameter estimation in 1D) From first principles it is known that two physical
quantities x € IR andy € IR (e.g., pressure and density of an ideal gas) are related by a linear relationship

y = ax + B for some unknown coefficients/parameters «, 5 € R . (3.0.1.2)

We carry out m € IN measurements that yield pairs (x;, y;) € R%2,i=1,...,m m > 2. If the measure-
ments were perfect, we could expect that there exist o, p € R suchthaty; = ax; + B foralli =1,...,m.
This is an overdetermined linear system of equations of the form (3.0.0.1):

_Xl 17 _yl_
xp 1 Y2
{g}— : & Ax=b, AeR™,beR", xecR?>. (3.0.1.3)
| X, 1] | Y |

In practice inevitable (“random”) measurement errors will affect the y;s, push the vector b out of the
range/image R(A) of A (— Def. 2.2.1.2), and thwart the solvability of (3.0.1.3). Assuming independent

and randomly distributed measurement errors in the y;, for m > 2 the probability that a solution [g] exists
is actually zero, see Rem. 3.1.0.2. _I

EXAMPLE 3.0.1.4 (Linear regression: Parameter estimation for a linear model) Ex. 3.0.1.1 can be
generalized to higher dimensions:

Given: measured data points (x;,v;), x; € R, y; e Ryi=1,...,m,m>n+1
(vi, x; affected by measurement errors).

Known: without measurement errors data would satisfy an affine linear relationship v = a'x + B, for
somea € R", c € R.

Plugging in the measured quantities gives y; = aTx,- +pB,i=1,...,m, alinear system of equations of
the form

.
Xy 1 A Y1

: : H: : < Ax=b, AcR" beR" xeR"!, (3.0.1.5)
— p

X, 1 Ym

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 199

https://en.wikipedia.org/wiki/Linear_regression

Fig. 71

Fig. 72

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

which is an overdetermined LSE, incase m > n + 1. J

EXAMPLE 3.0.1.6 (Measuring the angles of a triangle [NS02, Sect. 5.1]) We measure the angles
of a planar triangle and obtain «, 3,y (in radians). In the case of perfect measurements the true angles
«, B, v would satisfy

(3.0.1.7)

_O O =
_ O =) O
__ 0 O
=
|
A =2 R

Measurement errors will inevitably make the measured angles fail to add up to 7t so that (3.0.1.7) will not
have a solution [«, 5, 'y]T.

Then, why should we add this last equation? This is suggested by a tenet of data science that reads “You
cannot afford not to use any piece of information available”. It turns out that solving (3.0.1.7) “in a suitable
way” as discussed below in Section 3.1.1 enhances cancellation of measurement errors and gives better
estimates for the angles. We will not discuss this here and refer to statistics for an explanation.

g X 1020 angle m‘easurements, ‘ /60 vz‘ariance
Here we just report the results of a numerical experi-
T ment:
6 L We consider the triangle with angles /2, 7/3, and
o | 1 7/6. Synthetic “measurement errors” are introduced
A *:l by adding a normally distributed random perturbation
4t ~ 1 with mean 0 and standard deviation 7/60 to the exact

values of the angles, yielding «, 3, and 7.

For 20 “measurements” we compute the variance of
the raw angles and that of the estimates obtained
:g:g Zg | by solving (3.0.1.7) in least squares sense (— Sec-

angle /6 tion 3.1.1). These variances are plotted for many dif-

O 1 1 1 13 ”
0) p 5 s ferent “runs”.

variance(measurements) x10 8

variance(least squares solution)
w

We observe that in most runs the variance of the estimates from (3.0.1.7) are smaller than those of the
raw data. -

EXAMPLE 3.0.1.8 (Angles in a triangulation)

> In Ex. 2.7.2.5 we learned about the concept and data

structures for planar triangulations — Def. 2.7.2.6.
Such triangulations have been and continue to be
of fundament importance for geodesy. In particular
before distances could be measured accurately by
means of lasers, triangulations were indispensable,
because angles could already be determined with
high precision. C.F. Gauss pioneered both the use
of triangulations in geodesy and the use of the least
squares method to deal with measurement errors —
Wikipedia.

Die Grundlagen seines Verfahrens hatte Gauss schon 1795 im Alter von 18 Jahren entwickelt.
Basis war eine Idee von Pierre-Simon Laplace, die Betrdge von Fehlern aufzusummieren,
so dass sich die Fehler zu Null addieren. Gauss nahm stattdessen die Fehlerquadrate und
konnte die kunstliche Zusatzanforderung an die Fehler weglassen.

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 200

http://de.wikipedia.org/wiki/Triangulation_%28Geod%C3%A4sie%29

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Gauss benutzte dann das Verfahren intensiv bei seiner Vermessung des Konigreichs Han-
nover durch Triangulation. 1821 und 1823 erschien die zweiteilige Arbeit sowie 1826 eine
Ergénzung zur Theoria combinationis observationum erroribus minimis obnoxiae (Theorie der
den kleinsten Fehlern unterworfenen Kombination der Beobachtungen), in denen Gauss eine
Begrindung liefern konnte, weshalb sein Verfahren im Vergleich zu den anderen so erfolgre-
ich war: Die Methode der kleinsten Quadrate ist in einer breiten Hinsicht optimal, also besser
als andere Methoden.

We now extend Ex. 3.0.1.6 to planar triangulations, for which measured values for all internal angles are
available. We obtain an overdetermined system of equations by combining the following linear relations:

1. each angle is supposed to be equal to its measured value,
2. the sum of interior angles is 7t for every triangle,
3. the sum of the angles at an interior node is 27t.

If the planar triangulation has Ny interior vertices and M cells, then we end up with 4M + Ny equations
for the 3M unknown angles. 2

EXAMPLE 3.0.1.9 ((Relative) point locations from distances [GGK14, Sect. 6.1]) Consider n points
located on the real axis at unknown locations x; € R, i = 1,...,n. Atleast we know that x; < x;j1,
i=1,...,n—1.

We measure the m := (5) = Jn(n — 1) pairwise distances d;; := |x; — x;|, i,j € {1,...,n}, i # j.
They are connected to the point positions by the overdetermined linear system of equations
-1 1 0 0] [dip]
-1 0 1 O dis
X X]' = d,] P : . . :
1<j<i<n. : L 1 :
:) . X :
oo l-1 0 1|77 = | dy, (3.0.1.10)
! 0 -1 1 ol | dos
. . Xn .
Ax=Db
0 ... -1 1) (dn—1

Note that we can never expect a unique solution for x € IR”, because adding a multiple of [1,1,..., 1]T

to any solution will again yield a solution, because A has a non-trivial kernel: N'(A) = [1,1,.. .,1]T.
Non-uniqueness can be cured by setting x1 := 0, thus removing one component of x.

If the measurements were perfect, we could then find x5, ..., x, from d;_1;,i = 2,...,n by solving a
standard (square) linear system of equations. However, as in Ex. 3.0.1.6, using much more information
through the overdetermined system (3.0.1.10) helps curb measurement errors. 2

Review question(s) 3.0.1.11 (Overdetermined Linear Systems of Equations: Examples)

(@3.0.1.11.A) The mass of three different items is measures in all possible combinations. Find the overde-
termined linear system of equations that has to be “solved” to obtain estimates for the three masses.

(@3.0.1.11.B) A time-harmonic current with frequency f > 0 can be written as
I(t) = acos(2rtft) + bsin(2mft), te€R, abeR.

It is measured at times f; = mif k=0,...,m—1, m> 2, and we obtain values I; ~ I(t;). Which
overdetermined linear system of equations can be used to estimate the coefficients a, b?

3. Direct Methods for Linear Least Squares Problems, 3. Direct Methods for Linear Least Squares Problems 201

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(@3.0.1.11.C) [A fol e* de-type problem] We know the solution x € IR" and the right-hand-side vector
b € R” of the n x n (Toeplitz) tridiagonal linear system of equations

x p 0 0
B :
0 B
x=Db.
- B0
: pa B
0 0 B «f

Which overdetermined linear system of equations of maximal size has the vector [«, ﬁ]T € R? as its
solution?

A
3.1 Least Squares Solution Concepts
Throughout we consider the (possibly overdetermined) linear system of equations
xeR" “Ax=b", beR", AcR", m>n. (3.0.0.1)

Recall from linear algebra that Ax = b has a solution, if and only if the right hand side vector b lies in the
image (range space, — Def. 2.2.1.2) of the matrix A:

dxeR" Ax=b & beR(A). (3.1.0.1)
& Notation for important subspaces associated with a matrix A € K"" (— Def. 2.2.1.2)

image/range: R(A) := {Ax, x ¢ K"} Cc K",
kernel/nullspace: N(A) := {x € K": Ax =0} .

Remark 3.1.0.2 (Consistent right hand side vectors are highly improbable) If R(A) # R™, then
“almost all” perturbations of b (e.g., due to measurement errors) will destroy b € R(A), because R(A)
is a “set of measure zero” in R™. J

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 202

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

3.1.1 Least Squares Solutions: Definition

Definition 3.1.1.1. Least squares solution

For given A € R™", b € IR the vector x € IR" is a least squares solution of the linear system of
equations Ax = b, if

X € argmin||Ay — bH% ,
yeR”

)
: 2
||Ax—b||§ = ;2111{}1||Ay_b‘|§ = min Z(Z ,]y] 1) .

Jl/ //HeR

®» A least squares solution is any vector x that minimizes the Euclidean norm of the residual r =
b — Ax, see Def. 2.4.0.1.

We write 1sq(A, b) for the set of least squares solutions of the linear system of equations Ax = b,
A € R™ b € R™:

Isq(A,b) := {x € R": x is a least squares solution of Ax = b} C R". (8.1.1.2)
q

§3.1.1.3 (Least squares solutions and “ true” solutions of LSE) The concept of least squares solutions
is a genuine generalization of what is regarded as a solution of linear system of equations in linear algebra:
Clearly, for a square linear system of equations with regular system matrix the least squares solution
agrees with the “true” solution:

A € R" regular = Isq(A,b) = {A b} VbecR". (3.1.1.4)

Also for A € R™", m > n, the set Isq(A, b) contains only “true” solutions of Ax = b, if b € R(A),
because in this case the smallest residual is 0. 2
Next, we examine least squares solutions from a geometric perspective.

EXAMPLE 3.1.1.5 (linear regression — [DRO08, Ex. 4.1]) We consider the problem of parameter esti-
mation for a linear model from Ex. 3.0.1.4:

Given: measured data points (x;, i), x; € RM,y; e Ryi=1,...,mym>n+1
(vi, x; affected by measurement errors).

Known: without measurement errors data would satisfy affine linear relationship
_ T
y=a x+p, (3.1.1.6)

from some parameters a € R", B € R.

Solving the overdetermined linear system of equations in least squares sense we obtain a /east squares
estimate for the parameters a and f:

(a,f) = argmin Z ly; —a'x; — BI? (3.1.1.7)
acR” ﬁG]Rz

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 203

http://en.wikipedia.org/wiki/Linear_regression

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Y
®
In statistics, solving (3.1.1.7) is known as linear re-
gression
Linear regression for n = 1, m = 8: “fitting” a regres- T
sion line to data points >
X
Fig. 73

|

§3.1.1.8 (The geometry of least squares problems) A geometric “proof” for the existence of least
squares solutions (R = IR)

<1 For a least squares solution x € IR" the vector
b Ax € R™ is the unique orthogonal projection
of b onto

{Ax,x € R"}
R(A) =Span{(A).1,...,(A).x},
A
X because the orthogonal projection provides the
nearest (w.r.t. the Euclidean distance) point to

b in the subspace (hyperplane) R(A).

Fig. 74

From this geometric consideration we conclude that 1sq(A, b) is the space of solutions of Ax = b*,
where b* is the orthogonal projection of b onto R(A). Since the set of solutions of a linear system of
equations invariably is an affine space, this argument teaches that Isq(A, b) is an affine subspace of R"!

|

Geometric intuition yields the following insight:
Theorem 3.1.1.9. Existence of least squares solutions

Forany A € R™", b € R™ a least squares solution of Ax = b (— Def. 3.1.1.1) exists.

Proof. The function F : R" — R, F(x) := ||b — Ax||; is continuous, bounded from below by 0 and
F(x) — oo for ||x|| — co. Hence, there must be an x* € IR" for which it attains its minimum. -
§3.1.1.10 (Least squares solution as maximum-likelihood estimator — [DR08, Sect. 4.5]) Extending
the considerations of Ex. 3.0.1.4, a generic linear parameter estimation problem seeks to determine the
unknown parameter vector x € R” from the linear relationship Ax =y, where A € R is known and
y € R is accessible through measurements.

Unfortunately, y is affected by measurement errors, Thus we model it as a random vector y = y(w),
w €), Q) the set of outcomes from a probability space.

The measurement errors in different components of y are supposed be unbiased (expectation = 0), inde-
pendent, and identically normally distributed with variance o2, ¢ > 0, which means

y(w)=Ax+e(w), weQ, (8.1.1.11)

where the probability distribution of e satisfies

m 1 2
IP((e)éelg,6:1,...,m)zngm/lexp<—%%) dz, I;CR. (3.1.1.12)
,

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 204

http://de.wikipedia.org/wiki/Maximum-Likelihood-Methode
https://en.wikipedia.org/wiki/Probability_space

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

From (3.1.1.11) we infer that the probability density of y is

m — (A 2 1
L(xy) = [Jexp (_%W)) = exp(—gzny—AxH%) : (3.1.1.13)
(=1

The last identity follows from exp(x) exp(y) = exp(x + y). This probability density function y — L(x;y)
is called the likelihood of y, and the notation emphasizes its dependence on the parameters x.

Assume that we are given a measurement (realization/sample) b of y. The maximum likelihood principle
then suggests that we choose the parameters so that the probability density of y becomes maximal at b:

1
x" € R" suchthat x* = argmaxL(x;b) = argmaxexp(—5—||b — Ax|3) .
xER" xER" 20

Obviously, due to the monotonicity of ¢ — exp(¢), x* is a least squares solution of Ax = b according to
Def. 3.1.1.1:

x* € R" suchthat x* = argmin|b — Ax||% .
xeR"”

Review question(s) 3.1.1.14 (Least squares solution: Definition)

(Q3.1.1.14.A) Describe A € R*? and b € R? so that Isq(a, b) is a non-trivial subspace of R?.
(@3.1.1.14.B) Whatis Isq(A, 0) for A € R""?

(@3.1.1.14.C) Given a matrix B € R""", a vector ¢ € R™, and A > 0, define

{x*} := argmin||Bx — b3 + A|x|5 c R".
xelR”

State an overdetermined linear system of equations Ax = b, whose least squares solution, of which x*
is a least-squares solution.

A

3.1.2 Normal Equations

Appealing to the geometric intuition gleaned from Fig. 74 we infer the orthogonality of b — Ax, x a least
squares solution of the overdetermined linear systems of equations Ax = b, to all columns of A:
b—Ax L R(A) & b—AxL(A);, j=1,...n < AT(b—Ax)=0.
Surprisingly, we have found a square linear system of equations satisfied by the least squares solution.
The next theorem gives the formal statement is this discovery. It also completely characterizes 1sq(A, b)
and reveals a way to compute this set.

Theorem 3.1.2.1. Obtaining least squares solutions by solving normal equations

The vector x € R" is a least squares solution (— Def. 3.1.1.1) of the linear system of equations
Ax =b, A € R™", b € R™, if and only if it solves the normal equations (NEQ)

ATAx=ATb |. (3.1.2.2)

Note that the normal equations (3.1.2.2) are an n x n square linear system of equations with a symmetric

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 205

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

positive semi-definite coefficient matrix:

S B R I RSE

ATA

]:[AT]b

Proof. (of Thm. 3.1.2.1)

©: We first show that a least squares solution satisfies the normal equations. Let x € R" be a least
squares solutions according to Def. 3.1.1.1. Pick an arbitrary d € IR \ {0} and define the function

9pa:R—=R , ¢4(1):=|A(x+7d) —b|3. (3.1.2.3)
We find the equivalent expression
¢a(t) =2d"ATAd +21d"AT (Ax—b) + |[Ax — b3,
which shows that T — ¢4(7) is a smooth (C*) function.

Moreover, since every x € lIsq(A, b) is a minimizer of y — || Ay — b||3, we conclude that T — ¢4(7)
has a global minimum in T = 0. Necessarily,

d
94 _24TAT(Ax—b)=0.
dt |T=0
Since this holds for any vector d # 0, we conclude (set d equal to all the Euclidean unit vectors in IR")
AT(Ax—-b) =0,

which is equivalent to the normal equations (3.1.2.2).

0: Let x be a solution of the normal equations. Then we find by tedious but straightforward computations
2 2
Ay —b[; — [[Ax = bl|;
=y'ATAy -2y "ATb+b'b—x'ATAx+2x"ATb—b'Db
CL2ATATAy — 2y TATAx + x AT Ax
2
=(y—x)'ATA(y —x) = |[A(x—y)[; > 0.
— |[|[Ay —b[| = |[Ax—Db]| .

Since this holds for any y € IR”, x must be a global minimizer of y — ||Ay — b/||! -

EXAMPLE 3.1.2.4 (Normal equations for some examples from Section 3.0.1) Given A and b it takes
only elementary linear algebra operations to form the normal equations

ATAx=A"b. (3.1.2.2)

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 206

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e For Ex. 3.0.1.1 (1D linear regression), A € R"? given in

[x1 1] (1]
Xy 1 Y2
[g} — |- & Ax=b, AeR™,beR", xeR?, (3.0.1.3)
[X 1 [Ym]

we obtain the normal equations linear system

ey 1
X2 1

X1 X2 e . Xy «] x5 17x][a] _ [xTy

1 1 1 Bl |1'x m ||B] |[1Ty]|’
X 1]

with1=1,...,1]".

e In the case of Ex. 3.0.1.4 (multi-dimensional linear regression) and the overdetermined m x (n + 1)
linear system

|

X1 n
: : m = | & Ax=b, AcR™" becR", xc R, (3.0.15)
Xy 1 Ym

the normal equations read

X] X2 oee e X 1 a] _ [xxT Xx1][a] _[Xy
C | [R i [R)

where X = [xq, ..., Xp| € R™™.

Remark 3.1.2.5 (Normal equations from gradient) We consider the function
J:R" <R , J(y):=]|Ay—b|3. (3.1.2.6)
As above, using elementary identities for the Euclidean inner product on IR™, | can be recast as
J(y) = yTATAy —2b"Ay+b'b

:ZZA Az]yzy] ZZbi(A)ijyj+sz‘2/ y =y y]
i=1j= i=1

i=1j=1

TeRrR".

Obviously, | is a multivariate polynomial in y1,...,1,. As such, | is an infinitely differentiable function,
J € C*(R",R), see [Str09, Bsp. 7.1.5]. The gradient of | vanishes where | attains extremal values
[Str09, Satz 7.5.3]. Thus, x € IR" is a minimizer of | only if

grad J(x) =2ATAx —2A"b=10. (3.1.2.7)

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 207

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

This formula for the gradient of | can easily be confirmed by computing the partial derivatives a%f from the

above explicit formula. Observe that (3.1.2.7) is equivalent to the normal equations (3.1.2.2). 2

§3.1.2.8 (The linear least squares problem (— § 1.5.5.1)) Thm. 3.1.2.1 together with Thm. 3.1.1.9
already confirms that the normal equations will always have a solution and that 1sq(A, b) is a subspace
of R" parallel to /(AT A). The next theorem gives even more detailed information.

Theorem 3.1.2.9. Kernel and range of AT A

For A € R™" m > n, holds

N(ATA) = N(A), (3.1.2.10)
R(ATA) =R(A"). (3.1.2.11)

For the proof we need an basic result from linear algebra:
Lemma 3.1.2.12. Kernel and range of (Hermitian) transposed matrices

For any matrix A € K"™" holds

N(A) =RAHL , N(A)T =R(AH).

LS Notation: Orthogonal complement of a subspace V C KX:

vi={xeK:xly=0vycV}.

Proof. (of Thm. 3.1.2.9)
O: We first show (3.1.2.10)

ze N(ATA) o ATAz=0=2z"ATAz = ||Az|5 =0 Az =0,
Az=0=ATAz=0szc N(ATA).

®: The relationship (3.1.2.11) follows from (3.1.2.10) and Lemma 3.1.2.12:

R(AT) Lemma:3.1.2.12 J\/’(A)L (3.1%10) N(ATA)L Lemma:3.1.2.12 'R(ATA) '

Corollary 3.1.2.13. Uniqueness of least squares solutions

Ifm > nand N'(A) = {0}, then the linear system of equations Ax = b, A € R™", b € R™, has
a unique least squares solution (— 3.1.1.1)

x=(ATA)"'ATD, (3.1.2.14)

that can be obtained by solving the normal equations (3.1.2.2).

Note that A " A is symmetric positive definite (— Def. 1.1.2.6), if V'(A) = {0}.

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 208

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Remark 3.1.2.15 (Full-rank condition (— Def. 2.2.1.3)) For a matrix A € IR"""" with m > n is equiva-
lent

N(A) ={0} < rank(A)=n. (3.1.2.16)

Hence the assumption N (A) = {0} of Cor. 3.1.2.13 is also called a full-rank condition (FRC), because
the rank of A is maximal. J

EXAMPLE 3.1.2.17 (Meaning of full-rank condition for linear models) We revisit the parameter esti-
mation problem for a linear model.

e For Ex. 3.0.1.1, A € R"? given in (3.0.1.3) it is easy to see

_x1 1
X2 1

rank C =2 & Hi,je{l,...,m}:xi#xj,

[X 1]

that is, the manifest condition, that the all points (x;, y;) have the same x-coordinate.
y

1D linear regression fails, in case all data points lie
on a vertical line in the the x — y-plane. >

]

It goes without saying that no meaningful regression o
line can be found in this case.

Fig. 75

e In the case of Ex. 3.0.1.4 and the overdetermined m x (n + 1) linear system (3.0.1.5), we find

"1T 1 There is a subset of n + 1 points
rank : : =n+1 & x,...x,,, suchthat {x;,...x; .}
x; 1 spans a non-degenerate n-simplex.

_

Remark 3.1.2.18 (Rank defect in linear least squares problems) In case the system matrix A € R""",
m > n, of an overdetermined linear system arising from a mathematical fails to have full rank, it hints at
inadequate modelling:

In this case parameters are redundant, because different sets of parameters yield the same output quan-
tities: the parameters are not “observable”. 2

Remark 3.1.2.19 (Hesse matrix of least squares functional) For the least squares functional

J:R" =R , J(y):=|Ay—b|3. (3.1.2.6)

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 209

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

and its explicit form as polynomial in the vector components y; we find the Hessian (— Def. 8.5.1.18,
[Str09, Satz 7.5.3]) of J:

n

(y)] =2ATA. (3.1.2.20)
1,k=1

0?]
Y9y

H](y)=[

Thm. 3.1.2.9 implies that A" A is positive definite (— Def. 1.1.2.6) if and only if N'(A) = {0}.

Therefore, by [Str09, Satz 7.5.3], under the full-rank condition | has a positive definite Hessian everywhere,
and a minimum at every stationary point of its gradient, that is, at every solution of the normal equations.
_I

Remark 3.1.2.21 (Convex least squares functional) Another result from analysis tells us that real-valued
C!-functions on R” whose Hessian has positive eigenvalues uniformly bounded away from zero are strictly
convex. Hence, if A has full rank, the least squares functional | from (3.1.2.6) is a strictly convex function.

Visualization of a least squares functional | : R? — | 5 , : _ w ~ |
R forn =2 > Nl A
Under the full-rank condition the graph of [is a ~ .| - ——_
paraboloid with J(y) — oo for ||y|| — oo o

Fig. 76 X, 1
|

Now we are in a position to state precisely what we mean by solving an overdetermined (1 > n!) linear
system of equations Ax = b, A € R"" b € R™, provided that A has full (maximal) rank, cf. (3.1.2.16).

(Full rank linear) least squares problem: [DRO08, Sect. 4.2]
given: A € R™, m,n €N, m>n, rank(A) =n, beR™,

find:

unique x € R" such that |Ax — b||, = min{||Ay — b||,: y € R"} (3.1.2.22)
x = argmin||Ay — b||,
yeR”
% A sloppy notation for the minimization problem (3.1.2.22) is |Ax — b||, = min J

Review question(s) 3.1.2.23 (Normal equations)

(Q@3.1.2.23.A) Compute the system matrix and the right-hand side vector for the normal equations for 1D

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 210

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

linear regression, which led to the overdetermined linear system of equations

1] i
x 1)
-]
ﬁ Vi
| xm 1) [Y

(@3.1.2.23.B) Let {vy,..., vt} C R", k < n, be a basis of a subspace V C R". Give a formula for the
point x € V with smallest Euclidean distance from a given point p € R"”. Why is the basis property of
{v1,...,v¢} C R" important?

(@3.1.2.23.C) Characterize the set of least squares solutions 1sq(A, b), if A € R™", m > n, has or-
thonormal columns and b € IR is an arbitrary vector.

(@3.1.2.23.D) Let A € R™", m > n, have full rank: rank(A) = n. Show that the mapping
P:R" - R" , P(y):=A(A'TA)ATy, yecR",
is an orthogonal projection onto R(A). This entails proving two properties
() PoP = P (projection property),
(I P(y) —y L R(A) forally € R™.

(@3.1.2.23.E) [Ridge regression| For a given matrix A € R™" m > n, and vector b € IR™, derive a
linear system of equations satisfied by any

x* € argmin| Ax — b|| + A||x|)3,
xeR”

where A > 0 is a fixed constant.
Show that the linear system you have obtained will always possess a unique solution for any A € IR""".

A

3.1.3 Moore-Penrose Pseudoinverse

As we have seen in Ex. 3.0.1.9, there can be many least squares solutions of Ax = b, in case N'(A) #
{0}. We can impose another condition to single out a unique element of Isq(A, b):

Definition 3.1.3.1. Generalized solution of a linear system of equations

The generalized solution x € R” of a linear system of equations Ax = b, A € R™" b € R", is
defined as

x" := argmin{||x||,: x € 1sq(A,b)} . (3.1.3.2)

» The generalized solution is the least squares solution with minimal norm.

§3.1.3.3 (Reduced normal equations) Elementary geometry teaches that the minimal norm element of
an affine subspace L (a plane) in Euclidean space is the orthogonal projection of 0 onto L.

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 211

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Isq(A,b) | N(A)
<] visualization:

The minimal norm element x' of the affine space
Isq(A,b) C R" belongs to the subspace of R" that
is orthogonal to 1sq(A, b).

Fig. 77 !
Since the space of least squares solutions of Ax = b is an affine subspace parallel to N'(A)

Isq(A,b) = x" + N (A), x¥ solves normal equations, (3.1.3.4)

the generalized solution x* of Ax = b is contained in A/ (A)~. Therefore, given a basis {v1,..., v} C
R" of N'(A)L, k := dim N (A)* = n — dim N (A), we can find y € R such that

x* =Vy with V:i=[vq,...,v] € R™k

Plugging this representation into the normal equations and multiplying with \'A yields the reduced normal
equations

VIATAVy =VTATD (3.1.3.5)

0

A\l AT b

The very construction of V ensures N (AV) = {0} so that, by Thm. 3.1.2.9 the k x k linear system of
equations (3.1.3.5) has a unique solution. The next theorem summarizes our insights:

Theorem 3.1.3.6. Formula for generalized solution

Given A € R™", b € R™, the generalized solution x* of the linear system of equations Ax = b is
given by

x' =V(VTATAV) L(VTATD),

where V is any matrix whose columns form a basis of N'(A)+.

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 212

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Terminology: The matrix
AT =V(VTATAV) IVTAT ¢ R"™

is called the Moore-Penrose pseudoinverse of A. If N'A = {0}, then the formula simplifies to
AT = (ATA)TIAT,

% notation: AT € R™" £ pseudoinverse of A € R""

Note that the Moore-Penrose pseudoinverse does not depend on the choice of V. J

Armed with the concept of generalized solution and the knowledge about its existence and uniqueness we
can state the most general linear least squares problem:

(General linear) least squares problem:

given: A e€eR"™, m,neN, beR",
find: x" € R" such that
(i) HAx+ - sz — min{||Ay — b|,: y € R"}, (3.1.3.7)

(i) HerHz is minimal under the condition (i).

Review question(s) 3.1.3.8 (Moore-Penrose pseudoinverse)

(@3.1.3.8.A) Let A € R™" with non-trivial nullspace N (A) # {0}, k := dim N (A). The columns of
the matrix V € R"—kk provide a basis for the orthogonal complement /\/’(A)i. Show that the matrix
VITATAV € R"kn—kis regular.

(Q3.1.3.8.B) Given A € R"™" and a basis {vy,..., v}, k < n, of the orthogonal complement A/ (A)+,
show that the Moore-Penrose pseudoinverse

AT :=V(VTATAV) 'VTAT, Vi=|vy,..., v € R™

does not depend on the choice of the basis vectors v,.

3.1.4 Sensitivity of Least Squares Problems

Consider the full-rank linear least squares problem introduced in (3.1.2.22):
> data (A,b) € R™" xR™ , resultx = argminye]R”HAy —b||, € R"

On data space and result space we use the Euclidean norm (2-norm ||-||,) and the associated matrix
norm, see § 1.5.5.3.

Recall Section 2.2.2, where we discussed the sensitivity of solutions of square linear systems, that is,
the impact of perturbations in the problem data on the result. Now we study how (small) changes in A
and b affect the unique (— Cor. 3.1.2.13) least solution x of Ax = b in the case of A with full rank (&

N(A) = {0})

Note: If the matrix A € R™", m > n, has full rank, then there is a ¢ > 0 such that A + AA still has
full rank for all AA € R™" with ||AA||, < c. Hence, “sufficiently small” perturbations will not destroy the

3. Direct Methods for Linear Least Squares Problems, 3.1. Least Squares Solution Concepts 213

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

full-rank property of A. This is a generalization of the Perturbation Lemma 2.2.2.5.

For square linear systems the condition number of the system matrix (— Def. 2.2.2.7) provided the key
gauge of sensitivity. To express the sensitivity of linear least squares problems we also generalize this
concept:

Definition 3.1.4.1. Generalized condition number of a matrix

Given A € K™", m > n, rank(A) = n, we define its generalized (Euclidean) condition number
as

max(AHA)

COHdz(A) = m .

% notation: Amin(A) = smallest (in modulus) eigenvalue of matrix A
Amax(A) = largest (in modulus) eigenvalue of matrix A

For a square regular matrix this agrees with its condition number according to Def. 2.2.2.7, which follows
from Cor. 1.5.5.16.

Theorem 3.1.4.2. Sensitivity of full-rank linear least squares problem

Form > n, A € R™", rank(A) = n, letx € R" be the solution of the least squares problem
| Ax — b|| — min andX the solution of the perturbed least squares problem || (A + AA)X — b|| —
min. Then

_x . AA
Ix x||2§(2Cond2(A)+Cond%(A) Il)n B
1]l [A[l2]1x[l2/ 1Al

holds, wherer = Ax — b is the residual.

This means: if ||r||, <1 ~ » condition of the least squares problem ~ cond,(A)
if |||, “large” » condition of the least squares problem a2 cond3(A)

For instance, in a linear parameter estimation problem (— Ex. 3.0.1.4) a small residual will be the conse-
quence of small measurement errors.

3.2 Normal Equation Methods [DR08, Sect. 4.2], [Han02, Ch. 11]

Given A € R™", m > n, rank(A) = n, b € R™, we introduce a first practical numerical method
to determine the unique least squares solution (— Def. 3.1.1.1) of the overdetermined linear system of
equations Ax = b.

In fact, Cor. 3.1.2.13 suggests a simple algorithm for solving linear least squares problems of the form
(3.1.2.22) satisfying the full (maximal) rank condition rank(A) = n: it boils down to solving the normal
equations (3.1.2.2):

3. Direct Methods for Linear Least Squares Problems, 3.2. Normal Equation Methods [DR08, Sect. 4.2], [Han0214
C~h 141

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Algorithm: Normal equation method to solve full-rank least squares problem Ax = b

©® Compute regular matrix C := AT A € R™".
® Compute right hand side vector ¢ := A'b.
® Solve s.p.d. (— Def. 1.1.2.6) linear system of equations: Cx =c¢ — §2.8.0.13

Definition . Symmetric positive definite (s.p.d.) matrices — [, Def. 3.31],

[, Def. 1.22]

M € K"" n € IN, is symmetric (Hermitian) positive definite (s.p.d.), if
M=MT and Vxe K" x'Mx>0 & x#0.

If xMMx > Oforallx € K* > M positive semi-definite.

The s.p.d. property of C is an immediate consequence of the equivalence rank(A)=n <

N(A) = {0}:

x'Cx=x"ATAx = (Ax)"(Ax) = |[AX|5>0 < x#0.

The above algorithm can be realized in EIGEN in a single line of code:

C++ code 3.2.0.1: Solving a linear least squares problem via normal equations

//! Solving the overdetermined linear system of equations
//! Ax=Db by solving normal equations (3.1.2.2)
//! The least squares solution is returned by value
VectorXd normegsolve (const MatrixXd &A,const VectorXd &b) {
if (b.size() != A.rows()) throw runtime_error ("Dimension mismatch") ;
// Use Cholesky factorization for s.p.d. system matrix, § 2.8.0.13
VectorXd x = (A.transpose()xA).llt ().solve(A.transpose()xb);
return x;

© © N o o B~ W N

}

o

By Thm. 2.8.0.11, for the s.p.d. matrix AT A Gaussian elimination remains stable even without pivot-
ing. This is taken into account by requesting the Cholesky decomposition of A" A by calling the method
11t ().

§3.2.0.2 (Asymptotic complexity of normal equation method) The problem size parameters for the
linear least squares problem (3.1.2.22) are the matrix dimensions m,n € IN, where n small & fixed,
n < m, is common.

In Section 1.4.2 and Thm. 2.5.0.2 we discussed the asymptotic complexity of the operations involved in
step @-© of the normal equation method:

step ®: cost O(mn?)
step @: cost O(nm) B cost O(n?m +n®) form,n — oo .
step ©: cost O(n%)

Note that for small fixed n, n < m, m — oo the computational effort scales linearly with m. g

Remark 3.2.0.3 (Conditioning of normal equations [DRO08, pp. 128])

3. Direct Methods for Linear Least Squares Problems, 3.2. Normal Equation Methods [DR08, Sect. 4.2], [Han0215
~h 141

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The solution of least squares problems via the normal equation method is vulnerable
to instability; immediate from Def. 3.1.4.1:

cond,(AHA) = cond, (A)?.

Recall from Thm. 2.2.2.4: condz(AHA) governs amplification of (roundoff) errors in
AT A and A "b when solving normal equations (3.1.2.2).

> For fairly ill-conditioned A using the normal equations (3.1.2.2) to solve the linear least squares prob-
lem from Def. 3.1.1.1 numerically may run the risk of huge amplification of roundoff errors incurred
during the computation of the right hand side AHb: potential instability (— Def. 1.5.5.19) of normal
equation approach.

_

EXAMPLE 3.2.0.4 (Roundoff effects in normal equations — [DR08, Ex. 4.12]) In this example we
witness loss of information in the computation of AHA.

11)
A=1|5 0| = ATA:[H(S ! 2}
0 s 1 1496

Exp. 1.5.3.14: If § ~ \/EPS, then 1 + 62> = 1 in IM (set of machine numbers, see
Def. 1.5.2.4). Hence the computed A " A will fail to be regular, though rank(A) = 2,

condy(A) ~ \/EPS.

C++-code 3.2.0.5:

2 |int main() {
3 MatrixXd A(3,2);
4 // Inquire about machine precision — Ex. 1.5.3.12
5 double eps = std::numeric_limits<double>::epsilon () ;
6 // « initialization of matrix — § 1.2.1.3
7 A << 1, 1, sqgrt(eps), 0, 0, sqrt(eps);
8 // Output rank of ATA
9 std ::cout << "Rank of A: " << A.fullPivLu () .rank() << std::endl
10 << "Rank of AATA: "
11 << (A.transpose() *x A).fullPivLu ().rank() << std::endl;
12 return O;
13|}
Output:
1 Rank of A: 2

= Rank of A TxA: 1

Remark 3.2.0.6 (Loss of sparsity when forming normal equations) Another reason not to compute
AHA when both m, 11 large:

A sparse 7% AT A sparse

3. Direct Methods for Linear Least Squares Problems, 3.2. Normal Equation Methods [DR08, Sect. 4.2], [Han0216

Ch 111

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Example from Rem. 1.3.1.5: “Arrow matrices”

= Consequences for normal equation method, if both m, n large:

4 Potential memory overflow, when computing A " A
4 Squanders possibility to use efficient sparse direct elimination techniques, see Section 2.7.4

This situation is faced in Ex. 3.0.1.9, Ex. 3.0.1.8. a

§3.2.0.7 (Extended normal equations)

A way to avoid the computation of AT A: Extend normal equations (3.1.2.2) by introducing the introduce
residual r := Ax — b as new unknown:

ATAx=ATb & Bm = L; g} m - m . (3.2.0.8)

The benefit of using (3.2.0.8) instead of the standard normal equations (3.1.2.2) is that sparsity is pre-
served. However, the conditioning of the system matrix in (3.2.0.8) is not better than that of AT A.

A more general substitution q := a~'(Ax — b) with « > 0 may even improve the conditioning for suitably
chosen parameter a« > 0:

ATAx=ATb & B, m = {_A"‘TI ‘8‘} m — m. (3.2.0.9)

For m,n > 1, A sparse, both (3.2.0.8) and (3.2.0.9) lead to large sparse linear systems of equations,
amenable to sparse direct elimination techniques, see Section 2.7.4. a

EXAMPLE 3.2.0.10 (Conditioning of the extended normal equations)

3. Direct Methods for Linear Least Squares Problems, 3.2. Normal Equation Methods [DR08, Sect. 4.2], [Han0217
C~h 141

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

— cond (A
In this example we explore empirically how the Eu- | - EgﬂdzﬁALA) |
clidean condition number of the extended normal ol __ cond,(B)
equations (3.2.0.9) is influenced by the coice of « — cond,(B,)

Consider (3.2.0.8), (3.2.0.9) for

1+e 1 -
A=]1—-¢ 1 4
€ € 10
10°
Plot of different condition numbers 10° ¢
in dependence on € > wof
(Here « = €||Al,/V/2) w D

Review question(s) 3.2.0.11 (Normal equation methods)

(@3.2.0.11.A) We consider the overdetermined linear system of equations
Ax=b, AcR™ m>n becR". (3.2.0.12)

We augment it by another equation and get another overdetermined linear system of equations

[’ﬂi:[}j veR", BeR. (3.2.0.13)

How are the normal equations of (3.2.0.12) and (3.2.0.13) related?

(@3.2.0.13.B) Discuss how the coefficient matrices and right-hand side vectors of the normal equations
belonging to the two overdetermined linear system of equations

Ax=b, AcR™,m>n becR", (3.2.0.14)
(A+uv)Xx=b, uecR", veR", (3.2.0.15)

are related.
A

3.3 Orthogonal Transformation Methods [DR08, Sect. 4.4.2]

3.3.1 Transformation Ildea

We consider the full-rank linear least squares problem (3.1.2.22)

given AeR™ beR" find x=argmin|Ay— b, . (3.1.2.22)
yeR”

Setting: m >n and A has full (maximum) rank: rank(A) = n.

§3.3.1.1 (Generalizing the policy underlying Gaussian elimination) Recall the rationale behind Gaus-
sian elimination (— Section 2.3, Ex. 2.3.1.1)

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4218

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

w By row transformations convert LSE Ax = b to equivalent (in terms of set of solutions) LSE Ux = 5,
which is easier to solve because it has triangular form.

How to adapt this policy to linear least squares problem (3.1.2.22) ?
Two questions: @ What linear least squares problems are “easy to solve” ?
® How can we arrive at them by equivalent transformations of (3.1.2.22) ?

Here we call two overdetermined linear systems Ax = b and Ax = b equivalent in the sense of
(3.1.2.22), if both have the same set of least squares solutions: 1sq(A,b) = 1sq(A,b), see (3.1.1.2).

_
§3.3.1.2 (Triangular linear least squares problems)
The answer to question @ is the same as for LSE/Gaussian elimination:

Linear least squares problems (3.1.2.22) with upper triangular A are easy to solve!

. (*)
— — min =

x” T bn

x = least squares solution

b

L . 2

How can we draw the conclusion (x)? Obviously, the components n + 1,...,m of the vector inside the
norm are fixed and do not depend on x. All we can do is to make the first components 1, .. ., n vanish, by
choosing a suitable x, see [DR08, Thm. 4.13]. Obviously, x = R~!(b).,, accomplishes this.

Note: since A has full rank 7, the upper triangular part R € IR™" of A is regular! J

Answer to question @:

Idea: If we have a (transformation) matrix T € IR satisfying

1Tyl =llyl, VyeR", (3.3.1.3)
@ then argmin||Ay — b||,= argminH;‘;y—BH ,
yeR” yeR” 2

where A = TA andb = Tb.

The next section will characterize the class of eligible transformation matrices T.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4218

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

3.3.2 Orthogonal/Unitary Matrices

Definition 3.3.2.1. and orthogonal matrices — [, Sect. 2.8]

e Q € K" n e N,is unitary, if Q1 = QF.
e Q € R", n €N, is orthogonal, if Q~1 = QT.

Theorem 3.3.2.2. Preservation of Euclidean norm

A matrix is unitary/orthogonal, if and only if the associated linear mapping preserves the 2-norm:

Qe K™ unitary & [|Qx], = IIx]l, ¥xe K.

From Thm. 3.3.2.2 we immediately conclude that, if a matrix Q € K™ is unitary/orthogonal, then

® all rows/columns (regarded as vectors € IK") have Euclidean norm = 1,
B all rows/columns are pairwise orthogonal (w.r.t. Euclidean inner product),
$ [detQ| =1, |QJ|, =1, and all eigenvalues € {z € C: |z| = 1}.
$ |[QA|, = ||A], for any matrix A € K™

Review question(s) 3.3.2.3 (Orthogonal transformations)

(Q3.3.2.3.A) [Orthogonal matrices in IR?] Give a full characterization of all orthogonal matrices
Q € R??2.

Hint. The subspace of IR? spanned by all vectors orthogonal (w.r.t the Euclidean inner product) to a

given vector u = [;1] is spanned by [7/?].

(@3.3.2.3.B) [Polarization identity] ~ Prove the following variant of a polarization identity:
T 2 2
Ty =i(Ix+ylB - Ix-yl5) xyeR.

(Q3.3.2.3.C) Based on the result of Question (@3.3.2.3.A) find an orthogonal matrix Q € IR*?2, such that

0 aip . E
Q[l azz}—[o *], a1, a2 € R.

Here * stands for an arbitrary matrix entry.

3.3.3 QR-Decomposition [Han02, Sect. 13], [Gut09, Sect. 7.3]

This section will answer the question whether and how it is possible to find orthogonal transformations that
convert any given matrix A € R™", m > n, rank(A) = n, to upper triangular form, as required for the
application of the “equivalence transformation idea” to full-rank linear least squares problems.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 422%)

http://en.wikipedia.org/wiki/Unitary_matrix
https://en.wikipedia.org/wiki/Polarization_identity

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

3.3.3.1 QR-Decomposition: Theory

§3.3.3.1 (Gram-Schmidt orthogonalisation recalled — § 1.5.1.1)

Input: {al,...,a"} C K"
Output: {q',...,q"} (assuming no premature termination!)

Theorem 3.3.3.2. Span property of

1: ql:= T, :11H ;% 1st output vector G.S. vectors

2: for j= 2,2, ..,n do If{al,...,a"} C R™ is linearly indepen-
{ % Orthogonal projection dent, then Algorithm (GS) computes or-

3: q = a/; thonormal vectors q', ..., q" € R™ sat-

4: for (=1,2,...,j—1 do (GS) isfying

5: { g« g —{a,q")q") 1 / 1 ¢

6: if (q/=0) then STOP Spaniq’,--,q°} = Span{a’,...,a })'

. j 1.5.1.2
7: else { ¢/ « ﬁ; } (
8} ? forall ¢ € {1,...,n}.

The span property (1.5.1.2) can be made more explicit in terms of the existence of linear combinations

q! =tyal
q”> =tpa' +tpa’
q° =tiza' + tr3a” + tzza’ B> 3T cR" uppertriangular: Q = AT, (3.3.3.3)

q" = tipal + thpa® + - -+ tppa’ .

where Q = [q1, ..., qn] € R™" (with orthonormal columns), A = [ay,...,a,] € R"". Note that thanks
to the linear independence of {a',...,a"} and {q',..., q"}, the matrix T = (t;));,_; € R"" is regular
(“non-existent” £;; are set to zero, of course).

Recall from Lemma 1.3.1.9 that inverses of regular upper triangular matrices are upper triangular
again.

Thus, by (3.3.3.3), we have found an upper triangular R := T~! € R™" such that

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 422

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

A=QR & A — Q

Next “augmentation by zero™: add m — n zero rows at the bottom of R and complement columns of Q to
an orthonormal basis of IR™, which yields an orthogonal matrix Q € IR

s QTA= [g] .

Thus the algorithm of Gram-Schmidt orthonormalization “proves” the following theorem.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4223

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Theorem 3.3.3.4. QR-decomposition — [NS02, Satz 5.2], [Gut07, Sect. 7.3]

For any matrix A € K" with rank(A) = k there exists
(i) a unique Matrix Qy € R that satisfies QSIQO = Iy, and a unique upper triangular Matrix
Ry € K% with (R);; > 0,i € {1,...,k}, such that

A =0Qp Ry (“economical” QR-decomposition) ,
(ii) a unitary Matrix Q € K"" and a unique upper triangular R € K™* with (R);; > 0,1 €
{1,...,n}, such that
A=0Q R (full QR-decomposition) .

IfIK = IR all matrices will be real and Q is then orthogonal.

Visualisation: “economical” QR-decomposition: QEQozlk (orthonormal columns),

A =QyRy, Qe K", Rye K uppertriangular,

A _ Qo , (3.3.3.5)

Visualisation: full QR-decompisiton: Q"Q = QQ" =1,, (orthogonal matrix),

A:QR, Q EIK”’”, REIKn’k,

A — Q . (3.3.3.6)

For square A, that is, n = k, both QR-decompositions coincide.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4223

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Corollary 3.3.3.7. Uniqueness of QR-factorization

The “economical” QR-factorization (3.3.3.1) of A € K"™", m > n, with rank(A) = n is unique, if
we demand (Ry);; > 0,i=1,...,n.

Proof. We observe that R is regular, if A has full rank n. Since the regular upper triangular matrices form
a group under multiplication:
Q1R =0QR; = Q1 = QR with upper triangular R := Rle_1 .
= 1=0!Q, =R"QIQ,R=R"R.
‘\/_/
=1

The assertion follows by uniqueness of Cholesky decomposition, Lemma 2.8.0.14.

Review question(s) 3.3.3.8 (QR-Decomposition: Theory)

(@3.3.3.8.A) Describe the (x) economical QR-decomposition of a matrix A € R"™", m > n, for which
AT A is diagonal.

(*): We assume that the diagonal entries of the R-factor of the QR-decomposition are positive.
(@3.3.3.8.B) What is the QR-decomposition of a lower-triangular square matrix A € R™" ((A)Z.,j = 0 for
j>1)?
(Q3.3.3.8.C) What is the R in the full QR-decomposition A = QR of a tensor product matrix A = uv ',
ucR" veR" mnecIN,m>n.
Hint. rank(A) = rank(R).

3.3.3.2 Computation of QR-Decomposition

In theory, Gram-Schmidt orthogonalization (GS) can be used to compute the QR-factorization of a matrix
A € R™" m > n, rank(A) = n. However, as we saw in Exp. 1.5.1.5, Gram-Schmidt orthogonalization
in the form of Code 1.5.1.3 is not a stable algorithm.

There is a stable way to compute QR-decompositions, based on the accumulation of orthogonal transfor-
mations.

Corollary 3.3.3.9. Composition of orthogonal transformations

The product of two orthogonal/unitary matrices of the same size is again orthogonal/unitary.

Idea: find simple orthogonal (row) transformations rendering certain matrix ele-
ments zero:

Q = with Q' =Q'.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4222

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Recall that this “annihilation of column entries” is the key operation in Gaussian forward elimination, where
it is achieved by means of non-unitary row transformations, see Sect. 2.3.2. Now we want to find a
counterpart of Gaussian elimination based on unitary row transformations on behalf of numerical stability.

EXAMPLE 3.3.3.10 (“Annihilating” orthogonal transformations in 2D) In 2D there are two possible
orthogonal transformations make 2nd component of a € R? vanish, which, in geometric terms, amounts
to mapping the vector onto the x-axis.

X
X2 2

__ | cosg@ sing
Q= [—sin @/,995,9?1

/ \
X1

<
.

Fig. 79

Fig. 80

reflections at angle bisector, . : .
rotations turning a onto xq-axis.

Note that in each case we have two different length-preserving lineare mappings at our disposal. This
flexibility will be important for curbing the impact of roundoff. J

Both reflections and rotations are actually used in library routines and both are discussed in the sequel:

§3.3.3.11 (Householder reflections — [GV13, Sect. 5.1.2]) The following so-called Householder
matrices (HHM) effect the reflection of a vector into a multiple of the first unit vector with the same length:

vv ! ,
Q= H(v):=1-2—=- with v=atlal,e, (3.3.3.12)
v'v
where e is the first Cartesian basis vector. Orthogonality of these matrices can be established by direct
computation.

Fig. 81 depicts a “geometric derivation” of Householder reflections mapping a — b, assuming
|lal|, = ||b||,. We accomplish this by a reflection at the hyperplane with normal vector b — a.

Given a,b € R" with ||a||, = ||b||,, the difference
vector v := a — b is orthogonal to the bisector.

T
V'V
b=a—-(a—b)=a—-—v—
(a—b) VT,
T T
v a \'A%
:a—ZVﬂ:a—zma:H(V)a,

Fig. 81

because, due to orthogonality the (a —b)_L(a + b)
(a—b)(a—b)=(a—b)(a—b+a+b)=2(>a—b)la.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4225

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Suitable successive Householder transformations determined by the leftmost column (“target column”) of
shrinking bottom right matrix blocks can be used to achieve upper triangular form R. The following series
of figures visualizes the gradual annihilation of the lower triangular matrix part for a square matrix:

[k —H*
> | o > 1 lo > 1 lo
=== = “target column a” (determines unitary transformation),
=== = modified in course of transformations.
Writing Q, for the Householder matrix used in the ¢-th factorization
Qn-1Qn—2----- Q:A =R,
i iti — O T i
QR decom_pos_ltlon of AcC': A—OR, Q:=0Q, _ Q, ;4 grthogonal matrix ,
(QR-factorization) R upper triangular matrix .
-

Remark 3.3.3.13 (QR-decomposition of “fat” matrices) We can also apply successive Householder
transformation as outlined in § 3.3.3.11 to a matrix A € IR"" with m < n. If the first m columns of A are

linearly independent, we obtain another variant of the QR-decomposition:

A=0QR , QeR", ReR"",

where Q is orthogonal, R upper triangular, that is, (R);; = 0 fori > j. g

Remark 3.3.3.14 (Stable implementation of Householder reflections) In (3.3.3.12) the computation of
the vector v can be prone to cancellation (— Section 1.5.4), if the vector a encloses a very small angle
with the first unit vector, because in this case v can be very small and beset with a huge relative error. For

instance, this occurs for

1 G
b 0 .
a=|.|, =0 = v=a—]|ale = with ¢~0.
0 0
This is a concern, because in the formula for the Householder matrix,
T
vV
Hyv) =1-2——,
(v) Ty

v is normalized to unit length (division by HvH%) and then a large absolute error might result

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4228

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Fortunately, two choices for v are possible in (3.3.3.12) and at most one can be affected by cancellation.
The right choice is

_ Jatlaller ifag >0,
a—||al|,e1) ,ifa; <O.

See [Hig02, Sect. 19.1] and [GV13, Sect. 5.1.3] for a discussion. 2

§3.3.3.15 (Givens rotations — [Han02, Sect. 14], [GV13, Sect. 5.1.8]) The 2D rotation displayed in
Fig. 80 can be embedded in an identity matrix. Thus, the following orthogonal transformation, a Givens
rotation, annihilates the k-th component of a vector a = [ay,...,a,]" € R™. Here - stands for cos(¢)
and o for sin(¢), ¢ the angle of rotation, see Fig. 80.

o e O [m] [aV)]

: R : : : y = ——a__,
Gula,a)a:= |~ g - 0| |a| =] 0| ,if o VimP e (3.3.3.16)

: Do] : VP

0 e 0 - 1 | ay, | a,

Orthogonality (— Def. 6.3.1.2) of Gy (ay, ay) is verified immediately. Again, we have two options for an
annihilating rotation, see Ex. 3.3.3.10. It will always be possible to choose one that avoids cancellation
[GV13, Sect. 5.1.8], see Code 3.3.3.17 for details.

C++11 code 3.3.3.17: Stable Givens rotation of a 2D vector, [GV13, Alg. 5.1.3]

2 ‘// plane (2D) Givens rotation avoiding cancellation
s |// Computes orthogonal G € R* with GTa=[{] =:x, r=%|a,
4 |void planerot (const & a, & G, & x) {
5 int sign{1};
s | if (a[1] != 0.0) {
7 double t, s, ¢c; // s < 0, c <& 7
8 if (std::abs(a[1]) > std::abs(a[0])) { // Avoid cancellation/overflow
9 t = —a[0]/a[1]; s = 1.0/std::sqrt(1.0+txt); ¢c = sxt; sign = —1;
10 }
0 else {
12 t = —a[1]/a[0]; ¢ = 1.0/std::sqrt(1+txt); s = cxt;
13
}
14 G << ¢,s,—s,c; // Form 2 X2 Givens rotation matrix
15 }
16 else G. () ;
17 X << (signxa. ()),0.0;
18 |}

We validate the implementation by straightforward computations using the variable names of
Code 3.3.3.17and a = [“0] :

aj

e Caseay; >ayg: t=-—-20 =1 —gt
1 = 40 a’ \/H—Ifz’

{c S}T{ao} B [cao —sal] B {stao —sal]
—s c¢| lay| |sag+cay| |sap+ stay
2
_ 1 {tﬂo—ﬂl} _ M| =Dy _ {Ha\lz}
V142 [a0 +tm lally | ag — ag 0]

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 422

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

o ap >aq; t=-4 ¢c= s = ct
Case 0> 1 ao, \/H—t'z,

l c s} ! {ao} _ [cao — ctal} _ 1 {ao — tal} _ A0 | ag+ % _ {+Ha||2}
—s ¢c| |m ctag + cay V1t R |[ta+m lall> | —a; + 0o |-
So far, we know how to annihilate a single component of a vector by means of a Givens rotation that targets

that component and some other (the first in (3.3.3.16)). However, for the sake of QR-decomposition we
aim to map all components to zero except for the first.

1 This can be achieved by n — 1 successive Givens rotations, see also Code 3.3.3.19

o . o (1)
ai a§) af‘) ”gn :
ar 0 0 0
: Gi(a1,a2) a.3 Gz (al) a3) a(l Gua(a? s) o Gru(a" V) : (3.3.3.18)
an | al’l | - an = —- 0 -

% Notation: G;j(ay,a2) = Givens rotation (3.3.3.16) modifying rows i and j of the matrix.

C++11 code 3.3.3.19: Roating a vector onto the x;-axis by successive Givens transformation

2 |// Orthogonal transformation of a (column) vector into a multiple of
3 |// the first unit vector by successive Givens transformations

4+ |// Note that the output vector could be computed much more efficiently!
5 |void givenscoltrf(const VectorXd &aln, MatrixXd &Q, VectorXd &aOut) {

6 const int n = aln.size();

7 // Assemble rotations in a dense matrix Q

8 // For (more efficient) alternatives see Rem. Rem. 3.3.3.21

9 Q. setldentity (); // Start from Q=1

10 Matrix2d G;

11 aOut = aln;

12 for (int j = 1; j < n; ++j) {

13 double a0 = aOut[0], al = aOut[j];

14 // Determine entries of 2D rotation matrix, see Code 3.3.3.17
15 double s, ¢c; // s < 0, ¢ & v

16 if (al != 0.0) {

17 if (std::abs(al) > std::abs(a0)) { // Avoid cancellation/overflow
18 double t = —a0 / al;

19 s =1.0 / std::sqrt(1.0 + t % t);

20 C =S % t;

21 } else {

22 double t = —al / a0;

23 c =10/ std::sqrt(1.0 + t % t);

24 s =c¢C * t;

25 }

26 G<<c, s, —s, ¢, // Form 2X 2 Givens rotation matrix

27 } else { // No rotation required

28 G. setldentity () ;

29 }

30 // select 1st and jth element of aOut and use the Map function
31 // to prevent copying; equivalent to aOut ([1, j]) in MATLAB

32 Map<VectorXd, 0, InnerStride <>> aOutMap(aOut.data(), 2, InnerStride <>(j));
33 aOutMap = G.transpose() x aOutMap;

34 // select 1st and jth column of Q (Q(:,[1,7j]) in MATLAB)

35 Map<MatrixXd , 0, OuterStride<>> QMap(Q.data(), n, 2, OuterStride<>(j * n));
36 // Accumulate orthogonal transformations in a dense matrix; just

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4228

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

done for
// demonstration purposes!

QMap = QMap * G;

See Rem. 3.3.3.21

39 }
40 |}

Armed with these compound Givens rotations we can proceed as in the case of Householder reflections
to accomplish the orthogonal transformation of a full-rank matrix to upper triangular form, see

C++11 code 3.3.3.20: QR-decomposition by successive Givens rotations

//! OR decomposition of square matrix A by successive Givens
//! transformations
void qrgivens (const &A,
unsigned int n = A. () ;
// Assemble rotations in a dense matrix.

&Q, &R) {

© ® N o o &~ @ N

// For (more efficient) alternatives see Rem. Rem. 3.3.3.21
Q. O
G;
10 tmp, xDummy;
11 R=A; // In situ transformation
12 for (int i = 0; i <n— 1; ++i) {
13 for (int j =n—1; j>i; —j) {
14 tmp(0) = R(j — 1, i);
15 tmp(1) = R(j, i);
16 planerot (tmp, G, xDummy); // see Code 3.3.3.17
17 R. (j— 1,0, 2, n) =G. () = R. (j— 1,0, 2, n);
8 Q. (0, j—1,n, 2) =Q. (0, j — 1, n, 2) % G;

}

20 }

21 |}

|

Remark 3.3.3.21 (Storing orthogonal transformations) When doing successive orthogonal transforma-
tions as in the case of QR-decomposition by means of Householder reflections (— § 3.3.3.11) or Givens
rotations (— § 3.3.3.15) it would be prohibitively expensive to assemble and even multiply the transforma-
tion matrices!

The matrices for the orthogonal transformation are never built in codes!
The transformations are stored in a compressed format.

Therefore, we stress that Code 3.3.3.20 is meant for demonstration purposes only, because the construc-
tion of the Q-factor matrix would never be done in this way in a well-designed numerical code.

@ In the case of Householder reflections H(v) € R™™ (3.3.3.12), see [GOV13],

> store only the last 7 — 1 components of the normalized vector v € IR™

For QR-decomposition of a matrix A € IR"", by means of successive Householder reflections H(vy) -
-+~ H(vg), k := min{m,n}, we store the bottom parts of the vectors v; € R" /*! j = 1,..,k,

whose lengths decrease, in place of the “annihilated” lower triangular part of A, which yields an in-situ

QR-factorization.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4228

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

T Casem < n

[« space for Householder vectors

Casem >n —

® In the case of Givens rotations, for a single rotation Gi,j(al,az) we need store only the row indices
(i,7) and rotation angle [GV13, Sect. 5.1.11]. The latter is subject to a particular encoding scheme:

sign(o) ,ify=0,
for G = {—,Ya ,ﬂ = store p:= ¢ \/2sign(y)c Jf o] < |7, (3.3.3.22)
}V2sign(o)/y L iflel > [,
p==x1 = 4=0, oc==1,
which means ol <1 = o=3V2p, v=V1-02, (3.3.3.23)
ol >1 = v=3V2/p, o=1-192.

Then store G;j(a, b) as triple (i,], 0). The parameter p forgets the sign of the matrix G;;, so the signs of
the corresponding rows in the transformed matrix R have to be changed accordingly. The rationale behind
the above convention is to curb the impact of roundoff errors, because when we recover 7y, ¢ and for the
difference under the square root we never subtract two numbers of equal size.

Summing up, when asking to “compute the economical/full QR-decomposition” A = QR of a matrix A, we
request the upper triangular matrix R plus Q in a format that permits us to evaluate Q x vector efficiently.
_I

§3.3.3.24 (Computational cost of computing QR-decompositions) How many elementary operations
are asymptotically involved in the computation of the R-factor of the QR-decomposition of a “tall” matrix
A € R"™", m > n based on Householder reflections as explained in § 3.3.3.11?

Obviously, the creation of zeros in the lower triangular part of A is done in n — 1 steps:

— - - % - — - — -

= =

Yo
o

Yo

Yo

Note that the multiplication of a vector w € IR with a Householder matrix H(v) := I —2vv', v € R",
|lv||, = 1, takes only 2m operations, cf. Ex. 1.4.3.1.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 423%)

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Next, we examine the elementary matrix vector operations involved in orthogonal transformation of A into
an upper triangular matrix R € R,

Step @: Householder matrix x n — 1 remaining matrix cols. of size m, cost=2m(n —1)
Step ®: Householder matrix x n — 2 remaining matrix cols. of size m — 1, cost=2(m —1)(n — 2)
Step ®: Householder matrix x n — 3 remaining matrix cols. of size m —2, cost=2(m —2)(n — 3)

We see that the combined number of entries of the -colored matrix blocks in the above figures is propor-
tional to the total work.

1

2
|

cost(R-factor of A by Householder trf.) =

g

2(m—k+1)(n—k
] (m=k+1)(n =k (3.3.3.25)

(mn?) for m,n — oo .

I
O

_I

Remark 3.3.3.26 (QR-decomposition of banded matrices) The advantage of Givens rotations is its
selectivity, which can be exploited for banded matrices, see Section 2.7.5.

Bandwidth]For A = (al-]-)i]. € K™ we call
bw(A) := min{k € N: j —i > k = a;; = 0} upper bandwidth,
bw(A) :=min{k € N:i—j > k = a;; = 0} lower bandwidth .

bw(A) :=bw(A) +m(A) + 1 = bandwidth of A.

Specific case: Orthogonal transformation of an n X n tridiagonal matrix to upper triangular form, that is,
the annihilation of the sub-diagonal, by means of successive Givens rotations:

GGy
=

O O ¥* *¥ ¥ © OO
O % ¥ ¥ ©O O OO
¥ % ¥ OO O OO
¥ ¥ ©O O OO OO

[

I~
O O % % ¥ © OO
O % ¥ ¥ OO OO
¥ % ¥ OO O OO
*¥ ¥ © O O O OO
O OO OO ¥ ¥
O O ¥* *x ¥ © OO
O % ¥ ¥ O O OO
* X ¥ OO O OO

O OO O % ¥ % O
O O DO % % % OO

O OO *x ¥ ¥ OO
O OO OO OO ¥
O OO OO ¥ * ¥

O OO O % ¥ % O
O OO *x % ¥ OO
O OO OO OO ¥
O OO OO ¥ * ¥
O OO O % ¥ * ¥

O OO OO DO * ¥
O OO OO ¥ * ¥

* = entry set to zero by Givens rotation, « = new non-zero entry (“fill-in” — Def. 2.7.4.3).
This is a manifestation of a more general result, see Def. 2.7.5.1 for notations:

Theorem 3.3.3.27. QR-decomposition “preserves bandwidth”

If A = QR is the QR-decomposition of a regular matrix A € R"", thenbw(R) < bw(A).

Studying the algorithms sketched above for tridiagonal matrices, we find that a total of at most 7 - bw(A)
Givens rotations is required or computing the QR-decomposition. Each of them acts on O(bw(A)) non-
zero entries of the matrix, which leads to an asymptotic total computational effort of O(n - bw(A)?) for
n — 0. |

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 423

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Review question(s) 3.3.3.28 (Computation of QR-decompositions)
(@3.3.3.28.A) Let A € R™" be “Z-shaped”
(A)i,]- =0,f ie{2,....n—=1},i+j#n+1 ,

% k% ok %k ok %k kK|
%

* ok ok ok ok ok ok ok X

1. Give a sequence of Givens rotations that convert A into upper triangular form.

2. Think about an efficient way to deploy orthogonal transformation techniques for the efficient solu-
tion of a linear system of equations Ax = b, b € R".

A

3.3.3.3 QR-Decomposition: Stability

In numerical linear algebra orthogonal transformation methods usually give rise to reliable algorithms,
thanks to the norm-preserving property of orthogonal transformations.

§3.3.3.29 (Stability of unitary/orthogonal transformations) We consider the mapping (the “transfor-
mation” induced by Q)

F:K" - K", F(x):=0Qx, Q € K"" unitary/orthogonal .

We are interested in the sensitivity of F, that is, the impact of relative errors in the data vector x on the
output vector y := F(x).

We study the output for a perturbed input vector:

Ox=y = x|, =yl - 18Yl2 _ [[Ax],
Q(x+Ax) =y+4y = QAx=A4y = |[Ayl, = [Ax|; Iyl X1l

We conclude, that unitary/orthogonal transformations do not involve any amplification of relative errors in
the data vectors.

Of course, this also applies to the “solution” of square linear systems with orthogonal coefficient matrix
Q € R™", which, by Def. 6.3.1.2, boils down to multiplication of the right hand side vector with Q. _

Remark 3.3.3.30 (Conditioning of conventional row transformations) Gaussian elimination as pre-
sented in § 2.3.1.3 converts a matrix to upper triangular form by elementary row transformations. Those
add a scalar multiple of a row of the matrix to another matrix and amount to left-multiplication with matri-
ces

T:=I,+ueje] , pek, i,je{l,...,n}, i#j. (3.3.3.31)

However, these transformations can lead to a massive amplification of relative errors, which, by virtue of
Ex. 2.2.2.1 can be linked to large condition numbers of T.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4233

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

This accounts for fact that the computation of LU-decompositions by means of Gaussian elimination might
not be stable, see Ex. 2.4.0.5. 2

EXPERIMENT 3.3.3.32 (Conditioning of conventional row transformations, Rem. 3.3.3.30 cnt’d)

Condition numbers of row transformation matrices
T T T

10
10°F a
Study in 2D: .
10°F
. o A
2 x 2 row transformation matrix, (cf. elimination ma- &
. 4 *
trices of Gaussian elimination. 5wt}
&
s
10 5 w0t N
T = (, 1 g &
10 &
Euclidean condition numbers of T () > ‘ s
10 A ‘% ¥ 2-norm
0 porastt L

Fig. 82)

The perfect conditioning of orthogonal transformation prevents the destructive build-up of roundoff errors.

Theorem 3.3.3.33. Stability of Householder QR [Hig02, Thm. 19.4]

Let R € R™" pe the R-factor of the QR-decomposition of A € R"™" computed by means of
successive Householder reflections (— § 3.3.3.11). Then there exists an orthogonal Q € R
such that

~ EPS
A+AA = QR with \|AA||2glcm”

_CMREES Al
—cmnEPSH I2

(3.3.3.34)

where EPS is the machine precision and ¢ > 0 a small constant independent of A.

3.3.3.4 QR-Decomposition in EIGEN

EIGEN offers several classes dedicated to computing QR-type decompositions of matrices, for instance
HouseholderQR. Internally the QR-decomposition is stored in compressed format as explained in
Rem. 3.3.3.21. Its computation is triggered by the constructor.

C++-code 3.3.3.35: QR-decompositions in EIGEN => GITLAB
include <Eigen/QR>

// Computation of full QR-decomposition (3.3.3.1),
// dense matrices built for both QR-factors (expensive!)
std :: pair <MatrixXd , MatrixXd > qr_decomp_full(const MatrixXd& A) {
Eigen :: HouseholderQR<MatrixXd > qr(A) ;
MatrixXd Q = qr.householderQ (); //
MatrixXd R = qr.matrixQR() .template triangularView <Eigen :: Upper>() ;
10 return std:: pair<MatrixXd , MatrixXd >(Q,R) ;

1|}

© ©® N o O »~ O N

13 |// Computation of economical QR-decomposition (3.3.3.1),

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4233

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/decomposition/decomp.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

14 |// dense matrix built for Q-factor (possibly expensivel!)
15 | std ::pair< , > qr_decomp_eco(const & A) {
16 using index_t = ;i Index;
17 const index_t m = A. () ,n = A. 0);
18 : : HouseholderQR< > (A);
19 Q = (qr.householderQ () * i (m,n)); //
20 R = .matrixQR () . (0,0,n,n) .template < i >();
/7
21 return std::pair< , >(Q,R) ;
22
}

Note that the method householderQ returns the Q-factor in compressed format — Rem. 3.3.3.21.
Assignment to a matrix will convert it into a (dense) matrix format, see Line 8; only then the actual com-
putation of the matrix entries is performed. It can also be multiplied with another matrix of suitable size,
which is used in Line 19 to extract the Q-factor Qy € IR of the economical QR-decomposition (3.3.3.1).

The matrix returned by the method matrixQR () gives access to a matrix storing the QR-factors in
compressed form. Its upper triangular part provides R, see Line 20.

§3.3.3.36 (Economical versus full QR-decomposition) The distinction of Thm. 3.3.3.4 between eco-
nomical and full QR-decompositions of a “tall” matrix A € R"™", m > n, becomes blurred on the algo-
rithmic level. If all we want is a representation of the Q-factor as a product of orthogonal transformations
as discussed in Rem. 3.3.3.21, exactly the same computations give us both types of QR-decompositions,
because, of course, the bottom zero block of V R need not be stored.

The same computations yield both full and economical QR-decompositions with Q-factors in product
form.

This is clearly reflected in Code 3.4.2.1. Thus, in the derivation of algorithms we choose either type of
QR-decomposition, whichever is easier to understand. J

§3.3.3.37 (Cost of QR-decomposition in EIGEN) A close inspection of the algorithm for the computation
of QR-decompositions of A € IR""" by successive Householder reflections (— § 3.3.3.11) reveals, that n
transformations costing ~ mn operations each are required.

Asymptotic complexity of Householder QR-decomposition

The computational effort for HouseholderQR() of A € R™", m > n, is O(mnz) for m,n — oo.

_

EXPERIMENT 3.3.3.39 (Asymptotic complexity of Householder QR-factorization) We empirically in-
vestigate the (asymptotic) complexity of QR-factorization algorithms in EIGEN through runtime measure-
ments.

C++-code 3.3.3.40: timing QR-factorizations in EIGEN

2 int nruns = 3, minExp = 2, maxExp = 6;
3 tms (maxExp—minExp+1,4) ;

4 for(int i = 0; i <= maxExp—minExp; ++i){

5 Timer t1, t2, t3; // timer class

6 int n = std::pow(2, minExp + i); int m = nxn;
7 // Initialization of matrix A

8 A(m,n); A. 05

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 423

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

9 A.setldentity (); A.block(n,0,m—n,n).setOnes () ;
10 A += VectorXd ::LinSpaced(m,1,m) * RowVectorXd::LinSpaced(n,1,n);
1 for(int j = 0; j < nruns; ++j) {
12 // plain QR-factorization in the constructor
13 t1.start () ; HouseholderQR<MatrixXd> qr(A); t1.stop();
14 // full decomposition
15 t2.start (); std::pair<MatrixXd , MatrixXd> QR2 = qr_decomp_full (A); t2.stop();
16 // economic decomposition
17 t3.start (); std::pair<MatrixXd , MatrixXd> QR3 = qr_decomp_eco (A); t3.stop();
18
19 t}ms(i,0)=n;
20 tms(i,1)=t1.min(); tms(i,2)=t2.min(); tms(i,3)= t3.min();
21 }
102
Timings for e
e plain QR-factorization in the constructor of R ol
HouseholderQR, ol
e invocation of function qr_decomp_full (),
see Code 3.4.2.1, ﬂ“’"]
e call to gr_decomp_eco () from Goek
Code 3.4.2.1. = .
Platform: !
4 ubuntu 14.04 LTS 10E
4+ CPUi7-3517U, 1.90GHZ, 4 cores s
4+ L1 32 KB, L2 256 KB, L3 4096 KB, Mem 8 GB
+ gcc 4.8.4,-03 _ 107?00 1<;‘ 102
i n
The runtimes for the QR-factorization of A € R™" behave like O(n? - n) for large n. J

3.3.4 QR-Based Solver for Linear Least Squares Problems

The QR-decomposition introduced in Section 3.3.3, Thm. 3.3.3.4, paves the way for the practical algo-
rithmic realization of the “equivalent orthonormal transformation to upper triangular form”-idea from Sec-
tion 3.3.1.

We consider the full-rank linear least squares problem Eq. (3.1.2.22): Given A € R™", m > n,
rank(A) = n,

seek x € R" suchthat |[Ax —bl[, = min .

We assume that we are given a
QR-decomposition: A = QR, Q € R"" orthogonal, R € R (regular) upper triangular matrix.

We apply the orthogonal 2-norm preserving (— Thm. 3.3.2.2) transformation encoded in Q to Ax — b,
the vector inside the 2-norm to be minimized:

|Ax —b||, = HQ(Rx - QTb)H2 = HRx - BHZ , b:=Q'b.

Thus, we have obtained an equivalent triangular linear least squares problem:

—~—g——

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4235

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

]
0
|Ax — b|, = min < e — min .
Xn
0
| b |
L - 2
v
_ S -1 [0
by (:)
X = : , with residual r = -~
Ry ~ Q bn-l—l
by,)
L i] b |

Note: by Thm. 3.3.2.2 the norm of the residual is readily available: ||r||, = \/E%H + D2,

C++-code 3.3.4.1: QR-based solver for full rank linear least squares problem (3.1.2.22)

2 ‘// Solution of linear least squares problem (3.1.2.22) by means of ‘
OR-decomposition

s |// Note: A€R™ with m>mn, rank(A) =n is assumed

4 |// Least squares solution returned in x, residual norm as return value

5 |double qrlsqsolve (const MatrixXd& A, const VectorXd& b,

6 VectorXd& x) {

7 const unsigned m = A.rows(), n = A.cols () ;

8

9

MatrixXd Ab(m, n + 1); Ab << A, b; // Form extended matrix [A,Db]

11 // QOR-decomposition of extended matrix automatically transforms b
12 MatrixXd R = Ab.householderQr () . matrixQR () . template
13 triangularView <Eigen::Upper>(); //

15 MatrixXd R_nn = R.block(0, 0, n, n); // R—-factor Ry

| // Compute least squares solution X= (R);;,M(QTb)lzn

17 x = R_nn.template triangularView <Eigen::Upper>().solve(R.block(0, n, n, 1));
18 return R(n, n); // residual norm = ||AX—b|, (why ?)

Discussion of (some) details of implementation in Code 3.3.4.1:

e The QR-decomposition is computed in a numerically stable way by means of Householder reflec-
tions (— § 3.3.3.11) by EIGEN’s built-in function householderQR available for matrix type. The
computational cost of this function when called for an m X n matrix is, asymptotically for m, n — oo,
O(n’m).

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4239

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

e Line 9: We perform the QR-decomposition of the extended matrix [A, b] with b as rightmost col-
umn. Thus, the orthogonal transformations are automatically applied to b; the augmented matrix is
converted into [R, QTb], the data of the equivalent upper triangular linear least squares problem.
Thus, actually, no information about Q needs to be stored, if one is interested in the least squares
solution x only.

The idea is borrowed from Gaussian elimination, see Code 2.3.1.4, Line 9.

e Line 13: MatrixQR () returns the compressed QR-factorization as a matrix, where the R-factor
R € R™" is contained in the upper triangular part, whose top 7 rows give R from see (3.3.3.1).

e Line 18: the components (b),, 42, of the vector b (treated as rightmost column of the augmented
matrix) are annihilated when computing the QR-decomposition (by final Householder reflection):
T _ T —_ (% ; ;
(Q.d [Al’b])n+2:m,n = 0. Hence, (Q'[A/b]), ;.1 = H(b)n+1:m‘ » which gives the norm of the
residual.

» A QR-based algorithm is implemented in the () method available for EIGEN's QR-
decomposition, see Code 3.3.4.2.

C++ code 3.3.4.2: EIGEN’s built-in QR-based linear least squares solver

2 |// Solving a full-rank least squares problem ||[Ax—Db|, = min in EIGEN
s |double Isgsolve_eigen (const & A, const & b,

4 & x) {

5 x = A.householderQr () .solve(b) ;

6 return ((Axx—b). (0));

7

}

Remark 3.3.4.3 (QR-based solution of linear systems of equations) Applying the QR-based algorithm
for full-rank linear least squares problems in the case m = n, that is, to a square linear system of equations
Ax = b with a regular coefficient matrix , will compute the solution x = A~'b. In a sense, the QR-
decomposition offers an alternative to Gaussian elimination/LU-decomposition discussed in § 2.3.2.15.

The steps for solving a linear system of equations Ax = b by means of QR-decomposition are as follows:

® QR-decomposition A = QR, computational costs %n?’ + O (n?)
(about twice as expensive as LU-decomposition without pivoting)
Ax=Db : @ orthogonal transformation z = Q "' b, computational costs 41> 4+ O(n)
(in the case of compact storage of reflections/rotations)
@ Backward substitution, solve Rx = z, computational costs %n(n + 1)

Benefit: we can utterly dispense with any kind of pivoting:

& Computing the generalized QR-decomposition A = QR by means of Householder reflections
or Givens rotations is (numerically stable) for any A € C"™".

& For any regular system matrix an LSE can be solved by means of
QR-decomposition + orthogonal transformation + backward substitution
in a stable manner.

Drawback: QR-decomposition can hardly ever avoid massive fill-in (— Def. 2.7.4.3) also in situations,
where LU-factorization greatly benefits from Thm. 2.7.5.4. J

Remark 3.3.4.4 (QR-based solution of banded LSE) From Rem. 3.3.3.26, Thm. 3.3.3.27, we know that
that particular situtation, in which QR-decomposition can avoid fill-in (— Def. 2.7.4.3) is the case of banded

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 423

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

matrices, see Def. 2.7.5.1. For a banded n x n linear systems of equations with small fixed bandwidth
bw(A) < O(1) we incur an

> asymptotic computational effort: O(n) for n — oo
. ., _dl (o8] 0 e 0]
The following code uses QR-decomposition com-
puted by means of selective Givens rotations (— e1 dy ¢ :
§ 3.3.3.15) to solve a tridiagonal linear system of A=|0 e d3 c3
equations Ax = b : T Crn_1
0 oo 0 en_]_ d”l i

The matrix is passed in the form of three vectors e, ¢, d giving the entries in the non-zero bands.

C++ code 3.3.4.5: Solving a tridiagonal system by means of QR-decomposition = GITLAB

//! @brief Solves the tridiagonal system Ax=b with QR-decomposition

2

s |//! @param[in] d Vector of dim n; the diagonal elements

4 |//! @param[in] ¢ Vector of dim n—1; the lower diagonal elements
5 |//! (@param[in] e Vector of dim n—1; the upper diagonal elements
6 |//! @param[in] b Vector of dim n; the rhs.

7 |//! @param[out] X Vector of dim n

s | VectorXd tridiagqr (VectorXd c, VectorXd d, VectorXd e, VectorXd& b){

9 int n = d.size();

10 // resize the vectors c¢ and d to correct length if needed

1 c.conservativeResize(n); e.conservativeResize(n);

12 double t = d.norm() + e.norm() + c.norm() ;

13 Matrix2d R; Vector2d z, tmp;
14 for(int k = 0; k < n—1; ++k){

15 tmp(0) = d(k); tmp(1) = e(k);

16 // Use givensrotation to set the entries below the diagonal
17 // to zero

18 planerot (tmp, R, z); // see Code 3.3.3.17

19 if(std::abs(z(0))/t < std::numeric_limits<double>::epsilon ())

20 throw std::runtime_error ("A nearly singular");

21 // Update all other entries of the matrix and rhs. which
22 // were affected by the givensrotation

23 d(k) = z(0);

24 b.segment(k,2).applyOnThelLeft(R); // rhs.

25 // Block of the matrix affected by the givensrotation

26 Matrix2d Z;

27 Z << c(k), 0, d(k+1), c(k+1);

28 Z.applyOnTheLeft(R) ;

29 // Write the transformed block back to the corresponding places
30 c.segment(k,2) = Z.diagonal(); d(k+1) = Z(1,0); e(k) = Z(0,1);

31
1
32 // Note that the e is now above d and ¢
33 // Backsubstitution acting on upper triangular matrix
34 // with upper bandwidth 2 (stored in vectors).
35 VectorXd x(n);

36 // last row

37 x(n—1) = b(n—1)/d(n—1);

38 if(n >= 2) {

39 // 2nd last row

40 x(n—=2) = (b(n—2)—c(n—2)xx(n—1))/d(n—2);
41 // remaining rows

42 for(int i = n=-3; i >= 0; —i)

" x(1) = ((b(i) — c(i) * x(i+1) — e(i)*x(i+2)) / d(i);

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4238

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/tridiagqr/Eigen/tridiagqr.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

45 return x;
4% |}

_l

EXAMPLE 3.3.4.6 (Stable solution of LSE by means of QR-decomposition) Aiming to confirm the
claim of superior stability of QR-based approaches (— Rem. 3.3.4.3, § 3.3.3.29) we revisit Wilkinson’s
counterexample from Ex. 2.4.0.5 for which Gaussian elimination with partial pivoting does not yield an
acceptable solution.

Wilkinson matrix A € R™"

-1 fori>j,j<n,

)b fori=y, : |
<A>l,] L . P — - — - relative residual norm
fori <j,j<mn, il
1 forj=mn.

relative error (Euclidean norm)
=

QR-decomposition produces perfect solution > muw

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Fig. 84 n

|

Let us summarize the pros and cons of orthogonal transformation techniques for linear least squares
problems:

Normal equations vs. orthogonal transformations method

Superior numerical stability (— Def. 1.5.5.19) of orthogonal transformations methods:

B> Use orthogonal transformations methods for least squares problems (3.1.3.7), whenever
A € R"™" dense and n small.

SVD/QR-factorization cannot exploit sparsity:

B> Use normal equations in the expanded form (3.2.0.8)/(3.2.0.9), when A € R"" sparse (—
Notion 2.7.0.1) and m, n big.

Review question(s) 3.3.4.8 (QR-Based Solver for Linear Least-Squares Problems)
(@3.3.4.8.A) Given A € R™", m > n, rank(A) = n, b € R™, let the full QR-decomposition

— O m,m
[Ab] = OR, 9 R +§>rthogone_1l ,
R € R™"™% upper triangular ,

of the augmented matrix [A b] € R""*1 be given.

e How can you compute the unique least-squares solution x* € R” of Ax = b using Q and R?

e Explain why [[Ax* —bl, = (R), 1,1

(@3.3.4.8.B) Describe how the QR-decomposition of a tridiagonal matrix A € IR"""* can be computed with
an asymptotic effort of O(n) for n — oo.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4239

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

3.3.5 Modification Techniques for QR-Decomposition

In § 2.6.0.12 we faced the task of solving a square linear system of equations Ax=b efficiently, whose
coefficient matrix A was a (rank-1) perturbation of A, for which an LU-decomposition was available.
Lemma 2.6.0.21 showed a way to reuse the information contained in the LU-decomposition.

A similar task can be posed for the QR-decomposition: Assume that a QR-decomposition (—
Thm. 3.3.3.4) of a matrix A € R™", m > n, has already been computed. However, now we have to

solve a full-rank linear least squares problem ng — bH2 — min with A € R™", which is a “slight”

perturbation of A. If we aim to use orthogonalization techniques it would be desirable to compute a
QR-decomposition of A with recourse to the QR-decomposition of A.

Remark 3.3.5.1 (Economical vs. full QR-decomposition) We remind of § 3.3.3.36: The precise type of
QR-decomposition, whether full or economical, does not matter, since all algorithms will store the Q-factors
as products of orthogonal transformations.

Thus, below we will select that type of QR-decomposition, which allows an easier derivation of an algo-
rithm, which will be the full QR-decomposition. 2

3.3.5.1 Rank-1 Modifications

For A € R™", m > n, rank(A) = n, we consider the rank-1 modification, cf. Eq. (2.6.0.16),
A — A=A+uv', ueR", veR". (3.3.5.2)

Remember from § 2.6.0.12, (2.6.0.13), (2.6.0.15) that changing a single entry, row, or column of A can be
achieved through special rank-1 perturbations.

Given a full QR-decomposition according to Thm. 3.3.3.4, A = QR = Q [Ig] Q € R™™ orthogonal

(stored in some implicit format as product of orthogonal transformations, see Rem. 3.3.3.21), R € R""
and Ry € 1R~”i1 upper triangular, the goal is to find an efficient algorithm that yields a QR-decomposition
of A: A = QR, Q € R™™ a product of orthogonal transformations, R € IR"""* upper triangular.

Step ©: compute w = Q'u € R".

Observe that A + uv' = Q(R+ wv '), because Q'Q = I,,.

> Computational effort = O(mn), if Q stored in suitable (compressed) format, cf. Rem. 3.3.3.21.

A

Step @: Orthogonally transform w — ||w||e;, e; € R™ = 1st coordinate vector.

This can be done by applying m — 1 Givens rotations to be employed in the following order:

* *

* * 0

: Gu1,m : Giu—2,m-1 : Gi—3,m-2 Gop :

W= x| —= |x| —— |x| ———— -+ —= |0
* * * 0

* * 0 0

* 0 0 0

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4 24%)

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Of course, these transformations also have to act on R € R""" and they will affect R by creating a single
non-zero subdiagonal by linearly combining pairs of adjacent rows from bottom to top:

0 * * 0 *
0 0 * * * = 0 0 * * *
0 0 0 * * = 0 0 0 * * =
Gnt1 Giu1n
R=1]0 0O 0 0 *x =x —_— 0 0 0 0 x =x —
0 0O 0 0 0 =« 0 0 0 0 0 =
0 0O 0 0 0O 0 0 0 0 0 =«
0 0O 00 0O 0 0O 00 0O
| 0 0O 0 0 0 0 | 0 0 0 0 0 0
[% *] B]
0 * %k * * %k
0 0 * x * % 0 x ok ok k%
0 0 0 % x x 0 0 * % % x
Gy 201 Gip
— | 0 0 0 0 % = > > | 0 0 0 % % x| ="Ry.
0 0 0 0 * = 0 0 0 0 * =
0 0O 0 0 0 =« 0 0O 0 0 0 =
0 0O 0 0 0O 0 0O 0 0 0O
0 --- 0 0 0 0 0 | 0 --- 0 0 0 0 0 |

We see (Rl)i,j = 0,ifi > j+1. lItis a so-called upper Hessenberg matrix. This is also true of

R, + ||w||2e1vT € R™", because only the top row of the matrix e;v' is non-zero. Therefore, if Q; €
IR collects all m — 1 orthogonal transformations used in Step @, then

upper Hessenberg matrix

> Computational effort = O(n + n?) = O(n?) for n — oo

Step ©: Convert R; + ||w||2e1vT € IR™" into upper triangular form by n — 1 successive Givens rotations
applied to rows of this matrix.

* * k% 0 * ok k%
0 x ok ok k% 0 x ok ok k%
0 0 * * * x G 0 0 % % % % o
R; + [[wl,ev’ = | 0 0 0 % % x| —2 |0 0 0 # % = | =B,
0 0O 0 0 % = 0 0 0 0 * =«
0 0O 0 0 0 =« 0 0O 0 0 0 =
0 0O 00 00O 0 0O 00 0O
| 0 0O 0 0 0 0 | 0 0O 0 0 0 0

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 424

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

* * *
0 * % %k 0 * % % %k
0 0 *x * * % 0 0 * *x *x %
0 0 0 % x = 0 0 0 % =x x
Gy 1 G nt1 R
0 0 0 0 x x — 1 0 0 0 0 * x| =R.
0 0 0 0 0 = 0 0 0 0 0 =x
0 0 0 0 0 = 0 0 00 O0O
0 0O 0 0O0O 0 0 0 00O
0 --- 0 0 0 0 0] 0 - 0 0 0 0 0|
(Gun+1Gn—2n-1-"------GuG12) (R + Hw||2e1vT) =R (upper triangular!) . (3.3.5.3)

Since we need n — 1 Givens rotations acting on matrix rows of length 7:

> Computational effort = O(n?) for n — o

B> A=-A+tuv' =QR withQ=0QQ{G,Gp - al]

n—1,n— nn—1 -

> Total asymptotic total computational effort = O(mn + nz) form,n — oo

For large n this is much cheaper than the cost O(n2m) for computing the QR-decomposition of A from
scratch. Moreover, we avoid forming and storing the matrix A.

3.3.5.2 Adding a Column

We obtain an augmented matrix A € R™"*1 py inserting a column v into A € R™" at an arbitrary
location.

AeR™ — A=lay,..., a1, v,a...,a,) €ER™, veR", aj:= (A),j . (3354)

On the level of matrix-vector arithmetic the following explanations are easier for the full QR-
decompositions, cf. Rem. 3.3.5.1.

Given: full QR-decomposition of A: A = QR, Q € R™™ orthogonal (stored as product of O(#n)
orthogonal transformations), R € IR upper triangular.

Sought: full QR-decomposition of A from (3.3.5.4): A = Qf{,NQ € R™™ with orthonormal columns,
stored as product of O(n) orthogonal transformations, R € R™"+1 ypper triangular, computed
efficiently.

As preparation we point out that left-multiplication of a matrix with another matrix can be understood as

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4242

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

forming multiple matrix x vector products:

A=QR & QA= QTal,...,QTan]zR:: , Rp€R"™,

that is, (Q"a;), = 0 for £ > j. We immediately infer

QT:& - [QTall R QTak—ll QTV/ QTak/ R QTan = =We Rm,n—’_l

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4243

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

which suggests the following three-step algorithm.

Step ©: compute w = Qv € R”.

> Computational effort = O(mn) for m,n — oo, if Q stored in suitable (compressed) format.
Step O: Annihilate bottom m — n — 1 components of w <> rows of W (,if m > n 4 1).

This can be done by m — n — 1 Givens rotations targeting adjacent rows of W bottom — top:

— Gu1,m Gui1n42 —

W = L || =T
> Computational effort = O(m — n) for m, n — co.
Writing QZT =Gupipq2 - G,—1m € R™™ for the orthogonal matrix representing the product of
Givens rotations, we find

Q,Q'A=T.
Step ©: Transform T to upper triangular form.

We accomplish this by applying # + 1 — k successive Givens rotations from bottom to top in the following
fashion.

[% * * [% * *
0 = * 0 = *
*
T — * * %k Gyl o Gik+1 0 -
0 *
0 0 0 0 0
| 0 0 0 | | 0 0 0 |
o H B -
— —| | E —| | o —

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 424

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

— = = = = target rows of Givens rotations, B = new entries #0
> Computational effort for this step = O ((n — k)?) for n — oo
> Total asymptotic computational cost = O(n? + m) for m,n — oo

Again, for large m, n this is significantly cheaper that forming the matrix A and then computing its (eco-
nomical) QR-decomposition.

3.3.5.3 Adding a Row

Again, the perspective of the full QR-decomposition is preferred for didactic reasons, cf. Rem. 3.3.5.1.

We are given a matrix A € R"" of which a full QR-decomposition (— Thm. 3.3.3.4) A = QR, Q €
IR™™ orthogonal, R € IR™" upper triangular, is already available, maybe only in encoded form (—
Rem. 3.3.3.21).

We add another row to the matrix A in arbitrary position k € {1,...,m} and obtain

AcR"™ +— A T , withgiven v € R". (3.3.5.5)

Task: Find an algorithm for the efficient computation of the QR-decomposition A = Qf{ of A from
(3.3.5.5), Q € R™*1m*1 orthogonal (as a product of orthogonal transformations), R € K" +1n+1
upper triangular.

Step @: Move new row to the bottom.

Employ partial cyclic permutation of rows of A:

rowm—+1<rowk, rowi<rowi+1, i=k,...,m.

which can be achieved by multiplying from the right with the

following (orthogonal!) permutation matrix P ¢ R +17+1 Row k
1 0 .. oo 0]
0 .
1 0 0
PT — 0 € IRm—i—l,m—&-l)
1 0
0 1 0]

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4245

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

=T ¢ R""",

—_

v T

This step is a mere bookkeeping operation and does not involve any computations.

Step @: Restore upper triangular form through Givens rotations (— § 3.3.3.15)

Successively target bottom row and rows from the top to turn leftmost entries of bottom row into zeros.
Here demonstrated for the case m = n

[« *] * i
0 = 0 =
T — : 0 . G1,m+1 : 0) Gomt1
0 O 0 = 0 O 0
0 O 0 O 0 O 0
| * * ok] 0 =x *]
* i [*]
0 0
Gm—l m+1 0 Gm m+1 ~
— | . — | . i} =R (3.35.6)
0 O 0 =x 0 0 =
0 O 0 O 0 0 0 =
0 0 0 x| | 0 0 0
> Computational effort for this step = O(n?) for n — oo
Finally, setting Q1 = Gy, jyyr1 - -+ - - G1 41 the final QR-decomposition reads

A=rpT (% g) Q/R = QR with orthogonal Q € K" Lm+l

because the product of orthogonal matrices is again orthogonal. Of course, we know that Q is never
formed in an algorithm but kept as a sequence of orthogonal transformations.
Review question(s) 3.3.5.7 (Modification teachniques for QR-decompositions)

(@3.3.5.7.A) Explain why, as far as the use of the QR-decomposition in numerical methods is concerned,
the distinction between full and economical versions does not matter.

3. Direct Methods for Linear Least Squares Problems, 3.3. Orthogonal Transformation Methods [DR08, Sect. 4248

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(@3.3.5.7.B) [QR-update after dropping a column] Assume that A arises from A € R™", m > n, by
dropping the k-th column, k € {1,...,n}. How can a QR-decomposition of A be computed based on
a QR-decomposition A = QR of A?

Hint. Examine the structure of QA..

(@3.3.5.7.C) [Update of QR-decomposition when modifying a single entry] Assume that the (full)
QR-decomposition A = QR of A € R"™" m > n, is available. Describe the algorithm for comput-
ing the QR-decomposition of A € R""" that arises from setting a single entry of A at position (4, k),
te{l,...,m} ke{l,...,n}tozero.

Exception. You may look at the lecture notes to answer this question.

3.4 Singular Value Decomposition (SVD)

Beside the QR-decomposition of a matrix A € IR""" there are other factorizations based on orthogonal
transformations. The most important among them is the singular value decomposition (SVD), which can be
used to tackle linear least squares problems and many other optimization problems beyond, see [Kal96].

3.4.1 SVD: Definition and Theory

Theorem 3.4.1.1. Singular value decomposition — [NS02, Thm. 9.6], [Gut09, Thm. 11.1]

For any A € K""" there are unitary/orthogonal matrices U € K" 'V € IK"" and a (generalized)
diagonal *) matrix & = diag(cy,...,0p) € R™", p := min{m,n}, o1 >0 > --- >0, > 0
such that

A =UzVH,

Terminology (*): A matrix X is called a generalized diagonal matrix, if (Z)i,j =0,ifi #7,1<i<m,
1 <j < n. We still use the diag operator to create it from a vector.

Proof. (of Thm. 3.4.1.1, by induction)
To start the induction note that the assertion of the theorem is immediate forn =1 orm = 1.

For the induction step (n — 1, m — 1)=-(m, n) first remember from analysis [Str09, Thm. 4.2.3]: Continu-
ous real-valued functions attain extremal values on compact sets (here the unit ball {x € K": ||x||, < 1}).
In particular, consider the function v € K" — ||Av|| € IR. This function will attain its maximal value ||A||,
on {veK?: |v|, <1} for at least one vector x, ||x|| = 1:

> xeK',yeK", [x[|=lyl,=1: Ax=0y, oc=|Al;,,

where we used the definition of the matrix 2-norm, see Def. 1.5.5.10. By Gram-Schmidt orthogonalization
or a similar procedure we can extend the single unit vectors x and y to orthonormal bases of K" and K™,
respectivelt: IV € K*"~1 U € K™~ such that

V=[xV]eK" , U=[yU € K™ areorthogonal.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 247

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Haxr [~1H <1 yHAx‘yHAV - O"WH .
B UtAv = |y U] A[XV]_[UHAX‘UHAV “lo[B | T

For the induction argument we have to show that w = 0. Since

2) 1
o
s[5 = [5™ = 02w > 02 w2,
w| ||, W)
we conclude
2
Aqx||? A(Y 2 Hex\2
“AlH%: [A1x]; > H 1(W)HZ > (0" + w'w) =0’ +wiw. (3.4.1.2)

0#£x€K” ||x||% H(K’)H; o 0'2+WHW

We exploit that multiplication with orthogonal matrices either from right or left does not affect the Euclidean
matrix norm:

2
2 2 (3.4.1.2) 2 2 2
o? = |[al; = |[umav| = |als Al = A+ Wl = w=o.

- o[at]

Then apply the induction argument to B.

Definition 3.4.1.3. Singular value decomposition (SVD)

The decomposition A = UZVH of Thm. 3.4.1.1 is called singular value decomposition (SVD) of
A. The diagonal entries o; of X. are the singular values of A. The columns of U/V are the left/right
singular vectors of A.

Next, we visualize the structure of the singular value decomposition of a matrix A = K",

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 248

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

§3.4.1.4 (Economical singular value decomposition) As in the case of the QR-decomposition, compare
(3.3.3.1) and (8.3.3.1), we can also drop the bottom zero rows of X and the corresponding columns of U
in the case of m > n. Thus we end up with an “economical” singular value decomposition of A € K"":

m>n: A=ULVH, UeK", TeK", VeK" , U"U=1I,,V unitary,
(U orthonormal columns)

m<n: A=UZVH, UeK", TeK", VeK" , Uuniary, VIV =1,.
(V orthonormal columns)

(3.4.1.5)
with true diagonal matrices X, whose diagonals contain the singular values of A.
Visualization of economimcal SVD for m > 0:
A _ U = vH
The economical SVD is also called thin SVD in literature [GV13, Sect. 2.3.4]. J

An alternative motivation and derivation of the SVD is based on diagonalizing the Hermitian matrices
AAH ¢ R"™™ and AHA € R™". The relationship is made explicit in the next lemma.

Lemma 3.4.1.6.

The squares o? of the non-zero singular values of A are the non-zero eigenvalues of AA, AAH
with associated eigenvectors (V).1,...,(V).p, (U).1,...,(U). ,, respectively.

Proof. AAH and AH A are similar (— Lemma 9.1.0.6) to diagonal matrices with non-zero diagonal entries
02 (0; # 0), 9.,

AAH —yuzvivzigi =y zzf pH. O
diagonal matrix
O

Remark 3.4.1.7 (SVD and additive rank-1 decomposition — [Gut09, Cor. 11.2], [NS02, Thm. 9.8])
Recall from linear algebra that rank-1 matrices coincide with tensor products of vectors:

AcK™ and rank(A)=1 < JuecK"vecK: A=uvl, (3.4.1.8)

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 249

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

because rank(A) = 1 means that Ax = y(x)u for some u € K™ and a linear form x € K" — pu(x) €

K. By the Riesz representation theorem the latter can be written as 1(x) = viix,

B The singular value decomposition provides an additive decomposition into rank-1 matrices:
H & H
A=ULV' = 2@ (U).,;i (V) |- (3.4.1.9)
]:

Since the columns of U and V are orthonormal, we immediately conclude:

, ARU), =0i(V),;, je{l,....p}. (3.4.1.10)

Remark 3.4.1.11 (Uniqueness of SVD)
The SVD from Def. 3.4.1.3 is not (necessarily) unique, but the singular values are.

Proof. Proof by contradiction: assume that A has two singular value decompositions

A=UzxLnvi=0U5vl! = U, iz uUl=AAl=-vu, =zl U
N~ ——
:diag(a%,...,a%,) :diag(Ulz,...,a,%,)

The two diagonal matrices are similar, which implies that they have the same eigenvalues, which agree
with their diagonal entries. Since the latter are sortlejd, the diagonals must agree.

|
§3.4.1.12 (SVD, nullspace, and image space) The SVD give complete information about all crucial
subspaces associated with a matrix:

Lemma 3.4.1.13. SVD and rank of a matrix — [NS02, Cor. 9.7]

If, for some 1 < r < p := min{m, n}, the singular values of A € K"" satisfy oy > --- > 0, >
Ory1 = -+ -0p =0, then

rank(A) =r (no. of non-zero singular values) ,
N(A) =Span{(V).,11,---, (V).n} ,
R(A) = Span{(U).1,...,(U).,} .

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 250

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

lllustration for m > n: columns = ONB of R(A) rows = ONB of N/(A)
_ c " N \
| >
I 77777777 —
|
|
A : VH
= : U N _
|
|
| 0 0 i
: e
|
G]Izrm'" 3 elKmm e]lzrm,n
(3.4.1.14)

Review question(s) 3.4.1.15 (SVD: Definition and theory)

(Q3.4.1.15.A) If a square matrix A € R™" is given as A = QDQ " with an orthogonal matrix Q € R""
and a diagonal matrix D € IR™", then what is a singular value decomposition of A?

(Q3.4.1.15.B) What is a full singular value decomposition of A = uv', u € R", v € R""?

(Q@3.4.1.15.C) Based on the SVD give a proof of the fundamental dimension theorem from linear algebra:
rank(A) + dim AN (A) =n VA € K™" .

(@3.4.1.15.D) Use the SVD of A € K" to prove the fundamental relationships
R(AT) = N (AT, N(AT) =R(A)L.

Here X designates the orthogonal complement of a subspace X C IK? with respect to the Euclidean
inner product:

Xt:={veK’: xlv=0vxe X}.

(@3.4.1.15.E) Use the SVD to show that every regular square matrix A € IR"~" can be factorized as
A =QS, Q orthogonal, S symmetric, positive definite ,

which is the so-called polar decomposition of A.

3.4.2 SVDin EIGEN

The EIGEN class JacobiSVD is constructed from a matrix data type, computes the SVD of its argument
during construction and offers access methods MatrixU (), singularValues (), and MatrixV ()
to request the SVD-factors and singular values.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 251

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

C++-code 3.4.2.1: Computing SVDs in EIGEN

#include < /SVD>

// Computation of (full) SvD A=UXVH — Thm. 3.4.1.1
// SVD factors are returned as dense matrices 1in natural order

© ® N o o A~ » N

std :: tuple < , , > svd_full (const & A) {
::JacobiSVD< > (A, ::ComputeFullU | ::ComputeFullV) ;

U= .matrixU(); // get unitary (square) matrix U
V = .matrixV () ; // get unitary (square) matrix V

10 sV = .singularValues(); // get singular values as vector

i Sigma = i (A. (), A. 0));

12 const unsigned p = sv. (); // no. of singular values

13 Sigma. (0,0,p,p) = sv. (); // set diagonal block of X

14 return std::tuple< , , >(U, Sigma,V) ;

15|}

17 | // Computation of economical (thin) SVD A=UXVH sce (3.4.1.5)
18 |// SVD factors are returned as dense matrices 1in natural order

19 | std::tuple< , , > svd_eco (const & A) {

20 ::JacobiSVD< > (A, ::ComputeThinU | :: ComputeThinV) ;
21 U = .matrixU(); // get matrix U with orthonormal columns
22 V = .matrixV () ; // get matrix V with orthonormal columns
23 sV = .singularValues(); // get singular values as vector

24 Sigma = sv. (); // build diagonal matrix X

25 return std::tuple< , , >(U, Sigma,V) ;

% |}

The second argument in the constructor of JacobiSVD determines, whether the methods mat rixU ()
andmatrixV () return the factor for the full SVD of Def. 3.4.1.3 or of the economical (thin) SVD (3.4.1.5):
Eigen::ComputeFull«* will select the full versions, whereas Eigen: :ComputeThinx picks the
economical versions — documentation.

Internally, the computation of the SVD is done by a sophisticated algorithm, for which key steps rely on
orthogonal/unitary transformations. Also there we reap the benefit of the exceptional stability brought
about by norm-preserving transformations — § 3.3.3.29.

EIGEN’s algorithm for computing SVD is (numerically) stable — Def. 1.5.5.19

§3.4.2.2 (Computational cost of computing the SVD) According to EIGEN’s documentation the SVD of
a general dense matrix involves the following asymptotic complexity:

cost(economical SVD of A € K™") = O(min{m,n}>max{m,n})

B The computational effort is (asymptotically) linear in the larger matrix dimension. J

EXAMPLE 3.4.2.3 (SVD-based computation of the rank of a matrix) Based on Lemma 3.4.1.13, the
SVD is the main tool for the stable computation of the rank of a matrix (— Def. 2.2.1.3)

However, theory as reflected in Lemma 3.4.1.13 entails identifying zero singular values, which must rely
on a threshold condition in a numerical code, recall Rem. 1.5.3.15. Given the SVD A = ULVH T =

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 252

https://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.html
https://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.html

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

diag(o1, ..., Omingm,n}), of @ matrix A € K™, A # 0 and a tolerance tol > 0, we define the numerical
rank

ro= ﬂ{crl-: |o;| > tol max{|c7j|}} : (3.4.2.4)
]
The following code implements this rule.

C++-code 3.4.2.5: Computing rank of a matrix through SVD

2 |// Computation of the numerical rank of a non-zero matrix by means of

3 |// singular value decomposition, cf. (3.4.2.4).

4 ::Index rank_by_svd (const &A, double tol = EPS) ({

5 if (A. () == 0) return ::Index (0) ;

6 . JacobiSVD< > (A);

7 const sV = .singularValues(); // Get sorted singular values as
vector

8 ::lndex n = sv. ();

9 iIndex r = 0;

10 // Test relative size of singular values

11 while ((r<n) && (sv(r) >= sv(0)x*xtol)) r++;

12 return r;

13|}

EIGEN offers an equivalent built-in method rank () for objects representing singular value decomposi-
tions:

C++-code 3.4.2.6: Using rank () in EIGEN

> |// Computation of the numerical rank of a matrix by means of SVD
3 ::Index rank_eigen (const &A, double tol = EPS) ({

4 return A.jacobiSvd () .setThreshold (tol).rank() ;

5

}

The method set Threshold () passes tol from (3.4.2.4) to rank (). 2

EXAMPLE 3.4.2.7 (Computation of nullspace and image space of matrices) “Computing” a subspace
of R¥ amounts to making available a (stable) basis of that subspace, ideally an orthonormal basis.

Lemma 3.4.1.13 taught us how to glean orthonormal bases of A'(A) and R(A) from the SVD of a matrix
A. This immediately gives a numerical method and its implementation is given in the next two codes.

C++-code 3.4.2.8: ONB of \/(A) through SVD

2 |// Computation of an ONB of the kernel of a matrix
3 nullspace (const &A, double tol = EPS) ({

4 using index_t = ;i Index;

5 ::JacobiSVD< > (A, ::ComputeFullV) ;

6 index_t r = .setThreshold (tol).rank() ;

7| // Rightmost columns of V provide ONB of N(A)

8 Z = : () - (A. (O=r);

9 return Z;

10 |}

C++-code 3.4.2.9: ONB of R(A) through SVD

2 |// Computation of an ONB of the image space of a matrix

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 253

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

MatrixXd rangespace (const MatrixXd &A, double tol = EPS) {
using index_t = MatrixXd::Index;
Eigen::JacobiSVD<MatrixXd > svd (A, Eigen :: ComputeFullV) ;
index_t r = svd.setThreshold (tol).rank() ;

// r left columns of U provide ONB of R(A)
return svd. matrixU() .leftCols(r);

© © N o ua b~ »

Review question(s) 3.4.2.10 (SVD in EIGEN)

(Q3.4.2.10.A) Please examine Code 3.4.2.9 and detect a potentially serious loss of efficiency. In which
situations will this have an impact?

A

3.4.3 Solving General Least-Squares Problems by SVD

In a similar fashion as explained for QR-decomposition in Section 3.3.4, the singular valued decompisition
(SVD, — Def. 3.4.1.3) can be used to transform general linear least squares problems (3.1.3.7) into a
simpler form. In the case of SVD-based orthogonal transformation methods this simpler form involves
merely a diagonal matrix.

Here we consider the most general setting
Ax=b e R" with AeR"™ , rank(A)=r<min{m,n}.

In particular, we drop the assumption of full rank of A. This means that the minimum norm condition (ii) in
the definition (3.1.3.7) of a linear least squares problem may be required for singling out a unique solution.

We recall the (full) SVD of A € R™":

X, 0 \'2
R R
0 0 \'A
_ - _ | - _ -
| X
|
1 (N A B e A —
[!
| i
A | \"2
— U1 : U2 I ,,,,,,,,,1,,,,,,
| v,
: 0 0 i
: | eﬁﬂ
|
e]ﬁ?”'” cRmm e]ﬁ%,n
(3.4.3.1)

with U; € R™", U, € R™" " with orthonormal columns, U := [Uy, Uy] unitary,
X, = diag(cy,...,0,) € R (singular values, Def. 3.4.1.3),
Vi € R, V, € R"" " with orthonormal columns, V := [V{, V;] unitary.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 254

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

We can proceed in two different ways, both of which we elaborate in the sequel:

Approach @: We can use the invariance of the 2-norm of a vector with respect to multiplication with
U := [Uy, U], see Thm. 3.3.2.2, together with the fact that U is unitary, U~! = U, see Def. 6.3.1.2:

[Uy, Uy] - [(Ei:)] =

T, 0] {VI B H {zrvjx} B [UlTb]
0 0|V,) 0 U, b
We follow the same strategy as in the case of QR-based solvers for full-rank linear least squares problems.
Vx| [U/b
0 U b

B |Ax—b|,= H[U1 Us] l]x b (3.4.3.2)

2

We choose x such that the first r components of { } vanish:

> (possibly underdetermined) r x n linear system ZrVIx = UlT b. (3.4.3.3)

To fix a unique solution in the case » < n we appeal to the minimal norm condition in (3.1.3.7): appealing
to the considerations of § 3.1.3.3, the solution x of (3.4.3.3) is unique up to contributions from

N(VI) Lemma:3.1.2.12 R(Vl)J_ orthongmality R(Vz) . (3.4.3.4)

Since V is unitary, the minimal norm solution is obtained by setting contributions from R (V) to zero,
which amounts to choosing x € R (V7). This converts (3.4.3.3) into

L, ViViz=U/b = z=%X/'U/b.
‘:’I-/

B> generalized solution — Def. 3.1.3.1 x' = ViZ-1U[b , x|, = HUZTsz . (3.4.35)

Approach @: From Thm. 3.1.2.1 we know that the generalized least-squares solution x* of Ax = b solves
the normal equations (3.1.2.2), and in § 3.1.3.3 we saw that x" lies in the orthogonal complement of

N(A):
ATAX'=ATb , xteN(A)L. (3.4.3.6)

By Lemma 3.4.1.13 and using the notations from (3.4.3.1) together with the fact that the columns of V
form an orthonormal basis of IR":

N(A) =R(V2) & N(A)T=R(Vy). (3.4.3.7)

Hence, we can write x' = V,y for some y € IR". We plug this representation into the normal equations
and also multiply with V., similar to what we did in § 3.1.3.3:

B V/ATAV;y=V/ATDb. (3.4.3.8)
Next, insert the SVD of A:
V/VEU'UZV'V]y=V/VZU'b. (3.4.3.9)
1 —— 1y 1

=I

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 255

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Then we switch to the block-partitioned form as in (3.4.3.1):

T T
T z, | O |0 [V] T % | O u/
Vl [Vl,VzlJ: 0O ‘ 0O o) ‘ o) J V; Vly = Vl [Vl,Vz] Ol 0 UZT b (3.4.3.10)
G]f{rn,n E]f{n,r
i}
-
22lo][1] x| O U/

i}

X2y =%,U{b. (3.4.3.12)

Cancelling the invertible matrix X, on both sides yields formula (3.4.3.5).

We remind that In a practical implementation, as in Code 3.4.2.5, one has to resort to the numerical rank
from (3.4.2.4):
r = max{i: 0;/0q > tol},

where we have assumed that the singular values o; are sorted according to decreasing modulus.

C++-code 3.4.3.13: Computing generalized solution of Ax = b via SVD

#include <

/SVD>

Isgsvd (const
// Compute economical SVD,

&A, const

&b) {
compare Code 3.4.2.1

© ® N o o &~ @ N

::JacobiSVD< > svd (A, ::ComputeThinU | :: ComputeThinV) ;
sv = svd.singularValues() ;
unsigned int r = svd.rank(); // Numerical rank, default tolerance
U = svd.matrixU (), V = svd. matrixV () ;
w | s/ xP=ViE UMD, see
11 // (3.4.3.5)
12 return V. (r) = (sv. (r). () - () =
13 (U. (r). () * b));

The () method directly returns the generalized solution

C++-code 3.4.3.14: Computing generalized solution of Ax = b via SVD

&A, const &b) {
::ComputeThinU |

Isqsvd_eigen (const
::JacobiSVD<
return svd. (b);

> svd (A, ::ComputeThinV) ;

2
3
4
5

}

Remark 3.4.3.15 (Pseudoinverse and SVD — [Han02, Ch. 12], [DR08, Sect. 4.7]) From Thm. 3.1.3.6
we could conclude a general formula for the Moore-Penrose pseudoinverse of any matrix A € R™". Now,
the solution formula (3.4.3.5) directly yields a concrete incarnation of the pseudoinverse A ™.

Theorem 3.4.3.16. Pseudoinverse and SVD

If A € K™" has the SVD decomposition A = ULV partitioned as in (3.4.3.1), then its Moore-
Penrose pseudoinverse (— Thm. 3.1.3.6) is given by Af = VL, 1Ulf.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 256

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Review question(s) 3.4.3.17 (Solving general least-squares problems by SVD)
(Q@3.4.3.17.A) Discuss the efficient implementation of a C++ function
Eigen::VectorXd solveRankOneLsqg(const Eigen::VectorXd &u,
const Figen::VectorXd &v, const Eigen::VectorXd &b);
that returns the general least squares solution of Ax = b for the rank-1 matrix A := uv', u € R™,
veR",m>n.
A

3.4.4 SVD-Based Optimization and Approximation

For the general least squares problem (3.1.3.7) we have seen the use of SVD for its numerical solution in
Section 3.4.3. The the SVD was a powerful tool for solving a minimization problem for a 2-norm. In many
other contexts the SVD is also a key component in numerical optimization.

3.4.4.1 Norm-Constrained Extrema of Quadratic Forms

We consider the following problem of finding the extrema of quadratic forms on the Euclidean unit sphere
{x € K" x|, = 1}:

given AcK"™ m>n, findxe K" |x|,=1, |Ax|, = min . (3.4.4.1)

Use that multiplication with orthogonal/unitary matrices preserves the 2-norm (— Thm. 3.3.2.2) and resort
to the (full) singular value decompositon A = UXVH (— Def. 3.4.1.3):

. 2 . H . . H 2
min ||Ax||; = min HUZV xH = min HUZ(V x)H
Ix[l>=1 [Ix[l2=1 2 || vHx]||,=1 2

[y=Vix] = min |[Zy[3= min (79 +- +ony;) > 0}

lyll,=1 yll,=1

Since the singular values are assumed to be sorted as o1 > 0y > - - - > 0y, the minimum with value 0721
is attained for y2 = landy; = --- = y,_1 = 0, thatis, Vlix = y = e, (£ n-th Cartesian basis vector
inIR"). = minimizer x* = Ve, = (V). ,, minimal value || Ax*||, = 03,.

C++ code 3.4.4.2: Solving (3.4.4.1) with EIGEN =* GITLAB

// EIGEN based function for solving (3.4.4.1);

// minimizer returned nin x, mininum as return value

double minconst(VectorXd &x,const MatrixXd &A) {
MatrixXd :: Index m=A.rows () ,n=A.cols () ;
if (m < n) throw std::runtime_error ("A must be tall matrix");
// SVD factor U is not computed!
Eigen ::JacobiSVD<MatrixXd> svd (A, Eigen :: ComputeThinV) ;
x.resize (n); x.setZero(); x(n—1) = 1.0; // e,

10 x = svd.matrixV () *xx;

11 return (svd.singularValues ())(n—1);

© ©® N o o h~ W N

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 257

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/decomposition/minconst.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

By similar arguments we can solve the corresponding norm constrained maximization problem
given A e K™ ,m>n, findxe K" |x|,=1, [Ax],— max,
and obtain the solution based on the SVD A = ULVH of A:

o1 = max ||Ax|l, , (V).1 = argmax|Ax|, . (3.4.4.3)

Ix[l=1 Ix]l,=1
Recall: The Euclidean matrix norm (2-norm) of the matrix A (— Def. 1.5.5.10) is defined as the maximum
in (3.4.4.3). Thus we have proved the following theorem:
Lemma 3.4.4.4. SVD and Euclidean matrix norm

If A € K"™" has singular values oy > 05 > --- > 0, > 0, p := min{m, n}, then its Euclidean
matrix norm is given by ||A||, = o1 (A).
If m = n and A is regular/invertible, then its 2-norm condition number is condz(A) =01/0y.

EXAMPLE 3.4.4.5 (Fit of hyperplanes) For an important application from computational geometry, this
example studies the power and versatility of orthogonal transformations in the context of (generalized)
least squares minimization problems.

From school recall the Hesse normal form of a hyperplane H (= affine subspace of dimension d — 1) in
RY:

H={xcR:c+n'x=0}, ncR?, |n|,=1. (3.4.4.6)

where n is the unit normal to H and |c| gives the distance of #H from 0. The Hesse normal form is
convenient for computing the distance of points from #, because the

Euclidean distance of y € RY from the planeis dist(#,y) = |c+ny]|, (3.4.4.7)

Goal: given the point coordinate vectors yi,...,y, € RY m > d, find H < {c € R,n € R,
|n||, = 1}, such that

m m
Y dist(H,y;)* = Y_lc+n'yj* — min . (3.4.4.8)
=1 =1

Note that (3.4.4.8) is not a linear least squares problem due to the constraint ||n||, = 1. However, it turns
out to be a minimization problem with almost the structure of (3.4.4.1) (v s := (yk),):

I vip - wnal |c
T yo1 - youl| |Mm
(3448) < _ y_’]/., _ — min under the constraint ||n|[, =1.
1 Ymai - Ymd ng
~~ e
—=:A =:X 2

Note that the solution component c is not subject to the constraint. One is tempted to use this freedom to
make one component of Ax vanish, but which one is not clear. This is why we need another preparatory
step.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 258

http://de.wikipedia.org/wiki/Hessesche_Normalform

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Step @: To convert the minimization problem into the form (3.4.4.1) we start with a QR-decomposition
(— Section 3.3.3)

(711 12 o Trggr |
0 Top cee e 72,d+1
T yvip - W4 : _)
1 v1 - Yo ' ' '
A= 7* 241 _ QR , R:=| 0 Fapigsr| € R™ATL
: : : o --- o 0
1 ym,l T ym,d
| 0 0
(71 T2 e T |
0 rp -+ -0 T2ap1 c
: : n
|Ax|, = min < |[Rx|,=|| 0 Fasid+1]| | : — min . (3.4.4.9)
0o .. . 0
: . | 14]
0 .- . 0 |)

Step @ Note that, if n is the solution of (3.4.4.8), then necessarily (why?)

c-rtny-ropt+--+rae1-1n3=0.

This insight converts (3.4.4.9) to

Top T3 ot v r?_,d-l—l nm

0 rs3 -+ -+ T3441

_ " —min , |n|,=1. (3.4.4.10)
0 Tatrd+1] [ng] ||,

(3.4.4.10) is now a problem of type (3.4.4.1), minimization on the Euclidean sphere. Hence, (3.4.4.10)
can be solved using the SVD-based algorithm implemented in Code 3.4.4.2.

d
, =/m#0,c= —rl_ll Z r1,j+11; can always be computed.
j=1

Note: Sinceri1 = |[(A).1

1

This algorithm is implemented as case p==dim+1 in the following code, making heavy use of EIGEN’s
block access operations and the built-in QR-decomposition and SVD factorization.

C++-code 3.4.4.11: (Generalized) distance fitting of a hyperplane: solution of (3.4.4.12)

// Solves constrained linear least squares problem
// (3.4.412) with dim passing d
std :: pair <Eigen ::VectorXd, Eigen::VectorXd> clsq(const MatrixXd& A,
const unsigned dim) {

unsigned p = A.cols (), m = A.rows () ;

if (p < dim + 1) throw runtime_error("not enough unknowns") ;

if (m< dim) throw runtime_error("not enough equations");

m = std::min(m, p); // Number of variables
10 // First step: orthogonal transformation, see Code 3.3.4.1
0 MatrixXd R = A.householderQr () . matrixQR () . template triangularView <Eigen:: Upper>() ;
12 // compute matrix V from SVD composition of R, solve (3.4.4.10)

© ©®© N o o h~ W N

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 259

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

13 MatrixXd V = R.block(p — dim, p — dim, m + dim — p, dim)

14 .jacobiSvd (Eigen :: ComputeFullV) . matrixV () ;

15 VectorXd n = V.col(dim — 1); // Norm-constrained part of solution vector
16 // Compute free part of solution vector

17 const auto R_topleft = R.topLeftCorner(p — dim, p — dim);

18 // Check for singular matrix

19 const auto R_diag = R_topleft.diagonal () .cwiseAbs () ;

20 if (R_diag.minCoeff() < (numeric_limits<double>::epsilon ())=*R_diag.maxCoeff())
21 throw runtime_error ("Upper left block of R not regular");

22 VectorXd ¢ = —(R_topleft.template triangularView <Eigen::Upper>()).

23 solve(R.block(0, p — dim, p — dim, dim) * n);

24 return {c,n};

25 |}

=> GITLAB

Note that Code 3.4.4.11 solves the general problem: For A € K" find n € R%, ¢ € R" such that
o
n

Review question(s) 3.4.4.13 (Norm-Constrained Extrema of Quadratic Forms)

— min with constraint |[n|[, =1. (3.4.4.12)
2

(Q3.4.4.13.A) Let M € IR™" be symmetric and positive definite (s.p.d.) and A € IR™". Devise an algo-
rithm for computing

argmax||Ax| , B:={x€R" x'Mx=1},
xeB

also based on the SVD of M.

3.4.4.2 Best Low-Rank Approximation

§3.4.4.14 (Low-Rank matrix compression) Matrix compression addresses the problem of approximating
a given “generic” matrix (of a certain class) by means of matrix, whose “information content”, that is, the
number of reals needed to store it, is significantly lower than the information content of the original matrix.

Sparse matrices (— Notion 2.7.0.1) are a prominent class of matrices with “low information content”.
Unfortunately, they cannot approximate dense matrices very well. Another type of matrices that enjoy “low
information content”, also called data sparse, are low-rank matrices.

Lemma 3.4.4.15.

If A € R™" has rankr < min{m,n} (— Def. 2.2.1.3), then there exist U € R™" and V € R"",
suchthatA = UV .

Proof. The lemma is a straightforward consequence of Lemma 3.4.1.13 and (3.4.1.14): choose U, V as
first » columns of the corresponding SVD-factors. -
None of the columns of U and V can vanish. Hence, in addition, we may assume that the columns of U
are normalized: ||(U).;|l, =1,j=1,...,7.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 260

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/clsq/Eigen/clsq.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

It takes only 7 (17 + 1 — r) real numbers to store A € R with rank(A) = 7.

Thus approximating a given matrix A € R"" with a rank-r matrix, » < min{m, n}, can be regarded as
an instance of matrix compression. The approximation error with respect to some matrix norm ||-|| will be
minimal if we choose the best approximation

A, = argmin{||A —B||: B€ R™", rank(B) =r}, 1<r <min{m,n}. (3.4.4.16)

_

Here we explore low-rank best approximation of general matrices with respect to the Euclidean matrix
norm ||-||, induced by the 2-norm for vectors (— Def. 1.5.5.10), and the Frobenius norm ||-|| ..

Definition 3.4.4.17. Frobenius norm

The Frobenius norm of A € K™" is defined as

m n
A=Y Y Jayl*.

i=1j=1

It should be obvious that ||A||; invariant under orthogonal/unitary transformations of A. Thus the Frobe-
nius norm of a matrix A, rank(A) = r, can be expressed through its singular values o;:

Frobenius norm and SVD: |A]|7 = Y07 (3.4.4.18)

% notation: R,(m,n):={A € K™": rank(A) <r},m,n,r e N

The next profound result links best approximation in R, (1, n) and the singular value decomposition (—
Def. 3.4.1.3).

Theorem 3.4.4.19. Best low rank approximation — [Gut09, Thm. 11.6]
Let A = ULVH pe the SVD of A € K"™" (— Thm. 3.4.1.1). For1 < k < rank(A) set

Ui := [(U).4,...,(U). | e K™,

k
H .
Ap:= U Vil =) 00(U), (V) with v .= [(V).,,...,(V).,] € K™,
(=1 ’
X = diag(cy,...,0%) € Kbk,

Then, for ||| = [|-[|r and ||-| = |-
|A — Al < [|A—F|| VF e Ri(m,n),

that is, Ay is the rank-k best approximation of A in the matrix norms ||-|| - and ||-||,.

5, holds true

This theorem teaches us that the rank-k-matrix that is closest to A (rank-k best approximation) in both
the Euclidean matrix norm and the Frobenniusnorm (— Def. 3.4.4.17) can be obtained by truncating the
rank-1 sum expansion (3.4.1.9) obtained from the SVD of A after k terms.

Proof. (of Thm. 3.4.4.19) As in the statement of the theorem write A, = UkaVlfI for the truncated SVD.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 261

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Obviously, since (here shown for m > n)

Opx Okn—k
Ok+1
A-Ar=U| O, vi,
On
i Om—n,k Om—n,n—k

and both matrix norms are invariant under multiplication with orthogonal matrices, we conclude

Ok+1 Jor |- = I,
rankAk =k and ||A _ Ak“ — ||Z . Zk“ _ +2 5 || || || ||2
a4 ol =
© First we tackle the Euclidean matrix norm ||| = ||-||,. For the sake of brevity we write vji= (V):J,

uj = (U):,]. for the columns of the SVD-factors V and U, respectively. Pick B € K", rank B = k.

B dimAN(B)=n—-k = N(B)NSpan{vy,...,vis1} # {0}.

For x € N(B)NSpan{vy,...,viki1}, [x|l, = 1, we have an expansion into columns of V:
X = Z;.‘ill(v]-Hx)vj. We use this, the fact that x is a unit vector and the definition of the Euclidean matrix
norm.

2

k+1 k+1
2 2 2
A= BIE 2 (A = B)xIE = 1AxI5 = | o) = X of (0 2

k+1
because 3 (vi'x)® = Ix||5 = 1.
j=1
® Now we turn to the Frobenius norm ||-|| ;. We assume that B € K", rank(B) = k < min{m, n},

minimizes A — F among all rank-k-matrices F € IK""". We have to show that B coincides with the trun-
cated SVD of A: B = Ay.

The trick is to consider the full SVD of B:

5. 0 Up € K™ unitary ,
B = U; [Cf O} vl 25 € RFF diagonal
Vg € K" unitary .

Generically, we can write

L+D+R Xp

D e KF* diagonal ,
X1 X2 g

} L € K** strictly lower triangular ,
R € K** strictly upper triangular ,

uHAv; = l

with some matrices X1, € KXk X, € K" kK X,, € K" %"=k Then we introduce two m x n rank-
k-matrices:

L+Zz+R X

@) :=UB{ oB (ﬂvH,
L+Zz;+R O

C, = UB{ X7_B1 O}VI;.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 262

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Since ||A — B|| is minimal, we conclude from the invariance of the Frobenius norm under orthogonal
transformations

2 2 2 2 2 2
A —=Cil[r = |[A =Bz = [|A=Cil[p + L]z + [R]IF + [[Xi2llF,
2 2 2 2 2 2
A= Collp = |[A =B = |A—Coflp + [IL]Iz + [R]IF + [X1 |7 -
Obviously, this implies L = O, R = O, X1, = O, and X1 = O, which means that

D O

A-ulg

}V}f d € K" diagonal .

Write D = diag(d, ..., dk). Then we have with r := rank(A)
2 2 2
A[lF =0+ -+ 07 =di + -+ di + [XazlE,
2 2 2 2 2
A =Bz = [ID —Zp[[f + [[Xn2[[f = jeyq + -+ 07
Hence, by the minimizer property of B
1. Ly = D, because any other choice makes ||A — B||r bigger,

2. ||X22| must be minimal, which entails choosing d; = ¢j,j = 1,... k.

01
= ulAv; = o
Ok
o X22

This is possible only, if the k leftmost columns of both Ug and Vg agree with those of the corresponding
SVD-factors of A, which means B = A;. -

The following code computes the low-rank best approximation of a dense matrix in EIGEN.

C++ code 3.4.4.20: SVD-based low-rank matrix compression, => GITLAB

MatrixXd lowrankbestapprox (const Eigen::MatrixXd &A, unsigned int k) {
// Compute economical SVD, compare Code 3.4.2.1
const Eigen::JacobiSVD<MatrixXd> svd (A, Eigen::ComputeThinU |
Eigen :: ComputeThinV) ;
// Form matrix product UipXiVj.
// Extract X, as diagonal matrix of largest k singular values.
// EIGEN provides singular values in decreasing order!
return (svd.matrixU().leftCols(k)) =*
10 (svd.singularValues() .head (k) .asDiagonal ()) *
1 (svd.matrixV () .leftCols (k) .transpose()) ;

© ©® N o o h~ 0 N

§3.4.4.21 (Error of low-rank best approxmation of a matrix) Since the matrix norms ||-||, and ||-|| - are
invariant under multiplication with orthogonal (unitary) matrices, we immediately obtain expressions for the
norms of the best approximation error:

In Euclidean matrix norm: HA — UkaVkHH2 = Ok+1 , (3.4.4.22)
P min{m,n}
in Frobenius norm: HA — UkaVkHHF =) 0’]-2 . (3.4.4.23)
j=k+1

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 263

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/LeastSquares/lsqsvd/lsqsvd.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

This provides precise information about the best approximation error for rank-k matrices. In particular, the
decay of the singular values of the matrix governs the convergence of the rank-k best approximation error
as k increases. 0

EXAMPLE 3.4.4.24 (Image compression) A rectangular greyscale image composed of m X n pixels
(greyscale, BMP format) can be regarded as a matrix A € R™", (A);; € {0,...,255}, cf. Ex. 9.3.2.1.
Thus low-rank approximation of the image matrix is a way to compress the image.

B> Thm.3.4.4.19 > best rank-k approximation of image: A = U;%; V'

Of course, the matrices U;, Vi, and X are available from the economical (thin) SVD (3.4.1.5) of A.

View of ETH Zurich main building Compressed image, 40 singular values used
T T T T T

=+ | — g = el
200 400 600 800 1000 1200 200 400 600 800 1000 1200

Difference image: |original — approximated| Singular Values of ETH view (Log-Scale)
T T T

200

300

400 10°F k = 40 (0.08 mem) E

500
600

700

800

Il Il Il Il Il Il Il
200 400 600 800 1000 1200 0 100 200 300 400 500 600 700 800

Note that there are better and faster ways to compress images than SVD (JPEG, Wavelets, etc.) J
Review question(s) 3.4.4.25 (Best low-rank approximation)

(@3.4.4.25.A) Show that for A € R and any orthogonal Q € IR"™

QA = [|Allf

where ||-|| ¢ is the Frobenius norm of a matrix.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 264

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Definition . Frobenius norm

The Frobenius norm of A € K" is defined as

m n
IAIE =Y Y lagl*

i=1j=1

(Q3.4.4.25.B) Show that for any A € R"", with singular values ¢, j = 1, p := ... min{m, n}, holds

2 P 2
|AlR =)0 2.

(Q3.4.4.25.C) Sketch the implementation of a C++ function
std::pair<Eigen::MatrixXd,Eigen::MatrixxXd>

lowRankApprox (const Eigen::MatrixxXd &A, double tol);

that computes a matrix A € R"" of minimal rank r € {1,...,min{m,n}} such that

HA - KHZ <tol |Al,.

The function should return A in factorized form A = XYT as a tuple of matrix factors X € R™”,

Y € R,

3.4.4.3 Principal Component Data Analysis (PCA)

A

EXAMPLE 3.4.4.26 (Trend analysis) The objective is to extract information in the form of hidden “trends”

from data.

XETRA DAX 1,1.2008 - 29.10.2010

10 T T T T

stock price (EUR)

-1 I I I

! ! ! | — VOW3

H

0 100 200 300 400 500 600 700 800
Fig. 85 days in past
_I

We are given time series data:

< (end of day) stock prizes
£ n data vectors € R™

Rephrased in the language of
linear algebra:

Are there underlying

governing trends ?

7

Are there a few vectors
uy,...,up, p < 1, such that,
approximately, all other data
vectors € Span{uy,...,u,}?

EXAMPLE 3.4.4.27 (Classification from measured data) Data vectors belong to different classes,
where those in the same class are “qualitatively similar” in the sense that they are small (random) per-
turbations of a typical data vector. The task is to tease out the typical data patterns and tell which class

every data vector belongs to.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 265

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Given: measured U-I characteristics of n diodes in
a box
(data points (Uj, I].(k)),j =1,...,m k =
1,...,n)

Classification problem: find out
e how many different types of diodes in box,
e the U-I characteristic of each type.

Measurement errors !
Manufacturing tolerances !

The following plots display possible (“synthetic”) measured data for two types of diodes; measurement er-
rors and manufacturing tolerances taken into account by additive (Gaussian) random perturbations (noise).

Fig. 86

measured U-I characteristics for some diodes measured U-I characteristics for all diodes
1.2 T T T T T T T T T 1.2 T T
5 t*% 1 i %ﬁé; fhg;fii i
+F +
| gt iR L
i i $+ T e i *
¢+#$i§ eri ot + * L Ty ¥
ol I . *Ei*i
+ i%i + *i *
z = 5 é %i
g g %#Jr . i%ii*
4
3 3 oal it ¥k ii#
tHI4 i% it;% =X
S " % i
¥4 ¥
02f fi % *%*%iiiﬁ* i*
3 TS 1L LINEE
++% ¥ o % EA *
ﬁ%ﬁi%%gﬁgﬁt i
oF % E S ¥ *
HOUHR N
-0.2 L L L L L L L L L -0.2 L L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 87 voltage U Fig. 88 voltage U

Ex. 3.4.4.26 and Ex. 3.4.4.27 present typical tasks that can be tackled by principal component analysis.
Now we give an abstract description as a problem of linear algebra.

Given: n data points a; € R™, j = 1,...,n, in m-dimensional (feature) space
(e.g., aj may represent a finite time series or a measured relationship of physical quantities)

In Ex. 3.4.4.26: n = number of stocks,
m = number of days, for which stock prices are recorded

4 Extreme case: all stocks follow exactly one trend
< aj€Span{u} Vj=1,...,n,

for a trend vector u € R™, |jul|, = 1.

4 Unlikely case: all stocks prices are governed by p < n trends:
YRS aj € Span{uy,...,up} Vji=1,...,m, (3.4.4.28)
with orthonormal trend vectorsu; € R™, i =1,...,p.

Why unlikely ? Small random fluctuations will be present in each stock prize
Why orthonormal ? Trends should be as “independent as possible” (minimally correlated)

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 266

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Expressed using the terminology linear algebra:

rank(A) =p for A:=ay,...,a,] € R™",

(3.4.4.28) R(A) — Span{uy, ..,)] (3.4.4.29)
4 Realistic: stock prizes approximately follow a few trends
aj € Span{uy, ..., u,} + “small perturbations” Vj=1,...,m,
with orthonormal trend vectors u;, i =1, ..., p.
Task (PCA): determine (minimal) p and orthonormal trend vectors u;, i = 1,...,p

Now singular value decomposition (SVD) according to Def. 3.4.1.3 comes into play, because
Lemma 3.4.1.13 tells us that it can supply an orthonormal basis of the image space of a matrix, cf.
Code 3.4.2.9.

Issue: how to deal with (small, random) perturbations ?

Recall Rem. 3.4.1.7, (3.4.1.9): If A = ULH is the SVD of A € R"™", then (uj = columns of U, v; =
columns of V)

A —o | W[4o | W[v] +...

This already captures the case (3.4.4.28) and we see that the columns of U supply the trend vectors we
are looking for!

© no perturbations:

SVD: A =UZV" satisfies 01> 02> ...0p > 0py1 =" = Opin{mn} =0,
orthonormal trend vectors (U).1,...,(U)., .

® with perturbations:
SVD: A =UZV" satisfies 1> 05> ...0,>0p11 % & Oin(mu}~ 0,
orthonormal trend vectors (U).1,...,(U)., .

If there is a pronounced gap in distribution of the singular values, which separates p large from
min{m, n} — p relatively small singular values, this hints that R(A) has essentially dimension p. It
depends on the application what one accepts as a “pronounced gap”.

Frequently used criterion:

q min{m,n}
p= min{q: Yor>(1-1) af} for T<1. (3.4.4.30)
=1 j=1

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 267

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

What is the Information carried by V in PCA context ?

A = oy u11[ﬂ:}+g2 UlZ[j:}—k...

j-th data set (<= time series #j) in j-th column of A
(3419 = (A),] = oqum (Vl)]‘ + (72112(V2)]‘ +...

B The j-th row of V (up to the p-th component) gives the weights with which the p identified trends
contribute to data set ;.

EXAMPLE 3.4.4.31 (PCA of stock prices — Ex. 3.4.4.26¢cnt’d) Stock prices are given as a large
matrix A € R"":

columns of A — time series of end of day stock prices of individual stocks
rows of A — closing prices of DAX stocks on a particular day

The data were obtained from Yahoo Finance in 2016:

I/ bin/csh
foreach i (ADS ALV BAYN BEI BW CBK DAl DBK DB1 LHA DPW DTE EOAN FRE3 \
FME HEI HEN3 IFX SDF LIN MAN MRK MEO MUV2 RWE SAP SIE TKA VOW3)

wget —O "i".csv "http://ichart.finance.yahoo.com/table.csv?s=i.DE&a=00&b=1&
uuuuu €c=2008&d=09&e=30&f=2010&g=d&ignore=.csv"

sed —i —e ’'s/—/,/g’ "i".csv

end

XETRA DAX 1,1.2008 - 29.10.2010 Singular values of stock pricce matrix
T T T T T T T T

stock price (EUR)
3
singular value
arv
/

107

I I I I I I I H L L | L
0 100 200 300 400 500 600 700 800 900 0 5 10 15 20

‘
. 25 30
Fig. 89 days in past Fig. 90 no. of singular value

We observe a pronounced decay of the singular values of A. The plot of Fig. 90 is given in linear-
logarithmic scale. The neat alignment of larger singular values indicates approximate exponential decay
of the singular values.

> a few trends (corresponding to a few of the largest singular values) govern the time series.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 268

Fig.

Fig. 93

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Five most important stock price trends (normalized) Five most important stock price trends
T T T 500 T T T

0.15 T T

300 q

200 - q

Wa |
-0.05- M | A i B
\ A]
‘ | I L‘W
N FAR
: hu S ‘4 | i
i | /
. — U ——Us(;1) /pv/ '
-0.15[— U2 b ——Us(: /
—ri! 200 B— Wy 1
—U(:4) — U*S(:4)
——U(:5) ——U's(:5)
-0.2 L L L T L Il Il ~300 L L L T L Il Il
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
1 days in past Fig. 92 days in past

Columns of U (— Fig. 91) in SVD A = UXV ' provide trend vectors, cf Ex. 3.4.4.26 & Ex. 3.4.4.32.

When weighted with the corresponding singular value, the importance of a trend contribution emerges,
see Fig. 92

Trends in BMW stock, 1.1.2008 - 29.10.2010 Trends in Daimler stock, 1.1.2008 - 29.10.2010
0.25 T T T 0.15 T T T

0.2

o
@

o

relative strength
relative strength

02 I I I I I 02 I I I I I
1 2 3 4 5 . 1 2 3 4 5
no of singular vector Fig. 94 no of singular vector

Stocks of companies from the same sector of the economy should display similar contributions of major
trend vectors, because their prices can be expected to be more closely correlated than stock prices in
general. This is evident in 93 and Fig. 94 for two car makers.

EXAMPLE 3.4.4.32 (Principal component analysis for data classification — Ex. 3.4.4.27 cnt’d)
Given: measured U-I characteristics of n = 20 unknown diodes, I(U) available for m = 50 voltages.

Sought: Number of different types of diodes in batch and reconstructed U-I characteristic for each type.

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 269

Fig. 95

Fig. 97

Fig. 98

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

measured U-I characteristics for some diodes

current |

-0.2 L L L L L
0 0.4 0.5
voltage U

0.6 0.7 0.8

Data matrix A € R™", m > n:

Rows A —

0.9

current |

0.8

0.6

0.4

measured U-I characteristics for all diodes

| | ‘+ | ‘+ +
A ++++$$+ tJr#r f $+$i¢ i
’ %iéiﬁgigﬁf%iﬁgifﬁf%iﬁ
+ FELTOTL + Lt SR I
L +$%§§§§§ T +F ++ $§$7
. FEits *z%i*
+ i%Jr *#%# *
L it
*$¢+ * féi*
[i * % %%i# i
+z§+ if ii;% I*
r fi ** o x *i* %*%§i§ij* i
%f PN 51 ¥ ;% i*i
ORI
ﬁ;iﬂzi%*igw%; . 7
IR
0 o 0z 03 04 Io‘.s 0 06 07 08 09 1
voltage

series of measurements for different diodes (times/locations etc.),

Columns of A — measured values corresponding to one diode (time/location etc.).

Goal of PCA:

singular values for diode measurement matrix
T T

25

singular value o,
o
T

o
T

*

* *

N

* * *
8

)

10 12
no. of singular value

0.15

strengths of contributions of singular components
T T T T

0.051-

strength of singular component #2

|
0.2 0.25
strength of singular component #1

I
0.15

0.3

Observations:

0.35
Fig. 99

detect linear correlations between columns of A

<— distribution of singular values of matrix

current |

two dominant singular values !

—~——e—

measurements display linear correlation with two

Erinciﬁal comﬁonents

two types of diodes in batch

principal components (trend vectors) for diode measurements

0.3 T T T T T T T
+ dominant principal component
+ second principal component
02r — +t,
+++
4t
T AR bt
+ AR
+ + T
L N ++++ + t4 i
0. +rs Lt
it
+++ Lt
i T
o+ + i
++ 4
+
0.1 *
§ .,
+
+
-0.2 + 7
ty
+
-0.31- b
+
-0.4 L L L I I I L L L
0 5 10 15 20 25 30 35 40 45 50
voltage U

4+ First two rows of V-matrix specify strength of contribution of the two leading principal components

to each measurement

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD)

270

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

> Points (V). 1.2, which correspond to different diodes are neatly clustered in R?. To determine
the type of diode 7, we have to identify the cluster to which the point ((V); 1, V;) belongs (— cluster
analysis, course “machine learning”, see Rem. 3.4.4.43 below).

4+ The principal components themselves do not carry much useful information in this example.

_

EXAMPLE 3.4.4.33 (Data points (almost) confined to a subspace) More abstractly, above we tried to
identify a subspace to which all data points a; were “close”. We saw that the SVD of

Data points e <> a; € R® “almost” located on on a
plane >,

-02+

Non-zero singular values of A = [ay, ..., a,]:

~0.4|

3.1378 ~0.6| \ N\

1.8092 | W
0.1792 N

124

-1.4

The third singular value is much smaller, which hints |
that the data points approximately lie in a 2D sub- °|
space spanned by the two first singular vectors of A. - s o 0s

0.5
Fig. 100 15 -05

|

§3.4.4.34 (Proper orthogonal decomposition (POD)) In the previous Ex. 3.4.4.33 we saw that the
singular values of a matrix whose columns represent data points € IR tell us whether these points are alll
“approximately located” in a lower-dimensional subspace V' C IR”. This is linked to the following problem:

Problem of proper orthogonal decomposition (POD):

Given: Data points ay,...,a, € R™, m,n € N
Sought: For k < min{m, n}, find a subspace U, C IR™ such that

n
U, = argmin inf [|a; — w| , (3.4.4.35)
¢ WC]R”%dika]; WEWH] I

that is, we seek that k-dimensional subspace U of IR for which the sum of squared dis-
tances of the data points to U} is minimal.

We have already seen a similar problem in Ex. 3.4.4.5. For m = 2 we want to point out the difference to
linear regression:

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 271

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

y az

X aq
Fig. 101 Fig. 102

Linear regression: Minimize the sum of squares of POD: Minimize the sum of squares of (minimal)
vertical distances. distances.

By finding a k-dimensional subspace we mean finding a, preferably orthonormal, basis of that subspace.
Let us assume that {wy, ..., wy} is an orthonormal basis (ONB) of a k-dimensional subspace W C R™.
Then the orthogonal projection Pyyx of a point x € IR onto W is given by

k
PWX = Z(W]TX)W] = WWTX , (34436)
j=1

where W = [wq, ..., wi] € R™k. This formula is closely related to the normal equations for a linear
least squares problem, see Thm. 3.1.2.1 and § 3.1.1.8 for a visualization of an orthogonal projection.
||Ix — Pwx]|, is the (minimal) distance of x to W.

Hence, again writing W € IR”* for the matrix whose columns form an ONB (= W' W = I) of W C R",
we have

n. ’ n 2 2
Z inf Ha]' —WH2 = ;Ha]- —WWTa]'H2 = HA — WWTAHF , (3.4.4.37)

=1 weW
where ||-|| denotes the Frobenius norm of a matrix, see Def. 3.4.4.17,and A = [a;,...,a,] € R™".

Note that rank(WW " A) < k. Let us write A = ULV ' for the SVD of A, and U € R, V, € Rk,
and Xy € RX* for the truncated SVD-factors of A as introduced in Thm. 3.4.4.19. Then the rank-k best
approximation result of that theorem implies

HA - waAHF > A - U Vi, YWeR™, WIW=TI.
In fact, we can find W € IR”“¥ with orthonormal columns that realizes the minimum: just choose W := Uy
and verify

WW'A = U U/ ULV = Ui [OJEV' =U 5V, .

Theorem 3.4.4.38. Solution of POD problem

The subspace Uy spanned by the firstk left singular vectors of A = |[ay, ..., a,| € R™" solves the
POD problem (3.4.4.35):

Ug=R((U).,4) with A=UZV' the SVDofA.

Appealing to (3.4.4.23), the sum of the squared distances can be obtained as the sum of the squares of
the remaining singular values 0y_1, ..., 0y, p := min{m, n}, of A:

n

p
Y inf |laj—wl>=) 2. (3.4.4.39)

j=1 Uk 1=k +1

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 272

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

As a consequence, the decay of the singular values again predicts how close the data points are to the
POD subspaces Uy, k=1,...,p — 1. 2

EXAMPLE 3.4.4.40 (Principal axis of a point cloud) Given m > 2 points X;j € Rk, j=1,...,m,in
k-dimensional space, we ask what is the “longest” and “shortest” diameter d ;. and d_. This question can
be stated rigorously in several different ways: here we ask for directions for which the point cloud will have
maximal/minimal variance, when projected onto that direction:

d; :=argmax Q(v),
lv]=1

N o 1
d_ :=argminQ(v), Z (i =) "], " Zx] . (3.4.4.41)

[vl=1

T T T T T T T T

% points
major axis
minor axis

The directions d, d_ are called the principal axes ’
of the point cloud, a term borrowed from mechanics
and connected with the axes of inertia of an assembly
of point masses.

Principal axes of a point cloud in 2D > |*

1 1 1 1 1 1 1 1 1
Fig. 103 -8 -6 -4 2 0 2 4 6 8

d, d_ can be computed by computing the extremizers of x — ||Ax||, with

(x; —¢)7 d; = argmax||Ax]||,,
=1
A= : c R™ = 1 I¥li=1 1Al ,” (3.4.4.42)
- — = argmin||Ax||, ,
(x" =) Ivl=1
on {x € R*: |x||, = 1}, using the SVD-based method presented in Section 3.4.4.1. 4

Remark 3.4.4.43 (Algorithm for cluster analysis) In data classification as presented in Ex. 3.4.4.32,
after we have identified the p main trends (<> singular values and left singular vectors) and how much
they contribute to every data point (< right singular vectors), the last step is to perform a cluster analysis
based on the right singular vectors vy, ..., vy,.

Now we study the abstract problem of cluster analysis:
Given: 4 N datapointsx; € R, i=1,...,N,
4 Assume: number n of desired clusters is known in advance.

Sought: Partitioning of index set {1,..., N} = I; U- - - U I,;, achieving minimal mean least squares error

mlse := Z Yollxi —my[3, m Exz : (3.4.4.44)

11611 1611

The subsets {x; : i € I;} are called the clusters. The points m; are their centers of gravity.

The Algorithm involves two components:

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 273

https://en.wikipedia.org/wiki/Moment_of_inertia#Principal_axes

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

O Splitting of a cluster by separation along its principal axis, see Ex. 3.4.4.40 and Code 3.4.4.48:

a; := argmax{) _ |(x; — m;) 'v|?} . (3.4.4.45)

Ivl=1 i€l

Relies on the algorithm from Ex. 3.4.4.40, see Code 3.4.4.48.

® Improvement of clusters using the Lloyd-Max algorithm, see Code 3.4.4.49. It involves two steps in

turns:

(a) Given centers of gravity m; redistribute points according to

L:={ie{l,...,N}: [|[x; —my||, < |[|x; —myl|, Vk #1}, (3.4.4.46)

that is, we assign each point to the nearest center of gravity, see Code 3.4.4.49.
(b) Recompute centers of gravity

1

m; = —
ﬂll iGIl

X; . (3.4.4.47)

We start with a single cluster, and then do repeated splitting (@) and cluster rearrangement (@) until we
have reached the desired final number 7 of clusters, see Code 3.4.4.50.

C++-code 3.4.4.48: Principal axis point set separation

© ©® N o o h~ W N

27

// Separation of a set of points whose coordinates are stored in the
// columns of X according to their location w.r.t. the principal axis
std :: pair<VectorXi, VectorXi> princaxissep(const MatrixXd & X) {

int N = X.cols(); // no. of points
VectorXd g = X.rowwise () .sum() / N; // Center of gravity, cf. (3.4.4.47)
MatrixXd Y = X — g.replicate(1,N); // Normalize point coordinates.
// Compute principal axes, cf. (3.44.45) and (3.4.4.3). Note that the
// SVD of a symmetric matrix is available through an orthonormal
// basis of eigenvectors.
SelfAdjointEigenSolver<MatrixXd> es(YxY.transpose());
// Major principal axis
Eigen::VectorXd a = es.eigenvectors () .rightCols <1>();
// Coordinates of points w.r.t. to major principal axis
Eigen::VectorXd ¢ = a.transpose () *Y;
// Split point set according to locations of projections on principal
// Stxc%:s:vector with indices to prevent resizing of matrices
std :: vector<int> i1, i2;
for(int i = 0; i < c.size(); ++i){
if(c(i) >= 0)
i1.push_back (i) ;
else

i2 .push_back (i) ;
}
// return the mapped std::vector as Eigen::VectorXd
return std:: pair<VectorXi, VectorXi>(VectorXi::Map(il1.data(), i1.size()),

VectorXi ::Map(i2.data(), i2.size()));

C++-code 3.4.4.49: Lloyd-Max algorithm for cluster indentification

2
3

template <class Derived>
std :: tuple <double, VectorXi, VectorXd> distcomp(const MatrixXd & X, const

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD)

274

NumCSE, AT’20, Prof. Ralf Hiptmair

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

MatrixBase <Derived> & C){
// Compute squared distances

// d.row(j) = squared distances from all points in X to cluster j
MatrixXd d(C.cols (), X.cols());
for(int j = 0; j < C.cols(); ++j){

MatrixXd Dv = X — C.col(j).replicate(1, X.cols());
d.row(j) = Dv.array().square().colwise().sum() ;

}

// Compute minimum distance point association and sum of minimal
squared distances
VectorXi idx(d.cols()); VectorXd mx(d.cols());

for(int j = 0; j < d.cols(); ++j){
// mx(j) tells the minimal squared distance of point j to the

nearest cluster . . ,
// idx(j) tells to which cluster point j belongs

mx(j) = d.col(j).minCoeff(&idx (j));
}
double sumd = mx.sum() ; // sum of all squared distances
// Computer sum of squared distances within each cluster
VectorXd cds(C.cols()); cds.setZero();
for(int j = 0; | < idx.size(); ++j) // loop over all points
cds (idx (j)) += mx(j);
return std:: make_tuple(sumd, idx, cds);

}

// Lloyd-Max iterative vector quantization algorithm for discrete point
// sets; the columns of X contain the points X;, the columns of
// C initial approximations for the centers of the clusters. The final
// centers are returned in C, the index vector idx specifies
// the association of points with centers.
template <class Derived>
void lloydmax (const MatrixXd & X, MatrixBase <Derived> & C, VectorXi & idx, VectorXd
& cds, const double tol = 0.0001){
int k = X.rows(); // dimension of space
int N = X.cols(); // no. of points
int n =C.cols(); // no. of clusters
(
i

f(k = C.rows())
throw std::logic_error ("dimension mismatch") ;
double sd_old = std::numeric_limits<double >::max() ;
double sd;
std:: tie (sd, idx, cds) = distcomp(X,C);
// Terminate, 1if sum of squared minimal distances has not changed much
while ((sd_old—sd)/sd > tol){
// Compute new centers of gravity according to (3.4.4.47)
MatrixXd Ctmp(C.rows() ,C.cols()); Ctmp.setZero();
// number of points in cluster for normalization
VectorXi nj(n); nj.setZero() ;
for(int j = 0; j < N; ++j){ // loop over all points
Ctmp.col(idx(j)) += X.col(j);
++nj (idx (j)); // count associated points for normalization

0; i < Ctmp.cols(); ++i){

) > 0)

I(i) = Ctmp.col(i)/nj(i); // normalization

sd _old = sd;

// Get new minimum association of the points to cluster points

// for next iteration
std::tie(sd, idx, cds) = distcomp(X,C);

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD)

©SAM, ETH Zurich, 2020

275

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

61
62
63
64
65

66
67

// Note: this function is needed to allow a call with an rvalue
// && stands for an rvalue reference and allows rvalue arguments
// such as C.leftCols (nc) to be passed by reference (C++ 11 feature)
template <class Derived>
void lloydmax(const MairixXd & X, MatrixBase <Derived> && C, VectorXi & idx, VectorXd
& cds, const double tol = 0.0001){
lloydmax (X, C, idx, cds);

C++-code 3.4.4.50: Clustering of point set

© ©® N o o A W N

44
45
46
47
48

// n—-quantization of point set in k-dimensional space based on
// minimizing the mean square error of Euclidean distances. The
// columns of the matrix X contain the point coordinates, n specifies
// the desired number of clusters.
std :: pair<MatrixXd , VectorXi> pointcluster (const MatrixXd & X, const int n){
int N = X.cols(); // no. of points
int k = X.rows(); // dimension of space
// Start with two clusters obtained by principal axis separation
int nc = 1; // Current number of clusters
// Initial single cluster encompassing all points
VectorXi |big = VectorXi::LinSpaced(N,0,N—1);
int nbig = 0; // Index of largest cluster
MatrixXd C(X.rows(), n); // matrix for cluster midpoints
C.col(0) = X.rowwise () .sum()/N; // center of gravity
VectorXi idx (N); idx.setOnes () ;
// Split largest cluster into two using the principal axis separation
// algorithm
while (nc < n){
VectorXi i1, i2;
MatrixXd Xbig(k, Ibig.size());
for(int i = 0; i < lbig.size(); ++i) // slicing
Xbig.col(i) = X.col(lbig(i));
// separete Xbig into two clusters, 1l and 12 are index vectors
std::tie (i1, i2) = princaxissep (Xbig);
// new cluster centers of gravity
VectorXd c1(k), c2(k); cl.setZero(); c2.setZero () ;

for(int i = 0; i < i1.size(); ++i)
c1 += X.col(lbig (i1(i)));

for(int i = 0; i < i2.size(); ++i)
c2 += X.col(lbig (i2(i)));

cl /= i1.size(); c2 /= i2.size(); // normalization

C.col(nbig) = c1;

C.col(nbig+1) = c2;

++nc; // Increase number of clusters

// Improve clusters by Lloyd-Max iteration

VectorXd cds; // saves mean square error of clusters

// Note C.leftCols (nc) is passed as rvalue reference (C++ 11)
lloydmax (X,C. lefiCols (nc) ,idx,cds);

// Identify cluster with biggest contribution to mean square error
cds.maxCoeff(&nbig) ;

int counter = 0;

// update Ibig with indices of points in cluster with biggest

contribution ;
for(int i = 0; i < idx.size(); ++i){

if (idx(i) == nbig){
Ibig (counter) = i;
++counter ;

3. Direct Methods for Linear Least Squares Problems, 3.4. Singular Value Decomposition (SVD) 276

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

49 }

50 lbig .conservativeResize(counter) ;
51 }

52 return std::make_pair(C, idx);

53 |}

Review question(s) 3.4.4.51 (Principal Component Data Analysis)

(Q3.4.4.51.A) Assume that the (sorted!) singular values ¢j, j € {1,...,min{m,n}}, of A € R™",
m,n > 1, obey the “asymptotic” decay law

oj ~ Cexp(—aj) forsome C >0, a>0.

How much do you have to increase the rank of the best low-rank approximation of A with respect to the
Euclidean matrix norm in order to reduce the approximation error by a factor of 2?

Can you also answer this question for the Frobenius matrix norm?

3.5 Total Least Squares

In the examples of Section 3.0.1 we generally considered overdetermined linear systems of equations
Ax = b, for which only the right hand side vector b was affected by measurement errors. However, also
the entries of the coefficient matrix A may have been obtained by measurement. This is the case, for
instance, in the nodal analysis of electric circuits — Ex. 2.1.0.3. Then, it may be legitimate to seek a
“better” matrix based on information contained in the whole linear system. This is the gist of the total least
squares approach.

Given: overdetermined linear system of equations Ax =b, A € R™" b € R", m>n.
Known: LSE solvable < b € Im(A), if A, b were not perturbed,
but A, b are perturbed (measurement errors).
Sought: Solvable overdetermined system of equations Ax=b,A € R"" b e R",

“nearest”to Ax = b.

1= |east squares problem “turned upside down”: now we are allowed to tamper with system matrix and
right hand side vector!

Total least squares problem:
Given: A € R™", m > n, rank(A) = n, b € R",
find: A € R™", b e R™ with
H[A b| — [K B] HF —min , beR(A).
(3.5.0.1)

3. Direct Methods for Linear Least Squares Problems, 3.5. Total Least Squares 277

http://en.wikipedia.org/wiki/Total_least_squares

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

beR(A A bl)=n B> (@350 A b|= argmi = X|,.-
becRA) = rank([A b}) n (35.0.1) = [A b] r:jﬁr%liﬂ[A b] XHF

= [K l;] is the rank-n best approximation of [A b]!

We face the problem to compute the best rank-n approximation of the given matrix [A b], a problem
already treated in Section 3.4.4.2: Thm. 3.4.4.19 tells us how to use the SVD of [A b]

A=UZV', UeR"H ©eRUH v e R (3.5.0.2)
to construct [K 13}:
n+1 n
A b= USV' =]; (V) (V)T 3419 [g B} - ; 0i(U),;(V)]. (3503
v orogen [K B] (V)1 = AV) 1 ns1 +D(V)pst 1 = 0. (3.5.0.4)

- (3.5.0.4) also provides the solution x of Sx = b,
x:= A" = —~(V)iwnit/(V)nsinit s (3.5.0.5)
if (V)+1,+1 7 0 (in numerical sense, of course).

C++-code 3.5.0.6: Total least squares via SVD

// computes only solution X of fitted consistent LSE
VectorXd Isqtotal (const MatrixXd& A, const VectorXd& b) {
const unsigned m = A.rows(), n = A.cols();
MatrixXd C(m, n + 1); C << A, b; // C=[A,Db]
// We need only the SVD-factor V, see (3.5.0.3)
MatrixXd V = C.jacobiSvd (Eigen::ComputeThinU | Eigen::ComputeThinV).matrixV () ;

© ® N o o A~ W N

// Compute solution according to (3.5.0.5);

10 double s = V(n, n);

0 if (std::abs(s) < 1.0E—15) { cerr << "No solution!\n"; exit(1); }
12 return (—V.col(n).head(n) / s);

3.6 Constrained Least Squares

In the examples of Section 3.0.1 we expected all components of the right hand side vectors to be possibly
affected by measurement errors. However, it might happen that some data are very reliable and in this
case we would like the corresponding equation to be satisfied exactly.

= linear least squares problem with linear constraint defined as follows:

3. Direct Methods for Linear Least Squares Problems, 3.6. Constrained Least Squares 278

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Linear least squares problem with linear constraint:

Given: A € R™", m > n, rank(A) = n, b € R™,
C e RP", p <n,rank(C) =p,d € R?

Find: x € R" suchthat |Ax —b|l, 2 min and |Cx=d

/ (3.6.0.1)

Linear constraint

Here the constraint matrix C collects all the coefficients of those p equations that are to be satisfied exactly,
and the vector d the corresponding components of the right hand side vector. Conversely, the m equations
of the (overdetermined) LSE Ax = b cannot be satisfied and are treated in a least squares sense.

3.6.1 Solution via Lagrangian Multipliers

§3.6.1.1 (A saddle point problem) Recall important technique from multidimensional calculus for tackling
constrained minimization problems: Lagrange multipliers, see [Str09, Sect. 7.9].

Idea: coupling the constraint using the Lagrange multiplier m € R”

x = argmin sup L(y,m), (3.6.1.2)
yeR"” melR?
1
L(y,m) := E||Ay—b||§+mT(cy—c1>. (3.6.1.3)

L as defined in (3.6.1.3) is called a Lagrange function. The simple heuristics behind Lagrange multipliers
is the observation:

sup L(y,m) = oo, incase Cx # d!
mecR?

= A minimum in (3.6.1.2) can only attained, if the constraint is satisfied!

(3.6.1.2) is called a saddle point problem.

Solution of min-max problem like (3.6.1.2) is called a SN

saddle point. s)
E

Saddle point of F(x,m) = x> — 2xm >

Note that the function is “flat” in the saddle point e, ,

that is, both the derivative with respect to x and with
respect to m has to vanish.

-1 08 -06 -04 -02 0 0.2

multiplier m

Fig. 104 state x

3. Direct Methods for Linear Least Squares Problems, 3.6. Constrained Least Squares 279

http://en.wikipedia.org/wiki/Lagrange_multipliers

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

§3.6.1.4 (Augmented normal equations) In a saddle point the Lagrange function is “flat”, that is, all its
partial derivatives have to vanish there. This yields the following necessary (and sufficient) conditions for
the solution x of (3.6.1.2) and a saddle point in x, q: (For a similar technique employing multi-dimensional
calculus see Rem. 3.1.2.5)

oL

S (xq) =AT(Ax-b)+C'q =0, (3.6.1.5a)
oL !
5= (xq)=Cx—d=0. (3.6.1.5b)

This is an (1 + p) x (n + p) square linear system of equations, known as augmented normal equa-

tions:
ATA CT][x] [ATp
C 0 gl d : (3.6.1.6)

It belongs to the class of saddle-point type LSEs, that is, LSEs with a symmetric coefficient matrix with a
zero right-lower square block. In the case p = 0, in the absence of a linear constraint, (3.6.1.6) collapses
to the usual normal equations (3.1.2.2), ATAx = A b for the overdetermined linear system of equations
Ax = b.

As we know, a direct elimination solution algorithm for (3.6.1.6) amounts to finding an LU-decomposition of
the coefficient matrix. Here we opt for its symmetric variant, the Cholesky decomposition, see Section 2.8.
On the block-matrix level it can be found by considering the equation

ATA ¢c"7 [RT 0 R GT R, S € R™" upper triangular matrices,
C 0| | G —-sT||O0o S " GeRP.

Thus the blocks of the Cholesky factors of the coefficient matrix of the linear system (3.6.1.6) can be
determined in four steps.

@® Compute R from R'R=ATA - Cholesky decomposition — Section 2.8,
@ Compute G from R'G' = CT — n forward substitutions — Section 2.3.2,
® Compute S from S'S = GG' — Cholesky decomposition — Section 2.8.

_l

§3.6.1.7 (Extended augmented normal equations) The same caveats as those discussed for the regular
normal equations in Rem. 3.2.0.3, Ex. 3.2.0.4, and Rem. 3.2.0.6, apply to the direct use of the augmented
normal equations (3.6.1.6):

1. their condition number can be much bigger than that of the matrix A,
2. forming A" A may be vulnerable to roundoff,
3. the matrix AT A may not be sparse, though A is.

As in § 3.2.0.7 also in the case of the augmented normal equations (3.6.1.6) switching to an extended
version by introducing the residual r = Ax — b as a new unknown is a remedy, cf. (3.2.0.8). This leads to
the following linear system of equations.

-I A 0 r b
. Extended augmented
T T _ 2
AO g% X _?1 o normal equations (3.6.1.8)

3. Direct Methods for Linear Least Squares Problems, 3.6. Constrained Least Squares 280

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

3.6.2 Solution via SVD

Idea: Identify the subspace in which the solution can vary without violating the constraint.
Since C has full rank, this subspace agrees with the nullspace/kernel of C.

From Lemma 3.4.1.13 and Ex. 3.4.2.7 we have learned that the SVD can be used to compute (an or-
thonormal basis of) the nullspace N (C). The suggests the following method for solving the constrained
linear least squares problem (3.6.0.1).

® Compute an orthonormal basis of A/(C) using SVD (— Lemma 3.4.1.13, (3.4.3.1)):

-
C=U[Z 0] [Xﬂ , UeRPF, 2 eRPP, Vi € R",V, e RV'TF
2

B N(C)=R(V,).
and the particular solution xg € N'(C)" = R(V;) of the constraint equation
X := V2 'U'd.
This gives us a representation of the solution x of (3.6.0.1) of the form

x=xXo+ Voy, yeR"7.

@ Insert this representation into (3.6.0.1). This yields a standard linear least squares problem with
coefficient matrix AV, € R""~P and right hand side vector b — Axy € R™:

|A(xo + V2y) —b||, 2 min < |[AVyy — (b — Axg)|| — min .

Review question(s) 3.6.2.1 (Constrained least-squares problems)

(@3.6.2.1.A) The angles of a flat triangle can be estimated by solving the linear system of equations

_ O O =
Q K[™nNTH™ N

10
0o 1] |P| =
1 1| L7

for given measured values «, 8, and 7.

Find the least-squares solution, if the bottom equation has to be satisfied exactly. First recast into a
linearly constrained least-squares problem

|Ax —b|| > min , Cx=d,

with A € R"™", C e R, b € R", d € R”.

(@3.6.2.1.B) Given A € R™", C € RP", m,n,p € N, p < n, we want to solve

x* = argmax||A|, , C:={xeR": |x],=1 Cx=0}.

xeC

Sketch an SVD-based algorithm for computing x*.

3. Direct Methods for Linear Least Squares Problems, 3.6. Constrained Least Squares 281

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Learning Outcomes

After having studied the contents of this chapter you should be able to

give a rigorous definition of the least squares solution of an (overdetermined) linear system of equa-
tions,

state the (extended) normal equations for any overdetermined linear system of equations,

tell conditions for uniqueness and existence of solutions of the normal equations,

define (economical) QR-decomposition and SVD of a matrix,

know the asymptotic computational effort of computing economical QR and SVD factorizations,

explain the use of QR-decomposition and, in particular, Givens rotations, for solving (overdeter-
mined) linear systems of equations (in least squares sense),

use SVD to solve least squares, (constrained) optimization, and low-rank best approximation prob-
lems

explain the ideas underlying principal component analysis (PCA) and proper orthogonal decompo-
sition (POD),

formulate the augmented (extended) normal equations for a linearly constrained least squares prob-
lem.

3. Direct Methods for Linear Least Squares Problems, 3.6. Constrained Least Squares 282

Bibliography

[DRO8]
[GGK14]
[GV13]
[Gut07]
[Gut09]

[Han02]

[Hig02]
[Kal96]
[NS02]
[QSS00]
[QMN16]

[Str19]
[Str09]

W. Dahmen and A. Reusken. Numerik fiir Ingenieure und Naturwissenschaftler. Heidelberg:
Springer, 2008 (cit. on pp. 203, 204, 210, 214-246, 256).

W. Gander, M.J. Gander, and F. Kwok. Scientific Computing. Vol. 11. Texts in Computational
Science and Engineering. Heidelberg: Springer, 2014 (cit. on p. 201).

Gene H. Golub and Charles F. Van Loan. Matrix computations. Fourth. Johns Hopkins Stud-
ies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013,
pp. Xiv+756 (cit. on pp. 225, 227, 230, 249).

M. Gutknecht. “Linear Algebra”. 2007 (cit. on p. 223).

M.H. Gutknecht. Lineare Algebra. Lecture Notes. SAM, ETH Zirich, 2009 (cit. on pp. 220, 247,
249, 261).

M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen
Rechnens. Mathematische Leitfaden. Stuttgart: B.G. Teubner, 2002 (cit. on pp. 214-217, 220,
227, 256).

N.J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia, PA: SIAM,
2002 (cit. on pp. 227, 233).

D. Kalman. “A singularly valuable decomposition: The SVD of a matrix”. In: The College Math-
ematics Journal 27 (1996), pp. 2—23 (cit. on p. 247).

K. Nipp and D. Stoffer. Lineare Algebra. 5th ed. Zlrich: vdf Hochschulverlag, 2002 (cit. on
pp. 200, 223, 247, 249, 250).

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37. Texts in Applied Math-
ematics. New York: Springer, 2000 (cit. on p. 215).

Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced basis methods for partial
differential equations. Vol. 92. Unitext. Springer, Cham, 2016, pp. xi+296.

D. Strang. Linear Algebra and Learning from Data. Cambridge University Press, 2019.

M. Struwe. Analysis fiir Informatiker. Lecture notes, ETH Zlrich. 2009 (cit. on pp. 207, 210,
247, 279).

283

Chapter 4

Filtering Algorithms

This chapter continues the theme of numerical linear algebra, also covered in Chapter 1, 2, 10. We will
come across very special linear transformations («+ matrices) and related algorithms. Surprisingly, these
form the basis of a host of very important numerical methods for signal processing.

§4.0.0.1 (Time-discrete signals and sampling) From the perspective of signal processing we can iden-
tify
vector x € R" < finite discrete (= sampled) signal.

Sampling converts a time-continuous signal, repre-
sented by some real-valued physical quantity (pres-
sure, voltage, power, etc.) into a time-discrete signal:

X = X(t) = time-continuous signal, 0 < t < T,

“sampling”: x]-:X(jAt), j=0,...,n—1,
neN,nAt<T.

At > 0 = time between samples.

As already indicated by the indexing the sam-. th b to tpot,q time

pled values can be arranged in a vector x =
T
[xo,...,xnfl] € R™

Note that in this chapter, as is customary in signal processing, we adopt a C++-style indexing from 0: the
components of a vector with length » carry indices € {0,...,n —1}.

As an idealization one sometimes considers a signal of infinite duration X = X(t), —co < t < co. In this
case sampling yields a bi-infinite time-discrete signal, represented by a sequence (xk)kGZ e RZ. If this
sequence has a finite number of non-zero terms only, then we write (0, ..., Xy, Xp4 1, .-+, Xy-1,%1,0,...).

a
Contents
4.1 Filters and Convolutions v v v v i v v i i e e e e et e e et e e e 285
4.1.1 Discrete Finite Linear Time-Invariant Causal Channels/Filters 285
412 LI-FIRLinear Mappings i 287
4.1.3 Discrete Convolutions o o i i e 290
4.1.4 PeriodicConvolutions o i i e 293
4.2 Discrete Fourier Transform (DFT) o o i i i i i i e e e e e e e e e e e 298
42.1 Diagonalizing Circulant Matrices 298

284

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

4.2.2 Discrete Convolution via Discrete Fourier Transform 305
423 Frequency filtering viaDFT 307
424 Real DET e e 313
425 Two-dimensional DFT 314
4.2.6 Semi-discrete Fourier Transform [QSS00, Sect. 10.11] 322
4.3 FastFourier Transform (FFT) @ i i i i ittt et ie e 331
4.4 Trigonometric Transformations. 340
441 Sinetransform e 340
442 Cosinetransform 346
4.5 Toeplitz Matrix Techniques i 348
45.1 Matrices with Constant Diagonals 348
452 Toeplitz Matrix Arithmetic 350
453 TheLevinson Algorithm 351

4.1 Filters and Convolutions

4.1.1 Discrete Finite Linear Time-Invariant Causal Channels/Filters

In this section we study a finite linear time-invariant causal channelffilter, which is a widely used model
for digital communication channels, e.g. in wireless communication theory. We adopt a mathematical
perspective harnessing the toolbox of linear algebra as is common in modern engineering.

Mathematically speaking, a (discrete) channelffilter is a function/mapping F : (*°(Z) — (*(Z) from the
vector space (*°(Z) of bounded input sequences {x;}cz,

(2(Z) = {(xf)jez : sup |x;| < oo} ,
to bounded output sequences (y]')].ez.

i input signal channel Yk output signal

oot} b al eeg | [geemt YT
AR A] iy e

Fig. 106

Channelfilter: F:4*(Z) = (7(Z) , (yj)].GZ:F((xj).). (4.1.1.1)

In order to link (discrete) filters to linear algebra, we have to assume certain properties that are indicated

by the attributes “finite ”, “linear”, “time-invariant” and “causal”:

Definition 4.1.1.2. Finite channel/filter

A channelffilter F : (*(Z) — (*(Z) is called finite, if every input signal of finite duration produces
an output signal of finite duration,

It is natural to assume that it should not matter when exactly signal is fed into the channel. To express this

4. Filtering Algorithms, 4.1. Filters and Convolutions 285

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

intuition more rigorously we introduce the time shift operator for signals: for m € Z
Sm: 2(2) - 1*(Z) , Sm((x]-)].ez) = (x]-_m)].GZ . (4.1.1.4)

Hence, by applying S,, we advance (m < 0) or delay (m > 0) a signal by |m|At. For a time-invariant filter
time-shifts of the input propagate to the output unchanged.

Definition 4.1.1.5. Time-invariant channel/filter

Afilter F : (*(Z) — (*(Z) is called time-invariant (TI), if shifting the input in time leads to the
same output shifted in time by the same amount; it commutes with the time shift operator from
(4.1.1.4):

V(x))jez € ((Z), Ym € Z: F(Su((%));c5)) = Sm(F((%)) ;) (4.11.6)

Since a channer/filter is a mapping between vector spaces, it makes sense to talk about “linearity of F”.

Definition 4.1.1.7. Linear channel/filter

Afilter F : (*(Z) — (*°(Z) is called linear, if F is a linear mapping:
1—”(oc(x]-)].GZ + ,B(yj)jez) = ocF((xj)].GZ) + ,BF((yj)].eZ) (4.1.1.8)

for all sequences (xj)].ez, (¥j) ., € £°(Z) and real numbers &, 5 € R.

jez

Slightly rewritten, this means that for all scaling factors «, f € R

output(« - signal 1 + B - signal 2) = « - output(signal 1) + j - output(signal 2) .

Of course, a signal should not trigger an output before it arrives at the filter; output may depend only on
past and present inputs, not on the future.

Definition 4.1.1.9. Causal channel/filter

Afilter F : (*(Z) — (*(Z) is called causal (or physical, or nonanticipative), if the output does not
start before the input

VM € N: (x]-)].ezee""(z), xj=0 Vi<M = F((xj). .,)k=0 VYk<M. (41.1.10)

jEZ

Now we have collected all the properties of the class of filters in the focus of this section, called LT-FIR
filters.

Acronym: LT-FIR = finite (— Def. 4.1.1.2), linear (— Def. 4.1.1.7), time-invariant (— Def. 4.1.1.5), and
causal (— Def. 4.1.1.9) filter F : {*°(Z) — (*(Z)

§4.1.1.11 (Impulse response) For the description of filters we rely on special input signals, analogous to
the description of a linear mapping IR" — IR through a matrix, that is, its action on “coordinate vectors”.
The “coordinate vectors” in signal space (*°(Z) are so-called impulses, signals that attain the value +1
for a single sampling point in time and are “mute” for all other times.

4. Filtering Algorithms, 4.1. Filters and Convolutions 286

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Definition 4.1.1.12. Impulse response

The impulse response (IR) of a channelffilter is the output for a single unit impulse at t = 0 as
1 ,ifj=0

(Kronecker symbol).
0 else

input, that is, the input signalis x; = J; := {

The impulse response of a finite filter can be described by a vector h of finite length 7. In particular, the
impulse response of a finite and causal filter is a sequence of the form (...,0,ho, hy, ..., h,-1,0,...),
n € IN. Such an impulse response is depicted in Fig. 108.

impulse response

1 ho

hy,
h n—2
’1 i h, ; Thanks

|

Fig. 107] | to f1 i Fig. 108 tO tl tr ‘ ‘ ‘ ti b, 1 time

to the special properties of LT FIR filters, their impulse response offers a complete characterization. This
will be explored in the next section. J

Review question(s) 4.1.1.13 (Discrete finite linear time-invariant causal channels/filters)

(Q4.1.1.13.A) What is the output of a LT-FIR filter with impulse response (...,0,ho, hy, ..., h,-1,0,...),

n € IN, if the input is a constant signal (x]-)].ez, xj=a,a € R?

(Q4.1.1.13.B) [Filter with delayed feedback|

A filter setup is defined by feeding back the output =
signal with a delay At and damped by a factor of 2>

Judge whether this is a linear, time-invariant and
causal filter, and determine its impulse response.

Fig. 109

S1

N[—

4.1.2 LT-FIR Linear Mappings

We aim for a precise mathematical description of the impact of a finite, time-invariant, linear, causal filter
on an input signal: Let (...,0,hg,h1,...,h,-1,0,...), n € IN, be the impulse response (— 4.1.1.12)
of that finite (— Def. 4.1.1.2), linear (— Def. 4.1.1.7), time-invariant (— Def. 4.1.1.5), and causal (—
Def. 4.1.1.9) filter (LT-FIR) F : {*(Z) — (*(Z):

F((80) 1) = (-, 00 11, 01,0,

Owing to time-invariance we already know the response to a shifted unit pulse

F((60)je) = (i) = (- 0 hTO o hnT—l 0).
E= kAt t= (k+n—1)At

Every finite input signal (...,0,xg,x1,...,X,_1,0,...) € {*(Z) can be written as the superposition of
scaled unit impulses, which, in turns, are time-shifted copies of a unit pulse at t = 0:

m—1

(xi)jez - Z]k jez = Z kak< 7,0]ez> (4.1.2.1)

4. Filtering Algorithms, 4.1. Filters and Convolutions 287

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

where S; is the time-shift operator from (4.1.1.4). Applying the filter on both sides of this equation and
using linearity and time-invariance we obtain

F((xj) jeZ) ey mf xkF<Sk<((5j,o) jeZ)) time-invariance mf kak<F<(5]-,0)].€Z)) L (4122)

k=0 k=0

This leads to a fairly explicit formula for the output signal (y]-)].EZ = F<(x]-)].ez):

0 0 0 0 0
Yo ho 0 0 0
1 : ho 0 :
: hn—l : hO
0 h -1 .
A [o | +x| g | +x h | T e (:) : (4.1.2.3)
e
0 o
Ym+n-3 - - : :
Ym+n-2 0 0 0 hy,_1
0 0 0 0 0

Thus, in compact notation we can write the non-zero components of the output signal (y]')].EZ as
channel is causal and finite!

m—1
yk:F<(xj)j€Z>k: ;)hk_]-xj , k=0,...,m+n—2 (hj:=0forj<Oandj>n). (4.1.24)
]:

Summary of the above considerations:

Superposition of impulse responses

The output (-0, %0, Y1, Y2, - .) of afinite, time-invariant, linear, and causal channel for finite length
inputx = (...,0,xq,...,%,-1,0,...) € {*(Z) is a superposition of xj-weighted jAt time-shifted
impulse responses.

EXAMPLE 4.1.2.6 (Visualization: superposition of impulse responses) The following diagrams give
a visual display of the above considerations, namely of the superposition of impulse responses for a
particular finite, time-invariant, linear, and causal filter (LT-FIR), and an input signal of duration 3At, At =
time between samples. We see the case m = 4, n = 5.

4. Filtering Algorithms, 4.1. Filters and Convolutions 288

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

input signal x impulse response h

351 35 ‘ ‘ ‘
3r 39 4
25K . . 25k . N 4
21 2) - 8

X~ =
151 155 i
1 1 ul
0.5 I : 05+ . .|
0 T L L L L I 0 L L L
0 1 2 3 4 5 6 7 8 0 1 2 .3 4 5 7 8
Fig. 110 index i of sampling instance t, Fig. 111 index i of sampling instance t,

In this special case the formula (4.1.2.3) becomes

0 0 0 0 0
Yo ho 0 0 0
Al hy ho 0 0
IR S I
y3| _ 3 2 1 0
va| = 0y T | T | T
Ys 0 hy h3 hy
Ye 0 0 hy hs
Y7 0 0 0 hy
0 0 0 0 0

This reflects the fact that the is a linear superposition of impulse responses:

response (0 x, response (o x, response (o x, response (0 x,

ignal strength
+
ignal strength
+
ignal strength
+
ignal strength

U T e L it

Fig. 112 v z D 5 5 7 Fige 113) v z D 5 5 7 Fige 114) 0 z D 5 g 7 Fige 115) 0 3 D
all responses accumulated responses
351
61
3- @
51
25 :
¢
= = 4k
= 2
§ 2k ° [5
® 3
f_ﬁ E 3F
c 15F c
2 >
v)
1k 2 :
05 1k
0 0 i
: 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Fig. 116 i Fig. 117 i
_

4. Filtering Algorithms, 4.1. Filters and Convolutions 289

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The formula (4.1.2.4) characterizing the output sequence (yk)kGZ is a special case of a fundamental
bilinear operation on pairs of sequences, not necessarily finite.

Definition 4.1.2.7. Convolution of sequences

Given two sequences (/). (Xk)iez» at least one of which is finite or decays sufficiently fast,
their convolution is another sequence ()., defined as

ve= Y hjxj, keZ. (4.1.2.8)
jez

% Notation: For the sequence arising from convolving two sequences (hi).z and (xi).., we write
(xi) * (Bi)-

Note that convolution is not well-defined on ¢*°(Z) x {*(Z). A counterexample is provided by constant,
non-zero sequences. However, convolution has another interesting property, which can easily be estab-
lished by re-indexing j <— k — j in (4.1.3.11):

Theorem 4.1.2.9. Convolution of sequences commutes

If well-defined, the convolution of sequences commutes

(k) * (h) = (he) * (xx) -

Review question(s) 4.1.2.10 (LT-FIR Linear Mappings)

(Q4.1.2.10.A) [Composition of LT-FIR filters| Given two LT-FIR channels with impulse responses
(...,0,ho,hy,...,hy—1,0,...),neNand(...,0,20,81,---,8), | €N we build another channel by
composing them. This means we send the output of the first into the second. What is the impulse
response of the composition?

(Q4.1.2.10.B) Ansimple LT-FIR channel has impulse response (...,0,0,hg := 1,h; :=1,0,0,...). What
is the impulse response of the channel that is constructed by composing N of the simple channels. You
should see a familiar pattern!

(Q4.1.2.10.C) || An LT-FIR channel has known impulse response (...,0,ho, hy,...,h,-1,0,...),
n € IN. We know that it received a finite input signal (x;) of duration (m — 1)At and we measure the
output signal (1x) in exactly the same timespan.

Outline how one can compute the input signal. When is this possible?

4.1.3 Discrete Convolutions

Computers can deal only with finite amounts of data. So algorithms can operate only on finite signals,
which will be in the focus of this section. This continues the considerations undertaken in the beginning of
Section 4.1.2, now with an emphasis on recasting operations in the language of linear algebra.

Remark 4.1.3.1 (The case of finite signals and filters) Again we consider a finite (— Def. 4.1.1.2), linear
(— Def. 4.1.1.7), time-invariant (— Def. 4.1.1.5), and causal (— Def. 4.1.1.9) filter (LT-FIR) with impulse
response (...,0,ho, hy,...,h,—1,0,...), n € IN. From (4.1.2.4) we learn that

duration(output signal) < duration(input signal) 4+ duration(impulse response)

4. Filtering Algorithms, 4.1. Filters and Convolutions 290

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

We have seen this in (4.1.2.4), where an input signal with 1 pulses (duration (1 — 1)At) and an impulse
response with # pulses (duration (1 — 1)At) spawned an output signal with m + n — 1 pulses (duration
(m—14+m—1)At).

Therefore, if we know that all input signals have a duration of at most (1 — 1)At, which means they are

of the form (..., xg,x1,...,%X,_1,0,...), we can model them as vectors x = [xo,...,xm_l]T € R™, cf.
§ 4.0.0.1, and the filter can be viewed as a linear mapping F : R” — R”+"~1 which takes us to the
realm of linear algebra.

Thus, for the linear filter we have a matrix representation of (4.1.2.4). Let us first look at the special case
m = 4,n = 5 presented in Ex. 4.1.2.6:

o] o] 0] 07 0]
n hl l’lo 0 0
) hy Z1 Zo }?
y3| _ _ |h3 2 1 0
va| = 0| T | T | T
Ys 0 hy h3 hy
Ye 0 0 hy hs
7| o] o] o] |m]

Here, we have already replaced the sequences with finite-length vectors. Translating this relationship into
matrix-vector notation is easy:

Yo l’lo 0 0 0-
n hl l’lo 0 0
Y2 hz hl ho 0 X0
ys| _ |hs ha hy ho| |x
Ya hy h3 hy hi||x

Ys 0 hy hs hy| [x4
Ve 0 0 h4 l’l3
7 0 0 0 Iy

Writing y = [yo, .., Ymin_2] € R~ for the vector of the output signal we find for the general case
m>n

Yo

: CX . (4.1.3.2)

| Ym+n—2 |

Note that the i 4+ 1-th column of the matrix X € R "1 is obtained by cyclically permuting column i,
i=1,...,m—1. N

4. Filtering Algorithms, 4.1. Filters and Convolutions 291

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Recall the formula

m—1

Ve= Y hejxj, k=0,...,m+n—2 (hj:=0forj<0Oandj>n). (4.1.2.4)
j=0

supplying the non-zero terms of the convolution of two finite sequences (hy), and (xy), of length n and
m, respectively. Both can be identified with vectors [xo, . . .,xm_l]T e K™, [ho, .. .,hn_l]T € K", and,
since (4.1.2.4) is a special case of the convolution of sequences introduced in Def. 4.1.2.7, we might call
it a convolution of vectors. It represents a fundamental operation in signal theory.

Definition 4.1.3.3. Discrete

Given x = [xo,...,xm_l]T € K" h = [ho,...,hn_l]T € K" their discrete convolution
(DCONV) is the vector y = [y, . . .,ym+n_2]T € K"*+"~1 with components

m—1
Y = th,jx]-, k=0,....m+n—2, (4.1.3.4)
j=0

where we have adopted the convention /z; := 0 for j < Oorj > n.

% Notation for discrete convolution (4.1.3.4): y =hxx.

Remark 4.1.3.5 (Discrete convolution of equal-length vectors) Discrete convolution (4.1.3.4)form = n
enjoys a special property mirroring the result from Thm. 4.1.2.9 without the implicit assumptions required
there.

Defining x; := 0 for j < 0, we find that the discrete convolution of vectors of equal length is commutative:

n—1 n—1
Vi th_]‘x]‘: Zhlxk_l, k=0,...,2n—2, thatis, hxx=xxh ,
j=0 1=0

which can be seen by index transformation [< k — j. Filter and signal can be “swapped”:
X0, Xn—1 hO/---/hn—l

® | LTFIRhy...,n,1 | —@ - ® LTFIRxy...,xy 1 — @

_

§4.1.3.6 (Multiplication of polynomials) The formula (4.1.3.4) for the discrete convolution also occurs in
a context completely detached from signal processing. “Surprisingly” the bilinear operation (4.1.2.4) (for
m = n) that takes two input n-vectors and produces an output 2n — 1-vector also provides the coefficients
of the product polynomial.

Concretely, consider two polynomials in t of degree n — 1, n € IN, with real or complex coefficients,

n—1) n—1)
p(t) ==Y ait), q(t):=) b/, a,b K.
j=0 j=0

4. Filtering Algorithms, 4.1. Filters and Convolutions 292

http://en.wikipedia.org/wiki/Convolution

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Their product pg will be a polynomial of degree 2n — 2:

2n—2 min{k,n—1}
(pq)(t) = Z thk , Ck:i= Z agby_p, k=0,...,2n—2. (4.1.3.7)
k=0 {=max{0k—(n—1)}

Let us introduce dummy coefficients for p(t) and q(t), a;,b;, j = 2n,...,2n — 2, all set to 0. This can
be easily done in a computer code by resizing the coefficient vectors of p and g and filling the new entries
with zeros (“zero padding”). The above formula for ¢; can then be rewritten as

j
C]‘= Zagbj_g, j=0,...,21’l—2. (4-1-3-8)

=0

Hence, the coefficients of the product polynomial can be obtained as the discrete convolution of the coef-
ficient vectors of p and g:

[Co c1 ... Czn_z]T =axb ! (4.1.3.9)

Moreover, this provides another proof for the commutativity of discrete convolution. _|

Remark 4.1.3.10 (Convolution of causal sequences) The notion of a discrete convolution of Def. 4.1.3.3
naturally extends to so-called causal sequences € ¢*°(INy), that is, bounded mappings INy — K: the
(discrete) convolution of two sequences (x;);cN, (¥j)jeN, is the sequence (z;) e, defined by

k k
Zp 1= Z Xk—jYj = ijyk_j , kelNp. (4.1.3.11)
=0 =0

In this context recall the product formula for power series, Cauchy product, which can be viewed as a
multiplication rule for “infinite polynomials” = power series. J

4.1.4 Periodic Convolutions

Understanding how periodic signals interact with finite, linear, time-invariant, causal (FT-FIR) filters is an
important stepping stone for developing algorithms for more general situations.

Definition 4.1.4.1. Periodic time-discrete signal

An n-periodic signal, n € IN, is a sequence (x]-)].EZ € (*(Z) satisfying

Xjtn = Xj V]EZ

> Though infinite, an n-periodic signal (x]-)]-ez uniquely determined by the finitely many values
Xo, - -, X,—1 and can be associated with a vector x = [xy, .. .,xn_l]T e R".

§4.1.4.2 (Linear filtering of periodic signals) Whenever the input signal of a finite, linear, finite,
time-invariant filter (LT-FIR) F : {*°(Z) — (*(Z) with impulse response (...,0,hy,..., h, 1,0,...)
is n-periodic, so will be the output signal. To elaborate this we start from the convolution for-
mula for sequences from Def. 4.1.2.7 and take into account the n-periodicity to compute the output

4. Filtering Algorithms, 4.1. Filters and Convolutions 293

http://en.wikipedia.org/wiki/Cauchy_product

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Wikez = F((Xk)kez):

. 1
Thm. 4.1.2.9 jevttn '
Ve=) h_jxj = Xg_ihi” = Xk—vy—tn Myytn
i%j i

j i€Z =0/¢cZ
jez 1 e v=ote (4.1.4.3)
periodicity "
= Z(th—én) Xk, keZ.
v=0 (eZ

A closer inspection shows that yx = yx., for all k € Z. Thus, in the n-periodic setting, a causal, linear,
and time-invariant filter (LT-FIR) will give rise to a linear mapping R" — IR" according to

Zp]xk ;= Zpk iXj (4.1.4.4)

forsome po,...,pn-1 €]R satlsfymg Pk = px—n foral ke Z.

From (4.1.4.3) we see that the defining terms of the n-periodic sequence (p).., can be computed
according to

pi=Y hisen, j€{0,...,n—1}. (4.1.4.5)
le

This sequence can be regarded as periodic impulse response, the output generated by the input sequence
Zkez(‘snk,j)jez- It must not be mixed up with the impulse response (— Def. 4.1.1.12) of the filter.

In matrix notation (4.1.4.4) reads

T Yo] po Pn-1 Pn-—2 - P.1 S xg]
. p1 Po Pn-1 : :
p2 P1 Po B
— | : (4.1.4.6)
) : T - Pun-1 X :
LYn—1 _pn—l o P po ! [X5 —1]
—P
where (P)ij = pi—js 1 <i,j <n, withp;:=pj,forl—n<j<O.
_

The following special variant of a discrete convolution operation is motivated by the preceding § 4.1.4.2.

Definition 4.1.4.7. Discrete periodic convolution

The discrete periodic convolution of two n-periodic sequences (pi)icz, (Xk)iez Yields the n-
periodic sequence

(k) == (pi) *n (X)), Yi:= ZPk X = Zxk iri, keZ.
j=

% notation for discrete periodic convolution: (px) *, (xx)

Since n-periodic sequences can be identified with vectors in K" (see above), we can also introduce the
discrete periodic convolution of vectors:

4. Filtering Algorithms, 4.1. Filters and Convolutions 294

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Def. 4.1.4.7 > discrete periodic convolution of vectors: y=p*,x <€K' p,xeK"

EXAMPLE 4.1.4.8 (Radiative heat transfer) Beyond signal processing discrete periodic convolutions
occur in many mathematical models:

An engineering problem:

4 cylindrical pipe,
4 heated on part I'y of its perimeter (— prescribed heat flux),

4 cooled on remaining perimeter I'x (— constant heat flux).

Task: compute local heat fluxes.

cooled

Modeling (discretization):

e approximation by regular n-polygon, edges Tj,
e isotropic radiation of each edge I'; (power [}),
lX,‘]‘

radiative heat flow F] — I P]z = —I],
7T

opening angle: wjj = 7T Y|;_j, 1<i,j<n,

n n
powerbalance: Y Pi—) P;=Qj. (41.49)

i=1,i#] i=1,i#]
——

=1

Q; = heat flux through T';, satisfies

local heating Jifpely,

i
Qj:= /2 q(@)de, q(e) = {_TLK frH g(@)de (const),if ¢ € Tk .

=1

n

"
(4149 = LsE: L— Y JL=0Q;, j=1...n.

i=1,i#j 't
(1 =7y =72 =13 12 —713 —712 —m| [h] (O]
-1 1 =7y =7 =3 =7 —v3 —72| |2 Q2
12 -1 1 -7 =712 =7 —va —73| |3 Qs
eg. n=g |7 1 m 1 = =7 =m =yl Qa0
Y4 =3 =712 7 1 -7 =71 —73| | Qs
-3 —v4 =73 —72 11 1 =711 —72| |l Qs
Y2 =3 —7Ys —v3 712 —m 1 —m| |y Q7
=7 72 =3 s —v3 —7r2 —m 1] s | Qs |

This is a linear system of equations with symmetric, singular, and (by Lemma 9.1.0.5, }_; < 1) positive
semidefinite (— Def. 1.1.2.6) system matrix.

Note that the matrices from (4.1.4.6) and (4.1.4.10) have the same structure!

4. Filtering Algorithms, 4.1. Filters and Convolutions 295

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Also observe that the LSE from (4.1.4.10) can be written by means of the discrete periodic convolution
(— Def. 4.1.4.7) of vectors y = (1, —y1, =72, — Y3, — Y4, — V3, — Y2, —71), X = (I1,..., Ig)

(4.1.410) < y*gx=1[01,...,Qs]" .

§4.1.4.11 (Circulant matrices) In Ex. 4.1.4.8 we have already seen a matrix of a special form, the matrix
Pin

C o T po Pn-1 Pn-2 --- P_1 Cxp
: p1 Po Pn-1 :)
p2 P1 Po
= : . (4.1.4.6)
. : . . pn_l .
L Yn—1 Pp1 P po ! [Xn—1]
=P

Matrices with this particular structure are so common that they have been given a special name.

Definition 4.1.4.12.

n

A matrix C = [Cif}ijzl
& 3 (pr)kez n-periodic sequence: c;j = p;_;, 1 <i,j < n.

€ K"™" is circulant

% Notation: We write circul(p) € K™ for the circulant matrix generated by the periodic sequence/vector
— T n
P—[PO/~~~/Pn—1] e K

The structure of a generic circulant matrix (“constant diagonals”) can be visualized as

po p1 P2 - o Ppt]
Pn-1 Po Pn—2
Pn—2 ;
circul(p) = :
p2 P1
L p1 P2 - - Puet PO

iz A circulant matrix has constant (main, sub- and super-) diagonals (for which indices j — i = const.).

L=y columns/rows arise by cyclic permutation of the first column/row.

Similar to the case of banded matrices (— Section 2.7.5) we note that the

“information content” of circulant matrix C € K" is just 7 numbers € K.
(obviously, one vector u € K" enough to define circulant matrix C € K'™")

4. Filtering Algorithms, 4.1. Filters and Convolutions 296

http://en.wikipedia.org/wiki/Circulant_matrix

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

_I

Supplement 4.1.4.13. Write Z((u;)) € K"™" for the circulant matrix generated by the n-periodic se-
quence (uy)rcz. Denote by y := (yo,...,Yn_1) ,x = (xq,...,%,_1) " the vectors associated to n-
periodic sequences. Then the commutativity of the discrete periodic convolution (— Def. 4.1.4.7) involves

circul(x)y = circul(y)x . (4.1.4.14)

_I

Remark 4.1.4.15 (Reduction of discrete convolution to periodic convolution) Recall the discrete con-
volution (— Def. 4.1.3.3) of two vectors a = [a, . . .,an,l]T e K", b = [by, .. .,bn,l]T e K".

n—1
zi=(axb)y=)Y aib_j, k=0,...,.2n -2 (bp:=0fork <0,k >n).
j=0
Now expand ay, ...,a,,_1and by, ..., b, 1 to 2n — 1-periodic sequences by zero padding.

a. ,if0<k<n, by ,if0<k<mn,
Xp 1=) , Y=] (4.1.4.16)
0 ,iftn<k<2n-1 0 ,ifn<k<2n-1,

and periodic extension: xj = X2, 14k Yk = You—1+k forallk € Z.

A LI EEEEEE T lags

Fig. 118 -n O n 21/1_1 31’1*1 471—2
The zero components prevent interaction of different periods:

n—1 2n—1

k
Zkzzajbk] Zx]yk]+ Z XiYon—1+k—]+ 2 Xi Yon—-1+k—j/ k=0,...,.n—-1,
j=0 j=k+1 h\r j= n\f)/

n-1 2n—1
Zk = Z bk] Zx]yk]—i— Z]yk—]+2 Xi Yk—j k=mn,...,2n—1.
j=k=n+1 0 —n+1 j=n

This makes periodic and non-periodic discrete convolutions coincide. Writing x, y € IKK" for the defining
vectors of (Xi). and (Vi) oy We find

(axb), = (X*2,1Y);, k=0,...,2n —2. (4.1.4.17)

4. Filtering Algorithms, 4.1. Filters and Convolutions 297

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

In the spirit of (4.1.3.2) we can switch to a matrix view of the reduction to periodic convolution:

_ _ ap
20
an—-1
= . 4.1.41
0 (4.1.4.18)
Zon—2 :
0 |

a (2n —1) x (2n — 1) circulant matrix!

Discrete convolution can be realized by multiplication with a circulant matrix (— 4.1.4.12)

Review question(s) 4.1.4.19 (Periodic Convolutions)

(Q4.1.4.19.A) Let (yx) be the (finite) output signal obtained from an LT-FIR channel F with impulse re-
sponse (...,0,hy, hy,...,h,—1,0,...) for a finite input signal (x;) with duration (m — 1)At. For what
p € IN do we get

Y Sep((ve)) = F(Y. Sep((xk))> ,

leZ leZ

where S, is the time-shift operator: S, ((zx)) := (zk—y)rez?

4.2 Discrete Fourier Transform (DFT)

4.2.1 Diagonalizing Circulant Matrices

Algorithms dealing with circulant matrices make use of their very special spectral properties. Full un-
derstanding requires familiarity with the theory of eigenvalues and eigenvectors of matrices from linear
algebra, see [NS02, Ch. 7], [Gut09, Ch. 9].

EXPERIMENT 4.2.1.1 (Eigenvectors of circulant matrices) Now we are about to discover a very deep
truth ...

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 298

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

5 T
+ Cw:real(ev)
+ C‘:imag(ev)
Experimentally, we examine the eigenvalues and «]
. . . % C,imag(ev
eigenvectors of two random 8 x 8 circulant matri- |
ces Cq, C, (— Def. 4.1.4.12), generated from ran- °| 1
dom vectors with entries even distributed in [0,1], & | |
(n). g
[+
) o L ,
eigenvalues (real part) > ° . :
¥ : * *
Little relationship between (complex!) eigenvalues °[° ’ .
* ¥ * +
can be observed, as can be expected from random | |
matrices with entries € [0, 1]. o ’
0 1 2 3 4 5 6 7 8 9
Fig. 119 index of eigenvalue

Now: the surprise ...

Eigenvectors of matrix Cq, visualized through the size of the real and imaginary parts of their components.

Girculant matix 1. . igenvecor 1 Girculant matix 1, eigenvector 2 Girculant maix 1, sigonvector 3 Giculant matrix 1, sigonvactor 4

vecl;r cnm;nnen\;\/a\ueé
vector component value
vector component value
vector component value

3 0 B Q 3 0 B G 3 3 5 G 3 0 B o
vector component index vector component index vector component index vector component index

vector component value
vector component value
vector component value
vector component value

3 0 5 G 7 3 4 5 3 3 0 5 Q 3 4 5 3
vector component index vector component index vector component index vector component index

Eigenvectors of matrix C;

Girculant matix 2, sigenvector 1 Girculant matix 2, eigenvecior 2 Girculant maix 2, sigenvector 3 Giculant matrix 2, oigonvactor 4

vecl;r cnm;nnen\‘va\ueé
vector component value
vector component value
vector component value

3 0 B Q 3 0 B G 3 3 5 G 7 O T 2 3 0 B o
vector component index vector component index vector component index vector component index

Girculant matrx 2, sigenvector 5 Girculant marix 2, eigenvector 5 Girculant matrix 2, igenvector 7 Girculant marix 2, eigenvector s

 vector component value
, vector campanent vlue
 vector component value
, vector campanent vlue

E o4l E
s T 2 s T 2 s T 2

3 0 B G 3 0 s G 3 0 B G 3 0 s G
vector component index vector component index vector component index vector component index

Observation: different random circulant matrices have the same eigenvectors!

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 299

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Eigenvectors of circulant matrix ~ C = circul([1,2,..., 128]T):

,,,,,,
aginary part
2

.
008
o
M
2 oo
3
g
£ o
5
8
2 o
s
$ 0w
o
o0
o
o o

El £ f G) 700
vector component index vector component index

G) 00
vector component index

The eigenvectors remind us of sampled trigonometric functions cos(k/n), sin(k/n), k =0,...,n— 1! |

Remark 4.2.1.2 (Eigenvectors of commuting matrices) An abstract result from linear algebra puts the
surprising observation made in Exp. 4.2.1.1 in a wider context.

Theorem 4.2.1.3. Commuting matrices have the same eigenvectors

If A,B € K"" commute, that is, AB = BA, and A has n distinct eigenvalues, then the
eigenspaces of A and B coincide.

Proof. Let v € K" \ {0} be an eigenvector of A with eigenvalue A. Then

BA=AB
=

(A—A)v=0 = B(A—AI)v=0 (A—AI)Bv=0.

Since in the case of n distinct eigenvalues dim AV'(A — AI) = 1, we conclude that there is { € K:
Bv = ¢v, v is an eigenvector of B. Since the eigenvector of A span K", there cannot be eigenvectors of
B that are not eigenvectors of A.

Moreover, there is a basis of K" consisting of eigenvectors of B; B can be diagonalized. -

Next, by straightforward calculation one verifies that every circulant matrix commutes with the unitary and
circulant cyclic permutation matrix

o 0 O --- --- 0 1 7
0
0 :
s—|: , (4.2.1.4)
: . 0 0
0 --- .- 0 1 0

As a unitary matrix S can be diagonalized. Observe that S” — I = O, that is the minimal polynomial of S
is ¢ — ¢" — 1, which is irreducible, because it has 7 distinct roots (of unity). Therefore, by Thm. 4.2.1.3,
S has n different eigenvalues and every eigenvector of S is also eigenvector of any circulant matrix.

Remark 4.2.1.5 (Why using K = C?) In Exp. 4.2.1.1 we saw that we get complex eigenvalues/eigen-
vectors for general circulant matrices. More generally, in many cases real matrices can be diagonalized
only in C, which is the ultimate reason for the importance of complex numbers.

Complex numbers also allow an elegant handling on trigonometric functions: recall from analysis the
unified treatment of trigonometric functions via the complex exponential function

exp(it) = cos(t) +1sin(f), t€R.

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 300

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

C ' The field of complex numbers C is the natural framework for the analysis of linear, time-invariant

filters, and the development of algorithms for circulant matrices. |

§4.2.1.6 (Eigenvectors of circulant matrices) Now we verify by direct computations that circulant matri-
ces all have a particular set of eigenvectors. This will entail computing in C, cf. Rem. 4.2.1.15.

% notation: nth root of unity wy 1= exp(—27/n) = cos(27/n) —1sin(27/n), n € N

satisfies wy,=w,! , W'=1|, &?=-1, =" Vkez, (4.2.1.7)
n—1 n—1 T
ki ik n ,ifi=0 modmn,
Yl = Y () = { " (4.2.1.8)
=0 =0 0 ,ifj#0 modn.
(4.2.1.8) is a simple consequence of the geometric sum formula
n—1 1— qn
Y gt = VgeC\ {1}, neN. (4.2.1.9)
k=0 l1—¢

4

N ni:lwﬁj: 1—w2] _ 1—exp(—27'('1]') _
L = T T T exp(—2i)

because exp(—271j) = w; = (W)l = 1forallj € Z.

:j: In expressions like w,’ﬁl the term “kI” will always designate an exponent and will never play
the role of a superscript.

Now we want to confirm the conjecture gleaned from Exp. 4.2.1.1 that vectors with powers of roots of unity
are eigenvectors for any circulant matrix. We do this by simple and straightforward computations:

We consider a general circulant matrix C € C"" (— Def. 4.1.4.12), with ¢;; := (C);; = u;_;, for an
n-periodic sequence (i)rez, Ur € C. We “guess” an eigenvector,
vi e C" v = [wn] , ke{0,...,n—1},

and verify the eigenvector property by direct computation:

n—1 " n—1 —(j-Dk _ign=1 T
(CVk)]- = Z Uj_jwy, = Z Ujwy, 4 = wn] lzo ulwfik = A - w{l = Ay (Vk)]‘ . (4.2.1.10)
1=0 1=0 =
change of summation index independent of j !
=k
[N vy is eigenvector of C for eigenvalue A, =) uw,"
1=0
The set {vy,...,v,_1} C C" provides the so-called orthogonal trigonometric basis of C" = eigen-

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 301

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

vector basis for circulant matrices

(04 r .0 - - w0 T W 1)

“n “n ZEn 1En
—1 wy, wy,
" 2(2—n) 2(1-n)
. Wy Wy

{vo,- - Va1t = , : , : : (4.2.1.11)
-0 1.771 — _.1 2 _ .7 2
Wyl Lwy, | wy, (n=2)(n)_ Lwy, (n=1) 1)

From (4.2.1.8) we can conclude orthogonality of the basis vectors by straightforward computations:

n—1 n—1 (k—m);j (4.2.1.8)

n—1 .
eC”: vilvy =Y wiw," =¥) =0 ,ifk#£m. (42112
j=0

]
Vi i=— |Wy
j=0

j=0

The matrix effecting the change of basis trigonometrical basis — standard basis is called the Fourier-
matrix

(wy Wy w)
w% w% wzfrlz n—1
n— 1in—
F,= |Wn @i “i | = el ecm. (4.2.1.13)
: : : 1,j=0
_ —1)?
b al

Lemma 4.2.1.14. Properties of Fourier matrix

The scaled Fourier-matrix %Fn is unitary (— Def. 6.3.1.2) : F, 1 =

Proof. The lemma is immediate from (4.2.1.12) and (4.2.1.8),because

n-1 , n=1 , n—1 ,
(Furt) = 5l D0 = Vi 00k L 0
W k=0 k=0 k=0

O i
Remark 4.2.1.15 (Spectrum of Fourier matrix) We draw a conclusion from the properties stated in
Lemma 4.2.1.14:
Lh=1 = a(ﬁlzn) c {1,-1,i,—i},
because, if A € C is an eigenvalue of F,,, then there is an eigenvector x € C" \ {0} such that F,x = Ax,
see Def. 9.1.0.1. .

Lemma 4.2.1.16. Diagonalization of circulant matrices (— Def. 4.1.4.12)
For any circulant matrix C € K", c;; = u;_;, (ux)rez n-periodic sequence, holds true

CF, = F,diag(ds,...,d,) , [do,...,dn_1]' =Fulug, ... us_q1]"

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 302

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Proof. The computations from (4.2.1.10) established:

-1

Cvi =C(F,),, = Z wpw'F Zoug (Bu)e = (Fu), ((Fyu),
Then invoke the rules of matrix x matrix multiplication. -
From this lemma and the fact F,, = nF;1 we conclude
C = F, ' diag(dy,...,d)F, |, [do,...,dp_1]" = Fulug, ..., up_1]" . (4.2.1.17)

As a consequence of Lemma 4.2.1.16, (4.2.1.17) the multiplication with Fourier-matrices will be crucial
operation in algorithms for circulant matrices and discrete convolutions. Therefore this operation has been
given a special name:

Definition 4.2.1.18.

The linear map DFT,, : C" — C", DFT,(y) := F,y,y € C", is called discrete Fourier transform
(DFT), i.e. for [cp, ..., cy—1] := DFT,(y)

a=Y yiwl , k=0,...,n-1. (4.2.1.19)

Recall the convention also adopted for the discussion of the DFT: vector indexes range from 0 to n — 1!

Terminology: The result of DFT, ¢ = DFT,(y) = F,y, is also called the (discrete) Fourier transform of
y.

From F,; = %F (— Lemma 4.2.1.14) we find the inverse discrete Fourier transform:

1n1

n—1
y ‘
=Y yjw & yi= Z " (4.2.1.20)
=0

§4.2.1.21 (Discrete Fourier transform in EIGEN and PYTHON)
e EIGEN-functions for discrete Fourier transform (and its inverse):
DFT. c=fft.fwd(y) <> inverse DFT: y=fft.inv(c);
Before using £ ft, remember to:
1. # include <unsupported/Eigen/FFT>

2. Instantiate helper class Eigen: :FFT<double> fft;
(The template argument should always be double.)

C++ code 4.2.1.22: Demo: discrete Fourier transform in EIGEN = GITLAB

int main() {
using Comp = complex<double>;
const VectorXcd ::Index n = 5;
VectorXed y(n),c(n),x(n);

(SIS N

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 303

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/dftbasics/Eigen/main.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

6 y << Comp(1,0) ,Comp(2,1) ,Comp(3,2),Comp(4,3) ,Comp(5,4);
7 FFT<double> fft; // DFT transform object

8 c = fft.fwd(y); // DTF of y, see Def. 4.2.1.18

9 x = fft.inv(c); // inverse DFT of c, see (4.2.1.20)
10

11 cout << "y = " << y.transpose() << endl

12 << "C = " << c.transpose() << endl

13 << "X = " << x.transpose() << endl;

14 return O;

15|}

e PYTHON-functions for discrete Fourier transform (and its inverse) are provided by the package
scipy.fft

DFT: c=scipy.fft(y) <+ Iinverse DFT: y=scipy.ifft (c),

where y and c are numpy-arrays.

Review question(s) 4.2.1.23 (Diagonalizing circulant matrices)

(Q4.2.1.23.A) To practice complex arithmetic compute the discrete Fourier transform of
T
x=[1,2—1,—1,—1+4+21] .

(Q4.2.1.23.B) Denote by DFT,, : C" — C" the discrete Fourier transform,
n—1 .
(DFTuy), = Y yjwy, k=0,...,n—1, w,=exp(—22). (4.2.1.19)
j=0
Show that
xy = %DFTH(X)HDFTn(y) .
Use the following lemma:

Lemma 4.2.1.14. Properties of Fourier matrix

The scaled Fourier-matrix ﬁFn is unitary (— Def. 6.3.1.2) : F,! = 1l = 1F

(Q4.2.1.23.C) Explain, why the identity
C = F,'diag(dy,...,dy)F,, [do,...,dp_1]" =Fpluo, ..., up1]", (4.2.1.17)

where u := [uy, ... ,un_l]T € C" is the generating vector of the circulant matrix C according to the
formula

(O = (Wt mod n -
still makes sense for the very special “circulant” matrix C = I,,.

(Q4.2.1.23.D) What are the eigenvalues and eigenvectors of the permutation matrix

0 ... 0 1]
1 . 0

P: 0 GCI’!,TZ
0 ... 0 1 0]

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 304

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

that effects a cyclic permutation of the entries of an n-vector?

4.2.2 Discrete Convolution via Discrete Fourier Transform

Coding the formula for the discrete periodic convolution of two periodic sequences from Def. 4.1.4.7,

n—1
(i) = () *n () 5 ye:= Zuk xp=Y xu;, ke{o,...,n—1},
j=0 j=0

one could do this in a straightforward manner using two nested loops as in the following code, and with an
asymptotic computational effort O(nz) for n — oo.

C++11 code 4.2.2.1: Discrete periodic convolution: straightforward implementation
=+ GITLAB

2 i pconv (const i &u, const o &x) {

3 const int n = x. 0);

4 i z = i (n);

5 // “naive” two-loop implementation of discrete periodic convolution
6 for (int k = 0; k < n; ++k) {

7 for (int j =0, | = k; j <= k; ++j, —I1) z[k] += u[l] * x[]];

8 for (int j =k + 1, Il =n—1; j <n; ++j, —I) z[k] += u[l] * x[j];

o }

10 return z;

—

This codes relies on the associated vectors u = [u, .. .,un_l]T € C"and x = [xp, .. .,xn_l]T ecrt
for the sequences (1) and (xy), respectively. Using this vectors, indexed from 0, the periodic convolution
formula becomes

yk:Z(+ 2 n+k]

j=0 j=k+1

Let us assume that a “magic” very efficient implementation of the discrete Fourier transform (DFT) is
available (— Section 4.3). Then a much faster implementation of pconv () is possible and it is based
on the link with the periodic discrete convolution of Def. 4.1.4.7. In § 4.1.4.11 we have seen that periodic
convolution amounts to multiplication with a circulant matrix. In addition, (4.2.1.17) reduces multiplication
with a circulant matrix to two multiplications with the Fourier matrix F,, (= DFT) and (componentwise)
scaling operations. This suggests how to exploit the equivalence
-1
discrete periodic convolution z; = nz ur—jxj (— Def. 4.1.4.7), k=0,...,n—1
i=0

0

multiplication with circulant matrix (— Def. 4.1.4.12) z = Cx, C:= [u,f_]-}z.jzl.

@ ldea: 42117 > z = F, ! diag(F,u)F,x

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 305

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/pconv/Eigen/pconv.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

This formula is usually referred to as convolution theorem:

Theorem 4.2.2.2. Convolution theorem

The discrete periodic convolution x,, between n-dimensional vectors u and x is equal to the inverse
DFT of the component-wise product between the DFTs of u and x; i.e.:

n—1

n—1
(u) *p (x) := [Z U(k—j) mod nx]-] =F,! [(Fnu)]-(an)]-];L1 : (4.2.2.3)
j=0 k=0

Cast in a C++ function computing the periodic discrete convolution of two vectors the convolution theorem
reads:

C++11 code 4.2.2.4: Discrete periodic convolution: DFT implementation => GITLAB

Eigen:: VectorXcd pconvfft (const Eigen::VectorXcd &u,
const Eigen::VectorXcd &x) {

2

3

4 Eigen ::FFT<double> fft;
5 return fft.inv (((fft.fwd(u)).cwiseProduct(fft.fwd(x))).eval());
6

}

In Rem. 4.1.4.15 we learned that the discrete convolution of n-vectors (— Def. 4.1.3.3) can be
accomplished by the periodic discrete convolution of 2n — 1-vectors (obtained by zero padding, see
Rem. 4.1.4.15):

a,beC" axb= {g} *on—1 {g] et

This idea underlies the following C++ implementation of the discrete convolution of two vectors.

C++11 code 4.2.2.5: Implementation of discrete convolution (— Def. 4.1.3.3) based on
periodic discrete convolution = GITLAB

Eigen:: VectorXcd fastconv (const Eigen::VectorXcd &h,
const Eigen::VectorXcd &x) {

assert(x.size() == h.size());

const Eigen::Index n = h.size();

// Zero padding, cf. (4.1.416), and periodic discrete convolution

// of length 2n—1, Code 4.2.2.4

return pconvfft(

(Eigen::VectorXcd(2 * n — 1) << h, Eigen::VectorXcd ::Zero(n — 1))

10 .finished () ,
e (Eigen::VectorXcd(2 * n — 1) << x, Eigen::VectorXcd ::Zero(n — 1))
12 .finished ()) ;

© © N o o B~ W N

Review question(s) 4.2.2.6 (Discrete convolution via DFT)

(Q4.2.2.6.A) We saw that the discrete convolution of two vectors h and x of length n can be accomplished
by

y = pconvift (
(Figen::VectorXcd(2 n — 1) << h, FEigen::VectorXcd::Zero(n
- 1))
.finished(),

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 306

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/pconv/Eigen/pconvfft.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/pconv/Eigen/myconv.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(::VectorXcd(2 » n - 1) << x, ::VectorXcd:: (n

- 1))
.finished());

Here, pconv () implements periodic discrete convolution. How do you have to change the code so
that it can compute the discrete convolution of two vectors h € IR", x € IR™ for general 1, m € IN?

A
4.2.3 Frequency filtering via DFT
The trigonometric basis vectors,
. . n—1
Vi 1= [exP(zmjk/n)];:Ol = {cos(z%]k> + 1sin(27:1—]k>] eC", (4.2.3.1)
j=0

when interpreted as time-periodic signals, represent harmonic oscillations. This is illustrated when plotting
some vectors of the trigonometric basis (n = 16):

Fourier-basis vector, n=16, j=1 Fourier-basis vector, n=16, j=7 Fourier-basis vector, n=16, j=15

08 4 08

06

Value
Value
Value

-02

-04

-06

-08

. -1 ! E
6 8 10 1 16 18 o 6 8 10 12 14 18 Fig. 20 0 4 6 8 10 12 18
Vector component k Vector component k) Vector component k

“slow oscillation/low frequency” “fast oscillation/high frequency” “slow oscillation/low frequency”
B> Dominant coefficients of a signal after transformation to trigonometric basis indicate dominant fre-
quency components.
We say that the coefficients of a signal w.r.t. the trigonometric basis represent the signal in frequency
domain, original signal represented in the “pulse basis” of coordinate vectors is given in time domain.

§4.2.3.2 (Frequency decomposition of a signal) Since the trigonometric basis vectors form the columns
of the (complex conjugate) Fourier matrix DFT (4.2.1.19) and inverse DFT (4.2.1.20),

n-1 n—1
kj 1 —ki
=Y yjwi & y= — Y crwy (4.2.1.20)
=0 k=0

effect the transformation from the “pulse basis” into a (scaled) trigonometric basis and vice versa. Thus,
they convert time-domain and frequeny-domain representation of a signal into each other. To see this
more clearly, we examine a real-valued signal of length n = 2m + 1, m € IN: y, € IR. Its DFT yields
co, - - -, Cn—1 and theses coefficients satisfy ¢, = ¢, _x, because wl,{l] = w,([lfk)]. Using this relationship we
can write the original signal as a linear combination of sampled trigonometric functions with “frequencies”

k=0,...,m:

m) 2m . m) .
nyj=co+) Ceon !+ Y. crwn = co + Y. crwon™ + ¢,y p M
k=1 k=m+1 k=1
m
= co+2) Re(cg) cos(27ki/n) + Im(ck) sin(27tki/n) , j=0,...,n—1,
k=1

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 307

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

since W}, = cos(27tt/n) —isin(27t/n).

> The moduli |k, |c,_k| of the coefficients obtained by DFT measure the strength with which an

oscillation with frequency k is represented in the signal, 0 < k < [%].
_

EXAMPLE 4.2.3.3 (Frequency identification with DFT) The following C++ code generates a periodic
signal composed of two base frequencies and distorts its by adding large random noise:

C++ code 4.2.3.4: Generation of noisy sinusoidal signal =* GITLAB

2 | VectorXd signalgen () {
3 const int N = 64;
4 const ArrayXd t = ArrayXd::LinSpaced(N, 0, N);
5 const VectorXd x = ((2xM_PI/Nxt).sin() + (14*M_PI/Nxt).sin()).matrix();
6 return x + VectorXd ::Random(N) ;
70}
3 ‘T
i
T J‘\c“
2 I\ \H T
‘s\ LT
KAV T
A A S P | T I
R il
s |] WE L L o
S o | | || AN LY T ey
o | | VAT L
A TN L]
| WL ‘\
il S Y
L I A
MRS T
’ N
oo
I ‘ ‘ ‘ L ‘ i)
Fig. 121 ’ ° = Sg?np”ng pgi%ts (time)so % Fig. 122 ’ ’ ° Coefficie1r51t index k20 “ *

Looking at the time-domain plot of the signal given in Fig. 121 (C++ code =* GITLAB) it is hard to discern
the underlying base frequencies. However, we observe that frequencies present in unperturbed signal are
clearly evident in the frequency-domain representation after DFT. J

EXAMPLE 4.2.3.5 (Detecting periodicity in data)

Google: 'Vorlesungsverzeichnis'

Google provides information about the frequency of
certain words in web searches. In this example we -
study the data of for the word “Vorlesungsverzeich- @
nis”. 5 <
©
Raw data: weekly occurrences of “Vorlesungsverze- § ~
ichnis” in Google web searches > 2, j “
C ~
Some periodic pattern in the data is conspicuous to g AM ‘A) A /
the “naked eye”. How can an algorithm detect inher- & ' ‘ W w / N /V ftfj / /M{ W
ent periodicity of the data and find out the periods? = o LA '
Of course, by means of DFT! ' j | U ”

50 100 150 200 250 300 350
week (1.1.2004-31.12.2010)

Fig. 123

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 308

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/signalgen/Eigen/signalgen.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/powspecplot/Eigen/powspecplot.cpp

Fig. 124

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

|cif?

x104

0.4 0.6 0.8 1

0.2

Fourier spectrum

A_/L]/\A

20 40 60 80 100 120 140 160
index j of Fourier component

180

DFT of the signal (yo,...,¥n—1), correspond-
ing to the number of searches containing “Vor-
lesungsverzeichnis” in a large number n of
consecutive weeks, vyields the coefficients cj,
j=0,...,n—1

The plot beside (C++ code =+ GITLAB) displays the
“(Fourier) power spectrum” of the signal, the values
>, 0<j < [5].

We see that pronounced peaks in the power spec-
trum point to periodic structure of the data. The co-
efficient indices of the peaks of the power spectrum
tell us dominant frequencies present in the data and,
after inversion, the lengths of dominant periods.

We can state the main message of this example as follows:

DFT is a computer’s eye for periodic patterns in data

_I

§4.2.3.6 (“Low” and “high” frequencies) Again, look at plots of real parts of trigopnometric basis vectors

(Fn):/]. (= columns of Fourier matrix), n = 16.

vector component value
°

vector component value
L L

Trigonometric basis vector (real part), n=16, j=0

vector component value
L L

Trigonometric basis vector (real part), n=16, j=1

Trigonometric basis vector (real part), n=16, j=2

vector component value
°

4 6 8 10 12 18 0
vector component index

Re(Fi6). o

Trigonometric basis vector (real part), n=16, j=3

vector component value
L L

6 8
vector component index

Re(Fie). 4

Trigonometric basis vector (real part),

10 12 14 16 18 o 2 4 6 8 1 12 14 16 18
vector component index

Re(Fis). 5

Trigonometric basis vector (real part), n=16, j=5

n=16, j=4

vector component value

6 8 10 12 14 16 18 o
vector component index

Re(F6). 5

10 12 14 16 18 "o 2 4 14 16 18

6 8
vector component index

Re(Fi). 4

6 8 1 12
vector component index

Re(Fi6). 5

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT)

309

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/periodictrends/Eigen/periodictrends.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Trigonometric basis vector (real part), n=16, j=6 Trigonometric basis vector (real part), n=16, j=7 Trigonometric basis vector (real part), n=16, j=8
T T T T T T T T T T T T T 1

L
vector component value

vector component value
vector component value
L L

° é ‘j \é/eclur c%)mpcn‘t‘:m \ndtii “‘ “6 * E é ‘j \é/eclur c%)mpcn‘t‘:m \ndtii “‘ “6 * N : ! seclor cgcmpun‘eom indéi " ' "
Re(Fig). ¢ Re(Fis). 7 Re(Fi6). g
What about the remaining columns? They are just the first ones “wrapped around”:
-1 1 @217 [—ik1n—1 —
(Fa),op = |h")80 = (Fa)y, k=0, n—1.
' j=0 j=0 v
(Here we adopt C++ indexing and count the columns of the matrix from 0.)

Visually, the different basis vectors represent oscilla-
tory signals with different frequencies.

This is also revealed by elementary trigonometric
identities:

Re(Fn):/], (Re wr(zj_l)k> n—1

k=0
= (Reexp(—27mi(j — 1)k/n))}—,

(cos(27t(j — 1>x))x:0,%,...,1—% : Lew frequencies

e Slow oscillations/low frequencies correspond
toindices j ~ 1 and j ~ n.

e Fast oscillations/high frequencies correspond
to indices j ~ n/2.

Fig. 125

The task of frequency filtering is to suppress or enhance a predefined range of frequencies contained in a
signal.

© Perform DFT of the signal: (Yo, -+, Yn—-1) LAl (co,---,Cn1)
@ ® Operate on Fourier coefficients: (co,---rCn_1) > (Cop--vrCn1)
. : . ~ ~ DFT-1 ~
® Filtered signal by inverse DFT: (Co,---,Cn—1) — (Yo, -+, Yn-1)

The following code does digital low-pass and high-pass filtering of a signal based on DFT and inverse
DFT. It sets the obtained Fourier coefficients corresponding to high/low frequencies to zero and afterwards
transforms back to time domain.

C++11-code 4.2.3.7: DFT-based frequency filtering =* GITLAB

2 |void freqfilter (const VectorXd &y, int k, VectorXd &low, VectorXd &high) {
3 const VectorXd ::Index n = y.size();

4 if (n%2 !=0)

5 throw std::runtime_error ("Even vector length required!");

6 const VectorXd ::Index m = y.size() / 2;

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 310

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/freqfilter/Eigen/freqfilter.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

7
8 Eigen::FFT<double> fft ; // DFT helper object
9 VectorXcd ¢ = fft.fwd(y); // Perform DFT of input vector
10
11 VectorXcd clow = c;
12 // Set high frequency coefficients to zero, Fig. 125
13 for (int j = —k; j <= +k; ++j) clow(m + j) = 0;
1 // (Complementary) vector of high frequency coefficients
15 VectorXcd chigh = ¢ — clow;
16
17 // Recover filtered time-domain signals
18 low = fft.inv(clow).real();
19 high = fft.inv(chigh).real();
20
}

The code could be optimised by exploiting y; € IR and c./, x = Cu/p k-
Summary: Map y — low (in Code 4.2.3.7) = low pass filter .

Map v — high (in Code 4.2.3.7) = high pass filter .

_l
EXAMPLE 4.2.3.8 (Denoising by frequency filtering)
Signal perturbed by “deterministic noise”:
n = 256; y = exp(sin(2+pi*((0:n-1)")/n)) + 0.5%xsin(exp(l:n)’);
We performed frequency filtering by Code 4.2.3.7 with k = 120.
35 T
signal 350
[— — —noisy signal
3k " }‘, "‘] :‘i Ill‘ | — low pass filter
‘ ‘, W By “(‘1‘ H‘\‘ i — high pass filter 300 |
2sl /”w Hf (\JIW\‘”“I“ ¥]
A NI
At 250]
2 A‘ fl 'H’ . “1 w‘ i
Al ' il " N t
psht SN 1 200 1
’\h‘ i 'v\HH‘H - —
il ! v :t““ : L <3
1H i hu‘ ! \y‘ T4 150 _
l\ ! :H:‘lm i \\r“ ‘ ‘ "o N : ,J‘,\
o5l v : ‘\ ,’w w‘\ I ““" “~ "”‘ ”’l J H‘ f
i ’ i H \ 100 |
0 Ié
50]
-0.5H
» ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ % 20 40 60 80 100 120 140
0 0.1 0.2 03 0.4 05 06 0.7 08 09 1 No. of Fourier coefficient

time

Low pass filtering can be used for denoising, that is, the removal of high frequency perturbations of a
signal. J

EXAMPLE 4.2.3.9 (Sound filtering by DFT) Frequency filtering is ubiquitous in sound processing.
Here we demonstrate it in PYTHON =+ GITLAB, which offers tools for audio processing through the
sounddevice module.

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 311

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/soundcompress/Python/soundcompress.py

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

sampled sound signal power spectrum of sound signal
0.3 60000

50000
0.2 4

40000

<
5 014
& Nyquist fi
uist frequenc
o 30000 ¥q quency
Q <
el 0.0 1
c
3 20000 1
(]
—0.19
10000
—0-21 0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 10000 20000 30000 40000 50000 60000
Fig. 126 timel[s] Fig. 127 index k of Fourier coefficients ¢,

The audio signal (duration ~ 1.5s) of a human voice is plotted in time domain (vectory € R", n = 63274)
and as a power spectrum in frequency domain. The power spectrum of a signal y € C" is the vector

(ycij);:(}, where ¢ = DFT,,y = F,y is the discrete Fourier transform of y.

We see that the bulk of the signal’s power ||yH§ is contained in the low-frequency components. The
paves the way for compressing the signal by low-pass filtering, that is, by dropping its high-frequency
components and storing or transmitting only the discrete Fourier coefficients belonging to low frequencies.
Refer to § 4.2.3.6 for precise information about the association of Fourier coefficients ¢; with low and high
frequencies.

Below we plot the squared moduli |cj|32 of the Fourier coefficients belonging to low frequencies and the
low-pass filtered sound signals for different cut-off frequencies. Taking into account only low-frequency
discrete Fourier coefficients does not severely distort the sound signal.

low frequency power spectrum sound filtering
60000

—— signal

—— cut-off = 5000
cut-off = 3000

| —— cut-off = 1000

- Il
ik A
| PP

(i

50000 0044

40000

sound pressure

20000

e

l I

0 500 1000 1500 2000 2500 3000 0.680 0.685 0.690 0.695 0.700
Fig. 128 index k of Fourier coefficients ¢, Fig. 129 timel[s]

|

-

Remark 4.2.3.10 (Linear Filtering) Low-pass and high-pass filtering via DFT implement a very general
policy underlying general linear filtering of finite, time-discrete signals, represented by vectors y € C"

© Compute the coefficients of an alternative basis representation of y.
® Apply some linear mapping to the obtain coefficient vector ¢ € C", yielding ¢.

©® Recover the representation of ¢ in the standard basis of C".

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 312

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

4.2.4 Real DFT

Every time-discrete signal obtained from sampling a time-dependent physical quantity will yield a real
vector. Of couse, a real vector contains only half the information compared to complex vector of the same
length. We aim to exploit this for a more efficient implementation of DFT.

Task: Efficient implementation of DFT (Def. 4.2.1.18) (cp,...,c,_1) for real coefficients
(Yo, Yn-1)" € R",n=2m, mec N.

If yj € R in the DFT formula (4.2.1.19), we obtain redundant output: since Wi Gk

k=0,...,n—1, we conclude the following relationship between discrete Fourier coefficients of a real-
valued signal.

n—1 ki n—1 (k)]
=Y ywi =Y yjwi = oy, k=1...,n-1.
L p

@ Idea: Map y € R" to a vector C" and use DFT of length m on it.
m—1 i) "
h = ZO (y2j + iyojs1) Wiy = [Z}” 0 Y2 Wk]+1 [27_‘0 Yoji1 Wy] (4.2.4.1)
]:
- ml j(m—k) 1 ik 1 ik
hy—i = Z Yoj + iY2j11 Wy = [;”:_0 Yoj Wy]— i- [2;77:—0 Yojt1 wly] . (4.2.4.2)
j=0

Thus, we can recover the framed sums from suitable combinations of the discrete Fourier coefficients
hk €eCk=0,....m—1

ik - B ik . _
= [Z}ﬂ 0 Y2j w{n] = %(hk + hm—k) 7 [2}11_01 Y2j+1 w{n] = —%l(l’lk — hm—k) .

Use simple identities for roots of unity to split the DFT of y into two sums:

Z Yj wn = [] 0 yzj wm J—i— wy, [2}”__01 Y2j+1 w{jf] . (4.2.4.3)

:E(hk+hm—k) 21(,0 (l’lk—hm k) k=0,....m—1,
- { cm = Re{hp} — Im{ho}, (4.2.4.4)

ck=Chpk, k=m+1,...,n—1.

C++11 code 4.2.4.5: DFT of real vectors of length /2 =* GITLAB

// Perform fft on a real vector y of even
// length and return (complex) coefficients in ¢
// Note: EIGEN’s DFT method fwd() has this already implemented and
// we could also just call: ¢ = fft.fwd(y);
void fftreal (const VectorXd& y, VectorXcd& c) {
const unsigned n = y.size(), m = n/2;
if (n% 2 != 0) { std::cout << "n must be even!\n"; return; }

© ©® N o o h~ W N

// Step I: compute h from (4.2.41), (4.2.4.2)

o

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 313

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/fftreal/Eigen/fftreal.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zu

rich, 2020

11 std :: complex<double> i(0,1); // Imaginary unit
12 VectorXcd yc(m);

13 for (unsigned j = 0; j <m; ++))

14 ye(j) = y(2xj) + ixy(2xj + 1);

16 Eigen ::FFT<double> fft;
17 VectorXcd d = fft.fwd(yc), h(m + 1);
18 h << d, d(0);

20 c.resize(n);

21 // Step II: implementation of (4.2.4.4)

22 for (unsigned k = 0; k <m; ++k) {

23 c(k) = (h(k) + std::conj(h(m-k)))/2. — i/2.xstd ::exp(—2.xk/n*M_Plxi)*(h(k) —

std::conj(h(m-k)));

24 }

25 c(m) = std::real(h(0)) — std::imag(h(0));

26 for (unsigned k = m+1; k < n; ++k) c(k) = std::conj(c(n—k));

Review question(s) 4.2.4.6 (Frequency Filtering via DFT and real DFT)
(Q4.2.4.6.A) Fory € R", what is the result of the linear mapping

y > Re{DFT,;1 ([(DFTny)l,O, . .,0]T>} ?
Here Re extracts the real parts of the components of a complex vector.

(Q4.2.4.6.B) Outline the implementation of a C++ function

std::vector<std: :pair<int, std::complex<double>>

selectDominantFrequencies(const Eigen::VectorXd &y, double
that returns a sequence of pairs
5 (;1/2—1} 5
(jicj)) ENgxC, je€] := argmin #]: Y [el” > (1—to1) Y cj|
Jc{0,...,[n/2—17} j€J j=0

tol);

!

for 0 < tol < 1. Discuss to what extent this function can be used for the compression of a sound

signal.

(Q4.2.4.6.C) How would you implement a C++ function

Eigen::VectorXd reconstructFromFrequencies (
const std::vector<std::pair<int, std::complex<double>> &f);

that takes the output of selectDominantFrequencies () from Question (Q4.2.4.6.B) and returns

the compressed signal in time domain?

Take into account that selectDominantFrequencies () merely looks at the first half of the dis-

crete Fourier coefficients.

4.2.5 Two-dimensional DFT

A

Finite time-discrete signals are naturally described by vectors, recall § 4.0.0.1. They can be regarded as
one-dimensional, and typical specimens are audio data given in WAV (Waveform Audio) format. Other

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT)

314

https://en.wikipedia.org/wiki/WAV

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

types of data also have to be sent through channels, most importantly, images that can be viewed as two-
dimensional data. The natural linear-algebra style representation of an image is a matrix, see Ex. 3.4.4.24.

In this we study the frequency decomposition of matrices. Due to the natural analogy

one-dimensional data (“audio signal”) —> vectory € C",

two-dimensional data (“image”) <— matrix. Y € C"™",

these techniques are of fundamental importance for image processing.

§4.2.5.1 (Matrix Fourier modes) The (inverse) discrete Fourier transform of a vector computes its coef-
ficient of the representation in a basis provided by the columns of the Fourier matrix F,,. The k-th column
can be obtained by sampling harmonic oscillations of frequency k, k = 0,...,n — 1:

(Fn). = [cos(antj)];l:_Ol - z[sin(ant]-)Hzol tj = % , k=0,...,n—1.

What are the 2D counterpart of these vectors? The matrices obtained by sampling products of trigono-
metric functions, e.g.,

(t,s) > cos(27tkt) cos(2rtls), ke {0,...,m—1}, £€{0,...,n—1} ,mn e N,

at the points (tj = %/Sr =1),j€{0,...,m—=1},r € {0,...,n — 1}! Complex versions of such matri-
ces provide a two-dimensional trigonometric basis of C"", whose element are given by the tensor product
matrices

{(Fm):,j(Fn)jé, 1<j<m1<(< n} ccmn (4.2.5.2)
Let a matrix C € C"" be given as a linear combination of these basis matrices with coefficients y;, ;, € C,
0<j1 <m0<jp <m:

—1n—1

C= Z Z Yivjr (Fm)sjy ()sz . (4.2.5.3)

=0 j»=0

Then the entries of C can be computed by two nested discrete Fourier transforms:

m—1n—1

]kl]2k2_ 1k j2ko

kl,kz Z th,]z i Wi _Z]]<Zw Yivj | + 0<ki<m,0<ky<n.
j1=0j2=0 j1=0 j2=0

Note that C++ indexing is applied throughout. 2
The coefficients y;, , € C, 0 < j; < m, 0 < j, < n, can also be regarded as entries of a matrix
Y € C"™", Thus we can rewrite the above expressions: for all 0 < ky < m, 0 < ky < n,

m—1
k
(i, = Y (Fn(Y)j]I:) w{; Lo C=F,(F,Y")T =F,YF, |, (4.2.5.4)
1=0

because F;Zr = F,,. This formula defines the two-dimensional discrete Fourier transform of the matrix
Y € C"™". We abbreviate it by DF T, , : C"" — C"™".

From Lemma 4.2.1.14 we immediately get the inversion formula:

m—1n—1
C=Y Y vijpFn)j(F)), = | Y=F,'CF,' = LF,CF, |. (4.2.5.5)
j1=0j2=0

The following two codes implement (4.2.5.4) and (4.2.5.5) using the DFT facilities of EIGEN.

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 315

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

C++ code 4.2.5.6: Two-dimensional discrete Fourier transform = GITLAB

> |template <typename Scalar>

s |void fft2 (Eigen::MatrixXcd &C, const Eigen::MatrixBase <Scalar> &Y) {
4 using idx_t = Eigen::MatrixXcd::Index;

5 const idx_t m= Y.rows(), n = Y.cols();

6 C.resize (m, n);

7 Eigen :: MatrixXcd tmp(m, n);

8

9 Eigen::FFT<double> fft; // Helper class for DFT
10 // Transform rows of matrix Y

1 for (idx_t k = 0; k <m; k++) {

12 Eigen::VectorXcd tv(Y.row(k));

13 tmp.row(k) = fft.fwd(tv).transpose() ;

14 }

15

16 // Transform columns of temporary matrix

17 for (idx_t k = 0; k < n; k++) {

18 Eigen::VectorXcd tv(tmp.col(k));

19 C.col(k) = fft.fwd(tv);

20 }

21 |}

C++ code 4.2.5.7: Inverse two-dimensional discrete Fourier transform => GITLAB

template <typename Scalar>
void ifft2 (Eigen:: MatrixXcd & C, const Eigen:: MatrixBase <Scalar> &Y) {
using idx_t = Eigen::MatrixXcd::Index;
const idx_t m= Y.rows(), n = Y.cols();
fft2 (C, Y.conjugate());
C = C.conjugate() / (m % n);

® N o o A~ » N

Remark 4.2.5.8 (Two-dimensional DFT in PYTHON) The two-dimensional DFT is provided by the
PYTHON function:

numpy .fft2 (Y) .

3
§4.2.5.9 (Periodic convolution of matrices) In Section 4.2.2 we linked (periodic) convolutions
1 n—1
Yy =pnX:i= [Z XjP(k—j) mod n] , pxecC", (4.2.5.10)
j=0 k=0
and discrete Fourier transforms. This can also be done in two dimensions.
We consider the following bilinear mapping B : C"*" x C"" — C™":
netnd k=0,...,m—1
(BXX, X))y = IZ;,)]Z;)(X)i,j(Y) (k=i) mod m(t—j) modn’ g0 . p_1, (4.2.5.11)

Here, as in (4.2.5.10), mod * designates the remainder of integer division like the % operator in C++
and is applied to indices of matrix entries. The formula (4.2.5.11) defines the two-dimensional discrete

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 316

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/dft2d/Eigen/dft2d.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/dft2d/Eigen/dft2d.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

periodic convolution, cf. Def. 4.1.4.7. Generalizing the notation for the 1D discrete periodic convolution
(4.2.5.10) we also write

m—1n—1
Xk Y = B<X/ Y) = Z Z <X)i,]'(Y)(k7i) mod m,(¢—j) mod n , X Yyecmn.
i=0 j=0 k=0,...m—1
(=0,..,n—1

A direct loop-based implementation of the formula (4.2.5.11) involves an asymptotic computational effort
of O(m?n?) for m,n — oo,

C++ code 4.2.5.12: Straightforward implementation of 2D discrete periodic convolution
> GITLAB

2 |// Straightforward implementation of 2D periodic convolution
s |template <typename Scalar1, typename Scalar2, class EigenMatrix>

4 |void pmconv_basic(const Eigen:: MatrixBase <Scalar1> &KX,

5 const Eigen::MatrixBase <Scalar2> &Y, EigenMatrix &Z) {
6 using idx_t = typename EigenMatrix ::Index;

7 using val_t = typename EigenMatrix :: Scalar;

8 const idx_t n = X.cols(), m = X.rows() ;

9 if (m!= Y.rows()) || (n !'= Y.cols()))

10 throw std ::runtime_error ("pmconv: size mismatch");

1 Z.resize(m, n); // Ensure right size of output matrix

12 // Normalization of indices

13 auto idxwrap = [](const idx_t L, int i) {

14 return ((i >=L) 2 i —L : ((i <0)?i +L :1i));

15 };
16 // Implementation of (4.2.5.11)

17 for (int i = 0; i <m; i++)

18 for (int j = 0; j <n; j++) {

19 val t s = 0;

20 for (int k = 0; k <m; k++)

21 for (int | = 0; | < n; l++)

22 s += X(k,) = Y(idxwrap(m, i — k), idxwrap(n, j — 1));
23 Z(i, j) = s;

24 }

The key discovery of Section 4.2.1 about the diagonalization of the discrete periodic convolution operation
in the Fourier basis carries over to two dimensions, because 2D discrete periodic convolution admits a
diagonalization by switching to the trigonometric basis of C"-", analogous to (4.2.1.17).

In (4.25.11)setY = (Fy).r(Fy)s. € C"™" < (Y);; = w,r,iwij, 0<i<m0<j<n:

(B(X/Y)>k€: . (X)i,j(Y)(k—i) mod m,({—j) mod n

7

— . (X)Z"]'(Urm(k_i)w%éij)

0
m—1n—1 -
B> B(X, (Fu).,(F.)s.) = ((X),-,]-cuf,g'aﬁ]) (Fu).r(Fy)s.. . (4.2.5.13)

"eigenvalue", see Eq. (4.2.5.3)

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 317

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/dft2d/Eigen/dft2d.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Hence, the (complex conjugated) two-dimensional discrete Fourier transform of X according to (4.2.5.3)
provides the eigenvalues of the anti-linear mapping Y — B(X,Y), X € C™" fixed. Thus we have arrived
at a 2D version of the convolution theorem Thm. 4.2.2.2.

Theorem 4.2.5.14. 2D convolution theorem

Forany X,Y € C™", we have
Xk Y = DFT,;}n(DFTm,n(x) ©DFTa(Y)),

where © stands for the entrywise multiplication of matrices of equal size.

This suggests the following DFT-based algorithm for evaluating the periodic convolution of matrices:

® Compute Y by 2D DFT of Y, see Code 4.2.5.7
® Compute X by 2D DFT of X, see Code 4.2.5.6.

©® Component-wise multiplication of X and Y: Z = X. x Y.

® Compute Z through inverse 2D DTF of Z.

C++ code 4.2.5.15: DFT-based 2D discrete periodic convolution =* GITLAB

// DFT based implementation of 2D periodic convolution
template <typename Scalar1, typename Scalar2, class EigenMatrix>
void pmconv (const :: MatrixBase <Scalar1 > &X,
const :: MatrixBase <Scalar2> &Y, EigenMatrix &Z) {

using Comp = std::complex<double>;

using idx_t = typename EigenMatrix ::Index;

using val_t = typename EigenMatrix :: Scalar;
const idx_t n = X. (), m=X. () ;

© ® N o o A~ W N

10 if ((m!=Y. ()) Il (nI=Y.)
0 throw std ::runtime_error ("pmconv: size mismatch");

12 Z. (m, n);
i Xh(m, n), Yh(m, n);

14 // Step @: 2D DFT of Y

15 fft2 (Yh, (Y.template cast<Comp>()));

16 // Step @: 2D DFT of X

17 fft2 (Xh, (X.template cast<Comp>()));

18 // Steps ©®, O®: inverse DFT of component—-wise product

19 ifft2 (Z, Xh. (Yh));

_l

EXAMPLE 4.2.5.16 (Deblurring by DFT) 2D discrete convolutions are important for image processing.
Let a Gray-scale pixel image be stored in the matrix P € R™", actually P € {0,...,255}"", see also
Ex. 3.4.4.24.

Write (p; k), e for the periodically extended image:
pri=Plyrjer for 1<I<m1<j<n, p,;j=prmjn Yk€Z.

Blurring is a technical term for undesirable cross-talk between neighboring pixels: pixel values get replaced
by weighted averages of near-by pixel values. This is a good model approximation of the effect of distortion
in optical transmission systems like lenses. Blurring can be described by a small matrix called the point-
spread function (PSF):

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 318

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/dft2d/Eigen/dft2d.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

L L
0<l<m, .
CLi= Y. Y SkaPlikjiqr = Le{1,...,min{m,n}}. (4.2.5.17)

\ k=—Lg=-L \ 0<j<mn,

blurred image point spread function

Here the entries of the PSF are referenced as Sk,q also with negative indices. We also point out that

usually L will be small compared to m and 7, and we have sy, > 0, and Zﬁz_L ZL?:_L Skq = 1. Hence
blurring amounts to averaging local pixel values. You may also want to look at this YouTube Video about
“Convlution in Image Processing”.

1

In the experiments reported below we used: L = 5 and the PSF s, = ———— ,, 0 <k, g <5,
p p k,q 1 +k2 +q2 SKq s

normalized to entry sum = 1.

C++11-code 4.2.5.18: Point spread function (PSF) => GITLAB

> |void psf(const long L, MatrixXd& S) {

3 const VectorXd x = VectorXd ::LinSpaced(2xL+1, —L, L);

4 const MatrixXd X = x.replicate (1,x.size());

5 const MatrixXd Y = (x.transpose()).replicate(x.size() ,1);

6 MatrixXd E = MatrixXd::Ones(2+xL+1, 2xL+1);

7 S = E.cwiseQuotient (E + X.cwiseProduct(X) + Y.cwiseProduct(Y));

8 S /= S.sum() ;

°o |}
This is how this PSF acts on an image according to (4.2.5.17):

Original Blurred image

Fig. 130 Fig. 131 ©

Of course, (4.2.5.17) defines a linear operator 15 : R™" — IR"™" (“blurring operator”).

C++11-code 4.2.5.19: Blurring operator => GITLAB

2 | MatrixXd blur(const MatrixXd &P, const MatrixXd &S) {
3 const long m = P.rows(), n = P.cols(), M = S.rows(), N = S.cols (),
4 L= M=1)/ 2;

5 if M!=N) {

6 std ::cout << "Error: S not quadratic!\n";

7 }

8

9 MatrixXd C(m, n);

10 for (long | = 1; | <=m; ++1) {

11 for (long j = 1; j <= n; ++j) {

12 double s = 0;

13 for (long k = 1; k <= (2 * L + 1); ++k) {

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 319

https://youtu.be/8rrHTtUzyZA
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/psf/Eigen/psf.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/blur/Eigen/blur.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

14 for (long g = 1; g<= (2 *x L + 1); ++q) {
15 double kI = | + k — L — 1;

16 if (kl < 1)

17 kKl += m;

18 else if (kI > m)

19 kl —= m;

20 double m = j + g — L — 1;

21 if (jm < 1)

22 jm += n;

23 else if (jm > n)

24 jm —= n;

25 s += P(kl — 1, jm — 1) « S(k— 1, q— 1);
26 }

27 }

28 C(l —1, j—1) =s;

29 }

30 }

31 return C;

2 |}

Yet, does (4.2.5.17) ring a bell? Hidden in (4.2.5.17) is a 2D discrete periodic convolution, see
Eq. (4.2.5.11)!

L L
Cz,jZkZL Y 5kq(P)sk) mod m,(j+q) mod n
=— q:—
L L
Z Z S—k,—q(P)(l—k) mod m,(j—q) mod n
k=—Lg=-L
L L
= Z Zs—k,—q(P)(l—k) mod m,(j—q) mod nt
k=04=0
|
Z Z S—k,—q(P)(l—k) mod m,(j—(q+n)) mod nt
k*Oq:—L
L
2 ZS k,— q —(k+m)) mod m,(j—g) mod nt
k=—Lgq=0
-1 -1
2 Z S—k,—q(P)(l—(k+m)) mod m,(j—(q+n)) mod n
k=—Lg=-L
L L
= Z Zs—k,—q(P)(l—k) mod m,(j—q) mod nt
k=0g=0
L n-1
Z Z S—k,— q+n (l k) mod m,(j—q) mod nt
k=0g=n—L
m—1 L
Z ZS k+m, q l k) mod m,(j—q) mod n T
k=m—L g=0
m—=1 n-1
Z S—k+m,—q+n(P)(l—k) mod m,(j—q) mod n -
k=m—Lg=n—L

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 320

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Hence we have that the blured image is given by the matrix

;

S_k—q ,for0<kqg<L,
S—ktm,—q Jform—L<k<m, 0<g<L,
C =S, P with (S),, = {5 rgen for0<k<L, n—L<g<n,

0 else.

\

S ktm—qtm sform—L<k<m, n—-L<g<n,

(4.2.5.20)

In light of Thm. 4.2.5.14 and of the algorithm implemented in Code 4.2.5.15, now it hardly comes as a

surprise that DFT comes handy for reversing the effect of the blurring!

We give an elementary derivation and revisit the considerations of § 4.2.5.1 and recall the derivation of

(4.2.1.10) and Lemma 4.2.1.16.

L L
vk, 14 _ v(l+k) u(j+q) _ 0] vk
(B((w Wy,)quZ)l~_k§) E Lsk,qwm Wy = w¥lwh 2 E Sk,qWm Wh ' -
4 ,] —— q:_

k=—Lqg=-L

B Vv, = (wfw) 0 < u < m,0<v < n are the eigenvectors of 3:

)k,qu’

L L
; k
BV, = AV , eigenvalue Ay, = E E Sk qw” wh
k=—Lg=-L

J/

2-dimensional DFT of point spread function !

(4.2.5.21)

Thus the inversion of the blurring operator boils down to componentwise scaling in “Fourier domain”, see

See also Code 4.2.5.15 for the same idea.

C++11-code 4.2.5.22: DFT based deblurring =+ GITLAB

2 | MatrixXd deblur(const MairixXd & C, const MatrixXd &S, const double tol = 1e—3) {
3 const long m = C.rows(), n = C.cols(), M = S.rows(), N = S.cols () ;
4 const long L = (M— 1) / 2;
5 if (M!=N) {
6 throw std::runtime_error ("Error: S not quadratic!");
7
}
8 MatrixXd Spad = MatrixXd::Zero(m, n);
9 // Zero padding, see (4.2.5.20)
10 Spad.block(0, 0, L + 1, L + 1) = S.block(L, L, L + 1, L + 1);
11 Spad.block(m—- L, n— L, L, L) = S.block(0, 0, L, L);
12 Spad.block(0, n— L, L + 1, L) = S.block(L, 0, L + 1, L);

13 Spad. block (m — L, O, L, L+ 1) =S.block(0, L, L, L + 1);
14 // Inverse of blurring operator (fft2 expects a complex matrix)
15 MatrixXcd SF = fft2 (Spad.cast<complex>());
16 // Test for invertibility
17 if (SF.cwiseAbs().minCoeff() < tol * SF.cwiseAbs().maxCoeff()) {
18 std::cerr << "Error: Deblurring impossible!\n";
19
}
20 // DFT based deblurring
21 return fft2 (ifft2 (C.cast<complex>()).cwiseQuotient (SF)).real () ;

Note that this code checks whether deblurring is possible, that is, whether the blurring operator is really
invertible. A near singular blurring operator manifests itself through entries of its DFT close to zero. J

Review question(s) 4.2.5.23 (Two-dimensional DFT)

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT)

321

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/deblur/Eigen/deblur.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(Q4.2.5.23.A) Describe a function (t,s) — g(t,s) such that

T S R
Re{(Fm>:,j<Fn):,é} = [<psr)] im0 b= o= o, mn €N
Here F,;, n € IN, is the Fourier matrix

[wd W) w))

Wl wl wi =1 :
0 2 22 qn—

F,— |Wn W Wit | = [wfj]l _ec. (4.2.1.13)
. . . Jj=
_1)2
Wd Wil Y

(Q4.2.5.23.B) How would you compute the discrete Fourier transform of a tensor product matrix
X =uvll, u,veC,

A

4.2.6 Semi-discrete Fourier Transform [QSS00, Sect. 10.11]

Starting from § 4.1.4.2 we mainly looked at time-discrete n-periodic signals, which can be mapped to
vectors € IR". This led to discrete periodic convolution (— Def. 4.1.4.7) and the discrete Fourier transform
(DFT) (— Def. 4.2.1.18) as (bi-)linear mappings in C".

§4.2.6.1 (“Squeezing” the DFT) In this section we are concerned with non-periodic signals of infinite
duration as introduced in § 4.0.0.1.

@ Idea: Study the limit 7 — oo for DFT in the n-periodic setting

Let (yk)kGZ be an n-periodic sequence (signal), n = 2m + 1, m & IN, with generating vector

y = [yo,--- ,yn,l]T. Thanks to periodicity we can rewrite the DFT ¢ = DF T,y with a simple change
of indexing:

m .
DFT — Def. 42.1.18: (), =cr:=) yjexp(—2mi %) , k=0,...,.n—-1. (4.2.6.2)
j=—m

Next, we associate a point # € [0, 1] with each index k of the DFT (cj)}'—,

ke{0,...,n—1} +— tp:=—. (4.2.6.3)

Thus we can view (c;)}, as the heights of pulses evenly spaced in the interval [0, 1.

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 322

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1

osr 1 < “Squeezing” a vector € R" into [0, 1].

| We can interpret the values c; as sampled values of
| afunctions defined on [0, 1]

0.7

0.6

G 05 H Cx < C(tk);/

0 0.1 0.2 0.3 0.4

0.4 1

0.3

0.2R
| This makes it possible to pass from a discrete finite
| H | signal to a continuous signal.

0.6 0.7 0.8 0.9 1

0

|
0.5
t

In a sense, formally, we can rewrite (4.2.6.2) as

Fig. 132

m
DFT: c(te) :==cr=) yjexp(—2mjty), k=0,...,n—1. (4.2.6.4)
j=—m
The notation indicates that we read ¢y as the value of a function ¢ : [0, 1[— C for argument #. 2

EXAMPLE 4.2.6.5 (“Squeezed” DFT of a periodically truncated signal) We consider the bi-infinite
discrete signal, “concentrated around 0”

1)

We examine the DFT of the 2m + 1-periodic signal obtained by periodic extension of (yk)f:_m, C++ code
=> GITLAB.

Period of signal y; = 33 DFT of period 33 signal
= gf- —
o
= ~200 0 200 =0 02 o4 08 08 1
Index i of sampling instance [
Fig. 133 Fig. 134

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 323

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/periodlimit/Eigen/periodlimit.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Period of signal y; = 65 DFT of period 65 signal

0.8
2.5

y
0.6
T
c(t)
1.5

0.4
T

0.2
T
0.5
T

~200 0 200 0 038 1
Index i of sampling instance

OJMMLMM - ..{
0.2 0.4 0.6
t

Fig. 135 Fig. 136

Period of signal y; = 129 DFT of period 129 signal

0.8
T
2

y
0.6
T
c(ty)
15

0.4
T

0.2
T

0.5

v 1 1 1
~300 ~200 ~100 0 100 200 300 0
Index i of sampling instance

Fig. 137 Fig. 138

Period of signal y; = 257 DFT of period 257 signal

o

0.8
T
2.

0.6
T

y
c(ty)
5

0.4
T

0.2
T

Ll | :

~200 0 200 0 02 0.4 0.6 038 1
Index i of sampling instance t

Fig. 139 Fig. 140

The visual impression is that the values c(t;) “converge” to those of a function ¢ : [0,1[— R in the

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 324

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

sampling points .

_

§4.2.6.6 (Fourier series) Now we pass to the limit m — oo in (4.2.6.4) and keep the “sampling a function”
perspective: ¢, = c(tx). Note that passing to the limit amounts to dropping the assumption of periodicity!

> c(t) = Y yrexp(—2mikt) |. (4.2.6.7)
keZ

Terminology: The series (= infinite sum) on the right hand side of (4.2.6.7) is called a Fourier series
(link).

The function ¢ : [0,1[— C defined by (4.2.6.7) is called the Fourier transform of the
sequence (k) (, if the series converges).

Corollary 4.2.6.8. Periodicity of Fourier transforms

Fourier transforms t — ¢(t) are 1-periodic functions R — C.

Fourier transform of (1/1 +k2)k

3.5

Thus, the limit we “saw” in Ex. 4.2.6.5 is actually the
oh | Fourier transform of the sequence (v)icz!

‘ ! i 1
2sf ! . < Fourier transform of vy := e

c(t)

From (4.2.6.7) we conclude:

15 s K 1 Fourier transform

Bl 1 | weighted sum of Fourier modes t — exp(—27tikt),
keZ

05 ~~~ ”¢ -

0 I I I I I I I I I .

Fig. 141 t

— related animation on Wikipedia.

It is possible to derive a closed-form expression for the function displayed in Fig. 142:

1 T 2t | 2mt— o0
c(t) = kgzmexp(—2mkt) e a—— (e” T4 e ”) e C*([0,1]) .
Note that when considered as a 1-periodic function on IR, this ¢(f) is merely continuous. 4

Remark 4.2.6.9 (Decay conditions for bi-infinite signals) The considerations above were based on

m

k=—m and

4 truncation of (yx).cz to (Vi)

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 325

http://en.wikipedia.org/wiki/Fourier_series
http://mathworld.wolfram.com/FourierSeries.html
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

4 periodic continuation to an 2m -+ 1-periodic signal.

Obviously, only if the signal is concentrated around k = 0 this procedure will not lose essential information
contained in the signal, which suggests decay conditions for the coefficients of Fourier series.

Minimal requirement: klim lyel =0, (4.2.6.10)
—00

Stronger requirement: Y [y < co. (4.2.6.11)
kezZ

The summability condition (4.2.6.11) implies (4.2.6.10). Moreover, (4.2.6.11) ensures that the
Fourier series (4.2.6.7) converges uniformly [Str09, Def. 4.8.1] because the exponentials are all bounded
by 1 in modulus. From [Str09, Thm. 4.8.1] we learn that limits of uniformly convergent series of continuous
functions posses a continuous limit. As a consequence c¢ : [0, 1[— C is continuous, if (4.2.6.11) holds. _

EXAMPLE 4.2.6.12 (Convergence of Fourier sums) We consider the following infinite signal, satisfying

the summation condition (4.2.6.11): Yk = k € Z, see Ex. 4.2.6.5. We monitored: approxima-

1+ k%’
tion of the Fourier transform ¢(t) by Fourier sums ¢, (t), see (4.2.6.14).

) 2
Fourier transform of (1/1+k%), Fourier sum approximations with 2m-+1 terms, y, = 1/(1+k3)

3.5 T T T T T T T T T 3.5
m=2

3p H 3 m=4 [f
1} 1 \ m=8 I

' ! A m=16 /
\] \ m=32 //
25t . F —

\] ! \ /N
\\\\ /"’

c(t)

L L L I I I L L L 0 I I I I I I I I I
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9 i
Fig. 142 t Fig. 143 t

We observe convergence of Fourier sums in “eyeball norm”. Quantitative estimates can be deduced from
decay properties of the sequence (1), If it is summable according to (4.2.6.11), then

< Y |yl =0 for M— o0

Y yxexp(—2mikt) Z yy exp(—27ikt)
- |k|>M

keZ k=

Further quantitative statements about convergence can be deduced from Thm. 4.2.6.33 below. J

Remark 4.2.6.13 (Numerical summation of Fourier series)
Assuming sufficiently fast decay of the signal (i), for k — oo (— Rem. 4.2.6.9), we can approximate
the Fourier series (4.2.6.7) by a Fourier sum
M
c(t)~em(t) == Y yrexp(—2mikt), M>1. (4.2.6.14)

k=—M

Task: Approximate evaluation of ¢(f) at N equidistant points tj = %] =0,...,N (e.g., for plotting it).

: u kj
c(t;) =]\}Ilin P Z yrexp(—2mikt;) ~ k_Z_:Myk exp(—27rzﬁ) , (4.2.6.15)

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 326

http://mathworld.wolfram.com/FourierSeries.html

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

forj=0,...,N—1.

Note thatin the case N = M (4.2.6.15) coincides with a discrete Fourier transform (DFT, — Def. 4.2.1.18).
The following code demonstrates the evaluation of a Fourier series at equidistant points using DFT.

C++ code 4.2.6.16: DFT-based evaluation of Fourier sum at equidistant points => GITLAB

// evaluate scalar function with a vector

2

3 |// DFT based approximate evaluation of Fourier series

« |// signal is a functor providing the Yy

5 |// M specifies truncation of series according to (4.2.6.14)

6 |// N is the number of equidistant evaluation points for ¢ in
7 1// [0,1].

s |template <class Function >

9 | VectorXcd foursum(const Function &signal, int M, int N) {

10 const int m=2 «xM+ 1; // length of the signal

11 // sample signal

12 // VectorXd y = feval (signal, VectorXd::LinSpaced(m, -M, M));
13 VectorXd y = VectorXd ::LinSpaced(m, —M, M) .unaryExpr (signal) ;

14 // Ensure that there are more sampling points than terms in series
15 int I; if m>N) { | = ceil(double(m) / N); N x= 1; } else | = 1;

16 // Zero padding and wrapping of signal, see

17 // Code 4.2.3.7

18 VectorXd y_ext = VectorXd ::Zero(N);

19 y_ext.head(M + 1) = y.tail(M + 1);

20 y_ext.tail (M) = y.head (M) ;

21 // Perform DFT and decimate output vector

22 Eigen ::FFT<double> fft;

23 const Eigen::VectorXcd k = fft.fwd(y_ext);

24 Eigen::VectorXcd c(N / 1);

25 for (int i = 0; i <N/ I; ++i) c(i) = k(i x 1);

26 return c;

_

§4.2.6.17 (Inverting the Fourier transform) Now we perform a similar passage to the limit as above for
the inverse DFT (4.2.1.20), n = 2m + 1,

n—1 :
.k .
== 21y, j=—m,...,m. 4.2.6.18
yj nkgockexp(), j =y m ()
We adopt a function perspective as before: ¢ <> c(tr), t = % cf. (4.2.6.3), and rewrite
1 n—1
= — c(ty)exp(2mijty), j=—-—m,...,m. 4.2.6.19
vi=- k;) (te) exp(27tijty) ,] ()

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 327

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/foursum/Eigen/foursum.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Then pass to the limit m — coin (4.2.6.19)

Insight: The right hand side of (4.2.6.19) is a Riemann sum, cf. [Str09, Sect. 6.2]

- In the limit m — oo the sum becomes an integral!
1
yi = [c(t)exp(2mijt)dt, jeZ |. (4.2.6.20)
0

This formula is the inversion of the summation of a Fourier series (4.2.6.7)!
In fact, this is not surprising, because for a Fourier series
t) =) yjexp(—2mikt), teR,
kezZ

satisfying the summabiliy condition (4.2.6.11) we can swap integration and summation and directly com-
pute

keZ
1

= ¥y [exp2m(j~ k) dt = y;,

keZ 0

1
/c exp(27ijt) d :/Zy]exp —2mikt)) exp (27tijt) dt
0

because of the “orthogonality relation”

1

" 1 ,ifn=0
dmnt)dt = /

O/eXp(runt) {0 it A0

The formula (4.2.6.20) allows to recover the signal (k). from its Fourier transform c(t).

_

§4.2.6.21 (Fourier transform as linear mapping) Assuming sufficiently fast decay of the infinite sequence
(Yk)kez € CZ, combining (4.2.6.7) and (4.2.6.20) we have found the relationship

(42.6.7): c(t) =) yrexp(—2mikt) < (4.2.6.20): yj = /1c(t) exp(2mikt) dt .
kez 0

Terminology: y; from (4.2.6.20) is called the j-th Fourier coefficient of the function c.

% Notation: ¢ := y; with y; defined by (4.2.6.20) = j-th Fourier coefficient of ¢ : [0,1[— C
In a sense, Fourier series summation maps to sequence to a 1-periodic function, Fourier coefficient ex-
traction a 1-periodic function to a sequence

Fourier series .
sequence € C?Z funtion [0,1[— C .
Fourier coefficients

Both the space CZ of bi-infinite sequences and the space of functions [0,1[— C are vector spaces
equipped with “termwise/pointwise” addition and scalar multiplication. Then it is clear that

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 328

http://en.wikipedia.org/wiki/Riemann_sum

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e the series summation mapping (i) — ¢ from (4.2.6.7),
e and the Fourier coeffiicient extraction mapping ¢ — (k)< from (4.2.6.20)

are linear! (Recall the concept of a linear mapping as explained in [NS02, Ch. 6].)

Let us summarize the fundamental correspondences:

4 N

1
. . 6\]:/ c(t) exp(27ajt) dt o
(continuous) function 0 S (bi-infinite) sequence
c:[0,1[— C = €);
& c(t) = Z Crexp(—2rikt) Viez
kez
\ Fourier transform Fourier coefficient /

|

Remark 4.2.6.22 (Filtering in Fourier domain) What happens to the Fourier transform of a bi-infinite
signal, if it passes through a channel?

Consider a (bi-)infinite signal (xi),c sent through a finite (— Def 4.1.1.2, linear (—
Def. 4.1.1.7) time-invariant (— Def. 4.1.1.5) causal (— Def. 4.1.1.9) channel with impulse response
(...,0,hg,..., h,;10,...) (— Def. 4.1.1.12). By (4.1.2.4) this results in the output signal

n—1
Y=Y hixe_j, keZ. (4.2.6.23)
j=0

We introduce the Fourier transforms of the infinite signals:
Yi)kez < tr=c(t) (x]-)].GZ — = b(t) .

We also assume that (xy), .5 satisfies the summability condition (4.2.6.11). Then elementary computa-
tions establish a relationship between the Fourier transforms:

n—1
c(t) = Y yrexp(—2mkt) = Y) hjxy_jexp(—2rikt)
kez kez j=0
n—1
[shift summation index k] = Y hjxpexp(—2mijt) exp(—27mikt)
Jgkez] (4.2.6.24)

n—1
= <Z;')hj exp(—27'(1jt)> b(t) .
]:

(. J

~
trigonometric polynomial of degree n — 1

Definition 4.2.6.25. Trigonometric polynomial

A trigonometric polynomial is a function R — C that is a weighted sum of finitely many terms
t — exp(—2mikt), k € Z.

We summarize the insight gleaned from (4.2.6.24):

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 329

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Discrete convolution in Fourier domain

The discrete convolution of a signal with finite impulse response amounts to a multiplication of
its Fourier transform with a trigonometric polynomial whose coefficients are given by the impulse
response.

_

§4.2.6.27 (Fourier transform and convolution) In fact, the observation made in Rem. 4.2.6.22 is a spe-
cial case of a more general result that provides a version of the convolution theorem Thm. 4.2.2.2 for the
Fourier transform.

Theorem 4.2.6.28. Convolution theorem

Lett — c(t) and b — b(t) be the Fourier transforms of the two summable bi-infinite sequences
(Yic)kez and (xi)rcz. respectively. Then the pointwise product t — c(t)b(t) is the Fourier trans-
form of the convolution (— Def. 4.1.2.7)

keZ

(x) * (vx) = {5 €Z—), kak} cC”.

Proof. (formal) Ignoring issues of convergence, we may just multiply the two Fourier sequences and sort
the resulting terms:

(Z ykexp(—2mkt)> : <Z xjexp(—27r1jt)> =Y (Z ykx4k> exp(—2milt) .
kez JjEZ leZ \keZ .

=((yx)*(xx)),

O _

§4.2.6.29 (Isometry property of Fourier transform) We will find a conservation of power through Fourier

transform. This is related to the assertion of Lemma 4.2.1.14 for the Fourier matrix F,;, see (4.2.1.13),

namely that —=F,, is unitary (— Def. 6.3.1.2), which implies
N

Thm. 33 2.2
JF ity & ZiFy| =l (4.26.30)
Since DFT boils down to multiplication with F,, (— Def. 4.2.1.18), we conclude from (4.2.6.30)
1 n—1) m)
c; from (4.26.2) = - 2 |cx|® = j_z_m lyil* . (4.2.6.31)

Now we adopt the function perspective again and associated c; <> c(t;). Then we pass to the limit
m — oo, appeal to Riemann summation (see above), and conclude

m—00

1
(4.2.6.31) = c(t)[>dt = 12 (4.2.6.32)
y]
0 jEZ

4. Filtering Algorithms, 4.2. Discrete Fourier Transform (DFT) 330

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Theorem 4.2.6.33. Isometry property of the Fourier transform

If the Fourier coefficients satisfy Y ¢z |j|* < co, then the Fourier series

c(t) =) Crexp(—2mikt)
kez

yields a function c € L%(]0,1[) that satisfies

1
lellZ2gop 3:/0 e(®)Pdt =) 1G>

keZ

Recalling the concept of the L2-norm of a function, see (5.2.4.6), the theorem can be stated as follows:

Thm. 4.2.6.33 <> The L?-norm of a Fourier transform agrees with the Euclidean norm of
the corresponding sequence.

Here the Euclidean norm of a sequence is understood as || (yk)kGZH; =Y lyl*
kez

From Thm. 4.2.6.33 we can also conclude that the Fourier transform is injective: If and only if c¢(t) = 0, all
its Fourier coefficients will be zero. J

Review question(s) 4.2.6.34 (Semi-discrete Fourier transform)

(Q4.2.6.34.A) Section 4.1.1 introduced the shift operator
Sm: 2(2) = >(Z) , Sm((xj)].ez) = (xj,m)].GZ : (4.1.1.4)
Let t — c(t) be the Fourier transform of the sequence (Vi) € (7 (Z),

c(t) = Y yrexp(—2mkt),
kez

What is the relationship of t — c(t) is the Fourier transform of the shifted sequence S (Vk)icz
me Z7?

A

4.3 Fast Fourier Transform (FFT)

You might have been wondering why the reduction to DFTs has received so much attention in Sec-
tion 4.2.2. An explanation is given now.

At first glance, DFT in C",

n—1)
=Y yjwd , k=0,...n-1, (4.2.1.19)
=0

seems to require an asymptotic computational effort of O(nz) (matrix x vector multiplication the dense
Fourier matrix).

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 331

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

C++-code 4.3.0.1: Double-loop implementation of DFT

2 |// DFT (4.21.19) of vector y returned in c

s |void naivedft (const VectorXcd& y, VectorXcd& c) {

4 using idx_t = VectorXecd ::Index;

5 const idx_t n = y.size();

6 const std::complex<double> i(0,1);

7 c.resize(n);

8 // root of unity wy, w holds its powers

9 std :: complex<double> w = std ::exp(—2«M_Pl/nxi),s = w;
10 c(0) = y.sum() ;

11 for (long j = 1; j < n; ++j) {

12 c(j) = y(n=1);

13 for (long k = n—2; k >= 0; —k) c(j) = c(j)*s + y(k);
14 S %= W;

15 }

16 |}

EXPERIMENT 4.3.0.2 (Runtimes of DFT implementations) We examine the runtimes of calls to built-in
DFT functions in both MATLAB and EIGEN =* GITLAB.

Timings in MATLAB

1. Straightforward implementation involving MAT- [

LAB loops
2. Multiplication with Fourier matrix (4.2.1.13)
3. MATLAB’s built-in function £t ()

(MATLAB V6.5, Linux, Mobile Intel Pentium 4 - M

CPU 2.40GHz, minimum over 5 runs)

Similar runtimes would be obtained for PYTHON’S

numpy.fft ().

FFT timing

10-!

O(n?)
- - O(n log(n))

10-2

10-3

10—+

10-5

106

1
102

>

loop based computation

o direct matrix multiplication
——— MATLAB fft() function

run time [s]

; P

I I I
1500 2000 2500

vector length n

I I
0 500 1000 3000

<1 DFT runtimes in EIGEN (only for n = 2L1)

1. Straightforward implementation involving C++
loops, see Code 4.3.0.1

2. Multiplication with Fourier matrix (4.2.1.13)

3. EIGEN’s built-in FFT class, method fwd ()

Note: Eigen uses KISS FFT as default backend in its
FFT module, which falls back loop-based slow DFT
when used on data sizes, which are large primes. An
superior alternative is FFTW, see § 4.3.0.11.

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT)

332

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/ffttime/Eigen/ffttime.cpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The secret of MATLAB’S/EIGEN’S/PYTHON’s £t ():
the Fast Fourier Transform (FFT) algorithm [DV90]

(discovered by C.F. Gauss in 1805, rediscovered by Cooley & Tuckey in 1965,
one of the “top ten algorithms of the century”).

§4.3.0.3 (FFT algorithm: derivation and complexity) To understand how the discrete Fourier transform
of n-vectors can be implemented with an asymptotic computational effort smaller than O(nz) we start with
an elementary manipulation of (4.2.1.19) for n = 2m, m € IN:

e NS amgy R — 2 (24 1)k
=) yje =) e) wojae
j=0 j=0 j=0

m—1) .o om—1)
~2mge 2 — 21 j (4.3.0.4)
=) ypje e Y e, keZ.
=0T = T
=Wmn =Wm
~—_——— ~ -
::’c“zven ::’C*It?dd
and note the m-periodicity: ~ ¢p"e" = cpion, i = cpdd, forall k € Z.
The key observation is that the sequences/m-vectors c;"*" and E,‘;dd can be computed with DFTs of length

m!
With Yeven = [Y0, Y2, - - ~/]/n—2]T eC™ [Eiven]ﬁ_ol = DFT i (Yeven)
. ~oda1m—1
With Yoaa := [y1,Y3, ..., Yn_1] € C™ (624, = DFTu(yoaa) -

This means that for even n we can compute DF T, (y) from two DFTs of half the length plus ~ 1 additions
and multiplications.

(4.3.0.4): B> [DFT of length 2m = 2x DFT of length m + 2m additions & multiplications]

Idea for n = 2L: Divide & conquer recursion
- FFT-algorithm

The following code shows an EIGEN-based Recursive FFT implementation for DFT of length n = 2F.

C++ code 4.3.0.5: Recursive FFT = GITLAB

// Recursive DFT for vectors of length n =2l

2

3 | VectorXcd fftrec (const VectorXcd &y) {

4 const VectorXcd ::Index n = y.size();

5

6 // Nothing to do for DFT of length 1

7 if (n == 1) return y;

8 if (n% 2 != 0) throw std::runtime_error("size(y) must be even!");

9

10 // Even/odd splitting by rearranging the vector components into a
n/2x2 matrix!

1 // See Rem. 1.2.3.6 for use of Eigen::Map

12 const Eigen::Map<const Eigen:: Matrix<std::complex<double>, Eigen::Dynamic,

13 Eigen::Dynamic, Eigen::RowMajor>>

14 Y(y.data(), n / 2, 2);

15 const VectorXcd c1 = fftrec(Y.col(0)), c2 = fftrec(Y.col(1));

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 333

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://doi.ieeecomputersociety.org/10.1109/MCISE.2000.814652
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/fftrec/Eigen/fftrec.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

16 // Root of unity wy

17 const std::complex<double> omega =

18 std::exp(—2 * M_Pl / n x std::complex<double>(0, 1));
19 // Factor in (4.3.0.4)

20 std :: complex<double> s(1.0, 0.0);

21 VectorXcd c(n);

22 // Scaling of DFT of odd components plus periodic continuation of cl,
23 for C(I2ong k =0; k <n; ++k) {

24 c(k) =cl(k% (n/ 2)) + c2(k% (n / 2)) * s;

25 S %= omega;

26 }

27 return c;

28 |}

Visualization of computational cost of fftrec () from Code 4.3.0.5:

1x DFT of length 2¢
2x DFT of length 251
4x DFT of length 252

2L DFT of length 1
We see that in Code 4.3.0.5 each level of the recursion requires O(2%) elementary operations.

Asymptotic complexity of FFT
Asymptotic complexity of FFT algorithm for n = 2F: O(L2%) = O(nlog, n)

(fft.fwd ()/£ft.inv ()-function calls in EIGEN: computational cost is ~ 51 log,).

_I

Remark 4.3.0.7 (FFT algorithm by matrix factorization) The FFT algorithm can also be analyzed on the
level of matrix-vector calculus:

Forn =2m, m € N,

consider even-odd sorting P$E(1,...,1n) = (1,3,...,n —1,2,4,...,1) .

- | } | |

v

— | ' !

Also use the notation P%E for the corresponding permutation of the rows of a matrix € C"", n = 2m.

) .
As w;! = w!, we conclude

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 334

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Fu Fu
OE
Pm Fn — —
w)) wl/?
1
wn w’;l/2+1
Fi . F
_ w7 wi™]]
|
I I
w? —wY
Wy —wy,
Fﬂl
w:l/zfl _w;;/zfl
This reveals how to apply a divide-and-conquer idea when evaluating F,,x.
Example: partitioning of Fourier matrix for n = 10
[W) W0 W W WO W W W W WO]
¥ w? wt Wb W W w?r wt Wb W
W wt W Ww? W | W Wt W W WP
W Wb Ww? W Wt | W W Ww? Ww? Wt
pOER _ W W Wb Wt W? W Wb W Wt W? o w
5 L0 0 wl o @ Al o | WiT W

W W W W W W W Wl Wt W
W W W W W W W W W W
W W Wt W WP W W W Wb WP
¥ W W W Wt W Wt WP w? w!

What if n # 282 Quoted from MATLAB manual:

To compute an n-point DFT when 7 is composite (that is, when n = pq), the FFTW library decomposes the
problem using the Cooley-Tukey algorithm, which first computes p transforms of size g, and then computes
q transforms of size p. The decomposition is applied recursively to both the p- and g-point DFTs until the
problem can be solved using one of several machine-generated fixed-size "codelets." The codelets in turn
use several algorithms in combination, including a variation of Cooley-Tukey, a prime factor algorithm, and
a split-radix algorithm. The particular factorization of n is chosen heuristically.

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 335

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The execution time for fft depends on the length of the transform. It is fastest for powers of two. It is
almost as fast for lengths that have only small prime factors. It is typically several times slower for
lengths that are prime or which have large prime factors — Ex. 4.3.0.12.

Remark 4.3.0.8 (FFT based on general factorization) We motivate the Fast Fourier transform algorithm
for DFT of length n = pg, p,q € IN (Cooley-Tuckey algorithm). Again, we start with re-indexing in the
DFT formula for a vector y = [yo, ..., yn—1] € C".

27ti

k [j=: Zp+m —2mi(]py 1k d
Z}/J Z Zyzp+me pa (pm) Zw Zylp+m wF meda) 4309
m=0[=0

Step I: perform p DFTs of length q, z,, = DFTq([ylermH 3)

q—1
(Zm)g = Zmk == Zylermwékz 0<m<p, 0<k<qg.
1=0

Stepll: fork=:rqg+s, 0<r<p,0<s <gcompute

2m p—l

Crg+s = Z e (rg-s)rm Zm,s = Z (w;?szm,s)wglr ’
m=0

which is amounts to g DFTs of length p after n multiplications. This gives all components ¢ of DFT,y.
Step | Step Il

F
P + P
-

- RARIRARARZRARARE

q q

In fact, the above considerations are the same as those elaborated in Section 4.2.5 that showed that a
two-dimensional DFT of Y € C™ can be done by carrying out m one-dimensional DFTs of length 7 plus
n one-dimensional DFTs of length m1, see (4.2.5.4) and Code 4.2.5.6. a

Remark 4.3.0.10 (FFT for prime 1) When 1 # 2%, even the Cooley-Tuckey algorithm of Rem. 4.3.0.8 will
eventually lead to a DFT for a vector with prime length.

Quoted from the MATLAB manual:

When 7 is a prime number, the FFTW library first decomposes an n-point problem into three (1 — 1)-point
problems using Rader’s algorithm [Rad68]. It then uses the Cooley-Tukey decomposition described above
to compute the (n — 1)-point DFTs.

Details of Rader’s algorithm: starting point is a theorem from number theory:

VpeNprime 3ge{l,....p—1}: {¢"* mod p:k=1,...,p—1}={1,...,p—1},

B> permutation P,go:{l,...,p—1}—{1,...,p—1}, P,q(k)= ¢ mod p,

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 336

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

reversing permutation Py :{1,...,k} — {1,...,k}, Pr(i)=k—i+1.

With these two permutations we can achieve something amazing:

For the Fourier matrix F,, = (f,-j)fj:l the permuted block P, Pp,g(ﬁj)fj_zlzP;’g is circulant.

Example for p = 13: ¢ = 2, permutation (2483 6121195107 1)

WY | W0 wY wY wY wY Y Y Y Y wY wY wY
WY | w? wt w8 w3 P L L ¥ S Wb w0 W7 wl
WY | Wl w? wt w8 w3 wb w2 11 o W w0 W7
WY | Ww? wl w? wt w8 w3 wb w2 11 W0 Wb Wl
WY | w10 7 wl w? wt w8 w3 Wb w2 w11 W0 wd
WO | W w0 W7 wl w2 wt w8 w3 wb w2 11 W0
F13 — (UO w9 (4)5 wlO (4)7 wl wZ w4 wS w3 w® wlZ wll
WY | !l W0 W w0 W7 wl w? w w8 w3 Wb wl?
WY | w12 o1 Y W w0 W wl w? w w8 w3 w®
WVl Wb w2 ol WY W w0 W7 w!l w? wt w8 w3
WY | W Wb w2 o1 W0 Wwd WY W w!l w? wt w8
(UO wS (4)3 w® (4)12 wll w9 w5 wlO w7 wl (4)2 (4)4
WY | w? w8 w3 Wb w2 o1 W0 Wb w0 W7 wl w?

Then apply fast algorithms for multiplication with circulant matrices (= discrete periodic convolution, see
§ 4.1.4.11) to right lower (n — 1) x (n — 1) block of permuted Fourier matrix. These fast algorithms rely
on DTFs of length n — 1, see Code 4.2.2.4. a

Since in Section 4.2 we could implement important operations based on the discrete Fourier transform,
we can now reap the fruits of the availability of a fast implementation of DFT:

Asymptotic complexity of ££t . fwd ()/£ft.inv () fory € C"= O(nlogn).

v < Section 4.2.2

Asymptotic complexity of discrete periodic convolution,see Code 4.2.2.4:
Cost(pconvfft (u,x),u,x € C") =0O(nlogn).

Asymptotic complexity of discrete convolution, see Code 4.2.2.5:
Cost(myconv (h, x), h,x € C") = O(nlogn).

The warning issued in Exp. 2.3.1.7 carries over to numerical methods for signal processing:
2 Never implement DFT/FFT by yourself!
Under all circumstances use high-quality numerical libraries!

§4.3.0.11 (FFTW - A highly-performing self-tuning library for FFT) w

From FFTW homepage: FFTW is a C subroutine library for computing the discrete Fourier transform (DFT)
in one or more dimensions, of arbitrary input size, and of both real and complex data.

FFTW will perform well on most architectures without modification. Hence the name, "FFTW," which
stands for the somewhat whimsical title of “Fastest Fourier Transform in the West.”

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 337

http://www.fftw.org

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

& Supplementary literature. [FJ05] offers a comprehensive presentation of the design and im-

plementation of the FFTW library (version 3.x). This paper also conveys the many tricks it takes to
achieve satisfactory performance for DFTs of arbitrary length.

FFTW can be installed from source following the instructions from the installation page after downloading
the source code of FFTW 3.3.8 from the download page. Precompiled binaries for various linux distribu-
tions are available in their main package repositories:

e Ubuntu/Debian: apt—-get install fftw3 fftw3-dev
e Fedora: dnf install fftw fftw-devel

EIGEN’s FFT module can use different backend implementations, one of which is the FFTW library. The
backend may be enabled by defining the preprocessor directive Eigen_FFTW_DEFAULT (prior to inclu-
sion of unsupported/Eigen/FFT) and linking with the FFTW library (-1££ftw3). This setup pre-
cedure may be handled automatically by a build system like CMake (see set_eigen_fft_backend
macro on =* GITLAB). J

EXAMPLE 4.3.0.12 (Efficiency of FFT for different backend implementations) We measure the run-
times of FTT in EIGEN linking with different libraries, vector lengths 1 = 2L

T T T

B Figen's FFT module (backend Kiss FFT)
~+—<—— Eigen's FFT module (backend FFTW)
= ----- O(n log(n)

Platform:
4+ Linux (Ubuntu 16.04 64bit)
4 Intel(R) Core(TM) i7-4600U CPU @
2.10GHz
4 L2 256KB, L3 4 MB, 8 GB DDR3 @
1.60GHz -
4+ Clang 3.8.0, -03

10-2
T

time [s]
104
T

For reasonably high input sizes the FFTW back-
end gives, compared to EIGEN’s default back-
end (Kiss FFT), a speedup of 2-4x.

10-6
T

1 1
10 102 10° 10¢ 105 100
vector length n

& Supplementary literature. FTT is covered in almost every textbook on elementary numerical
methods, see, for instance [DR08, Sect. 8.7.3], [Han02, Sect. 53], [QSS00, Sect. 10.9.2].
There thousands of online tutorials on FFT, for instance

e The Fast Fourier Transform (FFT): Most Ingenious Algorithm Ever? (Offers an unconventional
perspective based on polynomial multiplication.)

Review question(s) 4.3.0.13 (The Fast Fourier Transform (FFT))

(Q4.3.0.13.A) What is the asymptotic complexity for m1,n — oo of the two-dimensional DFT of a matrix
Y € C"™" carried out with the following code:

C++ code 4.2.5.6: Two-dimensional discrete Fourier transform = GITLAB

2 ‘template <typename Scalar>

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT) 338

http://www.fftw.org/fftw3_doc/Installation-and-Customization.html#Installation-and-Customization
http://www.fftw.org/download.html
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/CMake/Macros/set_eigen_fft_backend.cmake
https://youtu.be/h7apO7q16V0
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/dft2d/Eigen/dft2d.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

s |void fft2 (&C, const

4 using idx_t = ;i Index;

5 const idx_t m =Y. (), n =Y. () ;

6 C. (m, n);

7 tmp(m, n);

8

9 ::FFT<double> fft; // Helper class for DFT

// Transform rows of matrix Y

11 for (idx_t k = 0; k <m; k++) {
12 36 tv (Y. (k));
1 tmp.row (k) = fft.fwd(tv). 0 ;

}

// Transform columns of temporary matrix

17 for (idx_t k = 0; k < n; k++) {
18 i tv (tmp. (k));
19 C. (k) = fft.fwd(tv);

}
}

:: MatrixBase <Scalar> &Y)

{

(Q4.3.0.13.B) Assume that an FFT implementation is available only
How do you have to modify the following C++ function for the
h, x € C" to ensure that it still enjoys an asymptotic complexity of

for vectors of length n = 2F, L € IN..
discrete convolution of two vectors
O(nlogn) for n — co?

C++11 code 4.2.2.5: Implementation of discrete convolution (— Def. 4.1.3.3) based on

periodic discrete convolution = GITLAB

&h,
&x)

fastconv (const
const
0);
0
(4.1.4.16), and periodic
Code 4.2.2.4

assert (x.
const ::Index n = h.
// Zero padding, cf.
// of length 2n—1,

return pconvfft(

(

() == h.

© ® N o o A~ @ N

(2 * n—1) << h,
0,

((2 *x n— 1) << x,
()

{

discrete convolution

(n—1))
(n—1))

(Q4.3.0.13.C) Again assume that the FFT implementation of EIGEN

is available only for vectors of length

n = 2% L € IN. Propose changes to the following C++ function for the discrete periodic convolution of

two vectors u, x € C" that preserve the asymptotic complexity of

O(nlogn) for n — co.

C++11 code cpp:pconvfft: Discrete periodic convolution: DFT implementation = GITLAB

2 pconvfft (const &u,
3 const &x)
4 ::FFT<double> fft;
5 return fft.inv (((fft.fwd(u)). (fft.fwd(x
6

}

{
)))-eval());

(Q4.3.0.13.D) A family of square matrices H;;, € R""" m € INg, n :

I"Im—l
I"Im—l

I"Im—l

|

= 2" is recursively defined as

, meIN.

4. Filtering Algorithms, 4.3. Fast Fourier Transform (FFT)

339

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/pconv/Eigen/myconv.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/pconv/Eigen/pconvfft.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Devise a recursive algorithm for computing the matrix x vector product H,;x, x € IR” and determine its
asymptotic complexity in terms of n := 2" — oo,

A

4.4 Trigonometric Transformations

Q Supplementary literature. [Han02, Sect. 55], see also [Str99] for an excellent presentation of
various variants of the cosine transform.

Keeping in mind exp(27rix) = cos(27x) + 1sin(271x) we may also consider the real/imaginary parts
of the Fourier basis vectors (Fn):,]- as bases of R and define the corresponding basis transformation.

They can all be realized by means of £ £t with an asymptotic computational effort of O(nlogn). These
transformations avoid the use of complex numbers.

Details are given in the sequel.

4.4.1 Sine transform

Another trigonometric basis transform in R"~1, n € IN:

Standard basis of R~ “Sine basis”]
(T 707 [07 [0]) ([sin(Z) [sin(Z)] sin(=17
0| |1 IRE sin(ZX) sin(57)
’ ’ . . . 2n-1)m
0 _ : : sin(=-7)

0] |: _
1(10 : :

\ _0_ _0_ _0_ _1_) _Sll’l((:ll)n)— _Sin(z(nzl)n)_ _Sin((7’171)271' 1)

Basis transform matrix (sine basis — standard basis): S, := (sin(jk7r/n))}; L, € R"™M L.

Lemma 4.4.1.1. Properties of the sine matrix

V2/n'S,, € R™" is real, symmetric and orthogonal (— Def. 6.3.1.2)

n—1
Sine transform of y = [y1,...,y,_1] € R"': | st = ¥ y; sin(ik/n) |, k=1,...,n—1.
j=1

(4.4.1.2)

4. Filtering Algorithms, 4.4. Trigonometric Transformations 340

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

By elementary consideration we can devise a DFT-based algorithm for the sine transform (= S,, X vector):

y] ,ifj:1,...,7l—1,
tool: “wrap around”: y € R*": y; =<0 Jifj=0,n, (Y “odd”)
—Yon—j Jifj=n+1,...,2n—-1.

This “wrap around” transformation can be visualized as follows:

1 1

0.8 0.8-

0.6 0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 5 10 15 20 25 30
] i

Next we use sin(x) = - (exp(1x) — exp(—iux) to identify the DFT of a wrapped around vector as a sine

transform:

(4.2.1.19) 2n—1 2 n—1 i 2n—1 i
=1 =1 j=n+1

n-1 : s
=Y yile"H —en¥) = —2i(Syy) k=1,...,n—1.
j=1

C++ code 4.4.1.3: Wrap-around implementation of sine transform => GITLAB

// Simple sine transform of y€R"—1 into c€ R"! by (4.4.1.2)

2

s |void sinetrfwrap (const &y, & c)
|

5 ::lndex n = y. () +1;

6 // Create wrapped vector y

7 yt(2«n); yt << 0,y,0,—y. 0);

8

9 - ct;

10 ::FFT<double> fft; // DFT helper class
1 fft.SetFlag (::FFT<double >::Flag :: Unscaled) ;

12 fft.fwd(ct, yt);

14 const std ::complex<double> v(0,2); // factor 21
15 c = (—ct. (1,n=1)/v). ();

Remark 4.4.1.4 (Sine transform via DFT of half length) The simple Code 4.4.1.3 relies on a DFT for
vectors of length 271, which may be a waste of computational resources in some applications. A DFT of
length 7 is sufficient as demonstrated by the following manipulations.

Step @: transform of the coefficients

gj = sin(m/n) (W + Yni) + 2005 =Yn-j) , j=1n=1, Fo=0.

4. Filtering Algorithms, 4.4. Trigonometric Transformations 341

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/sinetransformwraparound/Eigen/sinetransformwraparound.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Step @: real DFT (— Section 4.2.4) of (yp,...,¥,—1) € R™ Ck = nilg] e
i=0
n—1 n—1
Hence Re{ci} =) ¥, cos(—2jk) = Z(y] + Yy j) sin(0 cos (2 jk)
j=0 =1
— ni;l2yj sin(Z) cos(22 jk Z Yj (sm 2k+ 1 7j) — sin(=—— L nj))
j=0
= 52k+1 — S2k—1 -
Im{c} = Z yj sin(27” jk) = —Yf%(y — Yn—])sm 27” Z yj sin(27”
j=1

—S2k -

Step @: extraction of sj

S2k+1 » k= o,... ,% —1 >» from recursion Sok4+1 — S2k—1 = Re{ck} p
Sk, k= 1,...,% -2 >» Sy — —Im{ck} .

Implementation (via a £ £t of length 1/2):

C++11-code 4.4.1.5: Sine transform =* GITLAB

n—1
s1=) yj sin(7i/n),
=1

void sinetransform(const Eigen::

{

VectorXd &y, Eigen::VectorXd& s)
int n = y.rows() + 1;

std :: complex<double> i(0,1);

// Prepare sine terms

Eigen :: VectorXd x Eigen :: VectorXd :: LinSpaced(n—1, 1, n—1);

Eigen :: VectorXd sinevals x.unaryExpr ([&](double z){ return
imag (std ::pow(std ::exp(i*M_Pl/(double)n), z)); });

© ©® N o o h~ 0 N

// Transform coefficients

12 Eigen:: VectorXd yt(n);
13 yt(0) = 0;
14 yt.tail (n—1) = sinevals.array () * (y + y.reverse ()).array ()

0.5%(y—y.reverse ()).array () ;

// FFT

Eigen :: VectorXcd c;
Eigen::FFT<double> fft;
fft.fwd(c,yt);

s.resize (n);
s(0) sinevals .dot(y);

for (int k=2; k<=n—1;
{

++k)

=k
(k%2==0)

s(j) = —c(k/2) .imag() ;
else

s(])

int j
if

=5s(j—2) + c((k—=1)/2).real ();

—1; // Shift index to consider indices starting from O

+

4. Filtering Algorithms, 4.4. Trigonometric Transformations

342

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/sinetransform/Eigen/sinetransform.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

31 }

32 |}

_I

EXAMPLE 4.4.1.6 (Diagonalization of local translation invariant linear grid operators) We consider
a so-called 5-points-stencil-operator on IR"", n € IN, defined as follows

(T(X)) i 1= CXjj + CyXjjp1 + CyXij—1+ CxXip1,j + CxXi—1 (4.4.1.7)

nn nn
T { R — RM", ;

X - T(X),

with coefficients c, ¢y, cx € R, convention: x;; := 0 for (i, /) ¢ {1,...,n}2

A matrix can be regarded as a function that assigns

values (= matrix entries) to the points of a 2D lattice/- #
grid: 20-|
Matrix X € IR"™"
grid function € {1,...,n}?> —» R 0 I| I I‘ . I
| I

Visualization of a grid function > 54

5
Identification R =]R”z, Xij ~ f(j_l)nJri (row-wise numbering) gives a matrix representation T &€
R™M of T:

Ke I 0 o o 0 7 j
c,I C ¢l :
T — 0 . . e]an,nz

(0 - - 0 I C] Cy o
(¢ ¢ O 0] Sy
Cy C Cy :

C — 0 c Rn,n . n+1 n+2
e c o 1 2 3 ;

0 0 ¢ ¢

4. Filtering Algorithms, 4.4. Trigonometric Transformations 343

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

We already know the sine basis of R"":
Kkl . N .
BY = (sin(;;Z5ki) sm(n—ill]));fj:1 . (441.8)

These matrices will also provide a basis of the vector
space of grid functions {1,...,n}? — R.

n = 10: grid function B>3 >

The key observation is that elements of the sine basis are eigenvectors of T:

(T(BM));; = csin(2ki) sin(;271)) + ¢y sin(2ki) (sin(;271(— 1)) +sin(;Z71(+ 1))+

cxsin(; 1) (sin(k(i — 1)) + sin(;77k(i +1)))
= sin(;77ki) sin(;751]) (¢ + 2cy cos(;751) + 2¢x cos(557k))

Hence B¥ is eigenvector of T (or T after row-wise numbering) and the corresponding eigenvalue is
given by ¢ + 2¢y cos(;5!) + 2cx cos(;7k). Recall very similar considerations for discrete (periodic)
convolutions in 1D (— § 4.2.1.6) and 2D (— § 4.2.5.9)

The basis transform can be implemented efficiently based on the 1D sine transform:

n n
=Y) yB" = Xij = Zsm ki) Zyklsm 5l
k=11=1

Hence nested sine transforms (— Section 4.2.5) for rows/columns of Y = (yx1)7;_-

Here: implementation of sine transform (4.4.1.2) with “wrapping”-technique.

C++11-code 4.4.1.9: 2D sine transform = GITLAB

2 |void sinetransform2d (const Eigen::MatrixXd& Y, Eigen::MatrixXd& S)
3
{
4 int m=Y.rows();
5 int n = Y.cols () ;
6
7 Eigen :: VectorXcd c;
8 Eigen ::FFT<double> fft ;
9 std :: complex<double> i(0,1);
10
0 Eigen :: MatrixXcd C(2xm+2,n) ;
12 C.row(0) = Eigen::VectorXcd ::Zero(n);
13 C.middleRows (1, m) = Y.cast<std::complex<double>>() ;
14 C.row(m+1) = Eigen::VectorXcd ::Zero(n) ;
15 C.middleRows(m+2, m) = —Y.colwise () .reverse () .cast<std :: complex<double>>() ;
16
17 // FFT on each column of C — Eigen::fft only operates on vectors
18 for (int i=0; i<n; ++i)
19 {
20 fft.fwd(c,C.col(i));
21 C.col(i) = c;
22 }
23
24 C.middleRows(1,m) = i*C.middleRows(1,m)/2.;

4. Filtering Algorithms, 4.4. Trigonometric Transformations 344

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/sinetransform2d/Eigen/sinetransform2d.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Eigen :: MatrixXcd C2(2xn+2,m) ;

C2.row(0) = Eigen::VectorXcd ::Zero(m);

C2.middleRows(1,n) = C.middleRows(1,m).transpose() ;

C2.row(n+1) = Eigen::VectorXcd ::Zero(m) ;

C2.middleRows(n+2, n) = —C.middleRows(1,m) .transpose () .colwise () .reverse () ;

// FFT on each column of C2 - Eigen::fft only operates on vectors
for (int i=0; i<m; ++i)
{
fft.fwd(c,C2.col(i));
C2.col(i) = c;
}

S = (i*C2.middleRows(1,n).transpose() / 2.).real () ;

C++11-code 4.4.1.10: FFT-based solution of local translation invariant linear operators
-+ GITLAB

void fftbasedsolutionlocal (const Eigen::MatrixXd& B,

© ® N o o A~ W N

{

double c, double cx, double cy, Eigen::MatrixXd& X)

size_t m = B.rows () ;
size_t n = B.cols();

// Eigen’s meshgrid
Eigen:: MatrixXd | = Eigen::RowVectorXd::LinSpaced(n,1,n).replicate(m,1);
Eigen:: MatrixXd J = Eigen::VectorXd ::LinSpaced(m,1 ,m).replicate(1,n);

// FFT
Eigen:: MatrixXd X_;
sinetransform2d (B, X_);

// Translation

Eigen :: MatrixXd T;

T = ¢ + 2xcx*x(M_PI/(n+1)x1).array () .cos() +
2xcy*(M_Pl/(m+1)xJ) .array () .cos () ;

X_ = X_.cwiseQuotient (T) ;

sinetransform2d (X_, X);
X = 4xX/((m+1)*x(n+1));

Thus the diagonalization of T via 2D sine transformyields an efficient algorithm for solving linear system

of equations T(X) = B: computational cost O(n? log).

|

EXPERIMENT 4.4.1.11 (Efficiency of FFT-based solver) In the experiment we test the gain in runtime
obtained by using DFT-based algorithms for solving linear systems of equations with coefficient matrix T
induced by the operator T from (4.4.1.7) with the values

c=4 , cx=¢y=-1.

4. Filtering Algorithms, 4.4. Trigonometric Transformations

345

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/fftbasedsolutionlocal/Eigen/fftbasedsolutionlocal.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

This means
[C -1 0 0] [4 -1 0 0]
-1 C -I : -1 4 -1 :
T:=|o¢ ceR”™, C:= | € R |
E I C I E -1 4 -1
| 0 0 —-I C| 0 0 -1 4|
v 7FFT‘—LOGSQI’
— Backslash-Loeser|
tic—toc-timing (MATLAB) V7, Linux, Intel Pentium
4 Mobile CPU 1.80GHz) %
Similar results would be obtained by an implementa- 3
tion in PYTHON. il
" _
4.4.2 Cosine transform
Another trigonometric basis transform in IR”, n € IN:
standard basis of IR” “cosine basis”
(=2 r 272] [2712 1)
(1) (1) 07 10 cos(5-) cos(%) cos((znz_nl)
1lo cos(52) cos(3E) COS(Z(?J;U)
. S — :
of |:
ANE 1110 . :
0l [0 ol |1]) (n-1)7 (n—1)7 :
(n—1)(2n—1)
\ | cos(“;~) | [cos (=) | cos(T)])
Basis transform matrix (cosine basis — standard basis):
-2 ifi =0
C,=|c e R with ¢;; =
=l 1]]11 0 K {COS(2]2:) Lifi>0
Lemma 4.4.2.1. Properties of cosine matrix
The matrix \/2/n C,, € R"" is real and orthogonal (— Def. 6.3.1.2) .
Note: C, is not symmetric.
n—
cosine transform of y = [yo, ..., yn—1] Ck = 2 Y; cos(k?‘]Jr1 Y|, k=1,...,.n—1,
=0
(4.4.2.2)
4. Filtering Algorithms, 4.4. Trigonometric Transformations 346

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1 n—1
o= —— -
V2 ,; i
Implementation of Cy using the "wrapping”-technique as in Code 4.4.1.3:

C++11-code 4.4.2.3: Cosine transform => GITLAB

2 |void cosinetransform (const Eigen::VectorXd& y, Eigen::VectorXd& c)
3
{
4 int n = y.size();
5
6 Eigen:: VectorXd y_(2xn);
7 y_.head(n) = y;
8 y_.tail(n) = y.reverse () ;
O
10 // FFT
1 Eigen:: VectorXcd z;
12 Eigen::FFT<double> fft;
13 fft.fwd(z,y_);
14
15 std :: complex<double> i(0,1);
16 c.resize(n);
17 c(0) = z(0).real()/(2xsqrt(2));
18 for(size_t j=1; j<n; ++j) {
19 c(j) = (0.5 x pow(exp(—i*M_Pl/(2«(double)n)), j) x z(j)).real();
20 }
21 |}

Implementation of C,, 'y (“Wrapping’-technique):

C++11-code 4.4.2.4: Inverse cosine transform = GITLAB

2 |void icosinetransform (const Eigen::VectorXd& c, Eigen::VectorXd& y)
3
{
4 size_t n = c.size();
5
6 std :: complex<double> i(0,1);
7 Eigen:: VectorXcd c_1(n);
8 c_1(0) = sqrt(2)x*c(0);
9 for(size_t j=1; j<n; ++j) {
10 c_1(j) = pow(exp(—i*M_PIl/(2x(double)n)), j) * c(j);
0 }
12
13 Eigen:: VectorXcd c_2(2xn);
14 c_2.head(n) = c_1;
15 c_2(n) = 0;
16 c_2.tail(n—1) = c_1.tail(n—1).reverse () .conjugate () ;
17
18 // FFT
19 Eigen:: VectorXd z;
20 Eigen ::FFT<double> fft ;
21 fft.inv(z,c_2);
22
23 // To obtain the same result of Matlab,
24 // shift the inverse FFT result by 1.
25 Eigen:: VectorXd y_(2xn);
2 y_.head(2xn—1) = z.tail(2xn—1);
27 y_(2xn—1) = z(0);
28

4. Filtering Algorithms, 4.4. Trigonometric Transformations

347

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/cosinetransform/Eigen/cosinetransform.hpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/icosinetransform/Eigen/icosinetransform.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

29 y = 2xy_.head(n);

s |}

Remark 4.4.2.5 (Cosine transforms for compression)

The cosine transforms discussed above are named foo e, et
DCT-I:

o o o o
oooooooooo

DCT-Il and DCT-III.
Various cosine transforms arise by imposing
various boundary conditions: B
e DCT-lI: even around —1/2and N — 1/2 e
e DCT-III: even around 0 and odd around N
DCT-Il is used in JPEG-compression while a slightly Ceastenes
modified DCT-IV makes the main component of MP3, vcrv:
AAC and WMA formats.

°
°°°°°°°°°°

Review question(s) 4.4.2.6 (Trigonometric Transformations)

4.5 Toeplitz Matrix Techniques

This section examines FFT-based algorithms for more general problems in numerical linear algebra. It
connects to the matrix perspective of DFT and linear filters that was adopted occasionally in Section 4.1

and Section 4.2.

4.5.1 Matrices with Constant Diagonals

EXAMPLE 4.5.1.1 (Parameter identification for linear time-invariant filters) We want to determine the

impulse response of an LT-FIR channel from (noisy) measurements:

e Given: (xy)rez m-periodic discrete signal = known input

e Given: (1)rez m-periodic measured*) output signal of a linear time-invariant filter, see Section 4.1.1.

(*) = inevitably affected by measurement errors!

e Sought: Estimate for the impulse response (— Def. 4.1.1.12) of the filter

This task reminds us of the parameter estimation problem from Ex. 3.0.1.4, which we tackled with least

squares techniques. We employ similar ideas for the current problem

e Known: impulse response of filter has maximal duration nAt, n € IN, n < m

cf (4.1.2.4) n—1
= dh = [ho,. . .,hnfl]—r eR", n<m: Y = Z h]-xk,]' . (4.5.1.2)
=0
ka input signal Lyk output signal
er | L e mial .
] u] L] u - time
4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 348

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

If the y; were exact, we could retrieve hy,...,h,_1 by examining only vo,...,y,—1 and inverting the

discrete periodic convolution (— Def. 4.1.4.7) using (4.2.1.17).

However, in case the y; are affected by measurements errors it is advisable to use all available y; for a
least squares estimate of the impulse response.

We can now formulate the least squares parameter identification problem: seek h = [hy, .. .,h,,_l]T €
IR"™ with
[X0 X1 X1—n |
X1 X0 X_q : " Yo]
X1 Xp [ho] :
Ah — = . — min .
| vyl : X1 _
Xp—1 X1 Xo :
Xn Xn—1 X1 _hnfl_ :
. | Ym—1
| Xm—1 Xm—nd 5

This is a linear least squares problem as introduced in Chapter 3 with a coefficient matrix A that enjoys
the property that (A)Z-]- = Xj—j, which means that all its diagonals have constant entries.

The coefficient matrix for the normal equations (— Section 3.1.2, Thm. 3.1.2.1) corresponding to the
above linear least squares problem is
m—1
M= ATA ’ (M)U = Z xk,ixk,j =1Zjj
k=0

for some m-periodic sequence (z), due to the m- periodicity of (xy)rez-

> M € R"" is a matrix with constant diagonals & symmetric positive semi-definite (— Def. 1.1.2.6)

(“constant diagonals” <> (M), ; depends only on i — j)
|

EXAMPLE 4.5.1.3 (Linear regression for stationary Markov chains) We consider a sequence of scalar
random variables: (Y)rez, @ so-called Markov chain. These can be thought of as values for a random
quantity sampled at equidistant points in time.

We assume stationary (time-independent) correlations, that is, with (.4, (), dP) denoting the underlying
probability space,
S(Yi_]‘Yi,k) = /QY,'_]'(CL))Yik<CU) dIP(w) = uk,]' Vi,j,k ez, Ui =u_;.

Here £ stands for the expectation of a random variable.

Model: We expect a finite linear dependency of the form

n
-
HX:[Xl,...,Xn] e R": Yk:ijYk,]' Vk € Z .
j=1
with unknown parameters Xj, j = 1,...,n. Our task is to estimate the parameters x1, ..., x, based
on the known correlations u,. We try to minimize the expectation of the square of the expectation of the
residual. This means that for some fixed i € Z we use the

n 2
estimator: X = argminS‘Yi — Z x]-YZ',]" (4.5.1.4)
xcR" j=1
4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 349

http://en.wikipedia.org/wiki/Markov_chain

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The trick ist to use the linearity of the expectation, which makes it possible to convert (4.5.1.4) into

n n
X = [xl,...,xn]Te]R”: E\Yiyz—Zijuk+ Z xkx]'uk_j—>min .
=1 k=1

B> x"Ax—2b'x > min with b=[ul;_,, A= [uj

n

L (4.5.1.5)

By definition A is a so-called covariance matrix and, as such, has to be symmetric and positive definite
(— Def. 1.1.2.6). By its very definition it has constant diagonals. Also note that

x Ax —2b'x = (x — x*) TA(x — x*) — x*Ax*, (4.5.1.6)

with x* = A~!b. Therefore x* is the unique minimizer of x' Ax — 2bTx. The problem is reduced to
solving the linear system of equations Ax = b (Yule-Walker-equation, see below). J

Matrices with constant diagonals occur frequently in mathematical models, see Ex. 4.5.1.1, Ex. 4.5.1.3.
They generalize circulant matrices (— Def. 4.1.4.12).

uo ul Y Y un_l

Definition 4.5.1.7. Toeplitz matrix

u_q Uy UuUq
T = (t;);j—, € K™"is a Toeplitz matrix, if there is

avector u = [U_p41,...,u,_1] € K™ 1 such

thatt;, = u;,_;;1 <i<m,1<j<n.
ij oSS =)= ”

ul_m e e u_l uO

Note: The “information content” of a matrix M € K™ with constant diagonals, that is, (M); ; = m;_;,
ism+n — 1 numbers € K.
Hence, though potentially densely populated, m x n Toeplitz matrices are data-sparse with infor-
mation content << mn.

4.5.2 Toeplitz Matrix Arithmetic
Given: T = [uj_;] € K", a Toeplitz matrix with generating vector u = [ity 1] €
K"+"=1 see Def. 4.5.1.7.

Task: Efficient evaluation of matrix x vector product Tx, x € K"

To motivate the approach we realize that we have already encountered Toeplitz matrices in the convolution
of finite signals discussed in Rem. 4.1.3.1, see (4.1.3.2). The trick introduced in Rem. 4.1.4.15 was to
extend the matrix to a circulant matrix by zero padding, compare (4.1.4.18).

Idea: Extend T € K""" to a circulant matrix (— Def. 4.1.4.12) C € K" """+ generated by
the m -+ n-periodic sequence (c]-)].EZ given by

@ ; forj=— 1,...,n—1
Cj:{u] orj m+1,...,n ,

. + periodic extension.
0 forj=mn,

4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 350

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

The upper left m x n block of C contains T:
(Cij=cij, 1<ij<m+n = (Crmim=T. (4.5.2.1)

The following formula demonstrates the structure of C in the case m = n.

Ug U1 C. e Upy_q 0 Ul_py - e u_q
u_q1 Uy Uy : Uy,—1 O

u : . . U1—n

C— | Mn U1 Ug | up—1 0
0 Ul_y - ce U_q Uug uq Ce Ce Uy_1

Uy 0 u_q Uup [Z5] :

ul_n . . T ul

R Up—1 0 Uy - e U1 Ug |

Recall from 4.3 that the multiplication with a circulant (m + n) x (m + n)-matrix (= discrete periodic
convolution — Def. 4.1.4.7) can be carried out by means of DFT/FFT with an asymptotic computational
effort of O((m + n) log(m + n)) for m,n — oo, see Code 4.2.2.4.

From (4.5.2.1) it is clear how to implement matrix x vector for the Toeplitz matrix T

| C [x] _ {Tx}
zero padding 10 *
Therefore the asymptotic computational effort for computing Tx is O((1 + m) log(m + n)) for m, n — oo,

provided that an FFT-based algorithm for discrete periodic convolution is used, see Code 4.2.2.4. This
complexity is almost optimal in light of the data complexity O(m + n) of the Toeplitz matrix.

4.5.3 The Levinson Algorithm

Given: Symmetric positive definite (s.p.d.) (— Def. 1.1.2.6) Toeplitz matrix T = (uj,i)?jzl € R™" with
generating vector u = [t 1,...,u,_1] € R¥" 1 u_i = uy.

Note that the symmetry of a Toeplitz matrix is induced by the property u_; = u; of its generating vector.
Without loss of generality we assume that T has unit diagonal, 1y = 1.

Task: Find an efficient solution algorithm for the LSE Tx = b = [bl,...,bn]T, b € R", the Yule-
Walker problem from 4.5.1.3.

@ Employ a recursive (inductive) solution strategy.

4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 351

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Define: 4 T := [u/-,i}szl € KK (left upper block of T) > | Ty is s.p.d. Toeplitz matrix |,
+xf e K- Tiuxk = bk = [bl,...,bk]T o xk= Tk_lbk,
+uf = (1, ..., u)" € R¥

We block partition the linear system of equations Ty, 1 x**!1 = b**1 k < n:

Ug by
: ~k+1 : k
T Xt = Ty : X — |] = { b] (4.5.3.1)
251 1 bk bk+1
U - U ‘ 1 Ye+1 b1

Now recall block Gaussian elimination/block-LU decomposition from Rem. 2.3.1.14, Rem. 2.3.2.19. They

teach us how to eliminate X! and obtain an expression for x} 7.

To state the formulas concisely, we introduce reversing permutations. For a vector they can be realized by
EIGEN's reverse () method.

Pedl.. kb {1, k), Pu(i)i=k—i+1. (4.5.3.2)

Then we carry out block elimination:

fve _ 711,k k+1 k k+1 1 k
Xk1+1 = Tk (b k+1Pku) =X —kaT Pku ’

- (4.5.3.3)

.
k+1 _ ~k+1 _ k| o k+1 K 'lp ok
Xer1 = beyr — Pru® - X = by g — <Pku) X<+xk+1<Pk“) T, Pru’.

The recursive idea is clear after introducing the auxiliary vectors yk = Tk’1 Pkuk, which converts (4.5.3.3)
into

e+ k+1 _ T ok T
K . X bri1 — (Pru”) x%) /o
s { k+1} with i _ (/k+1 k+g p) e ;=1 <Pkuk> vy (4534)
Ye+1 X - xk+1y

Here, the assumption that T is s.p.d. ensures 0 > 1.

Therefore, solving Ty, 1x**1 = bX*! seems to entail the following steps:
@ Solve Tiy* = PruX (k x k s.p.d. Toeplitz LSE, recursion).
® Solve t;x" = b (k x k s.p.d. Toeplitz LSE, recursion).
® Compute x**1 according to (4.5.3.4).

§4.5.3.5 (asymptotic complexity) Obviously, given x* and y*, the evaluations involved in (4.5.3.4) take
O(k) operations for k — co, in order to get x**1.

It seems that two recursive calls are necessary in order to obtain y* and x¥, which enter
(4.5.3.4): this is too expensive!

g If b* = Pruf, then x* = yk
- Simple linear recursion sufficient to compute yk

Hence, y* can be computed with an asymptotic cost of O(k?) for k — co. Once the y* are available,
another simple linear recursion gives us x* with a cost of O(k?) for k — co.

4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 352

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

-

Cost for solving Tx = b = O(k?) for k — oo. J

Below we give a C++ implementation of the Levinson algorithm for the solution of the Yule-Walker problem

Tx = b with an s.p.d. Toeplitz matrix described by its generating vector u (recursive implementation, x~,

k

yk computed simultaneously, 1,1 not used!)

C++ code 4.5.3.6: Levinson algorithm => GITLAB

© © N o o B~ W N

void levinson (const i &u, const il &b,
i &x, i &y) {

int k = u. () —1; // Matrix size - 1

// Trivial case of 1X1 linear sysrtem

if (k==10) {
X. (1); x(0) = b(0);
y- (1); y(0) = u(0);
return;

}

// Vectors holding result of recursive call

il xk, yk;
// Recursive call for computing x* and yk
levinson (u. (k), b. (k), xk, yk);
// Coefficient o0y from (4.5.3.4)
const double sigma = 1 — u. (k). (yk);
// Update of X according to (4.5.3.4)
const double t = (b(k) — u. (k). () - (xk)) / sigma;
x = xk — t x yk. (k). ();
x.conservativeResize (x. () + 1);
X(X. ()—1) =t;
// Update of vectors y*
double s = (u(k) — u. (k) - () - (yk)) / sigma;
y = yk — s * yk. (k). 0 ;
y.conservativeResize (y. () + 1);

y(y- () — 1) =s;

Note that this implementation of the Levinson algorithm employs a simple linear recursion with computa-
tional cost ~ (n — k) on level k, k = 0,...,n — 1, which results in an overall asymptotic complexity of

O(n?

) for n — oo, as already discussed in § 4.5.3.5.

Remark 4.5.3.7 (Fast Toeplitz solvers) Meanwhile researchers have found better methods [Ste03]:
now there are FFT-based algorithms for solving Tx = b, T a Toeplitz matrix, with asymptotic complexity
O(nlog®n)! 4

% Supplementary literature. [DR08, Sect. 8.5]: Very detailed and elementary presentation, but

the discrete Fourier transform through trigonometric interpolation, which is not covered in this chap-
ter. Hardly addresses discrete convolution.

[Han02, Ch. IX] presents the topic from a mathematical point of view stressing approximation and
trigonometric interpolation. Good reference for algorithms for circulant and Toeplitz matrices.

[Sau06, Ch. 10] also discusses the discrete Fourier transform with emphasis on interpolation and
(least squares) approximation. The presentation of signal processing differs from that of the course.

There is a vast number of books and survey papers dedicated to discrete Fourier transforms, see,
for instance, [Bri88; DV90]. Issues and technical details way beyond the scope of the course are
discussed in these monographs.

4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 353

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Filtering/levinson/Eigen/levinson.hpp

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Review question(s) 4.5.3.8 (Toeplitz matrix techniques)
(Q4.5.3.8.A) Give an example of a Toeplitz matrix T € R™", n > 2, with rank(T) = 1.

(Q4.5.3.8.B) Show that the product of two lower triangular Toeplitz matrices is a Toeplitz matrix again.

4. Filtering Algorithms, 4.5. Toeplitz Matrix Techniques 354

Bibliography

[Brigs]
[DROS]
[DV90]
[FJO5]
[Gutog]
[Han02]
[HR11]
[NS02]
[QSS00]
[Rad68]

[Sau06]
[Ste03]

[Str99]

[Str0g]

E.O. Brigham. The Fast Fourier Transform and Its Applications. Englewood Cliffs, NJ: Prentice-
Hall, 1988 (cit. on p. 353).

W. Dahmen and A. Reusken. Numerik fir Ingenieure und Naturwissenschaftler. Heidelberg:
Springer, 2008 (cit. on pp. 338, 353).

P. Duhamel and M. Vetterli. “Fast Fourier transforms: a tutorial review and a state of the art”.
In: Signal Processing 19 (1990), pp. 259—299 (cit. on pp. 333, 353).

M. Frigo and S. G. Johnson. “The Design and Implementation of FFTW3". In: Proceedings
of the IEEE 93.2 (Feb. 2005), pp. 216—231. D0I: 10.1109/JPROC.2004.840301 (cit. on
p. 338).

M.H. Gutknecht. Lineare Algebra. Lecture Notes. SAM, ETH Zirich, 2009 (cit. on p. 298).

M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen
Rechnens. Mathematische Leitfaden. Stuttgart: B.G. Teubner, 2002 (cit. on pp. 296, 338, 340,
353).

Georg Heinig and Karla Rost. “Fast algorithms for Toeplitz and Hankel matrices”. In: Linear
Algebra Appl. 435.1 (2011), pp. 1-59.

K. Nipp and D. Stoffer. Lineare Algebra. 5th ed. Zlrich: vdf Hochschulverlag, 2002 (cit. on
pp. 298, 329).

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37. Texts in Applied Math-
ematics. New York: Springer, 2000 (cit. on pp. 322, 338).

C.M. Rader. “Discrete Fourier Transforms when the Number of Data Samples Is Prime”. In:
Proceedings of the IEEE 56 (1968), pp. 1107—1108 (cit. on p. 336).

T. Sauer. Numerical analysis. Boston: Addison Wesley, 2006 (cit. on p. 353).

M. Stewart. “A Superfast Toeplitz Solver with Improved Numerical Stability”. In: SIAM J. Matrix
Analysis Appl. 25.3 (2003), pp. 669—693 (cit. on p. 353).

Gilbert Strang. “The Discrete Cosine Transform”. In: SIAM Review 41.1 (1999), pp. 135—-147.
DOI: 10.1137/50036144598336745 (cit. on p. 340).

M. Struwe. Analysis fir Informatiker. Lecture notes, ETH Zirich. 2009 (cit. on pp. 326, 328).

355

https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1137/S0036144598336745

Chapter 5

Machine Learning of One-Dimensional Data
(Data Interpolation and Data Fitting in 1D)

Contents
5.1 Abstract Interpolation (AI) 356
5.2 Global Polynomial Interpolation 364
521 Uni-Variate Polynomials 364
52.2 Polynomial Interpolation: Theory 366
523 Polynomial Interpolation: Algorithms 370
524 Polynomial Interpolation: Sensitivity 385
5.3 Shape-Preserving Interpolation, 389
5.3.1 Shape Properties of Functionsand Data 390
5.3.2 Piecewise Linear Interpolation 392
5.3.3 Cubic Hermite Interpolation 393
54 Splines o oo e e e e e e e 401
54.1 SplineFunctionSpaces L. 401
5.4.2 Cubic-Spline Interpolation 402
5.4.3 Structural Properties of Cubic Spline Interpolants 407
5.4.4 Shape Preserving Spline Interpolation 411
5.5 AlgorithmsforCurveDesign. 415
5.5.1 CAD Task: Curves from Control Points 416
552 BezierCurves e e e 418
553 SplineCurves 422
5.6 Trigonometric Interpolation 426
5.6.1 Trigonometric Polynomials 427
5.6.2 Reduction to Lagrange Interpolation 428
5.6.3 Equidistant Trigonometric Interpolation. 430
5.7 LeastSquares DataFitting, 434

5.1 Abstract Interpolation (Al)

The task of (one-dimensional, scalar) data interpolation (point interpolation) can be described as follows:

356

Fig. 144

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

One-dimensional interpolation

Given: datapoints (t;,y;), i=0,....,.n,neN, L €ICR, y, €R

Objective: Reconstruction of a function f : I — R

e satisfying the n 4 1 interpolation conditions (IC)
f(t,') =0y =000, | (5.1.0.2)

e and belonging to a set V' of eligible functions.

The function f we find is called the interpolant of the given data set {(f;, v;) } .

ts, YParlance: The numbers t; € IR are called nodes,
(t3,3) the y; € R are the (data) values.

< e = data points (t;,y;) € R?
t; = nodes

y; = values

} } } Graph of interpolant f passes through data points.

Remark 5.1.0.3 (Generalization of data) In (supervised) machine learning this task is called the gener-
alization of the data, because we aim for the creation of a model in the form of the function f : I — R
that permits us to generate new data points based on what we have “learned” from the provided data. _

Of course, a reasonable requirement on the data is that the t; pairwise distinct: t; # t;, if i # j, i,] €

(0,...

,n}.

For ease of presentation we will usually assume that the nodes are ordered: t; < t; < --- < t; and
[to, tn] C I. However, algorithms often must not take for granted sorted nodes.

Remark 5.1.0.4 (Interpolation of vector-valued data) A natural generalization is data interpolation with
vector-valued data values, seeking a function f : I — RY, d € IN, such that, for given data points (ti,¥i),

t; € I mutually different, y; € R4, it satisfies the interpolation conditions f(t;)=y;,i=0,...,n.
In this case all methods available for scalar data can be applied component-wise.
X1 3

Y4
An important application is curve reconstruction, that
is the interpolation of points yo, ..., y, € R? in the V>
plane.
A particular aspect of this problem is that the nodes ys
t; also have to be found, usually from the location of
the y; in a preprocessing step.

y1
Yo X2
Fig. 145

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 357

Fig. 146

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Remark 5.1.0.5 (Multi-dimensional data interpolation) In many applications (computer graphics, com-
puter vision, numerical method for partial differential equations, remote sensing, geodesy, etc.) one has
to reconstruct functions of several variables.

This leads to task of multi-dimensional data interpolation:

Given: datapoints (x;,y:), i=0,...,m,n€N, x;€ DCR", m>1,y; € R

Objective: reconstruction of a (continuous) function f : D — R satisfying the 1 + 1

interpolation conditions f(x;) =y, i=0,...,n.

Significant additional challenges arise in a genuine multidimensional setting. A treatment is beyond the
scope of this course. However, the one-dimensional techniques presented in this chapter are relevant
even for multi-dimensional data interpolation, if the points x; € IR are points of a finite lattice also called
tensor product grid.

For instance, for m = 2 this is the case, if
{x}: = {[tk,sl]T ceR*: ke {0,...,K}, I € {0,...,L}} , (5.1.0.6)

where t, € R,k=0,...,K,ands;, [=0,...,L, K,L € N, are pairwise distinct nodes. J

§5.1.0.7 (Interpolation schemes) When we talk about “interpolation schemes” in 1D, we mean a map-
ping
] RULXR™L o {f] 5 R}
([ti]?:ol []/i]:-lzo) — interpolant

Once the function space to which the interpolant belongs is specified, then an interpolation scheme defines
an “interpolation problem” in the sense of § 1.5.5.1. Sometimes, only the data values y; are consider input

data, whereas the dependence of the interpolant on the nodes ¢; is suppressed, see Section 5.2.4. J
N\ | < There are infinitely many ways to fix an interpolant
\\] for given data points.
~ N Interpolants can have vastly different properties.
\JZ terpolants can have vastly different propertie

In this chapter we will discuss a few widely used
1 methods to build interpolants and their different
properties will become apparent.

RRE”

- We may (have to!) impose additional requirements on the interpolant:
e minimal smoothness of f, e.g. f € C!, etc.
e special shape of f (positivity, monotonicity, convexity — Section 5.3 below)

EXAMPLE 5.1.0.8 (Constitutive relations from measurements) This example addresses an important
application of data interpolation in 1D.

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 358

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

In this context: t, y = two state variables of a physical system, where t determines y: a functional
dependence y = y(t) is assumed.

t Yy
voltage U current [
Examples: tand y could be pressure p density o

magnetic field H | magnetic flux B

Known: several accurate () measurements

(ti/yi) , 1= 1,...,1’}1

Why do we need to extract the constitutive relations as a function? Imagine that ¢, v correspond to the
voltage U and current I measured for a 2-port non-linear circuit element (like a diode). This element will
be part of a circuit, which we want to simulate based on nodal analysis as in Ex. 8.1.0.1. In order to solve
the resulting non-linear system of equations F(u) = 0 for the nodal potentials (collected in the vector
u) by means of Newton’s method (— Section 8.5) we need the voltage-current relationship for the circuit
element as a continuously differentiable function I = f(U).

(*) Meaning of attribute “accurate”: justification for interpolation. If measured values y; were affected by
considerable errors, one would not impose the interpolation conditions (5.1.0.2), but opt for data fitting (—
Section 5.7). 2

We can distinguish two aspects of the interpolation problem:

O Find interpolant f : I C R — IR and store/represent it (internally).

® Evaluate f at a few or many evaluation points x € [

Remark 5.1.0.9 (Mathematical functions in a numerical code) What does it mean to “represent” or
“make available” a function f : I C R — IR in a computer code?

A general “mathematical” function f : I C R ~ RR?, I an interval, contains an “infinite amount of
* information”.

Rather, in the context of numerical methods, “function” should be read as “subroutine”, a piece of code that
can, for any x € I, compute f(x) in finite time. Even this has to be qualified, because we can only pass
machine numbers x € I NIM (— § 1.5.2.1) and, of course, in most cases, f(x) will be an approximation.
In a C++ code a simple real valued function can be incarnated through a function object of a type as given
in Code 5.1.0.10, see also Section 0.3.3.

C++-code 5.1.0.10: C++ data type representing a real-valued function

class Function {

private:
// various internal data describing f

public:
// Constructor: expects information for specifying the function
Function(/* ... */);
// Evaluation operator
double operator () (double t) const;

© ® N o o A @ N =

b

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 359

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

_l

Remark 5.1.0.11 (A data type designed for interpolation problems) If a constitutive relationship for a
circuit element is needed in a C++ simulation code (— Ex. 5.1.0.8), the following specialized Function
class could be used to represent it. It demonstrates the concrete object oriented implementation of an
interpolant.

C++-code 5.1.0.12: C++ class representing an interpolant in 1D

|

2 |class Interpolant {

3 private:

4 // Various internal data describing f

5 // Can be the coefficients of a basis representation (5.1.0.14)

6 public:

7 // Constructor: computation of coefficients ¢j of representation
(5.1.0.14)

8 Interpolant(const vector<double>& t, const vector<double>& y);

9 // Evaluation operator for interpolant f

10 double operator() (double t) const;

1|}

Two main components have to be designed and implemented:

4 The constructor, which is in charge of “setup”, e.g. building and solving a linear system of equations,
see (5.1.0.23) below.

4 The evaluation operator operator (), e.g., implemented as evaluation of a linear combination, refer
to (5.1.0.14) below.

Crucial issue: computational effort for evaluation of interpolant at single point: O(1) or O(n) (or in be-

tween)?
-
§5.1.0.13 (Internal representation of classes of mathematical functions)
=» |dea: parametrization, a finite number of parameters cy, . .., ¢y, m € IN, characterizes f.
Special case: Representation with finite linear combination of basis functions
b]-:IC]Rr—>1R, j=0,...,m:
m m d
f=Yiocti & f)=) (), tel , geR". (5.1.0.14)

- f belongs to a finite dimensional function space
U = Span{{t — bo(t)},..., {t — bu(t)}} [=Span{by,...,bm}],

with dim V;,, = m + 1, provided that {{t — b;(t)}}\", is linearly independent, which is already implied
by the term “basis functions”.

Of course, the basis functions b; should be “simple” in the sense that b]-(x) can be computed efficiently for
everyx € Iandeveryj=0,...,m.

Note that the basis functions may depend on the nodes t;, but they must not depend on the values y;.

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 360

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

- The internal representation of f (in the data member section of the class Function from
Code 5.1.0.10) will then boil down to storing the coefficients/parameters ¢;, j = 0, ..., m.

Note: The focus in this chapter will be on the special case that the data interpolants belong to a finite-
dimensional space of functions spanned by “simple” basis functions.

_

EXAMPLE 5.1.0.15 (Piecewise linear interpolation, see also Section 5.3.2) Recall: A linear function
in 1D is a function of the form x — a + bx, a,b € R (polynomial of degree 1).

Y
Piecewise linear interpolation

= connect data points (t;,v;), 1 = 0,...,n,

t,_q1 < t;, by line segments

> interpolating polygon

Piecewise linear interpolant of data >
| | | | |
Fig. 147 tO tl tZ t3 t4

What is the space V of functions from which we select the interpolant? Remember that a linear function
R — R always can be written as t — a + Bt with suitable coefficients «, B € IR. We can use this formula
locally on every interval between two nodes. Assuming sorted nodes, typ < t; < --- < ty, this leads to
the mathematical definition

V.= {f cCUI): f(t) =wj+ Bitfort € [t;,tiq], i=0,...,n— 1} . (5.1.0.16)

Here, C(I) designates the space of continuous functions I — R, I := [to, t,]. Note that “f € C%(I)”is
necessary to render (5.1.0.16) non-ambiguous.

Now, what could be a convenient set of basis functions {b]'};-’zo for representing the piecewise linear
interpolant through 7 + 1 data points? A possible choice is the “Tent function” (“hat function”) basis:

1+ bo bz b3 b4 b”
i f 1 ! ! ! \ i
to 1) t3 ty ts th—1 tn

Note: in Fig. 148 the basis functions have to be extended by zero outside the f-range where they are
drawn.

Fig. 148

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 361

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Explicit formulas for these basis functions can be given and bear out that they are really “simple”:

t—t
bo(t) _ 1-— tl—too fortg <t <ty,
0 fort >t .
ti—t
1— t]'t__tJ; for tj—l <t< t]' , |
bi(t) = 41— Pop fortp<t<tia, . j= 1,...,n—1, (5.1.0.17)
0 elsewhere in [fg, t,] .

1— At fort, 1 <t<t,,

bn(t) — { tp—ty—1

Moreover, these basis functions are uniquely determined by the conditions
e b;is continuous on [to, t,],
e b;is linear on each interval [ti_q,t], i=1,...,n,
1 ,ifi=j, _ .
o bi(t;)) = 0 := {0 clse. > aso-called cardinal basis for the node set {f;}" .

This last condition implies a simple basis representation of a (the ?) piecewise linear interpolant of the
data points (t;,v;),i =0,...,n:

f(t) = iyjbj(t) , to<t<ty, (5.1.0.18)
j=0

where the b; are given by (5.1.0.17). a

The property bj(tl-) = 5,-j, i,j =1,...,n, of the tent function basis is so important that it has been given a
special name:

Definition 5.1.0.19. Cardinal basis

A basis {by, ..., b,} of an n + 1-dimensional vector space of functions f:ICR — Ris a cardi-
nal basis with respect to the set {to,...,t,} C I of nodes, if

1 ,ifi=j, ..
1,7 €40,...,n}. 5.1.0.20
0 else, J { } ()

§5.1.0.21 (Interpolation as a linear mapping) We consider the setting for interpolation that the inter-
polant belongs to a finite-dimension space V;, of functions spanned by basis functions by, ..., b,,, see
Rem. 5.1.0.9. Then the interpolation conditions imply that the basis expansion coefficients satisfy a linear
system of equations:

(51.02) & (5.1.0.14) = f(t;) = Z;.”:O cibi(t) =vyi, i=0,...,n, (5.1.0.22)
T
bo(i’o) e bm(to) Co yo
Ac:= : : =1 =y . (5.1.0.28)
bo(tn) .- bm(tn)| |Cm Yn

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 362

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Thisis an (n + 1) x (m + 1) linear system of equations !

The interpolation problem in V,,;, and the linear system (5.1.0.23) are really equivalent in the sense that
(unique) solvability of one implies (unique) solvability of the other.

- Necessary condition for unique solvability
of interpolation problem (5.1.0.22) Vy

If m = n and A from (5.1.0.23) regular (— Def. 2.2.1.1),then for any values y;, j = 0,...,n we can find
coefficients ¢j, j = 0, ..., n, and, from them build the interpolant according to (5.1.0.14):

n
f=Y (Aly)b;. (5.1.0.24)
j=0
v
[For fixed nodes t; the interpolation problem I R — Y,
(5.1.0.22) defines linear mapping . y = f \
P N
data space function space

Beware, “linear” in the statement above has nothing to do with a linear function or piecewise linear inter-
polation discussed in Ex. 5.1.0.15!

Definition 5.1.0.25. Linear interpolation operator

An interpolation operator | : R"*1 = CY([to, t,4]) for the given nodes ty < t; < --- < t, is called
linear, if
l(ay + Bz) = al(y) + Bl(z) Vy,ze R"™, a,BER. (5.1.0.26)
% Notation: CY([to, t,]) = vector space of continuous functions on [to, t] N

Review question(s) 5.1.0.27 (Abstract Interpolation)

(Q5.1.0.27.A) Let {by,...,b,} be a basis of a subspace V of the space C°(I) of continuous functions
I C R — IR. Which linear systems has to be solved to determined the basis expansion coefficients for
the interpolant f € V satisfying the interpolation conditions f(t;) = y; for given node set {to, t1,...,tu}
and values y; € R?

How does reordering the nodes affect the coefficient matrix of that linear system?

(@5.1.0.27.B) Given I C R and the node set {tq,t1,...,,tn} C I, the ReLU basis of the space V of
piecewise linear continuous functions on that node set is comprised of the functions

Fo(t) =1 , I’i(t) = {

Show that this set of functions {ro,1,...,7,} is really a basis of V.

0 for t<t; 1,

ie{l,...,n}, tel.
t—t; for t>ti 1,

Assuming that the nodes are sorted, to < t; < --- < t,, described the structure of the coefficient ma-
trix of that linear system that has to be solved to determine the ReLU basis coefficients of an interpolant.

A

5. Data Interpolation and Data Fitting in 1D, 5.1. Abstract Interpolation (Al) 363

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

5.2 Global Polynomial Interpolation

(Global) polynomial interpolation, that is, interpolation into spaces of functions spanned by polynomials
up to a certain degree, is the simplest interpolation scheme and of great importance as building block for
more complex algorithms.

5.2.1 Uni-Variate Polynomials

Polynomials in a single variable are familiar and simple obects:

Notation: Vector space of the (uni-variate) polynomials of degree < k, k € IN:
Pe={t— apt* + ot T+ fat+ag- 1,0 € R} (5.2.1.1)

leading coefficient

Terminology: The functions t > tk, k € Ny, are called monomials and the formula t aktk +
ock,ltk” + - - - 4 g is the monomial representation of a polynomial.

Obviously, Py is a vector space, see [NS02, Sect. 4.2, Bsp. 4]. What is its dimension?

Theorem 5.2.1.2. Dimension of space of polynomials

dimPy=k+1 and P, C C*(R).

In fact, PP, can be regarded as a finite-dimensional subspace of the space C’(IR) of continuous functions
IR — IR. The monomial representation introduced above is a way to write a polynomials as a linear
combination of the special basis functions t — tX, see Rem. 5.1.0.9.

Proof. (of Thm. 5.2.1.2) Dimension formula by linear independence of monomials.

As a consequence of Thm. 5.2.1.2 the monomial representation of a polynomial is unique.

§5.2.1.3 (The charms of polynomials) Why are polynomials important in computational mathematics?

= Easy to compute (only elementary operations required), integrate and differentiate
= Vector space & algebra
= Analysis: Taylor polynomials & power series 2

Remark 5.2.1.4 (Monomial representation) Polynomials (of degree k) in monomial representation are
stored as a vector of their coefficients a;, j = 0,...,k. A convention for the ordering has to be fixed.
For instance, the NUMPY module of PYTHON stores the coefficients of the monomial representation in an
array in descending order:

PYTHON: p(t) := apt + a1t 1+ + a9 = array (ag, ax_1,...,a0) (ordered!).

Thus the evaluation of a polynomial given through an array of monomial coefficients reads as:

v In [8]: numpy.polyval([3,0,1], 5) # 3%x5°4+0x%5"+1
 Out[8]: 76

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 364

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

§5.2.1.5 (Horner scheme — [DR08, Bem. 8.11]) Efficient evaluation of a polynomial in monomial
representation through Horner scheme as indicated by the following representation:

p(t) = t(-- - t(t(ant + ap_q) + ay—2) + - +a1) + ag . (5.2.1.6)

The following code gives an implementation based on vector data types of EIGEN. The function is vector-
ized in the sense that many evaluation points are processed in parallel.

C++-code 5.2.1.7: Horner scheme (vectorized version)

// Efficient evaluation of a polynomial in monomial representation

// using the Horner scheme (5.2.1.6)

// IN: p = vector of monomial coefficients, length = degree + 1

// (leading coefficient in p(0), PYTHON convention Rem. 5.2.1.4)

// t = vector of evaluation points t;

// OUT: vector of values: polynomial evaluated at t;

Eigen :: VectorXd horner(const Eigen::VectorXd &p, const Eigen::VectorXd &t) {
const VectorXd::Index n = t.size();

10 Eigen::VectorXd y{p[0] * VectorXd ::Ones(n) };

© ® N o o &~ @ N

11 for (unsigned i = 1; i < p.size(); ++i)
12 y = t.cwiseProduct(y) + p[i] * VectorXd ::Ones(n) ;
13 return y;

4 |}

Optimal asymptotic complexity: O(n)

The Horner scheme is implemented in PYTHON’s “built-in”-function numpy.polyval(p,x). The argu-
ment x can be a matrix or a vector. In this case the function evaluates the polynomial described by p for
each entry/component. Heed Rem. 5.2.1.4. _|

Review question(s) 5.2.1.8 (Polynomials)
(Q@5.2.1.8.A) Why are polynomials the most widely used class of functions in numerical computations?

(@5.2.1.8.B) What are the dimensions of the following two subspaces of the space P, of polynomials of
degree < k,

o PPt i={p € Pr: pt) = p(~t) ¥t € R},
° P]?dd = {p € Py p(t) = —p(—t) vVt €]R}?

(Q@5.2.1.8.C) For given k € IN we store the monomial coefficients of the polynomial p(t) := ayt* +
a1 -+ g in a vector a:= [w,...,a0] € R*TL. Find a matrix D € RS such that
Da € R¥ provides the monomial coefficients of the derivative p’.

(@5.2.1.8.D) The mapping
Pk — R
D { 1
p = [y p(t)dt

is obviously linear and, therefore, has a matrix representation with respect to the monomial basis
{trs1,t e t,t > 12, t > tF} of Py. Find that matrix.

(Q5.2.1.8.E) A problem from linear algebra: Prove that the functions of the monomial basis

n
{th‘}é Oan, nelN,

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 365

http://en.wikipedia.org/wiki/Horner_scheme

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

are linearly independent and, thus, form a basis of P,,.
Hint. Differentiate several times!
(@5.2.1.8.F) The factorized representation of a polynomial p € P,, n € IN, writes it in the form

p(t) =yo(t —71) - (t—vn), TieER, i=—,...,n. (5.2.1.9)

Somebody proposes to represent generic polynomials used in a numerical code in factorized form
through the vectors [’yo,’yl, ey .’yn] e R"*! of coefficients. Discuss the pros and cons.

A

5.2.2 Polynomial Interpolation: Theory

& Supplementary literature. This topic is also presented in [DR08, Sect. 8.2.1], [QSSO00,
Sect. 8.1], [AG11, Ch. 10].

Now we consider the interpolation problem introduced in Section 5.1 for the special case that the sought
interpolant belongs to the polynomial space P (with suitable degree k).

Lagrange polynomial interpolation problem (LIP)

Given the set of interpolation nodes {fo,...,t,} C R, n € N, and the values yo,..., ¥, € R
compute p € P, such that it satisfies the interpolation conditions (IC)

p(tj) =y; for j=0,...,n. (5.2.2.2)

Is this a well-defined problem? Obviously, it fits the framework developed in Rem. 5.1.0.9 and § 5.1.0.21,
because P, is a finite-dimensional space of functions, for which we already know a basis, the monomials.
Thus, in principle, we could examine the matrix A from (5.1.0.23) to decide, whether the polynomial
interpolant exists and is unique. However, there is a shorter way.

§5.2.2.3 (Lagrange polynomials) For a given set {fo, f1,...,t,} C R of nodes consider the

not—t

Lagrange polynomials L;(t) := Ht o i=0,...,n. (5.2.2.4)
=0 ‘i b
j#i
N | o 1 ifi=7j,
Evidently, the Lagrange polynomials satisfy L; € P, and | L;(t;) = d;j := 0 el
else.

From this relationship we infer that the Lagrange polynomials are linearly independent. Since there are
n+ 1 = dim P, different Lagrange polynomials, we conclude that they form a basis of P,, which is a
cardinal basis for the node set {t;}1" . N

EXAMPLE 5.2.2.5 (Lagrange polynomials for uniformly spaced nodes)

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 366

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

Consider the equidistant nodes in [—1, 1]: o :
1.2 |
Ti={tj=-1+3j}, T
j=0,...,n. |

Lagrange Polynomials

The plot shows the Lagrange polynomials for this set
of nodes that do not vanish in the nodes tq, t, and
t5, respectively.

R 0
Fig. 149 t

The Lagrange polynomial interpolant p for data points (ti,yi)fzo allows a straightforward representation
with respect to the basis of Lagrange polynomials for the node set {ti}f’zo:

p() = Y yili(t) & pePy and plt) =y |. (5.2.2.6)
i=0

1

Theorem 5.2.2.7. Existence & uniqueness of Lagrange interpolation polynomial — [QSSO00,
Thm. 8.1], [DR08, Satz 8.3]

The general Lagrange polynomial interpolation problem admits a unique solution p € P, for any
set of data points {(t;,y;)}:_, andn € IN.

Proof. Consider the linear evaluation operator

P, — R,
p o~ (pt)i,,

which maps between finite-dimensional vector spaces of the same dimension, see Thm. 5.2.1.2.

evaly : {

Representation (5.2.2.6) = existence of interpolating polynomial
= evaly is surjective (“onto”)

Known from linear algebra: for a linear mapping T : V — W between finite-dimensional vector spaces
with dim V' = dim W holds the equivalence

T surjective < T bijective < T injective.

Applying this equivalence to eval yields the assertion of the theorem

Corollary 5.2.2.8. Lagrange interpolation as linear mapping — § 5.1.0.21

The polynomial interpolation in the nodes T := {tj};?zo defines a linear operator

er+1 - 7)” ,
= (5.2.2.9)

(Yo, ...,yn)T > interpolating polynomial p .

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 367

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Remark 5.2.2.10 (Vandermonde matrix) Lagrangian polynomial interpolation leads to linear systems of
equations also for the representation coefficients of the polynomial interpolant in monomial basis, see
§ 5.1.0.21:
n .
p(t) =y, ;]ait}:yj, j=0,...,n
i—

<= solution of (n+ 1) x (n + 1) linear system Va = y with matrix

(1 tg t§ o]
n
1 fH o
v= |1 t t5 - th| e R*TIFL, (5.2.2.11)
1 t, t2 |

A matrix in the form of V is called Vandermonde matrix.

The following code initializes a Vandermonde matrix in EIGEN:

C++ code 5.2.2.12: Initialization of Vandermonde matrix

2 |// Initialization of a Vandermonde matrix (5.2.2.11)

3 |// from interpolation points t;.

4 vander (const &t) {

5 const :ilndex n = t. ();

6 V(n,n); V. (0) = (n); V. (1) = t;

7 // Store componentwise integer powers of point coordinate vector
8 // into the columns of the Vandermonde matrix

J for (int j=2;j<n;j++) V.col(j) = (t. () .pow(j))-. 0

10 return V;

—

Remark 5.2.2.13 (Matrix representation of interpolation operator) In the case of Lagrange interpola-
tion:

e if Lagrange polynomials are chosen as basis for P, then |1 is represented by the identity matrix;

e if monomials are chosen as basis for P,;, then | is represented by the inverse of the Vandermonde
matrix V, see Eq. (5.2.2.11).

|

Remark 5.2.2.14 (Generalized polynomial interpolation — [DRO08, Sect. 8.2.7], [@QSS00, Sect. 8.4])
The following generalization of Lagrange interpolation is possible: We still seek a polynomial interpolant,
but beside function values also prescribe derivatives up to a certain order for interpolating polynomial at
given nodes.

Convention: indicate occurrence of derivatives as interpolation conditions by multiple nodes.

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 368

https://en.wikipedia.org/wiki/Vandermonde_matrix
http://de.wikipedia.org/wiki/Vandermonde-Matrix

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

/ Generalized polynomial interpolation problem \

Given the (possibly multiple) nodes tg, ..., t;, n € N, —oo < tg < t; < --- < t,; < oo and the values
Yo,--.,Yn € R compute p € P, such that
dk

qE P =yj for k=0,....¢ and j=0,....n, (5.2.2.15)

Qhere (i:=max{i —i":tj=t; =ty,i,i' =0,...,n},and {; + 1 is the multiplicity of the node t]-./

Admittedly, the statement of the generalized polynomial interpolation problem is hard to decipher. Let us
look at a simple special case, which is also the most important case of generalized Lagrange interpolation.
It is the case when all the multiplicities are equal to 2. It is called Hermite interpolation (or osculatory
interpolation) and the generalized interpolation conditions read for nodes t) = t] < tp = t3 < -+ <
t,_1 = t, (note the double nodes!) [QSS00, Ex. 8.6]:

p(tzj):ij ’ Pl(tzj)=y2j+1, j=0,...,7/2.

Theorem 5.2.2.16. Existence & uniqueness of generalized Lagrange interpolation polynomi-
als

The generalized polynomial interpolation problem Eq. (5.2.2.15) admits a unique solution p € P,
for any (t;,y)i)

Definition 5.2.2.17. Generalized Lagrange polynomials

The generalized Lagrange polynomials for the nodes 7 = {t]'};?zo C R (multiple nodes allowed)

are defined as L; := |r(ej;q1),i = 0,...,n, where e; = (0,...,0,1,0,...,0)T € R"*! are the
unit vectors.

Note: The linear interpolation operator |7 in this definition refers to generalized Lagrangian interpolation.
Its existence is guaranteed by Thm. 5.2.2.16.

EXAMPLE 5.2.2.18 (Generalized Lagrange polynomials for Hermite Interpolation)

1.2

Consider the node set

T ={ty=0,t =0,tp, =1,t3=1}.

The plot shows the four unique generalized Lagrange §

polynomials of degree n = 3 for these nodes. They ;?

satisfy 2

£

po(0) =1, po(1) = pp(0) = pp(1) =0, 2

p1(1) =1,p1(0) = p1(0) = p1(1) =0, N
p2(0) = 1, p2(1) = p2(0) = p5(1) =0,
p3(1) = 1,p3(1) = p3(0) = p5(0) = 0.

Fig. 150

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 369

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

More details are given in Section 5.3.3. For explicit formulas for the polynomials see (5.3.3.5). J
Review question(s) 5.2.2.19 (Polynomial interpolation: theory)

(@5.2.2.19.A) For aset {fo,t1,...,tn} C R of nodes the associated Lagrange polynomials are

L =T —1, i=0
’(>'_Ht‘—t-’ i=0,...,n.
j=0 "1)

j#i

Write down the Lagrange polynomials Lo, L1, Ly, L3 for the node set {0, 1,2, 3}.

(@5.2.2.19.B) Denote by L;, i=0,...,n, n €N, the Lagrange polynomials for the node set
{to,t1,...,t,} C Rthatis assumed to be sorted t) < t; < - -+ < fy.

What can you say about the sign of p(t), where p(t) = Ly(f)Ly(t), t € R?
(@5.2.2.19.C) For a given node set {t¢, t1,...,tn} C R the associated Vandermonde matrix reads

1ty t3 -+ t]]
1t 5 -

V=|1lt t% oot g LD
1 t, t2 £

Sketch an efficient implementation of the C++ function

Eigen::VectorXd wvanderMult (const Eigen::VectorXd &t,
const Figen::VectorXd &x);

for computing Vx for some x € R"*1,

5.2.3 Polynomial Interpolation: Algorithms

Now we consider the algorithmic realization of Lagrange interpolation as introduced in Section 5.2.2.
The goal is to achieve an efficient implementation of the class Interpolant introduced in Code 5.1.0.12
specialized for Lagrange polynomial interpolation. The setting is a follows:

Given: nodes 7 :={—00 <ty <t <...<t, < oo},
values y := {yo, Y1,---,Yn},
Notation: we write p := | (y) for the unique Lagrange polynomial interpolant, whose existence is as-
serted by Thm. 5.2.2.7.

When used in a numerical code, different demands can be made for a class that implements Lagrange
interpolants. These demands determine, which algorithm is most suitable for the constructors and the
evaluation operators.

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 370

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

5.2.3.1 Multiple evaluations

Task: For @ a fixed set {to, ..., t,} of nodes,
and @ many different given data values y;, i = 0,...,n
and ® many arguments x;, k=1,...,N, N > 1,
efficiently compute all p(xy) for p € P, interpolating in (t;,y;),i =0,...,n

The definition of a possible interpolator data type could be as follows:

C++-code 5.2.3.1: Polynomial Interpolation

1 | class Polylnterp {

2 private:

3 // various internal data describing p

4 Eigen::VectorXd t;

5 public:

6 // Constructors taking node vector (to,...,tn) as argument
7 Polylnterp (const Eigen::VectorXd &_t);

8 template <typename SeqContainer>

9 Polylnterp (const SeqContainer &v);

10 // Evaluation operator for data (Yo,...,Yn); computes
w | // p(xx) for xx’s passed in x

12 Eigen:: VectorXd eval(const Eigen::VectorXd &y,

13 const Eigen::VectorXd &x) const;

14 };

The member function eval (y, x) expects n data values in y and (any number of) evaluation points in
% (¢ [x1,.. .,xN]T) and returns the vector [p(x1), .. .,p()xN)]T, where p is the Lagrange polynomial
interpolant.

An implementation directly based on the evaluation of Lagrange polynomials (5.2.2.4) and (5.2.2.6) would
incur an asymptotic computational effort of O(nZN) for every single invocation of eval and large n, N.

§5.2.3.2 (Barycentric interpolation formula)

By means of pre-computing parts of the Lagrange polynomials L; the asymptotic effort for
eval can be reduced substantially.

Simple manipulations starting from (5.2.2.6) give an altenative representation of p:

n n n n n
p()y=) L ZA|| t) v =]t —t;)
i=0 i=0 j= j=0 j=0 =
j#
1 . .
where A; = 1=0,...,n: independent of y;!

(ti—to) - (i —tin) (i —tip) - (hi — 1)’

From the above formula, with p(t) =1, y; = 1:

n
1=JJt-t)
j=0

n n 1

" ,
i=0 j=0 Li=0 I—f

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 371

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1. Vi
[— 1
B> Barycentric interpolation formula p(t) = 17?17/\ . (5.2.3.3)
Z i
im0t =t
with A; = L i =0 n, independent of t and y;
L (ti—to) (i —tia)(ti—tipa) o (t—) B)
Hence, the values A; can be precomputed!
The use of (5.2.3.3) involves
4+ computation of weights A;,i = 0,...,1n: cost O(n?) (only once!),
4+ cost O(n) for every subsequent evaluation of p.
= total asymptotic complexity O(Nn) + O(n?) 4

The following C++ class demonstrated the use of the barycentric interpolation formula for efficient multiple
point evaluation of a Lagrange interpolation polynomial:

C++-code 5.2.3.4: Class for multiple data/multiple point evaluations

template <typename NODESCALAR = double> class BarycPolylnterp {
private:
using nodeVec_t = Eigen:: Matrix <NODESCALAR, Eigen ::Dynamic, 1>;
using idx_t = typename nodeVec_t::Index;
// Number n of interpolation points, deg polynomial +1
const idx_t n;
// Locations of m interpolation points
nodeVec t t;
10 // Precomputed values A;, i=0,...,n—1
11 nodeVec_ t lambda;

© ©® N o o A~ @ N

13 | public:

w | // Constructors taking node vector [ty,...,t,]T as

15 // argument

16 BarycPolylnterp (const nodeVec_t &_t);

17 // The interpolation points may also be passed in an STL container
18 template <typename SeqContainer> BarycPolylnterp (const SeqContainer &v);

w9 | // Computation of p(xx) for data values

20| // (Yo,...,Yn) and evaluation points X

21 template <typename RESVEC, typename DATAVEC>

22 RESVEC eval (const DATAVEC &y, const nodeVec_t &x) const;

2 | private:
25 void init_lambda(void) ;

% | };

C++-code 5.2.3.5: Interpolation class: constructors

template <typename NODESCALAR>
BarycPolylnterp <NODESCALAR>::BarycPolylnterp (const nodeVec_t &_t)
s n(_t.size()), t(_t), lambda(n) {
init_lambda () ;
}

template <typename NODESCALAR>
template <typename SeqContainer>

© ® N o o A~ @ N

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 372

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

BarycPolylnterp <NODESCALAR>:: BarycPolylnterp (const SeqContainer &v)
D n(v. ()), t(n), lambda(n) {
idx_t ti = 0;
for (auto tp : v)
t(ti++) = tp;
init_lambda () ;

}

C++-code 5.2.3.6: Interpolation class: precomputations

template <typename NODESCALAR>
void BarycPolylnterp <NODESCALAR>::init_lambda(void) {
// Precompute the weights A; with effort O(n?)
for (unsigned k = 0; k < n; ++k) {
// little workaround: 1in EIGEN cannot subtract a vector
// from a scalar; multiply scalar by vector of ones
lambda (k) =
1. / ((t(k) * nodeVec_t:: (k) — t. (k)) . () =
(t(k) %= nodeVec_t:: (n—k—1) — t

C++-code 5.2.3.7: Interpolation class: multiple point evaluations

2
3
4
5
6
7

template <typename NODESCALAR>
template <typename RESVEC, typename DATAVEC>
RESVEC BarycPolylnterp <NODESCALAR> ::eval (const DATAVEC &y,
const nodeVec_t &x) const {
const idx_t N = x. (); // No. of evaluation points
RESVEC p(N); // Ouput vector
// Compute quotient of weighted sums of tﬁiti’
// effort O(n)
for (int i = 0; i < N; ++i) {
nodeVec_t z = (x[i] * nodeVec_t:: (n) — t);

// Check if we want to evaluate close to a node

const double tref{z. (). ()}; // reference size
idx_t k;
if (z. 0. (&k) <

tref x std::abs(std::numeric_limits <NODESCALAR>::epsilon())) {
// evaluation at node t

pli] = y[k];

} else {
const nodeVec_t mu = lambda. (z);
pli] = (mu. (y)).sum() / mu.sum();

1
} // end for
return p;

}

Runtime measurements of direct evaluation of a polynomial in monomial representation vs. barycentric
formula are reported in Exp. 5.2.3.13.

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation

373

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

5.2.3.2 Single evaluation

& Supplementary literature. This topic is also discussed in [DR08, Sect. 8.2.2].

Task: Given a set of interpolation points (¢;,y;), j = 0, ..., n, with pairwise different interpolation nodes
tj, perform a single point evaluation of the Lagrange polynomial interpolant p at x € IR.

We discuss the efficient implementation of the following function for n > 1. It is meant for a single
evaluation of a Lagrange interpolant.

double eval(const FEigen::VectorXd &t,const Eigen::VectorXd &y,
double x);

§5.2.3.8 (Aitken-Neville scheme) The starting point is a recursion formula for partial Lagrange inter-
polants: For 0 < k < ¢/ < n define

Pk ¢ = unique interpolating polynomial of degree ¢ — k through (fx, yx), ..., (t, ye),

From the uniqueness of polynomial interpolants (— Thm. 5.2.2.7) we find

Pri(x) =y (“constant polynomial’), k=0,...,n,
(x) = (x = ti)Pra1e(x) = (x — to) pre—1(x)

x —t
t,— fi (Prs10(x) = pre—1(x)), 0<k<l<m,

= Pr1,0(x) +

because the left and right hand sides represent polynomials of degree ¢ — k through the points (tj,y]-),
j=k ... ¢

yr for x =t [pre—1(te) =i],
=qy; for x=t;, k<j</{,

ye for x=t; [pryre(te) =vye].

Thus the values of the partial Lagrange interpolants can be computed sequentially and their dependencies
can be expressed by the following so-called Aitken-Neville scheme:

(x — t)prrre(x) — (x = t) pre—1(x)
t,— 1,

n—= 0 1 2 3
t =: x) — — —
0 | Yo Poo(x) K po1(x) fpo,z(x) fP0,3(x)
by = pra(x) 7291,2(9() 7291,3(36) (ANS)
ta | y2=:p22(x) —p23(x)
t3 | y3 =: p33(x)

Here, the arrows indicate contributions to the convex linear combinations of (5.2.3.9). The computation
can advance from left to right, which is done in following C++ code.

C++-code 5.2.3.10: Aitken-Neville algorithm

> |// Aitken—-Neville algorithm for evaluation of interpolating polynomial
s |// IN: t, y: (vectors of) interpolation data points

4 |// x: (single) evaluation point
5 |// OUT: value of interpolant in x

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 374

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

¢ |double ANipoleval (const & t, y, const double x) {
7 for (int i = 0; i <y. (); ++i) {

8 for (int k=i — 1; k >= 0; —k) {

9 // Recursion (5.2.3.9)

10 yIk] = y[k + 1] + (y[k + 1] — y[k])*(x — t[i])/(t[i] — t[K]);
11 }
12 }

13 return y[0];

4 |}

The vector y contains the diagonals (from bottom left

po2(x) pi2(x) w2 Y3
pos3(x) p13(x) pas(x) y3

) : i yl[0l y[1] y[2] yI[3]
to top right) of the above triangular tableaux: 0 Yo n 2 3
Note that the algorithm merely needs to store that :12 po1(x) n Y2 Y3
3

single vector, which translates into O(n) required
memory for n — oo.

Asymptotic complexity of ANipoeval in terms of number of data points is O(nz) (two nested loops). This
is the same as for evaluation based on the barycentric formula, but the Aitken-Neville has a key advantage

discussed in the next §.

_l

§5.2.3.11 (Polynomial interpolation with data updates) The Aitken-Neville algorithm has another inter-

esting feature, when we run through the Aitken-Neville scheme from the top left corner:
n= 0 1 2 3
to | o =:Loo(x) — po1(x) 7P0,2(x) 7190,3(36)
tl 1= — 1,3(X
y pli (x)
tr | y2 =t p2a(x) 7192,3(96)
ts | y3 =t p33(x)

Thus, the values of partial polynomial interpolants at x can be computed before all data points are even
processed. This results in an “update-friendly” algorithm that can efficiently supply the point values po,k(x),
k =0,...,n, while being supplied with the data points (¢;, ;). It can be used for the efficient implemen-

tation of the following interpolator class:

C++-code 5.2.3.12: Single point evaluation with data updates

1 | class PolyEval {

2 | private:

3 // evaluation point and various internal data describing the
polynomials

4 | public:

5 // Constructor taking the evaluation point as argument

6 PolyEval (double x) ;

7 // Add another data point and update internal information

8 void addPoint (double t, double y);

9 // Value of current interpolating polynomial at x

10 double eval (void) const;

EXPERIMENT 5.2.3.13 (Timing polynomial evaluations)

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation

375

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Timing for single-point evaluation

I I I
Aitken-Neville scheme
Polyfit + Polyval
Barycentric formula
Lagrange polynomials

Comparison of the computational time needed for o
polynomial interpolation of -

{ti=1}tiz1,.n {vi = \/i}izlwﬂ'

n =3,...,200, and evaluation in a single point x &
0, n].

Lol

TTTTI T T 1T

Ll

Minimum computational time over 100 runs =

Computational time [s]
0 5

10-¢

The measurements were carried out with the code

polytlmlng.cppéGlTLAB,gCCWIth-O3 AN T S S TN [T I T I B
20 40 60 80 100 120 140 160 180 200

Polynomial degree

Fig. 151

This uses functions given in Code 5.2.3.7, Code 5.2.3.10 and the function polyfit () (with a clearly
greater computational effort). polyfit () is the equivalent to PYTHON’S/MATLAB’s built-in polyfit.
The implementation can be found on GitLab.

_
Review question(s) 5.2.3.14 (Polynomial Interpolation: Algorithms)
(@5.2.3.14.A) The Aitken-Neville scheme was introduced as
n= 0 1 2 3
t = xX) — xX) — xX) — X
0 | Yo =:poo(x) > Po,1(x) /Po,z() /Po,3()
b | y1=:p1a(x) 7191,2(?6) 7191,3(96) (ANS)
ta | y2 =: p22(x) 7}92,3(95)
ts | y3 = p33(x)

Give an interpretation of the quantities pj , occurring in (ANS).

(Q5.2.3.14.B) Describe a scenario for the evaluation of degree-n Lagrange polynomial interpolants in a
single point x € IR where the use of the barycentric interpolation formula

= A oA LN
pO) =) —vi: Y, Ai=]l—F" (5.2.3.3)
i=0 i i=0 i T
j#i

is more efficient that computations based on the Aitken-Neville scheme.

5.2.3.3 Extrapolation to Zero

Extrapolation is interpolation with the evaluation point ¢ outside the interval [inf;_ tj,SUP;_o n ti].
In the sequel we assume t = 0, t; > 0. Of course, Lagrangian polynomial interpolation can also be used
for extrapolation. In this section we give a very important application of this “Lagrangian extrapolation”.

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 376

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Interpolation/pevaltime/Eigen/polytiming.cpp
https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/FunctionCollection

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Task: compute the limit limy, o (k) with prescribed accuracy, though the evaluation of the function
¢ = (h) (maybe given in procedural form only) for very small arguments || < 1 is difficult,
usually because of numerically instability (— Section 1.5.5).

The extrapolation technique introduced below works well, if
4+ s an even function of its argument: ¢(t) = p(—t),
+ o = y(h) behaves “nicely” around 1 = 0.

Theory: The analysis of extrapolation techniques usually relies on the existence of an asymptotic expan-
sion in h?

f(h) = f(0) + A1h> + Agh* + -+ A,h® +R(h) , Ar€R,
with remainder estimate IR(h)| = O(h*"*2) forh — 0.
Idea: computing inaccessible limit by extrapolation to zero

@ Pick hy, ..., hy, for which ¢ can be evaluated “safely”.
@ evaluation of ¥ (h;) for different h;,i = 0,...,n, |t;| > 0.

@ (0) =~ p(0) with interpolating polynomial p € Py, p(h;) = ¢(h;).

1001
0.75 1
<1 extrapolating polynomials

In this manufactured example we have
P(t) = arctan(2t), which means ¢(0) =0. The

higher the degree of the extrapolating polynomial p,
the closer is p(0) to 0.

* (hi,ip(hi))
—— degree =1
—— degree =2

degree = 3

—0.2 0.0 0.2 0.4 0.6 0.8 1.0
Fig. 152

§5.2.3.16 (Numerical differentiation through extrapolation) In Ex. 1.5.4.7 we have already seen a situ-
ation, where we wanted to compute the limit of a function (k) for i — 0, but could not do it with sufficient
accuracy. In this case ¢(h) was a one-sided difference quotient with span 2, meant to approximate f'(x)
for a differentiable function f. The cause of numerical difficulties was cancellation — § 1.5.4.5.

Now we will see how to dodge cancellation in difference quotients and how to use extrapolation to zero to
computes derivatives with high accuracy:

Given: smooth function f : I C R — R in procedural form: function y = f (x)

Sought: (approximation of) f’(x), x € I.

Natural idea: approximation of derivative by (symmetric) difference quotient

df .\ __ flx+h)—f(x—h)
dx) 20 ‘

(5.2.3.17)

- straightforward implementation fails due to cancellation in the numerator, see also Ex. 1.5.4.7.

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 377

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

C++-code 5.2.3.18: Numeric differentiation through difference quotients

2 ‘// numerical differentiation using difference quotient
s |7/ f(x) = limy,_,o L =/)

4« |// IN: f (function object) = function to derive

5 |// df = exact derivative (to compute error),

6 |// name = string of function name (for plot filename)
7 |// OUT: plot of error will be saved as "<name>numdiff.eps"
8 class Derivative >

9 Derivative& df,

template <class Function,
void diff (const double x, Function& f,
10 std :: vector<long double> error, h;

1 // build vector of widths of difference quotients

const std::string name) {

12 for (int i = —1; i >= —61; i —= 5) h.push_back(std::pow(2,i));

13 for (unsigned j = 0; j < h.size(); ++j) {

14 // compute approximate solution using difference quotient
15 double df_approx = (f(x + h[j]) — f(x))/h[]j];

16 // compute relative error

17 double rel_err = std::abs((df_approx — df(x))/df(x));

18 error .push_back(rel_err);

This is apparent in the following approximation error tables for three simple functions and x = 1.1.

f(x) = arctan(x) f(x) = Vx f(x) = exp(x)
h Relative error h Relative error h Relative error
2-1 0.20786640808609 2-1 0.09340033543136 2-1 0.29744254140026
2-% 0.00773341103991 276 0.00352613693103 27% 0.00785334954789
211 0.00024299312415 211 0.00011094838842 2-11° 0.00024418036620
216 0.00000759482296 216 0.00000346787667 2716 0.00000762943394
2721 0.00000023712637 2721 0.00000010812198 2721 0.00000023835113
2726 0.00000001020730 2726 0.00000001923506 2726 0.00000000429331
2731 0.00000005960464 2731 0.00000001202188 2731 0.00000012467100
2736 0.00000679016113 2736 0.00000198842224 2730 0.00000495453865

Recall the considerations elaborated in Ex. 1.5.4.7. Owing to the impact of roundoff errors amplified by
cancellation, i — 0 does not achieve arbitrarily high accuracy. Rather, we observe fewer correct digits for
very small /!

Extrapolation offers a numerically stable (— Def. 1.5.5.19) alternative, because for a 2(n + 1)-times con-
tinuously differentiable function f : I C R +— IR, x € I we find that the symmetric difference quotient
behaves like a polynomial in /% in the vicinity of i = 0. Consider Taylor sum of f in x with Lagrange
remainder term:

_fetm) —flx—h) d 1 & 1
P(h) = 5 X o a7 G

1

FEED(E(x))

I dx?

Since lim, o p(h) = f'(x)
@ - approximate f’(x) by interpolation of ¢ in points ;.

The following C++ function diffex () implements extrapolation to zero of symmetric difference quo-
tients relying on the update-friendly version of the Aitken-Neville algorithm as presented in § 5.2.3.11,
Code 5.2.3.12. Note that the extrapolated value taking into account all available difference quotients al-
ways resides in y [0].

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 378

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

C++-code 5.2.3.19: Numerical differentiation by adaptive extrapolation to zero

© ©® N o o B~ W N

// Extrapolation based numerical differentation
// with a posteriori error control

// f: handle of a function defined in a neighbourhood of x € R
// x: point at which approximate derivative is desired

// hO: initial distance from x

// rtol: relative target tolerance, atol: absolute tolerance

template <class Function>
double diffex (Function& f, const double x, const double hO,
const double rtol , const double atol) {
const unsigned nit = 10; // Maximum depth of extrapolation
VectorXd h(nit); h[0] = h0; // Widths of difference quotients
VectorXd y(nit); // Approximations returned by difference quotients
y[0] = (f(x + h0O) — f(x — h0))/(2xh0); // Widest difference quotients

// using Aitken—-Neville scheme with x =0, see Code 5.2.3.10

for (unsigned i = 1; i < nit; ++i) {
// create data points for extrapolation
h[i] = h[i—1]/2; // Next width half as big
ylil = (f(x + h[i]) = f(x = h[i]))/(2.0xh[i — 1]);
// Aitken—-Neville update
for (int k =i — 1; k >= 0; —k)
ylk] = y[k+1] — (y[k+1]=y[k])«h[i]/(h[i]=h[k]);
// termination of extrapolation when desired tolerance 1is reached
const double errest = std::abs(y[1]—Yy[0]); // error indicator
if (errest < rtol*std::abs(y[0]) || errest < atol) //
break ;

}

return y[0]; // Return value extrapolated from largest number of
difference quotients

While the extrapolation table (— § 5.2.3.11) is computed, more and more accurate approximations of
f'(x) become available. Thus, the difference between the two last approximations (stored in y [0] and
y [1] in Code 5.2.3.19) can be used to gauge the error of the current approximation, it provides an error
indicator, which can be used to decide when the level of extrapolation is sufficient, see Line 26.

auto £ =
{return std::atan(x);}

[] (double x) auto g = [] (double x) auto h =

{return std::sqgrt (x);}

[1 (double x)
{return std::exp(x);}

diffex(£,1.1,0.5)

Degree

Relative error

diffex(g,1.1,0.5)

Degree

Relative error

diffex(h,1.1,0.5)

Degree

Relative error

0

OOk WD =

Advantage:

0.04262829970946
0.02044767428982
0.00051308519253
0.00004087236665
0.00000048930018
0.00000000746031
0.00000000001224

0

NOoO Ok~ w N =

0.02849215135713
0.01527790811946
0.00061205284652
0.00004936258481
0.00000067201034
0.00000001253250
0.00000000004816
0.00000000000021

guaranteed accuracy => efficiency

Review question(s) 5.2.3.20 (Extrapolation to zero)

0

OOk WD =

0.04219061098749
0.02129207652215
0.00011487434095
0.00000825582406
0.00000000589624
0.00000000009546
0.00000000000002

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation

379

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

5.2.3.4 Newton Basis and Divided Differences

Q Supplementary literature. We also refer to [DR08, Sect. 8.2.4], [QSS00, Sect. 8.2].

In § 5.2.3.8 we have seen a method to evaluate partial polynomial interpolants for a single or a few
evaluation points efficiently. Now we want to do this for many evaluation points that may not be known
when we receive information about the first interpolation points.

C++code 5.2.3.21: Polynomial evaluation

1 | class PolyEval {
2 | private:
3 // evaluation point and various internal data describing the
polynomials
public:
// Idle Constructor
PolyEval () ;
// Add another data point and update internal information
void addPoint(double t, double y);
// Evaluation of current interpolating polynomial at many points
10 Eigen::VectorXd operator () (const Eigen::VectorXd &x) const;

The challenge: Both addPoint () and the evaluation operator operator () may be called many times
and the implementation has to remain efficient under these circumstances.

Why not use the techniques from § 5.2.3.27 Drawback of the Lagrange basis or barycentric formula:
adding another data point affects all basis polynomials/all precomputed values!
§5.2.3.22 (Newton basis for P,)

Our tool now is an “update friendly” representation of the polynomials interpolants in terms of the Newton
basis for P,

\
—_

No(t) =1, Nu(t) = (F—to), . . Na(t):=TT(t—1). (5.2.3.23)

i

I
=

Note that, clearly, N,, € P, with leading coefficient 1. This implies the linear independence of
{No, ..., Ny} and, in light of dim P, = n + 1 by Thm. 5.2.1.2, gives us the basis property of that subset
of Py,.

The abstract considerations of § 5.1.0.21 still apply and we get an (n+ 1) x (n+ 1) linear system of
equations for the coefficients a;, j = 0, ..., n, of the polynomial interpolant in Newton basis:

aj € R: aoNo(t]') + alNl(t]') + -+ LlnNn(t]') =Yy] =0,...,n. (5.2.3.24)

& triangular linear system

No(to) Ni(to) --- Nu(to) a9 Yo
No(t1) Ni(t1) --- Nu(t) am | | h
NO(.tn) Nl(.tn) Nn(tn) An Yn

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 380

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

1 0 Ce 0 7
. . ao Yo
1 (h—to) " : aj Y1
: : . 0 : = . . (5.2.3.25)
_— : :
1 (tn - to) cte H (tn - tZ) an y?’l
- 1:0 -

This triangular linear system can be solved by simple forward substitution:

a = Yo,
Y1 —ap :y1—yo

N T T =ty
_ Y2—Yo Yi1—Yo
b~ o= (b—t)m 2oy (o) hon - bt
(ta —to)(t2 — 1) (ta —to)(t2 — 1) th — b ’

We observe that in the course of forward substitution the same quantities computed again and again. This
suggests that a more efficient implementation is possible. J

§5.2.3.26 (Divided differences) In order to reveal the pattern, we turn to a new interpretation of the
coefficients a; € IR of the interpolating polynomials

p(t) = lloNo(t) + alNl(t) +--- +llnNn(t) , teR,

represented in the Newton basis { Ny, ..., N, } from (5.2.3.23). We start with the following observation.

The Newton basis polynomial Nj(t) has degree j and leading coefficient 1

- a;j is the leading coefficient of the interpolating polynomial py;.

Using the notation p, ,, for partial polynomial interpolants through the data points (t7,y¢), ..., (tm, Ym),
which was introduced in Section 5.2.3.2, see (5.2.3.9) we can state the the recursion

Pri(x) =yx (“constant polynomial”) , k=0,...,n,
(x) = (x = ti)prsne(x) = (x =) pre—1(x)
Pl t— 1) (5.2.3.9)
X —ty
= Pr+1,0(x) + s (Pes1e(x) = pre-1(x)), 0<k<{l<n,
This implies a recursion for the leading coefficients a, ,, of the interpolating polynomials py ,,,,
_ Y1im — Am—1

Apm = , 0</i<m<n. (5.2.3.27)

Hence, instead of using elimination for a triangular linear system, we find a simpler and more efficient
algorithm using the so-called divided differences, which are defined by the recursion

ylti] = vi
tiva, - tickl —ylti, oo tigk— _ 5.2.3.28
Ylti, . tisk] = yltia i) = ylt i) (recursion) . ()
tivk —ti
We adopt this strange notation for the sake of compatibility with literature. J

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 381

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

§5.2.3.29 (Efficient computation of divided differences) Divided differences can be computed by the
divided differences scheme, which is closely related to the Aitken-Neville scheme from Code 5.2.3.10:

to | ylto]

> y[tOItl]

f | y[t] > ylto, b, 1]

> y[tl, tz] > y[fo,tl,fz, t3], (5.2.3.30)
tr | y[t] > y[t1, to, t3]

> Y[t t3]

t3 | y[t3]

The elements can be computed from left to right, every “>” indicates the evaluation of the recursion
formula (5.2.3.28).

However, we can again resort to the idea of § 5.2.3.11 and traverse (5.2.3.30) along the diagonals from
left bottom to right top: If a new datum (g, o) is added, it is enough to compute the 7 + 1 new divided
differences

y[tO] s y[tOI tl] s]/[tOI tl/ t2] soeee /y[t()/"'/tl’l] .

The C++ function difdiff () listed in Code 5.2.3.31 computes divided differences for data points
(ti,yi), i = 0,...,n, in this fashion. For n = 3 the values of the outer loop variable 1 in the different
combinations are as follows:

to | y[to]
1=3> y[to, tl]
tq y[tl] 1=3> y[to, t1, tz]
1=2> y[tl,tz] 1=3> y[to,tl,tg, t3], (5.2.3.30)
to y[tz] 1=2> y[tl,tz, t3]
1=1> y[tz, t3]
3 | y[ts]

In divdiff () the divided differences y[to], y[to, t1], - ., y[to, - - ., tn] Overwrite the original data values
yj in the vector y (in-situ computation).

C++ code 5.2.3.31: In-situ computation of divided differences

2 |// IN: t = node set (mutually different)
3 |// v = nodal values
4 |// OUT: y = coefficients of polynomial in Newton basis
s |void divdiff (const &t &y) |
6 const int n = y. () — 1;
7 // Follow scheme (5.2.3.30), recursion (5.2.3.27)
8 for (int | = 1; | < n; ++1)
9 for (int j =n—1; j <n; ++j)
10 ylil = (yljl = ylj = 1) / (t[j] = tln =1 —=1]);
1|}
B> Computational effort: O(n?) for no. of data points 7 — co

By derivation, the computed finite differences are the coefficients of interpolating polynomials in the New-
ton basis
n—1

p(t) = ag+ay(t —to) +ax(t —to)(t —) + - +a, [[(t—t}) (5.2.3.32)
j=0

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 382

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

ag = ylto], m = ylto, t1], a2 = y[to, f1, 2], ---.

Thus, divdiff () from Code 5.2.3.31 computes the coefficients aj, j = 0,...,n, of the polynomial
interpolant with respect to the Newton basis. It uses only the first j + 1 data points to find aj. J

§5.2.3.33 (Efficient evaluation of polynomial in Newton form) Let a polynomial be given in “Newton
form”, that is, as a linear combination of Newton basis polynomials as introduced in (5.2.3.23):

p(t) = agNo(t) + ayNy(t) + - - - + a, Ny (1)

n—1
=ag-14a; (t—to)+ay (t—to)(t —t1)+---+a, [[(t—t;), tER,
h\,_/ N ~~ -4]:0
=Ny (1) —N (1) -
=N, (t)

with known coefficients a;, j = 0, ..., n, e.g., available as the components of a vector. Embark on “asso-
ciative rewriting”,

p(t) = (.. ((an(t — tn—l) —|—L1n_1)(t — tnfz) —|—an,2) o —|—a1)(t — to) “+ap,

which reveals ho we can perform the “backward evaluation” of p(t) in the spirit of Horner’s scheme (—
§ 5.2.1.5, [DR08, Alg. 8.20]):

pan, pe(t—ty)p+an, p (t—ti2)p+an—,
A C++ implementation of this idea is given next.

C++-code 5.2.3.34: Divided differences evaluation by modified Horner scheme

2‘// Evaluation of a polynomial in Newton form, that is, represented
through the

3|// vector of its basis expansion coefficients with respect to the Newton|
basis

« | // (6.2.3.23).
5 i evalNewtonForm (const i &t
6 const il &a,
7 const i &x) {
8 const unsigned int n = a. () — 1;
9 const i ones = i (x. 0));
10 i p{a[n] * ones};
11 for (int j =n—1; j >= 0; —j) {
12 p=(x— t[j] % ones). (p) + al[j] * ones;
13 }
14 return p;
15|}
B> Computational effort: Asymptotically O(n) for a single evaluation of p(f).

(Can be interleaved with the computation of the a;s, see Code 5.2.3.21.)
_l
EXAMPLE 5.2.3.35 (Class PolyEval) We show the implementation of a C++ class supporting the
efficient update and evaluation of an interpolating polynomial making use of
e the representation of the Lagrange polynomial interpolants in the Newton basis (5.2.3.23),

e the computation of representation coefficients through a divided difference scheme (5.2.3.30), see
Code 5.2.3.31,

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 383

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

e and point evaluations of the polynomial interpolants by means of Horner-like scheme as introduced

in Code 5.2.3.34.

To understand the code return to the triangular linear system for the Newton basis expansion coefficients

a; of a Lagrange polynomial interpolant of degree n throuh (t;), i =0, ..., n:

1 0 ce 0 T
. . ag Yo
1 <t1 - tO) T : al yl
: : . 0 = . (5.2.3.25)
n—1))
1 (th—to) - T1(ta—t) In Yn
L 1:0 -
Given, ag, ..., a,_1 we can thus compute a,, from
n—1 1 n—1k—1
i=0 k=0 i=0
n—1 ’ n—1n—1 .
= (tn —ti)" yn — 2 H(tn_tz)i Ak
i=0 k=0 i=k
= ((((yn - aO)/(tn - tO) - al)/(tn - tl) - ﬂz)/ te— an—l)/(tn - tn—l)
C++-code 5.2.3.36: Definition of a class for “update friendly” polynomial interpolant
1 | class PolyEval {
2 | private:
3 std ::vector<double> t; // Interpolation nodes
4 std ::vector<double> y; // Coefficients in Newton representation
5 | public:
6 PolyEval (); // Idle constructor
7 void addPoint (double t, double y); // Add another data point
8 // evaluate value of current interpolating polynomial at x,
9 double operator () (double x) const;
10 |};
C++-code 5.2.3.37: Implementation of class PolyEval
1 | PolyEval :: PolyEval () {}
2
s |void PolyEval ::addPoint (double td, double yd) {
4 t.push_back (td) ;
5 y .push_back (yd) ;
6 int n = t.size();
7 for (int j = 0; j <n—1; j++)
8 yln =11 = ((y[n =11 = vy[j]) / (t[n = 1] = t[j]));
°o |}
10
11 |double PolyEval :: operator () (double x) const {
12 double s = y.back () ;
13 for (int i = y.size() — 2; i >= 0; —i)
14 S =8 * (x—t[i]) + y[i];
15 return s;
16 |}
J
5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 384

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Remark 5.2.3.38 (Divided differences and derivatives) If v, . . ., y,, are the values of a smooth function
f inthe points to, ..., ty, thatis, y; := f(t]-), then

(k)
Yt tid] = L k!(C)

for a certain & € [t;,t;, k], see [DR0O8, Thm. 8.21]. J
Review question(s) 5.2.3.39 (Newton basis and divided differences)

(@5.2.3.39.A) Given a node set {fg,t1,...,t,} letap,...,a, € R be the coefficients of a polynomial p
in the associated Newton basis {Nj, ..., N, }. Outline an efficient algorithm for computing the basis
expansion coefficients of p with respect to the basis {Lo,...,L,} of Lagrange polynomials for given
node set.

(@5.2.3.39.B) Given the value vectory € R"*1 and the node set {to, ..., tn} C R, remember the nota-
tion y/|tx, t,], for divided differences: y[t, t,] is the leading coefficient of the unique polynomial interpo-

i
lating the data points <t]~, (y)].> - 0 <k, ¢ < n (C++ indexing).
]:

What can you conclude from y/to, t;] = Oforal j € {m,...,n} forsomem € {1,...,n}?

5.2.4 Polynomial Interpolation: Sensitivity

& Supplementary literature. For related discussions see [QSS00, Sect. 8.1.3].

This section addresses a major shortcoming of polynomial interpolation in case the interpolation knots ¢;
are imposed, which is usually the case when given data points have to be interpolated, cf. Ex. 5.1.0.8.

This liability has to do with the sensitivity of the Lagrange polynomial interpolation problem. From Sec-
tion 2.2.2 remember that the sensitivity/conditioning of a problem provides a measure for the propaga-
tion of perturbations in the data/inputs to the results/outputs.

§5.2.4.1 (The Lagrange polynomial interpolation problem) As explained in § 1.5.5.1 a “problem” in the
sense of numerical analysis is a mapping/function from a data/input set X into a set Yof results/outputs.

Owing to the existence and uniqueness of the polynomial interpolant as asserted in Thm. 5.2.2.7, the
Lagrange polynomial interpolation problem (LIP) as introduced in Section 5.2.2 describes a mapping

R xR — P, , ((ty))g—=>pEPupt) =y, i=0,...,n. (5.2.4.2)

from sets of n + 1 data points, n € IN(to polynomials of degree n. Hence, LIP maps a finite sequence
of numbers to a function, and both the data/input set and result/output set have the structure of vector
spaces.

A more restricted view considers the linear interpolation operator from Cor. 5.2.2.8

R" 1 — P,
I . _ _ (5.2.2.9)
(Yo,...,yn)" > interpolating polynomial p .

and identifies the Lagrange polynomial interpolation problem with |, that is, with the mapping taking only
data values to a polynomial. The interpolation nodes are treated as parameters and not considered data.
For the sake of simplicity we adopt this view in the sequel. 2

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 385

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

EXAMPLE 5.2.4.3 (Oscillating polynomial interpolant (Runge’s counterexample) — [DROS,
Sect. 8.3], [QSS00, Ex. 8.1]) This example offers a glimpse of the problems haunting polynomial in-
terpolation.

We examine the polynomial Lagrange interpolant (—
Section 5.2.2, (5.2.2.2)) for uniformly spaced nodes
and the following data:

n
=495 m'} ,
7:={ 0,
1
— S,

Y; j=0,...n

Plotted is the interpolant for n = 10 and the inter-
polant for which the data value at t = 0 has been
perturbed by 0.1 - ‘ ‘ ‘ ‘ ‘
(See also Ex. 6.2.2.11 below.) Fgiss| = T T

1= possible strong oscillations of interpolating polynomials
of high degree on uniformly spaced nodes!
i Slight perturbations of data values can engender strong

variations of a high-degree Lagrange interpolant “far away”.

In fuzzy terms, what we have observed is “high sensitivity” of polynomial interpolation with respect to
perturbations in the data values: small perturbations in the data can cause big variations of the polynomial
interpolants in certain points, which is clearly undesirable. _

§5.2.4.4 (Norms on spaces of functions) For measuring the size of perturbations we need norms (—
Def. 1.5.5.4) on data and result spaces. For the value vectors y := [y, . . . ,yn]T € R"*! we can use any
vector norm, see § 1.5.5.3, for instance the maximum norm ||y|| ..

However the result space is a vector space of functions I C IR — IR and so we also need norms on the
vector space of continuous functions CY(I), I C IR. The following norms are the most relevant:

supremum norm || f|| ey = sup{|f(t)[: t € I}, (5.2.4.5)

L2norm || fll T2y == /I\f(t)\zdt, (5.2.4.6)

Llnorm || fllps) = /I|f(t)| dt . (5.2.4.7)

Note the relationship with the vector norms introduced in § 1.5.5.3. 2

§5.2.4.8 (Sensitivity of linear problem maps) In § 5.1.0.21 we have learned that (polynomial) interpola-
tion gives rise to a linear problem map, see Def. 5.1.0.25. For this class of problem maps the investigation
of sensitivity has to study operator norms, a generalization of matrix norms (— Def. 1.5.5.10).

LetL : X — Y be a linear problem map between two normed spaces, the data space X (with norm ||-||)
and the result space Y (with norm ||-||/). Thanks to linearity, perturbations of the result y := L(x) for the
input x € X can be expressed as follows:

L(x + 6x) = L(x) + L(éx) = y + L(éx) .

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 386

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Hence, the sensitivity (in terms of propagation of absolute errors) can be measured by the operator norm

- LIy
ILllx_y = sup 5 . (5.2.4.9)
oxeXx\{o} [ox(

This can be read as the “matrix norm of L”, cf. Def. 1.5.5.10. J

It seems challenging to compute the operator norm (5.2.4.9) for L = | (I the Lagrange interpolation
operator for node set 7 C I), X = R"*! (equipped with a vector norm), and Y = C(I) (endowed with a
norm from § 5.2.4.4). The next lemma will provide surprisingly simple concrete formulas.

Lemma 5.2.4.10. Absolute conditioning of polynomial interpolation

Given a mesh T C IR with generalized Lagrange polynomials L;,i = 0,...,n, and fixed I C R,
the norm of the interpolation operator satisfies

N7 ()l L1y
7o i=_sup = [Ll (5:2.4.11)
yeRm\{o} ¥l
||IT(Y)||L2(I) n 2 %
N7llm2 == sup WS (Zi:oHLiHLZ(I)> : (5.2.4.12)

yeR™1\ {0} yil2
Proof. (for the L*°-Norm) By A-inequality

n n n

@) sy = [gy, < 00 T WHLHO] < Iyl [g 141,
equality in (5.2.4.11) for y := (sgn(L (t*)))] o = argmax, ;31 [Li(t)]. .
Proof. (for the L>-Norm) By the /\-inequality and the Cauchy-Schwarz inequality in R"*1,
1 1
n n 2\ 2 n 2\ 2
Z]':oajbj < <Zj:0|af|) <Zj:0|bf|) vaj bj € R,
we can estimate
1 1
n n 2\ 2 n 2 2
|||T(Y)||L2(1) < i=0 ’y]'"‘Lf"LZ(I) S <2j:0 ’yi‘) <Zj:0HLJ'HL2(I)> :
O

Terminology: Lebesgue constantof 7: Ay := HZLO n= [L7 p——

Remark 5.2.4.13 (Lebesgue constant for equidistant nodes) We consider Lagrange interpolation for
the special setting

I=[-1,1, T={-1+ 27"};(1:0 (uniformly spaced nodes).
Asymptotic estimate (with (5.2.2.4) and Stirling formula): forn = 2m

1 1 3 -3 1 2n—1
‘L (1_1)’:E.E.E....”T.%....”T: (211)! N on+3/2
e <M n_-z.1>2 (n—1)221((n/2))2n! ~ 7w(n—1)n
n n n

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation 387

http://en.wikipedia.org/wiki/Stirling%27s_approximation

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Lebesgue constant for Chebychev nodes
10 T T T T

. N Sophisticated theory [CR92] gives a lower bound for
% o . 1 the Lebesgue constant for uniformly spaced nodes:
§ 10°H + | E
. Ar = Ce'”

% 10°F n ' E
. with C > 0 independent of 7.

+ ¥ % F x ox K Kk Kk Kk k¥ X X
+ % ¥ Kk K F

10° I I I I
0 5 20 25

10 15
Fig. 154 Polynomial degree n

We can also perform a numerical evaluation of the expression

A = HZ?:O |L1|

Le(1)

for the Lebesgue constant of polynomial interpolation, see Lemma 5.2.4.10. The following code demon-

strates this:

C++-code 5.2.4.14: C++ code for approximate computation of Lebesgue constants

2 |// Computation of Lebesgue constant of polynomial interpolation
3 |// with nodes t; passed in the vector t based on (5.2.4.11).
4 |// N specifies the number of sampling points for the approximate
5 |// computation of the maximum norm of the Lagrange polynimial
6 |// on the interval [—1,1].
7 | double lebesgue(const VectorXd& t, const unsigned& N) {
8 const unsigned n = t.size();
9 // compute denominators of normalized Lagrange polynomials relative to
the nodes t
10 VectorXd den(n);
1 for (unsigned i = 0; i < n; ++i) {
12 VectorXd tmp(n — 1);
13 // Note: comma initializer can’t be used with vectors of length 0
14 if (i ==0) tmp = t.tail(n— 1);
15 else if (i == n— 1) tmp = t.head(n — 1);
16 else tmp << t.head (i), t.tail(n— (i + 1));
17 den(i) = (t(i) — tmp.array()).prod();
18 }
19
20 double | = 0; // return value
21 for (unsigned j = 0; j < N; ++j) {
2 const double x = —1 + j*(2./N); // sampling point for H'HL‘”([*MD
23 double s = 0;
24 for (unsigned k = 0; k < n; ++k) {
25 // v provides value of normalized Lagrange polynomials
26 VectorXd tmp(n — 1);
27 if (k==0) tmp = t.tail(n— 1);
28 else if (k ==n— 1) tmp = t.head(n — 1);
29 else tmp << t.head(k), t.tail(n— (k + 1));
30 double v = (x — tmp.array()).prod()/den(k);
31 s += std::abs(v); // sum over modulus of the polynomials
32
}
33 | = std::max(l, s); // maximum of sampled values
34
}

5. Data Interpolation and Data Fitting in 1D, 5.2. Global Polynomial Interpolation

388

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

35 return |;
36 |}

Note: In Code 5.2.4.14 the norm HLI-HLOOU) can be computed only approximately by taking the maximum
modulus of function values in many sampling points. _|

§5.2.4.15 (Importance of knowing the sensitivity of polynomial interpolation) In Ex. 5.1.0.8 we
learned that interpolation is an important technique for obtaining a mathematical (and algorithmic) descrip-
tion of a constitutive relationship from measured data. If the interpolation operator is poorly conditioned,
tiny measurement errors will lead to big (local) deviations of the interpolant from its “true” form.

Since measurement errors are inevitable, poorly conditioned interpolation procedures are useless for de-
termining constitutive relationships from measurements.

Due to potentially “high sensitivity” interpolation with global polynomials of high degree is
not suitable for data interpolation.

Review question(s) 5.2.4.16 (Polynomial Interpolation: Sensitivity)

(@5.2.4.16.A) Consider the node set 7 := {0,1,...,n}, n € IN, and the associated linear polynomial
interpolation operator | : R**! — P,.. Quantify the sensitivity of the mapping

*
: 1

R—R , yy—=Ir : (—),
* 2
Yn

Hint. The Lagrange polynomials for a node set {t, ..., t,} C R are given by

n t_t

Li(t) ::Hft]-’ i=0,...,n. (5.2.2.4)
j=0 "t J
jF#i

5.3 Shape-Preserving Interpolation

When reconstructing a quantitative dependence of quantities from measurements, first principles from
physics often stipulate qualitative constraints, which translate into shape properties of the function f, e.g.,
when modelling the material law for a gas:

t; pressure values, y; densities > f positive & monotonic.

Notation: givendata: (t;,y;) €ER?i=0,...,n, n €N, tg<t; < - - <ty

EXAMPLE 5.3.0.1 (Magnetization curves)

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 389

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Sl I I .
1.8 +— B-H Curves for Various Metals
‘ 1.6 t ; - l | TEEEETW.
For many materials physics stipulates properties of | ;4 [T ===t
the functional dependence of magnetic flux B from ' ,, : Saturation | |
magnetic field strength H: S 10 :
4 H+ B(H) smooth (at least C1), g | [Ltron 1
4+ H — B(H) monotonic (increasing), g °° T |
4 H — B(H) concave = z:] LA
. t 1 __--—-"-ﬂ---
L —

o

1000 2000 3000 4000 5000 6000 7000 8000 S000 10000

Fig. 155 Magnetic Field Strength - H (At/m) -

5.3.1 Shape Properties of Functions and Data

§5.3.1.1 (The “shape” of data) The section is about “shape preservation”. In the previous example we
have already seen a few properties that constitute the “shape” of a function: sign, monotonicity and curva-
ture. Now we have to identify analogous properties of data sets in the form of sequences of interpolation
points (t]-,yj), j=0,...,n,t; pairwise distinct.

Definition 5.3.1.2. monotonic data

The data (¢;, y;) are called monotonic wheny; > y;_jory; <y, 1,i=1,...,n.

Definition 5.3.1.3. Convex/concave data

The data {(t;,y;) }/_, are called convex (concave) f

(2) Yi— Y
i 7] j
A]'SA]'+1,]:1,...,1’1—1 , A]— PR ’]—1, N
j -1
Mathematical characterization of convex data:
y; < (ti1 — t)yioa + (4 — tio)yin Viel.. . .n—1,

tiv1—tia

i.e., each data point lies below the line segment connecting the other data, cf. definition of convexity of a
function [Str09, Def. 5.5.2].

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 390

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Yy Yy

.
Fig. 156 Figh157 t

Convex data Convex function

Definition 5.3.1.4. Convex/concave function — [, Def. 5.5.2]

fFircrRo R omvex o fAxt(I=Ay) <AfQ)+(1=Mfly) VO <A<
' y (

+
concave f(Ax+(1—=A7) 1-Mf(y) Vxyel.

_

§5.3.1.5 ((Local) shape preservation) Now we consider interpolation problem to build an interpolant f
with special properties inherited from the given data (¢;,y;), i =0,...,n.

Goal: shape preserving interpolation:
positive data — positive interpolant f,
monotonic data — monotonic interpolant f,
convex data — convex interpolant f.
More ambitious goal: local shape preserving interpolation: for each subinterval I = [t;, t; /]

positive data in [— locally positive interpolant f|;,

monotonic data in [— locally monotonic interpolant f|,

convex data in [— locally convex interpolant f/|;.

EXPERIMENT 5.3.1.6 (Bad behavior of global polynomial interpolants)
We perform Lagrange interpolation for the following positive and monotonic data:

ti ‘—1.0 -0.640 -0.3600 -0.1600 -0.0400 0.0000 0.0770 0.1918 0.3631 0.6187 1.0
yi‘ 0.0 0.000 0.0039 0.1355 0.2871 0.3455 0.4639 0.6422 0.8678 1.0000 1.0

created by taking points on the graph of

0 ift < —%,
f(t) =< (1 +cos(n(t—2))) it-2<t<?,
1 otherwise.

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 391

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

12 T

Polynomial

* Measure pis. <~~~ 1 < Interpolating polynomial, degree = 10

- - —Natural

We observe oscillations at the endpoints of the inter-
val (see Fig. 153), which means that we encounter

no locality,

no positivity,

no monotonicity,

no local conservation of the curvature,
in the case of global polynomial interpolation.

I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

5.3.2 Piecewise Linear Interpolation

There is a very simple method of achieving perfect shape preservation by means of a linear (— § 5.1.0.21)
interpolation operator into the space of continuous functions:

Data: (t,y;)) €ER?%,i=0,...,n, n €N, tog<t; <-- <ty
Then the piecewise linear interpolant s : [to, t,] — R is defined as, cf. Ex. 5.1.0.15:

tivn — By + (E—)y
s(t) = (ti1 — Hyi+ (i)Yis for te [t b (5.3.2.1)
tiv1 —ti

The piecewise linear interpolant is also called a
polygonal curve. It is continuous and consists
of n line segments.

Piecewise linear interpolant of data from
Fig. 156 >

| | | | | t
AL to t t2 ts 1
Piecewise linear interpolation means simply “connect the data points in IR? using straight lines”.
Obvious: linear interpolation is linear (as mapping y — s, see Def. 5.1.0.25) and local in the following
sense:
yi = (51‘]' , ,j=0,...,n = SLlpp(S) C [tii1,tiva] - (5.3.2.2)

As obvious are the properties asserted in the following theorem. The local preservation of curvature is a
straightforward consequence of Def. 5.3.1.3.

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 392

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Theorem 5.3.2.3. Local shape preservation by piecewise linear interpolation

Lets € C([to,ts]) be the piecewise linear interpolant of (t;,y;) € R? i = 0,...,n, for every
subinterval I = [t]', fk] C [fo, tn].'

if (t;, y;)|1 are positive/negative = 5| is positive/negative,
if (t;,y;)|1 are monotonic (increasing/decreasing) =- s|; is monotonic (increasing/decreasing),
if (t;,y;)|1 are convex/concave = 5|1 is convex/concave.

Local shape preservation = perfect shape preservation!

Bad news: none of this properties carries over to local polynomial interpolation of higher polynomial degree
d>1.

EXAMPLE 5.3.2.4 (Piecewise quadratic interpolation) We consider the following generalization of
piecewise linear interpolation of data points (tj,y]-) ERxR,j=0,...,n.

From Thm. 5.2.2.7 we know that a parabola (polynomial of degree 2) is uniquely determined by 3 data
points. Thus, the idea is to form groups of three adjacent data points and interpolate each of these triplets
by a 2nd-degree polynomial (parabola).

Assume: n =2m even
B> piecewise quadratic interpolant g : [min{t;}, max{t;}] — R is defined by

qj = thz/—zrth] epP, , q](tz) =1, 1= 2] — 2,2j — 1,2] ,] =1,...,m. (5.3.2.5)

T T
+ Nodes

Piecewise linear interpolant
Piecewise quadratic interpolan

Nodes as in Exp. 5.3.1.6

Piecewise linear (blue) and quadratic (red) inter-
polants >

—~—g——

No shape preservation for piecewise quadratic inter-
polant

.
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Fig. 159

The “only” drawback of piecewise linear interpolation:
interpolant is only C° but not C! (no continuous derivative).

However: Interpolant usually serves as input for other numerical methods like a Newton-method for solving
non-linear systems of equations, see Section 8.5, which requires derivatives.

5.3.3 Cubic Hermite Interpolation

Aim: construct local shape-preserving (— Section 5.3) (linear ?) interpolation operator that fixes short-
coming of piecewise linear interpolation by ensuring C!-smoothness of the interpolant.

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 393

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

% notation: C'([a, b]) = space of continuously differentiable functions [a, b] + R.

5.3.3.1 Definition and Algorithms
Given: mesh points (t;,y;) ER%,i=0,...,n, tg<t; < - <t

Goal: build function f € C'([to, t,]) satisfying the interpolation conditions f(t;) = y;,i =0,...,n.

Definition 5.3.3.1. Cubic Hermite polynomial interpolant

Given data points (t;,y;) € RxR,j=0,...,n, with pairwise distinct ordered nodes t;, and slopes
cj € IR, the piecewise cubic Hermite interpolant s : [ty, t,] — R is defined by the requirements

S\gt] €EP3, i=1...mn , | stt)=y; |, | st)=c |, i=0,...,n.

Corollary 5.3.3.2. Smoothness of cubic Hermite polynomial interpolant

Piecewise cubic Hermite interpolants are continuously differentiable on their interval of definition.

Proof. The assertion of the corollary follows from the agreement of function values and first derivative
values on nodes shared by two intervals, on each of which the piecewise cubic Hermite interpolant is a

polynomial of degree 3. .

§5.3.3.3 (Local representation of piecewise cubic Hermite interpolant) Locally, we can write a piece-
wise cubic Hermite interpolant as a linear combination of generalized cardinal basis functions with coeffi-
cients supplied by the data values y; and the slopes c;:

B s(t) =y Hi(t) + yiHa(t) + cio1Hs(t) + ciHa(t) , t€ [tiiati], (5.3.3.4)

where the basic functions Hy, k = 1,2, 3, 4, are as follows:

1.2

t—t
Hy(t) (+—), (5.3.3.5a)
1 hi
03 Hy(t) := (t_h#) , (5.3.3.5b)
1
06 t—t
= Hi(t) := —hjp(‘h.), (5.3.3.5¢)
0.4F L
t—ti_
N Hy(t) := hp(hil Ly, (5.3.3.5d)
0 hi =t —ti_q, (53358)
— o(t1) ;=312 - 27, (5.3.3.5f)
-0.2 : : : :
Fig. 160 0 02 04 t 06 08 1 lP(T) = T3 — T2 . (5.3.3.59)

Local basis polynomials on [0, 1]

By tedious, but straightforward computations using the chain rule we find the following values for H;. and
H; at the endpoints of the interval [t; 1, ;].

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 394

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

H(ti1) | H(t;) | H'(ti1) | H'(t)
H; 1 0 0 0
H, | 0 1 0 0
Hy| 0 0 1 0
Hy| o0 0 0 1

This amounts to a proof for (5.3.3.4) (why?).

The formula (5.3.3.4) is handy for the local evaluation of piecewise cubic Hermit interpolants. The function
hermloceval () in Code 5.3.3.6 performs the efficient evaluation (in multiple points) of a piecewise
cubic polynomial s on t1, £, uniquely defined by the constraints s(t1) = y1, s(t2) = ya, s'(11) = c1,
s'(t2) = c2:

C++ code 5.3.3.6: Local evaluation of cubic Hermite polynomial

// Multiple point evaluation of Hermite polynomial
// Y1, Y2: data values
// €1, C: slopes
il hermloceval (il t, double t1, double t2,
double y1, double y2, double c1, double c2) {

const double h = t2 — t1, al = y2 —y1, a2 = al — h x ¢1, a8 = h *x c2 — al — a2;

t = ((t. () —t1) / h). O

return (y1 + (al + (a2 + a3 * t. ()) = (t. () — 1)) = t. (). ();

© ® N o o A~ W N

}

o

_

§5.3.3.7 (Linear Hermite interpolation) However, the data for an interpolation problem (— Section 5.1)
are merely the interpolation points (tj, yj), j=0,...,n, but not the slopes of the interpolant at the nodes.
Thus, in order to define an interpolation operator into the space of piecewise cubic Hermite functions, we
have supply a mapping R"*1 x R"*! — R"*! computing the slopes ¢ from the data points.

Since this mapping should be local it is natural to rely on (weighted) averages of the local slopes A; (—
Def. 5.3.1.3) of the data, for instance

Al ,fori:0,
;=< Ay Jfori=mn, , A]-::M,jzl,...,n. (5.3.3.8)

ti—ti_
tipi—ti A ti—tig A 1 < i~ ti—1
ti+1_ti71Al T ti+1_ti71A1+1 flsi<n.

= Leads to a linear (— Def. 5.1.0.25), local Hermite interpolation operator

“Local” means, that, if the values y; are non-zero for only a few adjacent data points with indices j =
k,...,k+m, m € IN small, then the Hermite interpolant s is supported on [t;_y, i1 r] for small £ € N
independent of k and m. 2

EXAMPLE 5.3.3.9 (Average-based pecewise cubic Hermite interpolation)

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 395

NumCSE, AT’20, Prof. Ralf Hiptmair

©SAM, ETH Zurich, 2020

Data points:
4+ 11 equispaced nodes

t]' = —1—|—0.2j,

in the interval I = [—1,1],

* Y= f(t,') with

f(x) :=sin(5x) e* .

Here we used weighted averages of

slopes as in Eq. (5.3.3.8).

For details see code hermintpl.hpp

=* GITLAB.

j=0,...,10.

Hermite interpolation

o (@) Data points
! f(x)
B Piecw. cubic interpolation polynomial
I~ Averaged slopes
T T R T T A
-1 -0.5 0 0.5

Fig. 161

No strict local/global preservation of monotonicity!

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation

396

https://gitlab.math.ethz.ch/NumCSE/NumCSE/tree/master/LectureCodes/Interpolation/hermintp1

Fig. 163

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

5.3.3.2 Local Monotonicity-Preserving Hermite Interpolation

From Ex. 5.3.3.9 we learn that, if the slopes are chosen according to Eq. (5.3.3.8), then he resulting
Hermite interpolation does not preserve monotonicity.

Consider the situation sketched on the right > Y

The red circles (®) represent data points, the blue line
(—) the piecewise linear interpolant — Section 5.3.2. r

In the nodes marked with — the first derivative of a
monotonicity preserving C!-smooth interpolant must
vanish! Otherwise an “overshoot” occurs, see also

Fig. 159.

Of course, this will be violated, when a (weighted)
arithmetic average is used for the computation of
slopes for cubic Hermite interpolation.

Fig. 162

<1 Consider the situation sketched on the left.

The red circles (®) represent data points, the blue line
(—) the piecewise linear interpolant — Section 5.3.2.

r A local monotonicity preserving C!-smooth inter-
polant (— § 5.3.1.5) s must be flat (= vanishing first
derivative) in data points (t;,;), for which

1 Yyi-1<yj and Y1 <y;,
Yi-1>Yyj and Y1 >y,

tin “local extrema” of the data set.

Otherwise, overshoots or undershoots would destroy
local monotonicity on one side of the extremum.

§5.3.3.10 (Limiting of local slopes) From the discussion of Fig. 162 and Fig. 163 it is clear that local
monotonicity preservation entails that the local slopes c; of a cubic Hermite interpolant (— Def. 5.3.3.1)
have to fulfill

0 , if A; Aii1), _
¢ = i sgn(d;) # sgn(Aisa) i=1,...,n—1. (533.11)
some “average” of A;, A; 11 otherwise

1 ,if¢>0,
% notation: sign function sgn(§) =<0 ,if&=0,.
~1 ,ifé<0.

A slope selection rule that enforces (5.3.3.11) is called a limiter.

Of course, testing for equality with zero does not make sense for data that may be affected by measure-
ment or roundoff errors. Thus, the “average” in (5.3.3.11) must be close to zero already when either A; ~ 0
or A1 ~ 0. This is satisfied by the weighted harmonic mean

(5.3.3.12)

T Wy wy
Ai Ay

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 397

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

with weights w, > 0, w, > 0, (w; +w, =1).

The harmonic mean = “smoothed min(-,-)-
function”.

Obviously A; — 0 or Ajy1 — 0in (5.3.3.12), then P
ci — 0.

Contour plot of the harmonic mean of a2 and b -
(w, = wyp =1/2).

Fig. 164

A good choice of the weights is:

. = 2Phiv1i wp — hit1+2h;
© 3(higa+hi) 3(hiy1+hi)’

This yields the following local slopes, unless (5.3.3.11) enforces ¢; = 0:

Al , If Z — 0 ’
Ap)=sgn(A 3(hit1+hi) ;
sgrbuzen(s) zhi+Al+hi++12hiA+hi+l Jorie{l...on=1}, p=t—t,. (53313
i i+1
A, Jifi=mn,

Piecewise cubic Hermite interpolation with local slopes chosen according to
(6.3.3.11) and (5.3.3.13) is available through the MATLAB function/PYTHON class v =
pchip(t, vy, x);/scipy.interpolate.PchipInterpolator. The argument t passes
the interpolation nodes, v the corresponding data values, and x is a vector of evaluation points. J

EXAMPLE 5.3.3.14 (Monotonicity preserving piecewise cubic polynomial interpolation)

+ Data points
Piecew. cubic interpolation polynomial

Data from Exp. 5.3.1.6
Plot created with MATLAB-function call 08f
v = pchip(t, vy, x);

t: Data nodes t; =
y: Data values y; 04l
x: Evaluation points x;

v: Vector s(x;) 02l

We observe perfect local monotonicity preservation,
no under- or overshoots at extrema. >

I I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Fig. 165 t

_

Remark 5.3.3.15 (Non-linear cubic Hermite interpolation) Note that the mapping y := [vo, ..., Vx| —
¢; defined by (5.3.3.11) and (5.3.3.13) is not linear.

> The “pchip interpolaton operator” does not provide a linear mapping from data space R**! into
C'([to, ta]) (in the sense of Def. 5.1.0.25).

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 398

NumCSE, AT’20, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2020

In fact, the non-linearity of the piecewise cubic Hermite interpolation operator is necessary for (only global)
monotonicity preservation:

Theorem 5.3.3.16. Property of linear, monotonicity preserving interpolation into C!

If. for fixed node set {tj};?zo, n > 2, an interpolation scheme | : R"*1 — CI(I) is linear
as a mapping from data values to continuous functions on the interval covered by the nodes
(— Def. 5.1.0.25), and monotonicity preserving, then I(y)'(t;) = 0 for aly € R"*! and
§= 0000, =1l

Of course, an interpolant that is flat in all data points, as stipulated by Thm. 5.3.3.16 for a lineaer, mono-
tonicity preserving, C!-smooth interpolation scheme, does not make much sense.

At least, the piecewise cubic Hermite interpolation operator is local (in the sense discussed in § 5.3.3.7).
_I

Theorem 5.3.3.17. Monotonicity preservation of limited cubic Hermite interpolation

The cubic Hermite interpolation polynomial with slopes as in Eq. (5.3.3.13) provides a local
monotonicity-preserving C'-interpolant.

Proof. See F. FRITSCH UND R. CARLSON, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal.,
17 (1980), S. 238-246.

|
The next code demonstrates the calculation of the slopes c; in MATLAB’s pchip (details in [FC80]):
C++ code 5.3.3.18: Monotonicity preserving slopes in pchip
1 |# include < /Dense>
2
3 | using
4
5 |// using forward declaration of the function pchipend, implementation
6 doutjnolglgchlqipend(const double, const double, const double, const double) ;
7
s |void pchipslopes(const & t, const & vy, & c) {
9 // Calculation of local slopes c¢;j for shape preserving cubic Hermite
interpolation, see (5.3.3.11), (5.8.3.13)
10 // t, y are vectors passing the data points
1 const unsigned n = t. 0);
12 const h =t. (n—1) — t. (n— 1),
13 delta = (y. (n—1) —vy. (n— 1)). (h); // linear
slopes
14 c = i (n);
15
16 // compute reconstruction slope according to (5.3.3.13)
17 for (unsigned i = 0; i < n— 2; ++i) {
18 if (delta(i)*delta(i + 1) > 0) {
19 const double w1 = 2«h(i + 1) + h(i),
20 w2 = h(i + 1) + 2xh(i);
21 c(i + 1) = (wl + w2)/(wl/delta(i) + w2/delta(i + 1));
22 }
23 }

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 399

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

24 // Special slopes at endpoints, beyond (5.3.3.13)

25 c(0) = pchipend(h(0), h(1), delta(0), delta(1));

26 c(n — 1) = pchipend(h(n — 2), h(n — 3), delta(n — 2), delta(n — 3));
27 |}
28
29 |double pchipend(const double h1, const double h2, const double dell, const double

del2) {
30 // Non-centered, shape-preserving, three-point formula
st | double d = ((2+h1 + h2)xdell — hixdel2)/(h1 + h2);
w | if (dxdell < 0) {
33 d = 0;

34
}
35 else if (del1xdel2 < 0 && std::abs(d) > std::abs(3xdell)) {
36 d = 3xdell;
a7 }
38 return d;
3 |}

Review question(s) 5.3.3.19 (Shape-preserving interpolation)

(@5.3.3.19.A) State three shortcomings of global polynomial interpolation, which are remedied by using
piecewise linear interpolation.

(@5.3.3.19.B) Given data points (¢;,y;) € R? and a continuous interpolant f generated by a local mono-
tonicity preserving interpolation scheme, show that

{70), 1€ min{ts) max{ts)) } = fmin{y), max(y)].

(@5.3.3.19.C) Show by counterexample that a locally convexity preserving interpolation scheme can gen-
erate an interpolant with negative function values even if the data values are all positive.

(@5.3.3.19.D) Given data points (¢;,y;),i =0,...,n, we define

£) =+ [plo)dr,

where p is the piecewise linear interpolant of

(fz'+fz'+1 .‘/i+1—yz’> P20 n—1
2 4 ti+1_tl~ V4 7 4

Is the mapping (#;, y;); — f globally monotonicity/convexity preserving?

(@5.3.3.19.E) Givennodes ty < t; < --- < t, let P3(7T) stand for the function space
Po(T) i= { £ € CLlto, tal): flyy yy €Ps i=1,...m}.

Propose a linear interpolation operator
FroR™ S Py(T) , (Frn)(t) = (¥);, j=0,...,n,
that is locally monotonicity preserving.

(@5.3.3.19.F) Given anordered node setty < t; < --- < t;, and associated data values y;,i =0, ..., n,
the pchip interpolant is a piecewise cubic Hermite interpolant, with slopes chosen according to the
formula

Al y |fl — 0 ’
= 3(hjy1+h; . hy ==t —t_ ,
sgn(Al)—fgn(AZ) = 2h,-+1§th:1_2h,-+)h,-+1 Jorie {1,...,n—1}, Al L li—yiil ! (5.3.3.13)
A, Bit1 27 h—tig
A, Jifi=mn,

5. Data Interpolation and Data Fitting in 1D, 5.3. Shape-Preserving Interpolation 400

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

(i) Determine the supports supp b; C R of the functions b;, i =0, ..., n, which is the pchip inter-
polant for the data values o = 0,...,y;-1 =0,y; =1, yi41=0,...,y, = 0.

(i) Denote by p(y) the pchip interpolant for the data vector y := [yo,...,v.] € R"t!. Can we
write p as

p(y)(t) = i}yibiu) h<t<ty,

with suitable functions b;?

5.4 Splines

Piecewise cubic Hermite Interpolation presented in Section 5.3.3 entailed determining reconstruction
slopes c¢;. Now we learn about a way how to do piecewise polynomial interpolation, which results in
Ck—interpolants, k > 0, and dispenses with auxiliary slopes. The idea is to obtain the missing conditions
implicitly from extra continuity conditions, built into spaces of so-called splines. These are of fundamental
importance for modern computer-aided geometric design (CAGD).

Supplementary literature. Splines are also presented in [DR08, Ch. 9].

5.4.1 Spline Function Spaces

Definition 5.4.1.1. Spline space — [, Def. 8.1]

Given aninterval I := [a,b] C Randaknotsequence M :={a =ty <t] <...<t, 1 <t, =
b}, n € IN, the vector space S; r of the spline functions of degree d (or order d + 1), d € INy,
is defined by

Sd,/\/t = {SECdil(I):S]' ::SHt .}E'Pd ':1,...,1’1}.

-1t

d — 1-times continuously differentiable locally polynomial of degree d

Do not mix up “knots” = “breakpoints” of a spline functions, and “nodes”, the first values in data tuples
(t;,y;) for 1D interpolation. In the case of spline interpolation, knots may serves as nodes, but not neces-
sarily.

Let’'s make explicit the spline spaces of the lowest degrees:

ed=0: M-piecewise constant discontinuous functions
ed=1: M-piecewise linear continuous functions
e d = 2: continuously differentiable M-piecewise quadratic functions

The dimension of spline space can be found by a counting argument (heuristic): We count the number
of “degrees of freedom” (d.o.f.s) possessed by a M-piecewise polynomial of degree d, and subtract the
number of linear constraints implicitly contained in Def. 5.4.1.1:

dim Sy p = n - dim Py — #{C?~! continuity constraints} = n- (d +1) — (n —1)-d=n+d .

5. Data Interpolation and Data Fitting in 1D, 5.4. Splines 401

NumCSE, AT’20, Prof. Ralf Hiptmair ©SAM, ETH Zurich, 2020

Theorem 5.4.1.2. Dimension of spline space

The space S; pq from Def. 5.4.1.1 has dimension

didelM =n-+d.

Remark 5.4.1.3 (Differentiating and integrating splines) Obviously, spline spaces are mapped onto
each other by differentiation & integration:

t
seSim = s’ e Si—im N {t — / s(7) dT} € SgriM - (5.4.1.4)
a

Review question(s) 5.4.1.5 (Spline function spaces)

(@5.4.1.5.A) Given an (ordered) knot set M := {ty < t; < --- < t,} C R use a counting argument to
determine the dimension of the space of piecewise polynomials

S:Ii(,/\/l = {s e C"(I): S|[t]-,1,t]-] ePyVj=1,...,n}.

(@5.4.1.5.B) Consider the knot set M := {0, %, 1}. For arbitrary numbers vy, y1, co, ¢1 does there exist
s € Sy, such that

s(0)=vyo, s(1)=y1, §0)=cy, s(1)=0c1?

Is s unique?

5.4.2 Cubic-Spline Interpolation

We already know the special case of interpolation in S; 1, when the interpolation nodes are the knots of
M, because this boils down to simple piecewise linear interpolation, see Section 5.3.2. No we explore
the interpolation by means of splines of degree d = 3.

& Supplementary literature. More details can be found in [Han02, pp. XIlll, 46], [QSSO00,
Sect. 8.6.1].

Remark 5.4.2.1 (Perceived smoothness of cubic splines) Cognitive psychology teaches us that the
human eye perceives a C2-functions as “smooth”, while it can still spot the abrupt change of curvature at
the possible discontinuities of the second derivatives of a cube Hermite interpolant (— Def. 5.3.3.1).

For this reason the simplest spline functions featuring C2-smoothness are of great importance in computer
aided design (CAD). They are the cubic splines, M -piecewise polynomials of degree 3 contained in S5 4
(— Def. 5.4.1.1). 3

§5.4.2.2 (Cubic spline interpolants) The definition of a cubic spline interpolant is straightforward and
matches the abstract concept of an interpolant introduced in Section 5.1. Also note the relationship with
Hermite interpolation discussed in Section 5.3.3.

5. Data Interpolation and Data Fitting in 1D, 5.4. Splines 402

NumCSE, AT’