
SOLUTION of (13-1.p):

The volume-based formula for the dissipated power in the setting of this project is

Pdiss =
∫

Ω

|
∂v1

∂x2

−
∂v2

∂x1

|2 dx , (13.1.39)

into which we plug the finite element solution vh ∈ S0
2 (M).

The policy of the implementation is the same as for the member function Eval() in Sub-problem (13-1.h).

We encapsulate the gradient of the local shape functions of S0
2 (M) in lambda functions and use the edge

midpoint quadrature rule for the exact evaluation of the local integrals.

C++ code 13.1.40: Sub-problem (13-1.p): Volume formula for dissipated power ➺ GitLab

2 double compDissPowVolume (const l f : : assemble : : DofHandler& dofh ,

3 const Eigen : : VectorXd& mu_vec) {

4 // First fetch underlying mesh

5 const l f : : mesh : : Mesh& mesh { * dofh . Mesh () } ;

6 // Summation variable

7 double p_diss { 0 . 0 } ;

8 // Loop over all cells and add up contributions of local integrals to
the

9 // dissipated power.

10 for (const l f : : mesh : : E n t i t y * c e l l : mesh . E n t i t i e s (0)) {

11 LF_ASSERT_MSG(c e l l −>RefEl () == l f : : base : : RefEl : : kT r ia () ,

12 "Only implemented for t r iang les ") ;

13 // Obtain coefficients for local shape functions

14 // Local indices for LSFs fpr velocity components

15 std : : array <Eigen : : Index , 6> vx_idx {0 , 3 , 6 , 9 , 11 , 13 } ;

16 std : : array <Eigen : : Index , 6> vy_idx {1 , 4 , 7 , 10 , 12 , 14 } ;

17 // !!

18 // Workaround for a side-effect in LehrFEM++

19 // Local shape functions associated with edges have to be swapped,
if the

20 // edge has "negative" orientation with respect to the triangle.
This is

21 // meant to offset such a swapping done by LehrFEM++’s
UniformFEDofHandler.

22 auto edge_or ien ta t ions = c e l l −> R e l a t i v e O r i e n t a t i o n s () ;

23 LF_ASSERT_MSG(edge_or ien ta t ions . size () == 3 ,

24 " Triangle should have 3 edges!? ") ;

25 for (i n t k = 0; k < 3; ++k) {

26 i f (edge_or ien ta t ions [k] == l f : : mesh : : O r i e n t a t i o n : : negat ive) {

27 // The rows and columns of the element matrix with numbers 9+2*k
and

28 // 9+2*k+1 have to be swapped.

29 std : : swap (vx_idx [3 + k] , vy_idx [3 + k]) ;

30 }

31 }

32 // !!

33 std : : span<const l f : : assemble : : gdof_ idx_t > dof_ idx {

34 dofh . GlobalDofIndices (* c e l l) } ;

35 LF_ASSERT_MSG(dof_ idx . size () == 15 , " Taylor−Hood FEM involves 15 LSFs! ") ;

36

37 // Copied from Eval(); Found no good way of moving this to a
function

38 // Area of the triangle

39 double area = l f : : geometry : : Volume (* c e l l −>Geometry ()) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StokesPipeFlow/mastersolution/stokespipeflow.cc

40 // Compute gradients of barycentric coordinate functions, see

41 // [Lecture → Code 2.4.5.11] Get vertices of the triangle

42 auto endpoints = l f : : geometry : : Corners (* (c e l l −>Geometry ())) ;

43 Eigen : : Matrix <double , 3 , 3> X; // temporary matrix

44 X. block <3 , 1 >(0 , 0) = Eigen : : Vector3d : : Ones () ;

45 X. block <3 , 2 >(0 , 1) = endpoints . transpose () ;

46 // This matrix contains grad λi in its columns

47 const auto G{X. inverse () . block <2 , 3 >(1 , 0) } ;

48 // Gradients of local shape functions of quadratic Lagrangian finite
element

49 // space as lambda functions, see (13.1.24)
50 std : : array <std : : f unc t i on <Eigen : : Vector2d (Eigen : : Vector3d) > , 6> gradq {

51 [&G] (Eigen : : Vector3d c) −> Eigen : : Vector2d {

52 return (4 * c [0] − 1) * G. col (0) ;

53 } ,

54 [&G] (Eigen : : Vector3d c) −> Eigen : : Vector2d {

55 return (4 * c [1] − 1) * G. col (1) ;

56 } ,

57 [&G] (Eigen : : Vector3d c) −> Eigen : : Vector2d {

58 return (4 * c [2] − 1) * G. col (2) ;

59 } ,

60 [&G] (Eigen : : Vector3d c) −> Eigen : : Vector2d {

61 return 4 * (c [0] * G. col (1) + c [1] * G. col (0)) ;

62 } ,

63 [&G] (Eigen : : Vector3d c) −> Eigen : : Vector2d {

64 return 4 * (c [1] * G. col (2) + c [2] * G. col (1)) ;

65 } ,

66 [&G] (Eigen : : Vector3d c) −> Eigen : : Vector2d {

67 return 4 * (c [2] * G. col (0) + c [0] * G. col (2)) ;

68 } } ;

69 // Barycentric coordinates of the midpoints of the edges for

70 // use with the 3-point edge midpoint quadrature rule (13.1.25)
71 // Note that we only integrate a quadratic polynomial so that the

edge
72 // midpoint quadrature rule evaluates the integral exactly.

73 const std : : array <Eigen : : Vector3d , 3> mp = { Eigen : : Vector3d ({ 0 . 5 , 0 .5 , 0 }) ,

74 Eigen : : Vector3d ({ 0 , 0 .5 , 0 . 5 }) ,

75 Eigen : : Vector3d ({ 0 . 5 , 0 , 0 . 5 }) } ;

76 // We have to integrate | ∂v2

∂x1
− ∂v1

∂x2
|2.

77 // Loop over quadrature points

78 double s = 0 . 0 ;

79 for (i n t qp_idx = 0; qp_idx < 3; ++qp_idx) {

80 // Compute grad v1 and grad v2 quadrature point

81 Eigen : : Vector2d grad_vx { 0 . 0 , 0 . 0 } ;

82 Eigen : : Vector2d grad_vy { 0 . 0 , 0 . 0 } ;

83 for (i n t i = 0 ; i < 6 ; ++ i) {

84 grad_vx += mu_vec [do f_ idx [vx_idx [i]]] * gradq [i] (mp[qp_idx]) ;

85 grad_vy += mu_vec [do f_ idx [vy_idx [i]]] * gradq [i] (mp[qp_idx]) ;

86 }

87 double cur l_qp = grad_vy [0] − grad_vx [1] ;

88 s += cur l_qp * cur l_qp ;

89 }

90 p_diss += (area / 3.0 * s) ;

91 }

92 return p_diss ;

93 }

