C++ code 11.8.26: Sub-problem (11-8.n): function simulateAdvection () = GitLab

© ©® N o o B~ w0 N

template <typename FUNCTOR, typename VECTORFIELD>
Eigen ::VectorXd simulateAdvection (
const |f ::assemble:: DofHandler &dofh, VECTORFIELD &&beta, FUNCTOR &&uO0,
std :: shared_ptr<If ::mesh:: utils :: CodimMeshDataSet<
std ::array<const If ::mesh:: Entity =, 4>>>
adjacentCells ,
std :: shared_ptr<If ::mesh:: utils :: CodimMeshDataSet<
Eigen :: Matrix<double, 2, Eigen::Dynamic>>>
normal_vectors
double T) {
// Get number of dofs
int num_dof = dofh.NumDofs () ;

// Inititialize a vector for the initial condition
Eigen ::VectorXd u0_h(num_dof) ;

// Iterate over all cells

for (const If ::mesh:: Entity =cell : dofh.Mesh()->Entities (0)) ({
const If ::geometry::Geometry «geo_p = cell -—>Geometry () ;
const Eigen::MatrixXd corners = |f ::geometry::Corners(=geo_p);

// Compute barycenter of the cell
Eigen ::Vector2d x = barycenter(corners);

// Find the index of the DOF for the cell
int idx = dofh.GlobalDoflndices («cell)[0];

u0_h[idx] = u0(x);
1

// Set up the number of steps according to the CFL condition
int M= int((T / computeHmin(dofh.Mesh())) + 2);

return solveAdvection2D (dofh, beta, u0_h, adjacentCells, normal_vectors, T,
M) ;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/AdvectionFV2D/mastersolution/advectionfv2d.h

