
SOLUTION of (12-1.q):

We already know the normal vector at those parts of the boundary, where the velocity does not vanish:

On Γin n(x) =

[

−1

0

]

, on Γout n(x) =

[

1

0

]

.

So we have to add up integrals

±

∫

e
(vh)1(x)ph(x)dS(x) , e =̂ mesh edge on Γ∗ .

If the two values of ph in the endpoints of the edge e are denoted by p0, p1, and the values of (vh)1 at the

endpoints and in the midpoint are v0, v1, vm, then

∫

e
(vh)1(x)ph(x)dS(x) =

[

p0 p1

]

[

1
6

1
3

0

0 1
3

1
6

]





v0

vm

v1



 . (12.1.41)

The values p0, p1, v0, v1, vm can directly be accessed as basis expansion coefficients through the global

indices of the local shape functions covering the edge e.

C++ code 12.1.42: Sub-problem (12-1.q): Boundary integral formula for dissipated power

➺ GitLab

2 double compDissPowBd (const l f : : assemble : : DofHandler& dofh ,

3 const Eigen : : VectorXd& muvec , bool p r i n t) {

4 // First fetch underlying mesh

5 const l f : : mesh : : Mesh& mesh { * dofh . Mesh () } ;

6 // Summation variable

7 double p_diss { 0 . 0 } ;

8 // Loop over the edges and check whether they are located on the inlet
x1 = 0

9 // or outlet x1 = 1.
10 const Eigen : : Matrix <double , 2 , 3> M{

11 (Eigen : : Matrix <double , 2 , 3 >(2 , 3) << 1.0 / 6 .0 , 1.0 / 3 .0 , 0 .0 , 0 .0 ,

12 1.0 / 3 .0 , 1.0 / 6 .0)

13 . f inished () } ;

14 for (const l f : : mesh : : E n t i t y * edge : mesh . E n t i t i e s (1)) {

15 // Length of edge

16 const double l eng th = l f : : geometry : : Volume (* (edge−>Geometry ())) ;

17 const Eigen : : MatrixXd endpoints { Corners (* (edge−>Geometry ())) } ;

18 const Eigen : : Vector2d mp{0 .5 * (endpoints . col (0) + endpoints . col (1)) } ;

19 // Check by location whether the edge is on the inlet or outlet

20 i n t l o c f l a g = 0;

21 i f (mp[0] < 1E−8) {

22 // On inlet boundary

23 l o c f l a g = −1;

24 } else i f (mp[0] > 1 − 1E−8) {

25 l o c f l a g = 1;

26 }

27 i f (l o c f l a g != 0) {

28 // Obtain indices of global shape functions associated with the
edge

29 std : : span<const l f : : assemble : : gdof_ idx_t > dof_ idx {

30 dofh . GlobalDofIndices (* edge) } ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StokesPipeFlow/mastersolution/stokespipeflow.cc

31 LF_ASSERT_MSG(dof_ idx . size () == 8 ,

32 "For TH FEM an edge should be covered by 8 GSFs") ;

33 // The pressure dofs sit in the nodes as third node dof.

34 // These are edge-local shape functions #2 and #5 (C++ indexing)

35 Eigen : : Vector2d p_ ldo f { muvec [do f_ idx [2]] , muvec [do f_ idx [5]] } ;

36 // The velocity x-component dofs sit in nodes and edges and are
numbered

37 // first there. Their edge-local numbers are #0, #3, and #6

38 Eigen : : Vector3d vx_ ldo f { muvec [do f_ idx [0]] , muvec [do f_ idx [6]] ,

39 muvec [do f_ idx [3]] } ;

40 // Evaluate the integral; can be done exactly, because the
integrand is

41 // polynomial

42 const double l oc_d i ss = l o c f l a g * leng th * p_ ldo f . dot (M * vx_ ldo f) ;

43 i f (p r i n t) {

44 std : : cout << "DPB: Edge with midpoint [" << mp. transpose ()

45 << "] : l f = " << l o c f l a g

46 << " , * pvals = " << p_ ldo f . transpose ()

47 << " , vx_ldof = " << vx_ ldo f . transpose ()

48 << " , loc_diss = " << loc_d iss << std : : endl ;

49 }

50 p_diss += loc_d iss ;

51 }

52 }

53 return p_diss ;

54 }

