

C++ code 11.10.14: code for fluxlimBurgers ➺ GitLab

2 template <typename FLUXLIM = std : : f unc t i on <double (double) >>

3 Eigen : : VectorXd fluxlimBurgers (

4 const Eigen : : VectorXd &mu0, double h , double tau , unsigned i n t nb_timesteps ,

5 FLUXLIM &&phi = [] (double /*theta*/) { return 1 . 0 ; }) {

6 Eigen : : VectorXd mu; // return vector

7 i n t N = mu0. size () ; // Number of sptial dual cells

8 double gamma = tau / h ;

9 // Set initial conditions

10 mu = mu0;

11 // Flux function for Burgers equation

12 auto f = [] (double u) { return 0.5 * u * u ; } ;

13 // Godunov numerical flux

14 auto godnfnburgers = [f] (double v , double w) −> double {

15 i f (v > w) {

16 i f (v + w > 0) {

17 return f (v) ;

18 }

19 return f (w) ;

20 }

21 i f (v > 0) {

22 return f (v) ;

23 }

24 i f (0 < w) {

25 return 0 . 0 ;

26 }

27 return f (w) ;

28

29 } ;

30

31 // Constant continuation index mapping tool

32 auto idx_map = [N] (i n t i dx) {

33 i f (i dx < 0) {

34 return 0;

35 }

36 i f (i dx > N − 1) {

37 return N − 1;

38 }

39 return i dx ;

40 } ;

41 // Rankine-Hugoniot speed

42 auto s_dot = [f] (double v , double w) {

43 i f (v == w) {

44 return 0 . 0 ;

45 }

46 return (f (w) − f (v)) / (w − v) ;

47 } ;

48 // The quantity θ from (11.10.6d)

49 // Implementation avoid division by zero, see thetaquotient()

50 auto t he ta = [s_dot] (double x , double v , double w, double y) {

51 i f (s_dot (v , w) < 0) {

52 i f (y == w) {

53 return 1.0e17 * (w − v) ;

54 }

55 return (w − v) / (y − w) ;

56 }

57 i f (v == w) {

return 1.0e17 (v − x) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/FluxLimitedFV/mastersolution/fluxlimitedfv.h

