C++11 code 11.7.16: Code for solveClaw () = GitLab

© ©® N o o B~ w0 N

template <typename U0 FUNCTOR>
Eigen :: VectorXd solveClaw (U0_FUNCTOR &&uO, double T, unsigned int n) {
// Set up spacial mesh and inital data.
double a = 0.0;
double b = 1.0;
double h = (b - a) / n;
Eigen :: VectorXd x = Eigen::VectorXd::LinSpaced(n, a + 0.5 = h, b - 0.5 « h);

// Approximate dual cell averages at t=0
Eigen ::VectorXd mu = x.unaryExpr(u0) ;

double alpha = mu.minCoeff(); // lower bound for initial data
double beta = mu.maxCoeff () ; // upper bound for initial data
assert(alpha > 0.0 && beta > 0.0);

// Set timestep tau according to the CFL-condition
double tau =

h / std::max(std::abs(std::log(alpha)), std::abs(std::log(beta)));
// Semi-discretization (discretization in space)
double h_inv = 1.0 / h;
// Define right-hand-side for the SSP ODE solver
auto semi_discrete_rhs =

[h_inv](const Eigen::VectorXd &mu) —> Eigen::VectorXd {

return -h_inv « slopelimfluxdiffper (mu, &logGodunovFlux, &limiterMC);

};
// Timestepping: Solve the semi-discrete ODE
int N= (int)(T / tau + 0.5);
for (int i = 0; i < N; ++i) mu = sspEvolop(semi_discrete_rhs, mu, tau);

return mu;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ExtendedMUSCL/mastersolution/extendedmuscl.h

