Pay attention to the efficient initialization of the sparse matrix in EIGEN. Since we know in advance that
every row will have exactly one non-zero entry, we can reserve that space.

C++ code 11.5.9: Sub-problem (11-5.e): function compBmat () = GitLab

Eigen:: SparseMatrix<double> compBmat(int MI, int Mr, double h) {
const int N=2 « (Ml + Mr + 1);
Eigen:: SparseMatrix<double> A(N, N);
// Tell Eigen that the matrix is diagonal, which allows efficient
// initialization
A.reserve (Eigen :: VectorXi::Ones(N)) ;
for (int i = 0; i <N; i += 2) {
A.insert(i, i) = h;
10 A.insert(i + 1, i + 1) =h = h » h / 12.0;
11
}

12 return A;

© ©®© N o O B~ w N



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/DiscontinuousGalerkin1D/mastersolution/discontinuousgalerkin1d.cc

