SOLUTION of (13-1.p):
The volume-based formula for the dissipated power in the setting of this project is

87}1 802

Py = — — =|%dx, 13.1.39
diss lA;‘aXZ axl‘ X ()

into which we plug the finite element solution v;, € S9(M).

The policy of the implementation is the same as for the member function Eval () in Sub-problem (13-1.h).
We encapsulate the gradient of the local shape functions of Sg(/\/l) in lambda functions and use the edge
midpoint quadrature rule for the exact evaluation of the local integrals.

C++ code 13.1.40: Sub-problem (13-1.p): Volume formula for dissipated power = GitLab

double compDissPowVolume(const |f ::assemble :: DofHandler& dofh,
const Eigen::VectorXd& mu_vec) {
// First fetch underlying mesh
const If ::mesh::Mesh& mesh{xdofh.Mesh() };
// Summation variable
double p_diss{0.0};
// Loop over all cells and add up contributions of local integrals to

® N o o &~ W N

the
9 // dissipated power.

10 for (const If ::mesh:: Entity« cell : mesh. Entities (0)) {

11 LF_ASSERT_MSG(cell ->RefEl() == If ::base:: RefEl::kTria (),

12 "Only implemented for triangles");

13 // Obtain coefficients for local shape functions

14 // Local indices for LSFs fpr velocity components

15 std ::array<Eigen ::Index, 6> vx_idx{0, 3, 6, 9, 11, 13};

16 std ::array<Eigen ::Index, 6> vy_idx{1, 4, 7, 10, 12, 14};

17 Y2720 S S I A A O O Y B B O O O O O O O O Y Y Y Y Y A A B B A A A A A

18 // Workaround for a side-effect in LehrFEM++

19 // Local shape functions associated with edges have to be swapped,

20 ‘ // elc{gethheas "negative" orientation with respect to the triangle. ‘

21 | // mTéQ;nSt ltso offset such a swapping done by LehrFEM++’s |
UniformFEDofHandler.

22 auto edge_orientations = cell->RelativeOrientations () ;

23 LF_ASSERT _MSG(edge_orientations.size () == 3,

24 "Triangle should have 3 edges!?");

25 for (int k = 0; k < 3; ++k) {

26 if (edge_orientations[k] == I|f ::mesh:: Orientation :: negative) {

27 // The rows and columns of the element matrix with numbers 9+2+k

28 // éaEZd*kJrl have to be swapped.

29 std ::swap(vx_idx[3 + k], vy_idx[3 + k]);

30 }

31 }

32 // {0 A A A A A A Y A Y A N N N B A Y N N R B B A Y Y A A A A |

33 std ::span<const |f ::assemble::gdof_idx_t> dof_idx{

34 dofh . GlobalDoflndices (= cell) };

35 LF ASSERT MSG(dof_idx.size () == 15, "Taylor-Hood FEM involves 15 LSFs!");

36

37 // Copied from Eval (); Found no good way of moving this to a
function

38 // Area of the triangle

39 double area = If ::geometry::Volume(=cell ->Geometry()) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StokesPipeFlow/mastersolution/stokespipeflow.cc

40
41
42
43
44
45
46
47

48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
2
91
92
93

}

// Compute gradients of barycentric coordinate functions, see

// |Lecture — Code 2.4.5.11] Get vertices of the triangle

auto endpoints = If ::geometry:: Corners («(cell —>Geometry())) ;

Eigen:: Matrix<double, 3, 3> X; // temporary matrix

X.block<3, 1>(0, 0) = Eigen::Vector3d::Ones() ;

X.block<3, 2>(0, 1) = endpoints.transpose () ;

// This matrix contains gradA; in its columns

const auto G{X.inverse () .block<2, 3>(1, 0)};

// Gradients of local shape functions of quadratic Lagrangian finite

element
// space as lambda functions, see (13.1.24)

std :: array<std :: function <Eigen :: Vector2d (Eigen :: Vector3d) >, 6> gradq{
[&G] (Eigen::Vector3d c) —> Eigen::Vector2d ({
return (4 « c[0] - 1) = G.col(0);
}!
[&G](Eigen:: Vector3d c) —> Eigen::Vector2d {
return (4 « c[1] - 1) » G.col(1);
}!
[&G] (Eigen::Vector3d c) —> Eigen::Vector2d {
return (4 = c[2] - 1) = G.col(2);
}!
[&G](Eigen:: Vector3d c) —> Eigen::Vector2d {
return 4 « (c[0] « G.col(1) + c[1] *« G.col(0));
}s
[&G] (Eigen::Vector3d c) —> Eigen::Vector2d {
return 4 « (c[1] = G.col(2) + c[2] = G.col(1));
be
[&G](Eigen:: Vector3d c) —> Eigen::Vector2d {
return 4 « (c[2] « G.col(0) + c[0] « G.col(2));
1
// Barycentric coordinates of the midpoints of the edges for
// use with the 3-point edge midpoint quadrature rule (13.1.25)
// Note that we only integrate a quadratic polynomial so that the
edge
// midpoint quadrature rule evaluates the integral exactly.
const std::array<Eigen::Vector3d, 3> mp = {Eigen::Vector3d({0.5, 0.5,
Eigen :: Vector3d ({0, 0.5,
Eigen::Vector3d ({0.5, O,

),
)

0}
.5}),
5}) };

0
0.
foLe) U1 |2

// We have to integrate |32 —3l

// Loop over quadrature points
double s = 0.0;
for (int gqp_idx = 0; qp_idx < 3; ++qp_idx) {
// Compute gradv; and gradv, quadrature point
Eigen::Vector2d grad_vx{0.0, 0.0};
Eigen ::Vector2d grad_vy{0.0, 0.0};
for (int i = 0; i < 6; ++i) {
grad_vx += mu_vec[dof_idx[vx_idx[i]]] = gradq[i](mp[ap_idx]);
grad_vy += mu_vec[dof_idx[vy_idx[i]]] = gradq[i](mp[qgp_idx]) ;
}
double curl_gp = grad_vy[0] - grad_vx[1];
s += curl_gp = curl_qgp;
}
p_diss += (area / 3.0 = s);

}

return p_diss;

