C++ code 11.9.14: Sub-problem (11-9.g): Implementation of t raceMass () =* GitLab

© ©® N o o » ® N

template <typename UOFunctor>

Eigen :: VectorXd traceMass(UOFunctor & &u0, unsigned int N) {
// Spacial boundaries
double a = -5.0;
double b = 10.0;

// Compute u(t=0)
Eigen::VectorXd x = Eigen::VectorXd::LinSpaced(N, a, b);
Eigen::VectorXd mu = x.unaryExpr(std::forward<UOFunctor>(u0)) ;

// Get timestep size and number by CLF condition
double h = (b - a) / N;

double s_max = std::exp(1.0) - 1.0; // since 0<up(x) <1
double tau = h / s_max; // stencil m=1
double T = 3.0;

// Total number of timesteps

int M= (int)std::ceil (T / tau);

tau = 3.0 / M; // Timestep size

// Compute solution and total masses at different times

auto totalMass = [h](const Eigen::VectorXd &mu) { return (mu = h).sum() ;
Eigen :: VectorXd m(M + 1);
for (int i = 0; i <M; ++i) {

m(i) = totalMass (mu) ;

auto s = [](double u) { return -u; };

mu = mu + tau = (-1.0 / h) « fluxdiffsource (mu, &godnfn, s, h);

}
m(M)

totalMass (mu) ;

return m;

}s



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ConsLawWithSource/mastersolution/conslawwithsource.h

