C++11 code 11.2.9: Sub-problem (11-2.h): function solveCP () = GitLab

Eigen::VectorXd solveCP(double a, double b, Eigen::VectorXd u0, double T) {

// Find the maximal speed of propagation

double A = u0.minCoeff () ;

double B = u0.maxCoeff() ;

double K = std::max(std::abs(std::sinh(A)), std::abs(std::sinh(B)));

// Set uniform timestep according to CFL condition

int N = u0.size();

double h = (b - a)

10 double tau_max = h
1 double timesteps = :ceil (T / tau_max);
12 double tau = T / timesteps;

© ©® N o o B~ w0 N

N;
K!
std :

14 // Main timestepping loop
15 Eigen :: VectorXd mu(N) ;

16 for (int i = 0; i < timesteps; ++i) {
17 mu.swap (u0) ;
18 double F_minus;
19 double F_plus = EngquistOsherNumFlux (mu(0), mu(0));
20 for (int j = 0; j <N - 1; ++j) {
21 F_minus = F_plus;
22 F_plus = EngquistOsherNumFlux(mu(j), mu(j + 1));
23 u0(j) = mu(j) - tau / h = (F_plus - F_minus);
24 }
25 F_minus = F_plus;
26 F_plus = EngquistOsherNumFlux(mu(N — 1), mu(N - 1));
27 UuO(N - 1) = mu(N - 1) — tau / h = (F_plus - F_minus);
28

}

30 return u0;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/EngquistOsherNumericalFlux/mastersolution/engquistoshernumericalflux.cc

