C++ code 0.2.1: Some function to be analyzed with GDB = GITHUB

© ©® N o o B~ w0 N

void ReadAndOutputMesh(const char «filename) {
if (filename != nullptr) {
// Build full path to the mesh file
auto gmshfile_path = std::string (CURRENT_SOURCE DIR) + "/" + filename;
// Load the mesh from a file produced by Gmsh
auto mesh_factory = std::make_unique<If ::mesh:: hybrid2d :: MeshFactory >(2) ;
If::io::GmshReader reader(std::move(mesh_factory), gmshfile_path);
// Obtain pointer to read mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p = reader.mesh() ;
const If ::mesh::Mesh &mesh{+mesh_p};
// Run through all entities of the mesh and print entity information
for (int codim = 0; codim <= mesh.DimMesh(); ++codim) {
int cnt = 0;
Eigen :: VectorXd c{Eigen::VectorXd::Zero(mesh.DimWorld()) };
for (const If::mesh::Entity =entity : mesh. Entities (codim)) {
// Number of vertices
const int no_vertices = (entity —>RefEl()).NumNodes () ;
// Obtain "convex hull" of an entity
const Eigen:: MatrixXd vertices{
If ::geometry :: Corners (= entity —>Geometry () ) };
// Compute center of gravity
c += vertices.rowwise().sum() / no_vertices;

cnt++;
}
if (cnt != mesh.NumEntities (codim)) {

std::cerr << "Count mismatch for entities of codim = " << codim << ": "

<< cnt << " <—> " << mesh.NumEntities (codim) << std::endl;
}
c /= cnt;
std ::cout << "Center of codim-" << codim
<< " entities = " << c.transpose() << std::endl;

}

// Wite mesh data to file for visualization with Python script
If::io::writeMatplotlib (mesh, CURRENT_BINARY_DIR "/ljoint.csv");
std ::cout << "Wrote " CURRENT_BINARY_DIR "/ljoint.csv" << std::endl;
std ::system ("python3 " CURRENT_SOURCE_DIR
"/plot_mesh.py " CURRENT BINARY_DIR
"/ljoint.csv " CURRENT_BINARY_DIR "/mesh.eps");



https://www.gnu.org/software/gdb/
https://github.com/erickschulz/NPDECODES/blob/master/homeworks/DebugingWithGDB/mastersolution/debuggingwithgdb.cc

