


C++ code 10.9.6: Initialization of sparse Galerkin matrix A

Eigen :: SparseMatrix<double> initializeA (unsigned int M) {

// For the sake of efficiency the use of Eigen’s sparse matrix data
type 1is

// essential. The matrix is stored in CCS format.

Eigen :: SparseMatrix<double> A(M « M, M = M) ;

// We already know that the matrix has at most 9 non-zero entries per

row
// and column. This information 1s passed to Eigen via the reserve ()

member
// function.

A.reserve (Eigen:: VectorXi:: Constant(M = M, 9));
// Iterate over all interior nodes of the mesh and apply the stencil

and
// initialize the matrix in column-wise order, from top to bottom in

ever
// colué;, which is most efficient for the CCS storage format.
for (int i = 0; i <M; ++i) { // "vertical" loop
for (int j = 0; | <M; ++j) { // "horizontal" loop
// Index of the current node
const int k=i M+ j;

// Self-interaction weight
A.insert(k, k) = 16.0 / 6;
// Interaction term with the node below to the left
if (i >08% | > 0) {
A.insert(k - M- 1, k) = -2.0 / 6;
}
// Interaction term with the node below
if (i >0) {
A.insert(k - M, k) = -2.0 / 6;
}
// Interaction term with the node below to the right
if (i >08 % j <M- 1) {
A.insert(k - M+ 1, k) = -2.0 / 6;
}
// Interaction term with the node to the left
if (j >0) {
A.insert(k - 1, k) = -2.0 / 6;
}
// Interaction term with the node to the right
if (j <M= 1) {
A.insert(k + 1, k) = -2.0 / 6;
}
// Interaction term with the node above to the left
if (i<M-18&% ] >0) {
A.insert(k + M - 1, k) = -2.0 / 6;
}
// Interaction term with the node above
if (i <M= 1) {
A.insert(k + M, k) = -2.0 / 6;
}
// Interaction term with the node above to th right
if (i<M-18%j <M= 1) {
A.insert(k + M + 1, k) = -2.0 /
}
}

(o2}

}

A.makeCompressed () ;
return A;




