
SOLUTION of (13-1.o):

Since building an lf::fe::MeshFunctionFE object requires a scalar-valued finite element space, we have to

set up auxiliary objects of type lf::uscalfe::FeSpaceLagrangeO1 (for the pressure) and lf::uscalfe::FeSpaceLa

(for the components of the velocity).

Of course, we cannot take for granted anything about the numbering of the global shape functions man-

aged by the lf::assemble::DofHandlers of those objects. This is why we have to remap the basis expan-

sion coefficients.

C++ code 13.1.38: Sub-problem (13-1.o): Code for writing .vtk file. ➺ GitLab

2 auto mesh_factory = std : : make_unique< l f : : mesh : : hybr id2d : : MeshFactory >(2) ;

3 l f : : i o : : GmshReader reader (std : : move(mesh_factory) , m e s h f i l e _ s t r) ;

4

5 const std : : shared_ptr <const l f : : mesh : : Mesh> mesh_ptr = reader . mesh () ;

6 const l f : : mesh : : Mesh& mesh { * mesh_ptr } ;

7

8 // Initialize dof handler for Taylor-Hood FEM

9 l f : : assemble : : UniformFEDofHandler dofh (mesh_ptr ,

10 { { l f : : base : : RefEl : : kPo in t () , 3 } ,

11 { l f : : base : : RefEl : : kSegment () , 2 } ,

12 { l f : : base : : RefEl : : kT r ia () , 0 } ,

13 { l f : : base : : RefEl : : kQuad () , 0 } }) ;

14 // We define function providing the boundary values for the velocity

15 auto g = [] (Eigen : : Vector2d x) −> Eigen : : Vector2d {

16 i f ((x [0] < 1E−8) and (x [1] >= 0 .5) and (x [1] <= 1 .0)) {

17 // Left boundary: inlet, parabolic velocity profile

18 return { (1 . 0 − x [1]) * (x [1] − 0 .5) , 0 . 0 } ;

19 }

20 i f ((x [0] > 0.99999) and (x [1] >= 0 .0) and (x [1] <= 0 .5)) {

21 // Right boundary: outlet

22 return { (0 . 5 − x [1]) * x [1] , 0 . 0 } ;

23 }

24 return { 0 . 0 , 0 . 0 } ;

25 } ;

26 // Solve the system

27 Eigen : : VectorXd res = StokesPipeFlow : : solvePipeFlow (dofh , g) ;

28

29 double p_diss = 0 . 0 ;

30 switch (powerf lag) {

31 case VOLUME: {

32 p_diss = compDissPowVolume (dofh , res) ;

33 break ;

34 }

35 case BOUNDARY: {

36 p_diss = compDissPowBd (dofh , res) ;

37 break ;

38 }

39 defaul t : {

40 std : : cout << " Dissipated power not computed \n" ;

41 }

42 }

43

44 std : : cout << " Dissipated power : " << p_diss << std : : endl ;

45

https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_mesh_function_f_e.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_fe_space_lagrange_o1.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_fe_space_lagrange_o2.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StokesPipeFlow/mastersolution/stokespipeflow.cc

46 i f (producevtk) {

47 LF_VERIFY_MSG(o u t f i l e != nul lpt r ,

48 "Filename for . vtk f i l e s has to be provided ") ;

49 // Define first- and second-order Lagrangian FE spaces for the
piecewise

50 // linear Taylor-Hood pressure approximation and the piecewise
quadratic

51 auto fes_o1_pt r =

52 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO1<double >>(mesh_ptr) ;

53 auto fes_o2_pt r =

54 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO2<double >>(mesh_ptr) ;

55 // Fetch dof handler for the components of the velocity

56 const l f : : assemble : : DofHandler& dofh_u = fes_o2_ptr −>LocGlobMap () ;

57 // Fetch dof handler for the pressure p

58 const l f : : assemble : : DofHandler& dofh_p = fes_o1_ptr −>LocGlobMap () ;

59

60 // Coefficient vectors for the first and second component of the
velocity

61 Eigen : : VectorXd coeff_vec_u1 (dofh_u . NumDofs ()) ;

62 Eigen : : VectorXd coeff_vec_u2 (dofh_u . NumDofs ()) ;

63 // Coefficient vector for the pressure

64 Eigen : : VectorXd coeff_vec_p (dofh_p . NumDofs ()) ;

65

66 // Loop over vertices and edges to remap the basis expansion
coefficients

67 for (i n t codim = 2; codim >= 1; codim −−) {

68 for (auto e : mesh . E n t i t i e s (codim)) {

69 // Global indices for u1, u2 for the respective vertex or edge

70 auto g lob_ idxs = dofh . Globa lDof Ind ices (* e) ;

71 auto glob_idx_o2 = dofh_u . Globa lDof Ind ices (* e) [0] ;

72

73 // Extract the correct elements for the coefficient matrix of the

74 // components of u

75 coeff_vec_u1 (glob_idx_o2) = res (g lob_ idxs [0]) ;

76 coeff_vec_u2 (glob_idx_o2) = res (g lob_ idxs [1]) ;

77

78 // Global indices for p for the respective vertex

79 l f : : assemble : : gdo f_ idx_ t glob_idx_o1 = −1;

80 // The pressure is only defined on vertices

81 i f (codim == 2) {

82 glob_idx_o1 = dofh_p . Globa lDof Ind ices (* e) [0] ;

83 coeff_vec_p (glob_idx_o1) = res (g lob_ idxs [2]) ;

84 }

85 }

86 }

87

88 // Define finite-element mesh functions

89 l f : : fe : : MeshFunctionFE<double , double> mf_o2_u1 (fes_o2_ptr , coeff_vec_u1) ;

90 l f : : fe : : MeshFunctionFE<double , double> mf_o2_u2 (fes_o2_ptr , coeff_vec_u2) ;

91 l f : : fe : : MeshFunctionFE<double , double> mf_o1_p (fes_o1_ptr , coeff_vec_p) ;

92

93 const std : : s t r i n g o u t f i l e _ s t r = std : : s t r i n g (o u t f i l e) ;

94 std : : cout << o u t f i l e _ s t r << std : : endl ;

95 l f : : i o : : VtkWriter v t k _ w r i t e r (mesh_ptr , o u t f i l e _ s t r) ;

96 v t k _ w r i t e r . Wr i tePointData ("u1" , mf_o2_u1) ;

97 v t k _ w r i t e r . Wr i tePointData ("u2" , mf_o2_u2) ;

98 v t k _ w r i t e r . Wr i tePointData ("p" , mf_o1_p) ;

99 }

