
Pay attention to the efficient initialization of the sparse matrix in EIGEN. Since we know in advance that

every row will have exactly one non-zero entry, we can reserve that space.

C++ code 11.5.9: Sub-problem (11-5.e): function compBmat() ➺ GitLab

2 Eigen : : SparseMatrix <double> compBmat(i n t Ml , i n t Mr , double h) {

3 const i n t N = 2 * (Ml + Mr + 1) ;

4 Eigen : : SparseMatrix <double> A(N, N) ;

5 // Tell Eigen that the matrix is diagonal, which allows efficient

6 // initialization

7 A. reserve (Eigen : : VectorXi : : Ones (N)) ;

8 for (i n t i = 0 ; i < N; i += 2) {

9 A. inser t (i , i) = h ;

10 A. inser t (i + 1 , i + 1) = h * h * h / 12 .0 ;

11 }

12 return A;

13 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/DiscontinuousGalerkin1D/mastersolution/discontinuousgalerkin1d.cc

