


C++ code 11.10.14: code for fluxlimBurgers =* GitLab

2 |template <typename FLUXLIM = std::function <double(double)>>
3 | Eigen ::VectorXd fluxlimBurgers (

4 const Eigen::VectorXd &mu0, double h, double tau, unsigned int nb_timesteps,
5 FLUXLIM &&phi = [](double /s+thetax/) { return 1.0; }) {
6 Eigen::VectorXd mu; // return vector

7 int N = mu0.size(); // Number of sptial dual cells
8 double gamma = tau / h;

9 // Set initial conditions

10 mu = mu0;

11 // Flux function for Burgers equation

12 auto f = [](double u) { return 0.5 » u = u; };

13 // Godunov numerical flux

14 auto godnfnburgers = [f](double v, double w) —> double {
15 if (v >w) {

16 if (v.+w>0) {

17 return f(v);

18 }

19 return f(w);

20 }

21 if (v >0) {

22 return f(v);

23 }

24 if (0 <w) {

25 return 0.0;

26 }

27 return f(w);

28

29 };

30

31 // Constant continuation index mapping tool

32 auto idx_map = [N](int idx) {

33 if (idx < 0) {

34 return 0;

35 }

36 if (idx >N - 1) {

37 return N - 1;

38 }

39 return idx;

40 };

41 // Rankine—Hugoniot speed

42 auto s_dot = [f](double v, double w) {

43 if (v ==w) {

4 return 0.0;

45 }

46 return (f(w) — f(v)) / (w - v);

47 IE

48 // The quantity 6 from (11.10.6d)

49 // Implementation avoid division by zero, see thetaquotient ()
50 auto theta = [s_dot](double x, double v, double w, double y) {
51 if (s_dot(v, w) < 0) {

52 if (y ==w) {

53 return 1.0e17 = (w — v);

54 }

55 return (w - v) / (y — w);

56 }

57 if (v ==w) {



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/FluxLimitedFV/mastersolution/fluxlimitedfv.h

