SOLUTION of (12-1.0):

Since building an If::fe::MeshFunctionFE object requires a scalar-valued finite element space, we have to
set up auxiliary objects of type If::uscalfe::FeSpaceLagrangeO1 (for the pressure) and If::uscalfe::FeSpz

(for the components of the velocity).

Of course, we cannot take for granted anything about the numbering of the global shape functions man-
aged by the If::assemble::DofHandlers of those objects. This is why we have to remap the basis expan-

sion coefficients.

C++ code 12.1.38: Sub-problem (12-1.0): Code for writing .vik file. =+ GitLab

© ® N o a &~ W N

auto mesh_factory = std:: make_unique<If ::mesh:: hybrid2d :: MeshFactory >(2) ;
If ::io::GmshReader reader(std::move(mesh_factory), meshfile_str);

const std::shared_ptr<const If ::mesh::Mesh> mesh_ptr = reader.mesh() ;
const If ::mesh::Mesh& mesh{+mesh_ptr};

// Initialize dof handler for Taylor—-Hood FEM
If ::assemble :: UniformFEDofHandler dofh (mesh_ptr,
{{If ::base:: RefEl::kPoint(), 3},
{1f ::base:: RefEl::kSegment(), 2},
{If ::base:: RefEl :: kTria (), 0},
{1f ::base:: RefEl::kQuad (), 0}});

// We define function providing the boundary values for the velocity

auto g = [](i X) —> i {
if ((x[0] < 1E-8) and (x[1] >= 0.5) and (x[1] <= 1.0)) {
// Left boundary: 1inlet, parabolic velocity profile
return {(1.0 - x[1]) = (x[1] - 0.5), 0.0};
}
if ((x[0] > 0.99999) and (x[1] >= 0.0) and (x[1] <= 0.5)) {
// Right boundary: outlet
return {(0.5 - x[1]) = x[1], 0.0};
}
return {0.0, 0.0};
o
// Solve the system
B res = StokesPipeFlow ::solvePipeFlow (dofh, g);

double p_diss = 0.0;
switch (powerflag) {
case VOLUME: ({
p_diss = compDissPowVolume (dofh, res);
break;
}
case BOUNDARY: {
p_diss = compDissPowBd (dofh, res);
break ;
}
default: {
std :: cout << "Dissipated power not computed\n";
}
}

std ::cout << "Dissipated power: << p_diss << std::endl;

https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_mesh_function_f_e.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_fe_space_lagrange_o1.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_fe_space_lagrange_o2.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StokesPipeFlow/mastersolution/stokespipeflow.cc

61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
%
91
92
93
94
95
%
97
%8
99

if

(producevtk) {
LF_VERIFY_MSG(outfile != nullptr,
"Filename for .vtk files has to be provided");

// Define first— and second-order Lagrangian FE spaces for the
piecewise

// linear Taylor—-Hood pressure approximation and the piecewise
quadratic

auto fes_o1_ptr =

std :: make_shared<|f :: uscalfe :: FeSpaceLagrangeO1<double>>(mesh_ptr) ;
auto fes_o2_ptr =

std :: make_shared<|If :: uscalfe :: FeSpaceLagrangeO2<double >>(mesh_ptr) ;
// Fetch dof handler for the components of the velocity
const If ::assemble::DofHandler& dofh_u = fes_o02_ptr->LocGlobMap () ;
// Fetch dof handler for the pressure p
const If ::assemble:: DofHandler& dofh_p = fes_o1_ptr->LocGlobMap () ;

// Coefficient vectors for the first and second component of the
velocity
Eigen ::VectorXd coeff_vec_u1 (dofh_u.NumbDofs()) ;

Eigen ::VectorXd coeff_vec_u2(dofh_u.NumDofs()) ;
// Coefficient vector for the pressure
Eigen :: VectorXd coeff_vec_p(dofh_p.NumDofs()) ;

// Loop over vertices and edges to remap the basis expansion

coefficients) .
for (int codim = 2; codim >= 1; codim--) {

for (auto e : mesh. Entities (codim)) {
// Global indices for ul, u2 for the respective vertex or edge
auto glob_idxs = dofh.GlobalDoflndices (+e);
auto glob_idx_o02 = dofh_u.GlobalDoflndices (xe)[0];

// Extract the correct elements for the coefficient matrix of the
// components of u

coeff_vec_u1 (glob_idx_o02)
coeff_vec_u2(glob_idx_o02)

res(glob_idxs[0]) ;
res(glob_idxs[1]);

// Global indices for p for the respective vertex

If ::assemble::gdof_idx_t glob_idx_ol1 = -1;
// The pressure is only defined on vertices
if (codim == 2) {

glob_idx_o1 = dofh_p.GlobalDoflndices («e)[0];
coeff_vec_p(glob_idx_o01) = res(glob_idxs[2]) ;
1
1
}

// Define finite—-element mesh functions

If ::fe :: MeshFunctionFE<double, double> mf_o02_ul(fes_o2_ptr, coeff_vec_ul);
If ::fe ::MeshFunctionFE<double, double> mf_o02_u2(fes_o2_ptr, coeff_vec_u2);
If ::fe :: MeshFunctionFE<double, double> mf_o1_p(fes_o1_ptr, coeff_vec_p);

const std::string outfile_str = std::string (outfile);
std ::cout << outfile_str << std::endl;
If::io::VtkWriter vtk_writer (mesh_ptr, outfile_str);
vtk_writer.WritePointData ("ul", mf_o2_ut);
vtk_writer.WritePointData ("u2", mf_o02_u2);

vik_writer . WritePointData ("p", mf_ol_p);

