C++ code 11.8.28: Sub-problem (11-8.p): function £indCFLthreshold () = GitLab

> | template <typename VECTORFIELD>

3 |int findCFLthreshold(const |f ::assemble:: DofHandler &dofh, VECTORFIELD &&beta,
4 double T) {

5 // Set upper and lower limit

6 int M_upper = int ((T / computeHmin(dofh.Mesh())) + 1);

7 int M_lower = 1;

8

9 // Compute cell normals

10 std :: shared_ptr<If ::mesh:: utils :: CodimMeshDataSet<

1 Eigen :: Matrix<double, 2, Eigen ::Dynamic>>>

12 normal_vectors = AdvectionFV2D ::computeCellINormals (dofh.Mesh()) ;

14 // Compute adjecent cells

15 std :: shared_ptr<If ::mesh:: utils :: CodimMeshDataSet<

16 std ::array<const If ::mesh:: Entity =+, 4>>>

17 adjacentCells = AdvectionFV2D :: getAdjacentCellPointers (dofh.Mesh());
18

19 // Initialize a vector for the result and

20 // randomly initialize a vector for the initial condition

21 int num_dof = dofh.NumDofs () ;

22 Eigen :: VectorXd u0_h = Eigen ::VectorXd : :Random(num_dof) ;

24 // Shift upper and lower bound until contition below isn’t satisfied
25 while ((M_upper - M_lower) > 2) {

2 // Perform a simulation at M middle

27 // If it succeeds, set the upper bound to M middle

28 // Otherwise set the lower bound to M middle

29 // Repeat ...

30 int M_middle = (M_upper + M_lower) / 2;

31 try {

32 solveAdvection2D (dofh, beta, u0_h, adjacentCells, normal_vectors, T,
33 M_middle) ;

34 M_upper = M_middle;

35 } catch (const std::exception &e) {

36 M_lower = M_middle;

37 }

38 }

39

40 int thres = M_upper;

41 return thres;

a2 |}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/AdvectionFV2D/mastersolution/advectionfv2d.h

