
C++11 code 11.7.13: Implementation off slopelimfluxdiffper() ➺ GitLab

2 // Function parameters:

3 // double h: meshwidth of equidistant spatial grid

4 // Vector mu: (finite) vector ~µ of cell averages

5 // Functor F: 2-point numerical flux function F = F(v, w)
6 // Functor slope: slope reconstruction function

7 // hσj = slopes(µj−1, µj, µj+1)
8 //

9 // returns a vector with differences of numerical fluxes

10 //

11 // Function that realizes −h· the right hand side operator

12 // Lh for the mehtod-of-lines ODE arising from conservative finite

13 // volume semidiscretization of the Cauchy problem for a 1D scalar
conservation

14 // law [Lecture → Eq. (11.2.2.1)] in a 1-periodic setting.

15 template <typename FunctionF , typename FunctionSlopes >

16 Eigen : : VectorXd slopel imf luxdi f fper (const Eigen : : VectorXd &mu, Funct ionF &&F ,

17 Funct ionSlopes &&slopes) {

18 i n t n = mu. size () ; // Number of active dual grid cells

19 Eigen : : VectorXd sigma = Eigen : : VectorXd : : Zero (n) ; // Vector of slopes

20 Eigen : : VectorXd fd = Eigen : : VectorXd : : Zero (n) ; // Flux differences

21

22 // Computation of slopes σj, uses µ−1 = µn−1,

23 // µn = µ0, which amounts to constant extension of states

24 // beyond domain of influence [a, b] of non-constant intial data. Same

25 // technique has been applied in [Lecture → Code 11.3.2.9]
26 sigma [0] = slopes (mu[n − 1] , mu[0] , mu [1]) ; // @@

27 for (i n t j = 1 ; j < n − 1; ++ j)

28 sigma [j] = slopes (mu[j − 1] , mu[j] , mu[j + 1]) ;

29 sigma [n − 1] = slopes (mu[n − 2] , mu[n − 1] , mu[0]) ; // @@

30

31 // Compute linear reconstruction at endpoints of dual cells [Lecture →

Eq. (11.5.1.2)]
32 Eigen : : VectorXd nup = mu + 0.5 * sigma ;

33 Eigen : : VectorXd num = mu − 0.5 * sigma ;

34

35 // Rely on periodicity to compute numerical fluxes at interval ends

36 fd [0] = F(nup [0] , num [1]) − F(nup [n − 1] , num [0]) ; // @@

37 for (i n t j = 1 ; j < n − 1; ++ j)

38 // see [Lecture → Eq. (11.3.2.8)]
39 fd [j] = F (nup [j] , num[j + 1]) − F(nup [j − 1] , num[j]) ;

40 fd [n − 1] = F(nup [n − 1] , num [0]) − // @@

41 F(nup [n − 2] , num[n − 1]) ;

42 return fd ;

43 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ExtendedMUSCL/mastersolution/extendedmuscl.h

