
C++ code 11.11.8: Implementation of semiDiscreteRhs() ➺ GitLab

2 template <class CAUCHYPROBLEM>

3 Eigen : : VectorXd semiDiscreteRhs (const Eigen : : VectorXd &mu,

4 const Eigen : : VectorXd &zeta ,

5 CAUCHYPROBLEM prb) {

6 i n t N = mu. size () ;

7 Eigen : : VectorXd rhs (N) ;

8

9 // Define the (simplified) Rusanov 2-point numerical flux

10 auto F = [&mu, &zeta , &prb] (i n t i , i n t j) {

11 double v = mu[i] ;

12 double w = mu[j] ;

13 double f v = prb . g (zeta [i]) ;

14 double fw = prb . g (zeta [j]) ;

15 double dfv = prb . dg (zeta [i]) / prb . drho (zeta [i]) ;

16 double dfw = prb . dg (zeta [j]) / prb . drho (zeta [j]) ;

17 double max_abs_df = std : : max(std : : abs (d fv) , std : : abs (dfw)) ;

18 return 0.5 * (f v + fw) − 0.5 * (w − v) * max_abs_df ;

19 } ;

20

21 // Compute (-h) * [right-hand side]

22 rhs [0] = F(0 , 1) − F(0 , 0) ;

23 for (i n t j = 1 ; j < N − 1; ++ j) {

24 rhs [j] = F(j , j + 1) − F(j − 1 , j) ;

25 }

26 rhs [N − 1] = F(N − 1 , N − 1) − F(N − 2 , N − 1) ;

27

28 // Compute cell spacing h

29 std : : pair <double , double> l i m i t s = prb . domain () ;

30 double h = (l i m i t s . second − l i m i t s . f i r s t) / (N − 1) ;

31

32 // Include factor -1.0 / h

33 rhs = (−1.0 / h) * rhs ;

34

35 return rhs ;

36 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TransformedConsLaw/mastersolution/transformedconslaw.h

