
C++11 code 11.7.19: Code for studyCvgMUSCLSolution() ➺ GitLab

2 template <typename U0_FUNCTOR>

3 void studyCvgMUSCLSolution (U0_FUNCTOR &&u0 , double T) {

4 // For temporarily storing the number of cells and the associated
error norms

5 std : : vector <std : : tuple <std : : size_t , double , double>> r e s u l t { } ;

6 constexpr i n t n_re f = 8192;

7 // Compute reference solution

8 std : : cout << "Computing reference solut ion at T = " << T << " with " << n_re f

9 << " ce l l s " << std : : endl ;

10 Eigen : : VectorXd u_re f { solveClaw (std : : forward <U0_FUNCTOR>(u0) , T , n_re f) } ;

11 // Compute solution on different meshes

12 constexpr i n t lm in = 4; // Coarsest mesh with 16 cells

13 constexpr i n t lmax = 10; // Finest mesh with 1024 cells

14 for (i n t l = lmin ; l <= lmax ; ++ l) {

15 const std : : size_t n = 1U << l ;

16 std : : cout << "Computing with n = " << n << std : : endl ;

17 // Compute solution

18 Eigen : : VectorXd u { solveClaw (std : : forward <U0_FUNCTOR>(u0) , T , n) } ;

19 // Transfer solution to finest mesh

20 Eigen : : VectorXd u_prop = Eigen : : VectorXd : : Zero (u_re f . size ()) ;

21 in terpola te (u , u_prop) ;

22 double l i n f _ e r r = (u_prop − u_re f) . lpNorm<Eigen : : I n f i n i t y > () ;

23 double l 1 _ e r r = (u_prop − u_re f) . lpNorm<1 >() / n_re f ;

24 r e s u l t . push_back ({ n , l i n f _ e r r , l 1 _ e r r }) ;

25 }

26 std : : cout << "n \ t l i n f error \ t l1 error " << std : : endl ;

27 for (auto &data : r e s u l t) {

28 std : : cout << std : : get <0>(data) << " \ t " << std : : get <1>(data) << " \ t "
29 << std : : get <2>(data) << std : : endl ;

30 }

31 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ExtendedMUSCL/mastersolution/extendedmuscl.h

