C++11 code 11.7.19: Code for studyCvgMUSCLSolution () =* GitLab

template <typename U0 FUNCTOR>
void studyCvgMUSCLSolution (U0_FUNCTOR &8&u0, double T) {

// For temporarily storing the number of cells and the associated
error norms
std :: vector<std :: tuple<std :: size_t, double, double>> result{};

constexpr int n_ref = 8192;
// Compute reference solution
std ::cout << "Computing reference solution at T = " << T << " with " << n_ref
<< " cells" << std::endl;
Eigen::VectorXd u_ref{solveClaw (std ::forward <U0_FUNCTOR>(u0), T, n_ref)};
// Compute solution on different meshes
constexpr int Imin = 4; // Coarsest mesh with 16 cells
constexpr int Imax = 10; // Finest mesh with 1024 cells
for (int | = Imin; | <= Imax; ++|) {
const std::size_t n = 1U << |;
std ::cout << "Computing with n = " << n << std::endl;
// Compute solution
Eigen ::VectorXd u{solveClaw (std :: forward<U0_FUNCTOR>(u0), T, n)};
// Transfer solution to finest mesh
Eigen :: VectorXd u_prop = Eigen::VectorXd::Zero(u_ref.size());
interpolate (u, u_prop);
double linf_err = (u_prop — u_ref).IlpNorm<Eigen:: Infinity >();
double 11_err = (u_prop — u_ref).IlpNorm<1>() / n_ref;
result.push_back({n, linf_err, I1_err});
}
std::cout << "n \t linf error \t |1 error" << std::endl;
for (auto &data : result) {
std ::cout << std::get<0O>(data) << " \t " << std::get<i>(data) << " \t
<< std::get<2>(data) << std::endl;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ExtendedMUSCL/mastersolution/extendedmuscl.h

