
C++11 code 11.2.9: Sub-problem (11-2.h): function solveCP() ➺ GitLab

2 Eigen : : VectorXd solveCP (double a , double b , Eigen : : VectorXd u0 , double T) {

3 // Find the maximal speed of propagation

4 double A = u0 . minCoeff () ;

5 double B = u0 . maxCoeff () ;

6 double K = std : : max(std : : abs (std : : s inh (A)) , std : : abs (std : : s inh (B))) ;

7 // Set uniform timestep according to CFL condition

8 i n t N = u0 . size () ;

9 double h = (b − a) / N;

10 double tau_max = h / K ;

11 double t imesteps = std : : c e i l (T / tau_max) ;

12 double tau = T / t imesteps ;

13

14 // Main timestepping loop

15 Eigen : : VectorXd mu(N) ;

16 for (i n t i = 0 ; i < t imesteps ; ++ i) {

17 mu. swap (u0) ;

18 double F_minus ;

19 double F_plus = EngquistOsherNumFlux (mu(0) , mu(0)) ;

20 for (i n t j = 0 ; j < N − 1; ++ j) {

21 F_minus = F_plus ;

22 F_plus = EngquistOsherNumFlux (mu(j) , mu(j + 1)) ;

23 u0 (j) = mu(j) − tau / h * (F_plus − F_minus) ;

24 }

25 F_minus = F_plus ;

26 F_plus = EngquistOsherNumFlux (mu(N − 1) , mu(N − 1)) ;

27 u0 (N − 1) = mu(N − 1) − tau / h * (F_plus − F_minus) ;

28 }

29

30 return u0 ;

31 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/EngquistOsherNumericalFlux/mastersolution/engquistoshernumericalflux.cc

