C++11 code 11.1.6: Implementation of solveBurgersGodunov () for Sub-problem (11-1.h)

-> GitLab

© ©® N o o B~ W N

constexpr double Pl = 3.14159265358979323846;
double Square(double x) { return x = x; }
double f(double x) { return 2.0 / 3.0 = std::sqrt(x = x = x); }

Eigen ::VectorXd solveBurgersGodunov(double T, unsigned int N) ({
double h = 5.0 / N; // meshwidth
double tau = h; // timestep = meshwidth by CFL condition
int m = std::round(T / tau); // no. of timesteps

// initialize vector with initial nodal values
Eigen:: VectorXd x = Eigen::VectorXd::LinSpaced(N + 1, -1.0, 4.0);
Eigen :: VectorXd mu =
x.unaryExpr ([](double x) {
return 0.0 <= x & x <= 1.0 ? Square(std::sin(Pl « x)) : 0.0;
1) .eval();

for (int i = 0; i <m; ++i) {

for (int j =N; 0 < j; —j) {
// Standard fully discrete evolution based on explicit Euler timestepping
mu(j) = mu(j) - tau / h « (f(mu(j)) - f(mu(j - 1)));

}

// truncation to a finite vector. Only required on one side, because all

// information flows from left to right.

mu(0) = 0.0; // Value of u0 to the left of x=0

}

return mu;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BurgersEquation/mastersolution/burgersequation.cc

