
C++ code 11.4.11: Sub-problem (11-4.g): function numexpLaxWendroffRP() ➺ GITHUB

2 // Build spatial grid

3 Eigen : : VectorXd getXValues (double T , unsigned i n t M) {

4 double tau = T / M;

5 double h = Constant : : e * tau ;

6 i n t j_max = (i n t) (std : : c e i l ((3 . 0 * T + 1 .0) / h) + 0 .5) ;

7 i n t j_min = (i n t) (std : : f l o o r (−3.0 * T / h) − 0 .5) ;

8 unsigned i n t N = j_max − j_min + 1;

9 return Eigen : : VectorXd : : LinSpaced (N, j_min * h , j_max * h) ;

10 }

11 Eigen : : VectorXd numexpLaxWendroffRP (const Eigen : : VectorXi &M) {

12 const double T = 1 . 0 ;

13 const i n t M_size = M. size () ;

14 Eigen : : VectorXd e r r o r (M_size) ;

15 // Initial values for the Riemann problem

16 auto u _ i n i t i a l = [] (double x) { return 0.0 <= x ? 1.0 : 0 . 0 ; } ;

17 // Exact solution (??) at time T = 1.0

18 auto u_exact = [] (double x) {

19 return (x <= 1 .0) ? 0.0 : ((Constant : : e <= x) ? 1.0 : std : : log (x)) ;

20 } ;

21 for (i n t i = 0 ; i < M_size ; ++ i) {

22 Eigen : : VectorXd x = getXValues (T , M(i)) ;

23 Eigen : : VectorXd u0 = x . unaryExpr (u _ i n i t i a l) ;

24 Eigen : : VectorXd uT = solveLaxWendroff (u0 , T , M(i)) ;

25

26 double tau = T / M(i) ;

27 double h = Constant : : e * tau ;

28 e r r o r (i) = h * (x . unaryExpr (u_exact) − uT) . lpNorm<1 >() ;

29 }

30 return e r r o r ;

31 }

homeworks/LaxWendroffScheme/mastersolution/laxwendroffscheme.cc

