


C++ code 10.7.17: Implementation of Eval () method, which computes the element matri-
ces By

N o o B W N

template <typename VELOCITY>
typename SUFEM:: AdvectionElementMatrixProvider<VELOCITY >:: ElemMat
AdvectionElementMatrixProvider<VELOCITY>:: Eval (const |f ::mesh:: Entity &cell) {
// Topological type of the cell
const If ::base::RefEl ref_el{cell.RefEl()};

// Obtain precomputed information about values of local shape

functions ' '
// and their gradients at quadrature points.

If ::uscalfe :: PrecomputedScalarReferenceFiniteElement<double> &pfe =
fe_precomp_[ref_el.ld () ];
if (!pfe.islnitialized ()) {
// Accident: cell is of a type not covered by finite element
// specifications or there is no quadrature rule available for this
// reference element type
std :: stringstream temp;
temp << "No local shape function information or no quadrature rule for
"reference element type "
<< ref_el;
throw If ::base::LfException (temp.str());

}

// Query the shape of the cell
const If ::geometry::Geometry =geo_ptr = cell.Geometry () ;
LF_ASSERT MSG(geo_ptr != nullptr, "Invalid geometry!");
LF_ASSERT MSG((geo_ptr—->DimLocal () == 2),

"Only 2D implementation available!");

// Physical dimension of the cell (must be 2)
const If ::base::dim_t world_dim = geo_ptr—->DimGlobal () ;
LF_ASSERT_MSG_CONSTEXPR(world_dim == 2, "Only available for flat domains");
// Gram determinant at quadrature points
const Eigen::VectorXd determinants (

geo_ptr—>IntegrationElement (pfe.Qr() . Points ()));
LF_ASSERT_MSG (

determinants.size () == pfe.Qr().NumPoints () ,

"Mismatch " << determinants.size () << " <—> " << pfe.Qr().NumPoints());
// Fetch the transformation matrices for the gradients
const Eigen:: MatrixXd JinvT (

geo_ptr—>JacobianinverseGramian (pfe.Qr() . Points()));
LF_ASSERT MSG(

JinvT .cols () == 2 » pfe.Qr().NumPoints (),

"Mismatch " << JinvT.cols() << " <—> " << 2 * pfe.Qr().NumPoints());
LF_ASSERT _MSG(JinvT .rows () == world_dim,

"Mismatch " << JinvT.rows() << " <—> " << world_dim);

// Get the velocity vectors at quadrature points in the cell
auto veloval = velo_(cell, pfe.Qr().Points());

// Element matrix
ElemMat mat(pfe.NumRefShapeFunctions (), pfe.NumRefShapeFunctions());
mat. setZero () ;

// Loop over quadrature points
for (If::base::size_type k = 0; k < pfe.Qr().NumPoints(); ++k) {
const double w = pfe.Qr().Weights() [k] = determinants[k];

VA Y T Y - R R T T - T T T~ I T T I |



