C++11 code 11.1.9: Sub-problem (11-1.k), function numexpBurgersGodunov (), =* GitLab

Eigen :: VectorXd reduce(const Eigen::VectorXd &mu, unsigned int N) {
Eigen :: VectorXd mu_sub(N + 1);
int fraction = mu.size() / N;
for (int j = 0; j <N+ 1; ++j) {
mu_sub(j) = mu(j = fraction);
}

return mu_sub;

© ©® N o o B~ w0 N

}

1 | Eigen :: Matrix<double, 3, 4> numexpBurgersGodunov () {
12 const unsigned int N_large = 3200;

13 Eigen::Vector2d T{0.3, 3.0};

14 Eigen:: Vector4i N{5 » 10, 5 » 20, 5 = 40, 5 « 80};
15 Eigen ::Vector4d h;

16 for (int i = 0; i < 4; ++i) h(i) = 5.0 / N(i);
17

18 Eigen :: Matrix<double, 3, 4> result;

19 result.row(0) = h.transpose () ;

2| for (int k = 0; k < 2; ++k) {

22 Eigen ::VectorXd mu_ref = solveBurgersGodunov(T(k), N_large);
23 Eigen::Vector4ad error;

24 for (int i = 0; i < 4; ++i) {

25 Eigen ::VectorXd mu = solveBurgersGodunov(T(k), N(i));
26 Eigen ::VectorXd mu_ref_sub = reduce(mu_ref, N(i));

27 error(i) = h(i) = (mu — mu_ref_sub).IpNorm<1>();

28 }

29 result.row(k + 1) = error.transpose() ;

30 }

31

32 return result;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BurgersEquation/mastersolution/burgersequation.cc

