
C++11 code 11.7.16: Code for solveClaw() ➺ GitLab

2 template <typename U0_FUNCTOR>

3 Eigen : : VectorXd solveClaw (U0_FUNCTOR &&u0 , double T , unsigned i n t n) {

4 // Set up spacial mesh and inital data.

5 double a = 0 . 0 ;

6 double b = 1 . 0 ;

7 double h = (b − a) / n ;

8 Eigen : : VectorXd x = Eigen : : VectorXd : : LinSpaced (n , a + 0.5 * h , b − 0.5 * h) ;

9

10 // Approximate dual cell averages at t=0

11 Eigen : : VectorXd mu = x . unaryExpr (u0) ;

12

13 double alpha = mu. minCoeff () ; // lower bound for initial data

14 double beta = mu. maxCoeff () ; // upper bound for initial data

15 assert (alpha > 0.0 && beta > 0 .0) ;

16

17 // Set timestep tau according to the CFL-condition

18 double tau =

19 h / std : : max(std : : abs (std : : log (alpha)) , std : : abs (std : : log (beta))) ;

20 // Semi-discretization (discretization in space)

21 double h_inv = 1.0 / h ;

22 // Define right-hand-side for the SSP ODE solver

23 auto semi_d iscre te_rhs =

24 [h_inv] (const Eigen : : VectorXd &mu) −> Eigen : : VectorXd {

25 return −h_inv * s l o p e l i m f l u x d i f f p e r (mu, &logGodunovFlux , &l imi te rMC) ;

26 } ;

27 // Timestepping: Solve the semi-discrete ODE

28 i n t N = (i n t) (T / tau + 0 .5) ;

29 for (i n t i = 0 ; i < N; ++ i) mu = sspEvolop (semi_discrete_rhs , mu, tau) ;

30

31 return mu;

32 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ExtendedMUSCL/mastersolution/extendedmuscl.h

