SOLUTION of (13-1.9):

We already know the normal vector at those parts of the boundary, where the velocity does not vanish:

On Ty n(x) = [_01] , on Ty n(x) = [(1)]

So we have to add up integrals
+ / (Vi) (x)pn(x)dS(x), e =meshedgeonT, .
e

If the two values of pj, in the endpoints of the edge e are denoted by py, p1, and the values of (vy,), at the
endpoints and in the midpoint are vy, v1, v, then

11 v
/e(vh)l(x)ph(x) dS(x) = [po p1] {8 ; (ﬂ om | . (13.1.41)
U1

The values py, p1, vo, 01, Ui can directly be accessed as basis expansion coefficients through the global
indices of the local shape functions covering the edge e.

C++ code 13.1.42: Sub-problem (13-1.q): Boundary integral formula for dissipated power
=> GitLab

double compDissPowBd(const |f ::assemble:: DofHandler& dofh,
const Eigen::VectorXd& muvec, bool print) {

// First fetch underlying mesh

const If ::mesh::Mesh& mesh{xdofh.Mesh() };

// Summation variable

double p_diss{0.0};
// Loop over the edges and check whether they are located on the inlet

x1=0

s | // oé outlet x1=1.
10 const Eigen::Matrix<double, 2, 3> M{
11 (Eigen:: Matrix<double, 2, 3>(2, 3) << 1.0 / 6.0, 1.0 / 3.0, 0.0, 0.0,
12 1.0 / 3.0, 1.0 / 6.0)

® N o o A~ w N

13 .finished () };

14 for (const If::mesh:: Entity~ edge : mesh. Entities (1)) {

15 // Length of edge

16 const double length = |f ::geometry::Volume (+(edge—>Geometry()));

17 const Eigen::MatrixXd endpoints{Corners (+(edge—>Geometry()))};

18 const Eigen::Vector2d mp{0.5 « (endpoints.col(0) + endpoints.col(1))};

19 // Check by location whether the edge is on the inlet or outlet

20 int locflag = 0;

21 if (mp[0] < 1E-8) {

22 // On inlet boundary

23 locflag = -1;

24 } else if (mp[0O] > 1 - 1E-8) {

25 locflag = 1;

26 }

27 if (locflag != 0) {

28 // Obtain indices of global shape functions associated with the
edge

29 std::sgan<const If ::assemble:: gdof_idx_t> dof_idx{

30 dofh . GlobalDoflndices (=edge) };


https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StokesPipeFlow/mastersolution/stokespipeflow.cc

31
32
33
34
35
36

37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54

}

}

}

LF_ASSERT_MSG(dof_idx.size () == 8,
"For TH FEM an edge should be covered by 8 GSFs");
// The pressure dofs sit in the nodes as third node dof.
// These are edge—-local shape functions #2 and #5 (C++ indexing)
Eigen::Vector2d p_ldof{muvec[dof_idx[2]], muvec[dof_idx [5]]};
// The velocity x-component dofs sit in nodes and edges and are

numbered
// first there. Their edge-local numbers are #0, #3, and #6

Eigen::Vector3d vx_ldof{muvec[dof_idx[0]], muvec[dof_idx[6]],
muvec[dof_idx [3]]};
// Evaluate the integral; can be done exactly, because the
integrand 1is
// polynomial
const double loc_diss = locflag * length « p_Ildof.dot(M « vx_Ildof);
if (print) {
std ::cout << "DPB: Edge with midpoint [" << mp.transpose ()

<< "] ¢ If =" << locflag

<< ", » pvals = " << p_ldof.transpose ()

<< ", vx_ldof = " << vx_ldof.transpose ()

<< ", loc_diss = " << loc_diss << std::endl;

}

p_diss += loc_diss;

return p_diss;




