

C++ code 10.7.17: Implementation of Eval() method, which computes the element matri-

ces BK

2 template <typename VELOCITY>

3 typename SUFEM: : AdvectionElementMatrixProvider <VELOCITY> : : ElemMat

4 AdvectionElementMatrixProvider <VELOCITY> : : Eval (const l f : : mesh : : E n t i t y & c e l l) {

5 // Topological type of the cell

6 const l f : : base : : RefEl r e f _ e l { c e l l . RefEl () } ;

7 // Obtain precomputed information about values of local shape
functions

8 // and their gradients at quadrature points.

9 l f : : usca l fe : : PrecomputedScalarReferenceFiniteElement <double> &pfe =

10 fe_precomp_ [r e f _ e l . Id ()] ;

11 i f (! pfe . i s I n i t i a l i z e d ()) {

12 // Accident: cell is of a type not covered by finite element

13 // specifications or there is no quadrature rule available for this

14 // reference element type

15 std : : s t r i ngs t ream temp ;

16 temp << "No loca l shape funct ion information or no quadrature rule fo r "
17 " reference element type "
18 << r e f _ e l ;

19 throw l f : : base : : L fExcept ion (temp . s t r ()) ;

20 }

21

22 // Query the shape of the cell

23 const l f : : geometry : : Geometry * geo_ptr = c e l l . Geometry () ;

24 LF_ASSERT_MSG(geo_ptr != nul lpt r , " Inva l id geometry ! ") ;

25 LF_ASSERT_MSG((geo_ptr −>DimLocal () == 2) ,

26 "Only 2D implementation avai lable ! ") ;

27

28 // Physical dimension of the cell (must be 2)

29 const l f : : base : : dim_t world_dim = geo_ptr −>DimGlobal () ;

30 LF_ASSERT_MSG_CONSTEXPR(world_dim == 2 , "Only avai lable fo r f l a t domains") ;

31 // Gram determinant at quadrature points

32 const Eigen : : VectorXd determinants (

33 geo_ptr −> IntegrationElement (pfe . Qr () . Po in ts ())) ;

34 LF_ASSERT_MSG(

35 determinants . size () == pfe . Qr () . NumPoints () ,

36 "Mismatch " << determinants . size () << " <−> " << pfe . Qr () . NumPoints ()) ;

37 // Fetch the transformation matrices for the gradients

38 const Eigen : : MatrixXd JinvT (

39 geo_ptr −>JacobianInverseGramian (pfe . Qr () . Po in ts ())) ;

40 LF_ASSERT_MSG(

41 JinvT . cols () == 2 * pfe . Qr () . NumPoints () ,

42 "Mismatch " << JinvT . cols () << " <−> " << 2 * pfe . Qr () . NumPoints ()) ;

43 LF_ASSERT_MSG(JinvT . rows () == world_dim ,

44 "Mismatch " << JinvT . rows () << " <−> " << world_dim) ;

45

46 // Get the velocity vectors at quadrature points in the cell

47 auto ve lova l = velo_ (c e l l , pfe . Qr () . Po in ts ()) ;

48

49 // Element matrix

50 ElemMat mat (pfe . NumRefShapeFunctions () , pfe . NumRefShapeFunctions ()) ;

51 mat . setZero () ;

52

53 // Loop over quadrature points

54 for (l f : : base : : s ize_type k = 0; k < pfe . Qr () . NumPoints () ; ++k) {

55 const double w = pfe . Qr () . Weights () [k] * determinants [k] ;

56 // Matrix G whose columns contain transformed gradients of all local

