
C++11 code 11.1.6: Implementation of solveBurgersGodunov() for Sub-problem (11-1.h)

➺ GitLab

2 constexpr double PI = 3.14159265358979323846;

3

4 double Square (double x) { return x * x ; }

5

6 double f (double x) { return 2.0 / 3.0 * std : : s q r t (x * x * x) ; }

7

8 Eigen : : VectorXd solveBurgersGodunov (double T , unsigned i n t N) {

9 double h = 5.0 / N; // meshwidth

10 double tau = h ; // timestep = meshwidth by CFL condition

11 i n t m = std : : round (T / tau) ; // no. of timesteps

12

13 // initialize vector with initial nodal values

14 Eigen : : VectorXd x = Eigen : : VectorXd : : LinSpaced (N + 1 , −1.0 , 4 .0) ;

15 Eigen : : VectorXd mu =

16 x . unaryExpr ([] (double x) {

17 return 0.0 <= x && x <= 1.0 ? Square (std : : s i n (PI * x)) : 0 . 0 ;

18 }) . eva l () ;

19

20 for (i n t i = 0 ; i < m; ++ i) {

21 for (i n t j = N; 0 < j ; −− j) {

22 // Standard fully discrete evolution based on explicit Euler timestepping

23 mu(j) = mu(j) − tau / h * (f (mu(j)) − f (mu(j − 1))) ;

24 }

25 // truncation to a finite vector. Only required on one side, because all

26 // information flows from left to right.

27 mu(0) = 0 . 0 ; // Value of u0 to the left of x=0

28 }

29

30 return mu;

31 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BurgersEquation/mastersolution/burgersequation.cc

